mm: allow ->huge_fault() to be called without the mmap_lock held
[linux-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634 13#include <linux/fs.h>
f7ca90b1
MW
14#include <linux/highmem.h>
15#include <linux/memcontrol.h>
16#include <linux/mm.h>
d475c634 17#include <linux/mutex.h>
9973c98e 18#include <linux/pagevec.h>
289c6aed 19#include <linux/sched.h>
f361bf4a 20#include <linux/sched/signal.h>
d475c634 21#include <linux/uio.h>
f7ca90b1 22#include <linux/vmstat.h>
34c0fd54 23#include <linux/pfn_t.h>
0e749e54 24#include <linux/sizes.h>
4b4bb46d 25#include <linux/mmu_notifier.h>
a254e568 26#include <linux/iomap.h>
06083a09 27#include <linux/rmap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
ce95ab0f 52static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
53
54static int __init init_dax_wait_table(void)
55{
56 int i;
57
58 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
59 init_waitqueue_head(wait_table + i);
60 return 0;
61}
62fs_initcall(init_dax_wait_table);
63
527b19d0 64/*
3159f943
MW
65 * DAX pagecache entries use XArray value entries so they can't be mistaken
66 * for pages. We use one bit for locking, one bit for the entry size (PMD)
67 * and two more to tell us if the entry is a zero page or an empty entry that
68 * is just used for locking. In total four special bits.
527b19d0
RZ
69 *
70 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
71 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
72 * block allocation.
73 */
3159f943
MW
74#define DAX_SHIFT (4)
75#define DAX_LOCKED (1UL << 0)
76#define DAX_PMD (1UL << 1)
77#define DAX_ZERO_PAGE (1UL << 2)
78#define DAX_EMPTY (1UL << 3)
527b19d0 79
a77d19f4 80static unsigned long dax_to_pfn(void *entry)
527b19d0 81{
3159f943 82 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
83}
84
9f32d221
MW
85static void *dax_make_entry(pfn_t pfn, unsigned long flags)
86{
87 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
88}
89
cfc93c6c
MW
90static bool dax_is_locked(void *entry)
91{
92 return xa_to_value(entry) & DAX_LOCKED;
93}
94
a77d19f4 95static unsigned int dax_entry_order(void *entry)
527b19d0 96{
3159f943 97 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 98 return PMD_ORDER;
527b19d0
RZ
99 return 0;
100}
101
fda490d3 102static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 103{
3159f943 104 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
105}
106
fda490d3 107static bool dax_is_pte_entry(void *entry)
d475c634 108{
3159f943 109 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
110}
111
642261ac 112static int dax_is_zero_entry(void *entry)
d475c634 113{
3159f943 114 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
115}
116
642261ac 117static int dax_is_empty_entry(void *entry)
b2e0d162 118{
3159f943 119 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
120}
121
23c84eb7
MWO
122/*
123 * true if the entry that was found is of a smaller order than the entry
124 * we were looking for
125 */
126static bool dax_is_conflict(void *entry)
127{
128 return entry == XA_RETRY_ENTRY;
129}
130
ac401cc7 131/*
a77d19f4 132 * DAX page cache entry locking
ac401cc7
JK
133 */
134struct exceptional_entry_key {
ec4907ff 135 struct xarray *xa;
63e95b5c 136 pgoff_t entry_start;
ac401cc7
JK
137};
138
139struct wait_exceptional_entry_queue {
ac6424b9 140 wait_queue_entry_t wait;
ac401cc7
JK
141 struct exceptional_entry_key key;
142};
143
698ab77a
VG
144/**
145 * enum dax_wake_mode: waitqueue wakeup behaviour
146 * @WAKE_ALL: wake all waiters in the waitqueue
147 * @WAKE_NEXT: wake only the first waiter in the waitqueue
148 */
149enum dax_wake_mode {
150 WAKE_ALL,
151 WAKE_NEXT,
152};
153
b15cd800
MW
154static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
155 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
156{
157 unsigned long hash;
b15cd800 158 unsigned long index = xas->xa_index;
63e95b5c
RZ
159
160 /*
161 * If 'entry' is a PMD, align the 'index' that we use for the wait
162 * queue to the start of that PMD. This ensures that all offsets in
163 * the range covered by the PMD map to the same bit lock.
164 */
642261ac 165 if (dax_is_pmd_entry(entry))
917f3452 166 index &= ~PG_PMD_COLOUR;
b15cd800 167 key->xa = xas->xa;
63e95b5c
RZ
168 key->entry_start = index;
169
b15cd800 170 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
171 return wait_table + hash;
172}
173
ec4907ff
MW
174static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
175 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
176{
177 struct exceptional_entry_key *key = keyp;
178 struct wait_exceptional_entry_queue *ewait =
179 container_of(wait, struct wait_exceptional_entry_queue, wait);
180
ec4907ff 181 if (key->xa != ewait->key.xa ||
63e95b5c 182 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
183 return 0;
184 return autoremove_wake_function(wait, mode, sync, NULL);
185}
186
e30331ff 187/*
b93b0163
MW
188 * @entry may no longer be the entry at the index in the mapping.
189 * The important information it's conveying is whether the entry at
190 * this index used to be a PMD entry.
e30331ff 191 */
698ab77a
VG
192static void dax_wake_entry(struct xa_state *xas, void *entry,
193 enum dax_wake_mode mode)
e30331ff
RZ
194{
195 struct exceptional_entry_key key;
196 wait_queue_head_t *wq;
197
b15cd800 198 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
199
200 /*
201 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 202 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
203 * So at this point all tasks that could have seen our entry locked
204 * must be in the waitqueue and the following check will see them.
205 */
206 if (waitqueue_active(wq))
698ab77a 207 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
e30331ff
RZ
208}
209
cfc93c6c
MW
210/*
211 * Look up entry in page cache, wait for it to become unlocked if it
212 * is a DAX entry and return it. The caller must subsequently call
213 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
214 * if it did. The entry returned may have a larger order than @order.
215 * If @order is larger than the order of the entry found in i_pages, this
216 * function returns a dax_is_conflict entry.
cfc93c6c
MW
217 *
218 * Must be called with the i_pages lock held.
219 */
23c84eb7 220static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
221{
222 void *entry;
223 struct wait_exceptional_entry_queue ewait;
224 wait_queue_head_t *wq;
225
226 init_wait(&ewait.wait);
227 ewait.wait.func = wake_exceptional_entry_func;
228
229 for (;;) {
0e40de03 230 entry = xas_find_conflict(xas);
6370740e
DW
231 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
232 return entry;
23c84eb7
MWO
233 if (dax_entry_order(entry) < order)
234 return XA_RETRY_ENTRY;
6370740e 235 if (!dax_is_locked(entry))
cfc93c6c
MW
236 return entry;
237
b15cd800 238 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
239 prepare_to_wait_exclusive(wq, &ewait.wait,
240 TASK_UNINTERRUPTIBLE);
241 xas_unlock_irq(xas);
242 xas_reset(xas);
243 schedule();
244 finish_wait(wq, &ewait.wait);
245 xas_lock_irq(xas);
246 }
247}
248
55e56f06
MW
249/*
250 * The only thing keeping the address space around is the i_pages lock
251 * (it's cycled in clear_inode() after removing the entries from i_pages)
252 * After we call xas_unlock_irq(), we cannot touch xas->xa.
253 */
254static void wait_entry_unlocked(struct xa_state *xas, void *entry)
255{
256 struct wait_exceptional_entry_queue ewait;
257 wait_queue_head_t *wq;
258
259 init_wait(&ewait.wait);
260 ewait.wait.func = wake_exceptional_entry_func;
261
262 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
263 /*
264 * Unlike get_unlocked_entry() there is no guarantee that this
265 * path ever successfully retrieves an unlocked entry before an
266 * inode dies. Perform a non-exclusive wait in case this path
267 * never successfully performs its own wake up.
268 */
269 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
270 xas_unlock_irq(xas);
271 schedule();
272 finish_wait(wq, &ewait.wait);
55e56f06
MW
273}
274
4c3d043d
VG
275static void put_unlocked_entry(struct xa_state *xas, void *entry,
276 enum dax_wake_mode mode)
cfc93c6c 277{
61c30c98 278 if (entry && !dax_is_conflict(entry))
4c3d043d 279 dax_wake_entry(xas, entry, mode);
cfc93c6c
MW
280}
281
282/*
283 * We used the xa_state to get the entry, but then we locked the entry and
284 * dropped the xa_lock, so we know the xa_state is stale and must be reset
285 * before use.
286 */
287static void dax_unlock_entry(struct xa_state *xas, void *entry)
288{
289 void *old;
290
7ae2ea7d 291 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
292 xas_reset(xas);
293 xas_lock_irq(xas);
294 old = xas_store(xas, entry);
295 xas_unlock_irq(xas);
296 BUG_ON(!dax_is_locked(old));
698ab77a 297 dax_wake_entry(xas, entry, WAKE_NEXT);
cfc93c6c
MW
298}
299
300/*
301 * Return: The entry stored at this location before it was locked.
