ublk_drv: don't probe partitions if the ubq daemon isn't trusted
[linux-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634 13#include <linux/fs.h>
f7ca90b1
MW
14#include <linux/highmem.h>
15#include <linux/memcontrol.h>
16#include <linux/mm.h>
d475c634 17#include <linux/mutex.h>
9973c98e 18#include <linux/pagevec.h>
289c6aed 19#include <linux/sched.h>
f361bf4a 20#include <linux/sched/signal.h>
d475c634 21#include <linux/uio.h>
f7ca90b1 22#include <linux/vmstat.h>
34c0fd54 23#include <linux/pfn_t.h>
0e749e54 24#include <linux/sizes.h>
4b4bb46d 25#include <linux/mmu_notifier.h>
a254e568 26#include <linux/iomap.h>
06083a09 27#include <linux/rmap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
698ab77a
VG
147/**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155};
156
b15cd800
MW
157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
159{
160 unsigned long hash;
b15cd800 161 unsigned long index = xas->xa_index;
63e95b5c
RZ
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
642261ac 168 if (dax_is_pmd_entry(entry))
917f3452 169 index &= ~PG_PMD_COLOUR;
b15cd800 170 key->xa = xas->xa;
63e95b5c
RZ
171 key->entry_start = index;
172
b15cd800 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
174 return wait_table + hash;
175}
176
ec4907ff
MW
177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
179{
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
ec4907ff 184 if (key->xa != ewait->key.xa ||
63e95b5c 185 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188}
189
e30331ff 190/*
b93b0163
MW
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
e30331ff 194 */
698ab77a
VG
195static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
e30331ff
RZ
197{
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
b15cd800 201 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 205 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
698ab77a 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
e30331ff
RZ
211}
212
cfc93c6c
MW
213/*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
cfc93c6c
MW
220 *
221 * Must be called with the i_pages lock held.
222 */
23c84eb7 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
224{
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
0e40de03 233 entry = xas_find_conflict(xas);
6370740e
DW
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
23c84eb7
MWO
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
6370740e 238 if (!dax_is_locked(entry))
cfc93c6c
MW
239 return entry;
240
b15cd800 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250}
251
55e56f06
MW
252/*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258{
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
55e56f06
MW
276}
277
4c3d043d
VG
278static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
cfc93c6c 280{
61c30c98 281 if (entry && !dax_is_conflict(entry))
4c3d043d 282 dax_wake_entry(xas, entry, mode);
cfc93c6c
MW
283}
284
285/*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
290static void dax_unlock_entry(struct xa_state *xas, void *entry)
291{
292 void *old;
293
7ae2ea7d 294 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
698ab77a 300 dax_wake_entry(xas, entry, WAKE_NEXT);
cfc93c6c
MW
301}
302
303/*
304 * Return: The entry stored at this location before it was locked.
305 */
306static void *dax_lock_entry(struct xa_state *xas, void *entry)
307{
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310}
311
d2c997c0
DW
312static unsigned long dax_entry_size(void *entry)
313{
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322}
323
a77d19f4 324static unsigned long dax_end_pfn(void *entry)
d2c997c0 325{
a77d19f4 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
327}
328
329/*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 336
16900426 337static inline bool dax_page_is_shared(struct page *page)
6061b69b 338{
16900426 339 return page->mapping == PAGE_MAPPING_DAX_SHARED;
6061b69b
SR
340}
341
73449daf 342/*
16900426
SR
343 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344 * refcount.
6061b69b 345 */
16900426 346static inline void dax_page_share_get(struct page *page)
6061b69b 347{
16900426 348 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
6061b69b
SR
349 /*
350 * Reset the index if the page was already mapped
351 * regularly before.
352 */
353 if (page->mapping)
16900426
SR
354 page->share = 1;
355 page->mapping = PAGE_MAPPING_DAX_SHARED;
6061b69b 356 }
16900426
SR
357 page->share++;
358}
359
360static inline unsigned long dax_page_share_put(struct page *page)
361{
362 return --page->share;
6061b69b
SR
363}
364
365/*
16900426 366 * When it is called in dax_insert_entry(), the shared flag will indicate that
6061b69b 367 * whether this entry is shared by multiple files. If so, set the page->mapping
16900426 368 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
73449daf
DW
369 */
370static void dax_associate_entry(void *entry, struct address_space *mapping,
16900426 371 struct vm_area_struct *vma, unsigned long address, bool shared)
d2c997c0 372{
73449daf
DW
373 unsigned long size = dax_entry_size(entry), pfn, index;
374 int i = 0;
d2c997c0
DW
375
376 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377 return;
378
73449daf 379 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
380 for_each_mapped_pfn(entry, pfn) {
381 struct page *page = pfn_to_page(pfn);
382
16900426
SR
383 if (shared) {
384 dax_page_share_get(page);
6061b69b
SR
385 } else {
386 WARN_ON_ONCE(page->mapping);
387 page->mapping = mapping;
388 page->index = index + i++;
389 }
d2c997c0
DW
390 }
391}
392
393static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394 bool trunc)
395{
396 unsigned long pfn;
397
398 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399 return;
400
401 for_each_mapped_pfn(entry, pfn) {
402 struct page *page = pfn_to_page(pfn);
403
404 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
16900426
SR
405 if (dax_page_is_shared(page)) {
406 /* keep the shared flag if this page is still shared */
407 if (dax_page_share_put(page) > 0)
6061b69b
SR
408 continue;
409 } else
410 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
d2c997c0 411 page->mapping = NULL;
73449daf 412 page->index = 0;
d2c997c0
DW
413 }
414}
415
5fac7408
DW
416static struct page *dax_busy_page(void *entry)
417{
418 unsigned long pfn;
419
420 for_each_mapped_pfn(entry, pfn) {
421 struct page *page = pfn_to_page(pfn);
422
423 if (page_ref_count(page) > 1)
424 return page;
425 }
426 return NULL;
427}
428
c5bbd451 429/*
c2e8021a 430 * dax_lock_page - Lock the DAX entry corresponding to a page
c5bbd451
MW
431 * @page: The page whose entry we want to lock
432 *
433 * Context: Process context.
27359fd6
MW
434 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435 * not be locked.
c5bbd451 436 */
27359fd6 437dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 438{
9f32d221
MW
439 XA_STATE(xas, NULL, 0);
440 void *entry;
c2a7d2a1 441
c5bbd451
MW
442 /* Ensure page->mapping isn't freed while we look at it */
443 rcu_read_lock();
c2a7d2a1 444 for (;;) {
9f32d221 445 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 446
27359fd6 447 entry = NULL;
c93db7bb 448 if (!mapping || !dax_mapping(mapping))
c5bbd451 449 break;
c2a7d2a1
DW
450
451 /*
452 * In the device-dax case there's no need to lock, a
453 * struct dev_pagemap pin is sufficient to keep the
454 * inode alive, and we assume we have dev_pagemap pin
455 * otherwise we would not have a valid pfn_to_page()
456 * translation.
