xtensa/simdisk: fix compile error
[linux-2.6-block.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4 21#include <linux/kernel.h>
f361bf4a 22#include <linux/sched/signal.h>
1da177e4
LT
23#include <linux/syscalls.h>
24#include <linux/fs.h>
ae259a9c 25#include <linux/iomap.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
630d9c47 34#include <linux/export.h>
bafc0dba 35#include <linux/backing-dev.h>
1da177e4
LT
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
55e829af 40#include <linux/task_io_accounting_ops.h>
1da177e4
LT
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
5305cb83 48#include <trace/events/block.h>
1da177e4
LT
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 52 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
a3f3c29c 56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
1fe72eaa 61EXPORT_SYMBOL(init_buffer);
1da177e4 62
f0059afd
TH
63inline void touch_buffer(struct buffer_head *bh)
64{
5305cb83 65 trace_block_touch_buffer(bh);
f0059afd
TH
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
74316201 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
73}
74EXPORT_SYMBOL(__lock_buffer);
75
fc9b52cd 76void unlock_buffer(struct buffer_head *bh)
1da177e4 77{
51b07fc3 78 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 79 smp_mb__after_atomic();
1da177e4
LT
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
1fe72eaa 82EXPORT_SYMBOL(unlock_buffer);
1da177e4 83
b4597226
MG
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
1da177e4
LT
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
74316201 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 126}
1fe72eaa 127EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
4c21e2f2 133 set_page_private(page, 0);
09cbfeaf 134 put_page(page);
1da177e4
LT
135}
136
b744c2ac 137static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 138{
432f16e6
RE
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
a1c6f057
DM
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
143}
144
145/*
68671f35
DM
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
1da177e4 152 */
68671f35 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
70246286 158 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
68671f35
DM
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
171 put_bh(bh);
172}
1fe72eaa 173EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
1da177e4
LT
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
432f16e6 180 buffer_io_error(bh, ", lost sync page write");
87354e5d 181 mark_buffer_write_io_error(bh);
1da177e4
LT
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
1fe72eaa 187EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 188
1da177e4
LT
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
385fd4c5 201__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
09cbfeaf 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
97f76d3d
NK
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
1da177e4
LT
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
1da177e4
LT
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
a1c6f057 245 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 246 1 << bd_inode->i_blkbits);
1da177e4
LT
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 250 put_page(page);
1da177e4
LT
251out:
252 return ret;
253}
254
1da177e4
LT
255/*
256 * I/O completion handler for block_read_full_page() - pages
257 * which come unlocked at the end of I/O.
258 */
259static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
260{
1da177e4 261 unsigned long flags;
a3972203 262 struct buffer_head *first;
1da177e4
LT
263 struct buffer_head *tmp;
264 struct page *page;
265 int page_uptodate = 1;
266
267 BUG_ON(!buffer_async_read(bh));
268
269 page = bh->b_page;
270 if (uptodate) {
271 set_buffer_uptodate(bh);
272 } else {
273 clear_buffer_uptodate(bh);
432f16e6 274 buffer_io_error(bh, ", async page read");
1da177e4
LT
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
a3972203
NP
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
a3972203
NP
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
1da177e4
LT
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310still_busy:
a3972203
NP
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
1da177e4
LT
313 return;
314}
315
316/*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
35c80d5f 320void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 321{
1da177e4 322 unsigned long flags;
a3972203 323 struct buffer_head *first;
1da177e4
LT
324 struct buffer_head *tmp;
325 struct page *page;
326
327 BUG_ON(!buffer_async_write(bh));
328
329 page = bh->b_page;
330 if (uptodate) {
331 set_buffer_uptodate(bh);
332 } else {
432f16e6 333 buffer_io_error(bh, ", lost async page write");
87354e5d 334 mark_buffer_write_io_error(bh);
1da177e4
LT
335 clear_buffer_uptodate(bh);
336 SetPageError(page);
337 }
338
a3972203
NP
339 first = page_buffers(page);
340 local_irq_save(flags);
341 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
342
1da177e4
LT
343 clear_buffer_async_write(bh);
344 unlock_buffer(bh);
345 tmp = bh->b_this_page;
346 while (tmp != bh) {
347 if (buffer_async_write(tmp)) {
348 BUG_ON(!buffer_locked(tmp));
349 goto still_busy;
350 }
351 tmp = tmp->b_this_page;
352 }
a3972203
NP
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
1da177e4
LT
355 end_page_writeback(page);
356 return;
357
358still_busy:
a3972203
NP
359 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
360 local_irq_restore(flags);
1da177e4
LT
361 return;
362}
1fe72eaa 363EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
364
365/*
366 * If a page's buffers are under async readin (end_buffer_async_read
367 * completion) then there is a possibility that another thread of
368 * control could lock one of the buffers after it has completed
369 * but while some of the other buffers have not completed. This
370 * locked buffer would confuse end_buffer_async_read() into not unlocking
371 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
372 * that this buffer is not under async I/O.
373 *
374 * The page comes unlocked when it has no locked buffer_async buffers
375 * left.
376 *
377 * PageLocked prevents anyone starting new async I/O reads any of
378 * the buffers.
379 *
380 * PageWriteback is used to prevent simultaneous writeout of the same
381 * page.
382 *
383 * PageLocked prevents anyone from starting writeback of a page which is
384 * under read I/O (PageWriteback is only ever set against a locked page).
385 */
386static void mark_buffer_async_read(struct buffer_head *bh)
387{
388 bh->b_end_io = end_buffer_async_read;
389 set_buffer_async_read(bh);
390}
391
1fe72eaa
HS
392static void mark_buffer_async_write_endio(struct buffer_head *bh,
393 bh_end_io_t *handler)
1da177e4 394{
35c80d5f 395 bh->b_end_io = handler;
1da177e4
LT
396 set_buffer_async_write(bh);
397}
35c80d5f
CM
398
399void mark_buffer_async_write(struct buffer_head *bh)
400{
401 mark_buffer_async_write_endio(bh, end_buffer_async_write);
402}
1da177e4
LT
403EXPORT_SYMBOL(mark_buffer_async_write);
404
405
406/*
407 * fs/buffer.c contains helper functions for buffer-backed address space's
408 * fsync functions. A common requirement for buffer-based filesystems is
409 * that certain data from the backing blockdev needs to be written out for
410 * a successful fsync(). For example, ext2 indirect blocks need to be
411 * written back and waited upon before fsync() returns.
412 *
413 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
414 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
415 * management of a list of dependent buffers at ->i_mapping->private_list.
416 *
417 * Locking is a little subtle: try_to_free_buffers() will remove buffers
418 * from their controlling inode's queue when they are being freed. But
419 * try_to_free_buffers() will be operating against the *blockdev* mapping
420 * at the time, not against the S_ISREG file which depends on those buffers.
421 * So the locking for private_list is via the private_lock in the address_space
422 * which backs the buffers. Which is different from the address_space
423 * against which the buffers are listed. So for a particular address_space,
424 * mapping->private_lock does *not* protect mapping->private_list! In fact,
425 * mapping->private_list will always be protected by the backing blockdev's
426 * ->private_lock.
427 *
428 * Which introduces a requirement: all buffers on an address_space's
429 * ->private_list must be from the same address_space: the blockdev's.
430 *
431 * address_spaces which do not place buffers at ->private_list via these
432 * utility functions are free to use private_lock and private_list for
433 * whatever they want. The only requirement is that list_empty(private_list)
434 * be true at clear_inode() time.
435 *
436 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
437 * filesystems should do that. invalidate_inode_buffers() should just go
438 * BUG_ON(!list_empty).
439 *
440 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
441 * take an address_space, not an inode. And it should be called
442 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
443 * queued up.
444 *
445 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
446 * list if it is already on a list. Because if the buffer is on a list,
447 * it *must* already be on the right one. If not, the filesystem is being
448 * silly. This will save a ton of locking. But first we have to ensure
449 * that buffers are taken *off* the old inode's list when they are freed
450 * (presumably in truncate). That requires careful auditing of all
451 * filesystems (do it inside bforget()). It could also be done by bringing
452 * b_inode back.
453 */
454
455/*
456 * The buffer's backing address_space's private_lock must be held
457 */
dbacefc9 458static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
459{
460 list_del_init(&bh->b_assoc_buffers);
58ff407b 461 WARN_ON(!bh->b_assoc_map);
58ff407b 462 bh->b_assoc_map = NULL;
1da177e4
LT
463}
464
465int inode_has_buffers(struct inode *inode)
466{
467 return !list_empty(&inode->i_data.private_list);
468}
469
470/*
471 * osync is designed to support O_SYNC io. It waits synchronously for
472 * all already-submitted IO to complete, but does not queue any new
473 * writes to the disk.
474 *
475 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
476 * you dirty the buffers, and then use osync_inode_buffers to wait for
477 * completion. Any other dirty buffers which are not yet queued for
478 * write will not be flushed to disk by the osync.
479 */
480static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
481{
482 struct buffer_head *bh;
483 struct list_head *p;
484 int err = 0;
485
486 spin_lock(lock);
487repeat:
488 list_for_each_prev(p, list) {
489 bh = BH_ENTRY(p);
490 if (buffer_locked(bh)) {
491 get_bh(bh);
492 spin_unlock(lock);
493 wait_on_buffer(bh);
494 if (!buffer_uptodate(bh))
495 err = -EIO;
496 brelse(bh);
497 spin_lock(lock);
498 goto repeat;
499 }
500 }
501 spin_unlock(lock);
502 return err;
503}
504
01a05b33 505static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 506{
01a05b33 507 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 508 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 509}
c2d75438 510
01a05b33
AV
511static void do_thaw_all(struct work_struct *work)
512{
513 iterate_supers(do_thaw_one, NULL);
053c525f 514 kfree(work);
c2d75438
ES
515 printk(KERN_WARNING "Emergency Thaw complete\n");
516}
517
518/**
519 * emergency_thaw_all -- forcibly thaw every frozen filesystem
520 *
521 * Used for emergency unfreeze of all filesystems via SysRq
522 */
523void emergency_thaw_all(void)
524{
053c525f
JA
525 struct work_struct *work;
526
527 work = kmalloc(sizeof(*work), GFP_ATOMIC);
528 if (work) {
529 INIT_WORK(work, do_thaw_all);
530 schedule_work(work);
531 }
c2d75438
ES
532}
533
1da177e4 534/**
78a4a50a 535 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 536 * @mapping: the mapping which wants those buffers written
1da177e4
LT
537 *
538 * Starts I/O against the buffers at mapping->private_list, and waits upon
539 * that I/O.
540 *
67be2dd1
MW
541 * Basically, this is a convenience function for fsync().
542 * @mapping is a file or directory which needs those buffers to be written for
543 * a successful fsync().
1da177e4
LT
544 */
545int sync_mapping_buffers(struct address_space *mapping)
546{
252aa6f5 547 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
548
549 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
550 return 0;
551
552 return fsync_buffers_list(&buffer_mapping->private_lock,
553 &mapping->private_list);
554}
555EXPORT_SYMBOL(sync_mapping_buffers);
556
557/*
558 * Called when we've recently written block `bblock', and it is known that
559 * `bblock' was for a buffer_boundary() buffer. This means that the block at
560 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
561 * dirty, schedule it for IO. So that indirects merge nicely with their data.
562 */
563void write_boundary_block(struct block_device *bdev,
564 sector_t bblock, unsigned blocksize)
565{
566 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
567 if (bh) {
568 if (buffer_dirty(bh))
dfec8a14 569 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
570 put_bh(bh);
571 }
572}
573
574void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
575{
576 struct address_space *mapping = inode->i_mapping;
577 struct address_space *buffer_mapping = bh->b_page->mapping;
578
579 mark_buffer_dirty(bh);
252aa6f5
RA
580 if (!mapping->private_data) {
581 mapping->private_data = buffer_mapping;
1da177e4 582 } else {
252aa6f5 583 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 584 }
535ee2fb 585 if (!bh->b_assoc_map) {
1da177e4
LT
586 spin_lock(&buffer_mapping->private_lock);
587 list_move_tail(&bh->b_assoc_buffers,
588 &mapping->private_list);
58ff407b 589 bh->b_assoc_map = mapping;
1da177e4
LT
590 spin_unlock(&buffer_mapping->private_lock);
591 }
592}
593EXPORT_SYMBOL(mark_buffer_dirty_inode);
594
787d2214
NP
595/*
596 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
597 * dirty.
598 *
599 * If warn is true, then emit a warning if the page is not uptodate and has
600 * not been truncated.
c4843a75 601 *
81f8c3a4 602 * The caller must hold lock_page_memcg().
787d2214 603 */
c4843a75 604static void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 605 int warn)
787d2214 606{
227d53b3
KM
607 unsigned long flags;
608
609 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
610 if (page->mapping) { /* Race with truncate? */
611 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 612 account_page_dirtied(page, mapping);
787d2214
NP
613 radix_tree_tag_set(&mapping->page_tree,
614 page_index(page), PAGECACHE_TAG_DIRTY);
615 }
227d53b3 616 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
617}
618
1da177e4
LT
619/*
620 * Add a page to the dirty page list.
621 *
622 * It is a sad fact of life that this function is called from several places
623 * deeply under spinlocking. It may not sleep.
624 *
625 * If the page has buffers, the uptodate buffers are set dirty, to preserve
626 * dirty-state coherency between the page and the buffers. It the page does
627 * not have buffers then when they are later attached they will all be set
628 * dirty.
629 *
630 * The buffers are dirtied before the page is dirtied. There's a small race
631 * window in which a writepage caller may see the page cleanness but not the
632 * buffer dirtiness. That's fine. If this code were to set the page dirty
633 * before the buffers, a concurrent writepage caller could clear the page dirty
634 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
635 * page on the dirty page list.
