block_write_full_page(): report ENOSPC
[linux-block.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/smp_lock.h>
16f7e0fe 28#include <linux/capability.h>
1da177e4
LT
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
55e829af 38#include <linux/task_io_accounting_ops.h>
1da177e4
LT
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
fb1c8f93 44#include <linux/bit_spinlock.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50inline void
51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52{
53 bh->b_end_io = handler;
54 bh->b_private = private;
55}
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
71void fastcall __lock_buffer(struct buffer_head *bh)
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
78void fastcall unlock_buffer(struct buffer_head *bh)
79{
72ed3d03 80 smp_mb__before_clear_bit();
1da177e4
LT
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
84}
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
95
96static void
97__clear_page_buffers(struct page *page)
98{
99 ClearPagePrivate(page);
4c21e2f2 100 set_page_private(page, 0);
1da177e4
LT
101 page_cache_release(page);
102}
103
104static void buffer_io_error(struct buffer_head *bh)
105{
106 char b[BDEVNAME_SIZE];
107
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
111}
112
113/*
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
116 */
117void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118{
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
124 }
125 unlock_buffer(bh);
126 put_bh(bh);
127}
128
129void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130{
131 char b[BDEVNAME_SIZE];
132
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
141 }
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
144 }
145 unlock_buffer(bh);
146 put_bh(bh);
147}
148
149/*
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
152 */
153int sync_blockdev(struct block_device *bdev)
154{
155 int ret = 0;
156
28fd1298
OH
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
159 return ret;
160}
161EXPORT_SYMBOL(sync_blockdev);
162
1da177e4
LT
163/*
164 * Write out and wait upon all dirty data associated with this
165 * device. Filesystem data as well as the underlying block
166 * device. Takes the superblock lock.
167 */
168int fsync_bdev(struct block_device *bdev)
169{
170 struct super_block *sb = get_super(bdev);
171 if (sb) {
172 int res = fsync_super(sb);
173 drop_super(sb);
174 return res;
175 }
176 return sync_blockdev(bdev);
177}
178
179/**
180 * freeze_bdev -- lock a filesystem and force it into a consistent state
181 * @bdev: blockdevice to lock
182 *
f73ca1b7 183 * This takes the block device bd_mount_sem to make sure no new mounts
1da177e4
LT
184 * happen on bdev until thaw_bdev() is called.
185 * If a superblock is found on this device, we take the s_umount semaphore
186 * on it to make sure nobody unmounts until the snapshot creation is done.
187 */
188struct super_block *freeze_bdev(struct block_device *bdev)
189{
190 struct super_block *sb;
191
f73ca1b7 192 down(&bdev->bd_mount_sem);
1da177e4
LT
193 sb = get_super(bdev);
194 if (sb && !(sb->s_flags & MS_RDONLY)) {
195 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 196 smp_wmb();
1da177e4 197
d25b9a1f 198 __fsync_super(sb);
1da177e4
LT
199
200 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 201 smp_wmb();
1da177e4
LT
202
203 sync_blockdev(sb->s_bdev);
204
205 if (sb->s_op->write_super_lockfs)
206 sb->s_op->write_super_lockfs(sb);
207 }
208
209 sync_blockdev(bdev);
210 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211}
212EXPORT_SYMBOL(freeze_bdev);
213
214/**
215 * thaw_bdev -- unlock filesystem
216 * @bdev: blockdevice to unlock
217 * @sb: associated superblock
218 *
219 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 */
221void thaw_bdev(struct block_device *bdev, struct super_block *sb)
222{
223 if (sb) {
224 BUG_ON(sb->s_bdev != bdev);
225
226 if (sb->s_op->unlockfs)
227 sb->s_op->unlockfs(sb);
228 sb->s_frozen = SB_UNFROZEN;
d59dd462 229 smp_wmb();
1da177e4
LT
230 wake_up(&sb->s_wait_unfrozen);
231 drop_super(sb);
232 }
233
f73ca1b7 234 up(&bdev->bd_mount_sem);
1da177e4
LT
235}
236EXPORT_SYMBOL(thaw_bdev);
237
1da177e4
LT
238/*
239 * Various filesystems appear to want __find_get_block to be non-blocking.
240 * But it's the page lock which protects the buffers. To get around this,
241 * we get exclusion from try_to_free_buffers with the blockdev mapping's
242 * private_lock.
243 *
244 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
245 * may be quite high. This code could TryLock the page, and if that
246 * succeeds, there is no need to take private_lock. (But if
247 * private_lock is contended then so is mapping->tree_lock).
248 */
249static struct buffer_head *
385fd4c5 250__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
251{
252 struct inode *bd_inode = bdev->bd_inode;
253 struct address_space *bd_mapping = bd_inode->i_mapping;
254 struct buffer_head *ret = NULL;
255 pgoff_t index;
256 struct buffer_head *bh;
257 struct buffer_head *head;
258 struct page *page;
259 int all_mapped = 1;
260
261 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
262 page = find_get_page(bd_mapping, index);
263 if (!page)
264 goto out;
265
266 spin_lock(&bd_mapping->private_lock);
267 if (!page_has_buffers(page))
268 goto out_unlock;
269 head = page_buffers(page);
270 bh = head;
271 do {
272 if (bh->b_blocknr == block) {
273 ret = bh;
274 get_bh(bh);
275 goto out_unlock;
276 }
277 if (!buffer_mapped(bh))
278 all_mapped = 0;
279 bh = bh->b_this_page;
280 } while (bh != head);
281
282 /* we might be here because some of the buffers on this page are
283 * not mapped. This is due to various races between
284 * file io on the block device and getblk. It gets dealt with
285 * elsewhere, don't buffer_error if we had some unmapped buffers
286 */
287 if (all_mapped) {
288 printk("__find_get_block_slow() failed. "
289 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
290 (unsigned long long)block,
291 (unsigned long long)bh->b_blocknr);
292 printk("b_state=0x%08lx, b_size=%zu\n",
293 bh->b_state, bh->b_size);
1da177e4
LT
294 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
295 }
296out_unlock:
297 spin_unlock(&bd_mapping->private_lock);
298 page_cache_release(page);
299out:
300 return ret;
301}
302
303/* If invalidate_buffers() will trash dirty buffers, it means some kind
304 of fs corruption is going on. Trashing dirty data always imply losing
305 information that was supposed to be just stored on the physical layer
306 by the user.
307
308 Thus invalidate_buffers in general usage is not allwowed to trash
309 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
310 be preserved. These buffers are simply skipped.
311
312 We also skip buffers which are still in use. For example this can
313 happen if a userspace program is reading the block device.
314
315 NOTE: In the case where the user removed a removable-media-disk even if
316 there's still dirty data not synced on disk (due a bug in the device driver
317 or due an error of the user), by not destroying the dirty buffers we could
318 generate corruption also on the next media inserted, thus a parameter is
319 necessary to handle this case in the most safe way possible (trying
320 to not corrupt also the new disk inserted with the data belonging to
321 the old now corrupted disk). Also for the ramdisk the natural thing
322 to do in order to release the ramdisk memory is to destroy dirty buffers.
323
324 These are two special cases. Normal usage imply the device driver
325 to issue a sync on the device (without waiting I/O completion) and
326 then an invalidate_buffers call that doesn't trash dirty buffers.
327
328 For handling cache coherency with the blkdev pagecache the 'update' case
329 is been introduced. It is needed to re-read from disk any pinned
330 buffer. NOTE: re-reading from disk is destructive so we can do it only
331 when we assume nobody is changing the buffercache under our I/O and when
332 we think the disk contains more recent information than the buffercache.
333 The update == 1 pass marks the buffers we need to update, the update == 2
334 pass does the actual I/O. */
f98393a6 335void invalidate_bdev(struct block_device *bdev)
1da177e4 336{
0e1dfc66
AM
337 struct address_space *mapping = bdev->bd_inode->i_mapping;
338
339 if (mapping->nrpages == 0)
340 return;
341
1da177e4 342 invalidate_bh_lrus();
fc0ecff6 343 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
344}
345
346/*
347 * Kick pdflush then try to free up some ZONE_NORMAL memory.
348 */
349static void free_more_memory(void)
350{
351 struct zone **zones;
352 pg_data_t *pgdat;
353
687a21ce 354 wakeup_pdflush(1024);
1da177e4
LT
355 yield();
356
ec936fc5 357 for_each_online_pgdat(pgdat) {
af4ca457 358 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 359 if (*zones)
1ad539b2 360 try_to_free_pages(zones, GFP_NOFS);
1da177e4
LT
361 }
362}
363
364/*
365 * I/O completion handler for block_read_full_page() - pages
366 * which come unlocked at the end of I/O.
367 */
368static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
369{
1da177e4 370 unsigned long flags;
a3972203 371 struct buffer_head *first;
1da177e4
LT
372 struct buffer_head *tmp;
373 struct page *page;
374 int page_uptodate = 1;
375
376 BUG_ON(!buffer_async_read(bh));
377
378 page = bh->b_page;
379 if (uptodate) {
380 set_buffer_uptodate(bh);
381 } else {
382 clear_buffer_uptodate(bh);
383 if (printk_ratelimit())
384 buffer_io_error(bh);
385 SetPageError(page);
386 }
387
388 /*
389 * Be _very_ careful from here on. Bad things can happen if
390 * two buffer heads end IO at almost the same time and both
391 * decide that the page is now completely done.
392 */
a3972203
NP
393 first = page_buffers(page);
394 local_irq_save(flags);
395 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
396 clear_buffer_async_read(bh);
397 unlock_buffer(bh);
398 tmp = bh;
399 do {
400 if (!buffer_uptodate(tmp))
401 page_uptodate = 0;
402 if (buffer_async_read(tmp)) {
403 BUG_ON(!buffer_locked(tmp));
404 goto still_busy;
405 }
406 tmp = tmp->b_this_page;
407 } while (tmp != bh);
a3972203
NP
408 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409 local_irq_restore(flags);
1da177e4
LT
410
411 /*
412 * If none of the buffers had errors and they are all
413 * uptodate then we can set the page uptodate.
414 */
415 if (page_uptodate && !PageError(page))
416 SetPageUptodate(page);
417 unlock_page(page);
418 return;
419
420still_busy:
a3972203
NP
421 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
422 local_irq_restore(flags);
1da177e4
LT
423 return;
424}
425
426/*
427 * Completion handler for block_write_full_page() - pages which are unlocked
428 * during I/O, and which have PageWriteback cleared upon I/O completion.
429 */
b6cd0b77 430static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
431{
432 char b[BDEVNAME_SIZE];
1da177e4 433 unsigned long flags;
a3972203 434 struct buffer_head *first;
1da177e4
LT
435 struct buffer_head *tmp;
436 struct page *page;
437
438 BUG_ON(!buffer_async_write(bh));
439
440 page = bh->b_page;
441 if (uptodate) {
442 set_buffer_uptodate(bh);
443 } else {
444 if (printk_ratelimit()) {
445 buffer_io_error(bh);
446 printk(KERN_WARNING "lost page write due to "
447 "I/O error on %s\n",
448 bdevname(bh->b_bdev, b));
449 }
450 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 451 set_buffer_write_io_error(bh);
1da177e4
LT
452 clear_buffer_uptodate(bh);
453 SetPageError(page);
454 }
455
a3972203
NP
456 first = page_buffers(page);
457 local_irq_save(flags);
458 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
459
1da177e4
LT
460 clear_buffer_async_write(bh);
461 unlock_buffer(bh);
462 tmp = bh->b_this_page;
463 while (tmp != bh) {
464 if (buffer_async_write(tmp)) {
465 BUG_ON(!buffer_locked(tmp));
466 goto still_busy;
467 }
468 tmp = tmp->b_this_page;
469 }
a3972203
NP
470 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
471 local_irq_restore(flags);
1da177e4
LT
472 end_page_writeback(page);
473 return;
474
475still_busy:
a3972203
NP
476 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
477 local_irq_restore(flags);
1da177e4
LT
478 return;
479}
480
481/*
482 * If a page's buffers are under async readin (end_buffer_async_read
483 * completion) then there is a possibility that another thread of
484 * control could lock one of the buffers after it has completed
485 * but while some of the other buffers have not completed. This
486 * locked buffer would confuse end_buffer_async_read() into not unlocking
487 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
488 * that this buffer is not under async I/O.
