Merge tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
4fa512ce 51#include <linux/fsverity.h>
8a237adf 52#include <linux/sched/isolation.h>
1da177e4 53
2b211dc0
BD
54#include "internal.h"
55
1da177e4 56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
5bdf402a 57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
44981351 58 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
f0059afd
TH
62inline void touch_buffer(struct buffer_head *bh)
63{
5305cb83 64 trace_block_touch_buffer(bh);
03c5f331 65 folio_mark_accessed(bh->b_folio);
f0059afd
TH
66}
67EXPORT_SYMBOL(touch_buffer);
68
fc9b52cd 69void __lock_buffer(struct buffer_head *bh)
1da177e4 70{
74316201 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
72}
73EXPORT_SYMBOL(__lock_buffer);
74
fc9b52cd 75void unlock_buffer(struct buffer_head *bh)
1da177e4 76{
51b07fc3 77 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 78 smp_mb__after_atomic();
1da177e4
LT
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
1fe72eaa 81EXPORT_SYMBOL(unlock_buffer);
1da177e4 82
b4597226 83/*
520f301c
MWO
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
b4597226 87 */
520f301c 88void buffer_check_dirty_writeback(struct folio *folio,
b4597226
MG
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
520f301c 95 BUG_ON(!folio_test_locked(folio));
b4597226 96
520f301c
MWO
97 head = folio_buffers(folio);
98 if (!head)
b4597226
MG
99 return;
100
520f301c 101 if (folio_test_writeback(folio))
b4597226
MG
102 *writeback = true;
103
b4597226
MG
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
b4597226 115
1da177e4
LT
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
74316201 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 124}
1fe72eaa 125EXPORT_SYMBOL(__wait_on_buffer);
1da177e4 126
b744c2ac 127static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 128{
432f16e6
RE
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
a1c6f057
DM
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
133}
134
135/*
68671f35
DM
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
1da177e4 142 */
68671f35 143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
70246286 148 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
68671f35
DM
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
79f59784 156 * unlock the buffer.
68671f35
DM
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
161 put_bh(bh);
162}
1fe72eaa 163EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
1da177e4
LT
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
432f16e6 170 buffer_io_error(bh, ", lost sync page write");
87354e5d 171 mark_buffer_write_io_error(bh);
1da177e4
LT
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
1fe72eaa 177EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 178
1da177e4
LT
179/*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
600f111e 183 * i_private_lock.
1da177e4 184 *
600f111e 185 * Hack idea: for the blockdev mapping, i_private_lock contention
1da177e4 186 * may be quite high. This code could TryLock the page, and if that
600f111e 187 * succeeds, there is no need to take i_private_lock.
1da177e4
LT
188 */
189static struct buffer_head *
385fd4c5 190__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4 191{
53cd4cd3
AV
192 struct address_space *bd_mapping = bdev->bd_mapping;
193 const int blkbits = bd_mapping->host->i_blkbits;
1da177e4
LT
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
eee25182 198 struct folio *folio;
1da177e4 199 int all_mapped = 1;
43636c80 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 201
53cd4cd3 202 index = ((loff_t)block << blkbits) / PAGE_SIZE;
eee25182
MWO
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
1da177e4
LT
205 goto out;
206
600f111e 207 spin_lock(&bd_mapping->i_private_lock);
eee25182
MWO
208 head = folio_buffers(folio);
209 if (!head)
1da177e4 210 goto out_unlock;
1da177e4
LT
211 bh = head;
212 do {
97f76d3d
NK
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
1da177e4
LT
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
1da177e4
LT
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
43636c80
TH
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
53cd4cd3 236 1 << blkbits);
1da177e4
LT
237 }
238out_unlock:
600f111e 239 spin_unlock(&bd_mapping->i_private_lock);
eee25182 240 folio_put(folio);
1da177e4
LT
241out:
242 return ret;
243}
244
1da177e4
LT
245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246{
1da177e4 247 unsigned long flags;
a3972203 248 struct buffer_head *first;
1da177e4 249 struct buffer_head *tmp;
2e2dba15
MWO
250 struct folio *folio;
251 int folio_uptodate = 1;
1da177e4
LT
252
253 BUG_ON(!buffer_async_read(bh));
254
2e2dba15 255 folio = bh->b_folio;
1da177e4
LT
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
432f16e6 260 buffer_io_error(bh, ", async page read");
2e2dba15 261 folio_set_error(folio);
1da177e4
LT
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
2e2dba15 269 first = folio_buffers(folio);
f1e67e35 270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
2e2dba15 276 folio_uptodate = 0;
1da177e4
LT
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
f1e67e35 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4 284
6ba924d3 285 folio_end_read(folio, folio_uptodate);
1da177e4
LT
286 return;
287
288still_busy:
f1e67e35 289 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
290 return;
291}
292
4fa512ce 293struct postprocess_bh_ctx {
31fb992c
EB
294 struct work_struct work;
295 struct buffer_head *bh;
296};
297
4fa512ce
EB
298static void verify_bh(struct work_struct *work)
299{
300 struct postprocess_bh_ctx *ctx =
301 container_of(work, struct postprocess_bh_ctx, work);
302 struct buffer_head *bh = ctx->bh;
303 bool valid;
304
8b7d3fe9 305 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
4fa512ce
EB
306 end_buffer_async_read(bh, valid);
307 kfree(ctx);
308}
309
310static bool need_fsverity(struct buffer_head *bh)
311{
8b7d3fe9
EB
312 struct folio *folio = bh->b_folio;
313 struct inode *inode = folio->mapping->host;
4fa512ce
EB
314
315 return fsverity_active(inode) &&
316 /* needed by ext4 */
8b7d3fe9 317 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4fa512ce
EB
318}
319
31fb992c
EB
320static void decrypt_bh(struct work_struct *work)
321{
4fa512ce
EB
322 struct postprocess_bh_ctx *ctx =
323 container_of(work, struct postprocess_bh_ctx, work);
31fb992c
EB
324 struct buffer_head *bh = ctx->bh;
325 int err;
326
9c7fb7f7
EB
327 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 bh_offset(bh));
4fa512ce
EB
329 if (err == 0 && need_fsverity(bh)) {
330 /*
331 * We use different work queues for decryption and for verity
332 * because verity may require reading metadata pages that need
333 * decryption, and we shouldn't recurse to the same workqueue.
334 */
335 INIT_WORK(&ctx->work, verify_bh);
336 fsverity_enqueue_verify_work(&ctx->work);
337 return;
338 }
31fb992c
EB
339 end_buffer_async_read(bh, err == 0);
340 kfree(ctx);
341}
342
343/*
2c69e205 344 * I/O completion handler for block_read_full_folio() - pages
31fb992c
EB
345 * which come unlocked at the end of I/O.
346 */
347static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348{
3822a7c4 349 struct inode *inode = bh->b_folio->mapping->host;
4fa512ce
EB
350 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 bool verify = need_fsverity(bh);
352
353 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 if (uptodate && (decrypt || verify)) {
355 struct postprocess_bh_ctx *ctx =
356 kmalloc(sizeof(*ctx), GFP_ATOMIC);
31fb992c
EB
357
358 if (ctx) {
31fb992c 359 ctx->bh = bh;
4fa512ce
EB
360 if (decrypt) {
361 INIT_WORK(&ctx->work, decrypt_bh);
362 fscrypt_enqueue_decrypt_work(&ctx->work);
363 } else {
364 INIT_WORK(&ctx->work, verify_bh);
365 fsverity_enqueue_verify_work(&ctx->work);
366 }
31fb992c
EB
367 return;
368 }
369 uptodate = 0;
370 }
371 end_buffer_async_read(bh, uptodate);
372}
373
1da177e4 374/*
14059f66
MWO
375 * Completion handler for block_write_full_folio() - folios which are unlocked
376 * during I/O, and which have the writeback flag cleared upon I/O completion.
1da177e4 377 */
14059f66 378static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 379{
1da177e4 380 unsigned long flags;
a3972203 381 struct buffer_head *first;
1da177e4 382 struct buffer_head *tmp;
743ed81e 383 struct folio *folio;
1da177e4
LT
384
385 BUG_ON(!buffer_async_write(bh));
386
743ed81e 387 folio = bh->b_folio;
1da177e4
LT
388 if (uptodate) {
389 set_buffer_uptodate(bh);
390 } else {
432f16e6 391 buffer_io_error(bh, ", lost async page write");
87354e5d 392 mark_buffer_write_io_error(bh);
1da177e4 393 clear_buffer_uptodate(bh);
743ed81e 394 folio_set_error(folio);
1da177e4
LT
395 }
396
743ed81e 397 first = folio_buffers(folio);
f1e67e35 398 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 399
1da177e4
LT
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
f1e67e35 410 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
743ed81e 411 folio_end_writeback(folio);
1da177e4
LT
412 return;
413
414still_busy:
f1e67e35 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
416 return;
417}
418
419/*
420 * If a page's buffers are under async readin (end_buffer_async_read
421 * completion) then there is a possibility that another thread of
422 * control could lock one of the buffers after it has completed
423 * but while some of the other buffers have not completed. This
424 * locked buffer would confuse end_buffer_async_read() into not unlocking
425 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
426 * that this buffer is not under async I/O.
427 *
428 * The page comes unlocked when it has no locked buffer_async buffers
429 * left.
430 *
431 * PageLocked prevents anyone starting new async I/O reads any of
432 * the buffers.
433 *
434 * PageWriteback is used to prevent simultaneous writeout of the same
435 * page.
436 *
437 * PageLocked prevents anyone from starting writeback of a page which is
438 * under read I/O (PageWriteback is only ever set against a locked page).
439 */
440static void mark_buffer_async_read(struct buffer_head *bh)
441{
31fb992c 442 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
443 set_buffer_async_read(bh);
444}
445
1fe72eaa
HS
446static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 bh_end_io_t *handler)
1da177e4 448{
35c80d5f 449 bh->b_end_io = handler;
1da177e4
LT
450 set_buffer_async_write(bh);
451}
35c80d5f
CM
452
453void mark_buffer_async_write(struct buffer_head *bh)
454{
455 mark_buffer_async_write_endio(bh, end_buffer_async_write);
456}
1da177e4
LT
457EXPORT_SYMBOL(mark_buffer_async_write);
458
459
460/*
461 * fs/buffer.c contains helper functions for buffer-backed address space's
462 * fsync functions. A common requirement for buffer-based filesystems is
463 * that certain data from the backing blockdev needs to be written out for
464 * a successful fsync(). For example, ext2 indirect blocks need to be
465 * written back and waited upon before fsync() returns.
466 *
73f65b8b 467 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
1da177e4 468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
600f111e 469 * management of a list of dependent buffers at ->i_mapping->i_private_list.
1da177e4
LT
470 *
471 * Locking is a little subtle: try_to_free_buffers() will remove buffers
472 * from their controlling inode's queue when they are being freed. But
473 * try_to_free_buffers() will be operating against the *blockdev* mapping
474 * at the time, not against the S_ISREG file which depends on those buffers.
600f111e 475 * So the locking for i_private_list is via the i_private_lock in the address_space
1da177e4
LT
476 * which backs the buffers. Which is different from the address_space
477 * against which the buffers are listed. So for a particular address_space,
600f111e
MWO
478 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
479 * mapping->i_private_list will always be protected by the backing blockdev's
480 * ->i_private_lock.
1da177e4
LT
481 *
482 * Which introduces a requirement: all buffers on an address_space's
600f111e 483 * ->i_private_list must be from the same address_space: the blockdev's.
1da177e4 484 *
600f111e
MWO
485 * address_spaces which do not place buffers at ->i_private_list via these
486 * utility functions are free to use i_private_lock and i_private_list for
487 * whatever they want. The only requirement is that list_empty(i_private_list)
1da177e4
LT
488 * be true at clear_inode() time.
489 *
490 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
491 * filesystems should do that. invalidate_inode_buffers() should just go
492 * BUG_ON(!list_empty).
493 *
494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
495 * take an address_space, not an inode. And it should be called
496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497 * queued up.
498 *
499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500 * list if it is already on a list. Because if the buffer is on a list,
501 * it *must* already be on the right one. If not, the filesystem is being
502 * silly. This will save a ton of locking. But first we have to ensure
503 * that buffers are taken *off* the old inode's list when they are freed
504 * (presumably in truncate). That requires careful auditing of all
505 * filesystems (do it inside bforget()). It could also be done by bringing
506 * b_inode back.
507 */
508
509/*
600f111e 510 * The buffer's backing address_space's i_private_lock must be held
1da177e4 511 */
dbacefc9 512static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
513{
514 list_del_init(&bh->b_assoc_buffers);
58ff407b 515 WARN_ON(!bh->b_assoc_map);
58ff407b 516 bh->b_assoc_map = NULL;
1da177e4
LT
517}
518
519int inode_has_buffers(struct inode *inode)
520{
600f111e 521 return !list_empty(&inode->i_data.i_private_list);
1da177e4
LT
522}
523
524/*
525 * osync is designed to support O_SYNC io. It waits synchronously for
526 * all already-submitted IO to complete, but does not queue any new
527 * writes to the disk.
528 *
79f59784
ZY
529 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530 * as you dirty the buffers, and then use osync_inode_buffers to wait for
1da177e4
LT
531 * completion. Any other dirty buffers which are not yet queued for
532 * write will not be flushed to disk by the osync.
533 */
534static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535{
536 struct buffer_head *bh;
537 struct list_head *p;
538 int err = 0;
539
540 spin_lock(lock);
541repeat:
542 list_for_each_prev(p, list) {
543 bh = BH_ENTRY(p);
544 if (buffer_locked(bh)) {
545 get_bh(bh);
546 spin_unlock(lock);
547 wait_on_buffer(bh);
548 if (!buffer_uptodate(bh))
549 err = -EIO;
550 brelse(bh);
551 spin_lock(lock);
552 goto repeat;
553 }
554 }
555 spin_unlock(lock);
556 return err;
557}
558
559/**
78a4a50a 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 561 * @mapping: the mapping which wants those buffers written
1da177e4 562 *
600f111e 563 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
1da177e4
LT
564 * that I/O.
