cifs: silence compiler warnings showing up with gcc-8.0.0
[linux-2.6-block.git] / fs / cifs / smbdirect.c
CommitLineData
03bee01d
LL
1/*
2 * Copyright (C) 2017, Microsoft Corporation.
3 *
4 * Author(s): Long Li <longli@microsoft.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 * the GNU General Public License for more details.
15 */
f198186a 16#include <linux/module.h>
f64b78fd 17#include <linux/highmem.h>
03bee01d 18#include "smbdirect.h"
f198186a
LL
19#include "cifs_debug.h"
20
21static struct smbd_response *get_empty_queue_buffer(
22 struct smbd_connection *info);
23static struct smbd_response *get_receive_buffer(
24 struct smbd_connection *info);
25static void put_receive_buffer(
26 struct smbd_connection *info,
27 struct smbd_response *response);
28static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
29static void destroy_receive_buffers(struct smbd_connection *info);
30
31static void put_empty_packet(
32 struct smbd_connection *info, struct smbd_response *response);
33static void enqueue_reassembly(
34 struct smbd_connection *info,
35 struct smbd_response *response, int data_length);
36static struct smbd_response *_get_first_reassembly(
37 struct smbd_connection *info);
38
39static int smbd_post_recv(
40 struct smbd_connection *info,
41 struct smbd_response *response);
42
43static int smbd_post_send_empty(struct smbd_connection *info);
d649e1bb
LL
44static int smbd_post_send_data(
45 struct smbd_connection *info,
46 struct kvec *iov, int n_vec, int remaining_data_length);
47static int smbd_post_send_page(struct smbd_connection *info,
48 struct page *page, unsigned long offset,
49 size_t size, int remaining_data_length);
03bee01d 50
c7398583
LL
51static void destroy_mr_list(struct smbd_connection *info);
52static int allocate_mr_list(struct smbd_connection *info);
53
03bee01d
LL
54/* SMBD version number */
55#define SMBD_V1 0x0100
56
57/* Port numbers for SMBD transport */
58#define SMB_PORT 445
59#define SMBD_PORT 5445
60
61/* Address lookup and resolve timeout in ms */
62#define RDMA_RESOLVE_TIMEOUT 5000
63
64/* SMBD negotiation timeout in seconds */
65#define SMBD_NEGOTIATE_TIMEOUT 120
66
67/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
68#define SMBD_MIN_RECEIVE_SIZE 128
69#define SMBD_MIN_FRAGMENTED_SIZE 131072
70
71/*
72 * Default maximum number of RDMA read/write outstanding on this connection
73 * This value is possibly decreased during QP creation on hardware limit
74 */
75#define SMBD_CM_RESPONDER_RESOURCES 32
76
77/* Maximum number of retries on data transfer operations */
78#define SMBD_CM_RETRY 6
79/* No need to retry on Receiver Not Ready since SMBD manages credits */
80#define SMBD_CM_RNR_RETRY 0
81
82/*
83 * User configurable initial values per SMBD transport connection
84 * as defined in [MS-SMBD] 3.1.1.1
85 * Those may change after a SMBD negotiation
86 */
87/* The local peer's maximum number of credits to grant to the peer */
88int smbd_receive_credit_max = 255;
89
90/* The remote peer's credit request of local peer */
91int smbd_send_credit_target = 255;
92
93/* The maximum single message size can be sent to remote peer */
94int smbd_max_send_size = 1364;
95
96/* The maximum fragmented upper-layer payload receive size supported */
97int smbd_max_fragmented_recv_size = 1024 * 1024;
98
99/* The maximum single-message size which can be received */
100int smbd_max_receive_size = 8192;
101
102/* The timeout to initiate send of a keepalive message on idle */
103int smbd_keep_alive_interval = 120;
104
105/*
106 * User configurable initial values for RDMA transport
107 * The actual values used may be lower and are limited to hardware capabilities
108 */
109/* Default maximum number of SGEs in a RDMA write/read */
110int smbd_max_frmr_depth = 2048;
111
112/* If payload is less than this byte, use RDMA send/recv not read/write */
113int rdma_readwrite_threshold = 4096;
f198186a
LL
114
115/* Transport logging functions
116 * Logging are defined as classes. They can be OR'ed to define the actual
117 * logging level via module parameter smbd_logging_class
118 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
119 * log_rdma_event()
120 */
121#define LOG_OUTGOING 0x1
122#define LOG_INCOMING 0x2
123#define LOG_READ 0x4
124#define LOG_WRITE 0x8
125#define LOG_RDMA_SEND 0x10
126#define LOG_RDMA_RECV 0x20
127#define LOG_KEEP_ALIVE 0x40
128#define LOG_RDMA_EVENT 0x80
129#define LOG_RDMA_MR 0x100
130static unsigned int smbd_logging_class;
131module_param(smbd_logging_class, uint, 0644);
132MODULE_PARM_DESC(smbd_logging_class,
133 "Logging class for SMBD transport 0x0 to 0x100");
134
135#define ERR 0x0
136#define INFO 0x1
137static unsigned int smbd_logging_level = ERR;
138module_param(smbd_logging_level, uint, 0644);
139MODULE_PARM_DESC(smbd_logging_level,
140 "Logging level for SMBD transport, 0 (default): error, 1: info");
141
142#define log_rdma(level, class, fmt, args...) \
143do { \
144 if (level <= smbd_logging_level || class & smbd_logging_class) \
145 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
146} while (0)
147
148#define log_outgoing(level, fmt, args...) \
149 log_rdma(level, LOG_OUTGOING, fmt, ##args)
150#define log_incoming(level, fmt, args...) \
151 log_rdma(level, LOG_INCOMING, fmt, ##args)
152#define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
153#define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
154#define log_rdma_send(level, fmt, args...) \
155 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
156#define log_rdma_recv(level, fmt, args...) \
157 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
158#define log_keep_alive(level, fmt, args...) \
159 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
160#define log_rdma_event(level, fmt, args...) \
161 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
162#define log_rdma_mr(level, fmt, args...) \
163 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
164
165/*
166 * Destroy the transport and related RDMA and memory resources
167 * Need to go through all the pending counters and make sure on one is using
168 * the transport while it is destroyed
169 */
170static void smbd_destroy_rdma_work(struct work_struct *work)
171{
172 struct smbd_response *response;
173 struct smbd_connection *info =
174 container_of(work, struct smbd_connection, destroy_work);
175 unsigned long flags;
176
177 log_rdma_event(INFO, "destroying qp\n");
178 ib_drain_qp(info->id->qp);
179 rdma_destroy_qp(info->id);
180
181 /* Unblock all I/O waiting on the send queue */
182 wake_up_interruptible_all(&info->wait_send_queue);
183
184 log_rdma_event(INFO, "cancelling idle timer\n");
185 cancel_delayed_work_sync(&info->idle_timer_work);
186 log_rdma_event(INFO, "cancelling send immediate work\n");
187 cancel_delayed_work_sync(&info->send_immediate_work);
188
d649e1bb
LL
189 log_rdma_event(INFO, "wait for all send to finish\n");
190 wait_event(info->wait_smbd_send_pending,
191 info->smbd_send_pending == 0);
192
f198186a
LL
193 log_rdma_event(INFO, "wait for all recv to finish\n");
194 wake_up_interruptible(&info->wait_reassembly_queue);
f64b78fd
LL
195 wait_event(info->wait_smbd_recv_pending,
196 info->smbd_recv_pending == 0);
f198186a
LL
197
198 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
199 wait_event(info->wait_send_pending,
200 atomic_read(&info->send_pending) == 0);
201 wait_event(info->wait_send_payload_pending,
202 atomic_read(&info->send_payload_pending) == 0);
203
c7398583
LL
204 log_rdma_event(INFO, "freeing mr list\n");
205 wake_up_interruptible_all(&info->wait_mr);
206 wait_event(info->wait_for_mr_cleanup,
207 atomic_read(&info->mr_used_count) == 0);
208 destroy_mr_list(info);
209
f198186a
LL
210 /* It's not posssible for upper layer to get to reassembly */
211 log_rdma_event(INFO, "drain the reassembly queue\n");
212 do {
213 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
214 response = _get_first_reassembly(info);
215 if (response) {
216 list_del(&response->list);
217 spin_unlock_irqrestore(
218 &info->reassembly_queue_lock, flags);
219 put_receive_buffer(info, response);
220 }
221 } while (response);
222 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
223 info->reassembly_data_length = 0;
224
225 log_rdma_event(INFO, "free receive buffers\n");
226 wait_event(info->wait_receive_queues,
227 info->count_receive_queue + info->count_empty_packet_queue
228 == info->receive_credit_max);
229 destroy_receive_buffers(info);
230
231 ib_free_cq(info->send_cq);
232 ib_free_cq(info->recv_cq);
233 ib_dealloc_pd(info->pd);
234 rdma_destroy_id(info->id);
235
236 /* free mempools */
237 mempool_destroy(info->request_mempool);
238 kmem_cache_destroy(info->request_cache);
239
240 mempool_destroy(info->response_mempool);
241 kmem_cache_destroy(info->response_cache);
242
243 info->transport_status = SMBD_DESTROYED;
244 wake_up_all(&info->wait_destroy);
245}
246
247static int smbd_process_disconnected(struct smbd_connection *info)
248{
249 schedule_work(&info->destroy_work);
250 return 0;
251}
252
253static void smbd_disconnect_rdma_work(struct work_struct *work)
254{
255 struct smbd_connection *info =
256 container_of(work, struct smbd_connection, disconnect_work);
257
258 if (info->transport_status == SMBD_CONNECTED) {
259 info->transport_status = SMBD_DISCONNECTING;
260 rdma_disconnect(info->id);
261 }
262}
263
264static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
265{
266 queue_work(info->workqueue, &info->disconnect_work);
267}
268
269/* Upcall from RDMA CM */
270static int smbd_conn_upcall(
271 struct rdma_cm_id *id, struct rdma_cm_event *event)
272{
273 struct smbd_connection *info = id->context;
274
275 log_rdma_event(INFO, "event=%d status=%d\n",
276 event->event, event->status);
277
278 switch (event->event) {
279 case RDMA_CM_EVENT_ADDR_RESOLVED:
280 case RDMA_CM_EVENT_ROUTE_RESOLVED:
281 info->ri_rc = 0;
282 complete(&info->ri_done);
283 break;
284
285 case RDMA_CM_EVENT_ADDR_ERROR:
286 info->ri_rc = -EHOSTUNREACH;
287 complete(&info->ri_done);
288 break;
289
290 case RDMA_CM_EVENT_ROUTE_ERROR:
291 info->ri_rc = -ENETUNREACH;
292 complete(&info->ri_done);
293 break;
294
295 case RDMA_CM_EVENT_ESTABLISHED:
296 log_rdma_event(INFO, "connected event=%d\n", event->event);
297 info->transport_status = SMBD_CONNECTED;
298 wake_up_interruptible(&info->conn_wait);
299 break;
300
301 case RDMA_CM_EVENT_CONNECT_ERROR:
302 case RDMA_CM_EVENT_UNREACHABLE:
303 case RDMA_CM_EVENT_REJECTED:
304 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
305 info->transport_status = SMBD_DISCONNECTED;