457 */
27359fd6 458 entry = (void *)~0UL;
9f32d221 459 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 460 break;
c2a7d2a1 461
9f32d221
MW
462 xas.xa = &mapping->i_pages;
463 xas_lock_irq(&xas);
c2a7d2a1 464 if (mapping != page->mapping) {
9f32d221 465 xas_unlock_irq(&xas);
c2a7d2a1
DW
466 continue;
467 }
9f32d221
MW
468 xas_set(&xas, page->index);
469 entry = xas_load(&xas);
470 if (dax_is_locked(entry)) {
c5bbd451 471 rcu_read_unlock();
55e56f06 472 wait_entry_unlocked(&xas, entry);
c5bbd451 473 rcu_read_lock();
6d7cd8c1 474 continue;
c2a7d2a1 475 }
9f32d221
MW
476 dax_lock_entry(&xas, entry);
477 xas_unlock_irq(&xas);
c5bbd451 478 break;
c2a7d2a1 479 }
c5bbd451 480 rcu_read_unlock();
27359fd6 481 return (dax_entry_t)entry;
c2a7d2a1
DW
482}
483
27359fd6 484void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
485{
486 struct address_space *mapping = page->mapping;
9f32d221 487 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 488
9f32d221 489 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
490 return;
491
27359fd6 492 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
493}
494
2f437eff
SR
495/*
496 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497 * @mapping: the file's mapping whose entry we want to lock
498 * @index: the offset within this file
499 * @page: output the dax page corresponding to this dax entry
500 *
501 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502 * could not be locked.
503 */
504dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505 struct page **page)
506{
507 XA_STATE(xas, NULL, 0);
508 void *entry;
509
510 rcu_read_lock();
511 for (;;) {
512 entry = NULL;
513 if (!dax_mapping(mapping))
514 break;
515
516 xas.xa = &mapping->i_pages;
517 xas_lock_irq(&xas);
518 xas_set(&xas, index);
519 entry = xas_load(&xas);
520 if (dax_is_locked(entry)) {
521 rcu_read_unlock();
522 wait_entry_unlocked(&xas, entry);
523 rcu_read_lock();
524 continue;
525 }
526 if (!entry ||
527 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528 /*
529 * Because we are looking for entry from file's mapping
530 * and index, so the entry may not be inserted for now,
531 * or even a zero/empty entry. We don't think this is
532 * an error case. So, return a special value and do
533 * not output @page.
534 */
535 entry = (void *)~0UL;
536 } else {
537 *page = pfn_to_page(dax_to_pfn(entry));
538 dax_lock_entry(&xas, entry);
539 }
540 xas_unlock_irq(&xas);
541 break;
542 }
543 rcu_read_unlock();
544 return (dax_entry_t)entry;
545}
546
547void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548 dax_entry_t cookie)
549{
550 XA_STATE(xas, &mapping->i_pages, index);
551
552 if (cookie == ~0UL)
553 return;
554
555 dax_unlock_entry(&xas, (void *)cookie);
556}
557
ac401cc7 558/*
a77d19f4
MW
559 * Find page cache entry at given index. If it is a DAX entry, return it
560 * with the entry locked. If the page cache doesn't contain an entry at
561 * that index, add a locked empty entry.
ac401cc7 562 *
3159f943 563 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
564 * either return that locked entry or will return VM_FAULT_FALLBACK.
565 * This will happen if there are any PTE entries within the PMD range
566 * that we are requesting.
642261ac 567 *
b15cd800
MW
568 * We always favor PTE entries over PMD entries. There isn't a flow where we
569 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
570 * insertion will fail if it finds any PTE entries already in the tree, and a
571 * PTE insertion will cause an existing PMD entry to be unmapped and
572 * downgraded to PTE entries. This happens for both PMD zero pages as
573 * well as PMD empty entries.
642261ac 574 *
b15cd800
MW
575 * The exception to this downgrade path is for PMD entries that have
576 * real storage backing them. We will leave these real PMD entries in
577 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 578 *
ac401cc7
JK
579 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580 * persistent memory the benefit is doubtful. We can add that later if we can
581 * show it helps.
b15cd800
MW
582 *
583 * On error, this function does not return an ERR_PTR. Instead it returns
584 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
585 * overlap with xarray value entries.
ac401cc7 586 */
b15cd800 587static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 588 struct address_space *mapping, unsigned int order)
ac401cc7 589{
b15cd800 590 unsigned long index = xas->xa_index;
1a14e377 591 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
b15cd800 592 void *entry;
642261ac 593
b15cd800 594retry:
1a14e377 595 pmd_downgrade = false;
b15cd800 596 xas_lock_irq(xas);
23c84eb7 597 entry = get_unlocked_entry(xas, order);
91d25ba8 598
642261ac 599 if (entry) {
23c84eb7
MWO
600 if (dax_is_conflict(entry))
601 goto fallback;
0e40de03 602 if (!xa_is_value(entry)) {
49688e65 603 xas_set_err(xas, -EIO);
b15cd800
MW
604 goto out_unlock;
605 }
606
23c84eb7 607 if (order == 0) {
91d25ba8 608 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
609 (dax_is_zero_entry(entry) ||
610 dax_is_empty_entry(entry))) {
611 pmd_downgrade = true;
612 }
613 }
614 }
615
b15cd800
MW
616 if (pmd_downgrade) {
617 /*
618 * Make sure 'entry' remains valid while we drop
619 * the i_pages lock.
620 */
621 dax_lock_entry(xas, entry);
642261ac 622
642261ac
RZ
623 /*
624 * Besides huge zero pages the only other thing that gets
625 * downgraded are empty entries which don't need to be
626 * unmapped.
627 */
b15cd800
MW
628 if (dax_is_zero_entry(entry)) {
629 xas_unlock_irq(xas);
630 unmap_mapping_pages(mapping,
631 xas->xa_index & ~PG_PMD_COLOUR,
632 PG_PMD_NR, false);
633 xas_reset(xas);
634 xas_lock_irq(xas);
e11f8b7b
RZ
635 }
636
b15cd800
MW
637 dax_disassociate_entry(entry, mapping, false);
638 xas_store(xas, NULL); /* undo the PMD join */
698ab77a 639 dax_wake_entry(xas, entry, WAKE_ALL);
7f0e07fb 640 mapping->nrpages -= PG_PMD_NR;
b15cd800
MW
641 entry = NULL;
642 xas_set(xas, index);
643 }
642261ac 644
b15cd800
MW
645 if (entry) {
646 dax_lock_entry(xas, entry);
647 } else {
23c84eb7
MWO
648 unsigned long flags = DAX_EMPTY;
649
650 if (order > 0)
651 flags |= DAX_PMD;
652 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
653 dax_lock_entry(xas, entry);
654 if (xas_error(xas))
655 goto out_unlock;
7f0e07fb 656 mapping->nrpages += 1UL << order;
ac401cc7 657 }
b15cd800
MW
658
659out_unlock:
660 xas_unlock_irq(xas);
661 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662 goto retry;
663 if (xas->xa_node == XA_ERROR(-ENOMEM))
664 return xa_mk_internal(VM_FAULT_OOM);
665 if (xas_error(xas))
666 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 667 return entry;
b15cd800
MW
668fallback:
669 xas_unlock_irq(xas);
670 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
671}
672
5fac7408 673/**
6bbdd563 674 * dax_layout_busy_page_range - find first pinned page in @mapping
5fac7408 675 * @mapping: address space to scan for a page with ref count > 1
6bbdd563
VG
676 * @start: Starting offset. Page containing 'start' is included.
677 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678 * pages from 'start' till the end of file are included.
5fac7408
DW
679 *
680 * DAX requires ZONE_DEVICE mapped pages. These pages are never
681 * 'onlined' to the page allocator so they are considered idle when
682 * page->count == 1. A filesystem uses this interface to determine if
683 * any page in the mapping is busy, i.e. for DMA, or other
684 * get_user_pages() usages.
685 *
686 * It is expected that the filesystem is holding locks to block the
687 * establishment of new mappings in this address_space. I.e. it expects
688 * to be able to run unmap_mapping_range() and subsequently not race
689 * mapping_mapped() becoming true.
