btrfs: zoned: clone zoned device info when cloning a device
[linux-2.6-block.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
16beac87 8#include <linux/vmalloc.h>
5b316468
NA
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
1cd6121f 13#include "disk-io.h"
08e11a3d 14#include "block-group.h"
d3575156 15#include "transaction.h"
6143c23c 16#include "dev-replace.h"
7db1c5d1 17#include "space-info.h"
5b316468
NA
18
19/* Maximum number of zones to report per blkdev_report_zones() call */
20#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
21/* Invalid allocation pointer value for missing devices */
22#define WP_MISSING_DEV ((u64)-1)
23/* Pseudo write pointer value for conventional zone */
24#define WP_CONVENTIONAL ((u64)-2)
5b316468 25
53b74fa9
NA
26/*
27 * Location of the first zone of superblock logging zone pairs.
28 *
29 * - primary superblock: 0B (zone 0)
30 * - first copy: 512G (zone starting at that offset)
31 * - second copy: 4T (zone starting at that offset)
32 */
33#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
34#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
35#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
36
37#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
12659251
NA
40/* Number of superblock log zones */
41#define BTRFS_NR_SB_LOG_ZONES 2
42
ea6f8ddc
NA
43/*
44 * Minimum of active zones we need:
45 *
46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48 * - 1 zone for tree-log dedicated block group
49 * - 1 zone for relocation
50 */
51#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
52
53b74fa9 53/*
0a05fafe
JT
54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56 * We do not expect the zone size to become larger than 8GiB or smaller than
57 * 4MiB in the near future.
53b74fa9
NA
58 */
59#define BTRFS_MAX_ZONE_SIZE SZ_8G
0a05fafe 60#define BTRFS_MIN_ZONE_SIZE SZ_4M
53b74fa9 61
5daaf552
NA
62#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64static inline bool sb_zone_is_full(const struct blk_zone *zone)
65{
66 return (zone->cond == BLK_ZONE_COND_FULL) ||
67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68}
69
5b316468
NA
70static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71{
72 struct blk_zone *zones = data;
73
74 memcpy(&zones[idx], zone, sizeof(*zone));
75
76 return 0;
77}
78
12659251
NA
79static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 u64 *wp_ret)
81{
82 bool empty[BTRFS_NR_SB_LOG_ZONES];
83 bool full[BTRFS_NR_SB_LOG_ZONES];
84 sector_t sector;
5daaf552 85 int i;
12659251 86
5daaf552
NA
87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 full[i] = sb_zone_is_full(&zones[i]);
91 }
12659251
NA
92
93 /*
94 * Possible states of log buffer zones
95 *
96 * Empty[0] In use[0] Full[0]
31f37269
PR
97 * Empty[1] * 0 1
98 * In use[1] x x 1
99 * Full[1] 0 0 C
12659251
NA
100 *
101 * Log position:
102 * *: Special case, no superblock is written
103 * 0: Use write pointer of zones[0]
104 * 1: Use write pointer of zones[1]
1a9fd417 105 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
106 * one determined by generation
107 * x: Invalid state
108 */
109
110 if (empty[0] && empty[1]) {
111 /* Special case to distinguish no superblock to read */
112 *wp_ret = zones[0].start << SECTOR_SHIFT;
113 return -ENOENT;
114 } else if (full[0] && full[1]) {
115 /* Compare two super blocks */
116 struct address_space *mapping = bdev->bd_inode->i_mapping;
117 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 int i;
120
121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 u64 bytenr;
123
124 bytenr = ((zones[i].start + zones[i].len)
125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127 page[i] = read_cache_page_gfp(mapping,
128 bytenr >> PAGE_SHIFT, GFP_NOFS);
129 if (IS_ERR(page[i])) {
130 if (i == 1)
131 btrfs_release_disk_super(super[0]);
132 return PTR_ERR(page[i]);
133 }
134 super[i] = page_address(page[i]);
135 }
136
137 if (super[0]->generation > super[1]->generation)
138 sector = zones[1].start;
139 else
140 sector = zones[0].start;
141
142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 btrfs_release_disk_super(super[i]);
144 } else if (!full[0] && (empty[1] || full[1])) {
145 sector = zones[0].wp;
146 } else if (full[0]) {
147 sector = zones[1].wp;
148 } else {
149 return -EUCLEAN;
150 }
151 *wp_ret = sector << SECTOR_SHIFT;
152 return 0;
153}
154
155/*
53b74fa9 156 * Get the first zone number of the superblock mirror
12659251
NA
157 */
158static inline u32 sb_zone_number(int shift, int mirror)
159{
53b74fa9 160 u64 zone;
12659251 161
53b74fa9 162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 163 switch (mirror) {
53b74fa9
NA
164 case 0: zone = 0; break;
165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
167 }
168
53b74fa9
NA
169 ASSERT(zone <= U32_MAX);
170
171 return (u32)zone;
12659251
NA
172}
173
5b434df8
NA
174static inline sector_t zone_start_sector(u32 zone_number,
175 struct block_device *bdev)
176{
177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178}
179
180static inline u64 zone_start_physical(u32 zone_number,
181 struct btrfs_zoned_device_info *zone_info)
182{
183 return (u64)zone_number << zone_info->zone_size_shift;
184}
185
3c9daa09
JT
186/*
187 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188 * device into static sized chunks and fake a conventional zone on each of
189 * them.
190 */
191static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 struct blk_zone *zones, unsigned int nr_zones)
193{
194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 unsigned int i;
197
198 pos >>= SECTOR_SHIFT;
199 for (i = 0; i < nr_zones; i++) {
200 zones[i].start = i * zone_sectors + pos;
201 zones[i].len = zone_sectors;
202 zones[i].capacity = zone_sectors;
203 zones[i].wp = zones[i].start + zone_sectors;
204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207 if (zones[i].wp >= bdev_size) {
208 i++;
209 break;
210 }
211 }
212
213 return i;
214}
215
5b316468
NA
216static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 struct blk_zone *zones, unsigned int *nr_zones)
218{
16beac87
NA
219 struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 u32 zno;
5b316468
NA
221 int ret;
222
223 if (!*nr_zones)
224 return 0;
225
3c9daa09
JT
226 if (!bdev_is_zoned(device->bdev)) {
227 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 *nr_zones = ret;
229 return 0;
230 }
231
16beac87
NA
232 /* Check cache */
233 if (zinfo->zone_cache) {
234 unsigned int i;
235
236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 zno = pos >> zinfo->zone_size_shift;
238 /*
239 * We cannot report zones beyond the zone end. So, it is OK to
240 * cap *nr_zones to at the end.
241 */
242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244 for (i = 0; i < *nr_zones; i++) {
245 struct blk_zone *zone_info;
246
247 zone_info = &zinfo->zone_cache[zno + i];
248 if (!zone_info->len)
249 break;
250 }
251
252 if (i == *nr_zones) {
253 /* Cache hit on all the zones */
254 memcpy(zones, zinfo->zone_cache + zno,
255 sizeof(*zinfo->zone_cache) * *nr_zones);
256 return 0;
257 }
258 }
259
5b316468
NA
260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 copy_zone_info_cb, zones);
262 if (ret < 0) {
263 btrfs_err_in_rcu(device->fs_info,
264 "zoned: failed to read zone %llu on %s (devid %llu)",
265 pos, rcu_str_deref(device->name),
266 device->devid);
267 return ret;
268 }
269 *nr_zones = ret;
270 if (!ret)
271 return -EIO;
272
16beac87
NA
273 /* Populate cache */
274 if (zinfo->zone_cache)
275 memcpy(zinfo->zone_cache + zno, zones,
276 sizeof(*zinfo->zone_cache) * *nr_zones);
277
5b316468
NA
278 return 0;
279}
280
3c9daa09
JT
281/* The emulated zone size is determined from the size of device extent */
282static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283{
284 struct btrfs_path *path;
285 struct btrfs_root *root = fs_info->dev_root;
286 struct btrfs_key key;
287 struct extent_buffer *leaf;
288 struct btrfs_dev_extent *dext;
289 int ret = 0;
290
291 key.objectid = 1;
292 key.type = BTRFS_DEV_EXTENT_KEY;
293 key.offset = 0;
294
295 path = btrfs_alloc_path();
296 if (!path)
297 return -ENOMEM;
298
299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 if (ret < 0)
301 goto out;
302
303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 304 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
305 if (ret < 0)
306 goto out;
307 /* No dev extents at all? Not good */
308 if (ret > 0) {
309 ret = -EUCLEAN;
310 goto out;
311 }
312 }
313
314 leaf = path->nodes[0];
315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 ret = 0;
318
319out:
320 btrfs_free_path(path);
321
322 return ret;
323}
324
73651042
NA
325int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326{
327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 struct btrfs_device *device;
329 int ret = 0;
330
331 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 if (!btrfs_fs_incompat(fs_info, ZONED))
333 return 0;
334
335 mutex_lock(&fs_devices->device_list_mutex);
336 list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 /* We can skip reading of zone info for missing devices */
338 if (!device->bdev)
339 continue;
340
16beac87 341 ret = btrfs_get_dev_zone_info(device, true);
73651042
NA
342 if (ret)
343 break;
344 }
345 mutex_unlock(&fs_devices->device_list_mutex);
346
347 return ret;
348}
349
16beac87 350int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
5b316468 351{
3c9daa09 352 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
353 struct btrfs_zoned_device_info *zone_info = NULL;
354 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
355 unsigned int max_active_zones;
356 unsigned int nactive;
5b316468
NA
357 sector_t nr_sectors;
358 sector_t sector = 0;
359 struct blk_zone *zones = NULL;
360 unsigned int i, nreported = 0, nr_zones;
d734492a 361 sector_t zone_sectors;
3c9daa09 362 char *model, *emulated;
5b316468
NA
363 int ret;
364
3c9daa09
JT
365 /*
366 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 * yet be set.