302 */
303static void *dax_lock_entry(struct xa_state *xas, void *entry)
304{
305 unsigned long v = xa_to_value(entry);
306 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
307}
308
d2c997c0
DW
309static unsigned long dax_entry_size(void *entry)
310{
311 if (dax_is_zero_entry(entry))
312 return 0;
313 else if (dax_is_empty_entry(entry))
314 return 0;
315 else if (dax_is_pmd_entry(entry))
316 return PMD_SIZE;
317 else
318 return PAGE_SIZE;
319}
320
a77d19f4 321static unsigned long dax_end_pfn(void *entry)
d2c997c0 322{
a77d19f4 323 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
324}
325
326/*
327 * Iterate through all mapped pfns represented by an entry, i.e. skip
328 * 'empty' and 'zero' entries.
329 */
330#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
331 for (pfn = dax_to_pfn(entry); \
332 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 333
16900426 334static inline bool dax_page_is_shared(struct page *page)
6061b69b 335{
16900426 336 return page->mapping == PAGE_MAPPING_DAX_SHARED;
6061b69b
SR
337}
338
73449daf 339/*
16900426
SR
340 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
341 * refcount.
6061b69b 342 */
16900426 343static inline void dax_page_share_get(struct page *page)
6061b69b 344{
16900426 345 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
6061b69b
SR
346 /*
347 * Reset the index if the page was already mapped
348 * regularly before.
349 */
350 if (page->mapping)
16900426
SR
351 page->share = 1;
352 page->mapping = PAGE_MAPPING_DAX_SHARED;
6061b69b 353 }
16900426
SR
354 page->share++;
355}
356
357static inline unsigned long dax_page_share_put(struct page *page)
358{
359 return --page->share;
6061b69b
SR
360}
361
362/*
16900426 363 * When it is called in dax_insert_entry(), the shared flag will indicate that
6061b69b 364 * whether this entry is shared by multiple files. If so, set the page->mapping
16900426 365 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
73449daf
DW
366 */
367static void dax_associate_entry(void *entry, struct address_space *mapping,
16900426 368 struct vm_area_struct *vma, unsigned long address, bool shared)
d2c997c0 369{
73449daf
DW
370 unsigned long size = dax_entry_size(entry), pfn, index;
371 int i = 0;
d2c997c0
DW
372
373 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
374 return;
375
73449daf 376 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
377 for_each_mapped_pfn(entry, pfn) {
378 struct page *page = pfn_to_page(pfn);
379
16900426
SR
380 if (shared) {
381 dax_page_share_get(page);
6061b69b
SR
382 } else {
383 WARN_ON_ONCE(page->mapping);
384 page->mapping = mapping;
385 page->index = index + i++;
386 }
d2c997c0
DW
387 }
388}
389
390static void dax_disassociate_entry(void *entry, struct address_space *mapping,
391 bool trunc)
392{
393 unsigned long pfn;
394
395 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
396 return;
397
398 for_each_mapped_pfn(entry, pfn) {
399 struct page *page = pfn_to_page(pfn);
400
401 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
16900426
SR
402 if (dax_page_is_shared(page)) {
403 /* keep the shared flag if this page is still shared */
404 if (dax_page_share_put(page) > 0)
6061b69b
SR
405 continue;
406 } else
407 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
d2c997c0 408 page->mapping = NULL;
73449daf 409 page->index = 0;
d2c997c0
DW
410 }
411}
412
5fac7408
DW
413static struct page *dax_busy_page(void *entry)
414{
415 unsigned long pfn;
416
417 for_each_mapped_pfn(entry, pfn) {
418 struct page *page = pfn_to_page(pfn);
419
420 if (page_ref_count(page) > 1)
421 return page;
422 }
423 return NULL;
424}
425
c5bbd451 426/*
c2e8021a 427 * dax_lock_page - Lock the DAX entry corresponding to a page
c5bbd451
MW
428 * @page: The page whose entry we want to lock
429 *
430 * Context: Process context.
27359fd6
MW
431 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
432 * not be locked.
c5bbd451 433 */
27359fd6 434dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 435{
9f32d221
MW
436 XA_STATE(xas, NULL, 0);
437 void *entry;
c2a7d2a1 438
c5bbd451
MW
439 /* Ensure page->mapping isn't freed while we look at it */
440 rcu_read_lock();
c2a7d2a1 441 for (;;) {
9f32d221 442 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 443
27359fd6 444 entry = NULL;
c93db7bb 445 if (!mapping || !dax_mapping(mapping))
c5bbd451 446 break;
c2a7d2a1
DW
447
448 /*
449 * In the device-dax case there's no need to lock, a
450 * struct dev_pagemap pin is sufficient to keep the
451 * inode alive, and we assume we have dev_pagemap pin
452 * otherwise we would not have a valid pfn_to_page()
453 * translation.
454 */
27359fd6 455 entry = (void *)~0UL;
9f32d221 456 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 457 break;
c2a7d2a1 458
9f32d221
MW
459 xas.xa = &mapping->i_pages;
460 xas_lock_irq(&xas);
c2a7d2a1 461 if (mapping != page->mapping) {
9f32d221 462 xas_unlock_irq(&xas);
c2a7d2a1
DW
463 continue;
464 }
9f32d221
MW
465 xas_set(&xas, page->index);
466 entry = xas_load(&xas);
467 if (dax_is_locked(entry)) {
c5bbd451 468 rcu_read_unlock();
55e56f06 469 wait_entry_unlocked(&xas, entry);
c5bbd451 470 rcu_read_lock();
6d7cd8c1 471 continue;
c2a7d2a1 472 }
9f32d221
MW
473 dax_lock_entry(&xas, entry);
474 xas_unlock_irq(&xas);
c5bbd451 475 break;
c2a7d2a1 476 }
c5bbd451 477 rcu_read_unlock();
27359fd6 478 return (dax_entry_t)entry;
c2a7d2a1
DW
479}
480
27359fd6 481void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
482{
483 struct address_space *mapping = page->mapping;
9f32d221 484 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 485
9f32d221 486 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
487 return;
488
27359fd6 489 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
490}
491
2f437eff
SR
492/*
493 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
494 * @mapping: the file's mapping whose entry we want to lock
495 * @index: the offset within this file
496 * @page: output the dax page corresponding to this dax entry
497 *
498 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
499 * could not be locked.
500 */
501dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
502 struct page **page)
503{
504 XA_STATE(xas, NULL, 0);
505 void *entry;
506
507 rcu_read_lock();
508 for (;;) {
509 entry = NULL;
510 if (!dax_mapping(mapping))
511 break;
512
513 xas.xa = &mapping->i_pages;
514 xas_lock_irq(&xas);
515 xas_set(&xas, index);
516 entry = xas_load(&xas);
517 if (dax_is_locked(entry)) {
518 rcu_read_unlock();
519 wait_entry_unlocked(&xas, entry);
520 rcu_read_lock();
521 continue;
522 }
523 if (!entry ||
524 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
525 /*
526 * Because we are looking for entry from file's mapping
527 * and index, so the entry may not be inserted for now,
528 * or even a zero/empty entry. We don't think this is
529 * an error case. So, return a special value and do
530 * not output @page.
531 */
532 entry = (void *)~0UL;
533 } else {
534 *page = pfn_to_page(dax_to_pfn(entry));
535 dax_lock_entry(&xas, entry);
536 }
537 xas_unlock_irq(&xas);
538 break;
539 }
540 rcu_read_unlock();
541 return (dax_entry_t)entry;
542}
543
544void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
545 dax_entry_t cookie)
546{
547 XA_STATE(xas, &mapping->i_pages, index);
548
549 if (cookie == ~0UL)
550 return;
551
552 dax_unlock_entry(&xas, (void *)cookie);
553}
554
ac401cc7 555/*
a77d19f4
MW
556 * Find page cache entry at given index. If it is a DAX entry, return it
557 * with the entry locked. If the page cache doesn't contain an entry at
558 * that index, add a locked empty entry.
ac401cc7 559 *
3159f943 560 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
561 * either return that locked entry or will return VM_FAULT_FALLBACK.
562 * This will happen if there are any PTE entries within the PMD range
563 * that we are requesting.
642261ac 564 *
b15cd800
MW
565 * We always favor PTE entries over PMD entries. There isn't a flow where we
566 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
567 * insertion will fail if it finds any PTE entries already in the tree, and a
568 * PTE insertion will cause an existing PMD entry to be unmapped and
569 * downgraded to PTE entries. This happens for both PMD zero pages as
570 * well as PMD empty entries.
