btrfs: defrag: enable defrag for subpage case
[linux-2.6-block.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
5b316468
NA
7#include "ctree.h"
8#include "volumes.h"
9#include "zoned.h"
10#include "rcu-string.h"
1cd6121f 11#include "disk-io.h"
08e11a3d 12#include "block-group.h"
d3575156 13#include "transaction.h"
6143c23c 14#include "dev-replace.h"
7db1c5d1 15#include "space-info.h"
5b316468
NA
16
17/* Maximum number of zones to report per blkdev_report_zones() call */
18#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
19/* Invalid allocation pointer value for missing devices */
20#define WP_MISSING_DEV ((u64)-1)
21/* Pseudo write pointer value for conventional zone */
22#define WP_CONVENTIONAL ((u64)-2)
5b316468 23
53b74fa9
NA
24/*
25 * Location of the first zone of superblock logging zone pairs.
26 *
27 * - primary superblock: 0B (zone 0)
28 * - first copy: 512G (zone starting at that offset)
29 * - second copy: 4T (zone starting at that offset)
30 */
31#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
32#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
33#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
34
35#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
36#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
37
12659251
NA
38/* Number of superblock log zones */
39#define BTRFS_NR_SB_LOG_ZONES 2
40
53b74fa9
NA
41/*
42 * Maximum supported zone size. Currently, SMR disks have a zone size of
43 * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
44 * expect the zone size to become larger than 8GiB in the near future.
45 */
46#define BTRFS_MAX_ZONE_SIZE SZ_8G
47
5b316468
NA
48static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
49{
50 struct blk_zone *zones = data;
51
52 memcpy(&zones[idx], zone, sizeof(*zone));
53
54 return 0;
55}
56
12659251
NA
57static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
58 u64 *wp_ret)
59{
60 bool empty[BTRFS_NR_SB_LOG_ZONES];
61 bool full[BTRFS_NR_SB_LOG_ZONES];
62 sector_t sector;
63
64 ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL &&
65 zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL);
66
67 empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY);
68 empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY);
69 full[0] = (zones[0].cond == BLK_ZONE_COND_FULL);
70 full[1] = (zones[1].cond == BLK_ZONE_COND_FULL);
71
72 /*
73 * Possible states of log buffer zones
74 *
75 * Empty[0] In use[0] Full[0]
76 * Empty[1] * x 0
77 * In use[1] 0 x 0
78 * Full[1] 1 1 C
79 *
80 * Log position:
81 * *: Special case, no superblock is written
82 * 0: Use write pointer of zones[0]
83 * 1: Use write pointer of zones[1]
1a9fd417 84 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
85 * one determined by generation
86 * x: Invalid state
87 */
88
89 if (empty[0] && empty[1]) {
90 /* Special case to distinguish no superblock to read */
91 *wp_ret = zones[0].start << SECTOR_SHIFT;
92 return -ENOENT;
93 } else if (full[0] && full[1]) {
94 /* Compare two super blocks */
95 struct address_space *mapping = bdev->bd_inode->i_mapping;
96 struct page *page[BTRFS_NR_SB_LOG_ZONES];
97 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
98 int i;
99
100 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
101 u64 bytenr;
102
103 bytenr = ((zones[i].start + zones[i].len)
104 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
105
106 page[i] = read_cache_page_gfp(mapping,
107 bytenr >> PAGE_SHIFT, GFP_NOFS);
108 if (IS_ERR(page[i])) {
109 if (i == 1)
110 btrfs_release_disk_super(super[0]);
111 return PTR_ERR(page[i]);
112 }
113 super[i] = page_address(page[i]);
114 }
115
116 if (super[0]->generation > super[1]->generation)
117 sector = zones[1].start;
118 else
119 sector = zones[0].start;
120
121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
122 btrfs_release_disk_super(super[i]);
123 } else if (!full[0] && (empty[1] || full[1])) {
124 sector = zones[0].wp;
125 } else if (full[0]) {
126 sector = zones[1].wp;
127 } else {
128 return -EUCLEAN;
129 }
130 *wp_ret = sector << SECTOR_SHIFT;
131 return 0;
132}
133
134/*
53b74fa9 135 * Get the first zone number of the superblock mirror
12659251
NA
136 */
137static inline u32 sb_zone_number(int shift, int mirror)
138{
53b74fa9 139 u64 zone;
12659251 140
53b74fa9 141 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 142 switch (mirror) {
53b74fa9
NA
143 case 0: zone = 0; break;
144 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
145 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
146 }
147
53b74fa9
NA
148 ASSERT(zone <= U32_MAX);
149
150 return (u32)zone;
12659251
NA
151}
152
5b434df8
NA
153static inline sector_t zone_start_sector(u32 zone_number,
154 struct block_device *bdev)
155{
156 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
157}
158
159static inline u64 zone_start_physical(u32 zone_number,
160 struct btrfs_zoned_device_info *zone_info)
161{
162 return (u64)zone_number << zone_info->zone_size_shift;
163}
164
3c9daa09
JT
165/*
166 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
167 * device into static sized chunks and fake a conventional zone on each of
168 * them.