368 */
369 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
370 return 0;
371
372 if (device->zone_info)
373 return 0;
374
375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 if (!zone_info)
377 return -ENOMEM;
378
16beac87
NA
379 device->zone_info = zone_info;
380
3c9daa09
JT
381 if (!bdev_is_zoned(bdev)) {
382 if (!fs_info->zone_size) {
383 ret = calculate_emulated_zone_size(fs_info);
384 if (ret)
385 goto out;
386 }
387
388 ASSERT(fs_info->zone_size);
389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 } else {
391 zone_sectors = bdev_zone_sectors(bdev);
392 }
393
5b316468
NA
394 /* Check if it's power of 2 (see is_power_of_2) */
395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
397
398 /* We reject devices with a zone size larger than 8GB */
399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 btrfs_err_in_rcu(fs_info,
401 "zoned: %s: zone size %llu larger than supported maximum %llu",
402 rcu_str_deref(device->name),
403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 ret = -EINVAL;
405 goto out;
0a05fafe
JT
406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 btrfs_err_in_rcu(fs_info,
408 "zoned: %s: zone size %llu smaller than supported minimum %u",
409 rcu_str_deref(device->name),
410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 ret = -EINVAL;
412 goto out;
53b74fa9
NA
413 }
414
415 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
416 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
c2ae7b77
NA
418 /*
419 * We limit max_zone_append_size also by max_segments *
420 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421 * since btrfs adds the pages one by one to a bio, and btrfs cannot
422 * increase the metadata reservation even if it increases the number of
423 * extents, it is safe to stick with the limit.
cac5c44c
SK
424 *
425 * With the zoned emulation, we can have non-zoned device on the zoned
426 * mode. In this case, we don't have a valid max zone append size. So,
427 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
c2ae7b77 428 */
cac5c44c
SK
429 if (bdev_is_zoned(bdev)) {
430 zone_info->max_zone_append_size = min_t(u64,
431 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
432 (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
433 } else {
434 zone_info->max_zone_append_size =
435 (u64)bdev_max_segments(bdev) << PAGE_SHIFT;
436 }
5b316468
NA
437 if (!IS_ALIGNED(nr_sectors, zone_sectors))
438 zone_info->nr_zones++;
439
c1e7b244 440 max_active_zones = bdev_max_active_zones(bdev);
ea6f8ddc
NA
441 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
442 btrfs_err_in_rcu(fs_info,
443"zoned: %s: max active zones %u is too small, need at least %u active zones",
444 rcu_str_deref(device->name), max_active_zones,
445 BTRFS_MIN_ACTIVE_ZONES);
446 ret = -EINVAL;
447 goto out;
448 }
449 zone_info->max_active_zones = max_active_zones;
450
5b316468
NA
451 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452 if (!zone_info->seq_zones) {
453 ret = -ENOMEM;
454 goto out;
455 }
456
457 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
458 if (!zone_info->empty_zones) {
459 ret = -ENOMEM;
460 goto out;
461 }
462
ea6f8ddc
NA
463 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
464 if (!zone_info->active_zones) {
465 ret = -ENOMEM;
466 goto out;
467 }
468
5b316468
NA
469 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
470 if (!zones) {
471 ret = -ENOMEM;
472 goto out;
473 }
474
16beac87
NA
475 /*
476 * Enable zone cache only for a zoned device. On a non-zoned device, we
477 * fill the zone info with emulated CONVENTIONAL zones, so no need to
478 * use the cache.
479 */
480 if (populate_cache && bdev_is_zoned(device->bdev)) {
481 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
482 zone_info->nr_zones);
483 if (!zone_info->zone_cache) {
484 btrfs_err_in_rcu(device->fs_info,
485 "zoned: failed to allocate zone cache for %s",
486 rcu_str_deref(device->name));
487 ret = -ENOMEM;
488 goto out;
489 }
490 }
491
5b316468 492 /* Get zones type */
ea6f8ddc 493 nactive = 0;
5b316468
NA
494 while (sector < nr_sectors) {
495 nr_zones = BTRFS_REPORT_NR_ZONES;
496 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
497 &nr_zones);
498 if (ret)
499 goto out;
500
501 for (i = 0; i < nr_zones; i++) {
502 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
503 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
504 switch (zones[i].cond) {
505 case BLK_ZONE_COND_EMPTY:
5b316468 506 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
507 break;
508 case BLK_ZONE_COND_IMP_OPEN:
509 case BLK_ZONE_COND_EXP_OPEN:
510 case BLK_ZONE_COND_CLOSED:
511 __set_bit(nreported, zone_info->active_zones);
512 nactive++;
513 break;
514 }
5b316468
NA
515 nreported++;
516 }
517 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
518 }
519
520 if (nreported != zone_info->nr_zones) {
521 btrfs_err_in_rcu(device->fs_info,
522 "inconsistent number of zones on %s (%u/%u)",
523 rcu_str_deref(device->name), nreported,
524 zone_info->nr_zones);
525 ret = -EIO;
526 goto out;
527 }
528
ea6f8ddc
NA
529 if (max_active_zones) {
530 if (nactive > max_active_zones) {
531 btrfs_err_in_rcu(device->fs_info,
532 "zoned: %u active zones on %s exceeds max_active_zones %u",
533 nactive, rcu_str_deref(device->name),
534 max_active_zones);
535 ret = -EIO;
536 goto out;
537 }
538 atomic_set(&zone_info->active_zones_left,
539 max_active_zones - nactive);
540 }
541
12659251
NA
542 /* Validate superblock log */
543 nr_zones = BTRFS_NR_SB_LOG_ZONES;
544 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
545 u32 sb_zone;
546 u64 sb_wp;
547 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
548
549 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
550 if (sb_zone + 1 >= zone_info->nr_zones)
551 continue;
552
5b434df8
NA
553 ret = btrfs_get_dev_zones(device,
554 zone_start_physical(sb_zone, zone_info),
12659251
NA
555 &zone_info->sb_zones[sb_pos],
556 &nr_zones);
557 if (ret)
558 goto out;
559
560 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
561 btrfs_err_in_rcu(device->fs_info,
562 "zoned: failed to read super block log zone info at devid %llu zone %u",
563 device->devid, sb_zone);
564 ret = -EUCLEAN;
565 goto out;
566 }
567
568 /*
1a9fd417 569 * If zones[0] is conventional, always use the beginning of the
12659251
NA
570 * zone to record superblock. No need to validate in that case.