489 *
490 * The page comes unlocked when it has no locked buffer_async buffers
491 * left.
492 *
493 * PageLocked prevents anyone starting new async I/O reads any of
494 * the buffers.
495 *
496 * PageWriteback is used to prevent simultaneous writeout of the same
497 * page.
498 *
499 * PageLocked prevents anyone from starting writeback of a page which is
500 * under read I/O (PageWriteback is only ever set against a locked page).
501 */
502static void mark_buffer_async_read(struct buffer_head *bh)
503{
504 bh->b_end_io = end_buffer_async_read;
505 set_buffer_async_read(bh);
506}
507
508void mark_buffer_async_write(struct buffer_head *bh)
509{
510 bh->b_end_io = end_buffer_async_write;
511 set_buffer_async_write(bh);
512}
513EXPORT_SYMBOL(mark_buffer_async_write);
514
515
516/*
517 * fs/buffer.c contains helper functions for buffer-backed address space's
518 * fsync functions. A common requirement for buffer-based filesystems is
519 * that certain data from the backing blockdev needs to be written out for
520 * a successful fsync(). For example, ext2 indirect blocks need to be
521 * written back and waited upon before fsync() returns.
522 *
523 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
524 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
525 * management of a list of dependent buffers at ->i_mapping->private_list.
526 *
527 * Locking is a little subtle: try_to_free_buffers() will remove buffers
528 * from their controlling inode's queue when they are being freed. But
529 * try_to_free_buffers() will be operating against the *blockdev* mapping
530 * at the time, not against the S_ISREG file which depends on those buffers.
531 * So the locking for private_list is via the private_lock in the address_space
532 * which backs the buffers. Which is different from the address_space
533 * against which the buffers are listed. So for a particular address_space,
534 * mapping->private_lock does *not* protect mapping->private_list! In fact,
535 * mapping->private_list will always be protected by the backing blockdev's
536 * ->private_lock.
537 *
538 * Which introduces a requirement: all buffers on an address_space's
539 * ->private_list must be from the same address_space: the blockdev's.
540 *
541 * address_spaces which do not place buffers at ->private_list via these
542 * utility functions are free to use private_lock and private_list for
543 * whatever they want. The only requirement is that list_empty(private_list)
544 * be true at clear_inode() time.
545 *
546 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
547 * filesystems should do that. invalidate_inode_buffers() should just go
548 * BUG_ON(!list_empty).
549 *
550 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
551 * take an address_space, not an inode. And it should be called
552 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
553 * queued up.
554 *
555 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
556 * list if it is already on a list. Because if the buffer is on a list,
557 * it *must* already be on the right one. If not, the filesystem is being
558 * silly. This will save a ton of locking. But first we have to ensure
559 * that buffers are taken *off* the old inode's list when they are freed
560 * (presumably in truncate). That requires careful auditing of all
561 * filesystems (do it inside bforget()). It could also be done by bringing
562 * b_inode back.
563 */
564
565/*
566 * The buffer's backing address_space's private_lock must be held
567 */
568static inline void __remove_assoc_queue(struct buffer_head *bh)
569{
570 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
571 WARN_ON(!bh->b_assoc_map);
572 if (buffer_write_io_error(bh))
573 set_bit(AS_EIO, &bh->b_assoc_map->flags);
574 bh->b_assoc_map = NULL;
1da177e4
LT
575}
576
577int inode_has_buffers(struct inode *inode)
578{
579 return !list_empty(&inode->i_data.private_list);
580}
581
582/*
583 * osync is designed to support O_SYNC io. It waits synchronously for
584 * all already-submitted IO to complete, but does not queue any new
585 * writes to the disk.
586 *
587 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
588 * you dirty the buffers, and then use osync_inode_buffers to wait for
589 * completion. Any other dirty buffers which are not yet queued for
590 * write will not be flushed to disk by the osync.
591 */
592static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
593{
594 struct buffer_head *bh;
595 struct list_head *p;
596 int err = 0;
597
598 spin_lock(lock);
599repeat:
600 list_for_each_prev(p, list) {
601 bh = BH_ENTRY(p);
602 if (buffer_locked(bh)) {
603 get_bh(bh);
604 spin_unlock(lock);
605 wait_on_buffer(bh);
606 if (!buffer_uptodate(bh))
607 err = -EIO;
608 brelse(bh);
609 spin_lock(lock);
610 goto repeat;
611 }
612 }
613 spin_unlock(lock);
614 return err;
615}
616
617/**
618 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * buffers
67be2dd1 620 * @mapping: the mapping which wants those buffers written
1da177e4
LT
621 *
622 * Starts I/O against the buffers at mapping->private_list, and waits upon
623 * that I/O.
624 *
67be2dd1
MW
625 * Basically, this is a convenience function for fsync().
626 * @mapping is a file or directory which needs those buffers to be written for
627 * a successful fsync().
1da177e4
LT
628 */
629int sync_mapping_buffers(struct address_space *mapping)
630{
631 struct address_space *buffer_mapping = mapping->assoc_mapping;
632
633 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
634 return 0;
635
636 return fsync_buffers_list(&buffer_mapping->private_lock,
637 &mapping->private_list);
638}
639EXPORT_SYMBOL(sync_mapping_buffers);
640
641/*
642 * Called when we've recently written block `bblock', and it is known that
643 * `bblock' was for a buffer_boundary() buffer. This means that the block at
644 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
645 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 */
647void write_boundary_block(struct block_device *bdev,
648 sector_t bblock, unsigned blocksize)
649{
650 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
651 if (bh) {
652 if (buffer_dirty(bh))
653 ll_rw_block(WRITE, 1, &bh);
654 put_bh(bh);
655 }
656}
657
658void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
659{
660 struct address_space *mapping = inode->i_mapping;
661 struct address_space *buffer_mapping = bh->b_page->mapping;
662
663 mark_buffer_dirty(bh);
664 if (!mapping->assoc_mapping) {
665 mapping->assoc_mapping = buffer_mapping;
666 } else {
e827f923 667 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4
LT
668 }
669 if (list_empty(&bh->b_assoc_buffers)) {
670 spin_lock(&buffer_mapping->private_lock);
671 list_move_tail(&bh->b_assoc_buffers,
672 &mapping->private_list);
58ff407b 673 bh->b_assoc_map = mapping;
1da177e4
LT
674 spin_unlock(&buffer_mapping->private_lock);
675 }
676}
677EXPORT_SYMBOL(mark_buffer_dirty_inode);
678
679/*
680 * Add a page to the dirty page list.
681 *
682 * It is a sad fact of life that this function is called from several places
683 * deeply under spinlocking. It may not sleep.
684 *
685 * If the page has buffers, the uptodate buffers are set dirty, to preserve
686 * dirty-state coherency between the page and the buffers. It the page does
687 * not have buffers then when they are later attached they will all be set
688 * dirty.
689 *
690 * The buffers are dirtied before the page is dirtied. There's a small race
691 * window in which a writepage caller may see the page cleanness but not the
692 * buffer dirtiness. That's fine. If this code were to set the page dirty
693 * before the buffers, a concurrent writepage caller could clear the page dirty
694 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695 * page on the dirty page list.
696 *
697 * We use private_lock to lock against try_to_free_buffers while using the
698 * page's buffer list. Also use this to protect against clean buffers being
699 * added to the page after it was set dirty.
700 *
701 * FIXME: may need to call ->reservepage here as well. That's rather up to the
702 * address_space though.
703 */
704int __set_page_dirty_buffers(struct page *page)
705{
ebf7a227
NP
706 struct address_space * const mapping = page_mapping(page);
707
708 if (unlikely(!mapping))
709 return !TestSetPageDirty(page);
1da177e4
LT
710
711 spin_lock(&mapping->private_lock);
712 if (page_has_buffers(page)) {
713 struct buffer_head *head = page_buffers(page);
714 struct buffer_head *bh = head;
715
716 do {
717 set_buffer_dirty(bh);
718 bh = bh->b_this_page;
719 } while (bh != head);
720 }
721 spin_unlock(&mapping->private_lock);
722
8c08540f
AM
723 if (TestSetPageDirty(page))
724 return 0;
725
726 write_lock_irq(&mapping->tree_lock);
727 if (page->mapping) { /* Race with truncate? */
55e829af 728 if (mapping_cap_account_dirty(mapping)) {
8c08540f 729 __inc_zone_page_state(page, NR_FILE_DIRTY);
55e829af
AM
730 task_io_account_write(PAGE_CACHE_SIZE);
731 }
8c08540f
AM
732 radix_tree_tag_set(&mapping->page_tree,
733 page_index(page), PAGECACHE_TAG_DIRTY);
1da177e4 734 }
8c08540f
AM
735 write_unlock_irq(&mapping->tree_lock);
736 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
737 return 1;
1da177e4
LT
738}
739EXPORT_SYMBOL(__set_page_dirty_buffers);
740
741/*
742 * Write out and wait upon a list of buffers.
743 *
744 * We have conflicting pressures: we want to make sure that all
745 * initially dirty buffers get waited on, but that any subsequently
746 * dirtied buffers don't. After all, we don't want fsync to last
747 * forever if somebody is actively writing to the file.
748 *
749 * Do this in two main stages: first we copy dirty buffers to a
750 * temporary inode list, queueing the writes as we go. Then we clean
751 * up, waiting for those writes to complete.
752 *
753 * During this second stage, any subsequent updates to the file may end
754 * up refiling the buffer on the original inode's dirty list again, so
755 * there is a chance we will end up with a buffer queued for write but
756 * not yet completed on that list. So, as a final cleanup we go through
757 * the osync code to catch these locked, dirty buffers without requeuing
758 * any newly dirty buffers for write.
759 */
760static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
761{
762 struct buffer_head *bh;
763 struct list_head tmp;
764 int err = 0, err2;
765
766 INIT_LIST_HEAD(&tmp);
767
768 spin_lock(lock);
769 while (!list_empty(list)) {
770 bh = BH_ENTRY(list->next);
58ff407b 771 __remove_assoc_queue(bh);
1da177e4
LT
772 if (buffer_dirty(bh) || buffer_locked(bh)) {
773 list_add(&bh->b_assoc_buffers, &tmp);
774 if (buffer_dirty(bh)) {
775 get_bh(bh);
776 spin_unlock(lock);
777 /*
778 * Ensure any pending I/O completes so that
779 * ll_rw_block() actually writes the current
780 * contents - it is a noop if I/O is still in
781 * flight on potentially older contents.
782 */
a7662236 783 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
784 brelse(bh);
785 spin_lock(lock);
786 }
787 }
788 }
789
790 while (!list_empty(&tmp)) {
791 bh = BH_ENTRY(tmp.prev);
58ff407b 792 list_del_init(&bh->b_assoc_buffers);
1da177e4
LT
793 get_bh(bh);
794 spin_unlock(lock);
795 wait_on_buffer(bh);
796 if (!buffer_uptodate(bh))
797 err = -EIO;
798 brelse(bh);
799 spin_lock(lock);
800 }
801
802 spin_unlock(lock);
803 err2 = osync_buffers_list(lock, list);
804 if (err)
805 return err;
806 else
807 return err2;
808}
809
810/*
811 * Invalidate any and all dirty buffers on a given inode. We are
812 * probably unmounting the fs, but that doesn't mean we have already
813 * done a sync(). Just drop the buffers from the inode list.
814 *
815 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
816 * assumes that all the buffers are against the blockdev. Not true
817 * for reiserfs.