636 *
637 * We use private_lock to lock against try_to_free_buffers while using the
638 * page's buffer list. Also use this to protect against clean buffers being
639 * added to the page after it was set dirty.
640 *
641 * FIXME: may need to call ->reservepage here as well. That's rather up to the
642 * address_space though.
643 */
644int __set_page_dirty_buffers(struct page *page)
645{
a8e7d49a 646 int newly_dirty;
787d2214 647 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
648
649 if (unlikely(!mapping))
650 return !TestSetPageDirty(page);
1da177e4
LT
651
652 spin_lock(&mapping->private_lock);
653 if (page_has_buffers(page)) {
654 struct buffer_head *head = page_buffers(page);
655 struct buffer_head *bh = head;
656
657 do {
658 set_buffer_dirty(bh);
659 bh = bh->b_this_page;
660 } while (bh != head);
661 }
c4843a75 662 /*
81f8c3a4
JW
663 * Lock out page->mem_cgroup migration to keep PageDirty
664 * synchronized with per-memcg dirty page counters.
c4843a75 665 */
62cccb8c 666 lock_page_memcg(page);
a8e7d49a 667 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
668 spin_unlock(&mapping->private_lock);
669
a8e7d49a 670 if (newly_dirty)
62cccb8c 671 __set_page_dirty(page, mapping, 1);
c4843a75 672
62cccb8c 673 unlock_page_memcg(page);
c4843a75
GT
674
675 if (newly_dirty)
676 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677
a8e7d49a 678 return newly_dirty;
1da177e4
LT
679}
680EXPORT_SYMBOL(__set_page_dirty_buffers);
681
682/*
683 * Write out and wait upon a list of buffers.
684 *
685 * We have conflicting pressures: we want to make sure that all
686 * initially dirty buffers get waited on, but that any subsequently
687 * dirtied buffers don't. After all, we don't want fsync to last
688 * forever if somebody is actively writing to the file.
689 *
690 * Do this in two main stages: first we copy dirty buffers to a
691 * temporary inode list, queueing the writes as we go. Then we clean
692 * up, waiting for those writes to complete.
693 *
694 * During this second stage, any subsequent updates to the file may end
695 * up refiling the buffer on the original inode's dirty list again, so
696 * there is a chance we will end up with a buffer queued for write but
697 * not yet completed on that list. So, as a final cleanup we go through
698 * the osync code to catch these locked, dirty buffers without requeuing
699 * any newly dirty buffers for write.
700 */
701static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
702{
703 struct buffer_head *bh;
704 struct list_head tmp;
7eaceacc 705 struct address_space *mapping;
1da177e4 706 int err = 0, err2;
4ee2491e 707 struct blk_plug plug;
1da177e4
LT
708
709 INIT_LIST_HEAD(&tmp);
4ee2491e 710 blk_start_plug(&plug);
1da177e4
LT
711
712 spin_lock(lock);
713 while (!list_empty(list)) {
714 bh = BH_ENTRY(list->next);
535ee2fb 715 mapping = bh->b_assoc_map;
58ff407b 716 __remove_assoc_queue(bh);
535ee2fb
JK
717 /* Avoid race with mark_buffer_dirty_inode() which does
718 * a lockless check and we rely on seeing the dirty bit */
719 smp_mb();
1da177e4
LT
720 if (buffer_dirty(bh) || buffer_locked(bh)) {
721 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 722 bh->b_assoc_map = mapping;
1da177e4
LT
723 if (buffer_dirty(bh)) {
724 get_bh(bh);
725 spin_unlock(lock);
726 /*
727 * Ensure any pending I/O completes so that
9cb569d6
CH
728 * write_dirty_buffer() actually writes the
729 * current contents - it is a noop if I/O is
730 * still in flight on potentially older
731 * contents.
1da177e4 732 */
70fd7614 733 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
734
735 /*
736 * Kick off IO for the previous mapping. Note
737 * that we will not run the very last mapping,
738 * wait_on_buffer() will do that for us
739 * through sync_buffer().
740 */
1da177e4
LT
741 brelse(bh);
742 spin_lock(lock);
743 }
744 }
745 }
746
4ee2491e
JA
747 spin_unlock(lock);
748 blk_finish_plug(&plug);
749 spin_lock(lock);
750
1da177e4
LT
751 while (!list_empty(&tmp)) {
752 bh = BH_ENTRY(tmp.prev);
1da177e4 753 get_bh(bh);
535ee2fb
JK
754 mapping = bh->b_assoc_map;
755 __remove_assoc_queue(bh);
756 /* Avoid race with mark_buffer_dirty_inode() which does
757 * a lockless check and we rely on seeing the dirty bit */
758 smp_mb();
759 if (buffer_dirty(bh)) {
760 list_add(&bh->b_assoc_buffers,
e3892296 761 &mapping->private_list);
535ee2fb
JK
762 bh->b_assoc_map = mapping;
763 }
1da177e4
LT
764 spin_unlock(lock);
765 wait_on_buffer(bh);
766 if (!buffer_uptodate(bh))
767 err = -EIO;
768 brelse(bh);
769 spin_lock(lock);
770 }
771
772 spin_unlock(lock);
773 err2 = osync_buffers_list(lock, list);
774 if (err)
775 return err;
776 else
777 return err2;
778}
779
780/*
781 * Invalidate any and all dirty buffers on a given inode. We are
782 * probably unmounting the fs, but that doesn't mean we have already
783 * done a sync(). Just drop the buffers from the inode list.
784 *
785 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
786 * assumes that all the buffers are against the blockdev. Not true
787 * for reiserfs.
788 */
789void invalidate_inode_buffers(struct inode *inode)
790{
791 if (inode_has_buffers(inode)) {
792 struct address_space *mapping = &inode->i_data;
793 struct list_head *list = &mapping->private_list;
252aa6f5 794 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
795
796 spin_lock(&buffer_mapping->private_lock);
797 while (!list_empty(list))
798 __remove_assoc_queue(BH_ENTRY(list->next));
799 spin_unlock(&buffer_mapping->private_lock);
800 }
801}
52b19ac9 802EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
803
804/*
805 * Remove any clean buffers from the inode's buffer list. This is called
806 * when we're trying to free the inode itself. Those buffers can pin it.
807 *
808 * Returns true if all buffers were removed.
809 */
810int remove_inode_buffers(struct inode *inode)
811{
812 int ret = 1;
813
814 if (inode_has_buffers(inode)) {
815 struct address_space *mapping = &inode->i_data;
816 struct list_head *list = &mapping->private_list;
252aa6f5 817 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
818
819 spin_lock(&buffer_mapping->private_lock);
820 while (!list_empty(list)) {
821 struct buffer_head *bh = BH_ENTRY(list->next);
822 if (buffer_dirty(bh)) {
823 ret = 0;
824 break;
825 }
826 __remove_assoc_queue(bh);
827 }
828 spin_unlock(&buffer_mapping->private_lock);
829 }
830 return ret;
831}
832
833/*
834 * Create the appropriate buffers when given a page for data area and
835 * the size of each buffer.. Use the bh->b_this_page linked list to
836 * follow the buffers created. Return NULL if unable to create more
837 * buffers.
838 *
839 * The retry flag is used to differentiate async IO (paging, swapping)
840 * which may not fail from ordinary buffer allocations.
841 */
842struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 843 bool retry)
1da177e4
LT
844{
845 struct buffer_head *bh, *head;
640ab98f 846 gfp_t gfp = GFP_NOFS;
1da177e4
LT
847 long offset;
848
640ab98f
JA
849 if (retry)
850 gfp |= __GFP_NOFAIL;
851
1da177e4
LT
852 head = NULL;
853 offset = PAGE_SIZE;
854 while ((offset -= size) >= 0) {
640ab98f 855 bh = alloc_buffer_head(gfp);
1da177e4
LT
856 if (!bh)
857 goto no_grow;
858
1da177e4
LT
859 bh->b_this_page = head;
860 bh->b_blocknr = -1;
861 head = bh;
862
1da177e4
LT
863 bh->b_size = size;
864
865 /* Link the buffer to its page */
866 set_bh_page(bh, page, offset);
1da177e4
LT
867 }
868 return head;
869/*
870 * In case anything failed, we just free everything we got.
871 */
872no_grow:
873 if (head) {
874 do {
875 bh = head;
876 head = head->b_this_page;
877 free_buffer_head(bh);
878 } while (head);
879 }
880
640ab98f 881 return NULL;
1da177e4
LT
882}
883EXPORT_SYMBOL_GPL(alloc_page_buffers);
884
885static inline void
886link_dev_buffers(struct page *page, struct buffer_head *head)
887{
888 struct buffer_head *bh, *tail;
889
890 bh = head;
891 do {
892 tail = bh;
893 bh = bh->b_this_page;
894 } while (bh);
895 tail->b_this_page = head;
896 attach_page_buffers(page, head);
897}
898
bbec0270
LT
899static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
900{
901 sector_t retval = ~((sector_t)0);
902 loff_t sz = i_size_read(bdev->bd_inode);
903
904 if (sz) {
905 unsigned int sizebits = blksize_bits(size);
906 retval = (sz >> sizebits);
907 }
908 return retval;
909}
910
1da177e4
LT
911/*
912 * Initialise the state of a blockdev page's buffers.
913 */
676ce6d5 914static sector_t
1da177e4
LT
915init_page_buffers(struct page *page, struct block_device *bdev,
916 sector_t block, int size)
917{
918 struct buffer_head *head = page_buffers(page);
919 struct buffer_head *bh = head;
920 int uptodate = PageUptodate(page);
bbec0270 921 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
922
923 do {
924 if (!buffer_mapped(bh)) {
925 init_buffer(bh, NULL, NULL);
926 bh->b_bdev = bdev;
927 bh->b_blocknr = block;
928 if (uptodate)
929 set_buffer_uptodate(bh);
080399aa
JM
930 if (block < end_block)
931 set_buffer_mapped(bh);
1da177e4
LT
932 }
933 block++;
934 bh = bh->b_this_page;
935 } while (bh != head);
676ce6d5
HD
936
937 /*
938 * Caller needs to validate requested block against end of device.
939 */
940 return end_block;
1da177e4
LT
941}
942
943/*
944 * Create the page-cache page that contains the requested block.
945 *
676ce6d5 946 * This is used purely for blockdev mappings.
1da177e4 947 */
676ce6d5 948static int
1da177e4 949grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 950 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
951{
952 struct inode *inode = bdev->bd_inode;
953 struct page *page;
954 struct buffer_head *bh;
676ce6d5
HD
955 sector_t end_block;
956 int ret = 0; /* Will call free_more_memory() */
84235de3 957 gfp_t gfp_mask;
1da177e4 958
c62d2555 959 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 960
84235de3
JW
961 /*
962 * XXX: __getblk_slow() can not really deal with failure and
963 * will endlessly loop on improvised global reclaim. Prefer
964 * looping in the allocator rather than here, at least that
965 * code knows what it's doing.
966 */
967 gfp_mask |= __GFP_NOFAIL;
968
969 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 970
e827f923 971 BUG_ON(!PageLocked(page));
1da177e4
LT
972
973 if (page_has_buffers(page)) {
974 bh = page_buffers(page);
975 if (bh->b_size == size) {
676ce6d5 976 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
977 (sector_t)index << sizebits,
978 size);
676ce6d5 979 goto done;
1da177e4
LT
980 }
981 if (!try_to_free_buffers(page))
982 goto failed;
983 }
984
985 /*
986 * Allocate some buffers for this page
987 */
94dc24c0 988 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
989
990 /*
991 * Link the page to the buffers and initialise them. Take the
992 * lock to be atomic wrt __find_get_block(), which does not
993 * run under the page lock.
994 */
995 spin_lock(&inode->i_mapping->private_lock);
996 link_dev_buffers(page, bh);
f2d5a944
AA
997 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
998 size);
1da177e4 999 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1000done:
1001 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1002failed:
1da177e4 1003 unlock_page(page);
09cbfeaf 1004 put_page(page);
676ce6d5 1005 return ret;
1da177e4
LT
1006}
1007
1008/*
1009 * Create buffers for the specified block device block's page. If
1010 * that page was dirty, the buffers are set dirty also.
1da177e4 1011 */
858119e1 1012static int
3b5e6454 1013grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1014{
1da177e4
LT
1015 pgoff_t index;
1016 int sizebits;
1017
1018 sizebits = -1;
1019 do {
1020 sizebits++;
1021 } while ((size << sizebits) < PAGE_SIZE);
1022
1023 index = block >> sizebits;
1da177e4 1024
e5657933
AM
1025 /*
1026 * Check for a block which wants to lie outside our maximum possible
1027 * pagecache index. (this comparison is done using sector_t types).
1028 */
1029 if (unlikely(index != block >> sizebits)) {
e5657933 1030 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1031 "device %pg\n",
8e24eea7 1032 __func__, (unsigned long long)block,
a1c6f057 1033 bdev);
e5657933
AM
1034 return -EIO;
1035 }
676ce6d5 1036
1da177e4 1037 /* Create a page with the proper size buffers.. */
3b5e6454 1038 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1039}
1040
0026ba40 1041static struct buffer_head *
3b5e6454
GK
1042__getblk_slow(struct block_device *bdev, sector_t block,
1043 unsigned size, gfp_t gfp)
1da177e4
LT
1044{
1045 /* Size must be multiple of hard sectorsize */
e1defc4f 1046 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1047 (size < 512 || size > PAGE_SIZE))) {
1048 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1049 size);
e1defc4f
MP
1050 printk(KERN_ERR "logical block size: %d\n",
1051 bdev_logical_block_size(bdev));
1da177e4
LT
1052
1053 dump_stack();
1054 return NULL;
1055 }
1056
676ce6d5
HD
1057 for (;;) {
1058 struct buffer_head *bh;
1059 int ret;
1da177e4
LT
1060
1061 bh = __find_get_block(bdev, block, size);
1062 if (bh)
1063 return bh;
676ce6d5 1064
3b5e6454 1065 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1066 if (ret < 0)
1067 return NULL;
1da177e4
LT
1068 }
1069}
1070
1071/*
1072 * The relationship between dirty buffers and dirty pages:
1073 *
1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075 * the page is tagged dirty in its radix tree.