642261ac 571 *
b15cd800
MW
572 * The exception to this downgrade path is for PMD entries that have
573 * real storage backing them. We will leave these real PMD entries in
574 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 575 *
ac401cc7
JK
576 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
577 * persistent memory the benefit is doubtful. We can add that later if we can
578 * show it helps.
b15cd800
MW
579 *
580 * On error, this function does not return an ERR_PTR. Instead it returns
581 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
582 * overlap with xarray value entries.
ac401cc7 583 */
b15cd800 584static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 585 struct address_space *mapping, unsigned int order)
ac401cc7 586{
b15cd800 587 unsigned long index = xas->xa_index;
1a14e377 588 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
b15cd800 589 void *entry;
642261ac 590
b15cd800 591retry:
1a14e377 592 pmd_downgrade = false;
b15cd800 593 xas_lock_irq(xas);
23c84eb7 594 entry = get_unlocked_entry(xas, order);
91d25ba8 595
642261ac 596 if (entry) {
23c84eb7
MWO
597 if (dax_is_conflict(entry))
598 goto fallback;
0e40de03 599 if (!xa_is_value(entry)) {
49688e65 600 xas_set_err(xas, -EIO);
b15cd800
MW
601 goto out_unlock;
602 }
603
23c84eb7 604 if (order == 0) {
91d25ba8 605 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
606 (dax_is_zero_entry(entry) ||
607 dax_is_empty_entry(entry))) {
608 pmd_downgrade = true;
609 }
610 }
611 }
612
b15cd800
MW
613 if (pmd_downgrade) {
614 /*
615 * Make sure 'entry' remains valid while we drop
616 * the i_pages lock.
617 */
618 dax_lock_entry(xas, entry);
642261ac 619
642261ac
RZ
620 /*
621 * Besides huge zero pages the only other thing that gets
622 * downgraded are empty entries which don't need to be
623 * unmapped.
624 */
b15cd800
MW
625 if (dax_is_zero_entry(entry)) {
626 xas_unlock_irq(xas);
627 unmap_mapping_pages(mapping,
628 xas->xa_index & ~PG_PMD_COLOUR,
629 PG_PMD_NR, false);
630 xas_reset(xas);
631 xas_lock_irq(xas);
e11f8b7b
RZ
632 }
633
b15cd800
MW
634 dax_disassociate_entry(entry, mapping, false);
635 xas_store(xas, NULL); /* undo the PMD join */
698ab77a 636 dax_wake_entry(xas, entry, WAKE_ALL);
7f0e07fb 637 mapping->nrpages -= PG_PMD_NR;
b15cd800
MW
638 entry = NULL;
639 xas_set(xas, index);
640 }
642261ac 641
b15cd800
MW
642 if (entry) {
643 dax_lock_entry(xas, entry);
644 } else {
23c84eb7
MWO
645 unsigned long flags = DAX_EMPTY;
646
647 if (order > 0)
648 flags |= DAX_PMD;
649 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
650 dax_lock_entry(xas, entry);
651 if (xas_error(xas))
652 goto out_unlock;
7f0e07fb 653 mapping->nrpages += 1UL << order;
ac401cc7 654 }
b15cd800
MW
655
656out_unlock:
657 xas_unlock_irq(xas);
658 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
659 goto retry;
660 if (xas->xa_node == XA_ERROR(-ENOMEM))
661 return xa_mk_internal(VM_FAULT_OOM);
662 if (xas_error(xas))
663 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 664 return entry;
b15cd800
MW
665fallback:
666 xas_unlock_irq(xas);
667 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
668}
669
5fac7408 670/**
6bbdd563 671 * dax_layout_busy_page_range - find first pinned page in @mapping
5fac7408 672 * @mapping: address space to scan for a page with ref count > 1
6bbdd563
VG
673 * @start: Starting offset. Page containing 'start' is included.
674 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
675 * pages from 'start' till the end of file are included.
5fac7408
DW
676 *
677 * DAX requires ZONE_DEVICE mapped pages. These pages are never
678 * 'onlined' to the page allocator so they are considered idle when
679 * page->count == 1. A filesystem uses this interface to determine if
680 * any page in the mapping is busy, i.e. for DMA, or other
681 * get_user_pages() usages.
682 *
683 * It is expected that the filesystem is holding locks to block the
684 * establishment of new mappings in this address_space. I.e. it expects
685 * to be able to run unmap_mapping_range() and subsequently not race
686 * mapping_mapped() becoming true.
687 */
6bbdd563
VG
688struct page *dax_layout_busy_page_range(struct address_space *mapping,
689 loff_t start, loff_t end)
5fac7408 690{
084a8990
MW
691 void *entry;
692 unsigned int scanned = 0;
5fac7408 693 struct page *page = NULL;
6bbdd563
VG
694 pgoff_t start_idx = start >> PAGE_SHIFT;
695 pgoff_t end_idx;
696 XA_STATE(xas, &mapping->i_pages, start_idx);
5fac7408
DW
697
698 /*
699 * In the 'limited' case get_user_pages() for dax is disabled.
700 */
701 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
702 return NULL;
703
704 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
705 return NULL;
706
6bbdd563
VG
707 /* If end == LLONG_MAX, all pages from start to till end of file */
708 if (end == LLONG_MAX)
709 end_idx = ULONG_MAX;
710 else
711 end_idx = end >> PAGE_SHIFT;
5fac7408
DW
712 /*
713 * If we race get_user_pages_fast() here either we'll see the
084a8990 714 * elevated page count in the iteration and wait, or
5fac7408
DW
715 * get_user_pages_fast() will see that the page it took a reference
716 * against is no longer mapped in the page tables and bail to the
717 * get_user_pages() slow path. The slow path is protected by
718 * pte_lock() and pmd_lock(). New references are not taken without
6bbdd563 719 * holding those locks, and unmap_mapping_pages() will not zero the
5fac7408
DW
720 * pte or pmd without holding the respective lock, so we are
721 * guaranteed to either see new references or prevent new
722 * references from being established.
723 */
6bbdd563 724 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
5fac7408 725
084a8990 726 xas_lock_irq(&xas);
6bbdd563 727 xas_for_each(&xas, entry, end_idx) {
084a8990
MW
728 if (WARN_ON_ONCE(!xa_is_value(entry)))
729 continue;
730 if (unlikely(dax_is_locked(entry)))
23c84eb7 731 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
732 if (entry)
733 page = dax_busy_page(entry);
4c3d043d 734 put_unlocked_entry(&xas, entry, WAKE_NEXT);
5fac7408
DW
735 if (page)
736 break;
084a8990
MW
737 if (++scanned % XA_CHECK_SCHED)
738 continue;
739
740 xas_pause(&xas);
741 xas_unlock_irq(&xas);
742 cond_resched();
743 xas_lock_irq(&xas);
5fac7408 744 }
084a8990 745 xas_unlock_irq(&xas);
5fac7408
DW
746 return page;
747}
6bbdd563
VG
748EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
749
750struct page *dax_layout_busy_page(struct address_space *mapping)
751{
752 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
753}
5fac7408
DW
754EXPORT_SYMBOL_GPL(dax_layout_busy_page);
755
a77d19f4 756static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
757 pgoff_t index, bool trunc)
758{
07f2d89c 759 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
760 int ret = 0;
761 void *entry;
c6dcf52c 762
07f2d89c 763 xas_lock_irq(&xas);
23c84eb7 764 entry = get_unlocked_entry(&xas, 0);
3159f943 765 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
766 goto out;
767 if (!trunc &&
07f2d89c
MW
768 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
769 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 770 goto out;
d2c997c0 771 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 772 xas_store(&xas, NULL);
7f0e07fb 773 mapping->nrpages -= 1UL << dax_entry_order(entry);
c6dcf52c
JK
774 ret = 1;
775out:
23738832 776 put_unlocked_entry(&xas, entry, WAKE_ALL);
07f2d89c 777 xas_unlock_irq(&xas);
c6dcf52c
JK
778 return ret;
779}
07f2d89c 780
f76b3a32
SR
781static int __dax_clear_dirty_range(struct address_space *mapping,
782 pgoff_t start, pgoff_t end)
783{
784 XA_STATE(xas, &mapping->i_pages, start);
785 unsigned int scanned = 0;
786 void *entry;
787
788 xas_lock_irq(&xas);
789 xas_for_each(&xas, entry, end) {
790 entry = get_unlocked_entry(&xas, 0);
791 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
792 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
793 put_unlocked_entry(&xas, entry, WAKE_NEXT);
794
795 if (++scanned % XA_CHECK_SCHED)
796 continue;
797
798 xas_pause(&xas);
799 xas_unlock_irq(&xas);
800 cond_resched();
801 xas_lock_irq(&xas);
802 }
803 xas_unlock_irq(&xas);
804
805 return 0;
806}
807
ac401cc7 808/*
3159f943
MW
809 * Delete DAX entry at @index from @mapping. Wait for it
810 * to be unlocked before deleting it.
ac401cc7
JK
811 */
812int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
813{
a77d19f4 814 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 815
ac401cc7
JK
816 /*
817 * This gets called from truncate / punch_hole path. As such, the caller
818 * must hold locks protecting against concurrent modifications of the
a77d19f4 819 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 820 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
821 * at that index as well...