690 */
6bbdd563
VG
691struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 loff_t start, loff_t end)
5fac7408 693{
084a8990
MW
694 void *entry;
695 unsigned int scanned = 0;
5fac7408 696 struct page *page = NULL;
6bbdd563
VG
697 pgoff_t start_idx = start >> PAGE_SHIFT;
698 pgoff_t end_idx;
699 XA_STATE(xas, &mapping->i_pages, start_idx);
5fac7408
DW
700
701 /*
702 * In the 'limited' case get_user_pages() for dax is disabled.
703 */
704 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705 return NULL;
706
707 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708 return NULL;
709
6bbdd563
VG
710 /* If end == LLONG_MAX, all pages from start to till end of file */
711 if (end == LLONG_MAX)
712 end_idx = ULONG_MAX;
713 else
714 end_idx = end >> PAGE_SHIFT;
5fac7408
DW
715 /*
716 * If we race get_user_pages_fast() here either we'll see the
084a8990 717 * elevated page count in the iteration and wait, or
5fac7408
DW
718 * get_user_pages_fast() will see that the page it took a reference
719 * against is no longer mapped in the page tables and bail to the
720 * get_user_pages() slow path. The slow path is protected by
721 * pte_lock() and pmd_lock(). New references are not taken without
6bbdd563 722 * holding those locks, and unmap_mapping_pages() will not zero the
5fac7408
DW
723 * pte or pmd without holding the respective lock, so we are
724 * guaranteed to either see new references or prevent new
725 * references from being established.
726 */
6bbdd563 727 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
5fac7408 728
084a8990 729 xas_lock_irq(&xas);
6bbdd563 730 xas_for_each(&xas, entry, end_idx) {
084a8990
MW
731 if (WARN_ON_ONCE(!xa_is_value(entry)))
732 continue;
733 if (unlikely(dax_is_locked(entry)))
23c84eb7 734 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
735 if (entry)
736 page = dax_busy_page(entry);
4c3d043d 737 put_unlocked_entry(&xas, entry, WAKE_NEXT);
5fac7408
DW
738 if (page)
739 break;
084a8990
MW
740 if (++scanned % XA_CHECK_SCHED)
741 continue;
742
743 xas_pause(&xas);
744 xas_unlock_irq(&xas);
745 cond_resched();
746 xas_lock_irq(&xas);
5fac7408 747 }
084a8990 748 xas_unlock_irq(&xas);
5fac7408
DW
749 return page;
750}
6bbdd563
VG
751EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752
753struct page *dax_layout_busy_page(struct address_space *mapping)
754{
755 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756}
5fac7408
DW
757EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758
a77d19f4 759static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
760 pgoff_t index, bool trunc)
761{
07f2d89c 762 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
763 int ret = 0;
764 void *entry;
c6dcf52c 765
07f2d89c 766 xas_lock_irq(&xas);
23c84eb7 767 entry = get_unlocked_entry(&xas, 0);
3159f943 768 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
769 goto out;
770 if (!trunc &&
07f2d89c
MW
771 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 773 goto out;
d2c997c0 774 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 775 xas_store(&xas, NULL);
7f0e07fb 776 mapping->nrpages -= 1UL << dax_entry_order(entry);
c6dcf52c
JK
777 ret = 1;
778out:
23738832 779 put_unlocked_entry(&xas, entry, WAKE_ALL);
07f2d89c 780 xas_unlock_irq(&xas);
c6dcf52c
JK
781 return ret;
782}
07f2d89c 783
ac401cc7 784/*
3159f943
MW
785 * Delete DAX entry at @index from @mapping. Wait for it
786 * to be unlocked before deleting it.
ac401cc7
JK
787 */
788int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
789{
a77d19f4 790 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 791
ac401cc7
JK
792 /*
793 * This gets called from truncate / punch_hole path. As such, the caller
794 * must hold locks protecting against concurrent modifications of the
a77d19f4 795 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 796 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
797 * at that index as well...
798 */
c6dcf52c
JK
799 WARN_ON_ONCE(!ret);
800 return ret;
801}
802
c6dcf52c 803/*
3159f943 804 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
805 */
806int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
807 pgoff_t index)
808{
a77d19f4 809 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
810}
811
60696eb2 812static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
f7ca90b1 813{
de205114 814 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
429f8de7
CH
815}
816
817static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
818{
60696eb2 819 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
cccbce67 820 void *vto, *kaddr;
cccbce67
DW
821 long rc;
822 int id;
823
cccbce67 824 id = dax_read_lock();
e511c4a3
JC
825 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
826 &kaddr, NULL);
cccbce67
DW
827 if (rc < 0) {
828 dax_read_unlock(id);
829 return rc;
830 }
429f8de7
CH
831 vto = kmap_atomic(vmf->cow_page);
832 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
f7ca90b1 833 kunmap_atomic(vto);
cccbce67 834 dax_read_unlock(id);
f7ca90b1
MW
835 return 0;
836}
837
e5d6df73
SR
838/*
839 * MAP_SYNC on a dax mapping guarantees dirty metadata is
840 * flushed on write-faults (non-cow), but not read-faults.
841 */
842static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
843 struct vm_area_struct *vma)
844{
845 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
846 (iter->iomap.flags & IOMAP_F_DIRTY);
847}
848
642261ac
RZ
849/*
850 * By this point grab_mapping_entry() has ensured that we have a locked entry
851 * of the appropriate size so we don't have to worry about downgrading PMDs to
852 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
853 * already in the tree, we will skip the insertion and just dirty the PMD as
854 * appropriate.
855 */
e5d6df73
SR
856static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
857 const struct iomap_iter *iter, void *entry, pfn_t pfn,
858 unsigned long flags)
9973c98e 859{
e5d6df73 860 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 861 void *new_entry = dax_make_entry(pfn, flags);
c6f0b395
SR
862 bool write = iter->flags & IOMAP_WRITE;
863 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
864 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
9973c98e 865
f5b7b748 866 if (dirty)
d2b2a28e 867 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 868
c6f0b395 869 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
b15cd800 870 unsigned long index = xas->xa_index;
91d25ba8
RZ
871 /* we are replacing a zero page with block mapping */
872 if (dax_is_pmd_entry(entry))
977fbdcd 873 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 874 PG_PMD_NR, false);
91d25ba8 875 else /* pte entry */
b15cd800 876 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
877 }
878
b15cd800
MW
879 xas_reset(xas);
880 xas_lock_irq(xas);
c6f0b395 881 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
1571c029
JK
882 void *old;
883
d2c997c0 884 dax_disassociate_entry(entry, mapping, false);
6061b69b 885 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
c6f0b395 886 shared);
642261ac 887 /*
a77d19f4 888 * Only swap our new entry into the page cache if the current
642261ac 889 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 890 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
891 * means that if we are trying to insert a PTE and the
892 * existing entry is a PMD, we will just leave the PMD in the
893 * tree and dirty it if necessary.
894 */
1571c029 895 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
896 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
897 DAX_LOCKED));
91d25ba8 898 entry = new_entry;
b15cd800
MW
899 } else {
900 xas_load(xas); /* Walk the xa_state */
9973c98e 901 }
91d25ba8 902
f5b7b748 903 if (dirty)
b15cd800 904 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 905
c6f0b395 906 if (write && shared)
e5d6df73
SR
907 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
908
b15cd800 909 xas_unlock_irq(xas);
91d25ba8 910 return entry;
9973c98e
RZ
911}
912
9fc747f6
MW
913static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
914 struct address_space *mapping, void *entry)
9973c98e 915{
06083a09 916 unsigned long pfn, index, count, end;
3fe0791c 917 long ret = 0;
06083a09 918 struct vm_area_struct *vma;
9973c98e 919
9973c98e 920 /*
a6abc2c0
JK
921 * A page got tagged dirty in DAX mapping? Something is seriously
922 * wrong.