818 */
819void invalidate_inode_buffers(struct inode *inode)
820{
821 if (inode_has_buffers(inode)) {
822 struct address_space *mapping = &inode->i_data;
823 struct list_head *list = &mapping->private_list;
824 struct address_space *buffer_mapping = mapping->assoc_mapping;
825
826 spin_lock(&buffer_mapping->private_lock);
827 while (!list_empty(list))
828 __remove_assoc_queue(BH_ENTRY(list->next));
829 spin_unlock(&buffer_mapping->private_lock);
830 }
831}
832
833/*
834 * Remove any clean buffers from the inode's buffer list. This is called
835 * when we're trying to free the inode itself. Those buffers can pin it.
836 *
837 * Returns true if all buffers were removed.
838 */
839int remove_inode_buffers(struct inode *inode)
840{
841 int ret = 1;
842
843 if (inode_has_buffers(inode)) {
844 struct address_space *mapping = &inode->i_data;
845 struct list_head *list = &mapping->private_list;
846 struct address_space *buffer_mapping = mapping->assoc_mapping;
847
848 spin_lock(&buffer_mapping->private_lock);
849 while (!list_empty(list)) {
850 struct buffer_head *bh = BH_ENTRY(list->next);
851 if (buffer_dirty(bh)) {
852 ret = 0;
853 break;
854 }
855 __remove_assoc_queue(bh);
856 }
857 spin_unlock(&buffer_mapping->private_lock);
858 }
859 return ret;
860}
861
862/*
863 * Create the appropriate buffers when given a page for data area and
864 * the size of each buffer.. Use the bh->b_this_page linked list to
865 * follow the buffers created. Return NULL if unable to create more
866 * buffers.
867 *
868 * The retry flag is used to differentiate async IO (paging, swapping)
869 * which may not fail from ordinary buffer allocations.
870 */
871struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
872 int retry)
873{
874 struct buffer_head *bh, *head;
875 long offset;
876
877try_again:
878 head = NULL;
879 offset = PAGE_SIZE;
880 while ((offset -= size) >= 0) {
881 bh = alloc_buffer_head(GFP_NOFS);
882 if (!bh)
883 goto no_grow;
884
885 bh->b_bdev = NULL;
886 bh->b_this_page = head;
887 bh->b_blocknr = -1;
888 head = bh;
889
890 bh->b_state = 0;
891 atomic_set(&bh->b_count, 0);
fc5cd582 892 bh->b_private = NULL;
1da177e4
LT
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
897
01ffe339 898 init_buffer(bh, NULL, NULL);
1da177e4
LT
899 }
900 return head;
901/*
902 * In case anything failed, we just free everything we got.
903 */
904no_grow:
905 if (head) {
906 do {
907 bh = head;
908 head = head->b_this_page;
909 free_buffer_head(bh);
910 } while (head);
911 }
912
913 /*
914 * Return failure for non-async IO requests. Async IO requests
915 * are not allowed to fail, so we have to wait until buffer heads
916 * become available. But we don't want tasks sleeping with
917 * partially complete buffers, so all were released above.
918 */
919 if (!retry)
920 return NULL;
921
922 /* We're _really_ low on memory. Now we just
923 * wait for old buffer heads to become free due to
924 * finishing IO. Since this is an async request and
925 * the reserve list is empty, we're sure there are
926 * async buffer heads in use.
927 */
928 free_more_memory();
929 goto try_again;
930}
931EXPORT_SYMBOL_GPL(alloc_page_buffers);
932
933static inline void
934link_dev_buffers(struct page *page, struct buffer_head *head)
935{
936 struct buffer_head *bh, *tail;
937
938 bh = head;
939 do {
940 tail = bh;
941 bh = bh->b_this_page;
942 } while (bh);
943 tail->b_this_page = head;
944 attach_page_buffers(page, head);
945}
946
947/*
948 * Initialise the state of a blockdev page's buffers.
949 */
950static void
951init_page_buffers(struct page *page, struct block_device *bdev,
952 sector_t block, int size)
953{
954 struct buffer_head *head = page_buffers(page);
955 struct buffer_head *bh = head;
956 int uptodate = PageUptodate(page);
957
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 set_buffer_mapped(bh);
966 }
967 block++;
968 bh = bh->b_this_page;
969 } while (bh != head);
970}
971
972/*
973 * Create the page-cache page that contains the requested block.
974 *
975 * This is user purely for blockdev mappings.
976 */
977static struct page *
978grow_dev_page(struct block_device *bdev, sector_t block,
979 pgoff_t index, int size)
980{
981 struct inode *inode = bdev->bd_inode;
982 struct page *page;
983 struct buffer_head *bh;
984
985 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
986 if (!page)
987 return NULL;
988
e827f923 989 BUG_ON(!PageLocked(page));
1da177e4
LT
990
991 if (page_has_buffers(page)) {
992 bh = page_buffers(page);
993 if (bh->b_size == size) {
994 init_page_buffers(page, bdev, block, size);
995 return page;
996 }
997 if (!try_to_free_buffers(page))
998 goto failed;
999 }
1000
1001 /*
1002 * Allocate some buffers for this page
1003 */
1004 bh = alloc_page_buffers(page, size, 0);
1005 if (!bh)
1006 goto failed;
1007
1008 /*
1009 * Link the page to the buffers and initialise them. Take the
1010 * lock to be atomic wrt __find_get_block(), which does not
1011 * run under the page lock.
1012 */
1013 spin_lock(&inode->i_mapping->private_lock);
1014 link_dev_buffers(page, bh);
1015 init_page_buffers(page, bdev, block, size);
1016 spin_unlock(&inode->i_mapping->private_lock);
1017 return page;
1018
1019failed:
1020 BUG();
1021 unlock_page(page);
1022 page_cache_release(page);
1023 return NULL;
1024}
1025
1026/*
1027 * Create buffers for the specified block device block's page. If
1028 * that page was dirty, the buffers are set dirty also.
1029 *
1030 * Except that's a bug. Attaching dirty buffers to a dirty
1031 * blockdev's page can result in filesystem corruption, because
1032 * some of those buffers may be aliases of filesystem data.
1033 * grow_dev_page() will go BUG() if this happens.
1034 */
858119e1 1035static int
1da177e4
LT
1036grow_buffers(struct block_device *bdev, sector_t block, int size)
1037{
1038 struct page *page;
1039 pgoff_t index;
1040 int sizebits;
1041
1042 sizebits = -1;
1043 do {
1044 sizebits++;
1045 } while ((size << sizebits) < PAGE_SIZE);
1046
1047 index = block >> sizebits;
1da177e4 1048
e5657933
AM
1049 /*
1050 * Check for a block which wants to lie outside our maximum possible
1051 * pagecache index. (this comparison is done using sector_t types).
1052 */
1053 if (unlikely(index != block >> sizebits)) {
1054 char b[BDEVNAME_SIZE];
1055
1056 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1057 "device %s\n",
1058 __FUNCTION__, (unsigned long long)block,
1059 bdevname(bdev, b));
1060 return -EIO;
1061 }
1062 block = index << sizebits;
1da177e4
LT
1063 /* Create a page with the proper size buffers.. */
1064 page = grow_dev_page(bdev, block, index, size);
1065 if (!page)
1066 return 0;
1067 unlock_page(page);
1068 page_cache_release(page);
1069 return 1;
1070}
1071
75c96f85 1072static struct buffer_head *
1da177e4
LT
1073__getblk_slow(struct block_device *bdev, sector_t block, int size)
1074{
1075 /* Size must be multiple of hard sectorsize */
1076 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1077 (size < 512 || size > PAGE_SIZE))) {
1078 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1079 size);
1080 printk(KERN_ERR "hardsect size: %d\n",
1081 bdev_hardsect_size(bdev));
1082
1083 dump_stack();
1084 return NULL;
1085 }
1086
1087 for (;;) {
1088 struct buffer_head * bh;
e5657933 1089 int ret;
1da177e4
LT
1090
1091 bh = __find_get_block(bdev, block, size);
1092 if (bh)
1093 return bh;
1094
e5657933
AM
1095 ret = grow_buffers(bdev, block, size);
1096 if (ret < 0)
1097 return NULL;
1098 if (ret == 0)
1da177e4
LT
1099 free_more_memory();
1100 }
1101}
1102
1103/*
1104 * The relationship between dirty buffers and dirty pages:
1105 *
1106 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1107 * the page is tagged dirty in its radix tree.
1108 *
1109 * At all times, the dirtiness of the buffers represents the dirtiness of
1110 * subsections of the page. If the page has buffers, the page dirty bit is
1111 * merely a hint about the true dirty state.
1112 *
1113 * When a page is set dirty in its entirety, all its buffers are marked dirty
1114 * (if the page has buffers).
1115 *
1116 * When a buffer is marked dirty, its page is dirtied, but the page's other
1117 * buffers are not.
1118 *
1119 * Also. When blockdev buffers are explicitly read with bread(), they
1120 * individually become uptodate. But their backing page remains not
1121 * uptodate - even if all of its buffers are uptodate. A subsequent
1122 * block_read_full_page() against that page will discover all the uptodate
1123 * buffers, will set the page uptodate and will perform no I/O.
1124 */
1125
1126/**
1127 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1128 * @bh: the buffer_head to mark dirty
1da177e4
LT
1129 *
1130 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1131 * backing page dirty, then tag the page as dirty in its address_space's radix
1132 * tree and then attach the address_space's inode to its superblock's dirty
1133 * inode list.
1134 *
1135 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1136 * mapping->tree_lock and the global inode_lock.
1137 */
1138void fastcall mark_buffer_dirty(struct buffer_head *bh)
1139{
1140 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1141 __set_page_dirty_nobuffers(bh->b_page);
1142}
1143
1144/*
1145 * Decrement a buffer_head's reference count. If all buffers against a page
1146 * have zero reference count, are clean and unlocked, and if the page is clean
1147 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1148 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1149 * a page but it ends up not being freed, and buffers may later be reattached).
1150 */
1151void __brelse(struct buffer_head * buf)
1152{
1153 if (atomic_read(&buf->b_count)) {
1154 put_bh(buf);
1155 return;
1156 }
1157 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1158 WARN_ON(1);
1159}
1160
1161/*
1162 * bforget() is like brelse(), except it discards any
1163 * potentially dirty data.
1164 */
1165void __bforget(struct buffer_head *bh)
1166{
1167 clear_buffer_dirty(bh);
1168 if (!list_empty(&bh->b_assoc_buffers)) {
1169 struct address_space *buffer_mapping = bh->b_page->mapping;
1170
1171 spin_lock(&buffer_mapping->private_lock);
1172 list_del_init(&bh->b_assoc_buffers);
58ff407b 1173 bh->b_assoc_map = NULL;
1da177e4
LT
1174 spin_unlock(&buffer_mapping->private_lock);
1175 }
1176 __brelse(bh);
1177}
1178
1179static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180{
1181 lock_buffer(bh);
1182 if (buffer_uptodate(bh)) {
1183 unlock_buffer(bh);
1184 return bh;
1185 } else {
1186 get_bh(bh);
1187 bh->b_end_io = end_buffer_read_sync;
1188 submit_bh(READ, bh);
1189 wait_on_buffer(bh);
1190 if (buffer_uptodate(bh))
1191 return bh;
1192 }
1193 brelse(bh);
1194 return NULL;
1195}
1196
1197/*
1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1200 * refcount elevated by one when they're in an LRU. A buffer can only appear
1201 * once in a particular CPU's LRU. A single buffer can be present in multiple
1202 * CPU's LRUs at the same time.
1203 *
1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205 * sb_find_get_block().
1206 *
1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1208 * a local interrupt disable for that.
1209 */
1210
1211#define BH_LRU_SIZE 8
1212
1213struct bh_lru {
1214 struct buffer_head *bhs[BH_LRU_SIZE];
1215};
1216
1217static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218
1219#ifdef CONFIG_SMP
1220#define bh_lru_lock() local_irq_disable()
1221#define bh_lru_unlock() local_irq_enable()
1222#else
1223#define bh_lru_lock() preempt_disable()
1224#define bh_lru_unlock() preempt_enable()
1225#endif
1226
1227static inline void check_irqs_on(void)
1228{
1229#ifdef irqs_disabled
1230 BUG_ON(irqs_disabled());
1231#endif
1232}
1233
1234/*
1235 * The LRU management algorithm is dopey-but-simple. Sorry.
