ocfs2: Use zero-sized array and struct_size() in kzalloc()
[linux-2.6-block.git] / fs / crypto / crypto.c
CommitLineData
0b81d077
JK
1/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
0b81d077
JK
22#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
0b81d077 27#include <linux/dcache.h>
03a8bb0e 28#include <linux/namei.h>
b7e7cf7a 29#include <crypto/aes.h>
a575784c 30#include <crypto/skcipher.h>
cc4e0df0 31#include "fscrypt_private.h"
0b81d077
JK
32
33static unsigned int num_prealloc_crypto_pages = 32;
34static unsigned int num_prealloc_crypto_ctxs = 128;
35
36module_param(num_prealloc_crypto_pages, uint, 0444);
37MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39module_param(num_prealloc_crypto_ctxs, uint, 0444);
40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
42
43static mempool_t *fscrypt_bounce_page_pool = NULL;
44
45static LIST_HEAD(fscrypt_free_ctxs);
46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47
0cb8dae4 48static struct workqueue_struct *fscrypt_read_workqueue;
0b81d077
JK
49static DEFINE_MUTEX(fscrypt_init_mutex);
50
51static struct kmem_cache *fscrypt_ctx_cachep;
52struct kmem_cache *fscrypt_info_cachep;
53
0cb8dae4
EB
54void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55{
56 queue_work(fscrypt_read_workqueue, work);
57}
58EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59
0b81d077
JK
60/**
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
63 *
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
66 *
67 * If there's a bounce page in the context, this frees that.
68 */
69void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70{
71 unsigned long flags;
72
6a34e4d2 73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
0b81d077
JK
74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 ctx->w.bounce_page = NULL;
76 }
77 ctx->w.control_page = NULL;
78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 }
85}
86EXPORT_SYMBOL(fscrypt_release_ctx);
87
88/**
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
b32e4482 91 * @gfp_flags: The gfp flag for memory allocation
0b81d077
JK
92 *
93 * Allocates and initializes an encryption context.
94 *
95 * Return: An allocated and initialized encryption context on success; error
96 * value or NULL otherwise.
97 */
0b93e1b9 98struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
0b81d077
JK
99{
100 struct fscrypt_ctx *ctx = NULL;
101 struct fscrypt_info *ci = inode->i_crypt_info;
102 unsigned long flags;
103
104 if (ci == NULL)
105 return ERR_PTR(-ENOKEY);
106
107 /*
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
116 */
117 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 struct fscrypt_ctx, free_list);
120 if (ctx)
121 list_del(&ctx->free_list);
122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 if (!ctx) {
b32e4482 124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
0b81d077
JK
125 if (!ctx)
126 return ERR_PTR(-ENOMEM);
127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 } else {
129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 }
6a34e4d2 131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
132 return ctx;
133}
134EXPORT_SYMBOL(fscrypt_get_ctx);
135
8094c3ce
EB
136void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
137 const struct fscrypt_info *ci)
138{
139 memset(iv, 0, ci->ci_mode->ivsize);
140 iv->lblk_num = cpu_to_le64(lblk_num);
141
142 if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
143 memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
144
145 if (ci->ci_essiv_tfm != NULL)
146 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
147}
148
58ae7468
RW
149int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
150 u64 lblk_num, struct page *src_page,
151 struct page *dest_page, unsigned int len,
152 unsigned int offs, gfp_t gfp_flags)
0b81d077 153{
8094c3ce 154 union fscrypt_iv iv;
d407574e 155 struct skcipher_request *req = NULL;
d0082e1a 156 DECLARE_CRYPTO_WAIT(wait);
0b81d077
JK
157 struct scatterlist dst, src;
158 struct fscrypt_info *ci = inode->i_crypt_info;
d407574e 159 struct crypto_skcipher *tfm = ci->ci_ctfm;
0b81d077
JK
160 int res = 0;
161
1400451f
DG
162 BUG_ON(len == 0);
163
8094c3ce 164 fscrypt_generate_iv(&iv, lblk_num, ci);
b7e7cf7a 165
b32e4482 166 req = skcipher_request_alloc(tfm, gfp_flags);
c90fd775 167 if (!req)
0b81d077 168 return -ENOMEM;
0b81d077 169
d407574e 170 skcipher_request_set_callback(
0b81d077 171 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