9973c98e 923 */
3159f943 924 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 925 return -EIO;
9973c98e 926
9fc747f6
MW
927 if (unlikely(dax_is_locked(entry))) {
928 void *old_entry = entry;
929
23c84eb7 930 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
931
932 /* Entry got punched out / reallocated? */
933 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
934 goto put_unlocked;
935 /*
936 * Entry got reallocated elsewhere? No need to writeback.
937 * We have to compare pfns as we must not bail out due to
938 * difference in lockbit or entry type.
939 */
940 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
941 goto put_unlocked;
942 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
943 dax_is_zero_entry(entry))) {
944 ret = -EIO;
945 goto put_unlocked;
946 }
947
948 /* Another fsync thread may have already done this entry */
949 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
950 goto put_unlocked;
9973c98e
RZ
951 }
952
a6abc2c0 953 /* Lock the entry to serialize with page faults */
9fc747f6
MW
954 dax_lock_entry(xas, entry);
955
a6abc2c0
JK
956 /*
957 * We can clear the tag now but we have to be careful so that concurrent
958 * dax_writeback_one() calls for the same index cannot finish before we
959 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
960 * at the entry only under the i_pages lock and once they do that
961 * they will see the entry locked and wait for it to unlock.
a6abc2c0 962 */
9fc747f6
MW
963 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
964 xas_unlock_irq(xas);
a6abc2c0 965
642261ac 966 /*
e4b3448b
MW
967 * If dax_writeback_mapping_range() was given a wbc->range_start
968 * in the middle of a PMD, the 'index' we use needs to be
969 * aligned to the start of the PMD.
3fe0791c
DW
970 * This allows us to flush for PMD_SIZE and not have to worry about
971 * partial PMD writebacks.
642261ac 972 */
a77d19f4 973 pfn = dax_to_pfn(entry);
e4b3448b
MW
974 count = 1UL << dax_entry_order(entry);
975 index = xas->xa_index & ~(count - 1);
06083a09
MS
976 end = index + count - 1;
977
978 /* Walk all mappings of a given index of a file and writeprotect them */
979 i_mmap_lock_read(mapping);
980 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
981 pfn_mkclean_range(pfn, count, index, vma);
982 cond_resched();
983 }
984 i_mmap_unlock_read(mapping);
cccbce67 985
e4b3448b 986 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
987 /*
988 * After we have flushed the cache, we can clear the dirty tag. There
989 * cannot be new dirty data in the pfn after the flush has completed as
990 * the pfn mappings are writeprotected and fault waits for mapping
991 * entry lock.
992 */
9fc747f6
MW
993 xas_reset(xas);
994 xas_lock_irq(xas);
995 xas_store(xas, entry);
996 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
698ab77a 997 dax_wake_entry(xas, entry, WAKE_NEXT);
9fc747f6 998
e4b3448b 999 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
1000 return ret;
1001
a6abc2c0 1002 put_unlocked:
4c3d043d 1003 put_unlocked_entry(xas, entry, WAKE_NEXT);
9973c98e
RZ
1004 return ret;
1005}
1006
1007/*
1008 * Flush the mapping to the persistent domain within the byte range of [start,
1009 * end]. This is required by data integrity operations to ensure file data is
1010 * on persistent storage prior to completion of the operation.
1011 */
7f6d5b52 1012int dax_writeback_mapping_range(struct address_space *mapping,
3f666c56 1013 struct dax_device *dax_dev, struct writeback_control *wbc)
9973c98e 1014{
9fc747f6 1015 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 1016 struct inode *inode = mapping->host;
9fc747f6 1017 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
9fc747f6
MW
1018 void *entry;
1019 int ret = 0;
1020 unsigned int scanned = 0;
9973c98e
RZ
1021
1022 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1023 return -EIO;
1024
7716506a 1025 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
7f6d5b52
RZ
1026 return 0;
1027
9fc747f6 1028 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 1029
9fc747f6 1030 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 1031
9fc747f6
MW
1032 xas_lock_irq(&xas);
1033 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1034 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1035 if (ret < 0) {
1036 mapping_set_error(mapping, ret);
9973c98e 1037 break;
9973c98e 1038 }
9fc747f6
MW
1039 if (++scanned % XA_CHECK_SCHED)
1040 continue;
1041
1042 xas_pause(&xas);
1043 xas_unlock_irq(&xas);
1044 cond_resched();
1045 xas_lock_irq(&xas);
9973c98e 1046 }
9fc747f6 1047 xas_unlock_irq(&xas);
9fc747f6
MW
1048 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1049 return ret;
9973c98e
RZ
1050}
1051EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1052
e28cd3e5
SR
1053static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1054 size_t size, void **kaddr, pfn_t *pfnp)
f7ca90b1 1055{
60696eb2 1056 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e28cd3e5 1057 int id, rc = 0;
5e161e40 1058 long length;
f7ca90b1 1059
cccbce67 1060 id = dax_read_lock();
5e161e40 1061 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
e28cd3e5 1062 DAX_ACCESS, kaddr, pfnp);
5e161e40
JK
1063 if (length < 0) {
1064 rc = length;
1065 goto out;
cccbce67 1066 }
e28cd3e5
SR
1067 if (!pfnp)
1068 goto out_check_addr;
5e161e40
JK
1069 rc = -EINVAL;
1070 if (PFN_PHYS(length) < size)
1071 goto out;
1072 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1073 goto out;
1074 /* For larger pages we need devmap */
1075 if (length > 1 && !pfn_t_devmap(*pfnp))
1076 goto out;
1077 rc = 0;
e28cd3e5
SR
1078
1079out_check_addr:
1080 if (!kaddr)
1081 goto out;
1082 if (!*kaddr)
1083 rc = -EFAULT;
5e161e40 1084out:
cccbce67 1085 dax_read_unlock(id);
5e161e40 1086 return rc;
0e3b210c 1087}
0e3b210c 1088
ff17b8df 1089/**
708dfad2
SR
1090 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1091 * by copying the data before and after the range to be written.
ff17b8df
SR
1092 * @pos: address to do copy from.
1093 * @length: size of copy operation.
1094 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1095 * @srcmap: iomap srcmap
1096 * @daddr: destination address to copy to.
1097 *
1098 * This can be called from two places. Either during DAX write fault (page
1099 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
708dfad2 1100 * write operation, dax_iomap_iter() might call this to do the copy of either
ff17b8df 1101 * start or end unaligned address. In the latter case the rest of the copy of
708dfad2
SR
1102 * aligned ranges is taken care by dax_iomap_iter() itself.
1103 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1104 * area to make sure no old data remains.