565 *
67be2dd1
MW
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
1da177e4
LT
569 */
570int sync_mapping_buffers(struct address_space *mapping)
571{
600f111e 572 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 573
600f111e 574 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
1da177e4
LT
575 return 0;
576
600f111e
MWO
577 return fsync_buffers_list(&buffer_mapping->i_private_lock,
578 &mapping->i_private_list);
1da177e4
LT
579}
580EXPORT_SYMBOL(sync_mapping_buffers);
581
31b2ebc0
RHI
582/**
583 * generic_buffers_fsync_noflush - generic buffer fsync implementation
584 * for simple filesystems with no inode lock
585 *
586 * @file: file to synchronize
587 * @start: start offset in bytes
588 * @end: end offset in bytes (inclusive)
589 * @datasync: only synchronize essential metadata if true
590 *
591 * This is a generic implementation of the fsync method for simple
592 * filesystems which track all non-inode metadata in the buffers list
593 * hanging off the address_space structure.
594 */
595int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 bool datasync)
597{
598 struct inode *inode = file->f_mapping->host;
599 int err;
600 int ret;
601
602 err = file_write_and_wait_range(file, start, end);
603 if (err)
604 return err;
605
606 ret = sync_mapping_buffers(inode->i_mapping);
607 if (!(inode->i_state & I_DIRTY_ALL))
608 goto out;
609 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 goto out;
611
612 err = sync_inode_metadata(inode, 1);
613 if (ret == 0)
614 ret = err;
615
616out:
617 /* check and advance again to catch errors after syncing out buffers */
618 err = file_check_and_advance_wb_err(file);
619 if (ret == 0)
620 ret = err;
621 return ret;
622}
623EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624
625/**
626 * generic_buffers_fsync - generic buffer fsync implementation
627 * for simple filesystems with no inode lock
628 *
629 * @file: file to synchronize
630 * @start: start offset in bytes
631 * @end: end offset in bytes (inclusive)
632 * @datasync: only synchronize essential metadata if true
633 *
634 * This is a generic implementation of the fsync method for simple
635 * filesystems which track all non-inode metadata in the buffers list
636 * hanging off the address_space structure. This also makes sure that
637 * a device cache flush operation is called at the end.
638 */
639int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 bool datasync)
641{
642 struct inode *inode = file->f_mapping->host;
643 int ret;
644
645 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 if (!ret)
647 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 return ret;
649}
650EXPORT_SYMBOL(generic_buffers_fsync);
651
1da177e4
LT
652/*
653 * Called when we've recently written block `bblock', and it is known that
654 * `bblock' was for a buffer_boundary() buffer. This means that the block at
655 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
656 * dirty, schedule it for IO. So that indirects merge nicely with their data.
657 */
658void write_boundary_block(struct block_device *bdev,
659 sector_t bblock, unsigned blocksize)
660{
661 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
662 if (bh) {
663 if (buffer_dirty(bh))
e7ea1129 664 write_dirty_buffer(bh, 0);
1da177e4
LT
665 put_bh(bh);
666 }
667}
668
669void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670{
671 struct address_space *mapping = inode->i_mapping;
abc8a8a2 672 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4
LT
673
674 mark_buffer_dirty(bh);
600f111e
MWO
675 if (!mapping->i_private_data) {
676 mapping->i_private_data = buffer_mapping;
1da177e4 677 } else {
600f111e 678 BUG_ON(mapping->i_private_data != buffer_mapping);
1da177e4 679 }
535ee2fb 680 if (!bh->b_assoc_map) {
600f111e 681 spin_lock(&buffer_mapping->i_private_lock);
1da177e4 682 list_move_tail(&bh->b_assoc_buffers,
600f111e 683 &mapping->i_private_list);
58ff407b 684 bh->b_assoc_map = mapping;
600f111e 685 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
686 }
687}
688EXPORT_SYMBOL(mark_buffer_dirty_inode);
689
3814ec89
MWO
690/**
691 * block_dirty_folio - Mark a folio as dirty.
692 * @mapping: The address space containing this folio.
693 * @folio: The folio to mark dirty.
694 *
695 * Filesystems which use buffer_heads can use this function as their
696 * ->dirty_folio implementation. Some filesystems need to do a little
697 * work before calling this function. Filesystems which do not use
698 * buffer_heads should call filemap_dirty_folio() instead.
1da177e4 699 *
3814ec89
MWO
700 * If the folio has buffers, the uptodate buffers are set dirty, to
701 * preserve dirty-state coherency between the folio and the buffers.
702 * Buffers added to a dirty folio are created dirty.
1da177e4 703 *
3814ec89
MWO
704 * The buffers are dirtied before the folio is dirtied. There's a small
705 * race window in which writeback may see the folio cleanness but not the
706 * buffer dirtiness. That's fine. If this code were to set the folio
707 * dirty before the buffers, writeback could clear the folio dirty flag,
708 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
709 * folio on the dirty folio list.
1da177e4 710 *
3814ec89
MWO
711 * We use i_private_lock to lock against try_to_free_buffers() while
712 * using the folio's buffer list. This also prevents clean buffers
713 * being added to the folio after it was set dirty.
1da177e4 714 *
3814ec89
MWO
715 * Context: May only be called from process context. Does not sleep.
716 * Caller must ensure that @folio cannot be truncated during this call,
717 * typically by holding the folio lock or having a page in the folio
718 * mapped and holding the page table lock.
1da177e4 719 *
3814ec89 720 * Return: True if the folio was dirtied; false if it was already dirtied.
1da177e4 721 */
e621900a 722bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 723{
e621900a
MWO
724 struct buffer_head *head;
725 bool newly_dirty;
1da177e4 726
600f111e 727 spin_lock(&mapping->i_private_lock);
e621900a
MWO
728 head = folio_buffers(folio);
729 if (head) {
1da177e4
LT
730 struct buffer_head *bh = head;
731
732 do {
733 set_buffer_dirty(bh);
734 bh = bh->b_this_page;
735 } while (bh != head);
736 }
c4843a75 737 /*
bcfe06bf 738 * Lock out page's memcg migration to keep PageDirty
81f8c3a4 739 * synchronized with per-memcg dirty page counters.
c4843a75 740 */
e621900a
MWO
741 folio_memcg_lock(folio);
742 newly_dirty = !folio_test_set_dirty(folio);
600f111e 743 spin_unlock(&mapping->i_private_lock);
1da177e4 744
a8e7d49a 745 if (newly_dirty)
e621900a 746 __folio_mark_dirty(folio, mapping, 1);
c4843a75 747
e621900a 748 folio_memcg_unlock(folio);
c4843a75
GT
749
750 if (newly_dirty)
751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
a8e7d49a 753 return newly_dirty;
1da177e4 754}
e621900a 755EXPORT_SYMBOL(block_dirty_folio);
1da177e4
LT
756
757/*
758 * Write out and wait upon a list of buffers.
759 *
760 * We have conflicting pressures: we want to make sure that all
761 * initially dirty buffers get waited on, but that any subsequently
762 * dirtied buffers don't. After all, we don't want fsync to last
763 * forever if somebody is actively writing to the file.
764 *
765 * Do this in two main stages: first we copy dirty buffers to a
766 * temporary inode list, queueing the writes as we go. Then we clean
767 * up, waiting for those writes to complete.
768 *
769 * During this second stage, any subsequent updates to the file may end
770 * up refiling the buffer on the original inode's dirty list again, so
771 * there is a chance we will end up with a buffer queued for write but
772 * not yet completed on that list. So, as a final cleanup we go through
773 * the osync code to catch these locked, dirty buffers without requeuing
774 * any newly dirty buffers for write.
775 */
776static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777{
778 struct buffer_head *bh;
779 struct list_head tmp;
7eaceacc 780 struct address_space *mapping;
1da177e4 781 int err = 0, err2;
4ee2491e 782 struct blk_plug plug;
1da177e4
LT
783
784 INIT_LIST_HEAD(&tmp);
4ee2491e 785 blk_start_plug(&plug);
1da177e4
LT
786
787 spin_lock(lock);
788 while (!list_empty(list)) {
789 bh = BH_ENTRY(list->next);
535ee2fb 790 mapping = bh->b_assoc_map;
58ff407b 791 __remove_assoc_queue(bh);
535ee2fb
JK
792 /* Avoid race with mark_buffer_dirty_inode() which does
793 * a lockless check and we rely on seeing the dirty bit */
794 smp_mb();
1da177e4
LT
795 if (buffer_dirty(bh) || buffer_locked(bh)) {
796 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 797 bh->b_assoc_map = mapping;
1da177e4
LT
798 if (buffer_dirty(bh)) {
799 get_bh(bh);
800 spin_unlock(lock);
801 /*
802 * Ensure any pending I/O completes so that
9cb569d6
CH
803 * write_dirty_buffer() actually writes the
804 * current contents - it is a noop if I/O is
805 * still in flight on potentially older
806 * contents.
1da177e4 807 */
70fd7614 808 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
809
810 /*
811 * Kick off IO for the previous mapping. Note
812 * that we will not run the very last mapping,
813 * wait_on_buffer() will do that for us
814 * through sync_buffer().
815 */
1da177e4
LT
816 brelse(bh);
817 spin_lock(lock);
818 }
819 }
820 }
821
4ee2491e
JA
822 spin_unlock(lock);
823 blk_finish_plug(&plug);
824 spin_lock(lock);
825
1da177e4
LT
826 while (!list_empty(&tmp)) {
827 bh = BH_ENTRY(tmp.prev);
1da177e4 828 get_bh(bh);
535ee2fb
JK
829 mapping = bh->b_assoc_map;
830 __remove_assoc_queue(bh);
831 /* Avoid race with mark_buffer_dirty_inode() which does
832 * a lockless check and we rely on seeing the dirty bit */
833 smp_mb();
834 if (buffer_dirty(bh)) {
835 list_add(&bh->b_assoc_buffers,
600f111e 836 &mapping->i_private_list);
535ee2fb
JK
837 bh->b_assoc_map = mapping;
838 }
1da177e4
LT
839 spin_unlock(lock);
840 wait_on_buffer(bh);
841 if (!buffer_uptodate(bh))
842 err = -EIO;
843 brelse(bh);
844 spin_lock(lock);
845 }
846
847 spin_unlock(lock);
848 err2 = osync_buffers_list(lock, list);
849 if (err)
850 return err;
851 else
852 return err2;
853}
854
855/*
856 * Invalidate any and all dirty buffers on a given inode. We are
857 * probably unmounting the fs, but that doesn't mean we have already
858 * done a sync(). Just drop the buffers from the inode list.
859 *
600f111e 860 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
1da177e4
LT
861 * assumes that all the buffers are against the blockdev. Not true
862 * for reiserfs.
863 */
864void invalidate_inode_buffers(struct inode *inode)
865{
866 if (inode_has_buffers(inode)) {
867 struct address_space *mapping = &inode->i_data;
600f111e
MWO
868 struct list_head *list = &mapping->i_private_list;
869 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 870
600f111e 871 spin_lock(&buffer_mapping->i_private_lock);
1da177e4
LT
872 while (!list_empty(list))
873 __remove_assoc_queue(BH_ENTRY(list->next));
600f111e 874 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
875 }
876}
52b19ac9 877EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
878
879/*
880 * Remove any clean buffers from the inode's buffer list. This is called
881 * when we're trying to free the inode itself. Those buffers can pin it.
882 *
883 * Returns true if all buffers were removed.
884 */
885int remove_inode_buffers(struct inode *inode)
886{
887 int ret = 1;
888
889 if (inode_has_buffers(inode)) {
890 struct address_space *mapping = &inode->i_data;
600f111e
MWO
891 struct list_head *list = &mapping->i_private_list;
892 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 893
600f111e 894 spin_lock(&buffer_mapping->i_private_lock);
1da177e4
LT
895 while (!list_empty(list)) {
896 struct buffer_head *bh = BH_ENTRY(list->next);
897 if (buffer_dirty(bh)) {
898 ret = 0;
899 break;
900 }
901 __remove_assoc_queue(bh);
902 }
600f111e 903 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
904 }
905 return ret;
906}
907
908/*
c71124a8 909 * Create the appropriate buffers when given a folio for data area and
1da177e4
LT
910 * the size of each buffer.. Use the bh->b_this_page linked list to
911 * follow the buffers created. Return NULL if unable to create more
912 * buffers.
913 *
914 * The retry flag is used to differentiate async IO (paging, swapping)
915 * which may not fail from ordinary buffer allocations.
916 */
c71124a8 917struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
2a418157 918 gfp_t gfp)
1da177e4
LT
919{
920 struct buffer_head *bh, *head;
921 long offset;
b87d8cef 922 struct mem_cgroup *memcg, *old_memcg;
1da177e4 923
c71124a8
PR
924 /* The folio lock pins the memcg */
925 memcg = folio_memcg(folio);
b87d8cef 926 old_memcg = set_active_memcg(memcg);
f745c6f5 927
1da177e4 928 head = NULL;
c71124a8 929 offset = folio_size(folio);
1da177e4 930 while ((offset -= size) >= 0) {
640ab98f 931 bh = alloc_buffer_head(gfp);
1da177e4
LT
932 if (!bh)
933 goto no_grow;
934
1da177e4
LT
935 bh->b_this_page = head;
936 bh->b_blocknr = -1;
937 head = bh;
938
1da177e4
LT
939 bh->b_size = size;
940
c71124a8
PR
941 /* Link the buffer to its folio */
942 folio_set_bh(bh, folio, offset);
1da177e4 943 }
f745c6f5 944out:
b87d8cef 945 set_active_memcg(old_memcg);
1da177e4
LT
946 return head;
947/*
948 * In case anything failed, we just free everything we got.