306 wake_up_interruptible(&info->conn_wait);
307 break;
308
309 case RDMA_CM_EVENT_DEVICE_REMOVAL:
310 case RDMA_CM_EVENT_DISCONNECTED:
311 /* This happenes when we fail the negotiation */
312 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
313 info->transport_status = SMBD_DISCONNECTED;
314 wake_up(&info->conn_wait);
315 break;
316 }
317
318 info->transport_status = SMBD_DISCONNECTED;
319 smbd_process_disconnected(info);
320 break;
321
322 default:
323 break;
324 }
325
326 return 0;
327}
328
329/* Upcall from RDMA QP */
330static void
331smbd_qp_async_error_upcall(struct ib_event *event, void *context)
332{
333 struct smbd_connection *info = context;
334
335 log_rdma_event(ERR, "%s on device %s info %p\n",
336 ib_event_msg(event->event), event->device->name, info);
337
338 switch (event->event) {
339 case IB_EVENT_CQ_ERR:
340 case IB_EVENT_QP_FATAL:
341 smbd_disconnect_rdma_connection(info);
342
343 default:
344 break;
345 }
346}
347
348static inline void *smbd_request_payload(struct smbd_request *request)
349{
350 return (void *)request->packet;
351}
352
353static inline void *smbd_response_payload(struct smbd_response *response)
354{
355 return (void *)response->packet;
356}
357
358/* Called when a RDMA send is done */
359static void send_done(struct ib_cq *cq, struct ib_wc *wc)
360{
361 int i;
362 struct smbd_request *request =
363 container_of(wc->wr_cqe, struct smbd_request, cqe);
364
365 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
366 request, wc->status);
367
368 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
369 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
370 wc->status, wc->opcode);
371 smbd_disconnect_rdma_connection(request->info);
372 }
373
374 for (i = 0; i < request->num_sge; i++)
375 ib_dma_unmap_single(request->info->id->device,
376 request->sge[i].addr,
377 request->sge[i].length,
378 DMA_TO_DEVICE);
379
380 if (request->has_payload) {
381 if (atomic_dec_and_test(&request->info->send_payload_pending))
382 wake_up(&request->info->wait_send_payload_pending);
383 } else {
384 if (atomic_dec_and_test(&request->info->send_pending))
385 wake_up(&request->info->wait_send_pending);
386 }
387
388 mempool_free(request, request->info->request_mempool);
389}
390
391static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
392{
393 log_rdma_event(INFO, "resp message min_version %u max_version %u "
394 "negotiated_version %u credits_requested %u "
395 "credits_granted %u status %u max_readwrite_size %u "
396 "preferred_send_size %u max_receive_size %u "
397 "max_fragmented_size %u\n",
398 resp->min_version, resp->max_version, resp->negotiated_version,
399 resp->credits_requested, resp->credits_granted, resp->status,
400 resp->max_readwrite_size, resp->preferred_send_size,
401 resp->max_receive_size, resp->max_fragmented_size);
402}
403
404/*
405 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
406 * response, packet_length: the negotiation response message
407 * return value: true if negotiation is a success, false if failed
408 */
409static bool process_negotiation_response(
410 struct smbd_response *response, int packet_length)
411{
412 struct smbd_connection *info = response->info;
413 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
414
415 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
416 log_rdma_event(ERR,
417 "error: packet_length=%d\n", packet_length);
418 return false;
419 }
420
421 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
422 log_rdma_event(ERR, "error: negotiated_version=%x\n",
423 le16_to_cpu(packet->negotiated_version));
424 return false;
425 }
426 info->protocol = le16_to_cpu(packet->negotiated_version);
427
428 if (packet->credits_requested == 0) {
429 log_rdma_event(ERR, "error: credits_requested==0\n");
430 return false;
431 }
432 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
433
434 if (packet->credits_granted == 0) {
435 log_rdma_event(ERR, "error: credits_granted==0\n");
436 return false;
437 }
438 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
439
440 atomic_set(&info->receive_credits, 0);
441
442 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
443 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
444 le32_to_cpu(packet->preferred_send_size));
445 return false;
446 }
447 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
448
449 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
450 log_rdma_event(ERR, "error: max_receive_size=%d\n",
451 le32_to_cpu(packet->max_receive_size));
452 return false;
453 }
454 info->max_send_size = min_t(int, info->max_send_size,
455 le32_to_cpu(packet->max_receive_size));
456
457 if (le32_to_cpu(packet->max_fragmented_size) <
458 SMBD_MIN_FRAGMENTED_SIZE) {
459 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
460 le32_to_cpu(packet->max_fragmented_size));
461 return false;
462 }
463 info->max_fragmented_send_size =
464 le32_to_cpu(packet->max_fragmented_size);
c7398583
LL
465 info->rdma_readwrite_threshold =
466 rdma_readwrite_threshold > info->max_fragmented_send_size ?
467 info->max_fragmented_send_size :
468 rdma_readwrite_threshold;
469
470
471 info->max_readwrite_size = min_t(u32,
472 le32_to_cpu(packet->max_readwrite_size),
473 info->max_frmr_depth * PAGE_SIZE);
474 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
f198186a
LL
475
476 return true;
477}
478
479/*
480 * Check and schedule to send an immediate packet
481 * This is used to extend credtis to remote peer to keep the transport busy
482 */
483static void check_and_send_immediate(struct smbd_connection *info)
484{
485 if (info->transport_status != SMBD_CONNECTED)
486 return;
487
488 info->send_immediate = true;
489
490 /*
491 * Promptly send a packet if our peer is running low on receive
492 * credits
493 */
494 if (atomic_read(&info->receive_credits) <
495 info->receive_credit_target - 1)
496 queue_delayed_work(
497 info->workqueue, &info->send_immediate_work, 0);
498}
499
500static void smbd_post_send_credits(struct work_struct *work)
501{
502 int ret = 0;
503 int use_receive_queue = 1;
504 int rc;
505 struct smbd_response *response;
506 struct smbd_connection *info =
507 container_of(work, struct smbd_connection,
508 post_send_credits_work);
509
510 if (info->transport_status != SMBD_CONNECTED) {
511 wake_up(&info->wait_receive_queues);
512 return;
513 }
514
515 if (info->receive_credit_target >
516 atomic_read(&info->receive_credits)) {
517 while (true) {
518 if (use_receive_queue)
519 response = get_receive_buffer(info);
520 else
521 response = get_empty_queue_buffer(info);
522 if (!response) {
523 /* now switch to emtpy packet queue */
524 if (use_receive_queue) {
525 use_receive_queue = 0;
526 continue;
527 } else
528 break;
529 }
530
531 response->type = SMBD_TRANSFER_DATA;
532 response->first_segment = false;
533 rc = smbd_post_recv(info, response);
534 if (rc) {
535 log_rdma_recv(ERR,
536 "post_recv failed rc=%d\n", rc);
537 put_receive_buffer(info, response);
538 break;
539 }
540
541 ret++;
542 }
543 }
544
545 spin_lock(&info->lock_new_credits_offered);
546 info->new_credits_offered += ret;
547 spin_unlock(&info->lock_new_credits_offered);
548
549 atomic_add(ret, &info->receive_credits);
550
551 /* Check if we can post new receive and grant credits to peer */
552 check_and_send_immediate(info);
553}
554
555static void smbd_recv_done_work(struct work_struct *work)
556{
557 struct smbd_connection *info =
558 container_of(work, struct smbd_connection, recv_done_work);
559
560 /*
561 * We may have new send credits granted from remote peer
562 * If any sender is blcoked on lack of credets, unblock it
563 */
564 if (atomic_read(&info->send_credits))
565 wake_up_interruptible(&info->wait_send_queue);
566
567 /*
568 * Check if we need to send something to remote peer to
569 * grant more credits or respond to KEEP_ALIVE packet
570 */
571 check_and_send_immediate(info);
572}
573
574/* Called from softirq, when recv is done */
575static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
576{
577 struct smbd_data_transfer *data_transfer;
578 struct smbd_response *response =
579 container_of(wc->wr_cqe, struct smbd_response, cqe);
580 struct smbd_connection *info = response->info;
581 int data_length = 0;
582
583 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
584 "byte_len=%d pkey_index=%x\n",
585 response, response->type, wc->status, wc->opcode,
586 wc->byte_len, wc->pkey_index);
587
588 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
589 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
590 wc->status, wc->opcode);
591 smbd_disconnect_rdma_connection(info);
592 goto error;
593 }
594
595 ib_dma_sync_single_for_cpu(
596 wc->qp->device,
597 response->sge.addr,
598 response->sge.length,
599 DMA_FROM_DEVICE);
600
601 switch (response->type) {
602 /* SMBD negotiation response */
603 case SMBD_NEGOTIATE_RESP:
604 dump_smbd_negotiate_resp(smbd_response_payload(response));
605 info->full_packet_received = true;
606 info->negotiate_done =
607 process_negotiation_response(response, wc->byte_len);
608 complete(&info->negotiate_completion);
609 break;
610
611 /* SMBD data transfer packet */
612 case SMBD_TRANSFER_DATA:
613 data_transfer = smbd_response_payload(response);
614 data_length = le32_to_cpu(data_transfer->data_length);
615
616 /*
617 * If this is a packet with data playload place the data in
618 * reassembly queue and wake up the reading thread
619 */
620 if (data_length) {
621 if (info->full_packet_received)
622 response->first_segment = true;
623
624 if (le32_to_cpu(data_transfer->remaining_data_length))
625 info->full_packet_received = false;
626 else
627 info->full_packet_received = true;
628
629 enqueue_reassembly(
630 info,
631 response,
632 data_length);
633 } else
634 put_empty_packet(info, response);
635
636 if (data_length)
637 wake_up_interruptible(&info->wait_reassembly_queue);
638
639 atomic_dec(&info->receive_credits);
640 info->receive_credit_target =
641 le16_to_cpu(data_transfer->credits_requested);
642 atomic_add(le16_to_cpu(data_transfer->credits_granted),
643 &info->send_credits);
644
645 log_incoming(INFO, "data flags %d data_offset %d "
646 "data_length %d remaining_data_length %d\n",
647 le16_to_cpu(data_transfer->flags),
648 le32_to_cpu(data_transfer->data_offset),
649 le32_to_cpu(data_transfer->data_length),
650 le32_to_cpu(data_transfer->remaining_data_length));
651
652 /* Send a KEEP_ALIVE response right away if requested */
653 info->keep_alive_requested = KEEP_ALIVE_NONE;
654 if (le16_to_cpu(data_transfer->flags) &
655 SMB_DIRECT_RESPONSE_REQUESTED) {
656 info->keep_alive_requested = KEEP_ALIVE_PENDING;