822 */
c6dcf52c
JK
823 WARN_ON_ONCE(!ret);
824 return ret;
825}
826
c6dcf52c 827/*
3159f943 828 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
829 */
830int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
831 pgoff_t index)
832{
a77d19f4 833 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
834}
835
60696eb2 836static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
f7ca90b1 837{
de205114 838 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
429f8de7
CH
839}
840
841static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
842{
60696eb2 843 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
cccbce67 844 void *vto, *kaddr;
cccbce67
DW
845 long rc;
846 int id;
847
cccbce67 848 id = dax_read_lock();
e511c4a3
JC
849 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
850 &kaddr, NULL);
cccbce67
DW
851 if (rc < 0) {
852 dax_read_unlock(id);
853 return rc;
854 }
429f8de7
CH
855 vto = kmap_atomic(vmf->cow_page);
856 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
f7ca90b1 857 kunmap_atomic(vto);
cccbce67 858 dax_read_unlock(id);
f7ca90b1
MW
859 return 0;
860}
861
e5d6df73
SR
862/*
863 * MAP_SYNC on a dax mapping guarantees dirty metadata is
864 * flushed on write-faults (non-cow), but not read-faults.
865 */
866static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
867 struct vm_area_struct *vma)
868{
869 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
870 (iter->iomap.flags & IOMAP_F_DIRTY);
871}
872
642261ac
RZ
873/*
874 * By this point grab_mapping_entry() has ensured that we have a locked entry
875 * of the appropriate size so we don't have to worry about downgrading PMDs to
876 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
877 * already in the tree, we will skip the insertion and just dirty the PMD as
878 * appropriate.
879 */
e5d6df73
SR
880static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
881 const struct iomap_iter *iter, void *entry, pfn_t pfn,
882 unsigned long flags)
9973c98e 883{
e5d6df73 884 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 885 void *new_entry = dax_make_entry(pfn, flags);
c6f0b395
SR
886 bool write = iter->flags & IOMAP_WRITE;
887 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
888 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
9973c98e 889
f5b7b748 890 if (dirty)
d2b2a28e 891 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 892
c6f0b395 893 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
b15cd800 894 unsigned long index = xas->xa_index;
91d25ba8
RZ
895 /* we are replacing a zero page with block mapping */
896 if (dax_is_pmd_entry(entry))
977fbdcd 897 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 898 PG_PMD_NR, false);
91d25ba8 899 else /* pte entry */
b15cd800 900 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
901 }
902
b15cd800
MW
903 xas_reset(xas);
904 xas_lock_irq(xas);
c6f0b395 905 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
1571c029
JK
906 void *old;
907
d2c997c0 908 dax_disassociate_entry(entry, mapping, false);
6061b69b 909 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
c6f0b395 910 shared);
642261ac 911 /*
a77d19f4 912 * Only swap our new entry into the page cache if the current
642261ac 913 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 914 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
915 * means that if we are trying to insert a PTE and the
916 * existing entry is a PMD, we will just leave the PMD in the
917 * tree and dirty it if necessary.
918 */
1571c029 919 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
920 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
921 DAX_LOCKED));
91d25ba8 922 entry = new_entry;
b15cd800
MW
923 } else {
924 xas_load(xas); /* Walk the xa_state */
9973c98e 925 }
91d25ba8 926
f5b7b748 927 if (dirty)
b15cd800 928 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 929
c6f0b395 930 if (write && shared)
e5d6df73
SR
931 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
932
b15cd800 933 xas_unlock_irq(xas);
91d25ba8 934 return entry;
9973c98e
RZ
935}
936
9fc747f6
MW
937static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
938 struct address_space *mapping, void *entry)
9973c98e 939{
06083a09 940 unsigned long pfn, index, count, end;
3fe0791c 941 long ret = 0;
06083a09 942 struct vm_area_struct *vma;
9973c98e 943
9973c98e 944 /*
a6abc2c0
JK
945 * A page got tagged dirty in DAX mapping? Something is seriously
946 * wrong.
9973c98e 947 */
3159f943 948 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 949 return -EIO;
9973c98e 950
9fc747f6
MW
951 if (unlikely(dax_is_locked(entry))) {
952 void *old_entry = entry;
953
23c84eb7 954 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
955
956 /* Entry got punched out / reallocated? */
957 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
958 goto put_unlocked;
959 /*
960 * Entry got reallocated elsewhere? No need to writeback.
961 * We have to compare pfns as we must not bail out due to
962 * difference in lockbit or entry type.
963 */
964 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
965 goto put_unlocked;
966 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
967 dax_is_zero_entry(entry))) {
968 ret = -EIO;
969 goto put_unlocked;
970 }
971
972 /* Another fsync thread may have already done this entry */
973 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
974 goto put_unlocked;
9973c98e
RZ
975 }
976
a6abc2c0 977 /* Lock the entry to serialize with page faults */
9fc747f6
MW
978 dax_lock_entry(xas, entry);
979
a6abc2c0
JK
980 /*
981 * We can clear the tag now but we have to be careful so that concurrent
982 * dax_writeback_one() calls for the same index cannot finish before we
983 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
984 * at the entry only under the i_pages lock and once they do that
985 * they will see the entry locked and wait for it to unlock.
a6abc2c0 986 */
9fc747f6
MW
987 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
988 xas_unlock_irq(xas);
a6abc2c0 989
642261ac 990 /*
e4b3448b
MW
991 * If dax_writeback_mapping_range() was given a wbc->range_start
992 * in the middle of a PMD, the 'index' we use needs to be
993 * aligned to the start of the PMD.
3fe0791c
DW
994 * This allows us to flush for PMD_SIZE and not have to worry about
995 * partial PMD writebacks.
642261ac 996 */
a77d19f4 997 pfn = dax_to_pfn(entry);
e4b3448b
MW
998 count = 1UL << dax_entry_order(entry);
999 index = xas->xa_index & ~(count - 1);
06083a09
MS
1000 end = index + count - 1;
1001
1002 /* Walk all mappings of a given index of a file and writeprotect them */
1003 i_mmap_lock_read(mapping);
1004 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1005 pfn_mkclean_range(pfn, count, index, vma);
1006 cond_resched();
1007 }
1008 i_mmap_unlock_read(mapping);
cccbce67 1009
e4b3448b 1010 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
1011 /*
1012 * After we have flushed the cache, we can clear the dirty tag. There
1013 * cannot be new dirty data in the pfn after the flush has completed as
1014 * the pfn mappings are writeprotected and fault waits for mapping
1015 * entry lock.
1016 */
9fc747f6
MW
1017 xas_reset(xas);
1018 xas_lock_irq(xas);
1019 xas_store(xas, entry);
1020 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
698ab77a 1021 dax_wake_entry(xas, entry, WAKE_NEXT);
9fc747f6 1022
e4b3448b 1023 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
1024 return ret;
1025
a6abc2c0 1026 put_unlocked:
4c3d043d 1027 put_unlocked_entry(xas, entry, WAKE_NEXT);
9973c98e
RZ
1028 return ret;
1029}
1030
1031/*
1032 * Flush the mapping to the persistent domain within the byte range of [start,
1033 * end]. This is required by data integrity operations to ensure file data is
1034 * on persistent storage prior to completion of the operation.