571 */
572 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
573 BLK_ZONE_TYPE_CONVENTIONAL)
574 continue;
575
576 ret = sb_write_pointer(device->bdev,
577 &zone_info->sb_zones[sb_pos], &sb_wp);
578 if (ret != -ENOENT && ret) {
579 btrfs_err_in_rcu(device->fs_info,
580 "zoned: super block log zone corrupted devid %llu zone %u",
581 device->devid, sb_zone);
582 ret = -EUCLEAN;
583 goto out;
584 }
585 }
586
587
5b316468
NA
588 kfree(zones);
589
3c9daa09
JT
590 switch (bdev_zoned_model(bdev)) {
591 case BLK_ZONED_HM:
592 model = "host-managed zoned";
593 emulated = "";
594 break;
595 case BLK_ZONED_HA:
596 model = "host-aware zoned";
597 emulated = "";
598 break;
599 case BLK_ZONED_NONE:
600 model = "regular";
601 emulated = "emulated ";
602 break;
603 default:
604 /* Just in case */
605 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
606 bdev_zoned_model(bdev),
607 rcu_str_deref(device->name));
608 ret = -EOPNOTSUPP;
609 goto out_free_zone_info;
610 }
611
612 btrfs_info_in_rcu(fs_info,
613 "%s block device %s, %u %szones of %llu bytes",
614 model, rcu_str_deref(device->name), zone_info->nr_zones,
615 emulated, zone_info->zone_size);
5b316468
NA
616
617 return 0;
618
619out:
620 kfree(zones);
3c9daa09 621out_free_zone_info:
16beac87 622 btrfs_destroy_dev_zone_info(device);
5b316468
NA
623
624 return ret;
625}
626
627void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
628{
629 struct btrfs_zoned_device_info *zone_info = device->zone_info;
630
631 if (!zone_info)
632 return;
633
ea6f8ddc 634 bitmap_free(zone_info->active_zones);
5b316468
NA
635 bitmap_free(zone_info->seq_zones);
636 bitmap_free(zone_info->empty_zones);
16beac87 637 vfree(zone_info->zone_cache);
5b316468
NA
638 kfree(zone_info);
639 device->zone_info = NULL;
640}
641
21e61ec6
JT
642struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
643{
644 struct btrfs_zoned_device_info *zone_info;
645
646 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
647 if (!zone_info)
648 return NULL;
649
650 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
651 if (!zone_info->seq_zones)
652 goto out;
653
654 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
655 zone_info->nr_zones);
656
657 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
658 if (!zone_info->empty_zones)
659 goto out;
660
661 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
662 zone_info->nr_zones);
663
664 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
665 if (!zone_info->active_zones)
666 goto out;
667
668 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
669 zone_info->nr_zones);
670 zone_info->zone_cache = NULL;
671
672 return zone_info;
673
674out:
675 bitmap_free(zone_info->seq_zones);
676 bitmap_free(zone_info->empty_zones);
677 bitmap_free(zone_info->active_zones);
678 kfree(zone_info);
679 return NULL;
680}
681
5b316468
NA
682int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
683 struct blk_zone *zone)
684{
685 unsigned int nr_zones = 1;
686 int ret;
687
688 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
689 if (ret != 0 || !nr_zones)
690 return ret ? ret : -EIO;
691
692 return 0;
693}
b70f5097 694
650c8a9c
CH
695static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
696{
697 struct btrfs_device *device;
698
699 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
700 if (device->bdev &&
701 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
702 btrfs_err(fs_info,
703 "zoned: mode not enabled but zoned device found: %pg",
704 device->bdev);
705 return -EINVAL;
706 }
707 }
708
709 return 0;
710}
711
b70f5097
NA
712int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
713{
b70f5097 714 struct btrfs_device *device;
b70f5097 715 u64 zone_size = 0;
c2ae7b77 716 u64 max_zone_append_size = 0;
650c8a9c 717 int ret;
b70f5097 718
650c8a9c
CH
719 /*
720 * Host-Managed devices can't be used without the ZONED flag. With the
721 * ZONED all devices can be used, using zone emulation if required.
722 */
723 if (!btrfs_fs_incompat(fs_info, ZONED))
724 return btrfs_check_for_zoned_device(fs_info);
725
726 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
727 struct btrfs_zoned_device_info *zone_info = device->zone_info;
b70f5097
NA
728
729 if (!device->bdev)
730 continue;
731
650c8a9c
CH
732 if (!zone_size) {
733 zone_size = zone_info->zone_size;
734 } else if (zone_info->zone_size != zone_size) {
735 btrfs_err(fs_info,
b70f5097 736 "zoned: unequal block device zone sizes: have %llu found %llu",
650c8a9c
CH
737 zone_info->zone_size, zone_size);
738 return -EINVAL;
b70f5097 739 }
650c8a9c
CH
740 if (!max_zone_append_size ||
741 (zone_info->max_zone_append_size &&
742 zone_info->max_zone_append_size < max_zone_append_size))
743 max_zone_append_size = zone_info->max_zone_append_size;
b70f5097
NA
744 }
745
746 /*
747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 748 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
749 * check the alignment here.
750 */
751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 btrfs_err(fs_info,
753 "zoned: zone size %llu not aligned to stripe %u",
754 zone_size, BTRFS_STRIPE_LEN);
650c8a9c 755 return -EINVAL;
b70f5097
NA
756 }
757
a589dde0
NA
758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 btrfs_err(fs_info, "zoned: mixed block groups not supported");
650c8a9c 760 return -EINVAL;
a589dde0
NA
761 }
762
b70f5097 763 fs_info->zone_size = zone_size;
f7b12a62
NA
764 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
765 fs_info->sectorsize);
1cd6121f 766 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
f7b12a62
NA
767 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
768 fs_info->max_extent_size = fs_info->max_zone_append_size;
b70f5097 769
b53429ba
JT
770 /*
771 * Check mount options here, because we might change fs_info->zoned
772 * from fs_info->zone_size.
773 */
774 ret = btrfs_check_mountopts_zoned(fs_info);
775 if (ret)
650c8a9c 776 return ret;
b53429ba 777
b70f5097 778 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
650c8a9c 779 return 0;
b70f5097 780}
5d1ab66c
NA
781
782int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
783{
784 if (!btrfs_is_zoned(info))
785 return 0;
786
787 /*
788 * Space cache writing is not COWed. Disable that to avoid write errors
789 * in sequential zones.
790 */
791 if (btrfs_test_opt(info, SPACE_CACHE)) {
792 btrfs_err(info, "zoned: space cache v1 is not supported");
793 return -EINVAL;
794 }
795
d206e9c9
NA
796 if (btrfs_test_opt(info, NODATACOW)) {
797 btrfs_err(info, "zoned: NODATACOW not supported");
798 return -EINVAL;
799 }
800
5d1ab66c
NA
801 return 0;
802}
12659251
NA
803
804static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
805 int rw, u64 *bytenr_ret)
806{
807 u64 wp;
808 int ret;
809
810 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
811 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
812 return 0;
813 }
814
815 ret = sb_write_pointer(bdev, zones, &wp);
816 if (ret != -ENOENT && ret < 0)
817 return ret;
818
819 if (rw == WRITE) {
820 struct blk_zone *reset = NULL;
821
822 if (wp == zones[0].start << SECTOR_SHIFT)
823 reset = &zones[0];
824 else if (wp == zones[1].start << SECTOR_SHIFT)
825 reset = &zones[1];
826
827 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 828 ASSERT(sb_zone_is_full(reset));
12659251
NA
829
830 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831 reset->start, reset->len,
832 GFP_NOFS);
833 if (ret)
834 return ret;
835
836 reset->cond = BLK_ZONE_COND_EMPTY;
837 reset->wp = reset->start;
838 }
839 } else if (ret != -ENOENT) {
9658b72e
NA
840 /*
841 * For READ, we want the previous one. Move write pointer to
842 * the end of a zone, if it is at the head of a zone.
843 */
844 u64 zone_end = 0;
845
12659251 846 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
847 zone_end = zones[1].start + zones[1].capacity;
848 else if (wp == zones[1].start << SECTOR_SHIFT)
849 zone_end = zones[0].start + zones[0].capacity;
850 if (zone_end)
851 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852 BTRFS_SUPER_INFO_SIZE);
853
12659251
NA
854 wp -= BTRFS_SUPER_INFO_SIZE;
855 }
856
857 *bytenr_ret = wp;
858 return 0;
859
860}
861
862int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863 u64 *bytenr_ret)
864{
865 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 866 sector_t zone_sectors;
12659251
NA
867 u32 sb_zone;
868 int ret;
12659251
NA
869 u8 zone_sectors_shift;
870 sector_t nr_sectors;
871 u32 nr_zones;
872
873 if (!bdev_is_zoned(bdev)) {
874 *bytenr_ret = btrfs_sb_offset(mirror);
875 return 0;
876 }
877
878 ASSERT(rw == READ || rw == WRITE);
879
880 zone_sectors = bdev_zone_sectors(bdev);
881 if (!is_power_of_2(zone_sectors))
882 return -EINVAL;
12659251 883 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 884 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
885 nr_zones = nr_sectors >> zone_sectors_shift;
886
887 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888 if (sb_zone + 1 >= nr_zones)
889 return -ENOENT;
890
5b434df8 891 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
892 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893 zones);
894 if (ret < 0)
895 return ret;
896 if (ret != BTRFS_NR_SB_LOG_ZONES)
897 return -EIO;
898
899 return sb_log_location(bdev, zones, rw, bytenr_ret);
900}
901
902int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903 u64 *bytenr_ret)
904{
905 struct btrfs_zoned_device_info *zinfo = device->zone_info;
906 u32 zone_num;
907
d6639b35
NA
908 /*
909 * For a zoned filesystem on a non-zoned block device, use the same
910 * super block locations as regular filesystem. Doing so, the super
911 * block can always be retrieved and the zoned flag of the volume
912 * detected from the super block information.
913 */
914 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
915 *bytenr_ret = btrfs_sb_offset(mirror);
916 return 0;
917 }
918
919 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920 if (zone_num + 1 >= zinfo->nr_zones)
921 return -ENOENT;
922
923 return sb_log_location(device->bdev,
924 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925 rw, bytenr_ret);
926}
927
928static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929 int mirror)
930{
931 u32 zone_num;
932
933 if (!zinfo)
934 return false;
935
936 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937 if (zone_num + 1 >= zinfo->nr_zones)
938 return false;
939
940 if (!test_bit(zone_num, zinfo->seq_zones))
941 return false;
942
943 return true;
944}
945
8376d9e1 946int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
947{
948 struct btrfs_zoned_device_info *zinfo = device->zone_info;
949 struct blk_zone *zone;
8376d9e1 950 int i;
12659251
NA
951
952 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 953 return 0;
12659251
NA
954
955 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
956 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957 /* Advance the next zone */
958 if (zone->cond == BLK_ZONE_COND_FULL) {
959 zone++;
960 continue;
961 }
962
12659251
NA
963 if (zone->cond == BLK_ZONE_COND_EMPTY)
964 zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
8376d9e1
NA
966 zone->wp += SUPER_INFO_SECTORS;
967
968 if (sb_zone_is_full(zone)) {
969 /*
970 * No room left to write new superblock. Since
971 * superblock is written with REQ_SYNC, it is safe to
972 * finish the zone now.
