fscrypt: introduce fscrypt_encrypt_block_inplace()
[linux-block.git] / fs / crypto / crypto.c
CommitLineData
09c434b8 1// SPDX-License-Identifier: GPL-2.0-only
0b81d077
JK
2/*
3 * This contains encryption functions for per-file encryption.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 * Add fscrypt_pullback_bio_page()
15 * Jaegeuk Kim, 2015.
16 *
17 * This has not yet undergone a rigorous security audit.
18 *
19 * The usage of AES-XTS should conform to recommendations in NIST
20 * Special Publication 800-38E and IEEE P1619/D16.
21 */
22
0b81d077
JK
23#include <linux/pagemap.h>
24#include <linux/mempool.h>
25#include <linux/module.h>
26#include <linux/scatterlist.h>
27#include <linux/ratelimit.h>
0b81d077 28#include <linux/dcache.h>
03a8bb0e 29#include <linux/namei.h>
b7e7cf7a 30#include <crypto/aes.h>
a575784c 31#include <crypto/skcipher.h>
cc4e0df0 32#include "fscrypt_private.h"
0b81d077
JK
33
34static unsigned int num_prealloc_crypto_pages = 32;
35static unsigned int num_prealloc_crypto_ctxs = 128;
36
37module_param(num_prealloc_crypto_pages, uint, 0444);
38MODULE_PARM_DESC(num_prealloc_crypto_pages,
39 "Number of crypto pages to preallocate");
40module_param(num_prealloc_crypto_ctxs, uint, 0444);
41MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
42 "Number of crypto contexts to preallocate");
43
44static mempool_t *fscrypt_bounce_page_pool = NULL;
45
46static LIST_HEAD(fscrypt_free_ctxs);
47static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48
0cb8dae4 49static struct workqueue_struct *fscrypt_read_workqueue;
0b81d077
JK
50static DEFINE_MUTEX(fscrypt_init_mutex);
51
52static struct kmem_cache *fscrypt_ctx_cachep;
53struct kmem_cache *fscrypt_info_cachep;
54
0cb8dae4
EB
55void fscrypt_enqueue_decrypt_work(struct work_struct *work)
56{
57 queue_work(fscrypt_read_workqueue, work);
58}
59EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
60
0b81d077 61/**
2a415a02
EB
62 * fscrypt_release_ctx() - Release a decryption context
63 * @ctx: The decryption context to release.
0b81d077 64 *
2a415a02
EB
65 * If the decryption context was allocated from the pre-allocated pool, return
66 * it to that pool. Else, free it.
0b81d077
JK
67 */
68void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
69{
70 unsigned long flags;
71
0b81d077
JK
72 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 } else {
75 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 }
79}
80EXPORT_SYMBOL(fscrypt_release_ctx);
81
82/**
2a415a02 83 * fscrypt_get_ctx() - Get a decryption context
b32e4482 84 * @gfp_flags: The gfp flag for memory allocation
0b81d077 85 *
2a415a02 86 * Allocate and initialize a decryption context.
0b81d077 87 *
2a415a02 88 * Return: A new decryption context on success; an ERR_PTR() otherwise.
0b81d077 89 */
cd0265fc 90struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
0b81d077 91{
cd0265fc 92 struct fscrypt_ctx *ctx;
0b81d077
JK
93 unsigned long flags;
94
0b81d077 95 /*
d2d0727b
EB
96 * First try getting a ctx from the free list so that we don't have to
97 * call into the slab allocator.
0b81d077
JK
98 */
99 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101 struct fscrypt_ctx, free_list);
102 if (ctx)
103 list_del(&ctx->free_list);
104 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105 if (!ctx) {
b32e4482 106 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
0b81d077
JK
107 if (!ctx)
108 return ERR_PTR(-ENOMEM);
109 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110 } else {
111 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112 }
0b81d077
JK
113 return ctx;
114}
115EXPORT_SYMBOL(fscrypt_get_ctx);
116
d2d0727b
EB
117struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118{
119 return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120}
121
122/**
123 * fscrypt_free_bounce_page() - free a ciphertext bounce page
124 *
125 * Free a bounce page that was allocated by fscrypt_encrypt_page(), or by
126 * fscrypt_alloc_bounce_page() directly.