d0082e1a 172 crypto_req_done, &wait);
0b81d077 173
0b81d077 174 sg_init_table(&dst, 1);
1400451f 175 sg_set_page(&dst, dest_page, len, offs);
0b81d077 176 sg_init_table(&src, 1);
1400451f 177 sg_set_page(&src, src_page, len, offs);
b7e7cf7a 178 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
0b81d077 179 if (rw == FS_DECRYPT)
d0082e1a 180 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
0b81d077 181 else
d0082e1a 182 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
d407574e 183 skcipher_request_free(req);
0b81d077 184 if (res) {
544d08fd
EB
185 fscrypt_err(inode->i_sb,
186 "%scryption failed for inode %lu, block %llu: %d",
187 (rw == FS_DECRYPT ? "de" : "en"),
188 inode->i_ino, lblk_num, res);
0b81d077
JK
189 return res;
190 }
191 return 0;
192}
193
58ae7468
RW
194struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
195 gfp_t gfp_flags)
0b81d077 196{
b32e4482 197 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
0b81d077
JK
198 if (ctx->w.bounce_page == NULL)
199 return ERR_PTR(-ENOMEM);
6a34e4d2 200 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
201 return ctx->w.bounce_page;
202}
203
204/**
205 * fscypt_encrypt_page() - Encrypts a page
1400451f
DG
206 * @inode: The inode for which the encryption should take place
207 * @page: The page to encrypt. Must be locked for bounce-page
208 * encryption.
209 * @len: Length of data to encrypt in @page and encrypted
210 * data in returned page.
211 * @offs: Offset of data within @page and returned
212 * page holding encrypted data.
213 * @lblk_num: Logical block number. This must be unique for multiple
214 * calls with same inode, except when overwriting
215 * previously written data.
216 * @gfp_flags: The gfp flag for memory allocation
0b81d077 217 *
1400451f
DG
218 * Encrypts @page using the ctx encryption context. Performs encryption
219 * either in-place or into a newly allocated bounce page.
220 * Called on the page write path.
0b81d077 221 *
1400451f
DG
222 * Bounce page allocation is the default.
223 * In this case, the contents of @page are encrypted and stored in an
224 * allocated bounce page. @page has to be locked and the caller must call
0b81d077
JK
225 * fscrypt_restore_control_page() on the returned ciphertext page to
226 * release the bounce buffer and the encryption context.
227 *
bd7b8290 228 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
1400451f
DG
229 * fscrypt_operations. Here, the input-page is returned with its content
230 * encrypted.
231 *
232 * Return: A page with the encrypted content on success. Else, an
0b81d077
JK
233 * error value or NULL.
234 */
0b93e1b9 235struct page *fscrypt_encrypt_page(const struct inode *inode,
1400451f
DG
236 struct page *page,
237 unsigned int len,
238 unsigned int offs,
239 u64 lblk_num, gfp_t gfp_flags)
7821d4dd 240
0b81d077
JK
241{
242 struct fscrypt_ctx *ctx;
1400451f 243 struct page *ciphertext_page = page;
0b81d077
JK
244 int err;
245
1400451f 246 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
0b81d077 247
bd7b8290 248 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
9e532772 249 /* with inplace-encryption we just encrypt the page */
58ae7468
RW
250 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
251 ciphertext_page, len, offs,
252 gfp_flags);
9e532772
DG
253 if (err)
254 return ERR_PTR(err);
255
256 return ciphertext_page;
257 }
258
bd7b8290
DG
259 BUG_ON(!PageLocked(page));
260
b32e4482 261 ctx = fscrypt_get_ctx(inode, gfp_flags);
0b81d077
JK
262 if (IS_ERR(ctx))
263 return (struct page *)ctx;
264
9e532772 265 /* The encryption operation will require a bounce page. */
58ae7468 266 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
9e532772
DG
267 if (IS_ERR(ciphertext_page))
268 goto errout;
0b81d077 269
1400451f 270 ctx->w.control_page = page;
58ae7468
RW
271 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
272 page, ciphertext_page, len, offs,
273 gfp_flags);
0b81d077
JK
274 if (err) {
275 ciphertext_page = ERR_PTR(err);
276 goto errout;
277 }
9e532772
DG
278 SetPagePrivate(ciphertext_page);
279 set_page_private(ciphertext_page, (unsigned long)ctx);
280 lock_page(ciphertext_page);
0b81d077
JK
281 return ciphertext_page;
282
283errout:
284 fscrypt_release_ctx(ctx);
285 return ciphertext_page;
286}
287EXPORT_SYMBOL(fscrypt_encrypt_page);
288
289/**
7821d4dd 290 * fscrypt_decrypt_page() - Decrypts a page in-place
1400451f
DG
291 * @inode: The corresponding inode for the page to decrypt.