949 */
950no_grow:
951 if (head) {
952 do {
953 bh = head;
954 head = head->b_this_page;
955 free_buffer_head(bh);
956 } while (head);
957 }
958
f745c6f5 959 goto out;
1da177e4 960}
c71124a8
PR
961EXPORT_SYMBOL_GPL(folio_alloc_buffers);
962
963struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
964 bool retry)
965{
2a418157
MWO
966 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
967 if (retry)
968 gfp |= __GFP_NOFAIL;
969
970 return folio_alloc_buffers(page_folio(page), size, gfp);
c71124a8 971}
1da177e4
LT
972EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
08d84add
MWO
974static inline void link_dev_buffers(struct folio *folio,
975 struct buffer_head *head)
1da177e4
LT
976{
977 struct buffer_head *bh, *tail;
978
979 bh = head;
980 do {
981 tail = bh;
982 bh = bh->b_this_page;
983 } while (bh);
984 tail->b_this_page = head;
08d84add 985 folio_attach_private(folio, head);
1da177e4
LT
986}
987
bbec0270
LT
988static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989{
990 sector_t retval = ~((sector_t)0);
b86058f9 991 loff_t sz = bdev_nr_bytes(bdev);
bbec0270
LT
992
993 if (sz) {
994 unsigned int sizebits = blksize_bits(size);
995 retval = (sz >> sizebits);
996 }
997 return retval;
998}
999
1da177e4 1000/*
6f24ce6b 1001 * Initialise the state of a blockdev folio's buffers.
1da177e4 1002 */
6f24ce6b 1003static sector_t folio_init_buffers(struct folio *folio,
382497ad 1004 struct block_device *bdev, unsigned size)
1da177e4 1005{
6f24ce6b 1006 struct buffer_head *head = folio_buffers(folio);
1da177e4 1007 struct buffer_head *bh = head;
6f24ce6b 1008 bool uptodate = folio_test_uptodate(folio);
382497ad 1009 sector_t block = div_u64(folio_pos(folio), size);
bcd1d063 1010 sector_t end_block = blkdev_max_block(bdev, size);
1da177e4
LT
1011
1012 do {
1013 if (!buffer_mapped(bh)) {
01950a34
EB
1014 bh->b_end_io = NULL;
1015 bh->b_private = NULL;
1da177e4
LT
1016 bh->b_bdev = bdev;
1017 bh->b_blocknr = block;
1018 if (uptodate)
1019 set_buffer_uptodate(bh);
080399aa
JM
1020 if (block < end_block)
1021 set_buffer_mapped(bh);
1da177e4
LT
1022 }
1023 block++;
1024 bh = bh->b_this_page;
1025 } while (bh != head);
676ce6d5
HD
1026
1027 /*
1028 * Caller needs to validate requested block against end of device.
1029 */
1030 return end_block;
1da177e4
LT
1031}
1032
1033/*
6d840a18 1034 * Create the page-cache folio that contains the requested block.
1da177e4 1035 *
676ce6d5 1036 * This is used purely for blockdev mappings.
6d840a18 1037 *
bcd30d4c
MWO
1038 * Returns false if we have a failure which cannot be cured by retrying
1039 * without sleeping. Returns true if we succeeded, or the caller should retry.
1da177e4 1040 */
6d840a18 1041static bool grow_dev_folio(struct block_device *bdev, sector_t block,
382497ad 1042 pgoff_t index, unsigned size, gfp_t gfp)
1da177e4 1043{
22f89a4f 1044 struct address_space *mapping = bdev->bd_mapping;
3c98a41c 1045 struct folio *folio;
1da177e4 1046 struct buffer_head *bh;
6d840a18 1047 sector_t end_block = 0;
84235de3 1048
22f89a4f 1049 folio = __filemap_get_folio(mapping, index,
3ed65f04
MWO
1050 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1051 if (IS_ERR(folio))
6d840a18 1052 return false;
1da177e4 1053
3c98a41c
MWO
1054 bh = folio_buffers(folio);
1055 if (bh) {
1da177e4 1056 if (bh->b_size == size) {
382497ad 1057 end_block = folio_init_buffers(folio, bdev, size);
6d840a18 1058 goto unlock;
1da177e4 1059 }
6d840a18 1060
bcd30d4c
MWO
1061 /*
1062 * Retrying may succeed; for example the folio may finish
1063 * writeback, or buffers may be cleaned. This should not
1064 * happen very often; maybe we have old buffers attached to
1065 * this blockdev's page cache and we're trying to change
1066 * the block size?
1067 */
1068 if (!try_to_free_buffers(folio)) {
1069 end_block = ~0ULL;
6d840a18 1070 goto unlock;
1da177e4 1071 }
1da177e4
LT
1072 }
1073
3ed65f04
MWO
1074 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1075 if (!bh)
6d840a18 1076 goto unlock;
1da177e4
LT
1077
1078 /*
3c98a41c 1079 * Link the folio to the buffers and initialise them. Take the
1da177e4 1080 * lock to be atomic wrt __find_get_block(), which does not
3c98a41c 1081 * run under the folio lock.
1da177e4 1082 */
22f89a4f 1083 spin_lock(&mapping->i_private_lock);
08d84add 1084 link_dev_buffers(folio, bh);
382497ad 1085 end_block = folio_init_buffers(folio, bdev, size);
22f89a4f 1086 spin_unlock(&mapping->i_private_lock);
6d840a18 1087unlock:
3c98a41c
MWO
1088 folio_unlock(folio);
1089 folio_put(folio);
6d840a18 1090 return block < end_block;
1da177e4
LT
1091}
1092
1093/*
6d840a18
MWO
1094 * Create buffers for the specified block device block's folio. If
1095 * that folio was dirty, the buffers are set dirty also. Returns false
1096 * if we've hit a permanent error.
1da177e4 1097 */
6d840a18
MWO
1098static bool grow_buffers(struct block_device *bdev, sector_t block,
1099 unsigned size, gfp_t gfp)
1da177e4 1100{
5f3bd90d 1101 loff_t pos;
1da177e4 1102
e5657933 1103 /*
5f3bd90d
MWO
1104 * Check for a block which lies outside our maximum possible
1105 * pagecache index.
e5657933 1106 */
5f3bd90d
MWO
1107 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1108 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
8e24eea7 1109 __func__, (unsigned long long)block,
a1c6f057 1110 bdev);
6d840a18 1111 return false;
e5657933 1112 }
676ce6d5 1113
6d840a18 1114 /* Create a folio with the proper size buffers */
5f3bd90d 1115 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1da177e4
LT
1116}
1117
0026ba40 1118static struct buffer_head *
3b5e6454
GK
1119__getblk_slow(struct block_device *bdev, sector_t block,
1120 unsigned size, gfp_t gfp)
1da177e4
LT
1121{
1122 /* Size must be multiple of hard sectorsize */
e1defc4f 1123 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1124 (size < 512 || size > PAGE_SIZE))) {
1125 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1126 size);
e1defc4f
MP
1127 printk(KERN_ERR "logical block size: %d\n",
1128 bdev_logical_block_size(bdev));
1da177e4
LT
1129
1130 dump_stack();
1131 return NULL;
1132 }
1133
676ce6d5
HD
1134 for (;;) {
1135 struct buffer_head *bh;
1da177e4
LT
1136
1137 bh = __find_get_block(bdev, block, size);
1138 if (bh)
1139 return bh;
676ce6d5 1140
6d840a18 1141 if (!grow_buffers(bdev, block, size, gfp))
676ce6d5 1142 return NULL;
1da177e4
LT
1143 }
1144}
1145
1146/*
1147 * The relationship between dirty buffers and dirty pages:
1148 *
1149 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1150 * the page is tagged dirty in the page cache.
1da177e4
LT
1151 *
1152 * At all times, the dirtiness of the buffers represents the dirtiness of
1153 * subsections of the page. If the page has buffers, the page dirty bit is
1154 * merely a hint about the true dirty state.
1155 *
1156 * When a page is set dirty in its entirety, all its buffers are marked dirty
1157 * (if the page has buffers).
1158 *
1159 * When a buffer is marked dirty, its page is dirtied, but the page's other
1160 * buffers are not.
1161 *
1162 * Also. When blockdev buffers are explicitly read with bread(), they
1163 * individually become uptodate. But their backing page remains not
1164 * uptodate - even if all of its buffers are uptodate. A subsequent
2c69e205
MWO
1165 * block_read_full_folio() against that folio will discover all the uptodate
1166 * buffers, will set the folio uptodate and will perform no I/O.
1da177e4
LT
1167 */
1168
1169/**
1170 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1171 * @bh: the buffer_head to mark dirty
1da177e4 1172 *
ec82e1c1
MW
1173 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1174 * its backing page dirty, then tag the page as dirty in the page cache
1175 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1176 * inode list.
1177 *
600f111e 1178 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
b93b0163 1179 * i_pages lock and mapping->host->i_lock.
1da177e4 1180 */
fc9b52cd 1181void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1182{
787d2214 1183 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1184
5305cb83
TH
1185 trace_block_dirty_buffer(bh);
1186
1be62dc1
LT
1187 /*
1188 * Very *carefully* optimize the it-is-already-dirty case.
1189 *
1190 * Don't let the final "is it dirty" escape to before we
1191 * perhaps modified the buffer.
1192 */
1193 if (buffer_dirty(bh)) {
1194 smp_mb();
1195 if (buffer_dirty(bh))
1196 return;
1197 }
1198
a8e7d49a 1199 if (!test_set_buffer_dirty(bh)) {
cf1d3417 1200 struct folio *folio = bh->b_folio;
c4843a75 1201 struct address_space *mapping = NULL;
c4843a75 1202
cf1d3417
MWO
1203 folio_memcg_lock(folio);
1204 if (!folio_test_set_dirty(folio)) {
1205 mapping = folio->mapping;
8e9d78ed 1206 if (mapping)
cf1d3417 1207 __folio_mark_dirty(folio, mapping, 0);
8e9d78ed 1208 }
cf1d3417 1209 folio_memcg_unlock(folio);
c4843a75
GT
1210 if (mapping)
1211 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1212 }
1da177e4 1213}
1fe72eaa 1214EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1215
87354e5d
JL
1216void mark_buffer_write_io_error(struct buffer_head *bh)
1217{
1218 set_buffer_write_io_error(bh);
1219 /* FIXME: do we need to set this in both places? */
abc8a8a2
MWO
1220 if (bh->b_folio && bh->b_folio->mapping)
1221 mapping_set_error(bh->b_folio->mapping, -EIO);
4b2201da 1222 if (bh->b_assoc_map) {
87354e5d 1223 mapping_set_error(bh->b_assoc_map, -EIO);
4b2201da
CH
1224 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1225 }
87354e5d
JL
1226}
1227EXPORT_SYMBOL(mark_buffer_write_io_error);
1228
66924fda
MWO
1229/**
1230 * __brelse - Release a buffer.
1231 * @bh: The buffer to release.
1232 *
1233 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1da177e4 1234 */
66924fda 1235void __brelse(struct buffer_head *bh)
1da177e4 1236{
66924fda
MWO
1237 if (atomic_read(&bh->b_count)) {
1238 put_bh(bh);
1da177e4
LT
1239 return;
1240 }
5c752ad9 1241 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1242}
1fe72eaa 1243EXPORT_SYMBOL(__brelse);
1da177e4 1244
b73a936f
MWO
1245/**
1246 * __bforget - Discard any dirty data in a buffer.
1247 * @bh: The buffer to forget.
1248 *
1249 * This variant of bforget() can be called if @bh is guaranteed to not
1250 * be NULL.
1da177e4
LT
1251 */
1252void __bforget(struct buffer_head *bh)
1253{
1254 clear_buffer_dirty(bh);
535ee2fb 1255 if (bh->b_assoc_map) {
abc8a8a2 1256 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4 1257
600f111e 1258 spin_lock(&buffer_mapping->i_private_lock);
1da177e4 1259 list_del_init(&bh->b_assoc_buffers);
58ff407b 1260 bh->b_assoc_map = NULL;
600f111e 1261 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
1262 }
1263 __brelse(bh);
1264}
1fe72eaa 1265EXPORT_SYMBOL(__bforget);
1da177e4
LT
1266
1267static struct buffer_head *__bread_slow(struct buffer_head *bh)
1268{
1269 lock_buffer(bh);
1270 if (buffer_uptodate(bh)) {
1271 unlock_buffer(bh);
1272 return bh;
1273 } else {
1274 get_bh(bh);
1275 bh->b_end_io = end_buffer_read_sync;
1420c4a5 1276 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
1277 wait_on_buffer(bh);
1278 if (buffer_uptodate(bh))
1279 return bh;
1280 }
1281 brelse(bh);
1282 return NULL;
1283}
1284
1285/*
1286 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1287 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1288 * refcount elevated by one when they're in an LRU. A buffer can only appear
1289 * once in a particular CPU's LRU. A single buffer can be present in multiple
1290 * CPU's LRUs at the same time.
1291 *
1292 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1293 * sb_find_get_block().
1294 *
1295 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1296 * a local interrupt disable for that.
1297 */
1298
86cf78d7 1299#define BH_LRU_SIZE 16
1da177e4
LT
1300
1301struct bh_lru {
1302 struct buffer_head *bhs[BH_LRU_SIZE];
1303};
1304
1305static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1306
1307#ifdef CONFIG_SMP
1308#define bh_lru_lock() local_irq_disable()
1309#define bh_lru_unlock() local_irq_enable()
1310#else
1311#define bh_lru_lock() preempt_disable()
1312#define bh_lru_unlock() preempt_enable()
1313#endif
1314
1315static inline void check_irqs_on(void)
1316{
1317#ifdef irqs_disabled
1318 BUG_ON(irqs_disabled());
1319#endif
1320}
1321
1322/*
241f01fb
EB
1323 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1324 * inserted at the front, and the buffer_head at the back if any is evicted.