1236 */
1237static void bh_lru_install(struct buffer_head *bh)
1238{
1239 struct buffer_head *evictee = NULL;
1240 struct bh_lru *lru;
1241
1242 check_irqs_on();
1243 bh_lru_lock();
1244 lru = &__get_cpu_var(bh_lrus);
1245 if (lru->bhs[0] != bh) {
1246 struct buffer_head *bhs[BH_LRU_SIZE];
1247 int in;
1248 int out = 0;
1249
1250 get_bh(bh);
1251 bhs[out++] = bh;
1252 for (in = 0; in < BH_LRU_SIZE; in++) {
1253 struct buffer_head *bh2 = lru->bhs[in];
1254
1255 if (bh2 == bh) {
1256 __brelse(bh2);
1257 } else {
1258 if (out >= BH_LRU_SIZE) {
1259 BUG_ON(evictee != NULL);
1260 evictee = bh2;
1261 } else {
1262 bhs[out++] = bh2;
1263 }
1264 }
1265 }
1266 while (out < BH_LRU_SIZE)
1267 bhs[out++] = NULL;
1268 memcpy(lru->bhs, bhs, sizeof(bhs));
1269 }
1270 bh_lru_unlock();
1271
1272 if (evictee)
1273 __brelse(evictee);
1274}
1275
1276/*
1277 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1278 */
858119e1 1279static struct buffer_head *
3991d3bd 1280lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1281{
1282 struct buffer_head *ret = NULL;
1283 struct bh_lru *lru;
3991d3bd 1284 unsigned int i;
1da177e4
LT
1285
1286 check_irqs_on();
1287 bh_lru_lock();
1288 lru = &__get_cpu_var(bh_lrus);
1289 for (i = 0; i < BH_LRU_SIZE; i++) {
1290 struct buffer_head *bh = lru->bhs[i];
1291
1292 if (bh && bh->b_bdev == bdev &&
1293 bh->b_blocknr == block && bh->b_size == size) {
1294 if (i) {
1295 while (i) {
1296 lru->bhs[i] = lru->bhs[i - 1];
1297 i--;
1298 }
1299 lru->bhs[0] = bh;
1300 }
1301 get_bh(bh);
1302 ret = bh;
1303 break;
1304 }
1305 }
1306 bh_lru_unlock();
1307 return ret;
1308}
1309
1310/*
1311 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1312 * it in the LRU and mark it as accessed. If it is not present then return
1313 * NULL
1314 */
1315struct buffer_head *
3991d3bd 1316__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1317{
1318 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1319
1320 if (bh == NULL) {
385fd4c5 1321 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1322 if (bh)
1323 bh_lru_install(bh);
1324 }
1325 if (bh)
1326 touch_buffer(bh);
1327 return bh;
1328}
1329EXPORT_SYMBOL(__find_get_block);
1330
1331/*
1332 * __getblk will locate (and, if necessary, create) the buffer_head
1333 * which corresponds to the passed block_device, block and size. The
1334 * returned buffer has its reference count incremented.
1335 *
1336 * __getblk() cannot fail - it just keeps trying. If you pass it an
1337 * illegal block number, __getblk() will happily return a buffer_head
1338 * which represents the non-existent block. Very weird.
1339 *
1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341 * attempt is failing. FIXME, perhaps?
1342 */
1343struct buffer_head *
3991d3bd 1344__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1345{
1346 struct buffer_head *bh = __find_get_block(bdev, block, size);
1347
1348 might_sleep();
1349 if (bh == NULL)
1350 bh = __getblk_slow(bdev, block, size);
1351 return bh;
1352}
1353EXPORT_SYMBOL(__getblk);
1354
1355/*
1356 * Do async read-ahead on a buffer..
1357 */
3991d3bd 1358void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1359{
1360 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1361 if (likely(bh)) {
1362 ll_rw_block(READA, 1, &bh);
1363 brelse(bh);
1364 }
1da177e4
LT
1365}
1366EXPORT_SYMBOL(__breadahead);
1367
1368/**
1369 * __bread() - reads a specified block and returns the bh
67be2dd1 1370 * @bdev: the block_device to read from
1da177e4
LT
1371 * @block: number of block
1372 * @size: size (in bytes) to read
1373 *
1374 * Reads a specified block, and returns buffer head that contains it.
1375 * It returns NULL if the block was unreadable.
1376 */
1377struct buffer_head *
3991d3bd 1378__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1379{
1380 struct buffer_head *bh = __getblk(bdev, block, size);
1381
a3e713b5 1382 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1383 bh = __bread_slow(bh);
1384 return bh;
1385}
1386EXPORT_SYMBOL(__bread);
1387
1388/*
1389 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390 * This doesn't race because it runs in each cpu either in irq
1391 * or with preempt disabled.
1392 */
1393static void invalidate_bh_lru(void *arg)
1394{
1395 struct bh_lru *b = &get_cpu_var(bh_lrus);
1396 int i;
1397
1398 for (i = 0; i < BH_LRU_SIZE; i++) {
1399 brelse(b->bhs[i]);
1400 b->bhs[i] = NULL;
1401 }
1402 put_cpu_var(bh_lrus);
1403}
1404
f9a14399 1405void invalidate_bh_lrus(void)
1da177e4
LT
1406{
1407 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1408}
1409
1410void set_bh_page(struct buffer_head *bh,
1411 struct page *page, unsigned long offset)
1412{
1413 bh->b_page = page;
e827f923 1414 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1415 if (PageHighMem(page))
1416 /*
1417 * This catches illegal uses and preserves the offset:
1418 */
1419 bh->b_data = (char *)(0 + offset);
1420 else
1421 bh->b_data = page_address(page) + offset;
1422}
1423EXPORT_SYMBOL(set_bh_page);
1424
1425/*
1426 * Called when truncating a buffer on a page completely.
1427 */
858119e1 1428static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1429{
1430 lock_buffer(bh);
1431 clear_buffer_dirty(bh);
1432 bh->b_bdev = NULL;
1433 clear_buffer_mapped(bh);
1434 clear_buffer_req(bh);
1435 clear_buffer_new(bh);
1436 clear_buffer_delay(bh);
33a266dd 1437 clear_buffer_unwritten(bh);
1da177e4
LT
1438 unlock_buffer(bh);
1439}
1440
1da177e4
LT
1441/**
1442 * block_invalidatepage - invalidate part of all of a buffer-backed page
1443 *
1444 * @page: the page which is affected
1445 * @offset: the index of the truncation point
1446 *
1447 * block_invalidatepage() is called when all or part of the page has become
1448 * invalidatedby a truncate operation.
1449 *
1450 * block_invalidatepage() does not have to release all buffers, but it must
1451 * ensure that no dirty buffer is left outside @offset and that no I/O
1452 * is underway against any of the blocks which are outside the truncation
1453 * point. Because the caller is about to free (and possibly reuse) those
1454 * blocks on-disk.
1455 */
2ff28e22 1456void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1457{
1458 struct buffer_head *head, *bh, *next;
1459 unsigned int curr_off = 0;
1da177e4
LT
1460
1461 BUG_ON(!PageLocked(page));
1462 if (!page_has_buffers(page))
1463 goto out;
1464
1465 head = page_buffers(page);
1466 bh = head;
1467 do {
1468 unsigned int next_off = curr_off + bh->b_size;
1469 next = bh->b_this_page;
1470
1471 /*
1472 * is this block fully invalidated?
1473 */
1474 if (offset <= curr_off)
1475 discard_buffer(bh);
1476 curr_off = next_off;
1477 bh = next;
1478 } while (bh != head);
1479
1480 /*
1481 * We release buffers only if the entire page is being invalidated.
1482 * The get_block cached value has been unconditionally invalidated,
1483 * so real IO is not possible anymore.
1484 */
1485 if (offset == 0)
2ff28e22 1486 try_to_release_page(page, 0);
1da177e4 1487out:
2ff28e22 1488 return;
1da177e4
LT
1489}
1490EXPORT_SYMBOL(block_invalidatepage);
1491
1492/*
1493 * We attach and possibly dirty the buffers atomically wrt
1494 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1495 * is already excluded via the page lock.
1496 */
1497void create_empty_buffers(struct page *page,
1498 unsigned long blocksize, unsigned long b_state)
1499{
1500 struct buffer_head *bh, *head, *tail;
1501
1502 head = alloc_page_buffers(page, blocksize, 1);
1503 bh = head;
1504 do {
1505 bh->b_state |= b_state;
1506 tail = bh;
1507 bh = bh->b_this_page;
1508 } while (bh);
1509 tail->b_this_page = head;
1510
1511 spin_lock(&page->mapping->private_lock);
1512 if (PageUptodate(page) || PageDirty(page)) {
1513 bh = head;
1514 do {
1515 if (PageDirty(page))
1516 set_buffer_dirty(bh);
1517 if (PageUptodate(page))
1518 set_buffer_uptodate(bh);
1519 bh = bh->b_this_page;
1520 } while (bh != head);
1521 }
1522 attach_page_buffers(page, head);
1523 spin_unlock(&page->mapping->private_lock);
1524}
1525EXPORT_SYMBOL(create_empty_buffers);
1526
1527/*
1528 * We are taking a block for data and we don't want any output from any
1529 * buffer-cache aliases starting from return from that function and
1530 * until the moment when something will explicitly mark the buffer
1531 * dirty (hopefully that will not happen until we will free that block ;-)
1532 * We don't even need to mark it not-uptodate - nobody can expect
1533 * anything from a newly allocated buffer anyway. We used to used
1534 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1535 * don't want to mark the alias unmapped, for example - it would confuse
1536 * anyone who might pick it with bread() afterwards...
1537 *
1538 * Also.. Note that bforget() doesn't lock the buffer. So there can
1539 * be writeout I/O going on against recently-freed buffers. We don't
1540 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1541 * only if we really need to. That happens here.
1542 */
1543void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1544{
1545 struct buffer_head *old_bh;
1546
1547 might_sleep();
1548
385fd4c5 1549 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1550 if (old_bh) {
1551 clear_buffer_dirty(old_bh);
1552 wait_on_buffer(old_bh);
1553 clear_buffer_req(old_bh);
1554 __brelse(old_bh);
1555 }
1556}
1557EXPORT_SYMBOL(unmap_underlying_metadata);
1558
1559/*
1560 * NOTE! All mapped/uptodate combinations are valid:
1561 *
1562 * Mapped Uptodate Meaning
1563 *
1564 * No No "unknown" - must do get_block()
1565 * No Yes "hole" - zero-filled
1566 * Yes No "allocated" - allocated on disk, not read in
1567 * Yes Yes "valid" - allocated and up-to-date in memory.
1568 *
1569 * "Dirty" is valid only with the last case (mapped+uptodate).
1570 */
1571
1572/*
1573 * While block_write_full_page is writing back the dirty buffers under
1574 * the page lock, whoever dirtied the buffers may decide to clean them
1575 * again at any time. We handle that by only looking at the buffer
1576 * state inside lock_buffer().
1577 *
1578 * If block_write_full_page() is called for regular writeback
1579 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1580 * locked buffer. This only can happen if someone has written the buffer
1581 * directly, with submit_bh(). At the address_space level PageWriteback
1582 * prevents this contention from occurring.