169 */
170static int emulate_report_zones(struct btrfs_device *device, u64 pos,
171 struct blk_zone *zones, unsigned int nr_zones)
172{
173 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
174 sector_t bdev_size = bdev_nr_sectors(device->bdev);
175 unsigned int i;
176
177 pos >>= SECTOR_SHIFT;
178 for (i = 0; i < nr_zones; i++) {
179 zones[i].start = i * zone_sectors + pos;
180 zones[i].len = zone_sectors;
181 zones[i].capacity = zone_sectors;
182 zones[i].wp = zones[i].start + zone_sectors;
183 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
184 zones[i].cond = BLK_ZONE_COND_NOT_WP;
185
186 if (zones[i].wp >= bdev_size) {
187 i++;
188 break;
189 }
190 }
191
192 return i;
193}
194
5b316468
NA
195static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
196 struct blk_zone *zones, unsigned int *nr_zones)
197{
198 int ret;
199
200 if (!*nr_zones)
201 return 0;
202
3c9daa09
JT
203 if (!bdev_is_zoned(device->bdev)) {
204 ret = emulate_report_zones(device, pos, zones, *nr_zones);
205 *nr_zones = ret;
206 return 0;
207 }
208
5b316468
NA
209 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
210 copy_zone_info_cb, zones);
211 if (ret < 0) {
212 btrfs_err_in_rcu(device->fs_info,
213 "zoned: failed to read zone %llu on %s (devid %llu)",
214 pos, rcu_str_deref(device->name),
215 device->devid);
216 return ret;
217 }
218 *nr_zones = ret;
219 if (!ret)
220 return -EIO;
221
222 return 0;
223}
224
3c9daa09
JT
225/* The emulated zone size is determined from the size of device extent */
226static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
227{
228 struct btrfs_path *path;
229 struct btrfs_root *root = fs_info->dev_root;
230 struct btrfs_key key;
231 struct extent_buffer *leaf;
232 struct btrfs_dev_extent *dext;
233 int ret = 0;
234
235 key.objectid = 1;
236 key.type = BTRFS_DEV_EXTENT_KEY;
237 key.offset = 0;
238
239 path = btrfs_alloc_path();
240 if (!path)
241 return -ENOMEM;
242
243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
244 if (ret < 0)
245 goto out;
246
247 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 248 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
249 if (ret < 0)
250 goto out;
251 /* No dev extents at all? Not good */
252 if (ret > 0) {
253 ret = -EUCLEAN;
254 goto out;
255 }
256 }
257
258 leaf = path->nodes[0];
259 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
260 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
261 ret = 0;
262
263out:
264 btrfs_free_path(path);
265
266 return ret;
267}
268
73651042
NA
269int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
270{
271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
272 struct btrfs_device *device;
273 int ret = 0;
274
275 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
276 if (!btrfs_fs_incompat(fs_info, ZONED))
277 return 0;
278
279 mutex_lock(&fs_devices->device_list_mutex);
280 list_for_each_entry(device, &fs_devices->devices, dev_list) {
281 /* We can skip reading of zone info for missing devices */
282 if (!device->bdev)
283 continue;
284
285 ret = btrfs_get_dev_zone_info(device);
286 if (ret)
287 break;
288 }
289 mutex_unlock(&fs_devices->device_list_mutex);
290
291 return ret;
292}
293
5b316468
NA
294int btrfs_get_dev_zone_info(struct btrfs_device *device)
295{
3c9daa09 296 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
297 struct btrfs_zoned_device_info *zone_info = NULL;
298 struct block_device *bdev = device->bdev;
299 sector_t nr_sectors;
300 sector_t sector = 0;
301 struct blk_zone *zones = NULL;
302 unsigned int i, nreported = 0, nr_zones;
d734492a 303 sector_t zone_sectors;
3c9daa09 304 char *model, *emulated;
5b316468
NA
305 int ret;
306
3c9daa09
JT
307 /*
308 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
309 * yet be set.
310 */
311 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
312 return 0;
313
314 if (device->zone_info)
315 return 0;
316
317 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
318 if (!zone_info)
319 return -ENOMEM;
320
3c9daa09
JT
321 if (!bdev_is_zoned(bdev)) {
322 if (!fs_info->zone_size) {
323 ret = calculate_emulated_zone_size(fs_info);
324 if (ret)
325 goto out;
326 }
327
328 ASSERT(fs_info->zone_size);
329 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
330 } else {
331 zone_sectors = bdev_zone_sectors(bdev);
332 }
333
5b316468
NA
334 /* Check if it's power of 2 (see is_power_of_2) */
335 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
336 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
337
338 /* We reject devices with a zone size larger than 8GB */
339 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
340 btrfs_err_in_rcu(fs_info,
341 "zoned: %s: zone size %llu larger than supported maximum %llu",
342 rcu_str_deref(device->name),
343 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
344 ret = -EINVAL;
345 goto out;
346 }
347
348 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
349 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
350 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
351 if (!IS_ALIGNED(nr_sectors, zone_sectors))
352 zone_info->nr_zones++;
353
354 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
355 if (!zone_info->seq_zones) {
356 ret = -ENOMEM;
357 goto out;
358 }
359
360 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
361 if (!zone_info->empty_zones) {
362 ret = -ENOMEM;
363 goto out;
364 }
365
366 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
367 if (!zones) {
368 ret = -ENOMEM;
369 goto out;
370 }
371
372 /* Get zones type */
373 while (sector < nr_sectors) {
374 nr_zones = BTRFS_REPORT_NR_ZONES;
375 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
376 &nr_zones);
377 if (ret)
378 goto out;
379
380 for (i = 0; i < nr_zones; i++) {
381 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
382 __set_bit(nreported, zone_info->seq_zones);
383 if (zones[i].cond == BLK_ZONE_COND_EMPTY)
384 __set_bit(nreported, zone_info->empty_zones);
385 nreported++;
386 }
387 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
388 }
389
390 if (nreported != zone_info->nr_zones) {
391 btrfs_err_in_rcu(device->fs_info,
392 "inconsistent number of zones on %s (%u/%u)",
393 rcu_str_deref(device->name), nreported,
394 zone_info->nr_zones);
395 ret = -EIO;
396 goto out;
397 }
398
12659251
NA
399 /* Validate superblock log */
400 nr_zones = BTRFS_NR_SB_LOG_ZONES;
401 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
402 u32 sb_zone;
403 u64 sb_wp;
404 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
405
406 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
407 if (sb_zone + 1 >= zone_info->nr_zones)
408 continue;
409
5b434df8
NA
410 ret = btrfs_get_dev_zones(device,
411 zone_start_physical(sb_zone, zone_info),
12659251
NA
412 &zone_info->sb_zones[sb_pos],
413 &nr_zones);
414 if (ret)
415 goto out;
416
417 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
418 btrfs_err_in_rcu(device->fs_info,
419 "zoned: failed to read super block log zone info at devid %llu zone %u",
420 device->devid, sb_zone);
421 ret = -EUCLEAN;
422 goto out;
423 }
424
425 /*
1a9fd417 426 * If zones[0] is conventional, always use the beginning of the
12659251
NA
427 * zone to record superblock. No need to validate in that case.