1076 *
1077 * At all times, the dirtiness of the buffers represents the dirtiness of
1078 * subsections of the page. If the page has buffers, the page dirty bit is
1079 * merely a hint about the true dirty state.
1080 *
1081 * When a page is set dirty in its entirety, all its buffers are marked dirty
1082 * (if the page has buffers).
1083 *
1084 * When a buffer is marked dirty, its page is dirtied, but the page's other
1085 * buffers are not.
1086 *
1087 * Also. When blockdev buffers are explicitly read with bread(), they
1088 * individually become uptodate. But their backing page remains not
1089 * uptodate - even if all of its buffers are uptodate. A subsequent
1090 * block_read_full_page() against that page will discover all the uptodate
1091 * buffers, will set the page uptodate and will perform no I/O.
1092 */
1093
1094/**
1095 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1096 * @bh: the buffer_head to mark dirty
1da177e4
LT
1097 *
1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099 * backing page dirty, then tag the page as dirty in its address_space's radix
1100 * tree and then attach the address_space's inode to its superblock's dirty
1101 * inode list.
1102 *
1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1104 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1105 */
fc9b52cd 1106void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1107{
787d2214 1108 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1109
5305cb83
TH
1110 trace_block_dirty_buffer(bh);
1111
1be62dc1
LT
1112 /*
1113 * Very *carefully* optimize the it-is-already-dirty case.
1114 *
1115 * Don't let the final "is it dirty" escape to before we
1116 * perhaps modified the buffer.
1117 */
1118 if (buffer_dirty(bh)) {
1119 smp_mb();
1120 if (buffer_dirty(bh))
1121 return;
1122 }
1123
a8e7d49a
LT
1124 if (!test_set_buffer_dirty(bh)) {
1125 struct page *page = bh->b_page;
c4843a75 1126 struct address_space *mapping = NULL;
c4843a75 1127
62cccb8c 1128 lock_page_memcg(page);
8e9d78ed 1129 if (!TestSetPageDirty(page)) {
c4843a75 1130 mapping = page_mapping(page);
8e9d78ed 1131 if (mapping)
62cccb8c 1132 __set_page_dirty(page, mapping, 0);
8e9d78ed 1133 }
62cccb8c 1134 unlock_page_memcg(page);
c4843a75
GT
1135 if (mapping)
1136 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1137 }
1da177e4 1138}
1fe72eaa 1139EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1140
87354e5d
JL
1141void mark_buffer_write_io_error(struct buffer_head *bh)
1142{
1143 set_buffer_write_io_error(bh);
1144 /* FIXME: do we need to set this in both places? */
1145 if (bh->b_page && bh->b_page->mapping)
1146 mapping_set_error(bh->b_page->mapping, -EIO);
1147 if (bh->b_assoc_map)
1148 mapping_set_error(bh->b_assoc_map, -EIO);
1149}
1150EXPORT_SYMBOL(mark_buffer_write_io_error);
1151
1da177e4
LT
1152/*
1153 * Decrement a buffer_head's reference count. If all buffers against a page
1154 * have zero reference count, are clean and unlocked, and if the page is clean
1155 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1156 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1157 * a page but it ends up not being freed, and buffers may later be reattached).
1158 */
1159void __brelse(struct buffer_head * buf)
1160{
1161 if (atomic_read(&buf->b_count)) {
1162 put_bh(buf);
1163 return;
1164 }
5c752ad9 1165 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1166}
1fe72eaa 1167EXPORT_SYMBOL(__brelse);
1da177e4
LT
1168
1169/*
1170 * bforget() is like brelse(), except it discards any
1171 * potentially dirty data.
1172 */
1173void __bforget(struct buffer_head *bh)
1174{
1175 clear_buffer_dirty(bh);
535ee2fb 1176 if (bh->b_assoc_map) {
1da177e4
LT
1177 struct address_space *buffer_mapping = bh->b_page->mapping;
1178
1179 spin_lock(&buffer_mapping->private_lock);
1180 list_del_init(&bh->b_assoc_buffers);
58ff407b 1181 bh->b_assoc_map = NULL;
1da177e4
LT
1182 spin_unlock(&buffer_mapping->private_lock);
1183 }
1184 __brelse(bh);
1185}
1fe72eaa 1186EXPORT_SYMBOL(__bforget);
1da177e4
LT
1187
1188static struct buffer_head *__bread_slow(struct buffer_head *bh)
1189{
1190 lock_buffer(bh);
1191 if (buffer_uptodate(bh)) {
1192 unlock_buffer(bh);
1193 return bh;
1194 } else {
1195 get_bh(bh);
1196 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1197 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1198 wait_on_buffer(bh);
1199 if (buffer_uptodate(bh))
1200 return bh;
1201 }
1202 brelse(bh);
1203 return NULL;
1204}
1205
1206/*
1207 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1208 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1209 * refcount elevated by one when they're in an LRU. A buffer can only appear
1210 * once in a particular CPU's LRU. A single buffer can be present in multiple
1211 * CPU's LRUs at the same time.
1212 *
1213 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1214 * sb_find_get_block().
1215 *
1216 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1217 * a local interrupt disable for that.
1218 */
1219
86cf78d7 1220#define BH_LRU_SIZE 16
1da177e4
LT
1221
1222struct bh_lru {
1223 struct buffer_head *bhs[BH_LRU_SIZE];
1224};
1225
1226static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1227
1228#ifdef CONFIG_SMP
1229#define bh_lru_lock() local_irq_disable()
1230#define bh_lru_unlock() local_irq_enable()
1231#else
1232#define bh_lru_lock() preempt_disable()
1233#define bh_lru_unlock() preempt_enable()
1234#endif
1235
1236static inline void check_irqs_on(void)
1237{
1238#ifdef irqs_disabled
1239 BUG_ON(irqs_disabled());
1240#endif
1241}
1242
1243/*
241f01fb
EB
1244 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1245 * inserted at the front, and the buffer_head at the back if any is evicted.
1246 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1247 */
1248static void bh_lru_install(struct buffer_head *bh)
1249{
241f01fb
EB
1250 struct buffer_head *evictee = bh;
1251 struct bh_lru *b;
1252 int i;
1da177e4
LT
1253
1254 check_irqs_on();
1255 bh_lru_lock();
1da177e4 1256
241f01fb
EB
1257 b = this_cpu_ptr(&bh_lrus);
1258 for (i = 0; i < BH_LRU_SIZE; i++) {
1259 swap(evictee, b->bhs[i]);
1260 if (evictee == bh) {
1261 bh_lru_unlock();
1262 return;
1da177e4 1263 }
1da177e4 1264 }
1da177e4 1265
241f01fb
EB
1266 get_bh(bh);
1267 bh_lru_unlock();
1268 brelse(evictee);
1da177e4
LT
1269}
1270
1271/*
1272 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1273 */
858119e1 1274static struct buffer_head *
3991d3bd 1275lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1276{
1277 struct buffer_head *ret = NULL;
3991d3bd 1278 unsigned int i;
1da177e4
LT
1279
1280 check_irqs_on();
1281 bh_lru_lock();
1da177e4 1282 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1283 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1284
9470dd5d
ZB
1285 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1286 bh->b_size == size) {
1da177e4
LT
1287 if (i) {
1288 while (i) {
c7b92516
CL
1289 __this_cpu_write(bh_lrus.bhs[i],
1290 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1291 i--;
1292 }
c7b92516 1293 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1294 }
1295 get_bh(bh);
1296 ret = bh;
1297 break;
1298 }
1299 }
1300 bh_lru_unlock();
1301 return ret;
1302}
1303
1304/*
1305 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1306 * it in the LRU and mark it as accessed. If it is not present then return
1307 * NULL
1308 */
1309struct buffer_head *
3991d3bd 1310__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1311{
1312 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1313
1314 if (bh == NULL) {
2457aec6 1315 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1316 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1317 if (bh)
1318 bh_lru_install(bh);
2457aec6 1319 } else
1da177e4 1320 touch_buffer(bh);
2457aec6 1321
1da177e4
LT
1322 return bh;
1323}
1324EXPORT_SYMBOL(__find_get_block);
1325
1326/*
3b5e6454 1327 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1328 * which corresponds to the passed block_device, block and size. The
1329 * returned buffer has its reference count incremented.
1330 *
3b5e6454
GK
1331 * __getblk_gfp() will lock up the machine if grow_dev_page's
1332 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1333 */
1334struct buffer_head *
3b5e6454
GK
1335__getblk_gfp(struct block_device *bdev, sector_t block,
1336 unsigned size, gfp_t gfp)
1da177e4
LT
1337{
1338 struct buffer_head *bh = __find_get_block(bdev, block, size);
1339
1340 might_sleep();
1341 if (bh == NULL)
3b5e6454 1342 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1343 return bh;
1344}
3b5e6454 1345EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1346
1347/*
1348 * Do async read-ahead on a buffer..
1349 */
3991d3bd 1350void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1351{
1352 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1353 if (likely(bh)) {
70246286 1354 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1355 brelse(bh);
1356 }
1da177e4
LT
1357}
1358EXPORT_SYMBOL(__breadahead);
1359
1360/**
3b5e6454 1361 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1362 * @bdev: the block_device to read from
1da177e4
LT
1363 * @block: number of block
1364 * @size: size (in bytes) to read
3b5e6454
GK
1365 * @gfp: page allocation flag
1366 *
1da177e4 1367 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1368 * The page cache can be allocated from non-movable area
1369 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1370 * It returns NULL if the block was unreadable.
1371 */
1372struct buffer_head *
3b5e6454
GK
1373__bread_gfp(struct block_device *bdev, sector_t block,
1374 unsigned size, gfp_t gfp)
1da177e4 1375{
3b5e6454 1376 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1377
a3e713b5 1378 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1379 bh = __bread_slow(bh);
1380 return bh;
1381}
3b5e6454 1382EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1383
1384/*
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1388 */
1389static void invalidate_bh_lru(void *arg)
1390{
1391 struct bh_lru *b = &get_cpu_var(bh_lrus);
1392 int i;
1393
1394 for (i = 0; i < BH_LRU_SIZE; i++) {
1395 brelse(b->bhs[i]);
1396 b->bhs[i] = NULL;
1397 }
1398 put_cpu_var(bh_lrus);
1399}
42be35d0
GBY
1400
1401static bool has_bh_in_lru(int cpu, void *dummy)
1402{
1403 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1404 int i;
1da177e4 1405
42be35d0
GBY
1406 for (i = 0; i < BH_LRU_SIZE; i++) {
1407 if (b->bhs[i])
1408 return 1;
1409 }
1410
1411 return 0;
1412}
1413
f9a14399 1414void invalidate_bh_lrus(void)
1da177e4 1415{
42be35d0 1416 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1417}
9db5579b 1418EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1419
1420void set_bh_page(struct buffer_head *bh,
1421 struct page *page, unsigned long offset)
1422{
1423 bh->b_page = page;
e827f923 1424 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1425 if (PageHighMem(page))
1426 /*
1427 * This catches illegal uses and preserves the offset:
1428 */
1429 bh->b_data = (char *)(0 + offset);
1430 else
1431 bh->b_data = page_address(page) + offset;
1432}
1433EXPORT_SYMBOL(set_bh_page);
1434
1435/*
1436 * Called when truncating a buffer on a page completely.
1437 */
e7470ee8
MG
1438
1439/* Bits that are cleared during an invalidate */
1440#define BUFFER_FLAGS_DISCARD \
1441 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1442 1 << BH_Delay | 1 << BH_Unwritten)
1443
858119e1 1444static void discard_buffer(struct buffer_head * bh)
1da177e4 1445{
e7470ee8
MG
1446 unsigned long b_state, b_state_old;
1447
1da177e4
LT
1448 lock_buffer(bh);
1449 clear_buffer_dirty(bh);
1450 bh->b_bdev = NULL;
e7470ee8
MG
1451 b_state = bh->b_state;
1452 for (;;) {
1453 b_state_old = cmpxchg(&bh->b_state, b_state,
1454 (b_state & ~BUFFER_FLAGS_DISCARD));
1455 if (b_state_old == b_state)
1456 break;
1457 b_state = b_state_old;
1458 }
1da177e4
LT
1459 unlock_buffer(bh);
1460}
1461
1da177e4 1462/**
814e1d25 1463 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1464 *
1465 * @page: the page which is affected
d47992f8
LC
1466 * @offset: start of the range to invalidate
1467 * @length: length of the range to invalidate
1da177e4
LT
1468 *
1469 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1470 * invalidated by a truncate operation.
1da177e4
LT
1471 *
1472 * block_invalidatepage() does not have to release all buffers, but it must
1473 * ensure that no dirty buffer is left outside @offset and that no I/O
1474 * is underway against any of the blocks which are outside the truncation
1475 * point. Because the caller is about to free (and possibly reuse) those
1476 * blocks on-disk.
1477 */
d47992f8
LC
1478void block_invalidatepage(struct page *page, unsigned int offset,
1479 unsigned int length)
1da177e4
LT
1480{
1481 struct buffer_head *head, *bh, *next;
1482 unsigned int curr_off = 0;
d47992f8 1483 unsigned int stop = length + offset;
1da177e4
LT
1484
1485 BUG_ON(!PageLocked(page));
1486 if (!page_has_buffers(page))
1487 goto out;
1488
d47992f8
LC
1489 /*
1490 * Check for overflow
1491 */
09cbfeaf 1492 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1493
1da177e4
LT
1494 head = page_buffers(page);
1495 bh = head;
1496 do {
1497 unsigned int next_off = curr_off + bh->b_size;
1498 next = bh->b_this_page;
1499
d47992f8
LC
1500 /*
1501 * Are we still fully in range ?