657 }
658
659 queue_work(info->workqueue, &info->recv_done_work);
660 return;
661
662 default:
663 log_rdma_recv(ERR,
664 "unexpected response type=%d\n", response->type);
665 }
666
667error:
668 put_receive_buffer(info, response);
669}
670
671static struct rdma_cm_id *smbd_create_id(
672 struct smbd_connection *info,
673 struct sockaddr *dstaddr, int port)
674{
675 struct rdma_cm_id *id;
676 int rc;
677 __be16 *sport;
678
679 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
680 RDMA_PS_TCP, IB_QPT_RC);
681 if (IS_ERR(id)) {
682 rc = PTR_ERR(id);
683 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
684 return id;
685 }
686
687 if (dstaddr->sa_family == AF_INET6)
688 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
689 else
690 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
691
692 *sport = htons(port);
693
694 init_completion(&info->ri_done);
695 info->ri_rc = -ETIMEDOUT;
696
697 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
698 RDMA_RESOLVE_TIMEOUT);
699 if (rc) {
700 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
701 goto out;
702 }
703 wait_for_completion_interruptible_timeout(
704 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
705 rc = info->ri_rc;
706 if (rc) {
707 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
708 goto out;
709 }
710
711 info->ri_rc = -ETIMEDOUT;
712 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
713 if (rc) {
714 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
715 goto out;
716 }
717 wait_for_completion_interruptible_timeout(
718 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
719 rc = info->ri_rc;
720 if (rc) {
721 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
722 goto out;
723 }
724
725 return id;
726
727out:
728 rdma_destroy_id(id);
729 return ERR_PTR(rc);
730}
731
732/*
733 * Test if FRWR (Fast Registration Work Requests) is supported on the device
734 * This implementation requries FRWR on RDMA read/write
735 * return value: true if it is supported
736 */
737static bool frwr_is_supported(struct ib_device_attr *attrs)
738{
739 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
740 return false;
741 if (attrs->max_fast_reg_page_list_len == 0)
742 return false;
743 return true;
744}
745
746static int smbd_ia_open(
747 struct smbd_connection *info,
748 struct sockaddr *dstaddr, int port)
749{
750 int rc;
751
752 info->id = smbd_create_id(info, dstaddr, port);
753 if (IS_ERR(info->id)) {
754 rc = PTR_ERR(info->id);
755 goto out1;
756 }
757
758 if (!frwr_is_supported(&info->id->device->attrs)) {
759 log_rdma_event(ERR,
760 "Fast Registration Work Requests "
761 "(FRWR) is not supported\n");
762 log_rdma_event(ERR,
763 "Device capability flags = %llx "
764 "max_fast_reg_page_list_len = %u\n",
765 info->id->device->attrs.device_cap_flags,
766 info->id->device->attrs.max_fast_reg_page_list_len);
767 rc = -EPROTONOSUPPORT;
768 goto out2;
769 }
c7398583
LL
770 info->max_frmr_depth = min_t(int,
771 smbd_max_frmr_depth,
772 info->id->device->attrs.max_fast_reg_page_list_len);
773 info->mr_type = IB_MR_TYPE_MEM_REG;
774 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
775 info->mr_type = IB_MR_TYPE_SG_GAPS;
f198186a
LL
776
777 info->pd = ib_alloc_pd(info->id->device, 0);
778 if (IS_ERR(info->pd)) {
779 rc = PTR_ERR(info->pd);
780 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
781 goto out2;
782 }
783
784 return 0;
785
786out2:
787 rdma_destroy_id(info->id);
788 info->id = NULL;
789
790out1:
791 return rc;
792}
793
794/*
795 * Send a negotiation request message to the peer
796 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
797 * After negotiation, the transport is connected and ready for
798 * carrying upper layer SMB payload
799 */
800static int smbd_post_send_negotiate_req(struct smbd_connection *info)
801{
802 struct ib_send_wr send_wr, *send_wr_fail;
803 int rc = -ENOMEM;
804 struct smbd_request *request;
805 struct smbd_negotiate_req *packet;
806
807 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
808 if (!request)
809 return rc;
810
811 request->info = info;
812
813 packet = smbd_request_payload(request);
814 packet->min_version = cpu_to_le16(SMBD_V1);
815 packet->max_version = cpu_to_le16(SMBD_V1);
816 packet->reserved = 0;
817 packet->credits_requested = cpu_to_le16(info->send_credit_target);
818 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
819 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
820 packet->max_fragmented_size =
821 cpu_to_le32(info->max_fragmented_recv_size);
822
823 request->num_sge = 1;
824 request->sge[0].addr = ib_dma_map_single(
825 info->id->device, (void *)packet,
826 sizeof(*packet), DMA_TO_DEVICE);
827 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
828 rc = -EIO;
829 goto dma_mapping_failed;
830 }
831
832 request->sge[0].length = sizeof(*packet);
833 request->sge[0].lkey = info->pd->local_dma_lkey;
834
835 ib_dma_sync_single_for_device(
836 info->id->device, request->sge[0].addr,
837 request->sge[0].length, DMA_TO_DEVICE);
838
839 request->cqe.done = send_done;
840
841 send_wr.next = NULL;
842 send_wr.wr_cqe = &request->cqe;
843 send_wr.sg_list = request->sge;
844 send_wr.num_sge = request->num_sge;
845 send_wr.opcode = IB_WR_SEND;
846 send_wr.send_flags = IB_SEND_SIGNALED;
847
848 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
849 request->sge[0].addr,
850 request->sge[0].length, request->sge[0].lkey);
851
852 request->has_payload = false;
853 atomic_inc(&info->send_pending);
854 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
855 if (!rc)
856 return 0;
857
858 /* if we reach here, post send failed */
859 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
860 atomic_dec(&info->send_pending);
861 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
862 request->sge[0].length, DMA_TO_DEVICE);
863
864dma_mapping_failed:
865 mempool_free(request, info->request_mempool);
866 return rc;
867}
868
869/*
870 * Extend the credits to remote peer
871 * This implements [MS-SMBD] 3.1.5.9
872 * The idea is that we should extend credits to remote peer as quickly as
873 * it's allowed, to maintain data flow. We allocate as much receive
874 * buffer as possible, and extend the receive credits to remote peer
875 * return value: the new credtis being granted.
876 */
877static int manage_credits_prior_sending(struct smbd_connection *info)
878{
879 int new_credits;
880
881 spin_lock(&info->lock_new_credits_offered);
882 new_credits = info->new_credits_offered;
883 info->new_credits_offered = 0;
884 spin_unlock(&info->lock_new_credits_offered);
885
886 return new_credits;
887}
888
889/*
890 * Check if we need to send a KEEP_ALIVE message
891 * The idle connection timer triggers a KEEP_ALIVE message when expires
892 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
893 * back a response.
894 * return value:
895 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
896 * 0: otherwise
897 */
898static int manage_keep_alive_before_sending(struct smbd_connection *info)
899{
900 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
901 info->keep_alive_requested = KEEP_ALIVE_SENT;
902 return 1;
903 }
904 return 0;
905}
906
907/*
908 * Build and prepare the SMBD packet header
909 * This function waits for avaialbe send credits and build a SMBD packet
910 * header. The caller then optional append payload to the packet after
911 * the header
912 * intput values
913 * size: the size of the payload
914 * remaining_data_length: remaining data to send if this is part of a
915 * fragmented packet
916 * output values
917 * request_out: the request allocated from this function
918 * return values: 0 on success, otherwise actual error code returned
919 */
920static int smbd_create_header(struct smbd_connection *info,
921 int size, int remaining_data_length,
922 struct smbd_request **request_out)
923{
924 struct smbd_request *request;
925 struct smbd_data_transfer *packet;
926 int header_length;
927 int rc;
928
929 /* Wait for send credits. A SMBD packet needs one credit */
930 rc = wait_event_interruptible(info->wait_send_queue,
931 atomic_read(&info->send_credits) > 0 ||
932 info->transport_status != SMBD_CONNECTED);
933 if (rc)
934 return rc;
935
936 if (info->transport_status != SMBD_CONNECTED) {
937 log_outgoing(ERR, "disconnected not sending\n");
938 return -ENOENT;
939 }
940 atomic_dec(&info->send_credits);
941
942 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
943 if (!request) {
944 rc = -ENOMEM;
945 goto err;
946 }
947
948 request->info = info;
949
950 /* Fill in the packet header */
951 packet = smbd_request_payload(request);
952 packet->credits_requested = cpu_to_le16(info->send_credit_target);
953 packet->credits_granted =
954 cpu_to_le16(manage_credits_prior_sending(info));
955 info->send_immediate = false;
956
957 packet->flags = 0;
958 if (manage_keep_alive_before_sending(info))
959 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
960
961 packet->reserved = 0;
962 if (!size)
963 packet->data_offset = 0;
964 else
965 packet->data_offset = cpu_to_le32(24);
966 packet->data_length = cpu_to_le32(size);
967 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
968 packet->padding = 0;
969
970 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
971 "data_offset=%d data_length=%d remaining_data_length=%d\n",
972 le16_to_cpu(packet->credits_requested),
973 le16_to_cpu(packet->credits_granted),
974 le32_to_cpu(packet->data_offset),
975 le32_to_cpu(packet->data_length),
976 le32_to_cpu(packet->remaining_data_length));
977
978 /* Map the packet to DMA */
979 header_length = sizeof(struct smbd_data_transfer);
980 /* If this is a packet without payload, don't send padding */
981 if (!size)
982 header_length = offsetof(struct smbd_data_transfer, padding);
983
984 request->num_sge = 1;
985 request->sge[0].addr = ib_dma_map_single(info->id->device,
986 (void *)packet,
987 header_length,
988 DMA_BIDIRECTIONAL);
989 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
990 mempool_free(request, info->request_mempool);
991 rc = -EIO;
992 goto err;
993 }
994
995 request->sge[0].length = header_length;
996 request->sge[0].lkey = info->pd->local_dma_lkey;
997
998 *request_out = request;
999 return 0;
1000
1001err:
1002 atomic_inc(&info->send_credits);
1003 return rc;
1004}
1005
1006static void smbd_destroy_header(struct smbd_connection *info,
1007 struct smbd_request *request)
1008{
1009
1010 ib_dma_unmap_single(info->id->device,
1011 request->sge[0].addr,
1012 request->sge[0].length,
1013 DMA_TO_DEVICE);
1014 mempool_free(request, info->request_mempool);