127 */
128void fscrypt_free_bounce_page(struct page *bounce_page)
129{
130 if (!bounce_page)
131 return;
132 set_page_private(bounce_page, (unsigned long)NULL);
133 ClearPagePrivate(bounce_page);
134 mempool_free(bounce_page, fscrypt_bounce_page_pool);
135}
136EXPORT_SYMBOL(fscrypt_free_bounce_page);
137
8094c3ce
EB
138void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139 const struct fscrypt_info *ci)
140{
141 memset(iv, 0, ci->ci_mode->ivsize);
142 iv->lblk_num = cpu_to_le64(lblk_num);
143
144 if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
145 memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146
147 if (ci->ci_essiv_tfm != NULL)
148 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
149}
150
f47fcbb2
EB
151/* Encrypt or decrypt a single filesystem block of file contents */
152int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153 u64 lblk_num, struct page *src_page,
154 struct page *dest_page, unsigned int len,
155 unsigned int offs, gfp_t gfp_flags)
0b81d077 156{
8094c3ce 157 union fscrypt_iv iv;
d407574e 158 struct skcipher_request *req = NULL;
d0082e1a 159 DECLARE_CRYPTO_WAIT(wait);
0b81d077
JK
160 struct scatterlist dst, src;
161 struct fscrypt_info *ci = inode->i_crypt_info;
d407574e 162 struct crypto_skcipher *tfm = ci->ci_ctfm;
0b81d077
JK
163 int res = 0;
164
eeacfdc6
EB
165 if (WARN_ON_ONCE(len <= 0))
166 return -EINVAL;
167 if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168 return -EINVAL;
1400451f 169
8094c3ce 170 fscrypt_generate_iv(&iv, lblk_num, ci);
b7e7cf7a 171
b32e4482 172 req = skcipher_request_alloc(tfm, gfp_flags);
c90fd775 173 if (!req)
0b81d077 174 return -ENOMEM;
0b81d077 175
d407574e 176 skcipher_request_set_callback(
0b81d077 177 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
d0082e1a 178 crypto_req_done, &wait);
0b81d077 179
0b81d077 180 sg_init_table(&dst, 1);
1400451f 181 sg_set_page(&dst, dest_page, len, offs);
0b81d077 182 sg_init_table(&src, 1);
1400451f 183 sg_set_page(&src, src_page, len, offs);
b7e7cf7a 184 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
0b81d077 185 if (rw == FS_DECRYPT)
d0082e1a 186 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
0b81d077 187 else
d0082e1a 188 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
d407574e 189 skcipher_request_free(req);
0b81d077 190 if (res) {
544d08fd
EB
191 fscrypt_err(inode->i_sb,
192 "%scryption failed for inode %lu, block %llu: %d",
193 (rw == FS_DECRYPT ? "de" : "en"),
194 inode->i_ino, lblk_num, res);
0b81d077
JK
195 return res;
196 }
197 return 0;
198}
199
0b81d077
JK
200/**
201 * fscypt_encrypt_page() - Encrypts a page
1400451f 202 * @inode: The inode for which the encryption should take place
03569f2f 203 * @page: The page to encrypt. Must be locked.
1400451f
DG
204 * @len: Length of data to encrypt in @page and encrypted
205 * data in returned page.
206 * @offs: Offset of data within @page and returned
207 * page holding encrypted data.
208 * @lblk_num: Logical block number. This must be unique for multiple
209 * calls with same inode, except when overwriting
210 * previously written data.
211 * @gfp_flags: The gfp flag for memory allocation
0b81d077 212 *
03569f2f
EB
213 * Encrypts @page. A bounce page is allocated, the data is encrypted into the
214 * bounce page, and the bounce page is returned. The caller is responsible for
215 * calling fscrypt_free_bounce_page().