ff17b8df 1105 */
708dfad2 1106static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
ff17b8df
SR
1107 const struct iomap *srcmap, void *daddr)
1108{
1109 loff_t head_off = pos & (align_size - 1);
1110 size_t size = ALIGN(head_off + length, align_size);
1111 loff_t end = pos + length;
1112 loff_t pg_end = round_up(end, align_size);
708dfad2 1113 /* copy_all is usually in page fault case */
ff17b8df 1114 bool copy_all = head_off == 0 && end == pg_end;
708dfad2
SR
1115 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1116 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1117 srcmap->type == IOMAP_UNWRITTEN;
ff17b8df
SR
1118 void *saddr = 0;
1119 int ret = 0;
1120
708dfad2
SR
1121 if (!zero_edge) {
1122 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1123 if (ret)
1124 return ret;
1125 }
ff17b8df
SR
1126
1127 if (copy_all) {
708dfad2
SR
1128 if (zero_edge)
1129 memset(daddr, 0, size);
1130 else
1131 ret = copy_mc_to_kernel(daddr, saddr, length);
1132 goto out;
ff17b8df
SR
1133 }
1134
1135 /* Copy the head part of the range */
1136 if (head_off) {
708dfad2
SR
1137 if (zero_edge)
1138 memset(daddr, 0, head_off);
1139 else {
1140 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1141 if (ret)
1142 return -EIO;
1143 }
ff17b8df
SR
1144 }
1145
1146 /* Copy the tail part of the range */
1147 if (end < pg_end) {
1148 loff_t tail_off = head_off + length;
1149 loff_t tail_len = pg_end - end;
1150
708dfad2
SR
1151 if (zero_edge)
1152 memset(daddr + tail_off, 0, tail_len);
1153 else {
1154 ret = copy_mc_to_kernel(daddr + tail_off,
1155 saddr + tail_off, tail_len);
1156 if (ret)
1157 return -EIO;
1158 }
ff17b8df 1159 }
708dfad2
SR
1160out:
1161 if (zero_edge)
1162 dax_flush(srcmap->dax_dev, daddr, size);
1163 return ret ? -EIO : 0;
ff17b8df
SR
1164}
1165
e30331ff 1166/*
91d25ba8
RZ
1167 * The user has performed a load from a hole in the file. Allocating a new
1168 * page in the file would cause excessive storage usage for workloads with
1169 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1170 * If this page is ever written to we will re-fault and change the mapping to
1171 * point to real DAX storage instead.
e30331ff 1172 */
e5d6df73
SR
1173static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1174 const struct iomap_iter *iter, void **entry)
e30331ff 1175{
e5d6df73 1176 struct inode *inode = iter->inode;
91d25ba8 1177 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1178 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1179 vm_fault_t ret;
e30331ff 1180
e5d6df73 1181 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
3159f943 1182
ab77dab4 1183 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1184 trace_dax_load_hole(inode, vmf, ret);
1185 return ret;
1186}
1187
c2436190
SR
1188#ifdef CONFIG_FS_DAX_PMD
1189static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1190 const struct iomap_iter *iter, void **entry)
c2436190
SR
1191{
1192 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1193 unsigned long pmd_addr = vmf->address & PMD_MASK;
1194 struct vm_area_struct *vma = vmf->vma;
1195 struct inode *inode = mapping->host;
1196 pgtable_t pgtable = NULL;
1197 struct page *zero_page;
1198 spinlock_t *ptl;
1199 pmd_t pmd_entry;
1200 pfn_t pfn;
1201
1202 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1203
1204 if (unlikely(!zero_page))
1205 goto fallback;
1206
1207 pfn = page_to_pfn_t(zero_page);
e5d6df73
SR
1208 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1209 DAX_PMD | DAX_ZERO_PAGE);
c2436190
SR
1210
1211 if (arch_needs_pgtable_deposit()) {
1212 pgtable = pte_alloc_one(vma->vm_mm);
1213 if (!pgtable)
1214 return VM_FAULT_OOM;
1215 }
1216
1217 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1218 if (!pmd_none(*(vmf->pmd))) {
1219 spin_unlock(ptl);
1220 goto fallback;
1221 }
1222
1223 if (pgtable) {
1224 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1225 mm_inc_nr_ptes(vma->vm_mm);
1226 }
1227 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1228 pmd_entry = pmd_mkhuge(pmd_entry);
1229 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1230 spin_unlock(ptl);
1231 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1232 return VM_FAULT_NOPAGE;
1233
1234fallback:
1235 if (pgtable)
1236 pte_free(vma->vm_mm, pgtable);
1237 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1238 return VM_FAULT_FALLBACK;
1239}
1240#else
1241static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1242 const struct iomap_iter *iter, void **entry)
c2436190
SR
1243{
1244 return VM_FAULT_FALLBACK;
1245}
1246#endif /* CONFIG_FS_DAX_PMD */
1247
d984648e
SR
1248static s64 dax_unshare_iter(struct iomap_iter *iter)
1249{
1250 struct iomap *iomap = &iter->iomap;
1251 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1252 loff_t pos = iter->pos;
1253 loff_t length = iomap_length(iter);
1254 int id = 0;
1255 s64 ret = 0;
1256 void *daddr = NULL, *saddr = NULL;
1257
1258 /* don't bother with blocks that are not shared to start with */
1259 if (!(iomap->flags & IOMAP_F_SHARED))
1260 return length;
1261 /* don't bother with holes or unwritten extents */
1262 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1263 return length;
1264
1265 id = dax_read_lock();
1266 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1267 if (ret < 0)
1268 goto out_unlock;
1269
1270 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1271 if (ret < 0)
1272 goto out_unlock;
1273
1274 ret = copy_mc_to_kernel(daddr, saddr, length);
1275 if (ret)
1276 ret = -EIO;
1277
1278out_unlock:
1279 dax_read_unlock(id);
1280 return ret;
1281}
1282
1283int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1284 const struct iomap_ops *ops)
1285{
1286 struct iomap_iter iter = {
1287 .inode = inode,
1288 .pos = pos,
1289 .len = len,
1290 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1291 };
1292 int ret;
1293
1294 while ((ret = iomap_iter(&iter, ops)) > 0)
1295 iter.processed = dax_unshare_iter(&iter);
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(dax_file_unshare);
1299
8dbfc76d 1300static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
e5c71954 1301{
8dbfc76d
SR
1302 const struct iomap *iomap = &iter->iomap;
1303 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1304 unsigned offset = offset_in_page(pos);
1305 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e5c71954
CH
1306 void *kaddr;
1307 long ret;
1308
8dbfc76d
SR
1309 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1310 NULL);
1311 if (ret < 0)
1312 return ret;
1313 memset(kaddr + offset, 0, size);
708dfad2
SR
1314 if (iomap->flags & IOMAP_F_SHARED)
1315 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1316 kaddr);
1317 else
8dbfc76d 1318 dax_flush(iomap->dax_dev, kaddr + offset, size);
e5c71954
CH
1319 return ret;
1320}
1321
c6f40468 1322static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
679c8bd3 1323{
c6f40468
CH
1324 const struct iomap *iomap = &iter->iomap;
1325 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1326 loff_t pos = iter->pos;
1327 u64 length = iomap_length(iter);
1328 s64 written = 0;
1329
1330 /* already zeroed? we're done. */
1331 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1332 return length;
1333
f80e1668
SR
1334 /*
1335 * invalidate the pages whose sharing state is to be changed
1336 * because of CoW.