428 */
429 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
430 BLK_ZONE_TYPE_CONVENTIONAL)
431 continue;
432
433 ret = sb_write_pointer(device->bdev,
434 &zone_info->sb_zones[sb_pos], &sb_wp);
435 if (ret != -ENOENT && ret) {
436 btrfs_err_in_rcu(device->fs_info,
437 "zoned: super block log zone corrupted devid %llu zone %u",
438 device->devid, sb_zone);
439 ret = -EUCLEAN;
440 goto out;
441 }
442 }
443
444
5b316468
NA
445 kfree(zones);
446
447 device->zone_info = zone_info;
448
3c9daa09
JT
449 switch (bdev_zoned_model(bdev)) {
450 case BLK_ZONED_HM:
451 model = "host-managed zoned";
452 emulated = "";
453 break;
454 case BLK_ZONED_HA:
455 model = "host-aware zoned";
456 emulated = "";
457 break;
458 case BLK_ZONED_NONE:
459 model = "regular";
460 emulated = "emulated ";
461 break;
462 default:
463 /* Just in case */
464 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
465 bdev_zoned_model(bdev),
466 rcu_str_deref(device->name));
467 ret = -EOPNOTSUPP;
468 goto out_free_zone_info;
469 }
470
471 btrfs_info_in_rcu(fs_info,
472 "%s block device %s, %u %szones of %llu bytes",
473 model, rcu_str_deref(device->name), zone_info->nr_zones,
474 emulated, zone_info->zone_size);
5b316468
NA
475
476 return 0;
477
478out:
479 kfree(zones);
3c9daa09 480out_free_zone_info:
5b316468
NA
481 bitmap_free(zone_info->empty_zones);
482 bitmap_free(zone_info->seq_zones);
483 kfree(zone_info);
3c9daa09 484 device->zone_info = NULL;
5b316468
NA
485
486 return ret;
487}
488
489void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
490{
491 struct btrfs_zoned_device_info *zone_info = device->zone_info;
492
493 if (!zone_info)
494 return;
495
496 bitmap_free(zone_info->seq_zones);
497 bitmap_free(zone_info->empty_zones);
498 kfree(zone_info);
499 device->zone_info = NULL;
500}
501
502int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
503 struct blk_zone *zone)
504{
505 unsigned int nr_zones = 1;
506 int ret;
507
508 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
509 if (ret != 0 || !nr_zones)
510 return ret ? ret : -EIO;
511
512 return 0;
513}
b70f5097
NA
514
515int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
518 struct btrfs_device *device;
519 u64 zoned_devices = 0;
520 u64 nr_devices = 0;
521 u64 zone_size = 0;
3c9daa09 522 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
b70f5097
NA
523 int ret = 0;
524
525 /* Count zoned devices */
526 list_for_each_entry(device, &fs_devices->devices, dev_list) {
527 enum blk_zoned_model model;
528
529 if (!device->bdev)
530 continue;
531
532 model = bdev_zoned_model(device->bdev);
3c9daa09
JT
533 /*
534 * A Host-Managed zoned device must be used as a zoned device.
535 * A Host-Aware zoned device and a non-zoned devices can be
536 * treated as a zoned device, if ZONED flag is enabled in the
537 * superblock.
538 */
b70f5097 539 if (model == BLK_ZONED_HM ||
3c9daa09
JT
540 (model == BLK_ZONED_HA && incompat_zoned) ||
541 (model == BLK_ZONED_NONE && incompat_zoned)) {
542 struct btrfs_zoned_device_info *zone_info =
543 device->zone_info;
862931c7
NA
544
545 zone_info = device->zone_info;
b70f5097
NA
546 zoned_devices++;
547 if (!zone_size) {
862931c7
NA
548 zone_size = zone_info->zone_size;
549 } else if (zone_info->zone_size != zone_size) {
b70f5097
NA
550 btrfs_err(fs_info,
551 "zoned: unequal block device zone sizes: have %llu found %llu",
552 device->zone_info->zone_size,
553 zone_size);
554 ret = -EINVAL;
555 goto out;
556 }
557 }
558 nr_devices++;
559 }
560
561 if (!zoned_devices && !incompat_zoned)
562 goto out;
563
564 if (!zoned_devices && incompat_zoned) {
565 /* No zoned block device found on ZONED filesystem */
566 btrfs_err(fs_info,
567 "zoned: no zoned devices found on a zoned filesystem");
568 ret = -EINVAL;
569 goto out;
570 }
571
572 if (zoned_devices && !incompat_zoned) {
573 btrfs_err(fs_info,
574 "zoned: mode not enabled but zoned device found");
575 ret = -EINVAL;
576 goto out;
577 }
578
579 if (zoned_devices != nr_devices) {
580 btrfs_err(fs_info,
581 "zoned: cannot mix zoned and regular devices");
582 ret = -EINVAL;
583 goto out;
584 }
585
586 /*
587 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 588 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
589 * check the alignment here.