1035 */
7f6d5b52 1036int dax_writeback_mapping_range(struct address_space *mapping,
3f666c56 1037 struct dax_device *dax_dev, struct writeback_control *wbc)
9973c98e 1038{
9fc747f6 1039 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 1040 struct inode *inode = mapping->host;
9fc747f6 1041 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
9fc747f6
MW
1042 void *entry;
1043 int ret = 0;
1044 unsigned int scanned = 0;
9973c98e
RZ
1045
1046 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1047 return -EIO;
1048
7716506a 1049 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
7f6d5b52
RZ
1050 return 0;
1051
9fc747f6 1052 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 1053
9fc747f6 1054 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 1055
9fc747f6
MW
1056 xas_lock_irq(&xas);
1057 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1058 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1059 if (ret < 0) {
1060 mapping_set_error(mapping, ret);
9973c98e 1061 break;
9973c98e 1062 }
9fc747f6
MW
1063 if (++scanned % XA_CHECK_SCHED)
1064 continue;
1065
1066 xas_pause(&xas);
1067 xas_unlock_irq(&xas);
1068 cond_resched();
1069 xas_lock_irq(&xas);
9973c98e 1070 }
9fc747f6 1071 xas_unlock_irq(&xas);
9fc747f6
MW
1072 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1073 return ret;
9973c98e
RZ
1074}
1075EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1076
e28cd3e5
SR
1077static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1078 size_t size, void **kaddr, pfn_t *pfnp)
f7ca90b1 1079{
60696eb2 1080 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e28cd3e5 1081 int id, rc = 0;
5e161e40 1082 long length;
f7ca90b1 1083
cccbce67 1084 id = dax_read_lock();
5e161e40 1085 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
e28cd3e5 1086 DAX_ACCESS, kaddr, pfnp);
5e161e40
JK
1087 if (length < 0) {
1088 rc = length;
1089 goto out;
cccbce67 1090 }
e28cd3e5
SR
1091 if (!pfnp)
1092 goto out_check_addr;
5e161e40
JK
1093 rc = -EINVAL;
1094 if (PFN_PHYS(length) < size)
1095 goto out;
1096 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1097 goto out;
1098 /* For larger pages we need devmap */
1099 if (length > 1 && !pfn_t_devmap(*pfnp))
1100 goto out;
1101 rc = 0;
e28cd3e5
SR
1102
1103out_check_addr:
1104 if (!kaddr)
1105 goto out;
1106 if (!*kaddr)
1107 rc = -EFAULT;
5e161e40 1108out:
cccbce67 1109 dax_read_unlock(id);
5e161e40 1110 return rc;
0e3b210c 1111}
0e3b210c 1112
ff17b8df 1113/**
708dfad2
SR
1114 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1115 * by copying the data before and after the range to be written.
ff17b8df
SR
1116 * @pos: address to do copy from.
1117 * @length: size of copy operation.
1118 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1119 * @srcmap: iomap srcmap
1120 * @daddr: destination address to copy to.
1121 *
1122 * This can be called from two places. Either during DAX write fault (page
1123 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
708dfad2 1124 * write operation, dax_iomap_iter() might call this to do the copy of either
ff17b8df 1125 * start or end unaligned address. In the latter case the rest of the copy of
708dfad2
SR
1126 * aligned ranges is taken care by dax_iomap_iter() itself.
1127 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1128 * area to make sure no old data remains.
ff17b8df 1129 */
708dfad2 1130static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
ff17b8df
SR
1131 const struct iomap *srcmap, void *daddr)
1132{
1133 loff_t head_off = pos & (align_size - 1);
1134 size_t size = ALIGN(head_off + length, align_size);
1135 loff_t end = pos + length;
1136 loff_t pg_end = round_up(end, align_size);
708dfad2 1137 /* copy_all is usually in page fault case */
ff17b8df 1138 bool copy_all = head_off == 0 && end == pg_end;
708dfad2
SR
1139 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1140 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1141 srcmap->type == IOMAP_UNWRITTEN;
ff17b8df
SR
1142 void *saddr = 0;
1143 int ret = 0;
1144
708dfad2
SR
1145 if (!zero_edge) {
1146 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1147 if (ret)
1ea7ca1b 1148 return dax_mem2blk_err(ret);
708dfad2 1149 }
ff17b8df
SR
1150
1151 if (copy_all) {
708dfad2
SR
1152 if (zero_edge)
1153 memset(daddr, 0, size);
1154 else
1155 ret = copy_mc_to_kernel(daddr, saddr, length);
1156 goto out;
ff17b8df
SR
1157 }
1158
1159 /* Copy the head part of the range */
1160 if (head_off) {
708dfad2
SR
1161 if (zero_edge)
1162 memset(daddr, 0, head_off);
1163 else {
1164 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1165 if (ret)
1166 return -EIO;
1167 }
ff17b8df
SR
1168 }
1169
1170 /* Copy the tail part of the range */
1171 if (end < pg_end) {
1172 loff_t tail_off = head_off + length;
1173 loff_t tail_len = pg_end - end;
1174
708dfad2
SR
1175 if (zero_edge)
1176 memset(daddr + tail_off, 0, tail_len);
1177 else {
1178 ret = copy_mc_to_kernel(daddr + tail_off,
1179 saddr + tail_off, tail_len);
1180 if (ret)
1181 return -EIO;
1182 }
ff17b8df 1183 }
708dfad2
SR
1184out:
1185 if (zero_edge)
1186 dax_flush(srcmap->dax_dev, daddr, size);
1187 return ret ? -EIO : 0;
ff17b8df
SR
1188}
1189
e30331ff 1190/*
91d25ba8
RZ
1191 * The user has performed a load from a hole in the file. Allocating a new
1192 * page in the file would cause excessive storage usage for workloads with
1193 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1194 * If this page is ever written to we will re-fault and change the mapping to
1195 * point to real DAX storage instead.
e30331ff 1196 */
e5d6df73
SR
1197static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1198 const struct iomap_iter *iter, void **entry)
e30331ff 1199{
e5d6df73 1200 struct inode *inode = iter->inode;
91d25ba8 1201 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1202 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1203 vm_fault_t ret;
e30331ff 1204
e5d6df73 1205 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
3159f943 1206
ab77dab4 1207 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1208 trace_dax_load_hole(inode, vmf, ret);
1209 return ret;
1210}
1211
c2436190
SR
1212#ifdef CONFIG_FS_DAX_PMD
1213static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1214 const struct iomap_iter *iter, void **entry)
c2436190
SR
1215{
1216 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1217 unsigned long pmd_addr = vmf->address & PMD_MASK;
1218 struct vm_area_struct *vma = vmf->vma;
1219 struct inode *inode = mapping->host;
1220 pgtable_t pgtable = NULL;
1221 struct page *zero_page;
1222 spinlock_t *ptl;
1223 pmd_t pmd_entry;
1224 pfn_t pfn;
1225
1226 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1227
1228 if (unlikely(!zero_page))
1229 goto fallback;
1230
1231 pfn = page_to_pfn_t(zero_page);
e5d6df73
SR
1232 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1233 DAX_PMD | DAX_ZERO_PAGE);
c2436190
SR
1234
1235 if (arch_needs_pgtable_deposit()) {
1236 pgtable = pte_alloc_one(vma->vm_mm);
1237 if (!pgtable)
1238 return VM_FAULT_OOM;
1239 }
1240
1241 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1242 if (!pmd_none(*(vmf->pmd))) {
1243 spin_unlock(ptl);
1244 goto fallback;
1245 }
1246
1247 if (pgtable) {
1248 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1249 mm_inc_nr_ptes(vma->vm_mm);
1250 }
1251 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1252 pmd_entry = pmd_mkhuge(pmd_entry);
1253 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1254 spin_unlock(ptl);
1255 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1256 return VM_FAULT_NOPAGE;
1257
1258fallback:
1259 if (pgtable)
1260 pte_free(vma->vm_mm, pgtable);
1261 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1262 return VM_FAULT_FALLBACK;
1263}
1264#else
1265static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1266 const struct iomap_iter *iter, void **entry)
c2436190
SR
1267{
1268 return VM_FAULT_FALLBACK;
1269}
1270#endif /* CONFIG_FS_DAX_PMD */
1271
d984648e
SR
1272static s64 dax_unshare_iter(struct iomap_iter *iter)
1273{
1274 struct iomap *iomap = &iter->iomap;
1275 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1276 loff_t pos = iter->pos;
1277 loff_t length = iomap_length(iter);
1278 int id = 0;
1279 s64 ret = 0;
1280 void *daddr = NULL, *saddr = NULL;
1281
1282 /* don't bother with blocks that are not shared to start with */
1283 if (!(iomap->flags & IOMAP_F_SHARED))
1284 return length;
d984648e
SR
1285
1286 id = dax_read_lock();
1287 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1288 if (ret < 0)
1289 goto out_unlock;
1290
13dd4e04
SR
1291 /* zero the distance if srcmap is HOLE or UNWRITTEN */
1292 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1293 memset(daddr, 0, length);
1294 dax_flush(iomap->dax_dev, daddr, length);
1295 ret = length;
1296 goto out_unlock;
1297 }
1298
d984648e
SR
1299 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1300 if (ret < 0)
1301 goto out_unlock;
1302
388bc034
SR
1303 if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1304 ret = length;
1305 else
d984648e
SR
1306 ret = -EIO;
1307
1308out_unlock:
1309 dax_read_unlock(id);
1ea7ca1b 1310 return dax_mem2blk_err(ret);
d984648e
SR
1311}
1312
1313int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1314 const struct iomap_ops *ops)
1315{
1316 struct iomap_iter iter = {
1317 .inode = inode,
1318 .pos = pos,
1319 .len = len,
1320 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1321 };
1322 int ret;
1323
1324 while ((ret = iomap_iter(&iter, ops)) > 0)
1325 iter.processed = dax_unshare_iter(&iter);
1326 return ret;
1327}
1328EXPORT_SYMBOL_GPL(dax_file_unshare);
1329
8dbfc76d 1330static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
e5c71954 1331{
8dbfc76d
SR
1332 const struct iomap *iomap = &iter->iomap;
1333 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1334 unsigned offset = offset_in_page(pos);
1335 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e5c71954
CH
1336 void *kaddr;
1337 long ret;
1338
8dbfc76d
SR
1339 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1340 NULL);
1341 if (ret < 0)
1ea7ca1b
JC
1342 return dax_mem2blk_err(ret);
1343
8dbfc76d 1344 memset(kaddr + offset, 0, size);
708dfad2
SR
1345 if (iomap->flags & IOMAP_F_SHARED)
1346 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1347 kaddr);
1348 else
8dbfc76d 1349 dax_flush(iomap->dax_dev, kaddr + offset, size);
e5c71954
CH
1350 return ret;
1351}
1352
c6f40468 1353static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
679c8bd3 1354{
c6f40468
CH
1355 const struct iomap *iomap = &iter->iomap;
1356 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1357 loff_t pos = iter->pos;
1358 u64 length = iomap_length(iter);
1359 s64 written = 0;
1360
1361 /* already zeroed? we're done. */
1362 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1363 return length;
1364
f80e1668
SR
1365 /*
1366 * invalidate the pages whose sharing state is to be changed
1367 * because of CoW.