973 *
974 * If the write pointer is exactly at the capacity,
975 * explicit ZONE_FINISH is not necessary.
976 */
977 if (zone->wp != zone->start + zone->capacity) {
978 int ret;
979
980 ret = blkdev_zone_mgmt(device->bdev,
981 REQ_OP_ZONE_FINISH, zone->start,
982 zone->len, GFP_NOFS);
983 if (ret)
984 return ret;
985 }
12659251 986
8376d9e1 987 zone->wp = zone->start + zone->len;
12659251 988 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
989 }
990 return 0;
12659251
NA
991 }
992
8376d9e1
NA
993 /* All the zones are FULL. Should not reach here. */
994 ASSERT(0);
995 return -EIO;
12659251
NA
996}
997
998int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
999{
1000 sector_t zone_sectors;
1001 sector_t nr_sectors;
1002 u8 zone_sectors_shift;
1003 u32 sb_zone;
1004 u32 nr_zones;
1005
1006 zone_sectors = bdev_zone_sectors(bdev);
1007 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 1008 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
1009 nr_zones = nr_sectors >> zone_sectors_shift;
1010
1011 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012 if (sb_zone + 1 >= nr_zones)
1013 return -ENOENT;
1014
1015 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 1016 zone_start_sector(sb_zone, bdev),
12659251
NA
1017 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1018}
1cd6121f
NA
1019
1020/**
1021 * btrfs_find_allocatable_zones - find allocatable zones within a given region
1022 *
1023 * @device: the device to allocate a region on
1024 * @hole_start: the position of the hole to allocate the region
1025 * @num_bytes: size of wanted region
1026 * @hole_end: the end of the hole
1027 * @return: position of allocatable zones
1028 *
1029 * Allocatable region should not contain any superblock locations.
1030 */
1031u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1032 u64 hole_end, u64 num_bytes)
1033{
1034 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1035 const u8 shift = zinfo->zone_size_shift;
1036 u64 nzones = num_bytes >> shift;
1037 u64 pos = hole_start;
1038 u64 begin, end;
1039 bool have_sb;
1040 int i;
1041
1042 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1043 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1044
1045 while (pos < hole_end) {
1046 begin = pos >> shift;
1047 end = begin + nzones;
1048
1049 if (end > zinfo->nr_zones)
1050 return hole_end;
1051
1052 /* Check if zones in the region are all empty */
1053 if (btrfs_dev_is_sequential(device, pos) &&
1054 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1055 pos += zinfo->zone_size;
1056 continue;
1057 }
1058
1059 have_sb = false;
1060 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1061 u32 sb_zone;
1062 u64 sb_pos;
1063
1064 sb_zone = sb_zone_number(shift, i);
1065 if (!(end <= sb_zone ||
1066 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1067 have_sb = true;
5b434df8
NA
1068 pos = zone_start_physical(
1069 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
1070 break;
1071 }
1072
1073 /* We also need to exclude regular superblock positions */
1074 sb_pos = btrfs_sb_offset(i);
1075 if (!(pos + num_bytes <= sb_pos ||
1076 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1077 have_sb = true;
1078 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1079 zinfo->zone_size);
1080 break;
1081 }
1082 }
1083 if (!have_sb)
1084 break;
1085 }
1086
1087 return pos;
1088}
1089
afba2bc0
NA
1090static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1091{
1092 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1093 unsigned int zno = (pos >> zone_info->zone_size_shift);
1094
1095 /* We can use any number of zones */
1096 if (zone_info->max_active_zones == 0)
1097 return true;
1098
1099 if (!test_bit(zno, zone_info->active_zones)) {
1100 /* Active zone left? */
1101 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1102 return false;
1103 if (test_and_set_bit(zno, zone_info->active_zones)) {
1104 /* Someone already set the bit */
1105 atomic_inc(&zone_info->active_zones_left);
1106 }
1107 }
1108
1109 return true;
1110}
1111
1112static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1113{
1114 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1115 unsigned int zno = (pos >> zone_info->zone_size_shift);
1116
1117 /* We can use any number of zones */
1118 if (zone_info->max_active_zones == 0)
1119 return;
1120
1121 if (test_and_clear_bit(zno, zone_info->active_zones))
1122 atomic_inc(&zone_info->active_zones_left);
1123}
1124
1cd6121f
NA
1125int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1126 u64 length, u64 *bytes)
1127{
1128 int ret;
1129
1130 *bytes = 0;
1131 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1132 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1133 GFP_NOFS);
1134 if (ret)
1135 return ret;
1136
1137 *bytes = length;
1138 while (length) {
1139 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1140 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1141 physical += device->zone_info->zone_size;
1142 length -= device->zone_info->zone_size;
1143 }
1144
1145 return 0;
1146}
1147
1148int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1149{
1150 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1151 const u8 shift = zinfo->zone_size_shift;
1152 unsigned long begin = start >> shift;
1153 unsigned long end = (start + size) >> shift;
1154 u64 pos;
1155 int ret;
1156
1157 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1158 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1159
1160 if (end > zinfo->nr_zones)
1161 return -ERANGE;
1162
1163 /* All the zones are conventional */
1164 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1165 return 0;
1166
1167 /* All the zones are sequential and empty */
1168 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1169 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1170 return 0;
1171
1172 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1173 u64 reset_bytes;
1174
1175 if (!btrfs_dev_is_sequential(device, pos) ||
1176 btrfs_dev_is_empty_zone(device, pos))
1177 continue;
1178
1179 /* Free regions should be empty */
1180 btrfs_warn_in_rcu(
1181 device->fs_info,
1182 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1183 rcu_str_deref(device->name), device->devid, pos >> shift);
1184 WARN_ON_ONCE(1);
1185
1186 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1187 &reset_bytes);
1188 if (ret)
1189 return ret;
1190 }
1191
1192 return 0;
1193}
08e11a3d 1194
a94794d5
NA
1195/*
1196 * Calculate an allocation pointer from the extent allocation information
1197 * for a block group consist of conventional zones. It is pointed to the
1198 * end of the highest addressed extent in the block group as an allocation
1199 * offset.
1200 */
1201static int calculate_alloc_pointer(struct btrfs_block_group *cache,
6ca64ac2 1202 u64 *offset_ret, bool new)
a94794d5
NA
1203{
1204 struct btrfs_fs_info *fs_info = cache->fs_info;
29cbcf40 1205 struct btrfs_root *root;
a94794d5
NA
1206 struct btrfs_path *path;
1207 struct btrfs_key key;
1208 struct btrfs_key found_key;
1209 int ret;
1210 u64 length;
1211
6ca64ac2
JT
1212 /*
1213 * Avoid tree lookups for a new block group, there's no use for it.
1214 * It must always be 0.
1215 *
1216 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1217 * For new a block group, this function is called from
1218 * btrfs_make_block_group() which is already taking the chunk mutex.
1219 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1220 * buffer locks to avoid deadlock.