0b81d077 216 *
d2d0727b 217 * Return: A page containing the encrypted data on success, else an ERR_PTR()
0b81d077 218 */
0b93e1b9 219struct page *fscrypt_encrypt_page(const struct inode *inode,
1400451f
DG
220 struct page *page,
221 unsigned int len,
222 unsigned int offs,
223 u64 lblk_num, gfp_t gfp_flags)
7821d4dd 224
0b81d077 225{
03569f2f 226 struct page *ciphertext_page;
0b81d077
JK
227 int err;
228
eeacfdc6
EB
229 if (WARN_ON_ONCE(!PageLocked(page)))
230 return ERR_PTR(-EINVAL);
bd7b8290 231
d2d0727b
EB
232 ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
233 if (!ciphertext_page)
234 return ERR_PTR(-ENOMEM);
0b81d077 235
f47fcbb2
EB
236 err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page,
237 ciphertext_page, len, offs, gfp_flags);
0b81d077 238 if (err) {
d2d0727b
EB
239 fscrypt_free_bounce_page(ciphertext_page);
240 return ERR_PTR(err);
0b81d077 241 }
9e532772 242 SetPagePrivate(ciphertext_page);
d2d0727b 243 set_page_private(ciphertext_page, (unsigned long)page);
0b81d077
JK
244 return ciphertext_page;
245}
246EXPORT_SYMBOL(fscrypt_encrypt_page);
247
03569f2f
EB
248/**
249 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
250 * @inode: The inode to which this block belongs
251 * @page: The page containing the block to encrypt
252 * @len: Size of block to encrypt. Doesn't need to be a multiple of the
253 * fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
254 * @offs: Byte offset within @page at which the block to encrypt begins
255 * @lblk_num: Filesystem logical block number of the block, i.e. the 0-based
256 * number of the block within the file
257 * @gfp_flags: Memory allocation flags
258 *
259 * Encrypt a possibly-compressed filesystem block that is located in an
260 * arbitrary page, not necessarily in the original pagecache page. The @inode
261 * and @lblk_num must be specified, as they can't be determined from @page.
262 *
263 * Return: 0 on success; -errno on failure
264 */
265int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
266 unsigned int len, unsigned int offs,
267 u64 lblk_num, gfp_t gfp_flags)
268{
269 return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
270 len, offs, gfp_flags);
271}
272EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
273
0b81d077 274/**
7821d4dd 275 * fscrypt_decrypt_page() - Decrypts a page in-place
1400451f
DG
276 * @inode: The corresponding inode for the page to decrypt.
277 * @page: The page to decrypt. Must be locked in case
bd7b8290 278 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
1400451f
DG
279 * @len: Number of bytes in @page to be decrypted.
280 * @offs: Start of data in @page.
281 * @lblk_num: Logical block number.
0b81d077
JK
282 *
283 * Decrypts page in-place using the ctx encryption context.
284 *
285 * Called from the read completion callback.
286 *
287 * Return: Zero on success, non-zero otherwise.
288 */
0b93e1b9 289int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
1400451f 290 unsigned int len, unsigned int offs, u64 lblk_num)
0b81d077 291{
eeacfdc6
EB
292 if (WARN_ON_ONCE(!PageLocked(page) &&
293 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
294 return -EINVAL;
bd7b8290 295
f47fcbb2
EB
296 return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
297 len, offs, GFP_NOFS);
0b81d077
JK
298}
299EXPORT_SYMBOL(fscrypt_decrypt_page);
300
0b81d077 301/*
6cc24868
EB
302 * Validate dentries in encrypted directories to make sure we aren't potentially
303 * caching stale dentries after a key has been added.
0b81d077
JK
304 */
305static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
306{
d7d75352 307 struct dentry *dir;
6cc24868
EB
308 int err;
309 int valid;
310
311 /*
312 * Plaintext names are always valid, since fscrypt doesn't support
313 * reverting to ciphertext names without evicting the directory's inode
314 * -- which implies eviction of the dentries in the directory.
315 */
316 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
317 return 1;
318
319 /*
320 * Ciphertext name; valid if the directory's key is still unavailable.
321 *
322 * Although fscrypt forbids rename() on ciphertext names, we still must
323 * use dget_parent() here rather than use ->d_parent directly. That's
324 * because a corrupted fs image may contain directory hard links, which
325 * the VFS handles by moving the directory's dentry tree in the dcache
326 * each time ->lookup() finds the directory and it already has a dentry
327 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
328 * a reference to some ->d_parent to prevent it from being freed.