1368 */
1369 if (iomap->flags & IOMAP_F_SHARED)
1370 invalidate_inode_pages2_range(iter->inode->i_mapping,
1371 pos >> PAGE_SHIFT,
1372 (pos + length - 1) >> PAGE_SHIFT);
1373
c6f40468
CH
1374 do {
1375 unsigned offset = offset_in_page(pos);
1376 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1377 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1378 long rc;
1379 int id;
1380
1381 id = dax_read_lock();
1382 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1383 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1384 else
8dbfc76d 1385 rc = dax_memzero(iter, pos, size);
c6f40468 1386 dax_read_unlock(id);
cccbce67 1387
c6f40468
CH
1388 if (rc < 0)
1389 return rc;
1390 pos += size;
1391 length -= size;
1392 written += size;
c6f40468 1393 } while (length > 0);
e5c71954 1394
f8189d5d
KX
1395 if (did_zero)
1396 *did_zero = true;
c6f40468
CH
1397 return written;
1398}
1399
1400int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1401 const struct iomap_ops *ops)
1402{
1403 struct iomap_iter iter = {
1404 .inode = inode,
1405 .pos = pos,
1406 .len = len,
952da063 1407 .flags = IOMAP_DAX | IOMAP_ZERO,
c6f40468
CH
1408 };
1409 int ret;
1410
1411 while ((ret = iomap_iter(&iter, ops)) > 0)
1412 iter.processed = dax_zero_iter(&iter, did_zero);
1413 return ret;
1414}
1415EXPORT_SYMBOL_GPL(dax_zero_range);
1416
1417int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1418 const struct iomap_ops *ops)
1419{
1420 unsigned int blocksize = i_blocksize(inode);
1421 unsigned int off = pos & (blocksize - 1);
1422
1423 /* Block boundary? Nothing to do */
1424 if (!off)
1425 return 0;
1426 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
679c8bd3 1427}
c6f40468 1428EXPORT_SYMBOL_GPL(dax_truncate_page);
679c8bd3 1429
ca289e0b
CH
1430static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1431 struct iov_iter *iter)
a254e568 1432{
ca289e0b 1433 const struct iomap *iomap = &iomi->iomap;
f80e1668 1434 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
ca289e0b
CH
1435 loff_t length = iomap_length(iomi);
1436 loff_t pos = iomi->pos;
cccbce67 1437 struct dax_device *dax_dev = iomap->dax_dev;
a254e568 1438 loff_t end = pos + length, done = 0;
ff17b8df 1439 bool write = iov_iter_rw(iter) == WRITE;
f80e1668 1440 bool cow = write && iomap->flags & IOMAP_F_SHARED;
a254e568 1441 ssize_t ret = 0;
a77d4786 1442 size_t xfer;
cccbce67 1443 int id;
a254e568 1444
ff17b8df 1445 if (!write) {
ca289e0b 1446 end = min(end, i_size_read(iomi->inode));
a254e568
CH
1447 if (pos >= end)
1448 return 0;
1449
1450 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1451 return iov_iter_zero(min(length, end - pos), iter);
1452 }
1453
ff17b8df
SR
1454 /*
1455 * In DAX mode, enforce either pure overwrites of written extents, or
1456 * writes to unwritten extents as part of a copy-on-write operation.
1457 */
1458 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1459 !(iomap->flags & IOMAP_F_SHARED)))
a254e568
CH
1460 return -EIO;
1461
e3fce68c
JK
1462 /*
1463 * Write can allocate block for an area which has a hole page mapped
1464 * into page tables. We have to tear down these mappings so that data
1465 * written by write(2) is visible in mmap.
1466 */
f80e1668 1467 if (iomap->flags & IOMAP_F_NEW || cow) {
f76b3a32
SR
1468 /*
1469 * Filesystem allows CoW on non-shared extents. The src extents
1470 * may have been mmapped with dirty mark before. To be able to
1471 * invalidate its dax entries, we need to clear the dirty mark
1472 * in advance.
1473 */
1474 if (cow)
1475 __dax_clear_dirty_range(iomi->inode->i_mapping,
1476 pos >> PAGE_SHIFT,
1477 (end - 1) >> PAGE_SHIFT);
ca289e0b 1478 invalidate_inode_pages2_range(iomi->inode->i_mapping,
e3fce68c
JK
1479 pos >> PAGE_SHIFT,
1480 (end - 1) >> PAGE_SHIFT);
1481 }
1482
cccbce67 1483 id = dax_read_lock();
a254e568
CH
1484 while (pos < end) {
1485 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67 1486 const size_t size = ALIGN(length + offset, PAGE_SIZE);
60696eb2 1487 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
a254e568 1488 ssize_t map_len;
047218ec 1489 bool recovery = false;
cccbce67 1490 void *kaddr;
a254e568 1491
d1908f52
MH
1492 if (fatal_signal_pending(current)) {
1493 ret = -EINTR;
1494 break;
1495 }
1496
cccbce67 1497 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
e511c4a3 1498 DAX_ACCESS, &kaddr, NULL);
1ea7ca1b 1499 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
047218ec
JC
1500 map_len = dax_direct_access(dax_dev, pgoff,
1501 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1502 &kaddr, NULL);
1503 if (map_len > 0)
1504 recovery = true;
1505 }
a254e568 1506 if (map_len < 0) {
1ea7ca1b 1507 ret = dax_mem2blk_err(map_len);
a254e568
CH
1508 break;
1509 }
1510
f80e1668 1511 if (cow) {
708dfad2
SR
1512 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1513 srcmap, kaddr);
ff17b8df
SR
1514 if (ret)
1515 break;
1516 }
1517
cccbce67
DW
1518 map_len = PFN_PHYS(map_len);
1519 kaddr += offset;
a254e568
CH
1520 map_len -= offset;
1521 if (map_len > end - pos)
1522 map_len = end - pos;
1523
047218ec
JC
1524 if (recovery)
1525 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1526 map_len, iter);
ff17b8df 1527 else if (write)
a77d4786 1528 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1529 map_len, iter);
a254e568 1530 else
a77d4786 1531 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1532 map_len, iter);
a254e568 1533
a77d4786
DW
1534 pos += xfer;
1535 length -= xfer;
1536 done += xfer;
1537
1538 if (xfer == 0)
1539 ret = -EFAULT;
1540 if (xfer < map_len)
1541 break;
a254e568 1542 }
cccbce67 1543 dax_read_unlock(id);
a254e568
CH
1544
1545 return done ? done : ret;
1546}
1547
1548/**
11c59c92 1549 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1550 * @iocb: The control block for this I/O
1551 * @iter: The addresses to do I/O from or to
1552 * @ops: iomap ops passed from the file system
1553 *
1554 * This function performs read and write operations to directly mapped
1555 * persistent memory. The callers needs to take care of read/write exclusion
1556 * and evicting any page cache pages in the region under I/O.