1583 */
1584static int __block_write_full_page(struct inode *inode, struct page *page,
1585 get_block_t *get_block, struct writeback_control *wbc)
1586{
1587 int err;
1588 sector_t block;
1589 sector_t last_block;
f0fbd5fc 1590 struct buffer_head *bh, *head;
b0cf2321 1591 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1592 int nr_underway = 0;
1593
1594 BUG_ON(!PageLocked(page));
1595
1596 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1597
1598 if (!page_has_buffers(page)) {
b0cf2321 1599 create_empty_buffers(page, blocksize,
1da177e4
LT
1600 (1 << BH_Dirty)|(1 << BH_Uptodate));
1601 }
1602
1603 /*
1604 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1605 * here, and the (potentially unmapped) buffers may become dirty at
1606 * any time. If a buffer becomes dirty here after we've inspected it
1607 * then we just miss that fact, and the page stays dirty.
1608 *
1609 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1610 * handle that here by just cleaning them.
1611 */
1612
54b21a79 1613 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1614 head = page_buffers(page);
1615 bh = head;
1616
1617 /*
1618 * Get all the dirty buffers mapped to disk addresses and
1619 * handle any aliases from the underlying blockdev's mapping.
1620 */
1621 do {
1622 if (block > last_block) {
1623 /*
1624 * mapped buffers outside i_size will occur, because
1625 * this page can be outside i_size when there is a
1626 * truncate in progress.
1627 */
1628 /*
1629 * The buffer was zeroed by block_write_full_page()
1630 */
1631 clear_buffer_dirty(bh);
1632 set_buffer_uptodate(bh);
1633 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
b0cf2321 1634 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1635 err = get_block(inode, block, bh, 1);
1636 if (err)
1637 goto recover;
1638 if (buffer_new(bh)) {
1639 /* blockdev mappings never come here */
1640 clear_buffer_new(bh);
1641 unmap_underlying_metadata(bh->b_bdev,
1642 bh->b_blocknr);
1643 }
1644 }
1645 bh = bh->b_this_page;
1646 block++;
1647 } while (bh != head);
1648
1649 do {
1da177e4
LT
1650 if (!buffer_mapped(bh))
1651 continue;
1652 /*
1653 * If it's a fully non-blocking write attempt and we cannot
1654 * lock the buffer then redirty the page. Note that this can
1655 * potentially cause a busy-wait loop from pdflush and kswapd
1656 * activity, but those code paths have their own higher-level
1657 * throttling.
1658 */
1659 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1660 lock_buffer(bh);
1661 } else if (test_set_buffer_locked(bh)) {
1662 redirty_page_for_writepage(wbc, page);
1663 continue;
1664 }
1665 if (test_clear_buffer_dirty(bh)) {
1666 mark_buffer_async_write(bh);
1667 } else {
1668 unlock_buffer(bh);
1669 }
1670 } while ((bh = bh->b_this_page) != head);
1671
1672 /*
1673 * The page and its buffers are protected by PageWriteback(), so we can
1674 * drop the bh refcounts early.
1675 */
1676 BUG_ON(PageWriteback(page));
1677 set_page_writeback(page);
1da177e4
LT
1678
1679 do {
1680 struct buffer_head *next = bh->b_this_page;
1681 if (buffer_async_write(bh)) {
1682 submit_bh(WRITE, bh);
1683 nr_underway++;
1684 }
1da177e4
LT
1685 bh = next;
1686 } while (bh != head);
05937baa 1687 unlock_page(page);
1da177e4
LT
1688
1689 err = 0;
1690done:
1691 if (nr_underway == 0) {
1692 /*
1693 * The page was marked dirty, but the buffers were
1694 * clean. Someone wrote them back by hand with
1695 * ll_rw_block/submit_bh. A rare case.
1696 */
1da177e4 1697 end_page_writeback(page);
3d67f2d7 1698
1da177e4
LT
1699 /*
1700 * The page and buffer_heads can be released at any time from
1701 * here on.
1702 */
1703 wbc->pages_skipped++; /* We didn't write this page */
1704 }
1705 return err;
1706
1707recover:
1708 /*
1709 * ENOSPC, or some other error. We may already have added some
1710 * blocks to the file, so we need to write these out to avoid
1711 * exposing stale data.
1712 * The page is currently locked and not marked for writeback
1713 */
1714 bh = head;
1715 /* Recovery: lock and submit the mapped buffers */
1716 do {
1da177e4
LT
1717 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1718 lock_buffer(bh);
1719 mark_buffer_async_write(bh);
1720 } else {
1721 /*
1722 * The buffer may have been set dirty during
1723 * attachment to a dirty page.
1724 */
1725 clear_buffer_dirty(bh);
1726 }
1727 } while ((bh = bh->b_this_page) != head);
1728 SetPageError(page);
1729 BUG_ON(PageWriteback(page));
7e4c3690 1730 mapping_set_error(page->mapping, err);
1da177e4 1731 set_page_writeback(page);
1da177e4
LT
1732 do {
1733 struct buffer_head *next = bh->b_this_page;
1734 if (buffer_async_write(bh)) {
1735 clear_buffer_dirty(bh);
1736 submit_bh(WRITE, bh);
1737 nr_underway++;
1738 }
1da177e4
LT
1739 bh = next;
1740 } while (bh != head);
ffda9d30 1741 unlock_page(page);
1da177e4
LT
1742 goto done;
1743}
1744
1745static int __block_prepare_write(struct inode *inode, struct page *page,
1746 unsigned from, unsigned to, get_block_t *get_block)
1747{
1748 unsigned block_start, block_end;
1749 sector_t block;
1750 int err = 0;
1751 unsigned blocksize, bbits;
1752 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1753
1754 BUG_ON(!PageLocked(page));
1755 BUG_ON(from > PAGE_CACHE_SIZE);
1756 BUG_ON(to > PAGE_CACHE_SIZE);
1757 BUG_ON(from > to);
1758
1759 blocksize = 1 << inode->i_blkbits;
1760 if (!page_has_buffers(page))
1761 create_empty_buffers(page, blocksize, 0);
1762 head = page_buffers(page);
1763
1764 bbits = inode->i_blkbits;
1765 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1766
1767 for(bh = head, block_start = 0; bh != head || !block_start;
1768 block++, block_start=block_end, bh = bh->b_this_page) {
1769 block_end = block_start + blocksize;
1770 if (block_end <= from || block_start >= to) {
1771 if (PageUptodate(page)) {
1772 if (!buffer_uptodate(bh))
1773 set_buffer_uptodate(bh);
1774 }
1775 continue;
1776 }
1777 if (buffer_new(bh))
1778 clear_buffer_new(bh);
1779 if (!buffer_mapped(bh)) {
b0cf2321 1780 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1781 err = get_block(inode, block, bh, 1);
1782 if (err)
f3ddbdc6 1783 break;
1da177e4 1784 if (buffer_new(bh)) {
1da177e4
LT
1785 unmap_underlying_metadata(bh->b_bdev,
1786 bh->b_blocknr);
1787 if (PageUptodate(page)) {
1788 set_buffer_uptodate(bh);
1789 continue;
1790 }
1791 if (block_end > to || block_start < from) {
1792 void *kaddr;
1793
1794 kaddr = kmap_atomic(page, KM_USER0);
1795 if (block_end > to)
1796 memset(kaddr+to, 0,
1797 block_end-to);
1798 if (block_start < from)
1799 memset(kaddr+block_start,
1800 0, from-block_start);
1801 flush_dcache_page(page);
1802 kunmap_atomic(kaddr, KM_USER0);
1803 }
1804 continue;
1805 }
1806 }
1807 if (PageUptodate(page)) {
1808 if (!buffer_uptodate(bh))
1809 set_buffer_uptodate(bh);
1810 continue;
1811 }
1812 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1813 !buffer_unwritten(bh) &&
1da177e4
LT
1814 (block_start < from || block_end > to)) {
1815 ll_rw_block(READ, 1, &bh);
1816 *wait_bh++=bh;
1817 }
1818 }
1819 /*
1820 * If we issued read requests - let them complete.
1821 */
1822 while(wait_bh > wait) {
1823 wait_on_buffer(*--wait_bh);
1824 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1825 err = -EIO;
1da177e4 1826 }
152becd2
AA
1827 if (!err) {
1828 bh = head;
1829 do {
1830 if (buffer_new(bh))
1831 clear_buffer_new(bh);
1832 } while ((bh = bh->b_this_page) != head);
1833 return 0;
1834 }
f3ddbdc6 1835 /* Error case: */
1da177e4
LT
1836 /*
1837 * Zero out any newly allocated blocks to avoid exposing stale
1838 * data. If BH_New is set, we know that the block was newly
1839 * allocated in the above loop.
1840 */
1841 bh = head;
1842 block_start = 0;
1843 do {
1844 block_end = block_start+blocksize;
1845 if (block_end <= from)
1846 goto next_bh;
1847 if (block_start >= to)
1848 break;
1849 if (buffer_new(bh)) {
1850 void *kaddr;
1851
1852 clear_buffer_new(bh);
1853 kaddr = kmap_atomic(page, KM_USER0);
1854 memset(kaddr+block_start, 0, bh->b_size);
8c581651 1855 flush_dcache_page(page);
1da177e4
LT
1856 kunmap_atomic(kaddr, KM_USER0);
1857 set_buffer_uptodate(bh);
1858 mark_buffer_dirty(bh);
1859 }
1860next_bh:
1861 block_start = block_end;
1862 bh = bh->b_this_page;
1863 } while (bh != head);
1864 return err;
1865}
1866
1867static int __block_commit_write(struct inode *inode, struct page *page,
1868 unsigned from, unsigned to)
1869{
1870 unsigned block_start, block_end;
1871 int partial = 0;
1872 unsigned blocksize;
1873 struct buffer_head *bh, *head;
1874
1875 blocksize = 1 << inode->i_blkbits;
1876
1877 for(bh = head = page_buffers(page), block_start = 0;
1878 bh != head || !block_start;
1879 block_start=block_end, bh = bh->b_this_page) {
1880 block_end = block_start + blocksize;
1881 if (block_end <= from || block_start >= to) {
1882 if (!buffer_uptodate(bh))
1883 partial = 1;
1884 } else {
1885 set_buffer_uptodate(bh);
1886 mark_buffer_dirty(bh);
1887 }
1888 }
1889
1890 /*
1891 * If this is a partial write which happened to make all buffers
1892 * uptodate then we can optimize away a bogus readpage() for
1893 * the next read(). Here we 'discover' whether the page went
1894 * uptodate as a result of this (potentially partial) write.
1895 */
1896 if (!partial)
1897 SetPageUptodate(page);
1898 return 0;
1899}
1900
1901/*
1902 * Generic "read page" function for block devices that have the normal
1903 * get_block functionality. This is most of the block device filesystems.
1904 * Reads the page asynchronously --- the unlock_buffer() and
1905 * set/clear_buffer_uptodate() functions propagate buffer state into the
1906 * page struct once IO has completed.
1907 */
1908int block_read_full_page(struct page *page, get_block_t *get_block)
1909{
1910 struct inode *inode = page->mapping->host;
1911 sector_t iblock, lblock;
1912 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1913 unsigned int blocksize;
1914 int nr, i;
1915 int fully_mapped = 1;
1916
cd7619d6 1917 BUG_ON(!PageLocked(page));
1da177e4
LT
1918 blocksize = 1 << inode->i_blkbits;
1919 if (!page_has_buffers(page))
1920 create_empty_buffers(page, blocksize, 0);
1921 head = page_buffers(page);
1922
1923 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1924 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1925 bh = head;
1926 nr = 0;
1927 i = 0;
1928
1929 do {
1930 if (buffer_uptodate(bh))
1931 continue;
1932
1933 if (!buffer_mapped(bh)) {
c64610ba
AM
1934 int err = 0;
1935
1da177e4
LT
1936 fully_mapped = 0;
1937 if (iblock < lblock) {
b0cf2321 1938 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
1939 err = get_block(inode, iblock, bh, 0);
1940 if (err)
1da177e4
LT
1941 SetPageError(page);
1942 }
1943 if (!buffer_mapped(bh)) {
1944 void *kaddr = kmap_atomic(page, KM_USER0);
1945 memset(kaddr + i * blocksize, 0, blocksize);
1946 flush_dcache_page(page);
1947 kunmap_atomic(kaddr, KM_USER0);
c64610ba
AM
1948 if (!err)
1949 set_buffer_uptodate(bh);
1da177e4
LT
1950 continue;
1951 }
1952 /*
1953 * get_block() might have updated the buffer
1954 * synchronously
1955 */
1956 if (buffer_uptodate(bh))
1957 continue;
1958 }
1959 arr[nr++] = bh;
1960 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1961
1962 if (fully_mapped)
1963 SetPageMappedToDisk(page);
1964
1965 if (!nr) {
1966 /*
1967 * All buffers are uptodate - we can set the page uptodate
1968 * as well. But not if get_block() returned an error.