1502 */
1503 if (next_off > stop)
1504 goto out;
1505
1da177e4
LT
1506 /*
1507 * is this block fully invalidated?
1508 */
1509 if (offset <= curr_off)
1510 discard_buffer(bh);
1511 curr_off = next_off;
1512 bh = next;
1513 } while (bh != head);
1514
1515 /*
1516 * We release buffers only if the entire page is being invalidated.
1517 * The get_block cached value has been unconditionally invalidated,
1518 * so real IO is not possible anymore.
1519 */
1520 if (offset == 0)
2ff28e22 1521 try_to_release_page(page, 0);
1da177e4 1522out:
2ff28e22 1523 return;
1da177e4
LT
1524}
1525EXPORT_SYMBOL(block_invalidatepage);
1526
d47992f8 1527
1da177e4
LT
1528/*
1529 * We attach and possibly dirty the buffers atomically wrt
1530 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1531 * is already excluded via the page lock.
1532 */
1533void create_empty_buffers(struct page *page,
1534 unsigned long blocksize, unsigned long b_state)
1535{
1536 struct buffer_head *bh, *head, *tail;
1537
640ab98f 1538 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1539 bh = head;
1540 do {
1541 bh->b_state |= b_state;
1542 tail = bh;
1543 bh = bh->b_this_page;
1544 } while (bh);
1545 tail->b_this_page = head;
1546
1547 spin_lock(&page->mapping->private_lock);
1548 if (PageUptodate(page) || PageDirty(page)) {
1549 bh = head;
1550 do {
1551 if (PageDirty(page))
1552 set_buffer_dirty(bh);
1553 if (PageUptodate(page))
1554 set_buffer_uptodate(bh);
1555 bh = bh->b_this_page;
1556 } while (bh != head);
1557 }
1558 attach_page_buffers(page, head);
1559 spin_unlock(&page->mapping->private_lock);
1560}
1561EXPORT_SYMBOL(create_empty_buffers);
1562
29f3ad7d
JK
1563/**
1564 * clean_bdev_aliases: clean a range of buffers in block device
1565 * @bdev: Block device to clean buffers in
1566 * @block: Start of a range of blocks to clean
1567 * @len: Number of blocks to clean
1da177e4 1568 *
29f3ad7d
JK
1569 * We are taking a range of blocks for data and we don't want writeback of any
1570 * buffer-cache aliases starting from return from this function and until the
1571 * moment when something will explicitly mark the buffer dirty (hopefully that
1572 * will not happen until we will free that block ;-) We don't even need to mark
1573 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1574 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1575 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1576 * would confuse anyone who might pick it with bread() afterwards...
1577 *
1578 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1579 * writeout I/O going on against recently-freed buffers. We don't wait on that
1580 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1581 * need to. That happens here.
1da177e4 1582 */
29f3ad7d 1583void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1584{
29f3ad7d
JK
1585 struct inode *bd_inode = bdev->bd_inode;
1586 struct address_space *bd_mapping = bd_inode->i_mapping;
1587 struct pagevec pvec;
1588 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589 pgoff_t end;
c10f778d 1590 int i, count;
29f3ad7d
JK
1591 struct buffer_head *bh;
1592 struct buffer_head *head;
1da177e4 1593
29f3ad7d
JK
1594 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1595 pagevec_init(&pvec, 0);
397162ff 1596 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1597 count = pagevec_count(&pvec);
1598 for (i = 0; i < count; i++) {
29f3ad7d 1599 struct page *page = pvec.pages[i];
1da177e4 1600
29f3ad7d
JK
1601 if (!page_has_buffers(page))
1602 continue;
1603 /*
1604 * We use page lock instead of bd_mapping->private_lock
1605 * to pin buffers here since we can afford to sleep and
1606 * it scales better than a global spinlock lock.
1607 */
1608 lock_page(page);
1609 /* Recheck when the page is locked which pins bhs */
1610 if (!page_has_buffers(page))
1611 goto unlock_page;
1612 head = page_buffers(page);
1613 bh = head;
1614 do {
6c006a9d 1615 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1616 goto next;
1617 if (bh->b_blocknr >= block + len)
1618 break;
1619 clear_buffer_dirty(bh);
1620 wait_on_buffer(bh);
1621 clear_buffer_req(bh);
1622next:
1623 bh = bh->b_this_page;
1624 } while (bh != head);
1625unlock_page:
1626 unlock_page(page);
1627 }
1628 pagevec_release(&pvec);
1629 cond_resched();
c10f778d
JK
1630 /* End of range already reached? */
1631 if (index > end || !index)
1632 break;
1da177e4
LT
1633 }
1634}
29f3ad7d 1635EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1636
45bce8f3
LT
1637/*
1638 * Size is a power-of-two in the range 512..PAGE_SIZE,
1639 * and the case we care about most is PAGE_SIZE.
1640 *
1641 * So this *could* possibly be written with those
1642 * constraints in mind (relevant mostly if some
1643 * architecture has a slow bit-scan instruction)
1644 */
1645static inline int block_size_bits(unsigned int blocksize)
1646{
1647 return ilog2(blocksize);
1648}
1649
1650static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651{
1652 BUG_ON(!PageLocked(page));
1653
1654 if (!page_has_buffers(page))
1655 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1656 return page_buffers(page);
1657}
1658
1da177e4
LT
1659/*
1660 * NOTE! All mapped/uptodate combinations are valid:
1661 *
1662 * Mapped Uptodate Meaning
1663 *
1664 * No No "unknown" - must do get_block()
1665 * No Yes "hole" - zero-filled
1666 * Yes No "allocated" - allocated on disk, not read in
1667 * Yes Yes "valid" - allocated and up-to-date in memory.
1668 *
1669 * "Dirty" is valid only with the last case (mapped+uptodate).
1670 */
1671
1672/*
1673 * While block_write_full_page is writing back the dirty buffers under
1674 * the page lock, whoever dirtied the buffers may decide to clean them
1675 * again at any time. We handle that by only looking at the buffer
1676 * state inside lock_buffer().
1677 *
1678 * If block_write_full_page() is called for regular writeback
1679 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1680 * locked buffer. This only can happen if someone has written the buffer
1681 * directly, with submit_bh(). At the address_space level PageWriteback
1682 * prevents this contention from occurring.
6e34eedd
TT
1683 *
1684 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1685 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1686 * causes the writes to be flagged as synchronous writes.
1da177e4 1687 */
b4bba389 1688int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1689 get_block_t *get_block, struct writeback_control *wbc,
1690 bh_end_io_t *handler)
1da177e4
LT
1691{
1692 int err;
1693 sector_t block;
1694 sector_t last_block;
f0fbd5fc 1695 struct buffer_head *bh, *head;
45bce8f3 1696 unsigned int blocksize, bbits;
1da177e4 1697 int nr_underway = 0;
7637241e 1698 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1699
45bce8f3 1700 head = create_page_buffers(page, inode,
1da177e4 1701 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1702
1703 /*
1704 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1705 * here, and the (potentially unmapped) buffers may become dirty at
1706 * any time. If a buffer becomes dirty here after we've inspected it
1707 * then we just miss that fact, and the page stays dirty.
1708 *
1709 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1710 * handle that here by just cleaning them.
1711 */
1712
1da177e4 1713 bh = head;
45bce8f3
LT
1714 blocksize = bh->b_size;
1715 bbits = block_size_bits(blocksize);
1716
09cbfeaf 1717 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1718 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1719
1720 /*
1721 * Get all the dirty buffers mapped to disk addresses and
1722 * handle any aliases from the underlying blockdev's mapping.
1723 */
1724 do {
1725 if (block > last_block) {
1726 /*
1727 * mapped buffers outside i_size will occur, because
1728 * this page can be outside i_size when there is a
1729 * truncate in progress.
1730 */
1731 /*
1732 * The buffer was zeroed by block_write_full_page()
1733 */
1734 clear_buffer_dirty(bh);
1735 set_buffer_uptodate(bh);
29a814d2
AT
1736 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1737 buffer_dirty(bh)) {
b0cf2321 1738 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1739 err = get_block(inode, block, bh, 1);
1740 if (err)
1741 goto recover;
29a814d2 1742 clear_buffer_delay(bh);
1da177e4
LT
1743 if (buffer_new(bh)) {
1744 /* blockdev mappings never come here */
1745 clear_buffer_new(bh);
e64855c6 1746 clean_bdev_bh_alias(bh);
1da177e4
LT
1747 }
1748 }
1749 bh = bh->b_this_page;
1750 block++;
1751 } while (bh != head);
1752
1753 do {
1da177e4
LT
1754 if (!buffer_mapped(bh))
1755 continue;
1756 /*
1757 * If it's a fully non-blocking write attempt and we cannot
1758 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1759 * potentially cause a busy-wait loop from writeback threads
1760 * and kswapd activity, but those code paths have their own
1761 * higher-level throttling.
1da177e4 1762 */
1b430bee 1763 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1764 lock_buffer(bh);
ca5de404 1765 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1766 redirty_page_for_writepage(wbc, page);
1767 continue;
1768 }
1769 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1770 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1771 } else {
1772 unlock_buffer(bh);
1773 }
1774 } while ((bh = bh->b_this_page) != head);
1775
1776 /*
1777 * The page and its buffers are protected by PageWriteback(), so we can
1778 * drop the bh refcounts early.
1779 */
1780 BUG_ON(PageWriteback(page));
1781 set_page_writeback(page);
1da177e4
LT
1782
1783 do {
1784 struct buffer_head *next = bh->b_this_page;
1785 if (buffer_async_write(bh)) {
8e8f9298
JA
1786 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1787 inode->i_write_hint, wbc);
1da177e4
LT
1788 nr_underway++;
1789 }
1da177e4
LT
1790 bh = next;
1791 } while (bh != head);
05937baa 1792 unlock_page(page);
1da177e4
LT
1793
1794 err = 0;
1795done:
1796 if (nr_underway == 0) {
1797 /*
1798 * The page was marked dirty, but the buffers were
1799 * clean. Someone wrote them back by hand with
1800 * ll_rw_block/submit_bh. A rare case.
1801 */
1da177e4 1802 end_page_writeback(page);
3d67f2d7 1803
1da177e4
LT
1804 /*
1805 * The page and buffer_heads can be released at any time from
1806 * here on.
1807 */
1da177e4
LT
1808 }
1809 return err;
1810
1811recover:
1812 /*
1813 * ENOSPC, or some other error. We may already have added some
1814 * blocks to the file, so we need to write these out to avoid
1815 * exposing stale data.
1816 * The page is currently locked and not marked for writeback
1817 */
1818 bh = head;
1819 /* Recovery: lock and submit the mapped buffers */
1820 do {
29a814d2
AT
1821 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1822 !buffer_delay(bh)) {
1da177e4 1823 lock_buffer(bh);
35c80d5f 1824 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1825 } else {
1826 /*
1827 * The buffer may have been set dirty during
1828 * attachment to a dirty page.
1829 */
1830 clear_buffer_dirty(bh);
1831 }
1832 } while ((bh = bh->b_this_page) != head);
1833 SetPageError(page);
1834 BUG_ON(PageWriteback(page));
7e4c3690 1835 mapping_set_error(page->mapping, err);
1da177e4 1836 set_page_writeback(page);
1da177e4
LT
1837 do {
1838 struct buffer_head *next = bh->b_this_page;
1839 if (buffer_async_write(bh)) {
1840 clear_buffer_dirty(bh);
8e8f9298
JA
1841 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1842 inode->i_write_hint, wbc);
1da177e4
LT
1843 nr_underway++;
1844 }
1da177e4
LT
1845 bh = next;
1846 } while (bh != head);
ffda9d30 1847 unlock_page(page);
1da177e4
LT
1848 goto done;
1849}
b4bba389 1850EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1851
afddba49
NP
1852/*
1853 * If a page has any new buffers, zero them out here, and mark them uptodate
1854 * and dirty so they'll be written out (in order to prevent uninitialised
1855 * block data from leaking). And clear the new bit.
1856 */
1857void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1858{
1859 unsigned int block_start, block_end;
1860 struct buffer_head *head, *bh;
1861
1862 BUG_ON(!PageLocked(page));
1863 if (!page_has_buffers(page))
1864 return;
1865
1866 bh = head = page_buffers(page);
1867 block_start = 0;
1868 do {
1869 block_end = block_start + bh->b_size;
1870
1871 if (buffer_new(bh)) {
1872 if (block_end > from && block_start < to) {
1873 if (!PageUptodate(page)) {
1874 unsigned start, size;
1875
1876 start = max(from, block_start);
1877 size = min(to, block_end) - start;
1878
eebd2aa3 1879 zero_user(page, start, size);
afddba49
NP
1880 set_buffer_uptodate(bh);
1881 }
1882
1883 clear_buffer_new(bh);
1884 mark_buffer_dirty(bh);
1885 }
1886 }
1887
1888 block_start = block_end;
1889 bh = bh->b_this_page;
1890 } while (bh != head);
1891}
1892EXPORT_SYMBOL(page_zero_new_buffers);
1893
ae259a9c
CH
1894static void
1895iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1896 struct iomap *iomap)
1897{
1898 loff_t offset = block << inode->i_blkbits;
1899
1900 bh->b_bdev = iomap->bdev;
1901
1902 /*
1903 * Block points to offset in file we need to map, iomap contains
1904 * the offset at which the map starts. If the map ends before the
1905 * current block, then do not map the buffer and let the caller
1906 * handle it.
1907 */
1908 BUG_ON(offset >= iomap->offset + iomap->length);
1909
1910 switch (iomap->type) {
1911 case IOMAP_HOLE:
1912 /*
1913 * If the buffer is not up to date or beyond the current EOF,
1914 * we need to mark it as new to ensure sub-block zeroing is
1915 * executed if necessary.