590 */
591 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
592 btrfs_err(fs_info,
593 "zoned: zone size %llu not aligned to stripe %u",
594 zone_size, BTRFS_STRIPE_LEN);
595 ret = -EINVAL;
596 goto out;
597 }
598
a589dde0
NA
599 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
600 btrfs_err(fs_info, "zoned: mixed block groups not supported");
601 ret = -EINVAL;
602 goto out;
603 }
604
b70f5097 605 fs_info->zone_size = zone_size;
1cd6121f 606 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
b70f5097 607
b53429ba
JT
608 /*
609 * Check mount options here, because we might change fs_info->zoned
610 * from fs_info->zone_size.
611 */
612 ret = btrfs_check_mountopts_zoned(fs_info);
613 if (ret)
614 goto out;
615
b70f5097
NA
616 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
617out:
618 return ret;
619}
5d1ab66c
NA
620
621int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
622{
623 if (!btrfs_is_zoned(info))
624 return 0;
625
626 /*
627 * Space cache writing is not COWed. Disable that to avoid write errors
628 * in sequential zones.
629 */
630 if (btrfs_test_opt(info, SPACE_CACHE)) {
631 btrfs_err(info, "zoned: space cache v1 is not supported");
632 return -EINVAL;
633 }
634
d206e9c9
NA
635 if (btrfs_test_opt(info, NODATACOW)) {
636 btrfs_err(info, "zoned: NODATACOW not supported");
637 return -EINVAL;
638 }
639
5d1ab66c
NA
640 return 0;
641}
12659251
NA
642
643static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
644 int rw, u64 *bytenr_ret)
645{
646 u64 wp;
647 int ret;
648
649 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
650 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
651 return 0;
652 }
653
654 ret = sb_write_pointer(bdev, zones, &wp);
655 if (ret != -ENOENT && ret < 0)
656 return ret;
657
658 if (rw == WRITE) {
659 struct blk_zone *reset = NULL;
660
661 if (wp == zones[0].start << SECTOR_SHIFT)
662 reset = &zones[0];
663 else if (wp == zones[1].start << SECTOR_SHIFT)
664 reset = &zones[1];
665
666 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
667 ASSERT(reset->cond == BLK_ZONE_COND_FULL);
668
669 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
670 reset->start, reset->len,
671 GFP_NOFS);
672 if (ret)
673 return ret;
674
675 reset->cond = BLK_ZONE_COND_EMPTY;
676 reset->wp = reset->start;
677 }
678 } else if (ret != -ENOENT) {
679 /* For READ, we want the precious one */
680 if (wp == zones[0].start << SECTOR_SHIFT)
681 wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT;
682 wp -= BTRFS_SUPER_INFO_SIZE;
683 }
684
685 *bytenr_ret = wp;
686 return 0;
687
688}
689
690int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
691 u64 *bytenr_ret)
692{
693 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 694 sector_t zone_sectors;
12659251
NA
695 u32 sb_zone;
696 int ret;
12659251
NA
697 u8 zone_sectors_shift;
698 sector_t nr_sectors;
699 u32 nr_zones;
700
701 if (!bdev_is_zoned(bdev)) {
702 *bytenr_ret = btrfs_sb_offset(mirror);
703 return 0;
704 }
705
706 ASSERT(rw == READ || rw == WRITE);
707
708 zone_sectors = bdev_zone_sectors(bdev);
709 if (!is_power_of_2(zone_sectors))
710 return -EINVAL;
12659251 711 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 712 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
713 nr_zones = nr_sectors >> zone_sectors_shift;
714
715 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
716 if (sb_zone + 1 >= nr_zones)
717 return -ENOENT;
718
5b434df8 719 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
720 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
721 zones);
722 if (ret < 0)
723 return ret;
724 if (ret != BTRFS_NR_SB_LOG_ZONES)
725 return -EIO;
726
727 return sb_log_location(bdev, zones, rw, bytenr_ret);
728}
729
730int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
731 u64 *bytenr_ret)
732{
733 struct btrfs_zoned_device_info *zinfo = device->zone_info;
734 u32 zone_num;
735
d6639b35
NA
736 /*
737 * For a zoned filesystem on a non-zoned block device, use the same
738 * super block locations as regular filesystem. Doing so, the super
739 * block can always be retrieved and the zoned flag of the volume
740 * detected from the super block information.