1221 */
1222 if (new) {
1223 *offset_ret = 0;
1224 return 0;
1225 }
1226
a94794d5
NA
1227 path = btrfs_alloc_path();
1228 if (!path)
1229 return -ENOMEM;
1230
1231 key.objectid = cache->start + cache->length;
1232 key.type = 0;
1233 key.offset = 0;
1234
29cbcf40 1235 root = btrfs_extent_root(fs_info, key.objectid);
a94794d5
NA
1236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1237 /* We should not find the exact match */
1238 if (!ret)
1239 ret = -EUCLEAN;
1240 if (ret < 0)
1241 goto out;
1242
1243 ret = btrfs_previous_extent_item(root, path, cache->start);
1244 if (ret) {
1245 if (ret == 1) {
1246 ret = 0;
1247 *offset_ret = 0;
1248 }
1249 goto out;
1250 }
1251
1252 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1253
1254 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1255 length = found_key.offset;
1256 else
1257 length = fs_info->nodesize;
1258
1259 if (!(found_key.objectid >= cache->start &&
1260 found_key.objectid + length <= cache->start + cache->length)) {
1261 ret = -EUCLEAN;
1262 goto out;
1263 }
1264 *offset_ret = found_key.objectid + length - cache->start;
1265 ret = 0;
1266
1267out:
1268 btrfs_free_path(path);
1269 return ret;
1270}
1271
1272int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1273{
1274 struct btrfs_fs_info *fs_info = cache->fs_info;
1275 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1276 struct extent_map *em;
1277 struct map_lookup *map;
1278 struct btrfs_device *device;
1279 u64 logical = cache->start;
1280 u64 length = cache->length;
08e11a3d
NA
1281 int ret;
1282 int i;
1283 unsigned int nofs_flag;
1284 u64 *alloc_offsets = NULL;
8eae532b 1285 u64 *caps = NULL;
dbfcc18f 1286 u64 *physical = NULL;
68a384b5 1287 unsigned long *active = NULL;
a94794d5 1288 u64 last_alloc = 0;
08e11a3d
NA
1289 u32 num_sequential = 0, num_conventional = 0;
1290
1291 if (!btrfs_is_zoned(fs_info))
1292 return 0;
1293
1294 /* Sanity check */
1295 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1296 btrfs_err(fs_info,
1297 "zoned: block group %llu len %llu unaligned to zone size %llu",
1298 logical, length, fs_info->zone_size);
1299 return -EIO;
1300 }
1301
1302 /* Get the chunk mapping */
1303 read_lock(&em_tree->lock);
1304 em = lookup_extent_mapping(em_tree, logical, length);
1305 read_unlock(&em_tree->lock);
1306
1307 if (!em)
1308 return -EINVAL;
1309
1310 map = em->map_lookup;
1311
64259baa 1312 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
dafc340d
NA
1313 if (!cache->physical_map) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317
08e11a3d
NA
1318 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1319 if (!alloc_offsets) {
dafc340d
NA
1320 ret = -ENOMEM;
1321 goto out;
08e11a3d
NA
1322 }
1323
8eae532b
NA
1324 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1325 if (!caps) {
1326 ret = -ENOMEM;
1327 goto out;
1328 }
1329
dbfcc18f
JT
1330 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1331 if (!physical) {
1332 ret = -ENOMEM;
1333 goto out;
1334 }
1335
68a384b5
NA
1336 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1337 if (!active) {
1338 ret = -ENOMEM;
1339 goto out;
1340 }
1341
08e11a3d
NA
1342 for (i = 0; i < map->num_stripes; i++) {
1343 bool is_sequential;
1344 struct blk_zone zone;
6143c23c
NA
1345 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1347
1348 device = map->stripes[i].dev;
dbfcc18f 1349 physical[i] = map->stripes[i].physical;
08e11a3d
NA
1350
1351 if (device->bdev == NULL) {
1352 alloc_offsets[i] = WP_MISSING_DEV;
1353 continue;
1354 }
1355
dbfcc18f 1356 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
08e11a3d
NA
1357 if (is_sequential)
1358 num_sequential++;
1359 else
1360 num_conventional++;
1361
6ca64ac2
JT
1362 /*
1363 * Consider a zone as active if we can allow any number of
1364 * active zones.
1365 */
1366 if (!device->zone_info->max_active_zones)
1367 __set_bit(i, active);
1368
08e11a3d
NA
1369 if (!is_sequential) {
1370 alloc_offsets[i] = WP_CONVENTIONAL;
1371 continue;
1372 }
1373
1374 /*
1375 * This zone will be used for allocation, so mark this zone
1376 * non-empty.
1377 */
dbfcc18f 1378 btrfs_dev_clear_zone_empty(device, physical[i]);
08e11a3d 1379
6143c23c
NA
1380 down_read(&dev_replace->rwsem);
1381 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1382 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
dbfcc18f 1383 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
6143c23c
NA
1384 up_read(&dev_replace->rwsem);
1385
08e11a3d
NA
1386 /*
1387 * The group is mapped to a sequential zone. Get the zone write
1388 * pointer to determine the allocation offset within the zone.
1389 */
dbfcc18f 1390 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
08e11a3d 1391 nofs_flag = memalloc_nofs_save();
dbfcc18f 1392 ret = btrfs_get_dev_zone(device, physical[i], &zone);
08e11a3d
NA
1393 memalloc_nofs_restore(nofs_flag);
1394 if (ret == -EIO || ret == -EOPNOTSUPP) {
1395 ret = 0;
1396 alloc_offsets[i] = WP_MISSING_DEV;
1397 continue;
1398 } else if (ret) {
1399 goto out;
1400 }
1401
784daf2b 1402 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1403 btrfs_err_in_rcu(fs_info,
1404 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1405 zone.start << SECTOR_SHIFT,
1406 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1407 ret = -EIO;
1408 goto out;
1409 }
1410
8eae532b
NA
1411 caps[i] = (zone.capacity << SECTOR_SHIFT);
1412
08e11a3d
NA
1413 switch (zone.cond) {
1414 case BLK_ZONE_COND_OFFLINE:
1415 case BLK_ZONE_COND_READONLY:
1416 btrfs_err(fs_info,
1417 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
dbfcc18f 1418 physical[i] >> device->zone_info->zone_size_shift,
08e11a3d
NA
1419 rcu_str_deref(device->name), device->devid);
1420 alloc_offsets[i] = WP_MISSING_DEV;
1421 break;
1422 case BLK_ZONE_COND_EMPTY:
1423 alloc_offsets[i] = 0;
1424 break;
1425 case BLK_ZONE_COND_FULL:
8eae532b 1426 alloc_offsets[i] = caps[i];
08e11a3d
NA
1427 break;
1428 default:
1429 /* Partially used zone */
1430 alloc_offsets[i] =
1431 ((zone.wp - zone.start) << SECTOR_SHIFT);
68a384b5 1432 __set_bit(i, active);
08e11a3d
NA
1433 break;
1434 }
1435 }
1436
08f45559
JT
1437 if (num_sequential > 0)
1438 cache->seq_zone = true;
1439
08e11a3d 1440 if (num_conventional > 0) {
8eae532b
NA
1441 /* Zone capacity is always zone size in emulation */
1442 cache->zone_capacity = cache->length;
6ca64ac2
JT
1443 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1444 if (ret) {
1445 btrfs_err(fs_info,
a94794d5 1446 "zoned: failed to determine allocation offset of bg %llu",
6ca64ac2
JT
1447 cache->start);
1448 goto out;
1449 } else if (map->num_stripes == num_conventional) {
1450 cache->alloc_offset = last_alloc;
3349b57f 1451 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
a94794d5
NA
1452 goto out;
1453 }
08e11a3d
NA
1454 }
1455
1456 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1457 case 0: /* single */
06e1e7f4
JT
1458 if (alloc_offsets[0] == WP_MISSING_DEV) {
1459 btrfs_err(fs_info,
1460 "zoned: cannot recover write pointer for zone %llu",
dbfcc18f 1461 physical[0]);
06e1e7f4
JT
1462 ret = -EIO;
1463 goto out;
1464 }
08e11a3d 1465 cache->alloc_offset = alloc_offsets[0];
8eae532b 1466 cache->zone_capacity = caps[0];
3349b57f
JB
1467 if (test_bit(0, active))
1468 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
08e11a3d
NA
1469 break;
1470 case BTRFS_BLOCK_GROUP_DUP:
265f7237
JT
1471 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1472 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1473 ret = -EINVAL;
1474 goto out;
1475 }
1476 if (alloc_offsets[0] == WP_MISSING_DEV) {
1477 btrfs_err(fs_info,
1478 "zoned: cannot recover write pointer for zone %llu",
1479 physical[0]);
1480 ret = -EIO;
1481 goto out;
1482 }
1483 if (alloc_offsets[1] == WP_MISSING_DEV) {
1484 btrfs_err(fs_info,
1485 "zoned: cannot recover write pointer for zone %llu",
1486 physical[1]);
1487 ret = -EIO;
1488 goto out;
1489 }
1490 if (alloc_offsets[0] != alloc_offsets[1]) {
1491 btrfs_err(fs_info,
1492 "zoned: write pointer offset mismatch of zones in DUP profile");
1493 ret = -EIO;
1494 goto out;
1495 }
1496 if (test_bit(0, active) != test_bit(1, active)) {
1497 if (!btrfs_zone_activate(cache)) {
1498 ret = -EIO;
1499 goto out;
1500 }
1501 } else {
3349b57f
JB
1502 if (test_bit(0, active))
1503 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1504 &cache->runtime_flags);
265f7237
JT
1505 }
1506 cache->alloc_offset = alloc_offsets[0];
1507 cache->zone_capacity = min(caps[0], caps[1]);
1508 break;
08e11a3d
NA
1509 case BTRFS_BLOCK_GROUP_RAID1:
1510 case BTRFS_BLOCK_GROUP_RAID0:
1511 case BTRFS_BLOCK_GROUP_RAID10:
1512 case BTRFS_BLOCK_GROUP_RAID5:
1513 case BTRFS_BLOCK_GROUP_RAID6:
1514 /* non-single profiles are not supported yet */
1515 default:
1516 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1517 btrfs_bg_type_to_raid_name(map->type));
1518 ret = -EINVAL;
1519 goto out;
1520 }
1521
1522out:
06e1e7f4
JT
1523 if (cache->alloc_offset > fs_info->zone_size) {