329 */
0b81d077 330
03a8bb0e
JK
331 if (flags & LOOKUP_RCU)
332 return -ECHILD;
333
d7d75352 334 dir = dget_parent(dentry);
6cc24868
EB
335 err = fscrypt_get_encryption_info(d_inode(dir));
336 valid = !fscrypt_has_encryption_key(d_inode(dir));
d7d75352 337 dput(dir);
0b81d077 338
6cc24868
EB
339 if (err < 0)
340 return err;
341
342 return valid;
0b81d077
JK
343}
344
345const struct dentry_operations fscrypt_d_ops = {
346 .d_revalidate = fscrypt_d_revalidate,
347};
0b81d077 348
0b81d077
JK
349static void fscrypt_destroy(void)
350{
351 struct fscrypt_ctx *pos, *n;
352
353 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
354 kmem_cache_free(fscrypt_ctx_cachep, pos);
355 INIT_LIST_HEAD(&fscrypt_free_ctxs);
356 mempool_destroy(fscrypt_bounce_page_pool);
357 fscrypt_bounce_page_pool = NULL;
358}
359
360/**
361 * fscrypt_initialize() - allocate major buffers for fs encryption.
f32d7ac2 362 * @cop_flags: fscrypt operations flags
0b81d077
JK
363 *
364 * We only call this when we start accessing encrypted files, since it
365 * results in memory getting allocated that wouldn't otherwise be used.
366 *
367 * Return: Zero on success, non-zero otherwise.
368 */
f32d7ac2 369int fscrypt_initialize(unsigned int cop_flags)
0b81d077
JK
370{
371 int i, res = -ENOMEM;
372
a0b3bc85
EB
373 /* No need to allocate a bounce page pool if this FS won't use it. */
374 if (cop_flags & FS_CFLG_OWN_PAGES)
0b81d077
JK
375 return 0;
376
377 mutex_lock(&fscrypt_init_mutex);
378 if (fscrypt_bounce_page_pool)
379 goto already_initialized;
380
381 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
382 struct fscrypt_ctx *ctx;
383
384 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
385 if (!ctx)
386 goto fail;
387 list_add(&ctx->free_list, &fscrypt_free_ctxs);
388 }
389
390 fscrypt_bounce_page_pool =
391 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
392 if (!fscrypt_bounce_page_pool)
393 goto fail;
394
395already_initialized:
396 mutex_unlock(&fscrypt_init_mutex);
397 return 0;
398fail:
399 fscrypt_destroy();
400 mutex_unlock(&fscrypt_init_mutex);
401 return res;
402}
0b81d077 403
544d08fd
EB
404void fscrypt_msg(struct super_block *sb, const char *level,
405 const char *fmt, ...)
406{
407 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
408 DEFAULT_RATELIMIT_BURST);
409 struct va_format vaf;
410 va_list args;
411
412 if (!__ratelimit(&rs))
413 return;
414
415 va_start(args, fmt);
416 vaf.fmt = fmt;
417 vaf.va = &args;
418 if (sb)
419 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
420 else
421 printk("%sfscrypt: %pV\n", level, &vaf);
422 va_end(args);
423}
424
0b81d077
JK
425/**
426 * fscrypt_init() - Set up for fs encryption.
427 */
428static int __init fscrypt_init(void)
429{
36dd26e0
EB
430 /*
431 * Use an unbound workqueue to allow bios to be decrypted in parallel
432 * even when they happen to complete on the same CPU. This sacrifices
433 * locality, but it's worthwhile since decryption is CPU-intensive.
434 *
435 * Also use a high-priority workqueue to prioritize decryption work,
436 * which blocks reads from completing, over regular application tasks.
437 */
0b81d077 438 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
36dd26e0
EB
439 WQ_UNBOUND | WQ_HIGHPRI,
440 num_online_cpus());
0b81d077
JK
441 if (!fscrypt_read_workqueue)
442 goto fail;
443
444 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
445 if (!fscrypt_ctx_cachep)
446 goto fail_free_queue;
447
448 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
449 if (!fscrypt_info_cachep)
450 goto fail_free_ctx;
451
452 return 0;
453
454fail_free_ctx:
455 kmem_cache_destroy(fscrypt_ctx_cachep);
456fail_free_queue:
457 destroy_workqueue(fscrypt_read_workqueue);
458fail:
459 return -ENOMEM;
460}
461module_init(fscrypt_init)
462
463/**
464 * fscrypt_exit() - Shutdown the fs encryption system
465 */
466static void __exit fscrypt_exit(void)
467{
468 fscrypt_destroy();
469
470 if (fscrypt_read_workqueue)
471 destroy_workqueue(fscrypt_read_workqueue);
472 kmem_cache_destroy(fscrypt_ctx_cachep);
473 kmem_cache_destroy(fscrypt_info_cachep);
b7e7cf7a
DW
474
475 fscrypt_essiv_cleanup();
0b81d077
JK
476}
477module_exit(fscrypt_exit);
478
479MODULE_LICENSE("GPL");