1325 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1326 */
1327static void bh_lru_install(struct buffer_head *bh)
1328{
241f01fb
EB
1329 struct buffer_head *evictee = bh;
1330 struct bh_lru *b;
1331 int i;
1da177e4
LT
1332
1333 check_irqs_on();
c0226eb8
MK
1334 bh_lru_lock();
1335
8cc621d2
MK
1336 /*
1337 * the refcount of buffer_head in bh_lru prevents dropping the
1338 * attached page(i.e., try_to_free_buffers) so it could cause
1339 * failing page migration.
1340 * Skip putting upcoming bh into bh_lru until migration is done.
1341 */
8a237adf 1342 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
c0226eb8 1343 bh_lru_unlock();
8cc621d2 1344 return;
c0226eb8 1345 }
1da177e4 1346
241f01fb
EB
1347 b = this_cpu_ptr(&bh_lrus);
1348 for (i = 0; i < BH_LRU_SIZE; i++) {
1349 swap(evictee, b->bhs[i]);
1350 if (evictee == bh) {
1351 bh_lru_unlock();
1352 return;
1da177e4 1353 }
1da177e4 1354 }
1da177e4 1355
241f01fb
EB
1356 get_bh(bh);
1357 bh_lru_unlock();
1358 brelse(evictee);
1da177e4
LT
1359}
1360
1361/*
1362 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1363 */
858119e1 1364static struct buffer_head *
3991d3bd 1365lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1366{
1367 struct buffer_head *ret = NULL;
3991d3bd 1368 unsigned int i;
1da177e4
LT
1369
1370 check_irqs_on();
1371 bh_lru_lock();
8a237adf
MT
1372 if (cpu_is_isolated(smp_processor_id())) {
1373 bh_lru_unlock();
1374 return NULL;
1375 }
1da177e4 1376 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1377 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1378
9470dd5d
ZB
1379 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1380 bh->b_size == size) {
1da177e4
LT
1381 if (i) {
1382 while (i) {
c7b92516
CL
1383 __this_cpu_write(bh_lrus.bhs[i],
1384 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1385 i--;
1386 }
c7b92516 1387 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1388 }
1389 get_bh(bh);
1390 ret = bh;
1391 break;
1392 }
1393 }
1394 bh_lru_unlock();
1395 return ret;
1396}
1397
1398/*
1399 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1400 * it in the LRU and mark it as accessed. If it is not present then return
1401 * NULL
1402 */
1403struct buffer_head *
3991d3bd 1404__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1405{
1406 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1407
1408 if (bh == NULL) {
2457aec6 1409 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1410 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1411 if (bh)
1412 bh_lru_install(bh);
2457aec6 1413 } else
1da177e4 1414 touch_buffer(bh);
2457aec6 1415
1da177e4
LT
1416 return bh;
1417}
1418EXPORT_SYMBOL(__find_get_block);
1419
3ed65f04
MWO
1420/**
1421 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1422 * @bdev: The block device.
1423 * @block: The block number.
1424 * @size: The size of buffer_heads for this @bdev.
1425 * @gfp: The memory allocation flags to use.
1426 *
0b116ff4
MWO
1427 * The returned buffer head has its reference count incremented, but is
1428 * not locked. The caller should call brelse() when it has finished
1429 * with the buffer. The buffer may not be uptodate. If needed, the
1430 * caller can bring it uptodate either by reading it or overwriting it.
1431 *
3ed65f04
MWO
1432 * Return: The buffer head, or NULL if memory could not be allocated.
1433 */
1434struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1435 unsigned size, gfp_t gfp)
1436{
1437 struct buffer_head *bh = __find_get_block(bdev, block, size);
1438
1439 might_alloc(gfp);
1440 if (bh)
1441 return bh;
1442
1443 return __getblk_slow(bdev, block, size, gfp);
1444}
1445EXPORT_SYMBOL(bdev_getblk);
1446
1da177e4
LT
1447/*
1448 * Do async read-ahead on a buffer..
1449 */
3991d3bd 1450void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4 1451{
775d9b10
MWO
1452 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1453 GFP_NOWAIT | __GFP_MOVABLE);
1454
a3e713b5 1455 if (likely(bh)) {
e7ea1129 1456 bh_readahead(bh, REQ_RAHEAD);
a3e713b5
AM
1457 brelse(bh);
1458 }
1da177e4
LT
1459}
1460EXPORT_SYMBOL(__breadahead);
1461
1462/**
324ecaee
MWO
1463 * __bread_gfp() - Read a block.
1464 * @bdev: The block device to read from.
1465 * @block: Block number in units of block size.
1466 * @size: The block size of this device in bytes.
1467 * @gfp: Not page allocation flags; see below.
3b5e6454 1468 *
324ecaee
MWO
1469 * You are not expected to call this function. You should use one of
1470 * sb_bread(), sb_bread_unmovable() or __bread().
1471 *
1472 * Read a specified block, and return the buffer head that refers to it.
1473 * If @gfp is 0, the memory will be allocated using the block device's
1474 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1475 * allocated from a movable area. Do not pass in a complete set of
1476 * GFP flags.
1477 *
1478 * The returned buffer head has its refcount increased. The caller should
1479 * call brelse() when it has finished with the buffer.
1480 *
1481 * Context: May sleep waiting for I/O.
1482 * Return: NULL if the block was unreadable.
1da177e4 1483 */
324ecaee
MWO
1484struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1485 unsigned size, gfp_t gfp)
1da177e4 1486{
93b13eca
MWO
1487 struct buffer_head *bh;
1488
224941e8 1489 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
93b13eca
MWO
1490
1491 /*
1492 * Prefer looping in the allocator rather than here, at least that
1493 * code knows what it's doing.
1494 */
1495 gfp |= __GFP_NOFAIL;
1496
1497 bh = bdev_getblk(bdev, block, size, gfp);
1da177e4 1498
a3e713b5 1499 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1500 bh = __bread_slow(bh);
1501 return bh;
1502}
3b5e6454 1503EXPORT_SYMBOL(__bread_gfp);
1da177e4 1504
8cc621d2
MK
1505static void __invalidate_bh_lrus(struct bh_lru *b)
1506{
1507 int i;
1508
1509 for (i = 0; i < BH_LRU_SIZE; i++) {
1510 brelse(b->bhs[i]);
1511 b->bhs[i] = NULL;
1512 }
1513}
1da177e4
LT
1514/*
1515 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1516 * This doesn't race because it runs in each cpu either in irq
1517 * or with preempt disabled.
1518 */
1519static void invalidate_bh_lru(void *arg)
1520{
1521 struct bh_lru *b = &get_cpu_var(bh_lrus);
1da177e4 1522
8cc621d2 1523 __invalidate_bh_lrus(b);
1da177e4
LT
1524 put_cpu_var(bh_lrus);
1525}
42be35d0 1526
8cc621d2 1527bool has_bh_in_lru(int cpu, void *dummy)
42be35d0
GBY
1528{
1529 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1530 int i;
1da177e4 1531
42be35d0
GBY
1532 for (i = 0; i < BH_LRU_SIZE; i++) {
1533 if (b->bhs[i])
1d706679 1534 return true;
42be35d0
GBY
1535 }
1536
1d706679 1537 return false;
42be35d0
GBY
1538}
1539
f9a14399 1540void invalidate_bh_lrus(void)
1da177e4 1541{
cb923159 1542 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1543}
9db5579b 1544EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4 1545
243418e3
MK
1546/*
1547 * It's called from workqueue context so we need a bh_lru_lock to close
1548 * the race with preemption/irq.
1549 */
1550void invalidate_bh_lrus_cpu(void)
8cc621d2
MK
1551{
1552 struct bh_lru *b;
1553
1554 bh_lru_lock();
243418e3 1555 b = this_cpu_ptr(&bh_lrus);
8cc621d2
MK
1556 __invalidate_bh_lrus(b);
1557 bh_lru_unlock();
1558}
1559
465e5e6a
PR
1560void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1561 unsigned long offset)
1562{
1563 bh->b_folio = folio;
1564 BUG_ON(offset >= folio_size(folio));
1565 if (folio_test_highmem(folio))
1566 /*
1567 * This catches illegal uses and preserves the offset:
1568 */
1569 bh->b_data = (char *)(0 + offset);
1570 else
1571 bh->b_data = folio_address(folio) + offset;
1572}
1573EXPORT_SYMBOL(folio_set_bh);
1574
1da177e4
LT
1575/*
1576 * Called when truncating a buffer on a page completely.
1577 */
e7470ee8
MG
1578
1579/* Bits that are cleared during an invalidate */
1580#define BUFFER_FLAGS_DISCARD \
1581 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1582 1 << BH_Delay | 1 << BH_Unwritten)
1583
858119e1 1584static void discard_buffer(struct buffer_head * bh)
1da177e4 1585{
b0192296 1586 unsigned long b_state;
e7470ee8 1587
1da177e4
LT
1588 lock_buffer(bh);
1589 clear_buffer_dirty(bh);
1590 bh->b_bdev = NULL;
b0192296
UB
1591 b_state = READ_ONCE(bh->b_state);
1592 do {
1593 } while (!try_cmpxchg(&bh->b_state, &b_state,
1594 b_state & ~BUFFER_FLAGS_DISCARD));
1da177e4
LT
1595 unlock_buffer(bh);
1596}
1597
1da177e4 1598/**
7ba13abb
MWO
1599 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1600 * @folio: The folio which is affected.
d47992f8
LC
1601 * @offset: start of the range to invalidate
1602 * @length: length of the range to invalidate
1da177e4 1603 *
7ba13abb 1604 * block_invalidate_folio() is called when all or part of the folio has been
814e1d25 1605 * invalidated by a truncate operation.
1da177e4 1606 *
7ba13abb 1607 * block_invalidate_folio() does not have to release all buffers, but it must
1da177e4
LT
1608 * ensure that no dirty buffer is left outside @offset and that no I/O
1609 * is underway against any of the blocks which are outside the truncation
1610 * point. Because the caller is about to free (and possibly reuse) those
1611 * blocks on-disk.
1612 */
7ba13abb 1613void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1da177e4
LT
1614{
1615 struct buffer_head *head, *bh, *next;
7ba13abb
MWO
1616 size_t curr_off = 0;
1617 size_t stop = length + offset;
1da177e4 1618
7ba13abb 1619 BUG_ON(!folio_test_locked(folio));
1da177e4 1620
d47992f8
LC
1621 /*
1622 * Check for overflow
1623 */
7ba13abb
MWO
1624 BUG_ON(stop > folio_size(folio) || stop < length);
1625
1626 head = folio_buffers(folio);
1627 if (!head)
1628 return;
d47992f8 1629
1da177e4
LT
1630 bh = head;
1631 do {
7ba13abb 1632 size_t next_off = curr_off + bh->b_size;
1da177e4
LT
1633 next = bh->b_this_page;
1634
d47992f8
LC
1635 /*
1636 * Are we still fully in range ?
1637 */
1638 if (next_off > stop)
1639 goto out;
1640
1da177e4
LT
1641 /*
1642 * is this block fully invalidated?
1643 */
1644 if (offset <= curr_off)
1645 discard_buffer(bh);
1646 curr_off = next_off;
1647 bh = next;
1648 } while (bh != head);
1649
1650 /*
7ba13abb 1651 * We release buffers only if the entire folio is being invalidated.
1da177e4
LT
1652 * The get_block cached value has been unconditionally invalidated,
1653 * so real IO is not possible anymore.
1654 */
7ba13abb
MWO
1655 if (length == folio_size(folio))
1656 filemap_release_folio(folio, 0);
1da177e4 1657out:
2ff28e22 1658 return;
1da177e4 1659}
7ba13abb 1660EXPORT_SYMBOL(block_invalidate_folio);
1da177e4
LT
1661
1662/*
1663 * We attach and possibly dirty the buffers atomically wrt
600f111e 1664 * block_dirty_folio() via i_private_lock. try_to_free_buffers
8e2e1756 1665 * is already excluded via the folio lock.
1da177e4 1666 */
0a88810d 1667struct buffer_head *create_empty_buffers(struct folio *folio,
3decb856 1668 unsigned long blocksize, unsigned long b_state)
1da177e4
LT
1669{
1670 struct buffer_head *bh, *head, *tail;
2a418157 1671 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1da177e4 1672
2a418157 1673 head = folio_alloc_buffers(folio, blocksize, gfp);
1da177e4
LT
1674 bh = head;
1675 do {
1676 bh->b_state |= b_state;
1677 tail = bh;
1678 bh = bh->b_this_page;
1679 } while (bh);
1680 tail->b_this_page = head;
1681
600f111e 1682 spin_lock(&folio->mapping->i_private_lock);
8e2e1756 1683 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1da177e4
LT
1684 bh = head;
1685 do {
8e2e1756 1686 if (folio_test_dirty(folio))
1da177e4 1687 set_buffer_dirty(bh);
8e2e1756 1688 if (folio_test_uptodate(folio))
1da177e4
LT
1689 set_buffer_uptodate(bh);
1690 bh = bh->b_this_page;
1691 } while (bh != head);
1692 }
8e2e1756 1693 folio_attach_private(folio, head);
600f111e 1694 spin_unlock(&folio->mapping->i_private_lock);
3decb856
MWO
1695
1696 return head;
8e2e1756 1697}
1da177e4
LT
1698EXPORT_SYMBOL(create_empty_buffers);
1699
29f3ad7d
JK
1700/**
1701 * clean_bdev_aliases: clean a range of buffers in block device
1702 * @bdev: Block device to clean buffers in
1703 * @block: Start of a range of blocks to clean
1704 * @len: Number of blocks to clean
1da177e4 1705 *
29f3ad7d
JK
1706 * We are taking a range of blocks for data and we don't want writeback of any
1707 * buffer-cache aliases starting from return from this function and until the
1708 * moment when something will explicitly mark the buffer dirty (hopefully that
1709 * will not happen until we will free that block ;-) We don't even need to mark
1710 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1711 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1712 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1713 * would confuse anyone who might pick it with bread() afterwards...
1714 *
1715 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1716 * writeout I/O going on against recently-freed buffers. We don't wait on that
1717 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1718 * need to. That happens here.