1557 */
1558ssize_t
11c59c92 1559dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1560 const struct iomap_ops *ops)
a254e568 1561{
ca289e0b
CH
1562 struct iomap_iter iomi = {
1563 .inode = iocb->ki_filp->f_mapping->host,
1564 .pos = iocb->ki_pos,
1565 .len = iov_iter_count(iter),
952da063 1566 .flags = IOMAP_DAX,
ca289e0b
CH
1567 };
1568 loff_t done = 0;
1569 int ret;
a254e568 1570
17d9c15c
LJ
1571 if (!iomi.len)
1572 return 0;
1573
168316db 1574 if (iov_iter_rw(iter) == WRITE) {
ca289e0b
CH
1575 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1576 iomi.flags |= IOMAP_WRITE;
168316db 1577 } else {
ca289e0b 1578 lockdep_assert_held(&iomi.inode->i_rwsem);
168316db 1579 }
a254e568 1580
96222d53 1581 if (iocb->ki_flags & IOCB_NOWAIT)
ca289e0b 1582 iomi.flags |= IOMAP_NOWAIT;
96222d53 1583
ca289e0b
CH
1584 while ((ret = iomap_iter(&iomi, ops)) > 0)
1585 iomi.processed = dax_iomap_iter(&iomi, iter);
a254e568 1586
ca289e0b
CH
1587 done = iomi.pos - iocb->ki_pos;
1588 iocb->ki_pos = iomi.pos;
a254e568
CH
1589 return done ? done : ret;
1590}
11c59c92 1591EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1592
ab77dab4 1593static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1594{
1595 if (error == 0)
1596 return VM_FAULT_NOPAGE;
c9aed74e 1597 return vmf_error(error);
9f141d6e
JK
1598}
1599
55f81639
SR
1600/*
1601 * When handling a synchronous page fault and the inode need a fsync, we can
1602 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1603 * insertion for now and return the pfn so that caller can insert it after the
1604 * fsync is done.
1605 */
1606static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1607{
1608 if (WARN_ON_ONCE(!pfnp))
1609 return VM_FAULT_SIGBUS;
1610 *pfnp = pfn;
1611 return VM_FAULT_NEEDDSYNC;
1612}
1613
65dd814a
CH
1614static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1615 const struct iomap_iter *iter)
55f81639 1616{
55f81639
SR
1617 vm_fault_t ret;
1618 int error = 0;
1619
65dd814a 1620 switch (iter->iomap.type) {
55f81639
SR
1621 case IOMAP_HOLE:
1622 case IOMAP_UNWRITTEN:
429f8de7 1623 clear_user_highpage(vmf->cow_page, vmf->address);
55f81639
SR
1624 break;
1625 case IOMAP_MAPPED:
429f8de7 1626 error = copy_cow_page_dax(vmf, iter);
55f81639
SR
1627 break;
1628 default:
1629 WARN_ON_ONCE(1);
1630 error = -EIO;
1631 break;
1632 }
1633
1634 if (error)
1635 return dax_fault_return(error);
1636
1637 __SetPageUptodate(vmf->cow_page);
1638 ret = finish_fault(vmf);
1639 if (!ret)
1640 return VM_FAULT_DONE_COW;
1641 return ret;
1642}
1643
c2436190 1644/**
65dd814a 1645 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
c2436190 1646 * @vmf: vm fault instance
65dd814a 1647 * @iter: iomap iter
c2436190
SR
1648 * @pfnp: pfn to be returned
1649 * @xas: the dax mapping tree of a file
1650 * @entry: an unlocked dax entry to be inserted
1651 * @pmd: distinguish whether it is a pmd fault
c2436190 1652 */
65dd814a
CH
1653static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1654 const struct iomap_iter *iter, pfn_t *pfnp,
1655 struct xa_state *xas, void **entry, bool pmd)
c2436190 1656{
65dd814a 1657 const struct iomap *iomap = &iter->iomap;
708dfad2 1658 const struct iomap *srcmap = iomap_iter_srcmap(iter);
c2436190
SR
1659 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1660 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
e5d6df73 1661 bool write = iter->flags & IOMAP_WRITE;
c2436190
SR
1662 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1663 int err = 0;
1664 pfn_t pfn;
ff17b8df 1665 void *kaddr;
c2436190 1666
65dd814a
CH
1667 if (!pmd && vmf->cow_page)
1668 return dax_fault_cow_page(vmf, iter);
1669
c2436190
SR
1670 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1671 if (!write &&
1672 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1673 if (!pmd)
e5d6df73
SR
1674 return dax_load_hole(xas, vmf, iter, entry);
1675 return dax_pmd_load_hole(xas, vmf, iter, entry);
c2436190
SR
1676 }
1677
ff17b8df 1678 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
c2436190
SR
1679 WARN_ON_ONCE(1);
1680 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1681 }
1682
ff17b8df 1683 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
c2436190
SR
1684 if (err)
1685 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1686
e5d6df73 1687 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
c2436190 1688
708dfad2
SR
1689 if (write && iomap->flags & IOMAP_F_SHARED) {
1690 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
ff17b8df
SR
1691 if (err)
1692 return dax_fault_return(err);
1693 }
c2436190 1694
e5d6df73 1695 if (dax_fault_is_synchronous(iter, vmf->vma))
c2436190
SR
1696 return dax_fault_synchronous_pfnp(pfnp, pfn);
1697
1698 /* insert PMD pfn */
1699 if (pmd)
1700 return vmf_insert_pfn_pmd(vmf, pfn, write);
1701
1702 /* insert PTE pfn */
1703 if (write)
1704 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1705 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1706}
1707
ab77dab4 1708static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1709 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1710{
65dd814a 1711 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1712 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
65dd814a
CH
1713 struct iomap_iter iter = {
1714 .inode = mapping->host,
1715 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1716 .len = PAGE_SIZE,
952da063 1717 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1718 };
ab77dab4 1719 vm_fault_t ret = 0;
a7d73fe6 1720 void *entry;
65dd814a 1721 int error;
a7d73fe6 1722
65dd814a 1723 trace_dax_pte_fault(iter.inode, vmf, ret);
a7d73fe6
CH
1724 /*
1725 * Check whether offset isn't beyond end of file now. Caller is supposed
1726 * to hold locks serializing us with truncate / punch hole so this is
1727 * a reliable test.
1728 */
65dd814a 1729 if (iter.pos >= i_size_read(iter.inode)) {
ab77dab4 1730 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1731 goto out;
1732 }
a7d73fe6 1733
65dd814a
CH
1734 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1735 iter.flags |= IOMAP_WRITE;
a7d73fe6 1736
b15cd800
MW
1737 entry = grab_mapping_entry(&xas, mapping, 0);
1738 if (xa_is_internal(entry)) {
1739 ret = xa_to_internal(entry);
13e451fd
JK
1740 goto out;
1741 }
1742
e2093926
RZ
1743 /*
1744 * It is possible, particularly with mixed reads & writes to private
1745 * mappings, that we have raced with a PMD fault that overlaps with
1746 * the PTE we need to set up. If so just return and the fault will be
1747 * retried.
1748 */
1749 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1750 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1751 goto unlock_entry;
1752 }
1753
65dd814a
CH
1754 while ((error = iomap_iter(&iter, ops)) > 0) {
1755 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1756 iter.processed = -EIO; /* fs corruption? */
1757 continue;
a7d73fe6
CH
1758 }
1759
65dd814a
CH
1760 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1761 if (ret != VM_FAULT_SIGBUS &&
1762 (iter.iomap.flags & IOMAP_F_NEW)) {
a7d73fe6 1763 count_vm_event(PGMAJFAULT);
65dd814a
CH
1764 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1765 ret |= VM_FAULT_MAJOR;
a7d73fe6 1766 }
1b5a1cb2 1767
65dd814a
CH
1768 if (!(ret & VM_FAULT_ERROR))
1769 iter.processed = PAGE_SIZE;
a7d73fe6
CH
1770 }
1771
65dd814a
CH
1772 if (iomap_errp)
1773 *iomap_errp = error;
1774 if (!ret && error)
1775 ret = dax_fault_return(error);
9f141d6e 1776
c2436190 1777unlock_entry:
b15cd800 1778 dax_unlock_entry(&xas, entry);
c2436190 1779out:
65dd814a
CH
1780 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1781 return ret;
a7d73fe6 1782}
642261ac
RZ
1783
1784#ifdef CONFIG_FS_DAX_PMD
55f81639
SR
1785static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1786 pgoff_t max_pgoff)
642261ac 1787{
f4200391 1788 unsigned long pmd_addr = vmf->address & PMD_MASK;
55f81639 1789 bool write = vmf->flags & FAULT_FLAG_WRITE;
642261ac 1790
55f81639
SR
1791 /*
1792 * Make sure that the faulting address's PMD offset (color) matches
1793 * the PMD offset from the start of the file. This is necessary so
1794 * that a PMD range in the page table overlaps exactly with a PMD
1795 * range in the page cache.