1337 */
1338 if (iomap->flags & IOMAP_F_SHARED)
1339 invalidate_inode_pages2_range(iter->inode->i_mapping,
1340 pos >> PAGE_SHIFT,
1341 (pos + length - 1) >> PAGE_SHIFT);
1342
c6f40468
CH
1343 do {
1344 unsigned offset = offset_in_page(pos);
1345 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1346 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1347 long rc;
1348 int id;
1349
1350 id = dax_read_lock();
1351 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1352 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1353 else
8dbfc76d 1354 rc = dax_memzero(iter, pos, size);
c6f40468 1355 dax_read_unlock(id);
cccbce67 1356
c6f40468
CH
1357 if (rc < 0)
1358 return rc;
1359 pos += size;
1360 length -= size;
1361 written += size;
c6f40468 1362 } while (length > 0);
e5c71954 1363
f8189d5d
KX
1364 if (did_zero)
1365 *did_zero = true;
c6f40468
CH
1366 return written;
1367}
1368
1369int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1370 const struct iomap_ops *ops)
1371{
1372 struct iomap_iter iter = {
1373 .inode = inode,
1374 .pos = pos,
1375 .len = len,
952da063 1376 .flags = IOMAP_DAX | IOMAP_ZERO,
c6f40468
CH
1377 };
1378 int ret;
1379
1380 while ((ret = iomap_iter(&iter, ops)) > 0)
1381 iter.processed = dax_zero_iter(&iter, did_zero);
1382 return ret;
1383}
1384EXPORT_SYMBOL_GPL(dax_zero_range);
1385
1386int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1387 const struct iomap_ops *ops)
1388{
1389 unsigned int blocksize = i_blocksize(inode);
1390 unsigned int off = pos & (blocksize - 1);
1391
1392 /* Block boundary? Nothing to do */
1393 if (!off)
1394 return 0;
1395 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
679c8bd3 1396}
c6f40468 1397EXPORT_SYMBOL_GPL(dax_truncate_page);
679c8bd3 1398
ca289e0b
CH
1399static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1400 struct iov_iter *iter)
a254e568 1401{
ca289e0b 1402 const struct iomap *iomap = &iomi->iomap;
f80e1668 1403 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
ca289e0b
CH
1404 loff_t length = iomap_length(iomi);
1405 loff_t pos = iomi->pos;
cccbce67 1406 struct dax_device *dax_dev = iomap->dax_dev;
a254e568 1407 loff_t end = pos + length, done = 0;
ff17b8df 1408 bool write = iov_iter_rw(iter) == WRITE;
f80e1668 1409 bool cow = write && iomap->flags & IOMAP_F_SHARED;
a254e568 1410 ssize_t ret = 0;
a77d4786 1411 size_t xfer;
cccbce67 1412 int id;
a254e568 1413
ff17b8df 1414 if (!write) {
ca289e0b 1415 end = min(end, i_size_read(iomi->inode));
a254e568
CH
1416 if (pos >= end)
1417 return 0;
1418
1419 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1420 return iov_iter_zero(min(length, end - pos), iter);
1421 }
1422
ff17b8df
SR
1423 /*
1424 * In DAX mode, enforce either pure overwrites of written extents, or
1425 * writes to unwritten extents as part of a copy-on-write operation.
1426 */
1427 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1428 !(iomap->flags & IOMAP_F_SHARED)))
a254e568
CH
1429 return -EIO;
1430
e3fce68c
JK
1431 /*
1432 * Write can allocate block for an area which has a hole page mapped
1433 * into page tables. We have to tear down these mappings so that data
1434 * written by write(2) is visible in mmap.
1435 */
f80e1668 1436 if (iomap->flags & IOMAP_F_NEW || cow) {
ca289e0b 1437 invalidate_inode_pages2_range(iomi->inode->i_mapping,
e3fce68c
JK
1438 pos >> PAGE_SHIFT,
1439 (end - 1) >> PAGE_SHIFT);
1440 }
1441
cccbce67 1442 id = dax_read_lock();
a254e568
CH
1443 while (pos < end) {
1444 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67 1445 const size_t size = ALIGN(length + offset, PAGE_SIZE);
60696eb2 1446 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
a254e568 1447 ssize_t map_len;
047218ec 1448 bool recovery = false;
cccbce67 1449 void *kaddr;
a254e568 1450
d1908f52
MH
1451 if (fatal_signal_pending(current)) {
1452 ret = -EINTR;
1453 break;
1454 }
1455
cccbce67 1456 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
e511c4a3 1457 DAX_ACCESS, &kaddr, NULL);
047218ec
JC
1458 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1459 map_len = dax_direct_access(dax_dev, pgoff,
1460 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1461 &kaddr, NULL);
1462 if (map_len > 0)
1463 recovery = true;
1464 }
a254e568
CH
1465 if (map_len < 0) {
1466 ret = map_len;
1467 break;
1468 }
1469
f80e1668 1470 if (cow) {
708dfad2
SR
1471 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1472 srcmap, kaddr);
ff17b8df
SR
1473 if (ret)
1474 break;
1475 }
1476
cccbce67
DW
1477 map_len = PFN_PHYS(map_len);
1478 kaddr += offset;
a254e568
CH
1479 map_len -= offset;
1480 if (map_len > end - pos)
1481 map_len = end - pos;
1482
047218ec
JC
1483 if (recovery)
1484 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1485 map_len, iter);
ff17b8df 1486 else if (write)
a77d4786 1487 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1488 map_len, iter);
a254e568 1489 else
a77d4786 1490 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1491 map_len, iter);
a254e568 1492
a77d4786
DW
1493 pos += xfer;
1494 length -= xfer;
1495 done += xfer;
1496
1497 if (xfer == 0)
1498 ret = -EFAULT;
1499 if (xfer < map_len)
1500 break;
a254e568 1501 }
cccbce67 1502 dax_read_unlock(id);
a254e568
CH
1503
1504 return done ? done : ret;
1505}
1506
1507/**
11c59c92 1508 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1509 * @iocb: The control block for this I/O
1510 * @iter: The addresses to do I/O from or to
1511 * @ops: iomap ops passed from the file system
1512 *
1513 * This function performs read and write operations to directly mapped
1514 * persistent memory. The callers needs to take care of read/write exclusion
1515 * and evicting any page cache pages in the region under I/O.
1516 */
1517ssize_t
11c59c92 1518dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1519 const struct iomap_ops *ops)
a254e568 1520{
ca289e0b
CH
1521 struct iomap_iter iomi = {
1522 .inode = iocb->ki_filp->f_mapping->host,
1523 .pos = iocb->ki_pos,
1524 .len = iov_iter_count(iter),
952da063 1525 .flags = IOMAP_DAX,
ca289e0b
CH
1526 };
1527 loff_t done = 0;
1528 int ret;
a254e568 1529
17d9c15c
LJ
1530 if (!iomi.len)
1531 return 0;
1532
168316db 1533 if (iov_iter_rw(iter) == WRITE) {
ca289e0b
CH
1534 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1535 iomi.flags |= IOMAP_WRITE;
168316db 1536 } else {
ca289e0b 1537 lockdep_assert_held(&iomi.inode->i_rwsem);
168316db 1538 }
a254e568 1539
96222d53 1540 if (iocb->ki_flags & IOCB_NOWAIT)
ca289e0b 1541 iomi.flags |= IOMAP_NOWAIT;
96222d53 1542
ca289e0b
CH
1543 while ((ret = iomap_iter(&iomi, ops)) > 0)
1544 iomi.processed = dax_iomap_iter(&iomi, iter);
a254e568 1545
ca289e0b
CH
1546 done = iomi.pos - iocb->ki_pos;
1547 iocb->ki_pos = iomi.pos;
a254e568
CH
1548 return done ? done : ret;
1549}
11c59c92 1550EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1551
ab77dab4 1552static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1553{
1554 if (error == 0)
1555 return VM_FAULT_NOPAGE;
c9aed74e 1556 return vmf_error(error);
9f141d6e
JK
1557}
1558
55f81639
SR
1559/*
1560 * When handling a synchronous page fault and the inode need a fsync, we can
1561 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1562 * insertion for now and return the pfn so that caller can insert it after the
1563 * fsync is done.