1969 */
1970 if (!PageError(page))
1971 SetPageUptodate(page);
1972 unlock_page(page);
1973 return 0;
1974 }
1975
1976 /* Stage two: lock the buffers */
1977 for (i = 0; i < nr; i++) {
1978 bh = arr[i];
1979 lock_buffer(bh);
1980 mark_buffer_async_read(bh);
1981 }
1982
1983 /*
1984 * Stage 3: start the IO. Check for uptodateness
1985 * inside the buffer lock in case another process reading
1986 * the underlying blockdev brought it uptodate (the sct fix).
1987 */
1988 for (i = 0; i < nr; i++) {
1989 bh = arr[i];
1990 if (buffer_uptodate(bh))
1991 end_buffer_async_read(bh, 1);
1992 else
1993 submit_bh(READ, bh);
1994 }
1995 return 0;
1996}
1997
1998/* utility function for filesystems that need to do work on expanding
1999 * truncates. Uses prepare/commit_write to allow the filesystem to
2000 * deal with the hole.
2001 */
05eb0b51
OH
2002static int __generic_cont_expand(struct inode *inode, loff_t size,
2003 pgoff_t index, unsigned int offset)
1da177e4
LT
2004{
2005 struct address_space *mapping = inode->i_mapping;
2006 struct page *page;
05eb0b51 2007 unsigned long limit;
1da177e4
LT
2008 int err;
2009
2010 err = -EFBIG;
2011 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2012 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2013 send_sig(SIGXFSZ, current, 0);
2014 goto out;
2015 }
2016 if (size > inode->i_sb->s_maxbytes)
2017 goto out;
2018
1da177e4
LT
2019 err = -ENOMEM;
2020 page = grab_cache_page(mapping, index);
2021 if (!page)
2022 goto out;
2023 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
05eb0b51
OH
2024 if (err) {
2025 /*
2026 * ->prepare_write() may have instantiated a few blocks
2027 * outside i_size. Trim these off again.
2028 */
2029 unlock_page(page);
2030 page_cache_release(page);
2031 vmtruncate(inode, inode->i_size);
2032 goto out;
1da177e4 2033 }
05eb0b51
OH
2034
2035 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2036
1da177e4
LT
2037 unlock_page(page);
2038 page_cache_release(page);
2039 if (err > 0)
2040 err = 0;
2041out:
2042 return err;
2043}
2044
05eb0b51
OH
2045int generic_cont_expand(struct inode *inode, loff_t size)
2046{
2047 pgoff_t index;
2048 unsigned int offset;
2049
2050 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2051
2052 /* ugh. in prepare/commit_write, if from==to==start of block, we
2053 ** skip the prepare. make sure we never send an offset for the start
2054 ** of a block
2055 */
2056 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2057 /* caller must handle this extra byte. */
2058 offset++;
2059 }
2060 index = size >> PAGE_CACHE_SHIFT;
2061
2062 return __generic_cont_expand(inode, size, index, offset);
2063}
2064
2065int generic_cont_expand_simple(struct inode *inode, loff_t size)
2066{
2067 loff_t pos = size - 1;
2068 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2069 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2070
2071 /* prepare/commit_write can handle even if from==to==start of block. */
2072 return __generic_cont_expand(inode, size, index, offset);
2073}
2074
1da177e4
LT
2075/*
2076 * For moronic filesystems that do not allow holes in file.
2077 * We may have to extend the file.
2078 */
2079
2080int cont_prepare_write(struct page *page, unsigned offset,
2081 unsigned to, get_block_t *get_block, loff_t *bytes)
2082{
2083 struct address_space *mapping = page->mapping;
2084 struct inode *inode = mapping->host;
2085 struct page *new_page;
2086 pgoff_t pgpos;
2087 long status;
2088 unsigned zerofrom;
2089 unsigned blocksize = 1 << inode->i_blkbits;
2090 void *kaddr;
2091
2092 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2093 status = -ENOMEM;
2094 new_page = grab_cache_page(mapping, pgpos);
2095 if (!new_page)
2096 goto out;
2097 /* we might sleep */
2098 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2099 unlock_page(new_page);
2100 page_cache_release(new_page);
2101 continue;
2102 }
2103 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2104 if (zerofrom & (blocksize-1)) {
2105 *bytes |= (blocksize-1);
2106 (*bytes)++;
2107 }
2108 status = __block_prepare_write(inode, new_page, zerofrom,
2109 PAGE_CACHE_SIZE, get_block);
2110 if (status)
2111 goto out_unmap;
2112 kaddr = kmap_atomic(new_page, KM_USER0);
2113 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2114 flush_dcache_page(new_page);
2115 kunmap_atomic(kaddr, KM_USER0);
2116 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2117 unlock_page(new_page);
2118 page_cache_release(new_page);
2119 }
2120
2121 if (page->index < pgpos) {
2122 /* completely inside the area */
2123 zerofrom = offset;
2124 } else {
2125 /* page covers the boundary, find the boundary offset */
2126 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2127
2128 /* if we will expand the thing last block will be filled */
2129 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2130 *bytes |= (blocksize-1);
2131 (*bytes)++;
2132 }
2133
2134 /* starting below the boundary? Nothing to zero out */
2135 if (offset <= zerofrom)
2136 zerofrom = offset;
2137 }
2138 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2139 if (status)
2140 goto out1;
2141 if (zerofrom < offset) {
2142 kaddr = kmap_atomic(page, KM_USER0);
2143 memset(kaddr+zerofrom, 0, offset-zerofrom);
2144 flush_dcache_page(page);
2145 kunmap_atomic(kaddr, KM_USER0);
2146 __block_commit_write(inode, page, zerofrom, offset);
2147 }
2148 return 0;
2149out1:
2150 ClearPageUptodate(page);
2151 return status;
2152
2153out_unmap:
2154 ClearPageUptodate(new_page);
2155 unlock_page(new_page);
2156 page_cache_release(new_page);
2157out:
2158 return status;
2159}
2160
2161int block_prepare_write(struct page *page, unsigned from, unsigned to,
2162 get_block_t *get_block)
2163{
2164 struct inode *inode = page->mapping->host;
2165 int err = __block_prepare_write(inode, page, from, to, get_block);
2166 if (err)
2167 ClearPageUptodate(page);
2168 return err;
2169}
2170
2171int block_commit_write(struct page *page, unsigned from, unsigned to)
2172{
2173 struct inode *inode = page->mapping->host;
2174 __block_commit_write(inode,page,from,to);
2175 return 0;
2176}
2177
2178int generic_commit_write(struct file *file, struct page *page,
2179 unsigned from, unsigned to)
2180{
2181 struct inode *inode = page->mapping->host;
2182 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2183 __block_commit_write(inode,page,from,to);
2184 /*
2185 * No need to use i_size_read() here, the i_size
1b1dcc1b 2186 * cannot change under us because we hold i_mutex.
1da177e4
LT
2187 */
2188 if (pos > inode->i_size) {
2189 i_size_write(inode, pos);
2190 mark_inode_dirty(inode);
2191 }
2192 return 0;
2193}
2194
2195
2196/*
2197 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2198 * immediately, while under the page lock. So it needs a special end_io
2199 * handler which does not touch the bh after unlocking it.
2200 *
2201 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2202 * a race there is benign: unlock_buffer() only use the bh's address for
2203 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2204 * itself.
2205 */
2206static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2207{
2208 if (uptodate) {
2209 set_buffer_uptodate(bh);
2210 } else {
2211 /* This happens, due to failed READA attempts. */
2212 clear_buffer_uptodate(bh);
2213 }
2214 unlock_buffer(bh);
2215}
2216
2217/*
2218 * On entry, the page is fully not uptodate.
2219 * On exit the page is fully uptodate in the areas outside (from,to)
2220 */
2221int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2222 get_block_t *get_block)
2223{
2224 struct inode *inode = page->mapping->host;
2225 const unsigned blkbits = inode->i_blkbits;
2226 const unsigned blocksize = 1 << blkbits;
2227 struct buffer_head map_bh;
2228 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2229 unsigned block_in_page;
2230 unsigned block_start;
2231 sector_t block_in_file;
2232 char *kaddr;
2233 int nr_reads = 0;
2234 int i;
2235 int ret = 0;
2236 int is_mapped_to_disk = 1;
1da177e4
LT
2237
2238 if (PageMappedToDisk(page))
2239 return 0;
2240
2241 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2242 map_bh.b_page = page;
2243
2244 /*
2245 * We loop across all blocks in the page, whether or not they are
2246 * part of the affected region. This is so we can discover if the
2247 * page is fully mapped-to-disk.
2248 */
2249 for (block_start = 0, block_in_page = 0;
2250 block_start < PAGE_CACHE_SIZE;
2251 block_in_page++, block_start += blocksize) {
2252 unsigned block_end = block_start + blocksize;
2253 int create;
2254
2255 map_bh.b_state = 0;
2256 create = 1;
2257 if (block_start >= to)
2258 create = 0;
b0cf2321 2259 map_bh.b_size = blocksize;
1da177e4
LT
2260 ret = get_block(inode, block_in_file + block_in_page,
2261 &map_bh, create);
2262 if (ret)
2263 goto failed;
2264 if (!buffer_mapped(&map_bh))
2265 is_mapped_to_disk = 0;
2266 if (buffer_new(&map_bh))
2267 unmap_underlying_metadata(map_bh.b_bdev,
2268 map_bh.b_blocknr);
2269 if (PageUptodate(page))
2270 continue;
2271 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2272 kaddr = kmap_atomic(page, KM_USER0);
22c8ca78 2273 if (block_start < from)
1da177e4 2274 memset(kaddr+block_start, 0, from-block_start);
22c8ca78 2275 if (block_end > to)
1da177e4 2276 memset(kaddr + to, 0, block_end - to);
1da177e4
LT
2277 flush_dcache_page(page);
2278 kunmap_atomic(kaddr, KM_USER0);
2279 continue;
2280 }
2281 if (buffer_uptodate(&map_bh))
2282 continue; /* reiserfs does this */
2283 if (block_start < from || block_end > to) {
2284 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2285
2286 if (!bh) {
2287 ret = -ENOMEM;
2288 goto failed;
2289 }
2290 bh->b_state = map_bh.b_state;
2291 atomic_set(&bh->b_count, 0);
2292 bh->b_this_page = NULL;
2293 bh->b_page = page;
2294 bh->b_blocknr = map_bh.b_blocknr;
2295 bh->b_size = blocksize;
2296 bh->b_data = (char *)(long)block_start;
2297 bh->b_bdev = map_bh.b_bdev;
2298 bh->b_private = NULL;
2299 read_bh[nr_reads++] = bh;
2300 }
2301 }
2302
2303 if (nr_reads) {
2304 struct buffer_head *bh;
2305
2306 /*
2307 * The page is locked, so these buffers are protected from
2308 * any VM or truncate activity. Hence we don't need to care
2309 * for the buffer_head refcounts.