1916 */
1917 if (!buffer_uptodate(bh) ||
1918 (offset >= i_size_read(inode)))
1919 set_buffer_new(bh);
1920 break;
1921 case IOMAP_DELALLOC:
1922 if (!buffer_uptodate(bh) ||
1923 (offset >= i_size_read(inode)))
1924 set_buffer_new(bh);
1925 set_buffer_uptodate(bh);
1926 set_buffer_mapped(bh);
1927 set_buffer_delay(bh);
1928 break;
1929 case IOMAP_UNWRITTEN:
1930 /*
1931 * For unwritten regions, we always need to ensure that
1932 * sub-block writes cause the regions in the block we are not
1933 * writing to are zeroed. Set the buffer as new to ensure this.
1934 */
1935 set_buffer_new(bh);
1936 set_buffer_unwritten(bh);
1937 /* FALLTHRU */
1938 case IOMAP_MAPPED:
1939 if (offset >= i_size_read(inode))
1940 set_buffer_new(bh);
1941 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1942 ((offset - iomap->offset) >> inode->i_blkbits);
1943 set_buffer_mapped(bh);
1944 break;
1945 }
1946}
1947
1948int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1949 get_block_t *get_block, struct iomap *iomap)
1da177e4 1950{
09cbfeaf 1951 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1952 unsigned to = from + len;
6e1db88d 1953 struct inode *inode = page->mapping->host;
1da177e4
LT
1954 unsigned block_start, block_end;
1955 sector_t block;
1956 int err = 0;
1957 unsigned blocksize, bbits;
1958 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1959
1960 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1961 BUG_ON(from > PAGE_SIZE);
1962 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1963 BUG_ON(from > to);
1964
45bce8f3
LT
1965 head = create_page_buffers(page, inode, 0);
1966 blocksize = head->b_size;
1967 bbits = block_size_bits(blocksize);
1da177e4 1968
09cbfeaf 1969 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
1970
1971 for(bh = head, block_start = 0; bh != head || !block_start;
1972 block++, block_start=block_end, bh = bh->b_this_page) {
1973 block_end = block_start + blocksize;
1974 if (block_end <= from || block_start >= to) {
1975 if (PageUptodate(page)) {
1976 if (!buffer_uptodate(bh))
1977 set_buffer_uptodate(bh);
1978 }
1979 continue;
1980 }
1981 if (buffer_new(bh))
1982 clear_buffer_new(bh);
1983 if (!buffer_mapped(bh)) {
b0cf2321 1984 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
1985 if (get_block) {
1986 err = get_block(inode, block, bh, 1);
1987 if (err)
1988 break;
1989 } else {
1990 iomap_to_bh(inode, block, bh, iomap);
1991 }
1992
1da177e4 1993 if (buffer_new(bh)) {
e64855c6 1994 clean_bdev_bh_alias(bh);
1da177e4 1995 if (PageUptodate(page)) {
637aff46 1996 clear_buffer_new(bh);
1da177e4 1997 set_buffer_uptodate(bh);
637aff46 1998 mark_buffer_dirty(bh);
1da177e4
LT
1999 continue;
2000 }
eebd2aa3
CL
2001 if (block_end > to || block_start < from)
2002 zero_user_segments(page,
2003 to, block_end,
2004 block_start, from);
1da177e4
LT
2005 continue;
2006 }
2007 }
2008 if (PageUptodate(page)) {
2009 if (!buffer_uptodate(bh))
2010 set_buffer_uptodate(bh);
2011 continue;
2012 }
2013 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2014 !buffer_unwritten(bh) &&
1da177e4 2015 (block_start < from || block_end > to)) {
dfec8a14 2016 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2017 *wait_bh++=bh;
2018 }
2019 }
2020 /*
2021 * If we issued read requests - let them complete.
2022 */
2023 while(wait_bh > wait) {
2024 wait_on_buffer(*--wait_bh);
2025 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2026 err = -EIO;
1da177e4 2027 }
f9f07b6c 2028 if (unlikely(err))
afddba49 2029 page_zero_new_buffers(page, from, to);
1da177e4
LT
2030 return err;
2031}
ae259a9c
CH
2032
2033int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2034 get_block_t *get_block)
2035{
2036 return __block_write_begin_int(page, pos, len, get_block, NULL);
2037}
ebdec241 2038EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2039
2040static int __block_commit_write(struct inode *inode, struct page *page,
2041 unsigned from, unsigned to)
2042{
2043 unsigned block_start, block_end;
2044 int partial = 0;
2045 unsigned blocksize;
2046 struct buffer_head *bh, *head;
2047
45bce8f3
LT
2048 bh = head = page_buffers(page);
2049 blocksize = bh->b_size;
1da177e4 2050
45bce8f3
LT
2051 block_start = 0;
2052 do {
1da177e4
LT
2053 block_end = block_start + blocksize;
2054 if (block_end <= from || block_start >= to) {
2055 if (!buffer_uptodate(bh))
2056 partial = 1;
2057 } else {
2058 set_buffer_uptodate(bh);
2059 mark_buffer_dirty(bh);
2060 }
afddba49 2061 clear_buffer_new(bh);
45bce8f3
LT
2062
2063 block_start = block_end;
2064 bh = bh->b_this_page;
2065 } while (bh != head);
1da177e4
LT
2066
2067 /*
2068 * If this is a partial write which happened to make all buffers
2069 * uptodate then we can optimize away a bogus readpage() for
2070 * the next read(). Here we 'discover' whether the page went
2071 * uptodate as a result of this (potentially partial) write.
2072 */
2073 if (!partial)
2074 SetPageUptodate(page);
2075 return 0;
2076}
2077
afddba49 2078/*
155130a4
CH
2079 * block_write_begin takes care of the basic task of block allocation and
2080 * bringing partial write blocks uptodate first.
2081 *
7bb46a67 2082 * The filesystem needs to handle block truncation upon failure.
afddba49 2083 */
155130a4
CH
2084int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2085 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2086{
09cbfeaf 2087 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2088 struct page *page;
6e1db88d 2089 int status;
afddba49 2090
6e1db88d
CH
2091 page = grab_cache_page_write_begin(mapping, index, flags);
2092 if (!page)
2093 return -ENOMEM;
afddba49 2094
6e1db88d 2095 status = __block_write_begin(page, pos, len, get_block);
afddba49 2096 if (unlikely(status)) {
6e1db88d 2097 unlock_page(page);
09cbfeaf 2098 put_page(page);
6e1db88d 2099 page = NULL;
afddba49
NP
2100 }
2101
6e1db88d 2102 *pagep = page;
afddba49
NP
2103 return status;
2104}
2105EXPORT_SYMBOL(block_write_begin);
2106
2107int block_write_end(struct file *file, struct address_space *mapping,
2108 loff_t pos, unsigned len, unsigned copied,
2109 struct page *page, void *fsdata)
2110{
2111 struct inode *inode = mapping->host;
2112 unsigned start;
2113
09cbfeaf 2114 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2115
2116 if (unlikely(copied < len)) {
2117 /*
2118 * The buffers that were written will now be uptodate, so we
2119 * don't have to worry about a readpage reading them and
2120 * overwriting a partial write. However if we have encountered
2121 * a short write and only partially written into a buffer, it
2122 * will not be marked uptodate, so a readpage might come in and
2123 * destroy our partial write.
2124 *
2125 * Do the simplest thing, and just treat any short write to a
2126 * non uptodate page as a zero-length write, and force the
2127 * caller to redo the whole thing.
2128 */
2129 if (!PageUptodate(page))
2130 copied = 0;
2131
2132 page_zero_new_buffers(page, start+copied, start+len);
2133 }
2134 flush_dcache_page(page);
2135
2136 /* This could be a short (even 0-length) commit */
2137 __block_commit_write(inode, page, start, start+copied);
2138
2139 return copied;
2140}
2141EXPORT_SYMBOL(block_write_end);
2142
2143int generic_write_end(struct file *file, struct address_space *mapping,
2144 loff_t pos, unsigned len, unsigned copied,
2145 struct page *page, void *fsdata)
2146{
2147 struct inode *inode = mapping->host;
90a80202 2148 loff_t old_size = inode->i_size;
c7d206b3 2149 int i_size_changed = 0;
afddba49
NP
2150
2151 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2152
2153 /*
2154 * No need to use i_size_read() here, the i_size
2155 * cannot change under us because we hold i_mutex.
2156 *
2157 * But it's important to update i_size while still holding page lock:
2158 * page writeout could otherwise come in and zero beyond i_size.
2159 */
2160 if (pos+copied > inode->i_size) {
2161 i_size_write(inode, pos+copied);
c7d206b3 2162 i_size_changed = 1;
afddba49
NP
2163 }
2164
2165 unlock_page(page);
09cbfeaf 2166 put_page(page);
afddba49 2167
90a80202
JK
2168 if (old_size < pos)
2169 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2170 /*
2171 * Don't mark the inode dirty under page lock. First, it unnecessarily
2172 * makes the holding time of page lock longer. Second, it forces lock
2173 * ordering of page lock and transaction start for journaling
2174 * filesystems.
2175 */
2176 if (i_size_changed)
2177 mark_inode_dirty(inode);
2178
afddba49
NP
2179 return copied;
2180}
2181EXPORT_SYMBOL(generic_write_end);
2182
8ab22b9a
HH
2183/*
2184 * block_is_partially_uptodate checks whether buffers within a page are
2185 * uptodate or not.
2186 *
2187 * Returns true if all buffers which correspond to a file portion
2188 * we want to read are uptodate.
2189 */
c186afb4
AV
2190int block_is_partially_uptodate(struct page *page, unsigned long from,
2191 unsigned long count)
8ab22b9a 2192{
8ab22b9a
HH
2193 unsigned block_start, block_end, blocksize;
2194 unsigned to;
2195 struct buffer_head *bh, *head;
2196 int ret = 1;
2197
2198 if (!page_has_buffers(page))
2199 return 0;
2200
45bce8f3
LT
2201 head = page_buffers(page);
2202 blocksize = head->b_size;
09cbfeaf 2203 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2204 to = from + to;
09cbfeaf 2205 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2206 return 0;
2207
8ab22b9a
HH
2208 bh = head;
2209 block_start = 0;
2210 do {
2211 block_end = block_start + blocksize;
2212 if (block_end > from && block_start < to) {
2213 if (!buffer_uptodate(bh)) {
2214 ret = 0;
2215 break;
2216 }
2217 if (block_end >= to)
2218 break;
2219 }
2220 block_start = block_end;
2221 bh = bh->b_this_page;
2222 } while (bh != head);
2223
2224 return ret;
2225}
2226EXPORT_SYMBOL(block_is_partially_uptodate);
2227
1da177e4
LT
2228/*
2229 * Generic "read page" function for block devices that have the normal
2230 * get_block functionality. This is most of the block device filesystems.
2231 * Reads the page asynchronously --- the unlock_buffer() and
2232 * set/clear_buffer_uptodate() functions propagate buffer state into the
2233 * page struct once IO has completed.
2234 */
2235int block_read_full_page(struct page *page, get_block_t *get_block)
2236{
2237 struct inode *inode = page->mapping->host;
2238 sector_t iblock, lblock;
2239 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2240 unsigned int blocksize, bbits;
1da177e4
LT
2241 int nr, i;
2242 int fully_mapped = 1;
2243
45bce8f3
LT
2244 head = create_page_buffers(page, inode, 0);
2245 blocksize = head->b_size;
2246 bbits = block_size_bits(blocksize);
1da177e4 2247
09cbfeaf 2248 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2249 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2250 bh = head;
2251 nr = 0;
2252 i = 0;
2253
2254 do {
2255 if (buffer_uptodate(bh))
2256 continue;
2257
2258 if (!buffer_mapped(bh)) {
c64610ba
AM
2259 int err = 0;
2260
1da177e4
LT
2261 fully_mapped = 0;
2262 if (iblock < lblock) {
b0cf2321 2263 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2264 err = get_block(inode, iblock, bh, 0);
2265 if (err)
1da177e4
LT
2266 SetPageError(page);
2267 }
2268 if (!buffer_mapped(bh)) {
eebd2aa3 2269 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2270 if (!err)
2271 set_buffer_uptodate(bh);
1da177e4
LT
2272 continue;
2273 }
2274 /*
2275 * get_block() might have updated the buffer
2276 * synchronously
2277 */
2278 if (buffer_uptodate(bh))
2279 continue;
2280 }
2281 arr[nr++] = bh;
2282 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2283
2284 if (fully_mapped)
2285 SetPageMappedToDisk(page);
2286
2287 if (!nr) {
2288 /*
2289 * All buffers are uptodate - we can set the page uptodate
2290 * as well. But not if get_block() returned an error.
2291 */
2292 if (!PageError(page))
2293 SetPageUptodate(page);
2294 unlock_page(page);
2295 return 0;
2296 }
2297
2298 /* Stage two: lock the buffers */
2299 for (i = 0; i < nr; i++) {
2300 bh = arr[i];
2301 lock_buffer(bh);
2302 mark_buffer_async_read(bh);
2303 }
2304
2305 /*
2306 * Stage 3: start the IO. Check for uptodateness
2307 * inside the buffer lock in case another process reading
2308 * the underlying blockdev brought it uptodate (the sct fix).
2309 */
2310 for (i = 0; i < nr; i++) {
2311 bh = arr[i];
2312 if (buffer_uptodate(bh))
2313 end_buffer_async_read(bh, 1);
2314 else
2a222ca9 2315 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2316 }
2317 return 0;
2318}
1fe72eaa 2319EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2320
2321/* utility function for filesystems that need to do work on expanding
89e10787 2322 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2323 * deal with the hole.