292 * @page: The page to decrypt. Must be locked in case
bd7b8290 293 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
1400451f
DG
294 * @len: Number of bytes in @page to be decrypted.
295 * @offs: Start of data in @page.
296 * @lblk_num: Logical block number.
0b81d077
JK
297 *
298 * Decrypts page in-place using the ctx encryption context.
299 *
300 * Called from the read completion callback.
301 *
302 * Return: Zero on success, non-zero otherwise.
303 */
0b93e1b9 304int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
1400451f 305 unsigned int len, unsigned int offs, u64 lblk_num)
0b81d077 306{
bd7b8290
DG
307 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
308 BUG_ON(!PageLocked(page));
309
58ae7468
RW
310 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
311 len, offs, GFP_NOFS);
0b81d077
JK
312}
313EXPORT_SYMBOL(fscrypt_decrypt_page);
314
0b81d077
JK
315/*
316 * Validate dentries for encrypted directories to make sure we aren't
317 * potentially caching stale data after a key has been added or
318 * removed.
319 */
320static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
321{
d7d75352 322 struct dentry *dir;
0b81d077
JK
323 int dir_has_key, cached_with_key;
324
03a8bb0e
JK
325 if (flags & LOOKUP_RCU)
326 return -ECHILD;
327
d7d75352 328 dir = dget_parent(dentry);
e0428a26 329 if (!IS_ENCRYPTED(d_inode(dir))) {
d7d75352 330 dput(dir);
0b81d077 331 return 0;
d7d75352 332 }
0b81d077 333
0b81d077
JK
334 spin_lock(&dentry->d_lock);
335 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
336 spin_unlock(&dentry->d_lock);
1b53cf98 337 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
d7d75352 338 dput(dir);
0b81d077
JK
339
340 /*
341 * If the dentry was cached without the key, and it is a
342 * negative dentry, it might be a valid name. We can't check
343 * if the key has since been made available due to locking
344 * reasons, so we fail the validation so ext4_lookup() can do
345 * this check.
346 *
347 * We also fail the validation if the dentry was created with
348 * the key present, but we no longer have the key, or vice versa.
349 */
350 if ((!cached_with_key && d_is_negative(dentry)) ||
351 (!cached_with_key && dir_has_key) ||
352 (cached_with_key && !dir_has_key))
353 return 0;
354 return 1;
355}
356
357const struct dentry_operations fscrypt_d_ops = {
358 .d_revalidate = fscrypt_d_revalidate,
359};
0b81d077 360
0b81d077
JK
361void fscrypt_restore_control_page(struct page *page)
362{
363 struct fscrypt_ctx *ctx;
364
365 ctx = (struct fscrypt_ctx *)page_private(page);
366 set_page_private(page, (unsigned long)NULL);
367 ClearPagePrivate(page);
368 unlock_page(page);
369 fscrypt_release_ctx(ctx);
370}
371EXPORT_SYMBOL(fscrypt_restore_control_page);
372
373static void fscrypt_destroy(void)
374{
375 struct fscrypt_ctx *pos, *n;
376
377 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
378 kmem_cache_free(fscrypt_ctx_cachep, pos);
379 INIT_LIST_HEAD(&fscrypt_free_ctxs);
380 mempool_destroy(fscrypt_bounce_page_pool);
381 fscrypt_bounce_page_pool = NULL;
382}
383
384/**
385 * fscrypt_initialize() - allocate major buffers for fs encryption.
f32d7ac2 386 * @cop_flags: fscrypt operations flags
0b81d077
JK
387 *
388 * We only call this when we start accessing encrypted files, since it
389 * results in memory getting allocated that wouldn't otherwise be used.