2310 */
2311 for (i = 0; i < nr_reads; i++) {
2312 bh = read_bh[i];
2313 lock_buffer(bh);
2314 bh->b_end_io = end_buffer_read_nobh;
2315 submit_bh(READ, bh);
2316 }
2317 for (i = 0; i < nr_reads; i++) {
2318 bh = read_bh[i];
2319 wait_on_buffer(bh);
2320 if (!buffer_uptodate(bh))
2321 ret = -EIO;
2322 free_buffer_head(bh);
2323 read_bh[i] = NULL;
2324 }
2325 if (ret)
2326 goto failed;
2327 }
2328
2329 if (is_mapped_to_disk)
2330 SetPageMappedToDisk(page);
1da177e4
LT
2331
2332 return 0;
2333
2334failed:
2335 for (i = 0; i < nr_reads; i++) {
2336 if (read_bh[i])
2337 free_buffer_head(read_bh[i]);
2338 }
2339
2340 /*
2341 * Error recovery is pretty slack. Clear the page and mark it dirty
2342 * so we'll later zero out any blocks which _were_ allocated.
2343 */
2344 kaddr = kmap_atomic(page, KM_USER0);
2345 memset(kaddr, 0, PAGE_CACHE_SIZE);
8c581651 2346 flush_dcache_page(page);
1da177e4
LT
2347 kunmap_atomic(kaddr, KM_USER0);
2348 SetPageUptodate(page);
2349 set_page_dirty(page);
2350 return ret;
2351}
2352EXPORT_SYMBOL(nobh_prepare_write);
2353
57bf63d6
DK
2354/*
2355 * Make sure any changes to nobh_commit_write() are reflected in
2356 * nobh_truncate_page(), since it doesn't call commit_write().
2357 */
1da177e4
LT
2358int nobh_commit_write(struct file *file, struct page *page,
2359 unsigned from, unsigned to)
2360{
2361 struct inode *inode = page->mapping->host;
2362 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2363
22c8ca78 2364 SetPageUptodate(page);
1da177e4
LT
2365 set_page_dirty(page);
2366 if (pos > inode->i_size) {
2367 i_size_write(inode, pos);
2368 mark_inode_dirty(inode);
2369 }
2370 return 0;
2371}
2372EXPORT_SYMBOL(nobh_commit_write);
2373
2374/*
2375 * nobh_writepage() - based on block_full_write_page() except
2376 * that it tries to operate without attaching bufferheads to
2377 * the page.
2378 */
2379int nobh_writepage(struct page *page, get_block_t *get_block,
2380 struct writeback_control *wbc)
2381{
2382 struct inode * const inode = page->mapping->host;
2383 loff_t i_size = i_size_read(inode);
2384 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2385 unsigned offset;
2386 void *kaddr;
2387 int ret;
2388
2389 /* Is the page fully inside i_size? */
2390 if (page->index < end_index)
2391 goto out;
2392
2393 /* Is the page fully outside i_size? (truncate in progress) */
2394 offset = i_size & (PAGE_CACHE_SIZE-1);
2395 if (page->index >= end_index+1 || !offset) {
2396 /*
2397 * The page may have dirty, unmapped buffers. For example,
2398 * they may have been added in ext3_writepage(). Make them
2399 * freeable here, so the page does not leak.
2400 */
2401#if 0
2402 /* Not really sure about this - do we need this ? */
2403 if (page->mapping->a_ops->invalidatepage)
2404 page->mapping->a_ops->invalidatepage(page, offset);
2405#endif
2406 unlock_page(page);
2407 return 0; /* don't care */
2408 }
2409
2410 /*
2411 * The page straddles i_size. It must be zeroed out on each and every
2412 * writepage invocation because it may be mmapped. "A file is mapped
2413 * in multiples of the page size. For a file that is not a multiple of
2414 * the page size, the remaining memory is zeroed when mapped, and
2415 * writes to that region are not written out to the file."
2416 */
2417 kaddr = kmap_atomic(page, KM_USER0);
2418 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2419 flush_dcache_page(page);
2420 kunmap_atomic(kaddr, KM_USER0);
2421out:
2422 ret = mpage_writepage(page, get_block, wbc);
2423 if (ret == -EAGAIN)
2424 ret = __block_write_full_page(inode, page, get_block, wbc);
2425 return ret;
2426}
2427EXPORT_SYMBOL(nobh_writepage);
2428
2429/*
2430 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2431 */
2432int nobh_truncate_page(struct address_space *mapping, loff_t from)
2433{
2434 struct inode *inode = mapping->host;
2435 unsigned blocksize = 1 << inode->i_blkbits;
2436 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2437 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2438 unsigned to;
2439 struct page *page;
f5e54d6e 2440 const struct address_space_operations *a_ops = mapping->a_ops;
1da177e4
LT
2441 char *kaddr;
2442 int ret = 0;
2443
2444 if ((offset & (blocksize - 1)) == 0)
2445 goto out;
2446
2447 ret = -ENOMEM;
2448 page = grab_cache_page(mapping, index);
2449 if (!page)
2450 goto out;
2451
2452 to = (offset + blocksize) & ~(blocksize - 1);
2453 ret = a_ops->prepare_write(NULL, page, offset, to);
2454 if (ret == 0) {
2455 kaddr = kmap_atomic(page, KM_USER0);
2456 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2457 flush_dcache_page(page);
2458 kunmap_atomic(kaddr, KM_USER0);
57bf63d6
DK
2459 /*
2460 * It would be more correct to call aops->commit_write()
2461 * here, but this is more efficient.
2462 */
2463 SetPageUptodate(page);
1da177e4
LT
2464 set_page_dirty(page);
2465 }
2466 unlock_page(page);
2467 page_cache_release(page);
2468out:
2469 return ret;
2470}
2471EXPORT_SYMBOL(nobh_truncate_page);
2472
2473int block_truncate_page(struct address_space *mapping,
2474 loff_t from, get_block_t *get_block)
2475{
2476 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2477 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2478 unsigned blocksize;
54b21a79 2479 sector_t iblock;
1da177e4
LT
2480 unsigned length, pos;
2481 struct inode *inode = mapping->host;
2482 struct page *page;
2483 struct buffer_head *bh;
2484 void *kaddr;
2485 int err;
2486
2487 blocksize = 1 << inode->i_blkbits;
2488 length = offset & (blocksize - 1);
2489
2490 /* Block boundary? Nothing to do */
2491 if (!length)
2492 return 0;
2493
2494 length = blocksize - length;
54b21a79 2495 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2496
2497 page = grab_cache_page(mapping, index);
2498 err = -ENOMEM;
2499 if (!page)
2500 goto out;
2501
2502 if (!page_has_buffers(page))
2503 create_empty_buffers(page, blocksize, 0);
2504
2505 /* Find the buffer that contains "offset" */
2506 bh = page_buffers(page);
2507 pos = blocksize;
2508 while (offset >= pos) {
2509 bh = bh->b_this_page;
2510 iblock++;
2511 pos += blocksize;
2512 }
2513
2514 err = 0;
2515 if (!buffer_mapped(bh)) {
b0cf2321 2516 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2517 err = get_block(inode, iblock, bh, 0);
2518 if (err)
2519 goto unlock;
2520 /* unmapped? It's a hole - nothing to do */
2521 if (!buffer_mapped(bh))
2522 goto unlock;
2523 }
2524
2525 /* Ok, it's mapped. Make sure it's up-to-date */
2526 if (PageUptodate(page))
2527 set_buffer_uptodate(bh);
2528
33a266dd 2529 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2530 err = -EIO;
2531 ll_rw_block(READ, 1, &bh);
2532 wait_on_buffer(bh);
2533 /* Uhhuh. Read error. Complain and punt. */
2534 if (!buffer_uptodate(bh))
2535 goto unlock;
2536 }
2537
2538 kaddr = kmap_atomic(page, KM_USER0);
2539 memset(kaddr + offset, 0, length);
2540 flush_dcache_page(page);
2541 kunmap_atomic(kaddr, KM_USER0);
2542
2543 mark_buffer_dirty(bh);
2544 err = 0;
2545
2546unlock:
2547 unlock_page(page);
2548 page_cache_release(page);
2549out:
2550 return err;
2551}
2552
2553/*
2554 * The generic ->writepage function for buffer-backed address_spaces
2555 */
2556int block_write_full_page(struct page *page, get_block_t *get_block,
2557 struct writeback_control *wbc)
2558{
2559 struct inode * const inode = page->mapping->host;
2560 loff_t i_size = i_size_read(inode);
2561 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2562 unsigned offset;
2563 void *kaddr;
2564
2565 /* Is the page fully inside i_size? */
2566 if (page->index < end_index)
2567 return __block_write_full_page(inode, page, get_block, wbc);
2568
2569 /* Is the page fully outside i_size? (truncate in progress) */
2570 offset = i_size & (PAGE_CACHE_SIZE-1);
2571 if (page->index >= end_index+1 || !offset) {
2572 /*
2573 * The page may have dirty, unmapped buffers. For example,
2574 * they may have been added in ext3_writepage(). Make them
2575 * freeable here, so the page does not leak.
2576 */
aaa4059b 2577 do_invalidatepage(page, 0);
1da177e4
LT
2578 unlock_page(page);
2579 return 0; /* don't care */
2580 }
2581
2582 /*
2583 * The page straddles i_size. It must be zeroed out on each and every
2584 * writepage invokation because it may be mmapped. "A file is mapped
2585 * in multiples of the page size. For a file that is not a multiple of
2586 * the page size, the remaining memory is zeroed when mapped, and
2587 * writes to that region are not written out to the file."
2588 */
2589 kaddr = kmap_atomic(page, KM_USER0);
2590 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2591 flush_dcache_page(page);
2592 kunmap_atomic(kaddr, KM_USER0);
2593 return __block_write_full_page(inode, page, get_block, wbc);
2594}
2595
2596sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2597 get_block_t *get_block)
2598{
2599 struct buffer_head tmp;
2600 struct inode *inode = mapping->host;
2601 tmp.b_state = 0;
2602 tmp.b_blocknr = 0;
b0cf2321 2603 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2604 get_block(inode, block, &tmp, 0);
2605 return tmp.b_blocknr;
2606}
2607
2608static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2609{
2610 struct buffer_head *bh = bio->bi_private;
2611
2612 if (bio->bi_size)
2613 return 1;
2614
2615 if (err == -EOPNOTSUPP) {
2616 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2617 set_bit(BH_Eopnotsupp, &bh->b_state);
2618 }
2619
2620 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2621 bio_put(bio);
2622 return 0;
2623}
2624
2625int submit_bh(int rw, struct buffer_head * bh)
2626{
2627 struct bio *bio;
2628 int ret = 0;
2629
2630 BUG_ON(!buffer_locked(bh));
2631 BUG_ON(!buffer_mapped(bh));
2632 BUG_ON(!bh->b_end_io);
2633
2634 if (buffer_ordered(bh) && (rw == WRITE))
2635 rw = WRITE_BARRIER;
2636
2637 /*
2638 * Only clear out a write error when rewriting, should this
2639 * include WRITE_SYNC as well?
2640 */
2641 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2642 clear_buffer_write_io_error(bh);
2643
2644 /*
2645 * from here on down, it's all bio -- do the initial mapping,
2646 * submit_bio -> generic_make_request may further map this bio around
2647 */
2648 bio = bio_alloc(GFP_NOIO, 1);
2649
2650 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2651 bio->bi_bdev = bh->b_bdev;
2652 bio->bi_io_vec[0].bv_page = bh->b_page;
2653 bio->bi_io_vec[0].bv_len = bh->b_size;
2654 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2655
2656 bio->bi_vcnt = 1;
2657 bio->bi_idx = 0;
2658 bio->bi_size = bh->b_size;
2659
2660 bio->bi_end_io = end_bio_bh_io_sync;
2661 bio->bi_private = bh;
2662
2663 bio_get(bio);
2664 submit_bio(rw, bio);
2665
2666 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667 ret = -EOPNOTSUPP;
2668
2669 bio_put(bio);
2670 return ret;
2671}
2672
2673/**
2674 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2675 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2676 * @nr: number of &struct buffer_heads in the array
2677 * @bhs: array of pointers to &struct buffer_head
2678 *
a7662236
JK
2679 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2680 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2681 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2682 * are sent to disk. The fourth %READA option is described in the documentation
2683 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2684 *
2685 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2686 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2687 * clean when doing a write request, and any buffer that appears to be
2688 * up-to-date when doing read request. Further it marks as clean buffers that
2689 * are processed for writing (the buffer cache won't assume that they are
2690 * actually clean until the buffer gets unlocked).