2324 */
89e10787 2325int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2326{
2327 struct address_space *mapping = inode->i_mapping;
2328 struct page *page;
89e10787 2329 void *fsdata;
1da177e4
LT
2330 int err;
2331
c08d3b0e 2332 err = inode_newsize_ok(inode, size);
2333 if (err)
1da177e4
LT
2334 goto out;
2335
89e10787 2336 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2337 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2338 if (err)
05eb0b51 2339 goto out;
05eb0b51 2340
89e10787
NP
2341 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2342 BUG_ON(err > 0);
05eb0b51 2343
1da177e4
LT
2344out:
2345 return err;
2346}
1fe72eaa 2347EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2348
f1e3af72
AB
2349static int cont_expand_zero(struct file *file, struct address_space *mapping,
2350 loff_t pos, loff_t *bytes)
1da177e4 2351{
1da177e4 2352 struct inode *inode = mapping->host;
93407472 2353 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2354 struct page *page;
2355 void *fsdata;
2356 pgoff_t index, curidx;
2357 loff_t curpos;
2358 unsigned zerofrom, offset, len;
2359 int err = 0;
1da177e4 2360
09cbfeaf
KS
2361 index = pos >> PAGE_SHIFT;
2362 offset = pos & ~PAGE_MASK;
89e10787 2363
09cbfeaf
KS
2364 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2365 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2366 if (zerofrom & (blocksize-1)) {
2367 *bytes |= (blocksize-1);
2368 (*bytes)++;
2369 }
09cbfeaf 2370 len = PAGE_SIZE - zerofrom;
1da177e4 2371
c718a975
TH
2372 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2373 &page, &fsdata);
89e10787
NP
2374 if (err)
2375 goto out;
eebd2aa3 2376 zero_user(page, zerofrom, len);
89e10787
NP
2377 err = pagecache_write_end(file, mapping, curpos, len, len,
2378 page, fsdata);
2379 if (err < 0)
2380 goto out;
2381 BUG_ON(err != len);
2382 err = 0;
061e9746
OH
2383
2384 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2385
2386 if (unlikely(fatal_signal_pending(current))) {
2387 err = -EINTR;
2388 goto out;
2389 }
89e10787 2390 }
1da177e4 2391
89e10787
NP
2392 /* page covers the boundary, find the boundary offset */
2393 if (index == curidx) {
09cbfeaf 2394 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2395 /* if we will expand the thing last block will be filled */
89e10787
NP
2396 if (offset <= zerofrom) {
2397 goto out;
2398 }
2399 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2400 *bytes |= (blocksize-1);
2401 (*bytes)++;
2402 }
89e10787 2403 len = offset - zerofrom;
1da177e4 2404
c718a975
TH
2405 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2406 &page, &fsdata);
89e10787
NP
2407 if (err)
2408 goto out;
eebd2aa3 2409 zero_user(page, zerofrom, len);
89e10787
NP
2410 err = pagecache_write_end(file, mapping, curpos, len, len,
2411 page, fsdata);
2412 if (err < 0)
2413 goto out;
2414 BUG_ON(err != len);
2415 err = 0;
1da177e4 2416 }
89e10787
NP
2417out:
2418 return err;
2419}
2420
2421/*
2422 * For moronic filesystems that do not allow holes in file.
2423 * We may have to extend the file.
2424 */
282dc178 2425int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2426 loff_t pos, unsigned len, unsigned flags,
2427 struct page **pagep, void **fsdata,
2428 get_block_t *get_block, loff_t *bytes)
2429{
2430 struct inode *inode = mapping->host;
93407472
FF
2431 unsigned int blocksize = i_blocksize(inode);
2432 unsigned int zerofrom;
89e10787
NP
2433 int err;
2434
2435 err = cont_expand_zero(file, mapping, pos, bytes);
2436 if (err)
155130a4 2437 return err;
89e10787 2438
09cbfeaf 2439 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2440 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2441 *bytes |= (blocksize-1);
2442 (*bytes)++;
1da177e4 2443 }
1da177e4 2444
155130a4 2445 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2446}
1fe72eaa 2447EXPORT_SYMBOL(cont_write_begin);
1da177e4 2448
1da177e4
LT
2449int block_commit_write(struct page *page, unsigned from, unsigned to)
2450{
2451 struct inode *inode = page->mapping->host;
2452 __block_commit_write(inode,page,from,to);
2453 return 0;
2454}
1fe72eaa 2455EXPORT_SYMBOL(block_commit_write);
1da177e4 2456
54171690
DC
2457/*
2458 * block_page_mkwrite() is not allowed to change the file size as it gets
2459 * called from a page fault handler when a page is first dirtied. Hence we must
2460 * be careful to check for EOF conditions here. We set the page up correctly
2461 * for a written page which means we get ENOSPC checking when writing into
2462 * holes and correct delalloc and unwritten extent mapping on filesystems that
2463 * support these features.
2464 *
2465 * We are not allowed to take the i_mutex here so we have to play games to
2466 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2467 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2468 * page lock we can determine safely if the page is beyond EOF. If it is not
2469 * beyond EOF, then the page is guaranteed safe against truncation until we
2470 * unlock the page.
ea13a864 2471 *
14da9200 2472 * Direct callers of this function should protect against filesystem freezing
5c500029 2473 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2474 */
5c500029 2475int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2476 get_block_t get_block)
54171690 2477{
c2ec175c 2478 struct page *page = vmf->page;
496ad9aa 2479 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2480 unsigned long end;
2481 loff_t size;
24da4fab 2482 int ret;
54171690
DC
2483
2484 lock_page(page);
2485 size = i_size_read(inode);
2486 if ((page->mapping != inode->i_mapping) ||
18336338 2487 (page_offset(page) > size)) {
24da4fab
JK
2488 /* We overload EFAULT to mean page got truncated */
2489 ret = -EFAULT;
2490 goto out_unlock;
54171690
DC
2491 }
2492
2493 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2494 if (((page->index + 1) << PAGE_SHIFT) > size)
2495 end = size & ~PAGE_MASK;
54171690 2496 else
09cbfeaf 2497 end = PAGE_SIZE;
54171690 2498
ebdec241 2499 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2500 if (!ret)
2501 ret = block_commit_write(page, 0, end);
2502
24da4fab
JK
2503 if (unlikely(ret < 0))
2504 goto out_unlock;
ea13a864 2505 set_page_dirty(page);
1d1d1a76 2506 wait_for_stable_page(page);
24da4fab
JK
2507 return 0;
2508out_unlock:
2509 unlock_page(page);
54171690 2510 return ret;
24da4fab 2511}
1fe72eaa 2512EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2513
2514/*
03158cd7 2515 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2516 * immediately, while under the page lock. So it needs a special end_io
2517 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2518 */
2519static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2520{
68671f35 2521 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2522}
2523
03158cd7
NP
2524/*
2525 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2526 * the page (converting it to circular linked list and taking care of page
2527 * dirty races).
2528 */
2529static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2530{
2531 struct buffer_head *bh;
2532
2533 BUG_ON(!PageLocked(page));
2534
2535 spin_lock(&page->mapping->private_lock);
2536 bh = head;
2537 do {
2538 if (PageDirty(page))
2539 set_buffer_dirty(bh);
2540 if (!bh->b_this_page)
2541 bh->b_this_page = head;
2542 bh = bh->b_this_page;
2543 } while (bh != head);
2544 attach_page_buffers(page, head);
2545 spin_unlock(&page->mapping->private_lock);
2546}
2547
1da177e4 2548/*
ea0f04e5
CH
2549 * On entry, the page is fully not uptodate.
2550 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2551 * The filesystem needs to handle block truncation upon failure.
1da177e4 2552 */
ea0f04e5 2553int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2554 loff_t pos, unsigned len, unsigned flags,
2555 struct page **pagep, void **fsdata,
1da177e4
LT
2556 get_block_t *get_block)
2557{
03158cd7 2558 struct inode *inode = mapping->host;
1da177e4
LT
2559 const unsigned blkbits = inode->i_blkbits;
2560 const unsigned blocksize = 1 << blkbits;
a4b0672d 2561 struct buffer_head *head, *bh;
03158cd7
NP
2562 struct page *page;
2563 pgoff_t index;
2564 unsigned from, to;
1da177e4 2565 unsigned block_in_page;
a4b0672d 2566 unsigned block_start, block_end;
1da177e4 2567 sector_t block_in_file;
1da177e4 2568 int nr_reads = 0;
1da177e4
LT
2569 int ret = 0;
2570 int is_mapped_to_disk = 1;
1da177e4 2571
09cbfeaf
KS
2572 index = pos >> PAGE_SHIFT;
2573 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2574 to = from + len;
2575
54566b2c 2576 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2577 if (!page)
2578 return -ENOMEM;
2579 *pagep = page;
2580 *fsdata = NULL;
2581
2582 if (page_has_buffers(page)) {
309f77ad
NK
2583 ret = __block_write_begin(page, pos, len, get_block);
2584 if (unlikely(ret))
2585 goto out_release;
2586 return ret;
03158cd7 2587 }
a4b0672d 2588
1da177e4
LT
2589 if (PageMappedToDisk(page))
2590 return 0;
2591
a4b0672d
NP
2592 /*
2593 * Allocate buffers so that we can keep track of state, and potentially
2594 * attach them to the page if an error occurs. In the common case of
2595 * no error, they will just be freed again without ever being attached
2596 * to the page (which is all OK, because we're under the page lock).
2597 *
2598 * Be careful: the buffer linked list is a NULL terminated one, rather
2599 * than the circular one we're used to.
2600 */
640ab98f 2601 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2602 if (!head) {
2603 ret = -ENOMEM;
2604 goto out_release;
2605 }
a4b0672d 2606
09cbfeaf 2607 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2608
2609 /*
2610 * We loop across all blocks in the page, whether or not they are
2611 * part of the affected region. This is so we can discover if the
2612 * page is fully mapped-to-disk.
2613 */
a4b0672d 2614 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2615 block_start < PAGE_SIZE;
a4b0672d 2616 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2617 int create;
2618
a4b0672d
NP
2619 block_end = block_start + blocksize;
2620 bh->b_state = 0;
1da177e4
LT
2621 create = 1;
2622 if (block_start >= to)
2623 create = 0;
2624 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2625 bh, create);
1da177e4
LT
2626 if (ret)
2627 goto failed;
a4b0672d 2628 if (!buffer_mapped(bh))
1da177e4 2629 is_mapped_to_disk = 0;
a4b0672d 2630 if (buffer_new(bh))
e64855c6 2631 clean_bdev_bh_alias(bh);
a4b0672d
NP
2632 if (PageUptodate(page)) {
2633 set_buffer_uptodate(bh);
1da177e4 2634 continue;
a4b0672d
NP
2635 }
2636 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2637 zero_user_segments(page, block_start, from,
2638 to, block_end);
1da177e4
LT
2639 continue;
2640 }
a4b0672d 2641 if (buffer_uptodate(bh))
1da177e4
LT
2642 continue; /* reiserfs does this */
2643 if (block_start < from || block_end > to) {
a4b0672d
NP
2644 lock_buffer(bh);
2645 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2646 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2647 nr_reads++;
1da177e4
LT
2648 }
2649 }
2650
2651 if (nr_reads) {
1da177e4
LT
2652 /*
2653 * The page is locked, so these buffers are protected from
2654 * any VM or truncate activity. Hence we don't need to care
2655 * for the buffer_head refcounts.
2656 */
a4b0672d 2657 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2658 wait_on_buffer(bh);
2659 if (!buffer_uptodate(bh))
2660 ret = -EIO;
1da177e4
LT
2661 }
2662 if (ret)
2663 goto failed;
2664 }
2665
2666 if (is_mapped_to_disk)
2667 SetPageMappedToDisk(page);
1da177e4 2668
03158cd7 2669 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2670
1da177e4
LT
2671 return 0;
2672
2673failed:
03158cd7 2674 BUG_ON(!ret);
1da177e4 2675 /*
a4b0672d
NP
2676 * Error recovery is a bit difficult. We need to zero out blocks that
2677 * were newly allocated, and dirty them to ensure they get written out.
2678 * Buffers need to be attached to the page at this point, otherwise
2679 * the handling of potential IO errors during writeout would be hard
2680 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2681 */
03158cd7
NP
2682 attach_nobh_buffers(page, head);
2683 page_zero_new_buffers(page, from, to);
a4b0672d 2684
03158cd7
NP
2685out_release:
2686 unlock_page(page);
09cbfeaf 2687 put_page(page);
03158cd7 2688 *pagep = NULL;
a4b0672d 2689
7bb46a67 2690 return ret;
2691}
03158cd7 2692EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2693
03158cd7
NP
2694int nobh_write_end(struct file *file, struct address_space *mapping,
2695 loff_t pos, unsigned len, unsigned copied,
2696 struct page *page, void *fsdata)
1da177e4
LT
2697{
2698 struct inode *inode = page->mapping->host;
efdc3131 2699 struct buffer_head *head = fsdata;
03158cd7 2700 struct buffer_head *bh;
5b41e74a 2701 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2702
d4cf109f 2703 if (unlikely(copied < len) && head)
5b41e74a
DM
2704 attach_nobh_buffers(page, head);
2705 if (page_has_buffers(page))
2706 return generic_write_end(file, mapping, pos, len,
2707 copied, page, fsdata);
a4b0672d 2708
22c8ca78 2709 SetPageUptodate(page);
1da177e4 2710 set_page_dirty(page);
03158cd7
NP
2711 if (pos+copied > inode->i_size) {
2712 i_size_write(inode, pos+copied);
1da177e4
LT
2713 mark_inode_dirty(inode);
2714 }
03158cd7
NP
2715
2716 unlock_page(page);
09cbfeaf 2717 put_page(page);
03158cd7 2718
03158cd7
NP
2719 while (head) {
2720 bh = head;
2721 head = head->b_this_page;
2722 free_buffer_head(bh);
2723 }
2724
2725 return copied;
1da177e4 2726}
03158cd7 2727EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2728
2729/*
2730 * nobh_writepage() - based on block_full_write_page() except
2731 * that it tries to operate without attaching bufferheads to
2732 * the page.