1524 btrfs_err(fs_info,
1525 "zoned: invalid write pointer %llu in block group %llu",
1526 cache->alloc_offset, cache->start);
1527 ret = -EIO;
1528 }
1529
8eae532b
NA
1530 if (cache->alloc_offset > cache->zone_capacity) {
1531 btrfs_err(fs_info,
1532"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1533 cache->alloc_offset, cache->zone_capacity,
1534 cache->start);
1535 ret = -EIO;
1536 }
1537
a94794d5
NA
1538 /* An extent is allocated after the write pointer */
1539 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1540 btrfs_err(fs_info,
1541 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1542 logical, last_alloc, cache->alloc_offset);
1543 ret = -EIO;
1544 }
1545
6ca64ac2 1546 if (!ret) {
0bc09ca1 1547 cache->meta_write_pointer = cache->alloc_offset + cache->start;
3349b57f 1548 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
6ca64ac2
JT
1549 btrfs_get_block_group(cache);
1550 spin_lock(&fs_info->zone_active_bgs_lock);
1551 list_add_tail(&cache->active_bg_list,
1552 &fs_info->zone_active_bgs);
1553 spin_unlock(&fs_info->zone_active_bgs_lock);
1554 }
1555 } else {
dafc340d
NA
1556 kfree(cache->physical_map);
1557 cache->physical_map = NULL;
1558 }
68a384b5 1559 bitmap_free(active);
dbfcc18f 1560 kfree(physical);
8eae532b 1561 kfree(caps);
08e11a3d
NA
1562 kfree(alloc_offsets);
1563 free_extent_map(em);
1564
1565 return ret;
1566}
169e0da9
NA
1567
1568void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1569{
1570 u64 unusable, free;
1571
1572 if (!btrfs_is_zoned(cache->fs_info))
1573 return;
1574
1575 WARN_ON(cache->bytes_super != 0);
98173255
NA
1576 unusable = (cache->alloc_offset - cache->used) +
1577 (cache->length - cache->zone_capacity);
1578 free = cache->zone_capacity - cache->alloc_offset;
169e0da9
NA
1579
1580 /* We only need ->free_space in ALLOC_SEQ block groups */
169e0da9
NA
1581 cache->cached = BTRFS_CACHE_FINISHED;
1582 cache->free_space_ctl->free_space = free;
1583 cache->zone_unusable = unusable;
169e0da9 1584}
d3575156
NA
1585
1586void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1587 struct extent_buffer *eb)
1588{
1589 struct btrfs_fs_info *fs_info = eb->fs_info;
1590
1591 if (!btrfs_is_zoned(fs_info) ||
1592 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1593 !list_empty(&eb->release_list))
1594 return;
1595
1596 set_extent_buffer_dirty(eb);
1597 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1598 eb->start + eb->len - 1, EXTENT_DIRTY);
1599 memzero_extent_buffer(eb, 0, eb->len);
1600 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1601
1602 spin_lock(&trans->releasing_ebs_lock);
1603 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1604 spin_unlock(&trans->releasing_ebs_lock);
1605 atomic_inc(&eb->refs);
1606}
1607
1608void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1609{
1610 spin_lock(&trans->releasing_ebs_lock);
1611 while (!list_empty(&trans->releasing_ebs)) {
1612 struct extent_buffer *eb;
1613
1614 eb = list_first_entry(&trans->releasing_ebs,
1615 struct extent_buffer, release_list);
1616 list_del_init(&eb->release_list);
1617 free_extent_buffer(eb);
1618 }
1619 spin_unlock(&trans->releasing_ebs_lock);
1620}
08f45559 1621
e380adfc 1622bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
08f45559
JT
1623{
1624 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1625 struct btrfs_block_group *cache;
1626 bool ret = false;
1627
1628 if (!btrfs_is_zoned(fs_info))
1629 return false;
1630
08f45559
JT
1631 if (!is_data_inode(&inode->vfs_inode))
1632 return false;
1633
e6d261e3
JT
1634 /*
1635 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1636 * extent layout the relocation code has.
1637 * Furthermore we have set aside own block-group from which only the
1638 * relocation "process" can allocate and make sure only one process at a
1639 * time can add pages to an extent that gets relocated, so it's safe to
1640 * use regular REQ_OP_WRITE for this special case.
1641 */
1642 if (btrfs_is_data_reloc_root(inode->root))
1643 return false;
1644
e380adfc 1645 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1646 ASSERT(cache);
1647 if (!cache)
1648 return false;
1649
1650 ret = cache->seq_zone;
1651 btrfs_put_block_group(cache);
1652
1653 return ret;
1654}
d8e3fb10
NA
1655
1656void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1657 struct bio *bio)
1658{
1659 struct btrfs_ordered_extent *ordered;
1660 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1661
1662 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1663 return;
1664
1665 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1666 if (WARN_ON(!ordered))
1667 return;
1668
1669 ordered->physical = physical;
c7c3a6dc 1670 ordered->bdev = bio->bi_bdev;
d8e3fb10
NA
1671
1672 btrfs_put_ordered_extent(ordered);
1673}
1674
1675void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1676{
1677 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1678 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1679 struct extent_map_tree *em_tree;
1680 struct extent_map *em;
1681 struct btrfs_ordered_sum *sum;
d8e3fb10
NA
1682 u64 orig_logical = ordered->disk_bytenr;
1683 u64 *logical = NULL;
1684 int nr, stripe_len;
1685
1686 /* Zoned devices should not have partitions. So, we can assume it is 0 */
c7c3a6dc
CH
1687 ASSERT(!bdev_is_partition(ordered->bdev));
1688 if (WARN_ON(!ordered->bdev))
d8e3fb10
NA
1689 return;
1690
c7c3a6dc 1691 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
d8e3fb10
NA
1692 ordered->physical, &logical, &nr,
1693 &stripe_len)))
1694 goto out;
1695
1696 WARN_ON(nr != 1);
1697
1698 if (orig_logical == *logical)
1699 goto out;
1700
1701 ordered->disk_bytenr = *logical;
1702
1703 em_tree = &inode->extent_tree;
1704 write_lock(&em_tree->lock);
1705 em = search_extent_mapping(em_tree, ordered->file_offset,
1706 ordered->num_bytes);
1707 em->block_start = *logical;
1708 free_extent_map(em);
1709 write_unlock(&em_tree->lock);
1710
1711 list_for_each_entry(sum, &ordered->list, list) {
1712 if (*logical < orig_logical)
1713 sum->bytenr -= orig_logical - *logical;
1714 else
1715 sum->bytenr += *logical - orig_logical;
1716 }
1717
1718out:
1719 kfree(logical);
d8e3fb10 1720}
0bc09ca1
NA
1721
1722bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1723 struct extent_buffer *eb,
1724 struct btrfs_block_group **cache_ret)
1725{
1726 struct btrfs_block_group *cache;
1727 bool ret = true;
1728
1729 if (!btrfs_is_zoned(fs_info))
1730 return true;
1731
8fdf54fe
JT
1732 cache = btrfs_lookup_block_group(fs_info, eb->start);
1733 if (!cache)
1734 return true;
0bc09ca1 1735
8fdf54fe 1736 if (cache->meta_write_pointer != eb->start) {
0bc09ca1
NA
1737 btrfs_put_block_group(cache);
1738 cache = NULL;
8fdf54fe
JT
1739 ret = false;
1740 } else {
1741 cache->meta_write_pointer = eb->start + eb->len;
0bc09ca1
NA
1742 }
1743
8fdf54fe 1744 *cache_ret = cache;
0bc09ca1
NA
1745
1746 return ret;
1747}
1748
1749void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1750 struct extent_buffer *eb)
1751{
1752 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1753 return;
1754
1755 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1756 cache->meta_write_pointer = eb->start;
1757}
de17addc
NA
1758
1759int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1760{
1761 if (!btrfs_dev_is_sequential(device, physical))
1762 return -EOPNOTSUPP;
1763
1764 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1765 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1766}
7db1c5d1
NA
1767
1768static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1769 struct blk_zone *zone)
1770{
4c664611 1771 struct btrfs_io_context *bioc = NULL;
7db1c5d1
NA
1772 u64 mapped_length = PAGE_SIZE;
1773 unsigned int nofs_flag;
1774 int nmirrors;
1775 int i, ret;
1776
1777 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
4c664611
QW
1778 &mapped_length, &bioc);
1779 if (ret || !bioc || mapped_length < PAGE_SIZE) {
29634578
CH
1780 ret = -EIO;
1781 goto out_put_bioc;
7db1c5d1
NA
1782 }
1783
29634578
CH
1784 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1785 ret = -EINVAL;
1786 goto out_put_bioc;
1787 }
7db1c5d1
NA
1788
1789 nofs_flag = memalloc_nofs_save();
4c664611 1790 nmirrors = (int)bioc->num_stripes;
7db1c5d1 1791 for (i = 0; i < nmirrors; i++) {
4c664611
QW
1792 u64 physical = bioc->stripes[i].physical;
1793 struct btrfs_device *dev = bioc->stripes[i].dev;
7db1c5d1
NA
1794
1795 /* Missing device */
1796 if (!dev->bdev)
1797 continue;
1798
1799 ret = btrfs_get_dev_zone(dev, physical, zone);
1800 /* Failing device */
1801 if (ret == -EIO || ret == -EOPNOTSUPP)
1802 continue;
1803 break;
1804 }
1805 memalloc_nofs_restore(nofs_flag);
29634578
CH
1806out_put_bioc:
1807 btrfs_put_bioc(bioc);
7db1c5d1
NA
1808 return ret;
1809}
1810
1811/*
1812 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1813 * filling zeros between @physical_pos to a write pointer of dev-replace
1814 * source device.