1da177e4
LT
2691 *
2692 * ll_rw_block sets b_end_io to simple completion handler that marks
2693 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2694 * any waiters.
2695 *
2696 * All of the buffers must be for the same device, and must also be a
2697 * multiple of the current approved size for the device.
2698 */
2699void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2700{
2701 int i;
2702
2703 for (i = 0; i < nr; i++) {
2704 struct buffer_head *bh = bhs[i];
2705
a7662236
JK
2706 if (rw == SWRITE)
2707 lock_buffer(bh);
2708 else if (test_set_buffer_locked(bh))
1da177e4
LT
2709 continue;
2710
a7662236 2711 if (rw == WRITE || rw == SWRITE) {
1da177e4 2712 if (test_clear_buffer_dirty(bh)) {
76c3073a 2713 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2714 get_bh(bh);
1da177e4
LT
2715 submit_bh(WRITE, bh);
2716 continue;
2717 }
2718 } else {
1da177e4 2719 if (!buffer_uptodate(bh)) {
76c3073a 2720 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2721 get_bh(bh);
1da177e4
LT
2722 submit_bh(rw, bh);
2723 continue;
2724 }
2725 }
2726 unlock_buffer(bh);
1da177e4
LT
2727 }
2728}
2729
2730/*
2731 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2732 * and then start new I/O and then wait upon it. The caller must have a ref on
2733 * the buffer_head.
2734 */
2735int sync_dirty_buffer(struct buffer_head *bh)
2736{
2737 int ret = 0;
2738
2739 WARN_ON(atomic_read(&bh->b_count) < 1);
2740 lock_buffer(bh);
2741 if (test_clear_buffer_dirty(bh)) {
2742 get_bh(bh);
2743 bh->b_end_io = end_buffer_write_sync;
2744 ret = submit_bh(WRITE, bh);
2745 wait_on_buffer(bh);
2746 if (buffer_eopnotsupp(bh)) {
2747 clear_buffer_eopnotsupp(bh);
2748 ret = -EOPNOTSUPP;
2749 }
2750 if (!ret && !buffer_uptodate(bh))
2751 ret = -EIO;
2752 } else {
2753 unlock_buffer(bh);
2754 }
2755 return ret;
2756}
2757
2758/*
2759 * try_to_free_buffers() checks if all the buffers on this particular page
2760 * are unused, and releases them if so.
2761 *
2762 * Exclusion against try_to_free_buffers may be obtained by either
2763 * locking the page or by holding its mapping's private_lock.
2764 *
2765 * If the page is dirty but all the buffers are clean then we need to
2766 * be sure to mark the page clean as well. This is because the page
2767 * may be against a block device, and a later reattachment of buffers
2768 * to a dirty page will set *all* buffers dirty. Which would corrupt
2769 * filesystem data on the same device.
2770 *
2771 * The same applies to regular filesystem pages: if all the buffers are
2772 * clean then we set the page clean and proceed. To do that, we require
2773 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2774 * private_lock.
2775 *
2776 * try_to_free_buffers() is non-blocking.
2777 */
2778static inline int buffer_busy(struct buffer_head *bh)
2779{
2780 return atomic_read(&bh->b_count) |
2781 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2782}
2783
2784static int
2785drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2786{
2787 struct buffer_head *head = page_buffers(page);
2788 struct buffer_head *bh;
2789
2790 bh = head;
2791 do {
de7d5a3b 2792 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2793 set_bit(AS_EIO, &page->mapping->flags);
2794 if (buffer_busy(bh))
2795 goto failed;
2796 bh = bh->b_this_page;
2797 } while (bh != head);
2798
2799 do {
2800 struct buffer_head *next = bh->b_this_page;
2801
2802 if (!list_empty(&bh->b_assoc_buffers))
2803 __remove_assoc_queue(bh);
2804 bh = next;
2805 } while (bh != head);
2806 *buffers_to_free = head;
2807 __clear_page_buffers(page);
2808 return 1;
2809failed:
2810 return 0;
2811}
2812
2813int try_to_free_buffers(struct page *page)
2814{
2815 struct address_space * const mapping = page->mapping;
2816 struct buffer_head *buffers_to_free = NULL;
2817 int ret = 0;
2818
2819 BUG_ON(!PageLocked(page));
ecdfc978 2820 if (PageWriteback(page))
1da177e4
LT
2821 return 0;
2822
2823 if (mapping == NULL) { /* can this still happen? */
2824 ret = drop_buffers(page, &buffers_to_free);
2825 goto out;
2826 }
2827
2828 spin_lock(&mapping->private_lock);
2829 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
2830
2831 /*
2832 * If the filesystem writes its buffers by hand (eg ext3)
2833 * then we can have clean buffers against a dirty page. We
2834 * clean the page here; otherwise the VM will never notice
2835 * that the filesystem did any IO at all.
2836 *
2837 * Also, during truncate, discard_buffer will have marked all
2838 * the page's buffers clean. We discover that here and clean
2839 * the page also.
87df7241
NP
2840 *
2841 * private_lock must be held over this entire operation in order
2842 * to synchronise against __set_page_dirty_buffers and prevent the
2843 * dirty bit from being lost.
ecdfc978
LT
2844 */
2845 if (ret)
2846 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 2847 spin_unlock(&mapping->private_lock);
1da177e4
LT
2848out:
2849 if (buffers_to_free) {
2850 struct buffer_head *bh = buffers_to_free;
2851
2852 do {
2853 struct buffer_head *next = bh->b_this_page;
2854 free_buffer_head(bh);
2855 bh = next;
2856 } while (bh != buffers_to_free);
2857 }
2858 return ret;
2859}
2860EXPORT_SYMBOL(try_to_free_buffers);
2861
3978d717 2862void block_sync_page(struct page *page)
1da177e4
LT
2863{
2864 struct address_space *mapping;
2865
2866 smp_mb();
2867 mapping = page_mapping(page);
2868 if (mapping)
2869 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
2870}
2871
2872/*
2873 * There are no bdflush tunables left. But distributions are
2874 * still running obsolete flush daemons, so we terminate them here.
2875 *
2876 * Use of bdflush() is deprecated and will be removed in a future kernel.
2877 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878 */
2879asmlinkage long sys_bdflush(int func, long data)
2880{
2881 static int msg_count;
2882
2883 if (!capable(CAP_SYS_ADMIN))
2884 return -EPERM;
2885
2886 if (msg_count < 5) {
2887 msg_count++;
2888 printk(KERN_INFO
2889 "warning: process `%s' used the obsolete bdflush"
2890 " system call\n", current->comm);
2891 printk(KERN_INFO "Fix your initscripts?\n");
2892 }
2893
2894 if (func == 1)
2895 do_exit(0);
2896 return 0;
2897}
2898
2899/*
2900 * Buffer-head allocation
2901 */
e18b890b 2902static struct kmem_cache *bh_cachep;
1da177e4
LT
2903
2904/*
2905 * Once the number of bh's in the machine exceeds this level, we start
2906 * stripping them in writeback.
2907 */
2908static int max_buffer_heads;
2909
2910int buffer_heads_over_limit;
2911
2912struct bh_accounting {
2913 int nr; /* Number of live bh's */
2914 int ratelimit; /* Limit cacheline bouncing */
2915};
2916
2917static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918
2919static void recalc_bh_state(void)
2920{
2921 int i;
2922 int tot = 0;
2923
2924 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925 return;
2926 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 2927 for_each_online_cpu(i)
1da177e4
LT
2928 tot += per_cpu(bh_accounting, i).nr;
2929 buffer_heads_over_limit = (tot > max_buffer_heads);
2930}
2931
dd0fc66f 2932struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4
LT
2933{
2934 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935 if (ret) {
736c7b80 2936 get_cpu_var(bh_accounting).nr++;
1da177e4 2937 recalc_bh_state();
736c7b80 2938 put_cpu_var(bh_accounting);
1da177e4
LT
2939 }
2940 return ret;
2941}
2942EXPORT_SYMBOL(alloc_buffer_head);
2943
2944void free_buffer_head(struct buffer_head *bh)
2945{
2946 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2947 kmem_cache_free(bh_cachep, bh);
736c7b80 2948 get_cpu_var(bh_accounting).nr--;
1da177e4 2949 recalc_bh_state();
736c7b80 2950 put_cpu_var(bh_accounting);
1da177e4
LT
2951}
2952EXPORT_SYMBOL(free_buffer_head);
2953
2954static void
e18b890b 2955init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
1da177e4 2956{
50953fe9 2957 if (flags & SLAB_CTOR_CONSTRUCTOR) {
1da177e4
LT
2958 struct buffer_head * bh = (struct buffer_head *)data;
2959
2960 memset(bh, 0, sizeof(*bh));
2961 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2962 }
2963}
2964
1da177e4
LT
2965static void buffer_exit_cpu(int cpu)
2966{
2967 int i;
2968 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2969
2970 for (i = 0; i < BH_LRU_SIZE; i++) {
2971 brelse(b->bhs[i]);
2972 b->bhs[i] = NULL;
2973 }
8a143426
ED
2974 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2975 per_cpu(bh_accounting, cpu).nr = 0;
2976 put_cpu_var(bh_accounting);
1da177e4
LT
2977}
2978
2979static int buffer_cpu_notify(struct notifier_block *self,
2980 unsigned long action, void *hcpu)
2981{
2982 if (action == CPU_DEAD)
2983 buffer_exit_cpu((unsigned long)hcpu);
2984 return NOTIFY_OK;
2985}
1da177e4
LT
2986
2987void __init buffer_init(void)
2988{
2989 int nrpages;
2990
2991 bh_cachep = kmem_cache_create("buffer_head",
b0196009
PJ
2992 sizeof(struct buffer_head), 0,
2993 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2994 SLAB_MEM_SPREAD),
2995 init_buffer_head,
2996 NULL);
1da177e4
LT
2997
2998 /*
2999 * Limit the bh occupancy to 10% of ZONE_NORMAL
3000 */
3001 nrpages = (nr_free_buffer_pages() * 10) / 100;
3002 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3003 hotcpu_notifier(buffer_cpu_notify, 0);
3004}
3005
3006EXPORT_SYMBOL(__bforget);
3007EXPORT_SYMBOL(__brelse);
3008EXPORT_SYMBOL(__wait_on_buffer);
3009EXPORT_SYMBOL(block_commit_write);
3010EXPORT_SYMBOL(block_prepare_write);
3011EXPORT_SYMBOL(block_read_full_page);
3012EXPORT_SYMBOL(block_sync_page);
3013EXPORT_SYMBOL(block_truncate_page);
3014EXPORT_SYMBOL(block_write_full_page);
3015EXPORT_SYMBOL(cont_prepare_write);
1da177e4
LT
3016EXPORT_SYMBOL(end_buffer_read_sync);
3017EXPORT_SYMBOL(end_buffer_write_sync);
3018EXPORT_SYMBOL(file_fsync);
3019EXPORT_SYMBOL(fsync_bdev);
3020EXPORT_SYMBOL(generic_block_bmap);
3021EXPORT_SYMBOL(generic_commit_write);
3022EXPORT_SYMBOL(generic_cont_expand);
05eb0b51 3023EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3024EXPORT_SYMBOL(init_buffer);
3025EXPORT_SYMBOL(invalidate_bdev);
3026EXPORT_SYMBOL(ll_rw_block);
3027EXPORT_SYMBOL(mark_buffer_dirty);
3028EXPORT_SYMBOL(submit_bh);
3029EXPORT_SYMBOL(sync_dirty_buffer);
3030EXPORT_SYMBOL(unlock_buffer);