2733 */
2734int nobh_writepage(struct page *page, get_block_t *get_block,
2735 struct writeback_control *wbc)
2736{
2737 struct inode * const inode = page->mapping->host;
2738 loff_t i_size = i_size_read(inode);
09cbfeaf 2739 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2740 unsigned offset;
1da177e4
LT
2741 int ret;
2742
2743 /* Is the page fully inside i_size? */
2744 if (page->index < end_index)
2745 goto out;
2746
2747 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2748 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2749 if (page->index >= end_index+1 || !offset) {
2750 /*
2751 * The page may have dirty, unmapped buffers. For example,
2752 * they may have been added in ext3_writepage(). Make them
2753 * freeable here, so the page does not leak.
2754 */
2755#if 0
2756 /* Not really sure about this - do we need this ? */
2757 if (page->mapping->a_ops->invalidatepage)
2758 page->mapping->a_ops->invalidatepage(page, offset);
2759#endif
2760 unlock_page(page);
2761 return 0; /* don't care */
2762 }
2763
2764 /*
2765 * The page straddles i_size. It must be zeroed out on each and every
2766 * writepage invocation because it may be mmapped. "A file is mapped
2767 * in multiples of the page size. For a file that is not a multiple of
2768 * the page size, the remaining memory is zeroed when mapped, and
2769 * writes to that region are not written out to the file."
2770 */
09cbfeaf 2771 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2772out:
2773 ret = mpage_writepage(page, get_block, wbc);
2774 if (ret == -EAGAIN)
35c80d5f
CM
2775 ret = __block_write_full_page(inode, page, get_block, wbc,
2776 end_buffer_async_write);
1da177e4
LT
2777 return ret;
2778}
2779EXPORT_SYMBOL(nobh_writepage);
2780
03158cd7
NP
2781int nobh_truncate_page(struct address_space *mapping,
2782 loff_t from, get_block_t *get_block)
1da177e4 2783{
09cbfeaf
KS
2784 pgoff_t index = from >> PAGE_SHIFT;
2785 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2786 unsigned blocksize;
2787 sector_t iblock;
2788 unsigned length, pos;
2789 struct inode *inode = mapping->host;
1da177e4 2790 struct page *page;
03158cd7
NP
2791 struct buffer_head map_bh;
2792 int err;
1da177e4 2793
93407472 2794 blocksize = i_blocksize(inode);
03158cd7
NP
2795 length = offset & (blocksize - 1);
2796
2797 /* Block boundary? Nothing to do */
2798 if (!length)
2799 return 0;
2800
2801 length = blocksize - length;
09cbfeaf 2802 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2803
1da177e4 2804 page = grab_cache_page(mapping, index);
03158cd7 2805 err = -ENOMEM;
1da177e4
LT
2806 if (!page)
2807 goto out;
2808
03158cd7
NP
2809 if (page_has_buffers(page)) {
2810has_buffers:
2811 unlock_page(page);
09cbfeaf 2812 put_page(page);
03158cd7
NP
2813 return block_truncate_page(mapping, from, get_block);
2814 }
2815
2816 /* Find the buffer that contains "offset" */
2817 pos = blocksize;
2818 while (offset >= pos) {
2819 iblock++;
2820 pos += blocksize;
2821 }
2822
460bcf57
TT
2823 map_bh.b_size = blocksize;
2824 map_bh.b_state = 0;
03158cd7
NP
2825 err = get_block(inode, iblock, &map_bh, 0);
2826 if (err)
2827 goto unlock;
2828 /* unmapped? It's a hole - nothing to do */
2829 if (!buffer_mapped(&map_bh))
2830 goto unlock;
2831
2832 /* Ok, it's mapped. Make sure it's up-to-date */
2833 if (!PageUptodate(page)) {
2834 err = mapping->a_ops->readpage(NULL, page);
2835 if (err) {
09cbfeaf 2836 put_page(page);
03158cd7
NP
2837 goto out;
2838 }
2839 lock_page(page);
2840 if (!PageUptodate(page)) {
2841 err = -EIO;
2842 goto unlock;
2843 }
2844 if (page_has_buffers(page))
2845 goto has_buffers;
1da177e4 2846 }
eebd2aa3 2847 zero_user(page, offset, length);
03158cd7
NP
2848 set_page_dirty(page);
2849 err = 0;
2850
2851unlock:
1da177e4 2852 unlock_page(page);
09cbfeaf 2853 put_page(page);
1da177e4 2854out:
03158cd7 2855 return err;
1da177e4
LT
2856}
2857EXPORT_SYMBOL(nobh_truncate_page);
2858
2859int block_truncate_page(struct address_space *mapping,
2860 loff_t from, get_block_t *get_block)
2861{
09cbfeaf
KS
2862 pgoff_t index = from >> PAGE_SHIFT;
2863 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2864 unsigned blocksize;
54b21a79 2865 sector_t iblock;
1da177e4
LT
2866 unsigned length, pos;
2867 struct inode *inode = mapping->host;
2868 struct page *page;
2869 struct buffer_head *bh;
1da177e4
LT
2870 int err;
2871
93407472 2872 blocksize = i_blocksize(inode);
1da177e4
LT
2873 length = offset & (blocksize - 1);
2874
2875 /* Block boundary? Nothing to do */
2876 if (!length)
2877 return 0;
2878
2879 length = blocksize - length;
09cbfeaf 2880 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2881
2882 page = grab_cache_page(mapping, index);
2883 err = -ENOMEM;
2884 if (!page)
2885 goto out;
2886
2887 if (!page_has_buffers(page))
2888 create_empty_buffers(page, blocksize, 0);
2889
2890 /* Find the buffer that contains "offset" */
2891 bh = page_buffers(page);
2892 pos = blocksize;
2893 while (offset >= pos) {
2894 bh = bh->b_this_page;
2895 iblock++;
2896 pos += blocksize;
2897 }
2898
2899 err = 0;
2900 if (!buffer_mapped(bh)) {
b0cf2321 2901 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2902 err = get_block(inode, iblock, bh, 0);
2903 if (err)
2904 goto unlock;
2905 /* unmapped? It's a hole - nothing to do */
2906 if (!buffer_mapped(bh))
2907 goto unlock;
2908 }
2909
2910 /* Ok, it's mapped. Make sure it's up-to-date */
2911 if (PageUptodate(page))
2912 set_buffer_uptodate(bh);
2913
33a266dd 2914 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2915 err = -EIO;
dfec8a14 2916 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2917 wait_on_buffer(bh);
2918 /* Uhhuh. Read error. Complain and punt. */
2919 if (!buffer_uptodate(bh))
2920 goto unlock;
2921 }
2922
eebd2aa3 2923 zero_user(page, offset, length);
1da177e4
LT
2924 mark_buffer_dirty(bh);
2925 err = 0;
2926
2927unlock:
2928 unlock_page(page);
09cbfeaf 2929 put_page(page);
1da177e4
LT
2930out:
2931 return err;
2932}
1fe72eaa 2933EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2934
2935/*
2936 * The generic ->writepage function for buffer-backed address_spaces
2937 */
1b938c08
MW
2938int block_write_full_page(struct page *page, get_block_t *get_block,
2939 struct writeback_control *wbc)
1da177e4
LT
2940{
2941 struct inode * const inode = page->mapping->host;
2942 loff_t i_size = i_size_read(inode);
09cbfeaf 2943 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2944 unsigned offset;
1da177e4
LT
2945
2946 /* Is the page fully inside i_size? */
2947 if (page->index < end_index)
35c80d5f 2948 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2949 end_buffer_async_write);
1da177e4
LT
2950
2951 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2952 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2953 if (page->index >= end_index+1 || !offset) {
2954 /*
2955 * The page may have dirty, unmapped buffers. For example,
2956 * they may have been added in ext3_writepage(). Make them
2957 * freeable here, so the page does not leak.
2958 */
09cbfeaf 2959 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
2960 unlock_page(page);
2961 return 0; /* don't care */
2962 }
2963
2964 /*
2965 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2966 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2967 * in multiples of the page size. For a file that is not a multiple of
2968 * the page size, the remaining memory is zeroed when mapped, and
2969 * writes to that region are not written out to the file."
2970 */
09cbfeaf 2971 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
2972 return __block_write_full_page(inode, page, get_block, wbc,
2973 end_buffer_async_write);
35c80d5f 2974}
1fe72eaa 2975EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2976
1da177e4
LT
2977sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2978 get_block_t *get_block)
2979{
1da177e4 2980 struct inode *inode = mapping->host;
2a527d68
AP
2981 struct buffer_head tmp = {
2982 .b_size = i_blocksize(inode),
2983 };
2984
1da177e4
LT
2985 get_block(inode, block, &tmp, 0);
2986 return tmp.b_blocknr;
2987}
1fe72eaa 2988EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2989
4246a0b6 2990static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2991{
2992 struct buffer_head *bh = bio->bi_private;
2993
b7c44ed9 2994 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2995 set_bit(BH_Quiet, &bh->b_state);
2996
4e4cbee9 2997 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2998 bio_put(bio);
1da177e4
LT
2999}
3000
57302e0d
LT
3001/*
3002 * This allows us to do IO even on the odd last sectors
59d43914 3003 * of a device, even if the block size is some multiple
57302e0d
LT
3004 * of the physical sector size.
3005 *
3006 * We'll just truncate the bio to the size of the device,
3007 * and clear the end of the buffer head manually.
3008 *
3009 * Truly out-of-range accesses will turn into actual IO
3010 * errors, this only handles the "we need to be able to
3011 * do IO at the final sector" case.
3012 */
2a222ca9 3013void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3014{
3015 sector_t maxsector;
59d43914
AM
3016 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3017 unsigned truncated_bytes;
57302e0d 3018
74d46992 3019 maxsector = get_capacity(bio->bi_disk);
57302e0d
LT
3020 if (!maxsector)
3021 return;
3022
3023 /*
3024 * If the *whole* IO is past the end of the device,
3025 * let it through, and the IO layer will turn it into
3026 * an EIO.
3027 */
4f024f37 3028 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3029 return;
3030
4f024f37 3031 maxsector -= bio->bi_iter.bi_sector;
59d43914 3032 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3033 return;
3034
59d43914
AM
3035 /* Uhhuh. We've got a bio that straddles the device size! */
3036 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3037
3038 /* Truncate the bio.. */
59d43914
AM
3039 bio->bi_iter.bi_size -= truncated_bytes;
3040 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3041
3042 /* ..and clear the end of the buffer for reads */
2a222ca9 3043 if (op == REQ_OP_READ) {
59d43914
AM
3044 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3045 truncated_bytes);
57302e0d
LT
3046 }
3047}
3048
2a222ca9 3049static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3050 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3051{
3052 struct bio *bio;
1da177e4
LT
3053
3054 BUG_ON(!buffer_locked(bh));
3055 BUG_ON(!buffer_mapped(bh));
3056 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3057 BUG_ON(buffer_delay(bh));
3058 BUG_ON(buffer_unwritten(bh));
1da177e4 3059
1da177e4 3060 /*
48fd4f93 3061 * Only clear out a write error when rewriting
1da177e4 3062 */
2a222ca9 3063 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3064 clear_buffer_write_io_error(bh);
3065
3066 /*
3067 * from here on down, it's all bio -- do the initial mapping,
3068 * submit_bio -> generic_make_request may further map this bio around
3069 */
3070 bio = bio_alloc(GFP_NOIO, 1);
3071
2a814908 3072 if (wbc) {
b16b1deb 3073 wbc_init_bio(wbc, bio);
2a814908
TH
3074 wbc_account_io(wbc, bh->b_page, bh->b_size);
3075 }
bafc0dba 3076
4f024f37 3077 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3078 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3079 bio->bi_write_hint = write_hint;
1da177e4 3080
6cf66b4c
KO
3081 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3082 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3083
3084 bio->bi_end_io = end_bio_bh_io_sync;
3085 bio->bi_private = bh;
3086
57302e0d 3087 /* Take care of bh's that straddle the end of the device */
2a222ca9 3088 guard_bio_eod(op, bio);
57302e0d 3089
877f962c 3090 if (buffer_meta(bh))
2a222ca9 3091 op_flags |= REQ_META;
877f962c 3092 if (buffer_prio(bh))
2a222ca9
MC
3093 op_flags |= REQ_PRIO;
3094 bio_set_op_attrs(bio, op, op_flags);
877f962c 3095
4e49ea4a 3096 submit_bio(bio);
f6454b04 3097 return 0;
1da177e4 3098}
bafc0dba 3099
020c2833 3100int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3101{
8e8f9298 3102 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3103}
1fe72eaa 3104EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3105
3106/**
3107 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3108 * @op: whether to %READ or %WRITE
ef295ecf 3109 * @op_flags: req_flag_bits
1da177e4
LT
3110 * @nr: number of &struct buffer_heads in the array
3111 * @bhs: array of pointers to &struct buffer_head
3112 *
a7662236 3113 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3114 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3115 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3116 * %REQ_RAHEAD.
1da177e4
LT
3117 *
3118 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3119 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3120 * request, and any buffer that appears to be up-to-date when doing read
3121 * request. Further it marks as clean buffers that are processed for
3122 * writing (the buffer cache won't assume that they are actually clean
3123 * until the buffer gets unlocked).
1da177e4
LT
3124 *
3125 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3126 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3127 * any waiters.
3128 *
3129 * All of the buffers must be for the same device, and must also be a
3130 * multiple of the current approved size for the device.