1da177e4 1719 */
29f3ad7d 1720void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1721{
53cd4cd3
AV
1722 struct address_space *bd_mapping = bdev->bd_mapping;
1723 const int blkbits = bd_mapping->host->i_blkbits;
9e0b6f31 1724 struct folio_batch fbatch;
53cd4cd3 1725 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
29f3ad7d 1726 pgoff_t end;
c10f778d 1727 int i, count;
29f3ad7d
JK
1728 struct buffer_head *bh;
1729 struct buffer_head *head;
1da177e4 1730
53cd4cd3 1731 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
9e0b6f31
MWO
1732 folio_batch_init(&fbatch);
1733 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1734 count = folio_batch_count(&fbatch);
c10f778d 1735 for (i = 0; i < count; i++) {
9e0b6f31 1736 struct folio *folio = fbatch.folios[i];
1da177e4 1737
9e0b6f31 1738 if (!folio_buffers(folio))
29f3ad7d
JK
1739 continue;
1740 /*
600f111e 1741 * We use folio lock instead of bd_mapping->i_private_lock
29f3ad7d
JK
1742 * to pin buffers here since we can afford to sleep and
1743 * it scales better than a global spinlock lock.
1744 */
9e0b6f31
MWO
1745 folio_lock(folio);
1746 /* Recheck when the folio is locked which pins bhs */
1747 head = folio_buffers(folio);
1748 if (!head)
29f3ad7d 1749 goto unlock_page;
29f3ad7d
JK
1750 bh = head;
1751 do {
6c006a9d 1752 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1753 goto next;
1754 if (bh->b_blocknr >= block + len)
1755 break;
1756 clear_buffer_dirty(bh);
1757 wait_on_buffer(bh);
1758 clear_buffer_req(bh);
1759next:
1760 bh = bh->b_this_page;
1761 } while (bh != head);
1762unlock_page:
9e0b6f31 1763 folio_unlock(folio);
29f3ad7d 1764 }
9e0b6f31 1765 folio_batch_release(&fbatch);
29f3ad7d 1766 cond_resched();
c10f778d
JK
1767 /* End of range already reached? */
1768 if (index > end || !index)
1769 break;
1da177e4
LT
1770 }
1771}
29f3ad7d 1772EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1773
c6c8c3e7
PR
1774static struct buffer_head *folio_create_buffers(struct folio *folio,
1775 struct inode *inode,
1776 unsigned int b_state)
45bce8f3 1777{
3decb856
MWO
1778 struct buffer_head *bh;
1779
c6c8c3e7 1780 BUG_ON(!folio_test_locked(folio));
45bce8f3 1781
3decb856
MWO
1782 bh = folio_buffers(folio);
1783 if (!bh)
0a88810d 1784 bh = create_empty_buffers(folio,
3decb856
MWO
1785 1 << READ_ONCE(inode->i_blkbits), b_state);
1786 return bh;
45bce8f3
LT
1787}
1788
1da177e4
LT
1789/*
1790 * NOTE! All mapped/uptodate combinations are valid:
1791 *
1792 * Mapped Uptodate Meaning
1793 *
1794 * No No "unknown" - must do get_block()
1795 * No Yes "hole" - zero-filled
1796 * Yes No "allocated" - allocated on disk, not read in
1797 * Yes Yes "valid" - allocated and up-to-date in memory.
1798 *
1799 * "Dirty" is valid only with the last case (mapped+uptodate).
1800 */
1801
1802/*
17bf23a9 1803 * While block_write_full_folio is writing back the dirty buffers under
1da177e4
LT
1804 * the page lock, whoever dirtied the buffers may decide to clean them
1805 * again at any time. We handle that by only looking at the buffer
1806 * state inside lock_buffer().
1807 *
17bf23a9 1808 * If block_write_full_folio() is called for regular writeback
1da177e4
LT
1809 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1810 * locked buffer. This only can happen if someone has written the buffer
1811 * directly, with submit_bh(). At the address_space level PageWriteback
1812 * prevents this contention from occurring.
6e34eedd 1813 *
17bf23a9 1814 * If block_write_full_folio() is called with wbc->sync_mode ==
70fd7614 1815 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1816 * causes the writes to be flagged as synchronous writes.
1da177e4 1817 */
53418a18 1818int __block_write_full_folio(struct inode *inode, struct folio *folio,
14059f66 1819 get_block_t *get_block, struct writeback_control *wbc)
1da177e4
LT
1820{
1821 int err;
1822 sector_t block;
1823 sector_t last_block;
f0fbd5fc 1824 struct buffer_head *bh, *head;
fa399c31 1825 size_t blocksize;
1da177e4 1826 int nr_underway = 0;
3ae72869 1827 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1da177e4 1828
53418a18 1829 head = folio_create_buffers(folio, inode,
c6c8c3e7 1830 (1 << BH_Dirty) | (1 << BH_Uptodate));
1da177e4
LT
1831
1832 /*
e621900a 1833 * Be very careful. We have no exclusion from block_dirty_folio
1da177e4
LT
1834 * here, and the (potentially unmapped) buffers may become dirty at
1835 * any time. If a buffer becomes dirty here after we've inspected it
53418a18 1836 * then we just miss that fact, and the folio stays dirty.
1da177e4 1837 *
e621900a 1838 * Buffers outside i_size may be dirtied by block_dirty_folio;
1da177e4
LT
1839 * handle that here by just cleaning them.
1840 */
1841
1da177e4 1842 bh = head;
45bce8f3 1843 blocksize = bh->b_size;
45bce8f3 1844
fa399c31
MWO
1845 block = div_u64(folio_pos(folio), blocksize);
1846 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1da177e4
LT
1847
1848 /*
1849 * Get all the dirty buffers mapped to disk addresses and
1850 * handle any aliases from the underlying blockdev's mapping.
1851 */
1852 do {
1853 if (block > last_block) {
1854 /*
1855 * mapped buffers outside i_size will occur, because
53418a18 1856 * this folio can be outside i_size when there is a
1da177e4
LT
1857 * truncate in progress.
1858 */
1859 /*
17bf23a9 1860 * The buffer was zeroed by block_write_full_folio()
1da177e4
LT
1861 */
1862 clear_buffer_dirty(bh);
1863 set_buffer_uptodate(bh);
29a814d2
AT
1864 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1865 buffer_dirty(bh)) {
b0cf2321 1866 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1867 err = get_block(inode, block, bh, 1);
1868 if (err)
1869 goto recover;
29a814d2 1870 clear_buffer_delay(bh);
1da177e4
LT
1871 if (buffer_new(bh)) {
1872 /* blockdev mappings never come here */
1873 clear_buffer_new(bh);
e64855c6 1874 clean_bdev_bh_alias(bh);
1da177e4
LT
1875 }
1876 }
1877 bh = bh->b_this_page;
1878 block++;
1879 } while (bh != head);
1880
1881 do {
1da177e4
LT
1882 if (!buffer_mapped(bh))
1883 continue;
1884 /*
1885 * If it's a fully non-blocking write attempt and we cannot
53418a18 1886 * lock the buffer then redirty the folio. Note that this can
5b0830cb
JA
1887 * potentially cause a busy-wait loop from writeback threads
1888 * and kswapd activity, but those code paths have their own
1889 * higher-level throttling.
1da177e4 1890 */
1b430bee 1891 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1892 lock_buffer(bh);
ca5de404 1893 } else if (!trylock_buffer(bh)) {
53418a18 1894 folio_redirty_for_writepage(wbc, folio);
1da177e4
LT
1895 continue;
1896 }
1897 if (test_clear_buffer_dirty(bh)) {
14059f66
MWO
1898 mark_buffer_async_write_endio(bh,
1899 end_buffer_async_write);
1da177e4
LT
1900 } else {
1901 unlock_buffer(bh);
1902 }
1903 } while ((bh = bh->b_this_page) != head);
1904
1905 /*
53418a18
MWO
1906 * The folio and its buffers are protected by the writeback flag,
1907 * so we can drop the bh refcounts early.
1da177e4 1908 */
53418a18
MWO
1909 BUG_ON(folio_test_writeback(folio));
1910 folio_start_writeback(folio);
1da177e4
LT
1911
1912 do {
1913 struct buffer_head *next = bh->b_this_page;
1914 if (buffer_async_write(bh)) {
44981351
BVA
1915 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1916 inode->i_write_hint, wbc);
1da177e4
LT
1917 nr_underway++;
1918 }
1da177e4
LT
1919 bh = next;
1920 } while (bh != head);
53418a18 1921 folio_unlock(folio);
1da177e4
LT
1922
1923 err = 0;
1924done:
1925 if (nr_underway == 0) {
1926 /*
53418a18 1927 * The folio was marked dirty, but the buffers were
1da177e4 1928 * clean. Someone wrote them back by hand with
79f59784 1929 * write_dirty_buffer/submit_bh. A rare case.
1da177e4 1930 */
53418a18 1931 folio_end_writeback(folio);
3d67f2d7 1932
1da177e4 1933 /*
53418a18 1934 * The folio and buffer_heads can be released at any time from
1da177e4
LT
1935 * here on.
1936 */
1da177e4
LT
1937 }
1938 return err;
1939
1940recover:
1941 /*
1942 * ENOSPC, or some other error. We may already have added some
1943 * blocks to the file, so we need to write these out to avoid
1944 * exposing stale data.
53418a18 1945 * The folio is currently locked and not marked for writeback
1da177e4
LT
1946 */
1947 bh = head;
1948 /* Recovery: lock and submit the mapped buffers */
1949 do {
29a814d2
AT
1950 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1951 !buffer_delay(bh)) {
1da177e4 1952 lock_buffer(bh);
14059f66
MWO
1953 mark_buffer_async_write_endio(bh,
1954 end_buffer_async_write);
1da177e4
LT
1955 } else {
1956 /*
1957 * The buffer may have been set dirty during
53418a18 1958 * attachment to a dirty folio.
1da177e4
LT
1959 */
1960 clear_buffer_dirty(bh);
1961 }
1962 } while ((bh = bh->b_this_page) != head);
53418a18
MWO
1963 folio_set_error(folio);
1964 BUG_ON(folio_test_writeback(folio));
1965 mapping_set_error(folio->mapping, err);
1966 folio_start_writeback(folio);
1da177e4
LT
1967 do {
1968 struct buffer_head *next = bh->b_this_page;
1969 if (buffer_async_write(bh)) {
1970 clear_buffer_dirty(bh);
44981351
BVA
1971 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1972 inode->i_write_hint, wbc);
1da177e4
LT
1973 nr_underway++;
1974 }
1da177e4
LT
1975 bh = next;
1976 } while (bh != head);
53418a18 1977 folio_unlock(folio);
1da177e4
LT
1978 goto done;
1979}
53418a18 1980EXPORT_SYMBOL(__block_write_full_folio);
1da177e4 1981
afddba49 1982/*
4a9622f2 1983 * If a folio has any new buffers, zero them out here, and mark them uptodate
afddba49
NP
1984 * and dirty so they'll be written out (in order to prevent uninitialised
1985 * block data from leaking). And clear the new bit.
1986 */
4a9622f2 1987void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
afddba49 1988{
4a9622f2 1989 size_t block_start, block_end;
afddba49
NP
1990 struct buffer_head *head, *bh;
1991
4a9622f2
MWO
1992 BUG_ON(!folio_test_locked(folio));
1993 head = folio_buffers(folio);
1994 if (!head)
afddba49
NP
1995 return;
1996
4a9622f2 1997 bh = head;
afddba49
NP
1998 block_start = 0;
1999 do {
2000 block_end = block_start + bh->b_size;
2001
2002 if (buffer_new(bh)) {
2003 if (block_end > from && block_start < to) {
4a9622f2
MWO
2004 if (!folio_test_uptodate(folio)) {
2005 size_t start, xend;
afddba49
NP
2006
2007 start = max(from, block_start);
4a9622f2 2008 xend = min(to, block_end);
afddba49 2009
4a9622f2 2010 folio_zero_segment(folio, start, xend);
afddba49
NP
2011 set_buffer_uptodate(bh);
2012 }
2013
2014 clear_buffer_new(bh);
2015 mark_buffer_dirty(bh);
2016 }
2017 }
2018
2019 block_start = block_end;
2020 bh = bh->b_this_page;
2021 } while (bh != head);
2022}
4a9622f2 2023EXPORT_SYMBOL(folio_zero_new_buffers);
afddba49 2024
4aa8cdd5 2025static int
ae259a9c 2026iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
6d49cc85 2027 const struct iomap *iomap)
ae259a9c 2028{
80844194 2029 loff_t offset = (loff_t)block << inode->i_blkbits;
ae259a9c
CH
2030
2031 bh->b_bdev = iomap->bdev;
2032
2033 /*
2034 * Block points to offset in file we need to map, iomap contains
2035 * the offset at which the map starts. If the map ends before the
2036 * current block, then do not map the buffer and let the caller
2037 * handle it.
2038 */
4aa8cdd5
CH
2039 if (offset >= iomap->offset + iomap->length)
2040 return -EIO;
ae259a9c
CH
2041
2042 switch (iomap->type) {
2043 case IOMAP_HOLE:
2044 /*
2045 * If the buffer is not up to date or beyond the current EOF,
2046 * we need to mark it as new to ensure sub-block zeroing is
2047 * executed if necessary.