1015 atomic_inc(&info->send_credits);
1016}
1017
1018/* Post the send request */
1019static int smbd_post_send(struct smbd_connection *info,
1020 struct smbd_request *request, bool has_payload)
1021{
1022 struct ib_send_wr send_wr, *send_wr_fail;
1023 int rc, i;
1024
1025 for (i = 0; i < request->num_sge; i++) {
1026 log_rdma_send(INFO,
1027 "rdma_request sge[%d] addr=%llu legnth=%u\n",
1028 i, request->sge[0].addr, request->sge[0].length);
1029 ib_dma_sync_single_for_device(
1030 info->id->device,
1031 request->sge[i].addr,
1032 request->sge[i].length,
1033 DMA_TO_DEVICE);
1034 }
1035
1036 request->cqe.done = send_done;
1037
1038 send_wr.next = NULL;
1039 send_wr.wr_cqe = &request->cqe;
1040 send_wr.sg_list = request->sge;
1041 send_wr.num_sge = request->num_sge;
1042 send_wr.opcode = IB_WR_SEND;
1043 send_wr.send_flags = IB_SEND_SIGNALED;
1044
1045 if (has_payload) {
1046 request->has_payload = true;
1047 atomic_inc(&info->send_payload_pending);
1048 } else {
1049 request->has_payload = false;
1050 atomic_inc(&info->send_pending);
1051 }
1052
1053 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
1054 if (rc) {
1055 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1056 if (has_payload) {
1057 if (atomic_dec_and_test(&info->send_payload_pending))
1058 wake_up(&info->wait_send_payload_pending);
1059 } else {
1060 if (atomic_dec_and_test(&info->send_pending))
1061 wake_up(&info->wait_send_pending);
1062 }
1063 } else
1064 /* Reset timer for idle connection after packet is sent */
1065 mod_delayed_work(info->workqueue, &info->idle_timer_work,
1066 info->keep_alive_interval*HZ);
1067
1068 return rc;
1069}
1070
1071static int smbd_post_send_sgl(struct smbd_connection *info,
1072 struct scatterlist *sgl, int data_length, int remaining_data_length)
1073{
1074 int num_sgs;
1075 int i, rc;
1076 struct smbd_request *request;
1077 struct scatterlist *sg;
1078
1079 rc = smbd_create_header(
1080 info, data_length, remaining_data_length, &request);
1081 if (rc)
1082 return rc;
1083
1084 num_sgs = sgl ? sg_nents(sgl) : 0;
1085 for_each_sg(sgl, sg, num_sgs, i) {
1086 request->sge[i+1].addr =
1087 ib_dma_map_page(info->id->device, sg_page(sg),
1088 sg->offset, sg->length, DMA_BIDIRECTIONAL);
1089 if (ib_dma_mapping_error(
1090 info->id->device, request->sge[i+1].addr)) {
1091 rc = -EIO;
1092 request->sge[i+1].addr = 0;
1093 goto dma_mapping_failure;
1094 }
1095 request->sge[i+1].length = sg->length;
1096 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1097 request->num_sge++;
1098 }
1099
1100 rc = smbd_post_send(info, request, data_length);
1101 if (!rc)
1102 return 0;
1103
1104dma_mapping_failure:
1105 for (i = 1; i < request->num_sge; i++)
1106 if (request->sge[i].addr)
1107 ib_dma_unmap_single(info->id->device,
1108 request->sge[i].addr,
1109 request->sge[i].length,
1110 DMA_TO_DEVICE);
1111 smbd_destroy_header(info, request);
1112 return rc;
1113}
1114
d649e1bb
LL
1115/*
1116 * Send a page
1117 * page: the page to send
1118 * offset: offset in the page to send
1119 * size: length in the page to send
1120 * remaining_data_length: remaining data to send in this payload
1121 */
1122static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1123 unsigned long offset, size_t size, int remaining_data_length)
1124{
1125 struct scatterlist sgl;
1126
1127 sg_init_table(&sgl, 1);
1128 sg_set_page(&sgl, page, size, offset);
1129
1130 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1131}
1132
f198186a
LL
1133/*
1134 * Send an empty message
1135 * Empty message is used to extend credits to peer to for keep live
1136 * while there is no upper layer payload to send at the time
1137 */
1138static int smbd_post_send_empty(struct smbd_connection *info)
1139{
1140 info->count_send_empty++;
1141 return smbd_post_send_sgl(info, NULL, 0, 0);
1142}
1143
d649e1bb
LL
1144/*
1145 * Send a data buffer
1146 * iov: the iov array describing the data buffers
1147 * n_vec: number of iov array
1148 * remaining_data_length: remaining data to send following this packet
1149 * in segmented SMBD packet
1150 */
1151static int smbd_post_send_data(
1152 struct smbd_connection *info, struct kvec *iov, int n_vec,
1153 int remaining_data_length)
1154{
1155 int i;
1156 u32 data_length = 0;
1157 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1158
1159 if (n_vec > SMBDIRECT_MAX_SGE) {
1160 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1161 return -ENOMEM;
1162 }
1163
1164 sg_init_table(sgl, n_vec);
1165 for (i = 0; i < n_vec; i++) {
1166 data_length += iov[i].iov_len;
1167 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1168 }
1169
1170 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1171}
1172
f198186a
LL
1173/*
1174 * Post a receive request to the transport
1175 * The remote peer can only send data when a receive request is posted
1176 * The interaction is controlled by send/receive credit system
1177 */
1178static int smbd_post_recv(
1179 struct smbd_connection *info, struct smbd_response *response)
1180{
1181 struct ib_recv_wr recv_wr, *recv_wr_fail = NULL;
1182 int rc = -EIO;
1183
1184 response->sge.addr = ib_dma_map_single(
1185 info->id->device, response->packet,
1186 info->max_receive_size, DMA_FROM_DEVICE);
1187 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1188 return rc;
1189
1190 response->sge.length = info->max_receive_size;
1191 response->sge.lkey = info->pd->local_dma_lkey;
1192
1193 response->cqe.done = recv_done;
1194
1195 recv_wr.wr_cqe = &response->cqe;
1196 recv_wr.next = NULL;
1197 recv_wr.sg_list = &response->sge;
1198 recv_wr.num_sge = 1;
1199
1200 rc = ib_post_recv(info->id->qp, &recv_wr, &recv_wr_fail);
1201 if (rc) {
1202 ib_dma_unmap_single(info->id->device, response->sge.addr,
1203 response->sge.length, DMA_FROM_DEVICE);
1204
1205 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1206 }
1207
1208 return rc;
1209}
1210
1211/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1212static int smbd_negotiate(struct smbd_connection *info)
1213{
1214 int rc;
1215 struct smbd_response *response = get_receive_buffer(info);
1216
1217 response->type = SMBD_NEGOTIATE_RESP;
1218 rc = smbd_post_recv(info, response);
1219 log_rdma_event(INFO,
1220 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1221 "iov.lkey=%x\n",
1222 rc, response->sge.addr,
1223 response->sge.length, response->sge.lkey);
1224 if (rc)
1225 return rc;
1226
1227 init_completion(&info->negotiate_completion);
1228 info->negotiate_done = false;
1229 rc = smbd_post_send_negotiate_req(info);
1230 if (rc)
1231 return rc;
1232
1233 rc = wait_for_completion_interruptible_timeout(
1234 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1235 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1236
1237 if (info->negotiate_done)
1238 return 0;
1239
1240 if (rc == 0)
1241 rc = -ETIMEDOUT;
1242 else if (rc == -ERESTARTSYS)
1243 rc = -EINTR;
1244 else
1245 rc = -ENOTCONN;
1246
1247 return rc;
1248}
1249
1250static void put_empty_packet(
1251 struct smbd_connection *info, struct smbd_response *response)
1252{
1253 spin_lock(&info->empty_packet_queue_lock);
1254 list_add_tail(&response->list, &info->empty_packet_queue);
1255 info->count_empty_packet_queue++;
1256 spin_unlock(&info->empty_packet_queue_lock);
1257
1258 queue_work(info->workqueue, &info->post_send_credits_work);
1259}
1260
1261/*
1262 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1263 * This is a queue for reassembling upper layer payload and present to upper
1264 * layer. All the inncoming payload go to the reassembly queue, regardless of
1265 * if reassembly is required. The uuper layer code reads from the queue for all
1266 * incoming payloads.
1267 * Put a received packet to the reassembly queue
1268 * response: the packet received
1269 * data_length: the size of payload in this packet
1270 */
1271static void enqueue_reassembly(
1272 struct smbd_connection *info,
1273 struct smbd_response *response,
1274 int data_length)
1275{
1276 spin_lock(&info->reassembly_queue_lock);
1277 list_add_tail(&response->list, &info->reassembly_queue);
1278 info->reassembly_queue_length++;
1279 /*
1280 * Make sure reassembly_data_length is updated after list and
1281 * reassembly_queue_length are updated. On the dequeue side
1282 * reassembly_data_length is checked without a lock to determine
1283 * if reassembly_queue_length and list is up to date
1284 */
1285 virt_wmb();
1286 info->reassembly_data_length += data_length;
1287 spin_unlock(&info->reassembly_queue_lock);
1288 info->count_reassembly_queue++;
1289 info->count_enqueue_reassembly_queue++;
1290}
1291
1292/*
1293 * Get the first entry at the front of reassembly queue
1294 * Caller is responsible for locking
1295 * return value: the first entry if any, NULL if queue is empty
1296 */
1297static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1298{
1299 struct smbd_response *ret = NULL;
1300
1301 if (!list_empty(&info->reassembly_queue)) {
1302 ret = list_first_entry(
1303 &info->reassembly_queue,
1304 struct smbd_response, list);
1305 }
1306 return ret;
1307}
1308
1309static struct smbd_response *get_empty_queue_buffer(
1310 struct smbd_connection *info)
1311{
1312 struct smbd_response *ret = NULL;
1313 unsigned long flags;
1314
1315 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1316 if (!list_empty(&info->empty_packet_queue)) {
1317 ret = list_first_entry(
1318 &info->empty_packet_queue,
1319 struct smbd_response, list);
1320 list_del(&ret->list);
1321 info->count_empty_packet_queue--;
1322 }
1323 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1324
1325 return ret;
1326}
1327
1328/*
1329 * Get a receive buffer
1330 * For each remote send, we need to post a receive. The receive buffers are
1331 * pre-allocated in advance.
1332 * return value: the receive buffer, NULL if none is available
1333 */
1334static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1335{
1336 struct smbd_response *ret = NULL;
1337 unsigned long flags;
1338
1339 spin_lock_irqsave(&info->receive_queue_lock, flags);
1340 if (!list_empty(&info->receive_queue)) {
1341 ret = list_first_entry(
1342 &info->receive_queue,
1343 struct smbd_response, list);
1344 list_del(&ret->list);
1345 info->count_receive_queue--;
1346 info->count_get_receive_buffer++;
1347 }
1348 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1349
1350 return ret;
1351}
1352
1353/*
1354 * Return a receive buffer
1355 * Upon returning of a receive buffer, we can post new receive and extend
1356 * more receive credits to remote peer. This is done immediately after a
1357 * receive buffer is returned.