741 */
742 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
743 *bytenr_ret = btrfs_sb_offset(mirror);
744 return 0;
745 }
746
747 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
748 if (zone_num + 1 >= zinfo->nr_zones)
749 return -ENOENT;
750
751 return sb_log_location(device->bdev,
752 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
753 rw, bytenr_ret);
754}
755
756static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
757 int mirror)
758{
759 u32 zone_num;
760
761 if (!zinfo)
762 return false;
763
764 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
765 if (zone_num + 1 >= zinfo->nr_zones)
766 return false;
767
768 if (!test_bit(zone_num, zinfo->seq_zones))
769 return false;
770
771 return true;
772}
773
774void btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
775{
776 struct btrfs_zoned_device_info *zinfo = device->zone_info;
777 struct blk_zone *zone;
778
779 if (!is_sb_log_zone(zinfo, mirror))
780 return;
781
782 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
783 if (zone->cond != BLK_ZONE_COND_FULL) {
784 if (zone->cond == BLK_ZONE_COND_EMPTY)
785 zone->cond = BLK_ZONE_COND_IMP_OPEN;
786
787 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);
788
789 if (zone->wp == zone->start + zone->len)
790 zone->cond = BLK_ZONE_COND_FULL;
791
792 return;
793 }
794
795 zone++;
796 ASSERT(zone->cond != BLK_ZONE_COND_FULL);
797 if (zone->cond == BLK_ZONE_COND_EMPTY)
798 zone->cond = BLK_ZONE_COND_IMP_OPEN;
799
800 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);
801
802 if (zone->wp == zone->start + zone->len)
803 zone->cond = BLK_ZONE_COND_FULL;
804}
805
806int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
807{
808 sector_t zone_sectors;
809 sector_t nr_sectors;
810 u8 zone_sectors_shift;
811 u32 sb_zone;
812 u32 nr_zones;
813
814 zone_sectors = bdev_zone_sectors(bdev);
815 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 816 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
817 nr_zones = nr_sectors >> zone_sectors_shift;
818
819 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
820 if (sb_zone + 1 >= nr_zones)
821 return -ENOENT;
822
823 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 824 zone_start_sector(sb_zone, bdev),
12659251
NA
825 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
826}
1cd6121f
NA
827
828/**
829 * btrfs_find_allocatable_zones - find allocatable zones within a given region
830 *
831 * @device: the device to allocate a region on
832 * @hole_start: the position of the hole to allocate the region
833 * @num_bytes: size of wanted region
834 * @hole_end: the end of the hole
835 * @return: position of allocatable zones
836 *
837 * Allocatable region should not contain any superblock locations.
838 */
839u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
840 u64 hole_end, u64 num_bytes)
841{
842 struct btrfs_zoned_device_info *zinfo = device->zone_info;
843 const u8 shift = zinfo->zone_size_shift;
844 u64 nzones = num_bytes >> shift;
845 u64 pos = hole_start;
846 u64 begin, end;
847 bool have_sb;
848 int i;
849
850 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
851 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
852
853 while (pos < hole_end) {
854 begin = pos >> shift;
855 end = begin + nzones;
856
857 if (end > zinfo->nr_zones)
858 return hole_end;
859
860 /* Check if zones in the region are all empty */
861 if (btrfs_dev_is_sequential(device, pos) &&
862 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
863 pos += zinfo->zone_size;
864 continue;
865 }
866
867 have_sb = false;
868 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
869 u32 sb_zone;
870 u64 sb_pos;
871
872 sb_zone = sb_zone_number(shift, i);
873 if (!(end <= sb_zone ||
874 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
875 have_sb = true;
5b434df8
NA
876 pos = zone_start_physical(
877 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
878 break;
879 }
880
881 /* We also need to exclude regular superblock positions */
882 sb_pos = btrfs_sb_offset(i);
883 if (!(pos + num_bytes <= sb_pos ||
884 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
885 have_sb = true;
886 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
887 zinfo->zone_size);
888 break;
889 }
890 }
891 if (!have_sb)
892 break;
893 }
894
895 return pos;
896}
897
898int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
899 u64 length, u64 *bytes)
900{
901 int ret;
902
903 *bytes = 0;
904 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
905 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
906 GFP_NOFS);
907 if (ret)
908 return ret;
909
910 *bytes = length;
911 while (length) {
912 btrfs_dev_set_zone_empty(device, physical);
913 physical += device->zone_info->zone_size;
914 length -= device->zone_info->zone_size;
915 }
916
917 return 0;
918}
919
920int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
921{
922 struct btrfs_zoned_device_info *zinfo = device->zone_info;
923 const u8 shift = zinfo->zone_size_shift;
924 unsigned long begin = start >> shift;
925 unsigned long end = (start + size) >> shift;
926 u64 pos;
927 int ret;
928
929 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
930 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
931
932 if (end > zinfo->nr_zones)
933 return -ERANGE;
934
935 /* All the zones are conventional */
936 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
937 return 0;
938
939 /* All the zones are sequential and empty */
940 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
941 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
942 return 0;
943
944 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
945 u64 reset_bytes;
946
947 if (!btrfs_dev_is_sequential(device, pos) ||
948 btrfs_dev_is_empty_zone(device, pos))
949 continue;
950
951 /* Free regions should be empty */
952 btrfs_warn_in_rcu(
953 device->fs_info,
954 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
955 rcu_str_deref(device->name), device->devid, pos >> shift);
956 WARN_ON_ONCE(1);
957
958 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
959 &reset_bytes);
960 if (ret)
961 return ret;
962 }
963
964 return 0;
965}
08e11a3d 966
a94794d5
NA
967/*
968 * Calculate an allocation pointer from the extent allocation information
969 * for a block group consist of conventional zones. It is pointed to the
970 * end of the highest addressed extent in the block group as an allocation
971 * offset.