1815 */
1816int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1817 u64 physical_start, u64 physical_pos)
1818{
1819 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1820 struct blk_zone zone;
1821 u64 length;
1822 u64 wp;
1823 int ret;
1824
1825 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1826 return 0;
1827
1828 ret = read_zone_info(fs_info, logical, &zone);
1829 if (ret)
1830 return ret;
1831
1832 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1833
1834 if (physical_pos == wp)
1835 return 0;
1836
1837 if (physical_pos > wp)
1838 return -EUCLEAN;
1839
1840 length = wp - physical_pos;
1841 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1842}
e7ff9e6b
JT
1843
1844struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1845 u64 logical, u64 length)
1846{
1847 struct btrfs_device *device;
1848 struct extent_map *em;
1849 struct map_lookup *map;
1850
1851 em = btrfs_get_chunk_map(fs_info, logical, length);
1852 if (IS_ERR(em))
1853 return ERR_CAST(em);
1854
1855 map = em->map_lookup;
1856 /* We only support single profile for now */
e7ff9e6b
JT
1857 device = map->stripes[0].dev;
1858
1859 free_extent_map(em);
1860
1861 return device;
1862}
afba2bc0
NA
1863
1864/**
1865 * Activate block group and underlying device zones
1866 *
1867 * @block_group: the block group to activate
1868 *
1869 * Return: true on success, false otherwise
1870 */
1871bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1872{
1873 struct btrfs_fs_info *fs_info = block_group->fs_info;
6a921de5 1874 struct btrfs_space_info *space_info = block_group->space_info;
afba2bc0
NA
1875 struct map_lookup *map;
1876 struct btrfs_device *device;
1877 u64 physical;
1878 bool ret;
f9a912a3 1879 int i;
afba2bc0
NA
1880
1881 if (!btrfs_is_zoned(block_group->fs_info))
1882 return true;
1883
1884 map = block_group->physical_map;
afba2bc0 1885
6a921de5 1886 spin_lock(&space_info->lock);
afba2bc0 1887 spin_lock(&block_group->lock);
3349b57f 1888 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
1889 ret = true;
1890 goto out_unlock;
1891 }
1892
54957712 1893 /* No space left */
1bfd4767 1894 if (btrfs_zoned_bg_is_full(block_group)) {
54957712
NA
1895 ret = false;
1896 goto out_unlock;
1897 }
1898
f9a912a3
JT
1899 for (i = 0; i < map->num_stripes; i++) {
1900 device = map->stripes[i].dev;
1901 physical = map->stripes[i].physical;
afba2bc0 1902
f9a912a3
JT
1903 if (device->zone_info->max_active_zones == 0)
1904 continue;
1905
f9a912a3
JT
1906 if (!btrfs_dev_set_active_zone(device, physical)) {
1907 /* Cannot activate the zone */
1908 ret = false;
1909 goto out_unlock;
1910 }
f9a912a3 1911 }
ceb4f608
NA
1912
1913 /* Successfully activated all the zones */
3349b57f 1914 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
6a921de5 1915 space_info->active_total_bytes += block_group->length;
afba2bc0 1916 spin_unlock(&block_group->lock);
6a921de5
NA
1917 btrfs_try_granting_tickets(fs_info, space_info);
1918 spin_unlock(&space_info->lock);
afba2bc0 1919
ceb4f608
NA
1920 /* For the active block group list */
1921 btrfs_get_block_group(block_group);
afba2bc0 1922
ceb4f608
NA
1923 spin_lock(&fs_info->zone_active_bgs_lock);
1924 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1925 spin_unlock(&fs_info->zone_active_bgs_lock);
afba2bc0
NA
1926
1927 return true;
1928
1929out_unlock:
1930 spin_unlock(&block_group->lock);
6a921de5 1931 spin_unlock(&space_info->lock);
afba2bc0
NA
1932 return ret;
1933}
1934
2dd7e7bc
NA
1935static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1936{
1937 struct btrfs_fs_info *fs_info = block_group->fs_info;
1938 const u64 end = block_group->start + block_group->length;
1939 struct radix_tree_iter iter;
1940 struct extent_buffer *eb;
1941 void __rcu **slot;
1942
1943 rcu_read_lock();
1944 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1945 block_group->start >> fs_info->sectorsize_bits) {
1946 eb = radix_tree_deref_slot(slot);
1947 if (!eb)
1948 continue;
1949 if (radix_tree_deref_retry(eb)) {
1950 slot = radix_tree_iter_retry(&iter);
1951 continue;
1952 }
1953
1954 if (eb->start < block_group->start)
1955 continue;
1956 if (eb->start >= end)
1957 break;
1958
1959 slot = radix_tree_iter_resume(slot, &iter);
1960 rcu_read_unlock();
1961 wait_on_extent_buffer_writeback(eb);
1962 rcu_read_lock();
1963 }
1964 rcu_read_unlock();
1965}
1966
d70cbdda 1967static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
afba2bc0
NA
1968{
1969 struct btrfs_fs_info *fs_info = block_group->fs_info;
1970 struct map_lookup *map;
2dd7e7bc
NA
1971 const bool is_metadata = (block_group->flags &
1972 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
afba2bc0 1973 int ret = 0;
4dcbb8ab 1974 int i;
afba2bc0 1975
afba2bc0 1976 spin_lock(&block_group->lock);
3349b57f 1977 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
1978 spin_unlock(&block_group->lock);
1979 return 0;
1980 }
1981
1982 /* Check if we have unwritten allocated space */
2dd7e7bc 1983 if (is_metadata &&
aa9ffadf 1984 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
afba2bc0
NA
1985 spin_unlock(&block_group->lock);
1986 return -EAGAIN;
1987 }
afba2bc0
NA
1988
1989 /*
d70cbdda
NA
1990 * If we are sure that the block group is full (= no more room left for
1991 * new allocation) and the IO for the last usable block is completed, we
1992 * don't need to wait for the other IOs. This holds because we ensure
1993 * the sequential IO submissions using the ZONE_APPEND command for data
1994 * and block_group->meta_write_pointer for metadata.
afba2bc0 1995 */
d70cbdda 1996 if (!fully_written) {
afba2bc0 1997 spin_unlock(&block_group->lock);
afba2bc0 1998
d70cbdda
NA
1999 ret = btrfs_inc_block_group_ro(block_group, false);
2000 if (ret)
2001 return ret;
2002
2003 /* Ensure all writes in this block group finish */
2004 btrfs_wait_block_group_reservations(block_group);
2005 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2006 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2007 block_group->length);
2dd7e7bc
NA
2008 /* Wait for extent buffers to be written. */
2009 if (is_metadata)
2010 wait_eb_writebacks(block_group);
d70cbdda
NA
2011
2012 spin_lock(&block_group->lock);
2013
2014 /*
2015 * Bail out if someone already deactivated the block group, or
2016 * allocated space is left in the block group.