1358 */
1359static void put_receive_buffer(
1360 struct smbd_connection *info, struct smbd_response *response)
1361{
1362 unsigned long flags;
1363
1364 ib_dma_unmap_single(info->id->device, response->sge.addr,
1365 response->sge.length, DMA_FROM_DEVICE);
1366
1367 spin_lock_irqsave(&info->receive_queue_lock, flags);
1368 list_add_tail(&response->list, &info->receive_queue);
1369 info->count_receive_queue++;
1370 info->count_put_receive_buffer++;
1371 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1372
1373 queue_work(info->workqueue, &info->post_send_credits_work);
1374}
1375
1376/* Preallocate all receive buffer on transport establishment */
1377static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1378{
1379 int i;
1380 struct smbd_response *response;
1381
1382 INIT_LIST_HEAD(&info->reassembly_queue);
1383 spin_lock_init(&info->reassembly_queue_lock);
1384 info->reassembly_data_length = 0;
1385 info->reassembly_queue_length = 0;
1386
1387 INIT_LIST_HEAD(&info->receive_queue);
1388 spin_lock_init(&info->receive_queue_lock);
1389 info->count_receive_queue = 0;
1390
1391 INIT_LIST_HEAD(&info->empty_packet_queue);
1392 spin_lock_init(&info->empty_packet_queue_lock);
1393 info->count_empty_packet_queue = 0;
1394
1395 init_waitqueue_head(&info->wait_receive_queues);
1396
1397 for (i = 0; i < num_buf; i++) {
1398 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1399 if (!response)
1400 goto allocate_failed;
1401
1402 response->info = info;
1403 list_add_tail(&response->list, &info->receive_queue);
1404 info->count_receive_queue++;
1405 }
1406
1407 return 0;
1408
1409allocate_failed:
1410 while (!list_empty(&info->receive_queue)) {
1411 response = list_first_entry(
1412 &info->receive_queue,
1413 struct smbd_response, list);
1414 list_del(&response->list);
1415 info->count_receive_queue--;
1416
1417 mempool_free(response, info->response_mempool);
1418 }
1419 return -ENOMEM;
1420}
1421
1422static void destroy_receive_buffers(struct smbd_connection *info)
1423{
1424 struct smbd_response *response;
1425
1426 while ((response = get_receive_buffer(info)))
1427 mempool_free(response, info->response_mempool);
1428
1429 while ((response = get_empty_queue_buffer(info)))
1430 mempool_free(response, info->response_mempool);
1431}
1432
1433/*
1434 * Check and send an immediate or keep alive packet
1435 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1436 * Connection.KeepaliveRequested and Connection.SendImmediate
1437 * The idea is to extend credits to server as soon as it becomes available
1438 */
1439static void send_immediate_work(struct work_struct *work)
1440{
1441 struct smbd_connection *info = container_of(
1442 work, struct smbd_connection,
1443 send_immediate_work.work);
1444
1445 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1446 info->send_immediate) {
1447 log_keep_alive(INFO, "send an empty message\n");
1448 smbd_post_send_empty(info);
1449 }
1450}
1451
1452/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1453static void idle_connection_timer(struct work_struct *work)
1454{
1455 struct smbd_connection *info = container_of(
1456 work, struct smbd_connection,
1457 idle_timer_work.work);
1458
1459 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1460 log_keep_alive(ERR,
1461 "error status info->keep_alive_requested=%d\n",
1462 info->keep_alive_requested);
1463 smbd_disconnect_rdma_connection(info);
1464 return;
1465 }
1466
1467 log_keep_alive(INFO, "about to send an empty idle message\n");
1468 smbd_post_send_empty(info);
1469
1470 /* Setup the next idle timeout work */
1471 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1472 info->keep_alive_interval*HZ);
1473}
1474
8ef130f9
LL
1475/* Destroy this SMBD connection, called from upper layer */
1476void smbd_destroy(struct smbd_connection *info)
1477{
1478 log_rdma_event(INFO, "destroying rdma session\n");
1479
1480 /* Kick off the disconnection process */
1481 smbd_disconnect_rdma_connection(info);
1482
1483 log_rdma_event(INFO, "wait for transport being destroyed\n");
1484 wait_event(info->wait_destroy,
1485 info->transport_status == SMBD_DESTROYED);
1486
1487 destroy_workqueue(info->workqueue);
1488 kfree(info);
1489}
1490
ad57b8e1
LL
1491/*
1492 * Reconnect this SMBD connection, called from upper layer
1493 * return value: 0 on success, or actual error code
1494 */
1495int smbd_reconnect(struct TCP_Server_Info *server)
1496{
1497 log_rdma_event(INFO, "reconnecting rdma session\n");
1498
1499 if (!server->smbd_conn) {
1500 log_rdma_event(ERR, "rdma session already destroyed\n");
1501 return -EINVAL;
1502 }
1503
1504 /*
1505 * This is possible if transport is disconnected and we haven't received
1506 * notification from RDMA, but upper layer has detected timeout
1507 */
1508 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1509 log_rdma_event(INFO, "disconnecting transport\n");
1510 smbd_disconnect_rdma_connection(server->smbd_conn);
1511 }
1512
1513 /* wait until the transport is destroyed */
1514 wait_event(server->smbd_conn->wait_destroy,
1515 server->smbd_conn->transport_status == SMBD_DESTROYED);
1516
1517 destroy_workqueue(server->smbd_conn->workqueue);
1518 kfree(server->smbd_conn);
1519
1520 log_rdma_event(INFO, "creating rdma session\n");
1521 server->smbd_conn = smbd_get_connection(
1522 server, (struct sockaddr *) &server->dstaddr);
1523
1524 return server->smbd_conn ? 0 : -ENOENT;
1525}
1526
f198186a
LL
1527static void destroy_caches_and_workqueue(struct smbd_connection *info)
1528{
1529 destroy_receive_buffers(info);
1530 destroy_workqueue(info->workqueue);
1531 mempool_destroy(info->response_mempool);
1532 kmem_cache_destroy(info->response_cache);
1533 mempool_destroy(info->request_mempool);
1534 kmem_cache_destroy(info->request_cache);
1535}
1536
1537#define MAX_NAME_LEN 80
1538static int allocate_caches_and_workqueue(struct smbd_connection *info)
1539{
1540 char name[MAX_NAME_LEN];
1541 int rc;
1542
1543 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1544 info->request_cache =
1545 kmem_cache_create(
1546 name,
1547 sizeof(struct smbd_request) +
1548 sizeof(struct smbd_data_transfer),
1549 0, SLAB_HWCACHE_ALIGN, NULL);
1550 if (!info->request_cache)
1551 return -ENOMEM;
1552
1553 info->request_mempool =
1554 mempool_create(info->send_credit_target, mempool_alloc_slab,
1555 mempool_free_slab, info->request_cache);
1556 if (!info->request_mempool)
1557 goto out1;
1558
1559 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1560 info->response_cache =
1561 kmem_cache_create(
1562 name,
1563 sizeof(struct smbd_response) +
1564 info->max_receive_size,
1565 0, SLAB_HWCACHE_ALIGN, NULL);
1566 if (!info->response_cache)
1567 goto out2;
1568
1569 info->response_mempool =
1570 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1571 mempool_free_slab, info->response_cache);
1572 if (!info->response_mempool)
1573 goto out3;
1574
1575 snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1576 info->workqueue = create_workqueue(name);
1577 if (!info->workqueue)
1578 goto out4;
1579
1580 rc = allocate_receive_buffers(info, info->receive_credit_max);
1581 if (rc) {
1582 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1583 goto out5;
1584 }
1585
1586 return 0;
1587
1588out5:
1589 destroy_workqueue(info->workqueue);
1590out4:
1591 mempool_destroy(info->response_mempool);
1592out3:
1593 kmem_cache_destroy(info->response_cache);
1594out2:
1595 mempool_destroy(info->request_mempool);
1596out1:
1597 kmem_cache_destroy(info->request_cache);
1598 return -ENOMEM;
1599}
1600
1601/* Create a SMBD connection, called by upper layer */
9084432c 1602static struct smbd_connection *_smbd_get_connection(
f198186a
LL
1603 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1604{
1605 int rc;
1606 struct smbd_connection *info;
1607 struct rdma_conn_param conn_param;
1608 struct ib_qp_init_attr qp_attr;
1609 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
c7398583
LL
1610 struct ib_port_immutable port_immutable;
1611 u32 ird_ord_hdr[2];
f198186a
LL
1612
1613 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1614 if (!info)
1615 return NULL;
1616
1617 info->transport_status = SMBD_CONNECTING;
1618 rc = smbd_ia_open(info, dstaddr, port);
1619 if (rc) {
1620 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1621 goto create_id_failed;
1622 }
1623
1624 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1625 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1626 log_rdma_event(ERR,
1627 "consider lowering send_credit_target = %d. "
1628 "Possible CQE overrun, device "
1629 "reporting max_cpe %d max_qp_wr %d\n",
1630 smbd_send_credit_target,
1631 info->id->device->attrs.max_cqe,
1632 info->id->device->attrs.max_qp_wr);
1633 goto config_failed;
1634 }
1635
1636 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1637 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1638 log_rdma_event(ERR,
1639 "consider lowering receive_credit_max = %d. "
1640 "Possible CQE overrun, device "
1641 "reporting max_cpe %d max_qp_wr %d\n",
1642 smbd_receive_credit_max,
1643 info->id->device->attrs.max_cqe,
1644 info->id->device->attrs.max_qp_wr);
1645 goto config_failed;
1646 }
1647
1648 info->receive_credit_max = smbd_receive_credit_max;
1649 info->send_credit_target = smbd_send_credit_target;
1650 info->max_send_size = smbd_max_send_size;
1651 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1652 info->max_receive_size = smbd_max_receive_size;
1653 info->keep_alive_interval = smbd_keep_alive_interval;
1654
1655 if (info->id->device->attrs.max_sge < SMBDIRECT_MAX_SGE) {
1656 log_rdma_event(ERR, "warning: device max_sge = %d too small\n",
1657 info->id->device->attrs.max_sge);
1658 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1659 }
1660
1661 info->send_cq = NULL;
1662 info->recv_cq = NULL;
1663 info->send_cq = ib_alloc_cq(info->id->device, info,
1664 info->send_credit_target, 0, IB_POLL_SOFTIRQ);
1665 if (IS_ERR(info->send_cq)) {
1666 info->send_cq = NULL;
1667 goto alloc_cq_failed;
1668 }
1669
1670 info->recv_cq = ib_alloc_cq(info->id->device, info,
1671 info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
1672 if (IS_ERR(info->recv_cq)) {
1673 info->recv_cq = NULL;
1674 goto alloc_cq_failed;
1675 }
1676
1677 memset(&qp_attr, 0, sizeof(qp_attr));
1678 qp_attr.event_handler = smbd_qp_async_error_upcall;
1679 qp_attr.qp_context = info;
1680 qp_attr.cap.max_send_wr = info->send_credit_target;
1681 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1682 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1683 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1684 qp_attr.cap.max_inline_data = 0;
1685 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1686 qp_attr.qp_type = IB_QPT_RC;
1687 qp_attr.send_cq = info->send_cq;
1688 qp_attr.recv_cq = info->recv_cq;
1689 qp_attr.port_num = ~0;
1690
1691 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1692 if (rc) {
1693 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1694 goto create_qp_failed;
1695 }
1696
1697 memset(&conn_param, 0, sizeof(conn_param));
1698 conn_param.initiator_depth = 0;
1699
c7398583
LL
1700 conn_param.responder_resources =
1701 info->id->device->attrs.max_qp_rd_atom
1702 < SMBD_CM_RESPONDER_RESOURCES ?