2048 */
2049 if (!buffer_uptodate(bh) ||
2050 (offset >= i_size_read(inode)))
2051 set_buffer_new(bh);
4aa8cdd5 2052 return 0;
ae259a9c
CH
2053 case IOMAP_DELALLOC:
2054 if (!buffer_uptodate(bh) ||
2055 (offset >= i_size_read(inode)))
2056 set_buffer_new(bh);
2057 set_buffer_uptodate(bh);
2058 set_buffer_mapped(bh);
2059 set_buffer_delay(bh);
4aa8cdd5 2060 return 0;
ae259a9c
CH
2061 case IOMAP_UNWRITTEN:
2062 /*
3d7b6b21
AG
2063 * For unwritten regions, we always need to ensure that regions
2064 * in the block we are not writing to are zeroed. Mark the
2065 * buffer as new to ensure this.
ae259a9c
CH
2066 */
2067 set_buffer_new(bh);
2068 set_buffer_unwritten(bh);
df561f66 2069 fallthrough;
ae259a9c 2070 case IOMAP_MAPPED:
3d7b6b21 2071 if ((iomap->flags & IOMAP_F_NEW) ||
381c0432
CH
2072 offset >= i_size_read(inode)) {
2073 /*
2074 * This can happen if truncating the block device races
2075 * with the check in the caller as i_size updates on
2076 * block devices aren't synchronized by i_rwsem for
2077 * block devices.
2078 */
2079 if (S_ISBLK(inode->i_mode))
2080 return -EIO;
ae259a9c 2081 set_buffer_new(bh);
381c0432 2082 }
19fe5f64
AG
2083 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2084 inode->i_blkbits;
ae259a9c 2085 set_buffer_mapped(bh);
4aa8cdd5
CH
2086 return 0;
2087 default:
2088 WARN_ON_ONCE(1);
2089 return -EIO;
ae259a9c
CH
2090 }
2091}
2092
d1bd0b4e 2093int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
6d49cc85 2094 get_block_t *get_block, const struct iomap *iomap)
1da177e4 2095{
b0619401
MWO
2096 size_t from = offset_in_folio(folio, pos);
2097 size_t to = from + len;
d1bd0b4e 2098 struct inode *inode = folio->mapping->host;
b0619401 2099 size_t block_start, block_end;
1da177e4
LT
2100 sector_t block;
2101 int err = 0;
b0619401 2102 size_t blocksize;
1da177e4
LT
2103 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2104
d1bd0b4e 2105 BUG_ON(!folio_test_locked(folio));
b0619401 2106 BUG_ON(to > folio_size(folio));
1da177e4
LT
2107 BUG_ON(from > to);
2108
c6c8c3e7 2109 head = folio_create_buffers(folio, inode, 0);
45bce8f3 2110 blocksize = head->b_size;
b0619401 2111 block = div_u64(folio_pos(folio), blocksize);
1da177e4 2112
b0619401 2113 for (bh = head, block_start = 0; bh != head || !block_start;
1da177e4
LT
2114 block++, block_start=block_end, bh = bh->b_this_page) {
2115 block_end = block_start + blocksize;
2116 if (block_end <= from || block_start >= to) {
d1bd0b4e 2117 if (folio_test_uptodate(folio)) {
1da177e4
LT
2118 if (!buffer_uptodate(bh))
2119 set_buffer_uptodate(bh);
2120 }
2121 continue;
2122 }
2123 if (buffer_new(bh))
2124 clear_buffer_new(bh);
2125 if (!buffer_mapped(bh)) {
b0cf2321 2126 WARN_ON(bh->b_size != blocksize);
4aa8cdd5 2127 if (get_block)
ae259a9c 2128 err = get_block(inode, block, bh, 1);
4aa8cdd5
CH
2129 else
2130 err = iomap_to_bh(inode, block, bh, iomap);
2131 if (err)
2132 break;
ae259a9c 2133
1da177e4 2134 if (buffer_new(bh)) {
e64855c6 2135 clean_bdev_bh_alias(bh);
d1bd0b4e 2136 if (folio_test_uptodate(folio)) {
637aff46 2137 clear_buffer_new(bh);
1da177e4 2138 set_buffer_uptodate(bh);
637aff46 2139 mark_buffer_dirty(bh);
1da177e4
LT
2140 continue;
2141 }
eebd2aa3 2142 if (block_end > to || block_start < from)
d1bd0b4e 2143 folio_zero_segments(folio,
eebd2aa3
CL
2144 to, block_end,
2145 block_start, from);
1da177e4
LT
2146 continue;
2147 }
2148 }
d1bd0b4e 2149 if (folio_test_uptodate(folio)) {
1da177e4
LT
2150 if (!buffer_uptodate(bh))
2151 set_buffer_uptodate(bh);
2152 continue;
2153 }
2154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2155 !buffer_unwritten(bh) &&
1da177e4 2156 (block_start < from || block_end > to)) {
e7ea1129 2157 bh_read_nowait(bh, 0);
1da177e4
LT
2158 *wait_bh++=bh;
2159 }
2160 }
2161 /*
2162 * If we issued read requests - let them complete.
2163 */
2164 while(wait_bh > wait) {
2165 wait_on_buffer(*--wait_bh);
2166 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2167 err = -EIO;
1da177e4 2168 }
f9f07b6c 2169 if (unlikely(err))
4a9622f2 2170 folio_zero_new_buffers(folio, from, to);
1da177e4
LT
2171 return err;
2172}
ae259a9c
CH
2173
2174int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2175 get_block_t *get_block)
2176{
d1bd0b4e
MWO
2177 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2178 NULL);
ae259a9c 2179}
ebdec241 2180EXPORT_SYMBOL(__block_write_begin);
1da177e4 2181
a524fcfe 2182static void __block_commit_write(struct folio *folio, size_t from, size_t to)
1da177e4 2183{
8c6cb3e3
MWO
2184 size_t block_start, block_end;
2185 bool partial = false;
1da177e4
LT
2186 unsigned blocksize;
2187 struct buffer_head *bh, *head;
2188
8c6cb3e3 2189 bh = head = folio_buffers(folio);
45bce8f3 2190 blocksize = bh->b_size;
1da177e4 2191
45bce8f3
LT
2192 block_start = 0;
2193 do {
1da177e4
LT
2194 block_end = block_start + blocksize;
2195 if (block_end <= from || block_start >= to) {
2196 if (!buffer_uptodate(bh))
8c6cb3e3 2197 partial = true;
1da177e4
LT
2198 } else {
2199 set_buffer_uptodate(bh);
2200 mark_buffer_dirty(bh);
2201 }
4ebd3aec
YG
2202 if (buffer_new(bh))
2203 clear_buffer_new(bh);
45bce8f3
LT
2204
2205 block_start = block_end;
2206 bh = bh->b_this_page;
2207 } while (bh != head);
1da177e4
LT
2208
2209 /*
2210 * If this is a partial write which happened to make all buffers
2c69e205 2211 * uptodate then we can optimize away a bogus read_folio() for
8c6cb3e3 2212 * the next read(). Here we 'discover' whether the folio went
1da177e4
LT
2213 * uptodate as a result of this (potentially partial) write.
2214 */
2215 if (!partial)
8c6cb3e3 2216 folio_mark_uptodate(folio);
1da177e4
LT
2217}
2218
afddba49 2219/*
155130a4
CH
2220 * block_write_begin takes care of the basic task of block allocation and
2221 * bringing partial write blocks uptodate first.
2222 *
7bb46a67 2223 * The filesystem needs to handle block truncation upon failure.
afddba49 2224 */
155130a4 2225int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
b3992d1e 2226 struct page **pagep, get_block_t *get_block)
afddba49 2227{
09cbfeaf 2228 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2229 struct page *page;
6e1db88d 2230 int status;
afddba49 2231
b7446e7c 2232 page = grab_cache_page_write_begin(mapping, index);
6e1db88d
CH
2233 if (!page)
2234 return -ENOMEM;
afddba49 2235
6e1db88d 2236 status = __block_write_begin(page, pos, len, get_block);
afddba49 2237 if (unlikely(status)) {
6e1db88d 2238 unlock_page(page);
09cbfeaf 2239 put_page(page);
6e1db88d 2240 page = NULL;
afddba49
NP
2241 }
2242
6e1db88d 2243 *pagep = page;
afddba49
NP
2244 return status;
2245}
2246EXPORT_SYMBOL(block_write_begin);
2247
2248int block_write_end(struct file *file, struct address_space *mapping,
2249 loff_t pos, unsigned len, unsigned copied,
2250 struct page *page, void *fsdata)
2251{
8c6cb3e3 2252 struct folio *folio = page_folio(page);
8c6cb3e3 2253 size_t start = pos - folio_pos(folio);
afddba49
NP
2254
2255 if (unlikely(copied < len)) {
2256 /*
2c69e205
MWO
2257 * The buffers that were written will now be uptodate, so
2258 * we don't have to worry about a read_folio reading them
2259 * and overwriting a partial write. However if we have
2260 * encountered a short write and only partially written
2261 * into a buffer, it will not be marked uptodate, so a
2262 * read_folio might come in and destroy our partial write.
afddba49
NP
2263 *
2264 * Do the simplest thing, and just treat any short write to a
8c6cb3e3 2265 * non uptodate folio as a zero-length write, and force the
afddba49
NP
2266 * caller to redo the whole thing.
2267 */
8c6cb3e3 2268 if (!folio_test_uptodate(folio))
afddba49
NP
2269 copied = 0;
2270
4a9622f2 2271 folio_zero_new_buffers(folio, start+copied, start+len);
afddba49 2272 }
8c6cb3e3 2273 flush_dcache_folio(folio);
afddba49
NP
2274
2275 /* This could be a short (even 0-length) commit */
489b7e72 2276 __block_commit_write(folio, start, start + copied);
afddba49
NP
2277
2278 return copied;
2279}
2280EXPORT_SYMBOL(block_write_end);
2281
2282int generic_write_end(struct file *file, struct address_space *mapping,
2283 loff_t pos, unsigned len, unsigned copied,
2284 struct page *page, void *fsdata)
2285{
8af54f29
CH
2286 struct inode *inode = mapping->host;
2287 loff_t old_size = inode->i_size;
2288 bool i_size_changed = false;
2289
afddba49 2290 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2291
2292 /*
2293 * No need to use i_size_read() here, the i_size cannot change under us
2294 * because we hold i_rwsem.
2295 *
2296 * But it's important to update i_size while still holding page lock:
2297 * page writeout could otherwise come in and zero beyond i_size.
2298 */
2299 if (pos + copied > inode->i_size) {
2300 i_size_write(inode, pos + copied);
2301 i_size_changed = true;
2302 }
2303
2304 unlock_page(page);
7a77dad7 2305 put_page(page);
8af54f29
CH
2306
2307 if (old_size < pos)
2308 pagecache_isize_extended(inode, old_size, pos);
2309 /*
2310 * Don't mark the inode dirty under page lock. First, it unnecessarily
2311 * makes the holding time of page lock longer. Second, it forces lock
2312 * ordering of page lock and transaction start for journaling
2313 * filesystems.
2314 */
2315 if (i_size_changed)
2316 mark_inode_dirty(inode);
26ddb1f4 2317 return copied;
afddba49
NP
2318}
2319EXPORT_SYMBOL(generic_write_end);
2320
8ab22b9a 2321/*
2e7e80f7 2322 * block_is_partially_uptodate checks whether buffers within a folio are
8ab22b9a
HH
2323 * uptodate or not.
2324 *
2e7e80f7
MWO
2325 * Returns true if all buffers which correspond to the specified part
2326 * of the folio are uptodate.
8ab22b9a 2327 */
2e7e80f7 2328bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
8ab22b9a 2329{
8ab22b9a
HH
2330 unsigned block_start, block_end, blocksize;
2331 unsigned to;
2332 struct buffer_head *bh, *head;
2e7e80f7 2333 bool ret = true;
8ab22b9a 2334
2e7e80f7
MWO
2335 head = folio_buffers(folio);
2336 if (!head)
2337 return false;
45bce8f3 2338 blocksize = head->b_size;
2e7e80f7 2339 to = min_t(unsigned, folio_size(folio) - from, count);
8ab22b9a 2340 to = from + to;
2e7e80f7
MWO
2341 if (from < blocksize && to > folio_size(folio) - blocksize)
2342 return false;
8ab22b9a 2343
8ab22b9a
HH
2344 bh = head;
2345 block_start = 0;
2346 do {
2347 block_end = block_start + blocksize;
2348 if (block_end > from && block_start < to) {
2349 if (!buffer_uptodate(bh)) {
2e7e80f7 2350 ret = false;
8ab22b9a
HH
2351 break;
2352 }
2353 if (block_end >= to)
2354 break;
2355 }
2356 block_start = block_end;
2357 bh = bh->b_this_page;
2358 } while (bh != head);
2359
2360 return ret;
2361}
2362EXPORT_SYMBOL(block_is_partially_uptodate);
2363
1da177e4 2364/*
2c69e205 2365 * Generic "read_folio" function for block devices that have the normal
1da177e4 2366 * get_block functionality. This is most of the block device filesystems.
2c69e205 2367 * Reads the folio asynchronously --- the unlock_buffer() and
1da177e4 2368 * set/clear_buffer_uptodate() functions propagate buffer state into the
2c69e205 2369 * folio once IO has completed.