1564 */
1565static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1566{
1567 if (WARN_ON_ONCE(!pfnp))
1568 return VM_FAULT_SIGBUS;
1569 *pfnp = pfn;
1570 return VM_FAULT_NEEDDSYNC;
1571}
1572
65dd814a
CH
1573static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1574 const struct iomap_iter *iter)
55f81639 1575{
55f81639
SR
1576 vm_fault_t ret;
1577 int error = 0;
1578
65dd814a 1579 switch (iter->iomap.type) {
55f81639
SR
1580 case IOMAP_HOLE:
1581 case IOMAP_UNWRITTEN:
429f8de7 1582 clear_user_highpage(vmf->cow_page, vmf->address);
55f81639
SR
1583 break;
1584 case IOMAP_MAPPED:
429f8de7 1585 error = copy_cow_page_dax(vmf, iter);
55f81639
SR
1586 break;
1587 default:
1588 WARN_ON_ONCE(1);
1589 error = -EIO;
1590 break;
1591 }
1592
1593 if (error)
1594 return dax_fault_return(error);
1595
1596 __SetPageUptodate(vmf->cow_page);
1597 ret = finish_fault(vmf);
1598 if (!ret)
1599 return VM_FAULT_DONE_COW;
1600 return ret;
1601}
1602
c2436190 1603/**
65dd814a 1604 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
c2436190 1605 * @vmf: vm fault instance
65dd814a 1606 * @iter: iomap iter
c2436190
SR
1607 * @pfnp: pfn to be returned
1608 * @xas: the dax mapping tree of a file
1609 * @entry: an unlocked dax entry to be inserted
1610 * @pmd: distinguish whether it is a pmd fault
c2436190 1611 */
65dd814a
CH
1612static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1613 const struct iomap_iter *iter, pfn_t *pfnp,
1614 struct xa_state *xas, void **entry, bool pmd)
c2436190 1615{
65dd814a 1616 const struct iomap *iomap = &iter->iomap;
708dfad2 1617 const struct iomap *srcmap = iomap_iter_srcmap(iter);
c2436190
SR
1618 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1619 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
e5d6df73 1620 bool write = iter->flags & IOMAP_WRITE;
c2436190
SR
1621 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1622 int err = 0;
1623 pfn_t pfn;
ff17b8df 1624 void *kaddr;
c2436190 1625
65dd814a
CH
1626 if (!pmd && vmf->cow_page)
1627 return dax_fault_cow_page(vmf, iter);
1628
c2436190
SR
1629 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1630 if (!write &&
1631 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1632 if (!pmd)
e5d6df73
SR
1633 return dax_load_hole(xas, vmf, iter, entry);
1634 return dax_pmd_load_hole(xas, vmf, iter, entry);
c2436190
SR
1635 }
1636
ff17b8df 1637 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
c2436190
SR
1638 WARN_ON_ONCE(1);
1639 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1640 }
1641
ff17b8df 1642 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
c2436190
SR
1643 if (err)
1644 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1645
e5d6df73 1646 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
c2436190 1647
708dfad2
SR
1648 if (write && iomap->flags & IOMAP_F_SHARED) {
1649 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
ff17b8df
SR
1650 if (err)
1651 return dax_fault_return(err);
1652 }
c2436190 1653
e5d6df73 1654 if (dax_fault_is_synchronous(iter, vmf->vma))
c2436190
SR
1655 return dax_fault_synchronous_pfnp(pfnp, pfn);
1656
1657 /* insert PMD pfn */
1658 if (pmd)
1659 return vmf_insert_pfn_pmd(vmf, pfn, write);
1660
1661 /* insert PTE pfn */
1662 if (write)
1663 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1664 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1665}
1666
ab77dab4 1667static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1668 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1669{
65dd814a 1670 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1671 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
65dd814a
CH
1672 struct iomap_iter iter = {
1673 .inode = mapping->host,
1674 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1675 .len = PAGE_SIZE,
952da063 1676 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1677 };
ab77dab4 1678 vm_fault_t ret = 0;
a7d73fe6 1679 void *entry;
65dd814a 1680 int error;
a7d73fe6 1681
65dd814a 1682 trace_dax_pte_fault(iter.inode, vmf, ret);
a7d73fe6
CH
1683 /*
1684 * Check whether offset isn't beyond end of file now. Caller is supposed
1685 * to hold locks serializing us with truncate / punch hole so this is
1686 * a reliable test.
1687 */
65dd814a 1688 if (iter.pos >= i_size_read(iter.inode)) {
ab77dab4 1689 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1690 goto out;
1691 }
a7d73fe6 1692
65dd814a
CH
1693 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1694 iter.flags |= IOMAP_WRITE;
a7d73fe6 1695
b15cd800
MW
1696 entry = grab_mapping_entry(&xas, mapping, 0);
1697 if (xa_is_internal(entry)) {
1698 ret = xa_to_internal(entry);
13e451fd
JK
1699 goto out;
1700 }
1701
e2093926
RZ
1702 /*
1703 * It is possible, particularly with mixed reads & writes to private
1704 * mappings, that we have raced with a PMD fault that overlaps with
1705 * the PTE we need to set up. If so just return and the fault will be
1706 * retried.
1707 */
1708 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1709 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1710 goto unlock_entry;
1711 }
1712
65dd814a
CH
1713 while ((error = iomap_iter(&iter, ops)) > 0) {
1714 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1715 iter.processed = -EIO; /* fs corruption? */
1716 continue;
a7d73fe6
CH
1717 }
1718
65dd814a
CH
1719 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1720 if (ret != VM_FAULT_SIGBUS &&
1721 (iter.iomap.flags & IOMAP_F_NEW)) {
a7d73fe6 1722 count_vm_event(PGMAJFAULT);
65dd814a
CH
1723 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1724 ret |= VM_FAULT_MAJOR;
a7d73fe6 1725 }
1b5a1cb2 1726
65dd814a
CH
1727 if (!(ret & VM_FAULT_ERROR))
1728 iter.processed = PAGE_SIZE;
a7d73fe6
CH
1729 }
1730
65dd814a
CH
1731 if (iomap_errp)
1732 *iomap_errp = error;
1733 if (!ret && error)
1734 ret = dax_fault_return(error);
9f141d6e 1735
c2436190 1736unlock_entry:
b15cd800 1737 dax_unlock_entry(&xas, entry);
c2436190 1738out:
65dd814a
CH
1739 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1740 return ret;
a7d73fe6 1741}
642261ac
RZ
1742
1743#ifdef CONFIG_FS_DAX_PMD
55f81639
SR
1744static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1745 pgoff_t max_pgoff)
642261ac 1746{
f4200391 1747 unsigned long pmd_addr = vmf->address & PMD_MASK;
55f81639 1748 bool write = vmf->flags & FAULT_FLAG_WRITE;
642261ac 1749
55f81639
SR
1750 /*
1751 * Make sure that the faulting address's PMD offset (color) matches
1752 * the PMD offset from the start of the file. This is necessary so
1753 * that a PMD range in the page table overlaps exactly with a PMD
1754 * range in the page cache.
1755 */
1756 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1757 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1758 return true;
642261ac 1759
55f81639
SR
1760 /* Fall back to PTEs if we're going to COW */
1761 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1762 return true;
11cf9d86 1763
55f81639
SR
1764 /* If the PMD would extend outside the VMA */
1765 if (pmd_addr < vmf->vma->vm_start)
1766 return true;
1767 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1768 return true;
642261ac 1769
55f81639
SR
1770 /* If the PMD would extend beyond the file size */
1771 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1772 return true;
653b2ea3 1773
55f81639 1774 return false;
642261ac
RZ
1775}
1776
ab77dab4 1777static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1778 const struct iomap_ops *ops)
642261ac 1779{
65dd814a 1780 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1781 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
65dd814a
CH
1782 struct iomap_iter iter = {
1783 .inode = mapping->host,
1784 .len = PMD_SIZE,
952da063 1785 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1786 };
c2436190 1787 vm_fault_t ret = VM_FAULT_FALLBACK;
b15cd800 1788 pgoff_t max_pgoff;
642261ac 1789 void *entry;
642261ac
RZ
1790 int error;
1791
65dd814a
CH
1792 if (vmf->flags & FAULT_FLAG_WRITE)
1793 iter.flags |= IOMAP_WRITE;
642261ac 1794
282a8e03
RZ
1795 /*
1796 * Check whether offset isn't beyond end of file now. Caller is
1797 * supposed to hold locks serializing us with truncate / punch hole so
1798 * this is a reliable test.