1796 */
1797 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1798 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1799 return true;
642261ac 1800
55f81639
SR
1801 /* Fall back to PTEs if we're going to COW */
1802 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1803 return true;
11cf9d86 1804
55f81639
SR
1805 /* If the PMD would extend outside the VMA */
1806 if (pmd_addr < vmf->vma->vm_start)
1807 return true;
1808 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1809 return true;
642261ac 1810
55f81639
SR
1811 /* If the PMD would extend beyond the file size */
1812 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1813 return true;
653b2ea3 1814
55f81639 1815 return false;
642261ac
RZ
1816}
1817
ab77dab4 1818static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1819 const struct iomap_ops *ops)
642261ac 1820{
65dd814a 1821 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1822 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
65dd814a
CH
1823 struct iomap_iter iter = {
1824 .inode = mapping->host,
1825 .len = PMD_SIZE,
952da063 1826 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1827 };
c2436190 1828 vm_fault_t ret = VM_FAULT_FALLBACK;
b15cd800 1829 pgoff_t max_pgoff;
642261ac 1830 void *entry;
642261ac 1831
65dd814a
CH
1832 if (vmf->flags & FAULT_FLAG_WRITE)
1833 iter.flags |= IOMAP_WRITE;
642261ac 1834
282a8e03
RZ
1835 /*
1836 * Check whether offset isn't beyond end of file now. Caller is
1837 * supposed to hold locks serializing us with truncate / punch hole so
1838 * this is a reliable test.
1839 */
65dd814a 1840 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
fffa281b 1841
65dd814a 1842 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
642261ac 1843
b15cd800 1844 if (xas.xa_index >= max_pgoff) {
c2436190 1845 ret = VM_FAULT_SIGBUS;
282a8e03
RZ
1846 goto out;
1847 }
642261ac 1848
55f81639 1849 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
642261ac
RZ
1850 goto fallback;
1851
876f2946 1852 /*
b15cd800
MW
1853 * grab_mapping_entry() will make sure we get an empty PMD entry,
1854 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1855 * entry is already in the array, for instance), it will return
1856 * VM_FAULT_FALLBACK.
876f2946 1857 */
23c84eb7 1858 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800 1859 if (xa_is_internal(entry)) {
c2436190 1860 ret = xa_to_internal(entry);
876f2946 1861 goto fallback;
b15cd800 1862 }
876f2946 1863
e2093926
RZ
1864 /*
1865 * It is possible, particularly with mixed reads & writes to private
1866 * mappings, that we have raced with a PTE fault that overlaps with
1867 * the PMD we need to set up. If so just return and the fault will be
1868 * retried.
1869 */
1870 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1871 !pmd_devmap(*vmf->pmd)) {
c2436190 1872 ret = 0;
e2093926
RZ
1873 goto unlock_entry;
1874 }
1875
65dd814a 1876 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
dd0c6425 1877 while (iomap_iter(&iter, ops) > 0) {
65dd814a
CH
1878 if (iomap_length(&iter) < PMD_SIZE)
1879 continue; /* actually breaks out of the loop */
caa51d26 1880
65dd814a
CH
1881 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1882 if (ret != VM_FAULT_FALLBACK)
1883 iter.processed = PMD_SIZE;
642261ac
RZ
1884 }
1885
c2436190 1886unlock_entry:
b15cd800 1887 dax_unlock_entry(&xas, entry);
c2436190
SR
1888fallback:
1889 if (ret == VM_FAULT_FALLBACK) {
65dd814a 1890 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
642261ac
RZ
1891 count_vm_event(THP_FAULT_FALLBACK);
1892 }
282a8e03 1893out:
65dd814a 1894 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
c2436190 1895 return ret;
642261ac 1896}
a2d58167 1897#else
ab77dab4 1898static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1899 const struct iomap_ops *ops)
a2d58167
DJ
1900{
1901 return VM_FAULT_FALLBACK;
1902}
642261ac 1903#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1904
1905/**
1906 * dax_iomap_fault - handle a page fault on a DAX file
1907 * @vmf: The description of the fault
cec04e8c 1908 * @pe_size: Size of the page to fault in
9a0dd422 1909 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1910 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1911 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1912 *
1913 * When a page fault occurs, filesystems may call this helper in
1914 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1915 * has done all the necessary locking for page fault to proceed
1916 * successfully.
1917 */
ab77dab4 1918vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1919 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1920{
c791ace1
DJ
1921 switch (pe_size) {
1922 case PE_SIZE_PTE:
c0b24625 1923 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1924 case PE_SIZE_PMD:
9a0dd422 1925 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1926 default:
1927 return VM_FAULT_FALLBACK;
1928 }
1929}
1930EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1931
a77d19f4 1932/*
71eab6df
JK
1933 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1934 * @vmf: The description of the fault
71eab6df 1935 * @pfn: PFN to insert
cfc93c6c 1936 * @order: Order of entry to insert.
71eab6df 1937 *
a77d19f4
MW
1938 * This function inserts a writeable PTE or PMD entry into the page tables
1939 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1940 */
cfc93c6c
MW
1941static vm_fault_t
1942dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1943{
1944 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1945 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1946 void *entry;
ab77dab4 1947 vm_fault_t ret;
71eab6df 1948
cfc93c6c 1949 xas_lock_irq(&xas);
23c84eb7 1950 entry = get_unlocked_entry(&xas, order);
71eab6df 1951 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1952 if (!entry || dax_is_conflict(entry) ||
1953 (order == 0 && !dax_is_pte_entry(entry))) {
4c3d043d 1954 put_unlocked_entry(&xas, entry, WAKE_NEXT);
cfc93c6c 1955 xas_unlock_irq(&xas);
71eab6df
JK
1956 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1957 VM_FAULT_NOPAGE);
1958 return VM_FAULT_NOPAGE;
1959 }
cfc93c6c
MW
1960 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1961 dax_lock_entry(&xas, entry);
1962 xas_unlock_irq(&xas);
1963 if (order == 0)
ab77dab4 1964 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1965#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1966 else if (order == PMD_ORDER)
fce86ff5 1967 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1968#endif
cfc93c6c 1969 else
ab77dab4 1970 ret = VM_FAULT_FALLBACK;
cfc93c6c 1971 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1972 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1973 return ret;
71eab6df
JK
1974}
1975
1976/**
1977 * dax_finish_sync_fault - finish synchronous page fault
1978 * @vmf: The description of the fault
1979 * @pe_size: Size of entry to be inserted
1980 * @pfn: PFN to insert
1981 *
1982 * This function ensures that the file range touched by the page fault is
1983 * stored persistently on the media and handles inserting of appropriate page
1984 * table entry.
1985 */
ab77dab4
SJ
1986vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1987 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1988{
1989 int err;
1990 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1991 unsigned int order = pe_order(pe_size);
1992 size_t len = PAGE_SIZE << order;
71eab6df 1993
71eab6df
JK
1994 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1995 if (err)
1996 return VM_FAULT_SIGBUS;
cfc93c6c 1997 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1998}
1999EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
6f7db389
SR
2000
2001static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2002 struct iomap_iter *it_dest, u64 len, bool *same)
2003{
2004 const struct iomap *smap = &it_src->iomap;
2005 const struct iomap *dmap = &it_dest->iomap;
2006 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2007 void *saddr, *daddr;
2008 int id, ret;
2009
2010 len = min(len, min(smap->length, dmap->length));
2011
2012 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2013 *same = true;
2014 return len;
2015 }
2016
2017 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2018 *same = false;
2019 return 0;
2020 }
2021
2022 id = dax_read_lock();
2023 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2024 &saddr, NULL);
2025 if (ret < 0)
2026 goto out_unlock;
2027
2028 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2029 &daddr, NULL);
2030 if (ret < 0)
2031 goto out_unlock;
2032
2033 *same = !memcmp(saddr, daddr, len);
2034 if (!*same)
2035 len = 0;
2036 dax_read_unlock(id);
2037 return len;
2038
2039out_unlock:
2040 dax_read_unlock(id);
2041 return -EIO;
2042}
2043
2044int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2045 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2046 const struct iomap_ops *ops)
2047{
2048 struct iomap_iter src_iter = {
2049 .inode = src,
2050 .pos = srcoff,
2051 .len = len,
2052 .flags = IOMAP_DAX,
2053 };
2054 struct iomap_iter dst_iter = {
2055 .inode = dst,
2056 .pos = dstoff,
2057 .len = len,
2058 .flags = IOMAP_DAX,
2059 };
0e79e373 2060 int ret, compared = 0;
6f7db389 2061
0e79e373
SR
2062 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2063 (ret = iomap_iter(&dst_iter, ops)) > 0) {
e900ba10
SR
2064 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2065 min(src_iter.len, dst_iter.len), same);
0e79e373
SR
2066 if (compared < 0)
2067 return ret;
2068 src_iter.processed = dst_iter.processed = compared;
6f7db389
SR
2069 }
2070 return ret;
2071}
2072
2073int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2074 struct file *file_out, loff_t pos_out,
2075 loff_t *len, unsigned int remap_flags,
2076 const struct iomap_ops *ops)
2077{
2078 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2079 pos_out, len, remap_flags, ops);
2080}
2081EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);