1da177e4 2370 */
2c69e205 2371int block_read_full_folio(struct folio *folio, get_block_t *get_block)
1da177e4 2372{
2c69e205 2373 struct inode *inode = folio->mapping->host;
1da177e4
LT
2374 sector_t iblock, lblock;
2375 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
fa399c31 2376 size_t blocksize;
1da177e4
LT
2377 int nr, i;
2378 int fully_mapped = 1;
b7a6eb22 2379 bool page_error = false;
4fa512ce
EB
2380 loff_t limit = i_size_read(inode);
2381
2382 /* This is needed for ext4. */
2383 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2384 limit = inode->i_sb->s_maxbytes;
1da177e4 2385
2c69e205
MWO
2386 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2387
c6c8c3e7 2388 head = folio_create_buffers(folio, inode, 0);
45bce8f3 2389 blocksize = head->b_size;
1da177e4 2390
fa399c31
MWO
2391 iblock = div_u64(folio_pos(folio), blocksize);
2392 lblock = div_u64(limit + blocksize - 1, blocksize);
1da177e4
LT
2393 bh = head;
2394 nr = 0;
2395 i = 0;
2396
2397 do {
2398 if (buffer_uptodate(bh))
2399 continue;
2400
2401 if (!buffer_mapped(bh)) {
c64610ba
AM
2402 int err = 0;
2403
1da177e4
LT
2404 fully_mapped = 0;
2405 if (iblock < lblock) {
b0cf2321 2406 WARN_ON(bh->b_size != blocksize);
c64610ba 2407 err = get_block(inode, iblock, bh, 0);
b7a6eb22 2408 if (err) {
2c69e205 2409 folio_set_error(folio);
b7a6eb22
MWO
2410 page_error = true;
2411 }
1da177e4
LT
2412 }
2413 if (!buffer_mapped(bh)) {
2c69e205
MWO
2414 folio_zero_range(folio, i * blocksize,
2415 blocksize);
c64610ba
AM
2416 if (!err)
2417 set_buffer_uptodate(bh);
1da177e4
LT
2418 continue;
2419 }
2420 /*
2421 * get_block() might have updated the buffer
2422 * synchronously
2423 */
2424 if (buffer_uptodate(bh))
2425 continue;
2426 }
2427 arr[nr++] = bh;
2428 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2429
2430 if (fully_mapped)
2c69e205 2431 folio_set_mappedtodisk(folio);
1da177e4
LT
2432
2433 if (!nr) {
2434 /*
6ba924d3
MWO
2435 * All buffers are uptodate or get_block() returned an
2436 * error when trying to map them - we can finish the read.
1da177e4 2437 */
6ba924d3 2438 folio_end_read(folio, !page_error);
1da177e4
LT
2439 return 0;
2440 }
2441
2442 /* Stage two: lock the buffers */
2443 for (i = 0; i < nr; i++) {
2444 bh = arr[i];
2445 lock_buffer(bh);
2446 mark_buffer_async_read(bh);
2447 }
2448
2449 /*
2450 * Stage 3: start the IO. Check for uptodateness
2451 * inside the buffer lock in case another process reading
2452 * the underlying blockdev brought it uptodate (the sct fix).
2453 */
2454 for (i = 0; i < nr; i++) {
2455 bh = arr[i];
2456 if (buffer_uptodate(bh))
2457 end_buffer_async_read(bh, 1);
2458 else
1420c4a5 2459 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
2460 }
2461 return 0;
2462}
2c69e205 2463EXPORT_SYMBOL(block_read_full_folio);
1da177e4
LT
2464
2465/* utility function for filesystems that need to do work on expanding
89e10787 2466 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2467 * deal with the hole.
2468 */
89e10787 2469int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2470{
2471 struct address_space *mapping = inode->i_mapping;
53b524b8 2472 const struct address_space_operations *aops = mapping->a_ops;
1da177e4 2473 struct page *page;
1468c6f4 2474 void *fsdata = NULL;
1da177e4
LT
2475 int err;
2476
c08d3b0e 2477 err = inode_newsize_ok(inode, size);
2478 if (err)
1da177e4
LT
2479 goto out;
2480
53b524b8 2481 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
89e10787 2482 if (err)
05eb0b51 2483 goto out;
05eb0b51 2484
53b524b8 2485 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
89e10787 2486 BUG_ON(err > 0);
05eb0b51 2487
1da177e4
LT
2488out:
2489 return err;
2490}
1fe72eaa 2491EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2492
f1e3af72
AB
2493static int cont_expand_zero(struct file *file, struct address_space *mapping,
2494 loff_t pos, loff_t *bytes)
1da177e4 2495{
1da177e4 2496 struct inode *inode = mapping->host;
53b524b8 2497 const struct address_space_operations *aops = mapping->a_ops;
93407472 2498 unsigned int blocksize = i_blocksize(inode);
89e10787 2499 struct page *page;
1468c6f4 2500 void *fsdata = NULL;
89e10787
NP
2501 pgoff_t index, curidx;
2502 loff_t curpos;
2503 unsigned zerofrom, offset, len;
2504 int err = 0;
1da177e4 2505
09cbfeaf
KS
2506 index = pos >> PAGE_SHIFT;
2507 offset = pos & ~PAGE_MASK;
89e10787 2508
09cbfeaf
KS
2509 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2510 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2511 if (zerofrom & (blocksize-1)) {
2512 *bytes |= (blocksize-1);
2513 (*bytes)++;
2514 }
09cbfeaf 2515 len = PAGE_SIZE - zerofrom;
1da177e4 2516
53b524b8 2517 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2518 &page, &fsdata);
89e10787
NP
2519 if (err)
2520 goto out;
eebd2aa3 2521 zero_user(page, zerofrom, len);
53b524b8 2522 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2523 page, fsdata);
2524 if (err < 0)
2525 goto out;
2526 BUG_ON(err != len);
2527 err = 0;
061e9746
OH
2528
2529 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2530
08d405c8 2531 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2532 err = -EINTR;
2533 goto out;
2534 }
89e10787 2535 }
1da177e4 2536
89e10787
NP
2537 /* page covers the boundary, find the boundary offset */
2538 if (index == curidx) {
09cbfeaf 2539 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2540 /* if we will expand the thing last block will be filled */
89e10787
NP
2541 if (offset <= zerofrom) {
2542 goto out;
2543 }
2544 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2545 *bytes |= (blocksize-1);
2546 (*bytes)++;
2547 }
89e10787 2548 len = offset - zerofrom;
1da177e4 2549
53b524b8 2550 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2551 &page, &fsdata);
89e10787
NP
2552 if (err)
2553 goto out;
eebd2aa3 2554 zero_user(page, zerofrom, len);
53b524b8 2555 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2556 page, fsdata);
2557 if (err < 0)
2558 goto out;
2559 BUG_ON(err != len);
2560 err = 0;
1da177e4 2561 }
89e10787
NP
2562out:
2563 return err;
2564}
2565
2566/*
2567 * For moronic filesystems that do not allow holes in file.
2568 * We may have to extend the file.
2569 */
282dc178 2570int cont_write_begin(struct file *file, struct address_space *mapping,
be3bbbc5 2571 loff_t pos, unsigned len,
89e10787
NP
2572 struct page **pagep, void **fsdata,
2573 get_block_t *get_block, loff_t *bytes)
2574{
2575 struct inode *inode = mapping->host;
93407472
FF
2576 unsigned int blocksize = i_blocksize(inode);
2577 unsigned int zerofrom;
89e10787
NP
2578 int err;
2579
2580 err = cont_expand_zero(file, mapping, pos, bytes);
2581 if (err)
155130a4 2582 return err;
89e10787 2583
09cbfeaf 2584 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2585 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2586 *bytes |= (blocksize-1);
2587 (*bytes)++;
1da177e4 2588 }
1da177e4 2589
b3992d1e 2590 return block_write_begin(mapping, pos, len, pagep, get_block);
1da177e4 2591}
1fe72eaa 2592EXPORT_SYMBOL(cont_write_begin);
1da177e4 2593
a524fcfe 2594void block_commit_write(struct page *page, unsigned from, unsigned to)
1da177e4 2595{
8c6cb3e3 2596 struct folio *folio = page_folio(page);
489b7e72 2597 __block_commit_write(folio, from, to);
1da177e4 2598}
1fe72eaa 2599EXPORT_SYMBOL(block_commit_write);
1da177e4 2600
54171690
DC
2601/*
2602 * block_page_mkwrite() is not allowed to change the file size as it gets
2603 * called from a page fault handler when a page is first dirtied. Hence we must
2604 * be careful to check for EOF conditions here. We set the page up correctly
2605 * for a written page which means we get ENOSPC checking when writing into
2606 * holes and correct delalloc and unwritten extent mapping on filesystems that
2607 * support these features.
2608 *
2609 * We are not allowed to take the i_mutex here so we have to play games to
2610 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2611 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2612 * page lock we can determine safely if the page is beyond EOF. If it is not
2613 * beyond EOF, then the page is guaranteed safe against truncation until we
2614 * unlock the page.
ea13a864 2615 *
14da9200 2616 * Direct callers of this function should protect against filesystem freezing
5c500029 2617 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2618 */
5c500029 2619int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2620 get_block_t get_block)
54171690 2621{
fe181377 2622 struct folio *folio = page_folio(vmf->page);
496ad9aa 2623 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2624 unsigned long end;
2625 loff_t size;
24da4fab 2626 int ret;
54171690 2627
fe181377 2628 folio_lock(folio);
54171690 2629 size = i_size_read(inode);
fe181377
MWO
2630 if ((folio->mapping != inode->i_mapping) ||
2631 (folio_pos(folio) >= size)) {
24da4fab
JK
2632 /* We overload EFAULT to mean page got truncated */
2633 ret = -EFAULT;
2634 goto out_unlock;
54171690
DC
2635 }
2636
fe181377
MWO
2637 end = folio_size(folio);
2638 /* folio is wholly or partially inside EOF */
2639 if (folio_pos(folio) + end > size)
2640 end = size - folio_pos(folio);
54171690 2641
fe181377 2642 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
a524fcfe 2643 if (unlikely(ret))
24da4fab 2644 goto out_unlock;
a524fcfe
BH
2645
2646 __block_commit_write(folio, 0, end);
2647
fe181377
MWO
2648 folio_mark_dirty(folio);
2649 folio_wait_stable(folio);
24da4fab
JK
2650 return 0;
2651out_unlock:
fe181377 2652 folio_unlock(folio);
54171690 2653 return ret;
24da4fab 2654}
1fe72eaa 2655EXPORT_SYMBOL(block_page_mkwrite);
1da177e4 2656
1da177e4
LT
2657int block_truncate_page(struct address_space *mapping,
2658 loff_t from, get_block_t *get_block)
2659{
09cbfeaf 2660 pgoff_t index = from >> PAGE_SHIFT;
1da177e4 2661 unsigned blocksize;
54b21a79 2662 sector_t iblock;
6d68f644 2663 size_t offset, length, pos;
1da177e4 2664 struct inode *inode = mapping->host;
6d68f644 2665 struct folio *folio;
1da177e4 2666 struct buffer_head *bh;
dc7cb2d2 2667 int err = 0;
1da177e4 2668
93407472 2669 blocksize = i_blocksize(inode);
6d68f644 2670 length = from & (blocksize - 1);
1da177e4
LT
2671
2672 /* Block boundary? Nothing to do */
2673 if (!length)
2674 return 0;
2675
2676 length = blocksize - length;
4b04646c
MWO
2677 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2678
6d68f644
MWO
2679 folio = filemap_grab_folio(mapping, index);
2680 if (IS_ERR(folio))
2681 return PTR_ERR(folio);
1da177e4 2682
6d68f644 2683 bh = folio_buffers(folio);
3decb856 2684 if (!bh)
0a88810d 2685 bh = create_empty_buffers(folio, blocksize, 0);
1da177e4
LT
2686
2687 /* Find the buffer that contains "offset" */
6d68f644 2688 offset = offset_in_folio(folio, from);
1da177e4
LT
2689 pos = blocksize;
2690 while (offset >= pos) {
2691 bh = bh->b_this_page;
2692 iblock++;
2693 pos += blocksize;
2694 }
2695
1da177e4 2696 if (!buffer_mapped(bh)) {
b0cf2321 2697 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2698 err = get_block(inode, iblock, bh, 0);
2699 if (err)
2700 goto unlock;
2701 /* unmapped? It's a hole - nothing to do */
2702 if (!buffer_mapped(bh))
2703 goto unlock;
2704 }
2705
2706 /* Ok, it's mapped. Make sure it's up-to-date */
6d68f644 2707 if (folio_test_uptodate(folio))
1da177e4
LT
2708 set_buffer_uptodate(bh);
2709
33a266dd 2710 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
e7ea1129 2711 err = bh_read(bh, 0);
1da177e4 2712 /* Uhhuh. Read error. Complain and punt. */
e7ea1129 2713 if (err < 0)
1da177e4
LT
2714 goto unlock;
2715 }
2716
6d68f644 2717 folio_zero_range(folio, offset, length);
1da177e4 2718 mark_buffer_dirty(bh);
1da177e4
LT
2719
2720unlock:
6d68f644
MWO
2721 folio_unlock(folio);
2722 folio_put(folio);
dc7cb2d2 2723
1da177e4
LT
2724 return err;
2725}
1fe72eaa 2726EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2727
2728/*
2729 * The generic ->writepage function for buffer-backed address_spaces
2730 */
17bf23a9
MWO
2731int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2732 void *get_block)
1da177e4 2733{
bb0ea598 2734 struct inode * const inode = folio->mapping->host;
1da177e4 2735 loff_t i_size = i_size_read(inode);
1da177e4 2736
bb0ea598
MWO
2737 /* Is the folio fully inside i_size? */
2738 if (folio_pos(folio) + folio_size(folio) <= i_size)
14059f66 2739 return __block_write_full_folio(inode, folio, get_block, wbc);
1da177e4 2740
bb0ea598
MWO
2741 /* Is the folio fully outside i_size? (truncate in progress) */
2742 if (folio_pos(folio) >= i_size) {
53418a18 2743 folio_unlock(folio);
1da177e4
LT
2744 return 0; /* don't care */
2745 }
2746
2747 /*
bb0ea598 2748 * The folio straddles i_size. It must be zeroed out on each and every
2a61aa40 2749 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4 2750 * in multiples of the page size. For a file that is not a multiple of
bb0ea598 2751 * the page size, the remaining memory is zeroed when mapped, and
1da177e4
LT
2752 * writes to that region are not written out to the file."