972 */
973static int calculate_alloc_pointer(struct btrfs_block_group *cache,
974 u64 *offset_ret)
975{
976 struct btrfs_fs_info *fs_info = cache->fs_info;
977 struct btrfs_root *root = fs_info->extent_root;
978 struct btrfs_path *path;
979 struct btrfs_key key;
980 struct btrfs_key found_key;
981 int ret;
982 u64 length;
983
984 path = btrfs_alloc_path();
985 if (!path)
986 return -ENOMEM;
987
988 key.objectid = cache->start + cache->length;
989 key.type = 0;
990 key.offset = 0;
991
992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
993 /* We should not find the exact match */
994 if (!ret)
995 ret = -EUCLEAN;
996 if (ret < 0)
997 goto out;
998
999 ret = btrfs_previous_extent_item(root, path, cache->start);
1000 if (ret) {
1001 if (ret == 1) {
1002 ret = 0;
1003 *offset_ret = 0;
1004 }
1005 goto out;
1006 }
1007
1008 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1009
1010 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1011 length = found_key.offset;
1012 else
1013 length = fs_info->nodesize;
1014
1015 if (!(found_key.objectid >= cache->start &&
1016 found_key.objectid + length <= cache->start + cache->length)) {
1017 ret = -EUCLEAN;
1018 goto out;
1019 }
1020 *offset_ret = found_key.objectid + length - cache->start;
1021 ret = 0;
1022
1023out:
1024 btrfs_free_path(path);
1025 return ret;
1026}
1027
1028int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1029{
1030 struct btrfs_fs_info *fs_info = cache->fs_info;
1031 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1032 struct extent_map *em;
1033 struct map_lookup *map;
1034 struct btrfs_device *device;
1035 u64 logical = cache->start;
1036 u64 length = cache->length;
1037 u64 physical = 0;
1038 int ret;
1039 int i;
1040 unsigned int nofs_flag;
1041 u64 *alloc_offsets = NULL;
a94794d5 1042 u64 last_alloc = 0;
08e11a3d
NA
1043 u32 num_sequential = 0, num_conventional = 0;
1044
1045 if (!btrfs_is_zoned(fs_info))
1046 return 0;
1047
1048 /* Sanity check */
1049 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1050 btrfs_err(fs_info,
1051 "zoned: block group %llu len %llu unaligned to zone size %llu",
1052 logical, length, fs_info->zone_size);
1053 return -EIO;
1054 }
1055
1056 /* Get the chunk mapping */
1057 read_lock(&em_tree->lock);
1058 em = lookup_extent_mapping(em_tree, logical, length);
1059 read_unlock(&em_tree->lock);
1060
1061 if (!em)
1062 return -EINVAL;
1063
1064 map = em->map_lookup;
1065
1066 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1067 if (!alloc_offsets) {
1068 free_extent_map(em);
1069 return -ENOMEM;
1070 }
1071
1072 for (i = 0; i < map->num_stripes; i++) {
1073 bool is_sequential;
1074 struct blk_zone zone;
6143c23c
NA
1075 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1076 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1077
1078 device = map->stripes[i].dev;
1079 physical = map->stripes[i].physical;
1080
1081 if (device->bdev == NULL) {
1082 alloc_offsets[i] = WP_MISSING_DEV;
1083 continue;
1084 }
1085
1086 is_sequential = btrfs_dev_is_sequential(device, physical);
1087 if (is_sequential)
1088 num_sequential++;
1089 else
1090 num_conventional++;
1091
1092 if (!is_sequential) {
1093 alloc_offsets[i] = WP_CONVENTIONAL;
1094 continue;
1095 }
1096
1097 /*
1098 * This zone will be used for allocation, so mark this zone
1099 * non-empty.
1100 */
1101 btrfs_dev_clear_zone_empty(device, physical);
1102
6143c23c
NA
1103 down_read(&dev_replace->rwsem);
1104 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1105 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1106 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1107 up_read(&dev_replace->rwsem);
1108
08e11a3d
NA
1109 /*
1110 * The group is mapped to a sequential zone. Get the zone write
1111 * pointer to determine the allocation offset within the zone.
1112 */
1113 WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1114 nofs_flag = memalloc_nofs_save();
1115 ret = btrfs_get_dev_zone(device, physical, &zone);
1116 memalloc_nofs_restore(nofs_flag);
1117 if (ret == -EIO || ret == -EOPNOTSUPP) {
1118 ret = 0;
1119 alloc_offsets[i] = WP_MISSING_DEV;
1120 continue;
1121 } else if (ret) {
1122 goto out;
1123 }
1124
784daf2b 1125 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1126 btrfs_err_in_rcu(fs_info,
1127 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1128 zone.start << SECTOR_SHIFT,
1129 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1130 ret = -EIO;
1131 goto out;
1132 }
1133
08e11a3d
NA
1134 switch (zone.cond) {
1135 case BLK_ZONE_COND_OFFLINE:
1136 case BLK_ZONE_COND_READONLY:
1137 btrfs_err(fs_info,
1138 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1139 physical >> device->zone_info->zone_size_shift,
1140 rcu_str_deref(device->name), device->devid);
1141 alloc_offsets[i] = WP_MISSING_DEV;
1142 break;
1143 case BLK_ZONE_COND_EMPTY:
1144 alloc_offsets[i] = 0;
1145 break;
1146 case BLK_ZONE_COND_FULL:
1147 alloc_offsets[i] = fs_info->zone_size;
1148 break;
1149 default:
1150 /* Partially used zone */
1151 alloc_offsets[i] =
1152 ((zone.wp - zone.start) << SECTOR_SHIFT);
1153 break;
1154 }
1155 }
1156
08f45559
JT
1157 if (num_sequential > 0)
1158 cache->seq_zone = true;
1159
08e11a3d
NA
1160 if (num_conventional > 0) {
1161 /*
a94794d5
NA
1162 * Avoid calling calculate_alloc_pointer() for new BG. It
1163 * is no use for new BG. It must be always 0.
1164 *
1165 * Also, we have a lock chain of extent buffer lock ->
1166 * chunk mutex. For new BG, this function is called from
1167 * btrfs_make_block_group() which is already taking the
1168 * chunk mutex. Thus, we cannot call
1169 * calculate_alloc_pointer() which takes extent buffer
1170 * locks to avoid deadlock.