1703 info->id->device->attrs.max_qp_rd_atom :
1704 SMBD_CM_RESPONDER_RESOURCES;
1705 info->responder_resources = conn_param.responder_resources;
1706 log_rdma_mr(INFO, "responder_resources=%d\n",
1707 info->responder_resources);
1708
1709 /* Need to send IRD/ORD in private data for iWARP */
1710 info->id->device->get_port_immutable(
1711 info->id->device, info->id->port_num, &port_immutable);
1712 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1713 ird_ord_hdr[0] = info->responder_resources;
1714 ird_ord_hdr[1] = 1;
1715 conn_param.private_data = ird_ord_hdr;
1716 conn_param.private_data_len = sizeof(ird_ord_hdr);
1717 } else {
1718 conn_param.private_data = NULL;
1719 conn_param.private_data_len = 0;
1720 }
1721
f198186a
LL
1722 conn_param.retry_count = SMBD_CM_RETRY;
1723 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1724 conn_param.flow_control = 0;
1725 init_waitqueue_head(&info->wait_destroy);
1726
1727 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1728 &addr_in->sin_addr, port);
1729
1730 init_waitqueue_head(&info->conn_wait);
1731 rc = rdma_connect(info->id, &conn_param);
1732 if (rc) {
1733 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1734 goto rdma_connect_failed;
1735 }
1736
1737 wait_event_interruptible(
1738 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1739
1740 if (info->transport_status != SMBD_CONNECTED) {
1741 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1742 goto rdma_connect_failed;
1743 }
1744
1745 log_rdma_event(INFO, "rdma_connect connected\n");
1746
1747 rc = allocate_caches_and_workqueue(info);
1748 if (rc) {
1749 log_rdma_event(ERR, "cache allocation failed\n");
1750 goto allocate_cache_failed;
1751 }
1752
1753 init_waitqueue_head(&info->wait_send_queue);
1754 init_waitqueue_head(&info->wait_reassembly_queue);
1755
1756 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1757 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1758 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1759 info->keep_alive_interval*HZ);
1760
d649e1bb
LL
1761 init_waitqueue_head(&info->wait_smbd_send_pending);
1762 info->smbd_send_pending = 0;
1763
f64b78fd
LL
1764 init_waitqueue_head(&info->wait_smbd_recv_pending);
1765 info->smbd_recv_pending = 0;
1766
f198186a
LL
1767 init_waitqueue_head(&info->wait_send_pending);
1768 atomic_set(&info->send_pending, 0);
1769
1770 init_waitqueue_head(&info->wait_send_payload_pending);
1771 atomic_set(&info->send_payload_pending, 0);
1772
1773 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1774 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
1775 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1776 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1777 info->new_credits_offered = 0;
1778 spin_lock_init(&info->lock_new_credits_offered);
1779
1780 rc = smbd_negotiate(info);
1781 if (rc) {
1782 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1783 goto negotiation_failed;
1784 }
1785
c7398583
LL
1786 rc = allocate_mr_list(info);
1787 if (rc) {
1788 log_rdma_mr(ERR, "memory registration allocation failed\n");
1789 goto allocate_mr_failed;
1790 }
1791
f198186a
LL
1792 return info;
1793
c7398583
LL
1794allocate_mr_failed:
1795 /* At this point, need to a full transport shutdown */
1796 smbd_destroy(info);
1797 return NULL;
1798
f198186a
LL
1799negotiation_failed:
1800 cancel_delayed_work_sync(&info->idle_timer_work);
1801 destroy_caches_and_workqueue(info);
1802 info->transport_status = SMBD_NEGOTIATE_FAILED;
1803 init_waitqueue_head(&info->conn_wait);
1804 rdma_disconnect(info->id);
1805 wait_event(info->conn_wait,
1806 info->transport_status == SMBD_DISCONNECTED);
1807
1808allocate_cache_failed:
1809rdma_connect_failed:
1810 rdma_destroy_qp(info->id);
1811
1812create_qp_failed:
1813alloc_cq_failed:
1814 if (info->send_cq)
1815 ib_free_cq(info->send_cq);
1816 if (info->recv_cq)
1817 ib_free_cq(info->recv_cq);
1818
1819config_failed:
1820 ib_dealloc_pd(info->pd);
1821 rdma_destroy_id(info->id);
1822
1823create_id_failed:
1824 kfree(info);
1825 return NULL;
1826}
399f9539
LL
1827
1828struct smbd_connection *smbd_get_connection(
1829 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1830{
1831 struct smbd_connection *ret;
1832 int port = SMBD_PORT;
1833
1834try_again:
1835 ret = _smbd_get_connection(server, dstaddr, port);
1836
1837 /* Try SMB_PORT if SMBD_PORT doesn't work */
1838 if (!ret && port == SMBD_PORT) {
1839 port = SMB_PORT;
1840 goto try_again;
1841 }
1842 return ret;
1843}
f64b78fd
LL
1844
1845/*
1846 * Receive data from receive reassembly queue
1847 * All the incoming data packets are placed in reassembly queue
1848 * buf: the buffer to read data into
1849 * size: the length of data to read
1850 * return value: actual data read
1851 * Note: this implementation copies the data from reassebmly queue to receive
1852 * buffers used by upper layer. This is not the optimal code path. A better way
1853 * to do it is to not have upper layer allocate its receive buffers but rather
1854 * borrow the buffer from reassembly queue, and return it after data is
1855 * consumed. But this will require more changes to upper layer code, and also
1856 * need to consider packet boundaries while they still being reassembled.
1857 */
2026b06e
SF
1858static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1859 unsigned int size)
f64b78fd
LL
1860{
1861 struct smbd_response *response;
1862 struct smbd_data_transfer *data_transfer;
1863 int to_copy, to_read, data_read, offset;
1864 u32 data_length, remaining_data_length, data_offset;
1865 int rc;
f64b78fd
LL
1866
1867again:
1868 if (info->transport_status != SMBD_CONNECTED) {
1869 log_read(ERR, "disconnected\n");
1870 return -ENODEV;
1871 }
1872
1873 /*
1874 * No need to hold the reassembly queue lock all the time as we are
1875 * the only one reading from the front of the queue. The transport
1876 * may add more entries to the back of the queue at the same time
1877 */
1878 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1879 info->reassembly_data_length);
1880 if (info->reassembly_data_length >= size) {
1881 int queue_length;
1882 int queue_removed = 0;
1883
1884 /*
1885 * Need to make sure reassembly_data_length is read before
1886 * reading reassembly_queue_length and calling
1887 * _get_first_reassembly. This call is lock free
1888 * as we never read at the end of the queue which are being
1889 * updated in SOFTIRQ as more data is received
1890 */
1891 virt_rmb();
1892 queue_length = info->reassembly_queue_length;
1893 data_read = 0;
1894 to_read = size;
1895 offset = info->first_entry_offset;
1896 while (data_read < size) {
1897 response = _get_first_reassembly(info);
1898 data_transfer = smbd_response_payload(response);
1899 data_length = le32_to_cpu(data_transfer->data_length);
1900 remaining_data_length =
1901 le32_to_cpu(
1902 data_transfer->remaining_data_length);
1903 data_offset = le32_to_cpu(data_transfer->data_offset);
1904
1905 /*
1906 * The upper layer expects RFC1002 length at the
1907 * beginning of the payload. Return it to indicate
1908 * the total length of the packet. This minimize the
1909 * change to upper layer packet processing logic. This
1910 * will be eventually remove when an intermediate
1911 * transport layer is added
1912 */
1913 if (response->first_segment && size == 4) {
1914 unsigned int rfc1002_len =
1915 data_length + remaining_data_length;
1916 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1917 data_read = 4;
1918 response->first_segment = false;
1919 log_read(INFO, "returning rfc1002 length %d\n",
1920 rfc1002_len);
1921 goto read_rfc1002_done;
1922 }
1923
1924 to_copy = min_t(int, data_length - offset, to_read);
1925 memcpy(
1926 buf + data_read,
1927 (char *)data_transfer + data_offset + offset,
1928 to_copy);
1929
1930 /* move on to the next buffer? */
1931 if (to_copy == data_length - offset) {
1932 queue_length--;
1933 /*
1934 * No need to lock if we are not at the
1935 * end of the queue
1936 */
1937 if (!queue_length)
e36c048a
AB
1938 spin_lock_irq(
1939 &info->reassembly_queue_lock);
f64b78fd
LL
1940 list_del(&response->list);
1941 queue_removed++;
1942 if (!queue_length)
e36c048a
AB
1943 spin_unlock_irq(
1944 &info->reassembly_queue_lock);
f64b78fd
LL
1945
1946 info->count_reassembly_queue--;
1947 info->count_dequeue_reassembly_queue++;
1948 put_receive_buffer(info, response);
1949 offset = 0;
1950 log_read(INFO, "put_receive_buffer offset=0\n");
1951 } else
1952 offset += to_copy;
1953
1954 to_read -= to_copy;
1955 data_read += to_copy;
1956
1957 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1958 "data_transfer_length-offset=%d after that "
1959 "to_read=%d data_read=%d offset=%d\n",
1960 to_copy, data_length - offset,
1961 to_read, data_read, offset);
1962 }
1963
e36c048a 1964 spin_lock_irq(&info->reassembly_queue_lock);
f64b78fd
LL
1965 info->reassembly_data_length -= data_read;
1966 info->reassembly_queue_length -= queue_removed;
e36c048a 1967 spin_unlock_irq(&info->reassembly_queue_lock);
f64b78fd
LL
1968
1969 info->first_entry_offset = offset;
1970 log_read(INFO, "returning to thread data_read=%d "
1971 "reassembly_data_length=%d first_entry_offset=%d\n",
1972 data_read, info->reassembly_data_length,
1973 info->first_entry_offset);
1974read_rfc1002_done:
1975 return data_read;
1976 }
1977
1978 log_read(INFO, "wait_event on more data\n");
1979 rc = wait_event_interruptible(
1980 info->wait_reassembly_queue,
1981 info->reassembly_data_length >= size ||
1982 info->transport_status != SMBD_CONNECTED);
1983 /* Don't return any data if interrupted */
1984 if (rc)
1985 return -ENODEV;
1986
1987 goto again;
1988}
1989
1990/*
1991 * Receive a page from receive reassembly queue
1992 * page: the page to read data into
1993 * to_read: the length of data to read
1994 * return value: actual data read
1995 */
2026b06e 1996static int smbd_recv_page(struct smbd_connection *info,
f64b78fd
LL
1997 struct page *page, unsigned int to_read)
1998{
1999 int ret;
2000 char *to_address;
2001
2002 /* make sure we have the page ready for read */
2003 ret = wait_event_interruptible(
2004 info->wait_reassembly_queue,
2005 info->reassembly_data_length >= to_read ||
2006 info->transport_status != SMBD_CONNECTED);
2007 if (ret)
2008 return 0;
2009
2010 /* now we can read from reassembly queue and not sleep */
2011 to_address = kmap_atomic(page);
2012
2013 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2014 page, to_address, to_read);
2015
2016 ret = smbd_recv_buf(info, to_address, to_read);
2017 kunmap_atomic(to_address);
2018
2019 return ret;
2020}
2021
2022/*
2023 * Receive data from transport
2024 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2025 * return: total bytes read, or 0. SMB Direct will not do partial read.