390 *
391 * Return: Zero on success, non-zero otherwise.
392 */
f32d7ac2 393int fscrypt_initialize(unsigned int cop_flags)
0b81d077
JK
394{
395 int i, res = -ENOMEM;
396
a0b3bc85
EB
397 /* No need to allocate a bounce page pool if this FS won't use it. */
398 if (cop_flags & FS_CFLG_OWN_PAGES)
0b81d077
JK
399 return 0;
400
401 mutex_lock(&fscrypt_init_mutex);
402 if (fscrypt_bounce_page_pool)
403 goto already_initialized;
404
405 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
406 struct fscrypt_ctx *ctx;
407
408 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
409 if (!ctx)
410 goto fail;
411 list_add(&ctx->free_list, &fscrypt_free_ctxs);
412 }
413
414 fscrypt_bounce_page_pool =
415 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
416 if (!fscrypt_bounce_page_pool)
417 goto fail;
418
419already_initialized:
420 mutex_unlock(&fscrypt_init_mutex);
421 return 0;
422fail:
423 fscrypt_destroy();
424 mutex_unlock(&fscrypt_init_mutex);
425 return res;
426}
0b81d077 427
544d08fd
EB
428void fscrypt_msg(struct super_block *sb, const char *level,
429 const char *fmt, ...)
430{
431 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
432 DEFAULT_RATELIMIT_BURST);
433 struct va_format vaf;
434 va_list args;
435
436 if (!__ratelimit(&rs))
437 return;
438
439 va_start(args, fmt);
440 vaf.fmt = fmt;
441 vaf.va = &args;
442 if (sb)
443 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
444 else
445 printk("%sfscrypt: %pV\n", level, &vaf);
446 va_end(args);
447}
448
0b81d077
JK
449/**
450 * fscrypt_init() - Set up for fs encryption.
451 */
452static int __init fscrypt_init(void)
453{
36dd26e0
EB
454 /*
455 * Use an unbound workqueue to allow bios to be decrypted in parallel
456 * even when they happen to complete on the same CPU. This sacrifices
457 * locality, but it's worthwhile since decryption is CPU-intensive.
458 *
459 * Also use a high-priority workqueue to prioritize decryption work,
460 * which blocks reads from completing, over regular application tasks.
461 */
0b81d077 462 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
36dd26e0
EB
463 WQ_UNBOUND | WQ_HIGHPRI,
464 num_online_cpus());
0b81d077
JK
465 if (!fscrypt_read_workqueue)
466 goto fail;
467
468 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
469 if (!fscrypt_ctx_cachep)
470 goto fail_free_queue;
471
472 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
473 if (!fscrypt_info_cachep)
474 goto fail_free_ctx;
475
476 return 0;
477
478fail_free_ctx:
479 kmem_cache_destroy(fscrypt_ctx_cachep);
480fail_free_queue:
481 destroy_workqueue(fscrypt_read_workqueue);
482fail:
483 return -ENOMEM;
484}
485module_init(fscrypt_init)
486
487/**
488 * fscrypt_exit() - Shutdown the fs encryption system
489 */
490static void __exit fscrypt_exit(void)
491{
492 fscrypt_destroy();
493
494 if (fscrypt_read_workqueue)
495 destroy_workqueue(fscrypt_read_workqueue);
496 kmem_cache_destroy(fscrypt_ctx_cachep);
497 kmem_cache_destroy(fscrypt_info_cachep);
b7e7cf7a
DW
498
499 fscrypt_essiv_cleanup();
0b81d077
JK
500}
501module_exit(fscrypt_exit);
502
503MODULE_LICENSE("GPL");