08e11a3d 1171 */
a94794d5
NA
1172 if (new) {
1173 cache->alloc_offset = 0;
1174 goto out;
1175 }
1176 ret = calculate_alloc_pointer(cache, &last_alloc);
1177 if (ret || map->num_stripes == num_conventional) {
1178 if (!ret)
1179 cache->alloc_offset = last_alloc;
1180 else
1181 btrfs_err(fs_info,
1182 "zoned: failed to determine allocation offset of bg %llu",
1183 cache->start);
1184 goto out;
1185 }
08e11a3d
NA
1186 }
1187
1188 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1189 case 0: /* single */
06e1e7f4
JT
1190 if (alloc_offsets[0] == WP_MISSING_DEV) {
1191 btrfs_err(fs_info,
1192 "zoned: cannot recover write pointer for zone %llu",
1193 physical);
1194 ret = -EIO;
1195 goto out;
1196 }
08e11a3d
NA
1197 cache->alloc_offset = alloc_offsets[0];
1198 break;
1199 case BTRFS_BLOCK_GROUP_DUP:
1200 case BTRFS_BLOCK_GROUP_RAID1:
1201 case BTRFS_BLOCK_GROUP_RAID0:
1202 case BTRFS_BLOCK_GROUP_RAID10:
1203 case BTRFS_BLOCK_GROUP_RAID5:
1204 case BTRFS_BLOCK_GROUP_RAID6:
1205 /* non-single profiles are not supported yet */
1206 default:
1207 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1208 btrfs_bg_type_to_raid_name(map->type));
1209 ret = -EINVAL;
1210 goto out;
1211 }
1212
1213out:
06e1e7f4
JT
1214 if (cache->alloc_offset > fs_info->zone_size) {
1215 btrfs_err(fs_info,
1216 "zoned: invalid write pointer %llu in block group %llu",
1217 cache->alloc_offset, cache->start);
1218 ret = -EIO;
1219 }
1220
a94794d5
NA
1221 /* An extent is allocated after the write pointer */
1222 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1223 btrfs_err(fs_info,
1224 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1225 logical, last_alloc, cache->alloc_offset);
1226 ret = -EIO;
1227 }
1228
0bc09ca1
NA
1229 if (!ret)
1230 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1231
08e11a3d
NA
1232 kfree(alloc_offsets);
1233 free_extent_map(em);
1234
1235 return ret;
1236}
169e0da9
NA
1237
1238void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1239{
1240 u64 unusable, free;
1241
1242 if (!btrfs_is_zoned(cache->fs_info))
1243 return;
1244
1245 WARN_ON(cache->bytes_super != 0);
1246 unusable = cache->alloc_offset - cache->used;
1247 free = cache->length - cache->alloc_offset;
1248
1249 /* We only need ->free_space in ALLOC_SEQ block groups */
1250 cache->last_byte_to_unpin = (u64)-1;
1251 cache->cached = BTRFS_CACHE_FINISHED;
1252 cache->free_space_ctl->free_space = free;
1253 cache->zone_unusable = unusable;
1254
1255 /* Should not have any excluded extents. Just in case, though */
1256 btrfs_free_excluded_extents(cache);
1257}
d3575156
NA
1258
1259void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1260 struct extent_buffer *eb)
1261{
1262 struct btrfs_fs_info *fs_info = eb->fs_info;
1263
1264 if (!btrfs_is_zoned(fs_info) ||
1265 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1266 !list_empty(&eb->release_list))
1267 return;
1268
1269 set_extent_buffer_dirty(eb);
1270 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1271 eb->start + eb->len - 1, EXTENT_DIRTY);
1272 memzero_extent_buffer(eb, 0, eb->len);
1273 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1274
1275 spin_lock(&trans->releasing_ebs_lock);
1276 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1277 spin_unlock(&trans->releasing_ebs_lock);
1278 atomic_inc(&eb->refs);
1279}
1280
1281void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1282{
1283 spin_lock(&trans->releasing_ebs_lock);
1284 while (!list_empty(&trans->releasing_ebs)) {
1285 struct extent_buffer *eb;
1286
1287 eb = list_first_entry(&trans->releasing_ebs,
1288 struct extent_buffer, release_list);
1289 list_del_init(&eb->release_list);
1290 free_extent_buffer(eb);
1291 }
1292 spin_unlock(&trans->releasing_ebs_lock);
1293}
08f45559 1294
e380adfc 1295bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
08f45559
JT
1296{
1297 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1298 struct btrfs_block_group *cache;
1299 bool ret = false;
1300
1301 if (!btrfs_is_zoned(fs_info))
1302 return false;
1303
08f45559
JT
1304 if (!is_data_inode(&inode->vfs_inode))
1305 return false;
1306
e380adfc 1307 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1308 ASSERT(cache);
1309 if (!cache)
1310 return false;
1311
1312 ret = cache->seq_zone;
1313 btrfs_put_block_group(cache);
1314
1315 return ret;
1316}
d8e3fb10
NA
1317
1318void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1319 struct bio *bio)
1320{
1321 struct btrfs_ordered_extent *ordered;
1322 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1323
1324 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1325 return;
1326
1327 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1328 if (WARN_ON(!ordered))
1329 return;
1330
1331 ordered->physical = physical;
c7c3a6dc 1332 ordered->bdev = bio->bi_bdev;
d8e3fb10
NA
1333
1334 btrfs_put_ordered_extent(ordered);
1335}
1336
1337void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1338{
1339 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1340 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1341 struct extent_map_tree *em_tree;