3131 */
dfec8a14 3132void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3133{
3134 int i;
3135
3136 for (i = 0; i < nr; i++) {
3137 struct buffer_head *bh = bhs[i];
3138
9cb569d6 3139 if (!trylock_buffer(bh))
1da177e4 3140 continue;
dfec8a14 3141 if (op == WRITE) {
1da177e4 3142 if (test_clear_buffer_dirty(bh)) {
76c3073a 3143 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3144 get_bh(bh);
dfec8a14 3145 submit_bh(op, op_flags, bh);
1da177e4
LT
3146 continue;
3147 }
3148 } else {
1da177e4 3149 if (!buffer_uptodate(bh)) {
76c3073a 3150 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3151 get_bh(bh);
dfec8a14 3152 submit_bh(op, op_flags, bh);
1da177e4
LT
3153 continue;
3154 }
3155 }
3156 unlock_buffer(bh);
1da177e4
LT
3157 }
3158}
1fe72eaa 3159EXPORT_SYMBOL(ll_rw_block);
1da177e4 3160
2a222ca9 3161void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3162{
3163 lock_buffer(bh);
3164 if (!test_clear_buffer_dirty(bh)) {
3165 unlock_buffer(bh);
3166 return;
3167 }
3168 bh->b_end_io = end_buffer_write_sync;
3169 get_bh(bh);
2a222ca9 3170 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3171}
3172EXPORT_SYMBOL(write_dirty_buffer);
3173
1da177e4
LT
3174/*
3175 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3176 * and then start new I/O and then wait upon it. The caller must have a ref on
3177 * the buffer_head.
3178 */
2a222ca9 3179int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3180{
3181 int ret = 0;
3182
3183 WARN_ON(atomic_read(&bh->b_count) < 1);
3184 lock_buffer(bh);
3185 if (test_clear_buffer_dirty(bh)) {
3186 get_bh(bh);
3187 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3188 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3189 wait_on_buffer(bh);
1da177e4
LT
3190 if (!ret && !buffer_uptodate(bh))
3191 ret = -EIO;
3192 } else {
3193 unlock_buffer(bh);
3194 }
3195 return ret;
3196}
87e99511
CH
3197EXPORT_SYMBOL(__sync_dirty_buffer);
3198
3199int sync_dirty_buffer(struct buffer_head *bh)
3200{
70fd7614 3201 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3202}
1fe72eaa 3203EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3204
3205/*
3206 * try_to_free_buffers() checks if all the buffers on this particular page
3207 * are unused, and releases them if so.
3208 *
3209 * Exclusion against try_to_free_buffers may be obtained by either
3210 * locking the page or by holding its mapping's private_lock.
3211 *
3212 * If the page is dirty but all the buffers are clean then we need to
3213 * be sure to mark the page clean as well. This is because the page
3214 * may be against a block device, and a later reattachment of buffers
3215 * to a dirty page will set *all* buffers dirty. Which would corrupt
3216 * filesystem data on the same device.
3217 *
3218 * The same applies to regular filesystem pages: if all the buffers are
3219 * clean then we set the page clean and proceed. To do that, we require
3220 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3221 * private_lock.
3222 *
3223 * try_to_free_buffers() is non-blocking.
3224 */
3225static inline int buffer_busy(struct buffer_head *bh)
3226{
3227 return atomic_read(&bh->b_count) |
3228 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3229}
3230
3231static int
3232drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3233{
3234 struct buffer_head *head = page_buffers(page);
3235 struct buffer_head *bh;
3236
3237 bh = head;
3238 do {
1da177e4
LT
3239 if (buffer_busy(bh))
3240 goto failed;
3241 bh = bh->b_this_page;
3242 } while (bh != head);
3243
3244 do {
3245 struct buffer_head *next = bh->b_this_page;
3246
535ee2fb 3247 if (bh->b_assoc_map)
1da177e4
LT
3248 __remove_assoc_queue(bh);
3249 bh = next;
3250 } while (bh != head);
3251 *buffers_to_free = head;
3252 __clear_page_buffers(page);
3253 return 1;
3254failed:
3255 return 0;
3256}
3257
3258int try_to_free_buffers(struct page *page)
3259{
3260 struct address_space * const mapping = page->mapping;
3261 struct buffer_head *buffers_to_free = NULL;
3262 int ret = 0;
3263
3264 BUG_ON(!PageLocked(page));
ecdfc978 3265 if (PageWriteback(page))
1da177e4
LT
3266 return 0;
3267
3268 if (mapping == NULL) { /* can this still happen? */
3269 ret = drop_buffers(page, &buffers_to_free);
3270 goto out;
3271 }
3272
3273 spin_lock(&mapping->private_lock);
3274 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3275
3276 /*
3277 * If the filesystem writes its buffers by hand (eg ext3)
3278 * then we can have clean buffers against a dirty page. We
3279 * clean the page here; otherwise the VM will never notice
3280 * that the filesystem did any IO at all.
3281 *
3282 * Also, during truncate, discard_buffer will have marked all
3283 * the page's buffers clean. We discover that here and clean
3284 * the page also.
87df7241
NP
3285 *
3286 * private_lock must be held over this entire operation in order
3287 * to synchronise against __set_page_dirty_buffers and prevent the
3288 * dirty bit from being lost.
ecdfc978 3289 */
11f81bec
TH
3290 if (ret)
3291 cancel_dirty_page(page);
87df7241 3292 spin_unlock(&mapping->private_lock);
1da177e4
LT
3293out:
3294 if (buffers_to_free) {
3295 struct buffer_head *bh = buffers_to_free;
3296
3297 do {
3298 struct buffer_head *next = bh->b_this_page;
3299 free_buffer_head(bh);
3300 bh = next;
3301 } while (bh != buffers_to_free);
3302 }
3303 return ret;
3304}
3305EXPORT_SYMBOL(try_to_free_buffers);
3306
1da177e4
LT
3307/*
3308 * There are no bdflush tunables left. But distributions are
3309 * still running obsolete flush daemons, so we terminate them here.
3310 *
3311 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3312 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3313 */
bdc480e3 3314SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3315{
3316 static int msg_count;
3317
3318 if (!capable(CAP_SYS_ADMIN))
3319 return -EPERM;
3320
3321 if (msg_count < 5) {
3322 msg_count++;
3323 printk(KERN_INFO
3324 "warning: process `%s' used the obsolete bdflush"
3325 " system call\n", current->comm);
3326 printk(KERN_INFO "Fix your initscripts?\n");
3327 }
3328
3329 if (func == 1)
3330 do_exit(0);
3331 return 0;
3332}
3333
3334/*
3335 * Buffer-head allocation
3336 */
a0a9b043 3337static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3338
3339/*
3340 * Once the number of bh's in the machine exceeds this level, we start
3341 * stripping them in writeback.
3342 */
43be594a 3343static unsigned long max_buffer_heads;
1da177e4
LT
3344
3345int buffer_heads_over_limit;
3346
3347struct bh_accounting {
3348 int nr; /* Number of live bh's */
3349 int ratelimit; /* Limit cacheline bouncing */
3350};
3351
3352static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3353
3354static void recalc_bh_state(void)
3355{
3356 int i;
3357 int tot = 0;
3358
ee1be862 3359 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3360 return;
c7b92516 3361 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3362 for_each_online_cpu(i)
1da177e4
LT
3363 tot += per_cpu(bh_accounting, i).nr;
3364 buffer_heads_over_limit = (tot > max_buffer_heads);
3365}
c7b92516 3366
dd0fc66f 3367struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3368{
019b4d12 3369 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3370 if (ret) {
a35afb83 3371 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3372 preempt_disable();
3373 __this_cpu_inc(bh_accounting.nr);
1da177e4 3374 recalc_bh_state();
c7b92516 3375 preempt_enable();
1da177e4
LT
3376 }
3377 return ret;
3378}
3379EXPORT_SYMBOL(alloc_buffer_head);
3380
3381void free_buffer_head(struct buffer_head *bh)
3382{
3383 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3384 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3385 preempt_disable();
3386 __this_cpu_dec(bh_accounting.nr);
1da177e4 3387 recalc_bh_state();
c7b92516 3388 preempt_enable();
1da177e4
LT
3389}
3390EXPORT_SYMBOL(free_buffer_head);
3391
fc4d24c9 3392static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3393{
3394 int i;
3395 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3396
3397 for (i = 0; i < BH_LRU_SIZE; i++) {
3398 brelse(b->bhs[i]);
3399 b->bhs[i] = NULL;
3400 }
c7b92516 3401 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3402 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3403 return 0;
1da177e4 3404}
1da177e4 3405
389d1b08 3406/**
a6b91919 3407 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3408 * @bh: struct buffer_head
3409 *
3410 * Return true if the buffer is up-to-date and false,
3411 * with the buffer locked, if not.
3412 */
3413int bh_uptodate_or_lock(struct buffer_head *bh)
3414{
3415 if (!buffer_uptodate(bh)) {
3416 lock_buffer(bh);
3417 if (!buffer_uptodate(bh))
3418 return 0;
3419 unlock_buffer(bh);
3420 }
3421 return 1;
3422}
3423EXPORT_SYMBOL(bh_uptodate_or_lock);
3424
3425/**
a6b91919 3426 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3427 * @bh: struct buffer_head
3428 *
3429 * Returns zero on success and -EIO on error.
3430 */
3431int bh_submit_read(struct buffer_head *bh)
3432{
3433 BUG_ON(!buffer_locked(bh));
3434
3435 if (buffer_uptodate(bh)) {
3436 unlock_buffer(bh);
3437 return 0;
3438 }
3439
3440 get_bh(bh);
3441 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3442 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3443 wait_on_buffer(bh);
3444 if (buffer_uptodate(bh))
3445 return 0;
3446 return -EIO;
3447}
3448EXPORT_SYMBOL(bh_submit_read);
3449
334fd34d
AG
3450/*
3451 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3452 *
3453 * Returns the offset within the file on success, and -ENOENT otherwise.
3454 */
3455static loff_t
3456page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3457{
3458 loff_t offset = page_offset(page);
3459 struct buffer_head *bh, *head;
3460 bool seek_data = whence == SEEK_DATA;
3461
3462 if (lastoff < offset)
3463 lastoff = offset;
3464
3465 bh = head = page_buffers(page);
3466 do {
3467 offset += bh->b_size;
3468 if (lastoff >= offset)
3469 continue;
3470
3471 /*
3472 * Unwritten extents that have data in the page cache covering
3473 * them can be identified by the BH_Unwritten state flag.
3474 * Pages with multiple buffers might have a mix of holes, data
3475 * and unwritten extents - any buffer with valid data in it
3476 * should have BH_Uptodate flag set on it.
3477 */
3478
3479 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3480 return lastoff;
3481
3482 lastoff = offset;
3483 } while ((bh = bh->b_this_page) != head);
3484 return -ENOENT;
3485}
3486
3487/*
3488 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3489 *
3490 * Within unwritten extents, the page cache determines which parts are holes
3491 * and which are data: unwritten and uptodate buffer heads count as data;
3492 * everything else counts as a hole.
3493 *
3494 * Returns the resulting offset on successs, and -ENOENT otherwise.
3495 */
3496loff_t
3497page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3498 int whence)
3499{
3500 pgoff_t index = offset >> PAGE_SHIFT;
3501 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3502 loff_t lastoff = offset;
3503 struct pagevec pvec;
3504
3505 if (length <= 0)
3506 return -ENOENT;
3507
3508 pagevec_init(&pvec, 0);
3509
3510 do {
8338141f 3511 unsigned nr_pages, i;
334fd34d 3512
8338141f 3513 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
397162ff 3514 end - 1);
334fd34d
AG
3515 if (nr_pages == 0)
3516 break;
3517
3518 for (i = 0; i < nr_pages; i++) {
3519 struct page *page = pvec.pages[i];
3520
3521 /*
3522 * At this point, the page may be truncated or
3523 * invalidated (changing page->mapping to NULL), or
3524 * even swizzled back from swapper_space to tmpfs file
3525 * mapping. However, page->index will not change
3526 * because we have a reference on the page.
3527 *
3528 * If current page offset is beyond where we've ended,
3529 * we've found a hole.
3530 */
3531 if (whence == SEEK_HOLE &&
3532 lastoff < page_offset(page))
3533 goto check_range;
3534
334fd34d
AG
3535 lock_page(page);
3536 if (likely(page->mapping == inode->i_mapping) &&
3537 page_has_buffers(page)) {
3538 lastoff = page_seek_hole_data(page, lastoff, whence);
3539 if (lastoff >= 0) {
3540 unlock_page(page);
3541 goto check_range;
3542 }
3543 }
3544 unlock_page(page);
3545 lastoff = page_offset(page) + PAGE_SIZE;
3546 }
334fd34d
AG
3547 pagevec_release(&pvec);
3548 } while (index < end);
3549
3550 /* When no page at lastoff and we are not done, we found a hole. */
3551 if (whence != SEEK_HOLE)
3552 goto not_found;
3553
3554check_range:
3555 if (lastoff < offset + length)
3556 goto out;
3557not_found:
3558 lastoff = -ENOENT;
3559out:
3560 pagevec_release(&pvec);
3561 return lastoff;
3562}
3563
1da177e4
LT
3564void __init buffer_init(void)
3565{
43be594a 3566 unsigned long nrpages;
fc4d24c9 3567 int ret;
1da177e4 3568
b98938c3
CL
3569 bh_cachep = kmem_cache_create("buffer_head",
3570 sizeof(struct buffer_head), 0,
3571 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3572 SLAB_MEM_SPREAD),
019b4d12 3573 NULL);
1da177e4
LT
3574
3575 /*
3576 * Limit the bh occupancy to 10% of ZONE_NORMAL
3577 */
3578 nrpages = (nr_free_buffer_pages() * 10) / 100;
3579 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3580 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3581 NULL, buffer_exit_cpu_dead);
3582 WARN_ON(ret < 0);
1da177e4 3583}