2753 */
bb0ea598
MWO
2754 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2755 folio_size(folio));
14059f66 2756 return __block_write_full_folio(inode, folio, get_block, wbc);
35c80d5f 2757}
35c80d5f 2758
1da177e4
LT
2759sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2760 get_block_t *get_block)
2761{
1da177e4 2762 struct inode *inode = mapping->host;
2a527d68
AP
2763 struct buffer_head tmp = {
2764 .b_size = i_blocksize(inode),
2765 };
2766
1da177e4
LT
2767 get_block(inode, block, &tmp, 0);
2768 return tmp.b_blocknr;
2769}
1fe72eaa 2770EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2771
4246a0b6 2772static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2773{
2774 struct buffer_head *bh = bio->bi_private;
2775
b7c44ed9 2776 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2777 set_bit(BH_Quiet, &bh->b_state);
2778
4e4cbee9 2779 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2780 bio_put(bio);
1da177e4
LT
2781}
2782
5bdf402a 2783static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
44981351 2784 enum rw_hint write_hint,
5bdf402a 2785 struct writeback_control *wbc)
1da177e4 2786{
1420c4a5 2787 const enum req_op op = opf & REQ_OP_MASK;
1da177e4 2788 struct bio *bio;
1da177e4
LT
2789
2790 BUG_ON(!buffer_locked(bh));
2791 BUG_ON(!buffer_mapped(bh));
2792 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2793 BUG_ON(buffer_delay(bh));
2794 BUG_ON(buffer_unwritten(bh));
1da177e4 2795
1da177e4 2796 /*
48fd4f93 2797 * Only clear out a write error when rewriting
1da177e4 2798 */
2a222ca9 2799 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
2800 clear_buffer_write_io_error(bh);
2801
07888c66 2802 if (buffer_meta(bh))
1420c4a5 2803 opf |= REQ_META;
07888c66 2804 if (buffer_prio(bh))
1420c4a5 2805 opf |= REQ_PRIO;
07888c66 2806
1420c4a5 2807 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
1da177e4 2808
4f74d15f
EB
2809 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2810
4f024f37 2811 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
44981351 2812 bio->bi_write_hint = write_hint;
1da177e4 2813
741af75d 2814 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
1da177e4
LT
2815
2816 bio->bi_end_io = end_bio_bh_io_sync;
2817 bio->bi_private = bh;
2818
83c9c547
ML
2819 /* Take care of bh's that straddle the end of the device */
2820 guard_bio_eod(bio);
2821
fd42df30
DZ
2822 if (wbc) {
2823 wbc_init_bio(wbc, bio);
34e51a5e 2824 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
2825 }
2826
4e49ea4a 2827 submit_bio(bio);
1da177e4 2828}
bafc0dba 2829
5bdf402a 2830void submit_bh(blk_opf_t opf, struct buffer_head *bh)
bafc0dba 2831{
44981351 2832 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
71368511 2833}
1fe72eaa 2834EXPORT_SYMBOL(submit_bh);
1da177e4 2835
3ae72869 2836void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
9cb569d6
CH
2837{
2838 lock_buffer(bh);
2839 if (!test_clear_buffer_dirty(bh)) {
2840 unlock_buffer(bh);
2841 return;
2842 }
2843 bh->b_end_io = end_buffer_write_sync;
2844 get_bh(bh);
1420c4a5 2845 submit_bh(REQ_OP_WRITE | op_flags, bh);
9cb569d6
CH
2846}
2847EXPORT_SYMBOL(write_dirty_buffer);
2848
1da177e4
LT
2849/*
2850 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2851 * and then start new I/O and then wait upon it. The caller must have a ref on
2852 * the buffer_head.
2853 */
3ae72869 2854int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
1da177e4 2855{
1da177e4
LT
2856 WARN_ON(atomic_read(&bh->b_count) < 1);
2857 lock_buffer(bh);
2858 if (test_clear_buffer_dirty(bh)) {
377254b2
XT
2859 /*
2860 * The bh should be mapped, but it might not be if the
2861 * device was hot-removed. Not much we can do but fail the I/O.
2862 */
2863 if (!buffer_mapped(bh)) {
2864 unlock_buffer(bh);
2865 return -EIO;
2866 }
2867
1da177e4
LT
2868 get_bh(bh);
2869 bh->b_end_io = end_buffer_write_sync;
ab620620 2870 submit_bh(REQ_OP_WRITE | op_flags, bh);
1da177e4 2871 wait_on_buffer(bh);
ab620620
RHI
2872 if (!buffer_uptodate(bh))
2873 return -EIO;
1da177e4
LT
2874 } else {
2875 unlock_buffer(bh);
2876 }
ab620620 2877 return 0;
1da177e4 2878}
87e99511
CH
2879EXPORT_SYMBOL(__sync_dirty_buffer);
2880
2881int sync_dirty_buffer(struct buffer_head *bh)
2882{
70fd7614 2883 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 2884}
1fe72eaa 2885EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4 2886
1da177e4
LT
2887static inline int buffer_busy(struct buffer_head *bh)
2888{
2889 return atomic_read(&bh->b_count) |
2890 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2891}
2892
64394763
MWO
2893static bool
2894drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
1da177e4 2895{
64394763 2896 struct buffer_head *head = folio_buffers(folio);
1da177e4
LT
2897 struct buffer_head *bh;
2898
2899 bh = head;
2900 do {
1da177e4
LT
2901 if (buffer_busy(bh))
2902 goto failed;
2903 bh = bh->b_this_page;
2904 } while (bh != head);
2905
2906 do {
2907 struct buffer_head *next = bh->b_this_page;
2908
535ee2fb 2909 if (bh->b_assoc_map)
1da177e4
LT
2910 __remove_assoc_queue(bh);
2911 bh = next;
2912 } while (bh != head);
2913 *buffers_to_free = head;
64394763
MWO
2914 folio_detach_private(folio);
2915 return true;
1da177e4 2916failed:
64394763 2917 return false;
1da177e4
LT
2918}
2919
b1888d14
MWO
2920/**
2921 * try_to_free_buffers - Release buffers attached to this folio.
2922 * @folio: The folio.
2923 *
2924 * If any buffers are in use (dirty, under writeback, elevated refcount),
2925 * no buffers will be freed.
2926 *
2927 * If the folio is dirty but all the buffers are clean then we need to
2928 * be sure to mark the folio clean as well. This is because the folio
2929 * may be against a block device, and a later reattachment of buffers
2930 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2931 * filesystem data on the same device.
2932 *
2933 * The same applies to regular filesystem folios: if all the buffers are
2934 * clean then we set the folio clean and proceed. To do that, we require
2935 * total exclusion from block_dirty_folio(). That is obtained with
2936 * i_private_lock.
2937 *
2938 * Exclusion against try_to_free_buffers may be obtained by either
2939 * locking the folio or by holding its mapping's i_private_lock.
2940 *
2941 * Context: Process context. @folio must be locked. Will not sleep.
2942 * Return: true if all buffers attached to this folio were freed.
2943 */
68189fef 2944bool try_to_free_buffers(struct folio *folio)
1da177e4 2945{
68189fef 2946 struct address_space * const mapping = folio->mapping;
1da177e4 2947 struct buffer_head *buffers_to_free = NULL;
68189fef 2948 bool ret = 0;
1da177e4 2949
68189fef
MWO
2950 BUG_ON(!folio_test_locked(folio));
2951 if (folio_test_writeback(folio))
2952 return false;
1da177e4
LT
2953
2954 if (mapping == NULL) { /* can this still happen? */
64394763 2955 ret = drop_buffers(folio, &buffers_to_free);
1da177e4
LT
2956 goto out;
2957 }
2958
600f111e 2959 spin_lock(&mapping->i_private_lock);
64394763 2960 ret = drop_buffers(folio, &buffers_to_free);
ecdfc978
LT
2961
2962 /*
2963 * If the filesystem writes its buffers by hand (eg ext3)
68189fef
MWO
2964 * then we can have clean buffers against a dirty folio. We
2965 * clean the folio here; otherwise the VM will never notice
ecdfc978
LT
2966 * that the filesystem did any IO at all.
2967 *
2968 * Also, during truncate, discard_buffer will have marked all
68189fef
MWO
2969 * the folio's buffers clean. We discover that here and clean
2970 * the folio also.
87df7241 2971 *
600f111e 2972 * i_private_lock must be held over this entire operation in order
e621900a 2973 * to synchronise against block_dirty_folio and prevent the
87df7241 2974 * dirty bit from being lost.
ecdfc978 2975 */
11f81bec 2976 if (ret)
68189fef 2977 folio_cancel_dirty(folio);
600f111e 2978 spin_unlock(&mapping->i_private_lock);
1da177e4
LT
2979out:
2980 if (buffers_to_free) {
2981 struct buffer_head *bh = buffers_to_free;
2982
2983 do {
2984 struct buffer_head *next = bh->b_this_page;
2985 free_buffer_head(bh);
2986 bh = next;
2987 } while (bh != buffers_to_free);
2988 }
2989 return ret;
2990}
2991EXPORT_SYMBOL(try_to_free_buffers);
2992
1da177e4
LT
2993/*
2994 * Buffer-head allocation
2995 */
68279f9c 2996static struct kmem_cache *bh_cachep __ro_after_init;
1da177e4
LT
2997
2998/*
2999 * Once the number of bh's in the machine exceeds this level, we start
3000 * stripping them in writeback.
3001 */
68279f9c 3002static unsigned long max_buffer_heads __ro_after_init;
1da177e4
LT
3003
3004int buffer_heads_over_limit;
3005
3006struct bh_accounting {
3007 int nr; /* Number of live bh's */
3008 int ratelimit; /* Limit cacheline bouncing */
3009};
3010
3011static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3012
3013static void recalc_bh_state(void)
3014{
3015 int i;
3016 int tot = 0;
3017
ee1be862 3018 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3019 return;
c7b92516 3020 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3021 for_each_online_cpu(i)
1da177e4
LT
3022 tot += per_cpu(bh_accounting, i).nr;
3023 buffer_heads_over_limit = (tot > max_buffer_heads);
3024}
c7b92516 3025
dd0fc66f 3026struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3027{
019b4d12 3028 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3029 if (ret) {
a35afb83 3030 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 3031 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
3032 preempt_disable();
3033 __this_cpu_inc(bh_accounting.nr);
1da177e4 3034 recalc_bh_state();
c7b92516 3035 preempt_enable();
1da177e4
LT
3036 }
3037 return ret;
3038}
3039EXPORT_SYMBOL(alloc_buffer_head);
3040
3041void free_buffer_head(struct buffer_head *bh)
3042{
3043 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3044 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3045 preempt_disable();
3046 __this_cpu_dec(bh_accounting.nr);
1da177e4 3047 recalc_bh_state();
c7b92516 3048 preempt_enable();
1da177e4
LT
3049}
3050EXPORT_SYMBOL(free_buffer_head);
3051
fc4d24c9 3052static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3053{
3054 int i;
3055 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3056
3057 for (i = 0; i < BH_LRU_SIZE; i++) {
3058 brelse(b->bhs[i]);
3059 b->bhs[i] = NULL;
3060 }
c7b92516 3061 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3062 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3063 return 0;
1da177e4 3064}
1da177e4 3065
389d1b08 3066/**
a6b91919 3067 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3068 * @bh: struct buffer_head
3069 *
3070 * Return true if the buffer is up-to-date and false,
3071 * with the buffer locked, if not.
3072 */
3073int bh_uptodate_or_lock(struct buffer_head *bh)
3074{
3075 if (!buffer_uptodate(bh)) {
3076 lock_buffer(bh);
3077 if (!buffer_uptodate(bh))
3078 return 0;
3079 unlock_buffer(bh);
3080 }
3081 return 1;
3082}
3083EXPORT_SYMBOL(bh_uptodate_or_lock);
3084
3085/**
fdee117e 3086 * __bh_read - Submit read for a locked buffer
389d1b08 3087 * @bh: struct buffer_head
fdee117e
ZY
3088 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089 * @wait: wait until reading finish
389d1b08 3090 *
fdee117e 3091 * Returns zero on success or don't wait, and -EIO on error.
389d1b08 3092 */
fdee117e 3093int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
389d1b08 3094{
fdee117e 3095 int ret = 0;
389d1b08 3096
fdee117e 3097 BUG_ON(!buffer_locked(bh));
389d1b08
AK
3098
3099 get_bh(bh);
3100 bh->b_end_io = end_buffer_read_sync;
fdee117e
ZY
3101 submit_bh(REQ_OP_READ | op_flags, bh);
3102 if (wait) {
3103 wait_on_buffer(bh);
3104 if (!buffer_uptodate(bh))
3105 ret = -EIO;
3106 }
3107 return ret;
3108}
3109EXPORT_SYMBOL(__bh_read);
3110
3111/**
3112 * __bh_read_batch - Submit read for a batch of unlocked buffers
3113 * @nr: entry number of the buffer batch
3114 * @bhs: a batch of struct buffer_head
3115 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3116 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3117 * buffer that cannot lock.
3118 *
3119 * Returns zero on success or don't wait, and -EIO on error.
3120 */
3121void __bh_read_batch(int nr, struct buffer_head *bhs[],
3122 blk_opf_t op_flags, bool force_lock)
3123{
3124 int i;
3125
3126 for (i = 0; i < nr; i++) {
3127 struct buffer_head *bh = bhs[i];
3128
3129 if (buffer_uptodate(bh))
3130 continue;
3131
3132 if (force_lock)
3133 lock_buffer(bh);
3134 else
3135 if (!trylock_buffer(bh))
3136 continue;
3137
3138 if (buffer_uptodate(bh)) {
3139 unlock_buffer(bh);
3140 continue;
3141 }
3142
3143 bh->b_end_io = end_buffer_read_sync;
3144 get_bh(bh);
3145 submit_bh(REQ_OP_READ | op_flags, bh);
3146 }
389d1b08 3147}
fdee117e 3148EXPORT_SYMBOL(__bh_read_batch);
389d1b08 3149
1da177e4
LT
3150void __init buffer_init(void)
3151{
43be594a 3152 unsigned long nrpages;
fc4d24c9 3153 int ret;
1da177e4 3154
de8a3207 3155 bh_cachep = KMEM_CACHE(buffer_head,
c997d683 3156 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
1da177e4
LT
3157 /*
3158 * Limit the bh occupancy to 10% of ZONE_NORMAL
3159 */
3160 nrpages = (nr_free_buffer_pages() * 10) / 100;
3161 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3162 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3163 NULL, buffer_exit_cpu_dead);
3164 WARN_ON(ret < 0);
1da177e4 3165}