2017 */
3349b57f
JB
2018 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2019 &block_group->runtime_flags)) {
d70cbdda
NA
2020 spin_unlock(&block_group->lock);
2021 btrfs_dec_block_group_ro(block_group);
2022 return 0;
2023 }
2024
2025 if (block_group->reserved) {
2026 spin_unlock(&block_group->lock);
2027 btrfs_dec_block_group_ro(block_group);
2028 return -EAGAIN;
2029 }
afba2bc0
NA
2030 }
2031
3349b57f 2032 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
afba2bc0
NA
2033 block_group->alloc_offset = block_group->zone_capacity;
2034 block_group->free_space_ctl->free_space = 0;
2035 btrfs_clear_treelog_bg(block_group);
5911f538 2036 btrfs_clear_data_reloc_bg(block_group);
afba2bc0
NA
2037 spin_unlock(&block_group->lock);
2038
d70cbdda 2039 map = block_group->physical_map;
4dcbb8ab 2040 for (i = 0; i < map->num_stripes; i++) {
d70cbdda
NA
2041 struct btrfs_device *device = map->stripes[i].dev;
2042 const u64 physical = map->stripes[i].physical;
afba2bc0 2043
4dcbb8ab
JT
2044 if (device->zone_info->max_active_zones == 0)
2045 continue;
afba2bc0 2046
b3a3b025
NA
2047 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2048 physical >> SECTOR_SHIFT,
2049 device->zone_info->zone_size >> SECTOR_SHIFT,
2050 GFP_NOFS);
4dcbb8ab 2051
b3a3b025
NA
2052 if (ret)
2053 return ret;
afba2bc0 2054
4dcbb8ab 2055 btrfs_dev_clear_active_zone(device, physical);
afba2bc0 2056 }
d70cbdda
NA
2057
2058 if (!fully_written)
2059 btrfs_dec_block_group_ro(block_group);
afba2bc0 2060
4dcbb8ab
JT
2061 spin_lock(&fs_info->zone_active_bgs_lock);
2062 ASSERT(!list_empty(&block_group->active_bg_list));
2063 list_del_init(&block_group->active_bg_list);
2064 spin_unlock(&fs_info->zone_active_bgs_lock);
2065
2066 /* For active_bg_list */
2067 btrfs_put_block_group(block_group);
2068
d5b81ced 2069 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2ce543f4 2070
4dcbb8ab 2071 return 0;
afba2bc0 2072}
a85f05e5 2073
d70cbdda
NA
2074int btrfs_zone_finish(struct btrfs_block_group *block_group)
2075{
2076 if (!btrfs_is_zoned(block_group->fs_info))
2077 return 0;
2078
2079 return do_zone_finish(block_group, false);
2080}
2081
82187d2e 2082bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
a85f05e5 2083{
0b9e6676 2084 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
a85f05e5
NA
2085 struct btrfs_device *device;
2086 bool ret = false;
2087
0b9e6676 2088 if (!btrfs_is_zoned(fs_info))
a85f05e5
NA
2089 return true;
2090
a85f05e5 2091 /* Check if there is a device with active zones left */
0b9e6676
JT
2092 mutex_lock(&fs_info->chunk_mutex);
2093 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
a85f05e5
NA
2094 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2095
2096 if (!device->bdev)
2097 continue;
2098
2099 if (!zinfo->max_active_zones ||
2100 atomic_read(&zinfo->active_zones_left)) {
2101 ret = true;
2102 break;
2103 }
2104 }
0b9e6676 2105 mutex_unlock(&fs_info->chunk_mutex);
a85f05e5 2106
2ce543f4
NA
2107 if (!ret)
2108 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2109
a85f05e5
NA
2110 return ret;
2111}
be1a1d7a
NA
2112
2113void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2114{
2115 struct btrfs_block_group *block_group;
8b8a5399 2116 u64 min_alloc_bytes;
be1a1d7a
NA
2117
2118 if (!btrfs_is_zoned(fs_info))
2119 return;
2120
2121 block_group = btrfs_lookup_block_group(fs_info, logical);
2122 ASSERT(block_group);
2123
8b8a5399
NA
2124 /* No MIXED_BG on zoned btrfs. */
2125 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2126 min_alloc_bytes = fs_info->sectorsize;
2127 else
2128 min_alloc_bytes = fs_info->nodesize;
be1a1d7a 2129
8b8a5399
NA
2130 /* Bail out if we can allocate more data from this block group. */
2131 if (logical + length + min_alloc_bytes <=
2132 block_group->start + block_group->zone_capacity)
be1a1d7a 2133 goto out;
be1a1d7a 2134
d70cbdda 2135 do_zone_finish(block_group, true);
be1a1d7a 2136
be1a1d7a
NA
2137out:
2138 btrfs_put_block_group(block_group);
2139}
be1a1d7a 2140
56fbb0a4
NA
2141static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2142{
2143 struct btrfs_block_group *bg =
2144 container_of(work, struct btrfs_block_group, zone_finish_work);
be1a1d7a 2145
56fbb0a4
NA
2146 wait_on_extent_buffer_writeback(bg->last_eb);
2147 free_extent_buffer(bg->last_eb);
2148 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2149 btrfs_put_block_group(bg);
2150}
be1a1d7a 2151
56fbb0a4
NA
2152void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2153 struct extent_buffer *eb)
2154{
2155 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2156 return;
be1a1d7a 2157
56fbb0a4
NA
2158 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2159 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2160 bg->start);
2161 return;
2162 }
be1a1d7a 2163
56fbb0a4
NA
2164 /* For the work */
2165 btrfs_get_block_group(bg);
2166 atomic_inc(&eb->refs);
2167 bg->last_eb = eb;
2168 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2169 queue_work(system_unbound_wq, &bg->zone_finish_work);
be1a1d7a 2170}
c2707a25
JT
2171
2172void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2173{
2174 struct btrfs_fs_info *fs_info = bg->fs_info;
2175
2176 spin_lock(&fs_info->relocation_bg_lock);
2177 if (fs_info->data_reloc_bg == bg->start)
2178 fs_info->data_reloc_bg = 0;
2179 spin_unlock(&fs_info->relocation_bg_lock);
2180}
16beac87
NA
2181
2182void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2183{
2184 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2185 struct btrfs_device *device;
2186
2187 if (!btrfs_is_zoned(fs_info))
2188 return;
2189
2190 mutex_lock(&fs_devices->device_list_mutex);
2191 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2192 if (device->zone_info) {
2193 vfree(device->zone_info->zone_cache);
2194 device->zone_info->zone_cache = NULL;
2195 }
2196 }
2197 mutex_unlock(&fs_devices->device_list_mutex);
2198}
3687fcb0
JT
2199
2200bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2201{
2202 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2203 struct btrfs_device *device;
2204 u64 used = 0;
2205 u64 total = 0;
2206 u64 factor;
2207
2208 ASSERT(btrfs_is_zoned(fs_info));
2209
2210 if (fs_info->bg_reclaim_threshold == 0)
2211 return false;
2212
2213 mutex_lock(&fs_devices->device_list_mutex);
2214 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2215 if (!device->bdev)
2216 continue;
2217
2218 total += device->disk_total_bytes;
2219 used += device->bytes_used;
2220 }
2221 mutex_unlock(&fs_devices->device_list_mutex);
2222
2223 factor = div64_u64(used * 100, total);
2224 return factor >= fs_info->bg_reclaim_threshold;
2225}
343d8a30
NA
2226
2227void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2228 u64 length)
2229{
2230 struct btrfs_block_group *block_group;
2231
2232 if (!btrfs_is_zoned(fs_info))
2233 return;
2234
2235 block_group = btrfs_lookup_block_group(fs_info, logical);
2236 /* It should be called on a previous data relocation block group. */
2237 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2238
2239 spin_lock(&block_group->lock);
3349b57f 2240 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
343d8a30
NA
2241 goto out;
2242
2243 /* All relocation extents are written. */
2244 if (block_group->start + block_group->alloc_offset == logical + length) {
2245 /* Now, release this block group for further allocations. */
3349b57f
JB
2246 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2247 &block_group->runtime_flags);
343d8a30
NA
2248 }
2249
2250out:
2251 spin_unlock(&block_group->lock);
2252 btrfs_put_block_group(block_group);
2253}
393f646e
NA
2254
2255int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2256{
2257 struct btrfs_block_group *block_group;
2258 struct btrfs_block_group *min_bg = NULL;
2259 u64 min_avail = U64_MAX;
2260 int ret;
2261
2262 spin_lock(&fs_info->zone_active_bgs_lock);
2263 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2264 active_bg_list) {
2265 u64 avail;
2266
2267 spin_lock(&block_group->lock);
2268 if (block_group->reserved ||
2269 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2270 spin_unlock(&block_group->lock);
2271 continue;
2272 }
2273
2274 avail = block_group->zone_capacity - block_group->alloc_offset;
2275 if (min_avail > avail) {
2276 if (min_bg)
2277 btrfs_put_block_group(min_bg);
2278 min_bg = block_group;
2279 min_avail = avail;
2280 btrfs_get_block_group(min_bg);
2281 }
2282 spin_unlock(&block_group->lock);
2283 }
2284 spin_unlock(&fs_info->zone_active_bgs_lock);
2285
2286 if (!min_bg)
2287 return 0;
2288
2289 ret = btrfs_zone_finish(min_bg);
2290 btrfs_put_block_group(min_bg);
2291
2292 return ret < 0 ? ret : 1;
2293}
b0931513
NA
2294
2295int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2296 struct btrfs_space_info *space_info,
2297 bool do_finish)
2298{
2299 struct btrfs_block_group *bg;
2300 int index;
2301
2302 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2303 return 0;
2304
2305 /* No more block groups to activate */
2306 if (space_info->active_total_bytes == space_info->total_bytes)
2307 return 0;
2308
2309 for (;;) {
2310 int ret;
2311 bool need_finish = false;
2312
2313 down_read(&space_info->groups_sem);
2314 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2315 list_for_each_entry(bg, &space_info->block_groups[index],
2316 list) {
2317 if (!spin_trylock(&bg->lock))
2318 continue;
3349b57f
JB
2319 if (btrfs_zoned_bg_is_full(bg) ||
2320 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2321 &bg->runtime_flags)) {
b0931513
NA
2322 spin_unlock(&bg->lock);
2323 continue;
2324 }
2325 spin_unlock(&bg->lock);
2326
2327 if (btrfs_zone_activate(bg)) {
2328 up_read(&space_info->groups_sem);
2329 return 1;
2330 }
2331
2332 need_finish = true;
2333 }
2334 }
2335 up_read(&space_info->groups_sem);
2336
2337 if (!do_finish || !need_finish)
2338 break;
2339
2340 ret = btrfs_zone_finish_one_bg(fs_info);
2341 if (ret == 0)
2342 break;
2343 if (ret < 0)
2344 return ret;
2345 }
2346
2347 return 0;
2348}