1342 struct extent_map *em;
1343 struct btrfs_ordered_sum *sum;
d8e3fb10
NA
1344 u64 orig_logical = ordered->disk_bytenr;
1345 u64 *logical = NULL;
1346 int nr, stripe_len;
1347
1348 /* Zoned devices should not have partitions. So, we can assume it is 0 */
c7c3a6dc
CH
1349 ASSERT(!bdev_is_partition(ordered->bdev));
1350 if (WARN_ON(!ordered->bdev))
d8e3fb10
NA
1351 return;
1352
c7c3a6dc 1353 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
d8e3fb10
NA
1354 ordered->physical, &logical, &nr,
1355 &stripe_len)))
1356 goto out;
1357
1358 WARN_ON(nr != 1);
1359
1360 if (orig_logical == *logical)
1361 goto out;
1362
1363 ordered->disk_bytenr = *logical;
1364
1365 em_tree = &inode->extent_tree;
1366 write_lock(&em_tree->lock);
1367 em = search_extent_mapping(em_tree, ordered->file_offset,
1368 ordered->num_bytes);
1369 em->block_start = *logical;
1370 free_extent_map(em);
1371 write_unlock(&em_tree->lock);
1372
1373 list_for_each_entry(sum, &ordered->list, list) {
1374 if (*logical < orig_logical)
1375 sum->bytenr -= orig_logical - *logical;
1376 else
1377 sum->bytenr += *logical - orig_logical;
1378 }
1379
1380out:
1381 kfree(logical);
d8e3fb10 1382}
0bc09ca1
NA
1383
1384bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1385 struct extent_buffer *eb,
1386 struct btrfs_block_group **cache_ret)
1387{
1388 struct btrfs_block_group *cache;
1389 bool ret = true;
1390
1391 if (!btrfs_is_zoned(fs_info))
1392 return true;
1393
1394 cache = *cache_ret;
1395
1396 if (cache && (eb->start < cache->start ||
1397 cache->start + cache->length <= eb->start)) {
1398 btrfs_put_block_group(cache);
1399 cache = NULL;
1400 *cache_ret = NULL;
1401 }
1402
1403 if (!cache)
1404 cache = btrfs_lookup_block_group(fs_info, eb->start);
1405
1406 if (cache) {
1407 if (cache->meta_write_pointer != eb->start) {
1408 btrfs_put_block_group(cache);
1409 cache = NULL;
1410 ret = false;
1411 } else {
1412 cache->meta_write_pointer = eb->start + eb->len;
1413 }
1414
1415 *cache_ret = cache;
1416 }
1417
1418 return ret;
1419}
1420
1421void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1422 struct extent_buffer *eb)
1423{
1424 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1425 return;
1426
1427 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1428 cache->meta_write_pointer = eb->start;
1429}
de17addc
NA
1430
1431int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1432{
1433 if (!btrfs_dev_is_sequential(device, physical))
1434 return -EOPNOTSUPP;
1435
1436 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1437 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1438}
7db1c5d1
NA
1439
1440static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1441 struct blk_zone *zone)
1442{
1443 struct btrfs_bio *bbio = NULL;
1444 u64 mapped_length = PAGE_SIZE;
1445 unsigned int nofs_flag;
1446 int nmirrors;
1447 int i, ret;
1448
1449 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1450 &mapped_length, &bbio);
1451 if (ret || !bbio || mapped_length < PAGE_SIZE) {
1452 btrfs_put_bbio(bbio);
1453 return -EIO;
1454 }
1455
1456 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1457 return -EINVAL;
1458
1459 nofs_flag = memalloc_nofs_save();
1460 nmirrors = (int)bbio->num_stripes;
1461 for (i = 0; i < nmirrors; i++) {
1462 u64 physical = bbio->stripes[i].physical;
1463 struct btrfs_device *dev = bbio->stripes[i].dev;
1464
1465 /* Missing device */
1466 if (!dev->bdev)
1467 continue;
1468
1469 ret = btrfs_get_dev_zone(dev, physical, zone);
1470 /* Failing device */
1471 if (ret == -EIO || ret == -EOPNOTSUPP)
1472 continue;
1473 break;
1474 }
1475 memalloc_nofs_restore(nofs_flag);
1476
1477 return ret;
1478}
1479
1480/*
1481 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1482 * filling zeros between @physical_pos to a write pointer of dev-replace
1483 * source device.
1484 */
1485int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1486 u64 physical_start, u64 physical_pos)
1487{
1488 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1489 struct blk_zone zone;
1490 u64 length;
1491 u64 wp;
1492 int ret;
1493
1494 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1495 return 0;
1496
1497 ret = read_zone_info(fs_info, logical, &zone);
1498 if (ret)
1499 return ret;
1500
1501 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1502
1503 if (physical_pos == wp)
1504 return 0;
1505
1506 if (physical_pos > wp)
1507 return -EUCLEAN;
1508
1509 length = wp - physical_pos;
1510 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1511}
e7ff9e6b
JT
1512
1513struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1514 u64 logical, u64 length)
1515{
1516 struct btrfs_device *device;
1517 struct extent_map *em;
1518 struct map_lookup *map;
1519
1520 em = btrfs_get_chunk_map(fs_info, logical, length);
1521 if (IS_ERR(em))
1522 return ERR_CAST(em);
1523
1524 map = em->map_lookup;
1525 /* We only support single profile for now */
1526 ASSERT(map->num_stripes == 1);
1527 device = map->stripes[0].dev;
1528
1529 free_extent_map(em);
1530
1531 return device;
1532}