2026 */
2027int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2028{
2029 char *buf;
2030 struct page *page;
2031 unsigned int to_read;
2032 int rc;
2033
2034 info->smbd_recv_pending++;
2035
2036 switch (msg->msg_iter.type) {
2037 case READ | ITER_KVEC:
2038 buf = msg->msg_iter.kvec->iov_base;
2039 to_read = msg->msg_iter.kvec->iov_len;
2040 rc = smbd_recv_buf(info, buf, to_read);
2041 break;
2042
2043 case READ | ITER_BVEC:
2044 page = msg->msg_iter.bvec->bv_page;
2045 to_read = msg->msg_iter.bvec->bv_len;
2046 rc = smbd_recv_page(info, page, to_read);
2047 break;
2048
2049 default:
2050 /* It's a bug in upper layer to get there */
2051 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2052 msg->msg_iter.type);
2053 rc = -EIO;
2054 }
2055
2056 info->smbd_recv_pending--;
2057 wake_up(&info->wait_smbd_recv_pending);
2058
2059 /* SMBDirect will read it all or nothing */
2060 if (rc > 0)
2061 msg->msg_iter.count = 0;
2062 return rc;
2063}
d649e1bb
LL
2064
2065/*
2066 * Send data to transport
2067 * Each rqst is transported as a SMBDirect payload
2068 * rqst: the data to write
2069 * return value: 0 if successfully write, otherwise error code
2070 */
2071int smbd_send(struct smbd_connection *info, struct smb_rqst *rqst)
2072{
2073 struct kvec vec;
2074 int nvecs;
2075 int size;
2076 int buflen = 0, remaining_data_length;
2077 int start, i, j;
2078 int max_iov_size =
2079 info->max_send_size - sizeof(struct smbd_data_transfer);
2080 struct kvec iov[SMBDIRECT_MAX_SGE];
2081 int rc;
2082
2083 info->smbd_send_pending++;
2084 if (info->transport_status != SMBD_CONNECTED) {
2085 rc = -ENODEV;
2086 goto done;
2087 }
2088
2089 /*
2090 * This usually means a configuration error
2091 * We use RDMA read/write for packet size > rdma_readwrite_threshold
2092 * as long as it's properly configured we should never get into this
2093 * situation
2094 */
2095 if (rqst->rq_nvec + rqst->rq_npages > SMBDIRECT_MAX_SGE) {
2096 log_write(ERR, "maximum send segment %x exceeding %x\n",
2097 rqst->rq_nvec + rqst->rq_npages, SMBDIRECT_MAX_SGE);
2098 rc = -EINVAL;
2099 goto done;
2100 }
2101
2102 /*
2103 * Remove the RFC1002 length defined in MS-SMB2 section 2.1
2104 * It is used only for TCP transport
2105 * In future we may want to add a transport layer under protocol
2106 * layer so this will only be issued to TCP transport
2107 */
2108 iov[0].iov_base = (char *)rqst->rq_iov[0].iov_base + 4;
2109 iov[0].iov_len = rqst->rq_iov[0].iov_len - 4;
2110 buflen += iov[0].iov_len;
2111
2112 /* total up iov array first */
2113 for (i = 1; i < rqst->rq_nvec; i++) {
2114 iov[i].iov_base = rqst->rq_iov[i].iov_base;
2115 iov[i].iov_len = rqst->rq_iov[i].iov_len;
2116 buflen += iov[i].iov_len;
2117 }
2118
2119 /* add in the page array if there is one */
2120 if (rqst->rq_npages) {
2121 buflen += rqst->rq_pagesz * (rqst->rq_npages - 1);
2122 buflen += rqst->rq_tailsz;
2123 }
2124
2125 if (buflen + sizeof(struct smbd_data_transfer) >
2126 info->max_fragmented_send_size) {
2127 log_write(ERR, "payload size %d > max size %d\n",
2128 buflen, info->max_fragmented_send_size);
2129 rc = -EINVAL;
2130 goto done;
2131 }
2132
2133 remaining_data_length = buflen;
2134
2135 log_write(INFO, "rqst->rq_nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2136 "rq_tailsz=%d buflen=%d\n",
2137 rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2138 rqst->rq_tailsz, buflen);
2139
2140 start = i = iov[0].iov_len ? 0 : 1;
2141 buflen = 0;
2142 while (true) {
2143 buflen += iov[i].iov_len;
2144 if (buflen > max_iov_size) {
2145 if (i > start) {
2146 remaining_data_length -=
2147 (buflen-iov[i].iov_len);
2148 log_write(INFO, "sending iov[] from start=%d "
2149 "i=%d nvecs=%d "
2150 "remaining_data_length=%d\n",
2151 start, i, i-start,
2152 remaining_data_length);
2153 rc = smbd_post_send_data(
2154 info, &iov[start], i-start,
2155 remaining_data_length);
2156 if (rc)
2157 goto done;
2158 } else {
2159 /* iov[start] is too big, break it */
2160 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2161 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2162 " break to %d vectors\n",
2163 start, iov[start].iov_base,
2164 buflen, nvecs);
2165 for (j = 0; j < nvecs; j++) {
2166 vec.iov_base =
2167 (char *)iov[start].iov_base +
2168 j*max_iov_size;
2169 vec.iov_len = max_iov_size;
2170 if (j == nvecs-1)
2171 vec.iov_len =
2172 buflen -
2173 max_iov_size*(nvecs-1);
2174 remaining_data_length -= vec.iov_len;
2175 log_write(INFO,
2176 "sending vec j=%d iov_base=%p"
2177 " iov_len=%zu "
2178 "remaining_data_length=%d\n",
2179 j, vec.iov_base, vec.iov_len,
2180 remaining_data_length);
2181 rc = smbd_post_send_data(
2182 info, &vec, 1,
2183 remaining_data_length);
2184 if (rc)
2185 goto done;
2186 }
2187 i++;
2188 }
2189 start = i;
2190 buflen = 0;
2191 } else {
2192 i++;
2193 if (i == rqst->rq_nvec) {
2194 /* send out all remaining vecs */
2195 remaining_data_length -= buflen;
2196 log_write(INFO,
2197 "sending iov[] from start=%d i=%d "
2198 "nvecs=%d remaining_data_length=%d\n",
2199 start, i, i-start,
2200 remaining_data_length);
2201 rc = smbd_post_send_data(info, &iov[start],
2202 i-start, remaining_data_length);
2203 if (rc)
2204 goto done;
2205 break;
2206 }
2207 }
2208 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2209 }
2210
2211 /* now sending pages if there are any */
2212 for (i = 0; i < rqst->rq_npages; i++) {
2213 buflen = (i == rqst->rq_npages-1) ?
2214 rqst->rq_tailsz : rqst->rq_pagesz;
2215 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2216 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2217 buflen, nvecs);
2218 for (j = 0; j < nvecs; j++) {
2219 size = max_iov_size;
2220 if (j == nvecs-1)
2221 size = buflen - j*max_iov_size;
2222 remaining_data_length -= size;
2223 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2224 " remaining_data_length=%d\n",
2225 i, j*max_iov_size, size, remaining_data_length);
2226 rc = smbd_post_send_page(
2227 info, rqst->rq_pages[i], j*max_iov_size,
2228 size, remaining_data_length);
2229 if (rc)
2230 goto done;
2231 }
2232 }
2233
2234done:
2235 /*
2236 * As an optimization, we don't wait for individual I/O to finish
2237 * before sending the next one.
2238 * Send them all and wait for pending send count to get to 0
2239 * that means all the I/Os have been out and we are good to return
2240 */
2241
2242 wait_event(info->wait_send_payload_pending,
2243 atomic_read(&info->send_payload_pending) == 0);
2244
2245 info->smbd_send_pending--;
2246 wake_up(&info->wait_smbd_send_pending);
2247
2248 return rc;
2249}
c7398583
LL
2250
2251static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2252{
2253 struct smbd_mr *mr;
2254 struct ib_cqe *cqe;
2255
2256 if (wc->status) {
2257 log_rdma_mr(ERR, "status=%d\n", wc->status);
2258 cqe = wc->wr_cqe;
2259 mr = container_of(cqe, struct smbd_mr, cqe);
2260 smbd_disconnect_rdma_connection(mr->conn);
2261 }
2262}
2263
2264/*
2265 * The work queue function that recovers MRs
2266 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2267 * again. Both calls are slow, so finish them in a workqueue. This will not
2268 * block I/O path.
2269 * There is one workqueue that recovers MRs, there is no need to lock as the
2270 * I/O requests calling smbd_register_mr will never update the links in the
2271 * mr_list.