1799 */
65dd814a 1800 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
fffa281b 1801
65dd814a 1802 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
642261ac 1803
b15cd800 1804 if (xas.xa_index >= max_pgoff) {
c2436190 1805 ret = VM_FAULT_SIGBUS;
282a8e03
RZ
1806 goto out;
1807 }
642261ac 1808
55f81639 1809 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
642261ac
RZ
1810 goto fallback;
1811
876f2946 1812 /*
b15cd800
MW
1813 * grab_mapping_entry() will make sure we get an empty PMD entry,
1814 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1815 * entry is already in the array, for instance), it will return
1816 * VM_FAULT_FALLBACK.
876f2946 1817 */
23c84eb7 1818 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800 1819 if (xa_is_internal(entry)) {
c2436190 1820 ret = xa_to_internal(entry);
876f2946 1821 goto fallback;
b15cd800 1822 }
876f2946 1823
e2093926
RZ
1824 /*
1825 * It is possible, particularly with mixed reads & writes to private
1826 * mappings, that we have raced with a PTE fault that overlaps with
1827 * the PMD we need to set up. If so just return and the fault will be
1828 * retried.
1829 */
1830 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1831 !pmd_devmap(*vmf->pmd)) {
c2436190 1832 ret = 0;
e2093926
RZ
1833 goto unlock_entry;
1834 }
1835
65dd814a
CH
1836 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1837 while ((error = iomap_iter(&iter, ops)) > 0) {
1838 if (iomap_length(&iter) < PMD_SIZE)
1839 continue; /* actually breaks out of the loop */
caa51d26 1840
65dd814a
CH
1841 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1842 if (ret != VM_FAULT_FALLBACK)
1843 iter.processed = PMD_SIZE;
642261ac
RZ
1844 }
1845
c2436190 1846unlock_entry:
b15cd800 1847 dax_unlock_entry(&xas, entry);
c2436190
SR
1848fallback:
1849 if (ret == VM_FAULT_FALLBACK) {
65dd814a 1850 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
642261ac
RZ
1851 count_vm_event(THP_FAULT_FALLBACK);
1852 }
282a8e03 1853out:
65dd814a 1854 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
c2436190 1855 return ret;
642261ac 1856}
a2d58167 1857#else
ab77dab4 1858static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1859 const struct iomap_ops *ops)
a2d58167
DJ
1860{
1861 return VM_FAULT_FALLBACK;
1862}
642261ac 1863#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1864
1865/**
1866 * dax_iomap_fault - handle a page fault on a DAX file
1867 * @vmf: The description of the fault
cec04e8c 1868 * @pe_size: Size of the page to fault in
9a0dd422 1869 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1870 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1871 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1872 *
1873 * When a page fault occurs, filesystems may call this helper in
1874 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1875 * has done all the necessary locking for page fault to proceed
1876 * successfully.
1877 */
ab77dab4 1878vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1879 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1880{
c791ace1
DJ
1881 switch (pe_size) {
1882 case PE_SIZE_PTE:
c0b24625 1883 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1884 case PE_SIZE_PMD:
9a0dd422 1885 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1886 default:
1887 return VM_FAULT_FALLBACK;
1888 }
1889}
1890EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1891
a77d19f4 1892/*
71eab6df
JK
1893 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1894 * @vmf: The description of the fault
71eab6df 1895 * @pfn: PFN to insert
cfc93c6c 1896 * @order: Order of entry to insert.
71eab6df 1897 *
a77d19f4
MW
1898 * This function inserts a writeable PTE or PMD entry into the page tables
1899 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1900 */
cfc93c6c
MW
1901static vm_fault_t
1902dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1903{
1904 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1905 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1906 void *entry;
ab77dab4 1907 vm_fault_t ret;
71eab6df 1908
cfc93c6c 1909 xas_lock_irq(&xas);
23c84eb7 1910 entry = get_unlocked_entry(&xas, order);
71eab6df 1911 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1912 if (!entry || dax_is_conflict(entry) ||
1913 (order == 0 && !dax_is_pte_entry(entry))) {
4c3d043d 1914 put_unlocked_entry(&xas, entry, WAKE_NEXT);
cfc93c6c 1915 xas_unlock_irq(&xas);
71eab6df
JK
1916 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1917 VM_FAULT_NOPAGE);
1918 return VM_FAULT_NOPAGE;
1919 }
cfc93c6c
MW
1920 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1921 dax_lock_entry(&xas, entry);
1922 xas_unlock_irq(&xas);
1923 if (order == 0)
ab77dab4 1924 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1925#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1926 else if (order == PMD_ORDER)
fce86ff5 1927 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1928#endif
cfc93c6c 1929 else
ab77dab4 1930 ret = VM_FAULT_FALLBACK;
cfc93c6c 1931 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1932 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1933 return ret;
71eab6df
JK
1934}
1935
1936/**
1937 * dax_finish_sync_fault - finish synchronous page fault
1938 * @vmf: The description of the fault
1939 * @pe_size: Size of entry to be inserted
1940 * @pfn: PFN to insert
1941 *
1942 * This function ensures that the file range touched by the page fault is
1943 * stored persistently on the media and handles inserting of appropriate page
1944 * table entry.
1945 */
ab77dab4
SJ
1946vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1947 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1948{
1949 int err;
1950 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1951 unsigned int order = pe_order(pe_size);
1952 size_t len = PAGE_SIZE << order;
71eab6df 1953
71eab6df
JK
1954 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1955 if (err)
1956 return VM_FAULT_SIGBUS;
cfc93c6c 1957 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1958}
1959EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
6f7db389
SR
1960
1961static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1962 struct iomap_iter *it_dest, u64 len, bool *same)
1963{
1964 const struct iomap *smap = &it_src->iomap;
1965 const struct iomap *dmap = &it_dest->iomap;
1966 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1967 void *saddr, *daddr;
1968 int id, ret;
1969
1970 len = min(len, min(smap->length, dmap->length));
1971
1972 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1973 *same = true;
1974 return len;
1975 }
1976
1977 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1978 *same = false;
1979 return 0;
1980 }
1981
1982 id = dax_read_lock();
1983 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1984 &saddr, NULL);
1985 if (ret < 0)
1986 goto out_unlock;
1987
1988 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1989 &daddr, NULL);
1990 if (ret < 0)
1991 goto out_unlock;
1992
1993 *same = !memcmp(saddr, daddr, len);
1994 if (!*same)
1995 len = 0;
1996 dax_read_unlock(id);
1997 return len;
1998
1999out_unlock:
2000 dax_read_unlock(id);
2001 return -EIO;
2002}
2003
2004int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2005 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2006 const struct iomap_ops *ops)
2007{
2008 struct iomap_iter src_iter = {
2009 .inode = src,
2010 .pos = srcoff,
2011 .len = len,
2012 .flags = IOMAP_DAX,
2013 };
2014 struct iomap_iter dst_iter = {
2015 .inode = dst,
2016 .pos = dstoff,
2017 .len = len,
2018 .flags = IOMAP_DAX,
2019 };
0e79e373 2020 int ret, compared = 0;
6f7db389 2021
0e79e373
SR
2022 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2023 (ret = iomap_iter(&dst_iter, ops)) > 0) {
2024 compared = dax_range_compare_iter(&src_iter, &dst_iter, len,
2025 same);
2026 if (compared < 0)
2027 return ret;
2028 src_iter.processed = dst_iter.processed = compared;
6f7db389
SR
2029 }
2030 return ret;
2031}
2032
2033int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2034 struct file *file_out, loff_t pos_out,
2035 loff_t *len, unsigned int remap_flags,
2036 const struct iomap_ops *ops)
2037{
2038 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2039 pos_out, len, remap_flags, ops);
2040}
2041EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);