2272 */
2273static void smbd_mr_recovery_work(struct work_struct *work)
2274{
2275 struct smbd_connection *info =
2276 container_of(work, struct smbd_connection, mr_recovery_work);
2277 struct smbd_mr *smbdirect_mr;
2278 int rc;
2279
2280 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2281 if (smbdirect_mr->state == MR_INVALIDATED ||
2282 smbdirect_mr->state == MR_ERROR) {
2283
2284 if (smbdirect_mr->state == MR_INVALIDATED) {
2285 ib_dma_unmap_sg(
2286 info->id->device, smbdirect_mr->sgl,
2287 smbdirect_mr->sgl_count,
2288 smbdirect_mr->dir);
2289 smbdirect_mr->state = MR_READY;
2290 } else if (smbdirect_mr->state == MR_ERROR) {
2291
2292 /* recover this MR entry */
2293 rc = ib_dereg_mr(smbdirect_mr->mr);
2294 if (rc) {
2295 log_rdma_mr(ERR,
2296 "ib_dereg_mr faield rc=%x\n",
2297 rc);
2298 smbd_disconnect_rdma_connection(info);
2299 }
2300
2301 smbdirect_mr->mr = ib_alloc_mr(
2302 info->pd, info->mr_type,
2303 info->max_frmr_depth);
2304 if (IS_ERR(smbdirect_mr->mr)) {
2305 log_rdma_mr(ERR,
2306 "ib_alloc_mr failed mr_type=%x "
2307 "max_frmr_depth=%x\n",
2308 info->mr_type,
2309 info->max_frmr_depth);
2310 smbd_disconnect_rdma_connection(info);
2311 }
2312
2313 smbdirect_mr->state = MR_READY;
2314 }
2315 /* smbdirect_mr->state is updated by this function
2316 * and is read and updated by I/O issuing CPUs trying
2317 * to get a MR, the call to atomic_inc_return
2318 * implicates a memory barrier and guarantees this
2319 * value is updated before waking up any calls to
2320 * get_mr() from the I/O issuing CPUs
2321 */
2322 if (atomic_inc_return(&info->mr_ready_count) == 1)
2323 wake_up_interruptible(&info->wait_mr);
2324 }
2325 }
2326}
2327
2328static void destroy_mr_list(struct smbd_connection *info)
2329{
2330 struct smbd_mr *mr, *tmp;
2331
2332 cancel_work_sync(&info->mr_recovery_work);
2333 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2334 if (mr->state == MR_INVALIDATED)
2335 ib_dma_unmap_sg(info->id->device, mr->sgl,
2336 mr->sgl_count, mr->dir);
2337 ib_dereg_mr(mr->mr);
2338 kfree(mr->sgl);
2339 kfree(mr);
2340 }
2341}
2342
2343/*
2344 * Allocate MRs used for RDMA read/write
2345 * The number of MRs will not exceed hardware capability in responder_resources
2346 * All MRs are kept in mr_list. The MR can be recovered after it's used
2347 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2348 * as MRs are used and recovered for I/O, but the list links will not change
2349 */
2350static int allocate_mr_list(struct smbd_connection *info)
2351{
2352 int i;
2353 struct smbd_mr *smbdirect_mr, *tmp;
2354
2355 INIT_LIST_HEAD(&info->mr_list);
2356 init_waitqueue_head(&info->wait_mr);
2357 spin_lock_init(&info->mr_list_lock);
2358 atomic_set(&info->mr_ready_count, 0);
2359 atomic_set(&info->mr_used_count, 0);
2360 init_waitqueue_head(&info->wait_for_mr_cleanup);
2361 /* Allocate more MRs (2x) than hardware responder_resources */
2362 for (i = 0; i < info->responder_resources * 2; i++) {
2363 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2364 if (!smbdirect_mr)
2365 goto out;
2366 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2367 info->max_frmr_depth);
2368 if (IS_ERR(smbdirect_mr->mr)) {
2369 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2370 "max_frmr_depth=%x\n",
2371 info->mr_type, info->max_frmr_depth);
2372 goto out;
2373 }
2374 smbdirect_mr->sgl = kcalloc(
2375 info->max_frmr_depth,
2376 sizeof(struct scatterlist),
2377 GFP_KERNEL);
2378 if (!smbdirect_mr->sgl) {
2379 log_rdma_mr(ERR, "failed to allocate sgl\n");
2380 ib_dereg_mr(smbdirect_mr->mr);
2381 goto out;
2382 }
2383 smbdirect_mr->state = MR_READY;
2384 smbdirect_mr->conn = info;
2385
2386 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2387 atomic_inc(&info->mr_ready_count);
2388 }
2389 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2390 return 0;
2391
2392out:
2393 kfree(smbdirect_mr);
2394
2395 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2396 ib_dereg_mr(smbdirect_mr->mr);
2397 kfree(smbdirect_mr->sgl);
2398 kfree(smbdirect_mr);
2399 }
2400 return -ENOMEM;
2401}
2402
2403/*
2404 * Get a MR from mr_list. This function waits until there is at least one
2405 * MR available in the list. It may access the list while the
2406 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2407 * as they never modify the same places. However, there may be several CPUs
2408 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2409 * protect this situation.
2410 */
2411static struct smbd_mr *get_mr(struct smbd_connection *info)
2412{
2413 struct smbd_mr *ret;
2414 int rc;
2415again:
2416 rc = wait_event_interruptible(info->wait_mr,
2417 atomic_read(&info->mr_ready_count) ||
2418 info->transport_status != SMBD_CONNECTED);
2419 if (rc) {
2420 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2421 return NULL;
2422 }
2423
2424 if (info->transport_status != SMBD_CONNECTED) {
2425 log_rdma_mr(ERR, "info->transport_status=%x\n",
2426 info->transport_status);
2427 return NULL;
2428 }
2429
2430 spin_lock(&info->mr_list_lock);
2431 list_for_each_entry(ret, &info->mr_list, list) {
2432 if (ret->state == MR_READY) {
2433 ret->state = MR_REGISTERED;
2434 spin_unlock(&info->mr_list_lock);
2435 atomic_dec(&info->mr_ready_count);
2436 atomic_inc(&info->mr_used_count);
2437 return ret;
2438 }
2439 }
2440
2441 spin_unlock(&info->mr_list_lock);
2442 /*
2443 * It is possible that we could fail to get MR because other processes may
2444 * try to acquire a MR at the same time. If this is the case, retry it.
2445 */
2446 goto again;
2447}
2448
2449/*
2450 * Register memory for RDMA read/write
2451 * pages[]: the list of pages to register memory with
2452 * num_pages: the number of pages to register
2453 * tailsz: if non-zero, the bytes to register in the last page
2454 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2455 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2456 * return value: the MR registered, NULL if failed.
2457 */
2458struct smbd_mr *smbd_register_mr(
2459 struct smbd_connection *info, struct page *pages[], int num_pages,
2460 int tailsz, bool writing, bool need_invalidate)
2461{
2462 struct smbd_mr *smbdirect_mr;
2463 int rc, i;
2464 enum dma_data_direction dir;
2465 struct ib_reg_wr *reg_wr;
2466 struct ib_send_wr *bad_wr;
2467
2468 if (num_pages > info->max_frmr_depth) {
2469 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2470 num_pages, info->max_frmr_depth);
2471 return NULL;
2472 }
2473
2474 smbdirect_mr = get_mr(info);
2475 if (!smbdirect_mr) {
2476 log_rdma_mr(ERR, "get_mr returning NULL\n");
2477 return NULL;
2478 }
2479 smbdirect_mr->need_invalidate = need_invalidate;
2480 smbdirect_mr->sgl_count = num_pages;
2481 sg_init_table(smbdirect_mr->sgl, num_pages);
2482
2483 for (i = 0; i < num_pages - 1; i++)
2484 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2485
2486 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2487 tailsz ? tailsz : PAGE_SIZE, 0);
2488
2489 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2490 smbdirect_mr->dir = dir;
2491 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2492 if (!rc) {
2493 log_rdma_mr(INFO, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2494 num_pages, dir, rc);
2495 goto dma_map_error;
2496 }
2497
2498 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2499 NULL, PAGE_SIZE);
2500 if (rc != num_pages) {
2501 log_rdma_mr(INFO,
2502 "ib_map_mr_sg failed rc = %x num_pages = %x\n",
2503 rc, num_pages);
2504 goto map_mr_error;
2505 }
2506
2507 ib_update_fast_reg_key(smbdirect_mr->mr,
2508 ib_inc_rkey(smbdirect_mr->mr->rkey));
2509 reg_wr = &smbdirect_mr->wr;
2510 reg_wr->wr.opcode = IB_WR_REG_MR;
2511 smbdirect_mr->cqe.done = register_mr_done;
2512 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2513 reg_wr->wr.num_sge = 0;
2514 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2515 reg_wr->mr = smbdirect_mr->mr;
2516 reg_wr->key = smbdirect_mr->mr->rkey;
2517 reg_wr->access = writing ?
2518 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2519 IB_ACCESS_REMOTE_READ;
2520
2521 /*
2522 * There is no need for waiting for complemtion on ib_post_send
2523 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2524 * on the next ib_post_send when we actaully send I/O to remote peer
2525 */
2526 rc = ib_post_send(info->id->qp, &reg_wr->wr, &bad_wr);
2527 if (!rc)
2528 return smbdirect_mr;
2529
2530 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2531 rc, reg_wr->key);
2532
2533 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2534map_mr_error:
2535 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2536 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2537
2538dma_map_error:
2539 smbdirect_mr->state = MR_ERROR;
2540 if (atomic_dec_and_test(&info->mr_used_count))
2541 wake_up(&info->wait_for_mr_cleanup);
2542
2543 return NULL;
2544}
2545
2546static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2547{
2548 struct smbd_mr *smbdirect_mr;
2549 struct ib_cqe *cqe;
2550
2551 cqe = wc->wr_cqe;
2552 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2553 smbdirect_mr->state = MR_INVALIDATED;
2554 if (wc->status != IB_WC_SUCCESS) {
2555 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2556 smbdirect_mr->state = MR_ERROR;
2557 }
2558 complete(&smbdirect_mr->invalidate_done);
2559}
2560
2561/*
2562 * Deregister a MR after I/O is done
2563 * This function may wait if remote invalidation is not used
2564 * and we have to locally invalidate the buffer to prevent data is being
2565 * modified by remote peer after upper layer consumes it
2566 */
2567int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2568{
2569 struct ib_send_wr *wr, *bad_wr;
2570 struct smbd_connection *info = smbdirect_mr->conn;
2571 int rc = 0;
2572
2573 if (smbdirect_mr->need_invalidate) {
2574 /* Need to finish local invalidation before returning */
2575 wr = &smbdirect_mr->inv_wr;
2576 wr->opcode = IB_WR_LOCAL_INV;
2577 smbdirect_mr->cqe.done = local_inv_done;
2578 wr->wr_cqe = &smbdirect_mr->cqe;
2579 wr->num_sge = 0;
2580 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2581 wr->send_flags = IB_SEND_SIGNALED;
2582
2583 init_completion(&smbdirect_mr->invalidate_done);
2584 rc = ib_post_send(info->id->qp, wr, &bad_wr);
2585 if (rc) {
2586 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2587 smbd_disconnect_rdma_connection(info);
2588 goto done;
2589 }
2590 wait_for_completion(&smbdirect_mr->invalidate_done);
2591 smbdirect_mr->need_invalidate = false;
2592 } else
2593 /*
2594 * For remote invalidation, just set it to MR_INVALIDATED
2595 * and defer to mr_recovery_work to recover the MR for next use
2596 */
2597 smbdirect_mr->state = MR_INVALIDATED;
2598
2599 /*
2600 * Schedule the work to do MR recovery for future I/Os
2601 * MR recovery is slow and we don't want it to block the current I/O
2602 */
2603 queue_work(info->workqueue, &info->mr_recovery_work);
2604
2605done:
2606 if (atomic_dec_and_test(&info->mr_used_count))
2607 wake_up(&info->wait_for_mr_cleanup);
2608
2609 return rc;
2610}