Merge tag 'regmap-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-block.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
16beac87 8#include <linux/vmalloc.h>
5b316468
NA
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
1cd6121f 13#include "disk-io.h"
08e11a3d 14#include "block-group.h"
d3575156 15#include "transaction.h"
6143c23c 16#include "dev-replace.h"
7db1c5d1 17#include "space-info.h"
c7f13d42 18#include "fs.h"
07e81dc9 19#include "accessors.h"
69ccf3f4 20#include "bio.h"
5b316468
NA
21
22/* Maximum number of zones to report per blkdev_report_zones() call */
23#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
24/* Invalid allocation pointer value for missing devices */
25#define WP_MISSING_DEV ((u64)-1)
26/* Pseudo write pointer value for conventional zone */
27#define WP_CONVENTIONAL ((u64)-2)
5b316468 28
53b74fa9
NA
29/*
30 * Location of the first zone of superblock logging zone pairs.
31 *
32 * - primary superblock: 0B (zone 0)
33 * - first copy: 512G (zone starting at that offset)
34 * - second copy: 4T (zone starting at that offset)
35 */
36#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
37#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
38#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
39
40#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
41#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42
12659251
NA
43/* Number of superblock log zones */
44#define BTRFS_NR_SB_LOG_ZONES 2
45
ea6f8ddc
NA
46/*
47 * Minimum of active zones we need:
48 *
49 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
50 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
51 * - 1 zone for tree-log dedicated block group
52 * - 1 zone for relocation
53 */
54#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
55
53b74fa9 56/*
0a05fafe
JT
57 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
58 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
59 * We do not expect the zone size to become larger than 8GiB or smaller than
60 * 4MiB in the near future.
53b74fa9
NA
61 */
62#define BTRFS_MAX_ZONE_SIZE SZ_8G
0a05fafe 63#define BTRFS_MIN_ZONE_SIZE SZ_4M
53b74fa9 64
5daaf552
NA
65#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
66
67static inline bool sb_zone_is_full(const struct blk_zone *zone)
68{
69 return (zone->cond == BLK_ZONE_COND_FULL) ||
70 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
71}
72
5b316468
NA
73static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
74{
75 struct blk_zone *zones = data;
76
77 memcpy(&zones[idx], zone, sizeof(*zone));
78
79 return 0;
80}
81
12659251
NA
82static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
83 u64 *wp_ret)
84{
85 bool empty[BTRFS_NR_SB_LOG_ZONES];
86 bool full[BTRFS_NR_SB_LOG_ZONES];
87 sector_t sector;
5daaf552 88 int i;
12659251 89
5daaf552
NA
90 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
91 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
92 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
93 full[i] = sb_zone_is_full(&zones[i]);
94 }
12659251
NA
95
96 /*
97 * Possible states of log buffer zones
98 *
99 * Empty[0] In use[0] Full[0]
31f37269
PR
100 * Empty[1] * 0 1
101 * In use[1] x x 1
102 * Full[1] 0 0 C
12659251
NA
103 *
104 * Log position:
105 * *: Special case, no superblock is written
106 * 0: Use write pointer of zones[0]
107 * 1: Use write pointer of zones[1]
1a9fd417 108 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
109 * one determined by generation
110 * x: Invalid state
111 */
112
113 if (empty[0] && empty[1]) {
114 /* Special case to distinguish no superblock to read */
115 *wp_ret = zones[0].start << SECTOR_SHIFT;
116 return -ENOENT;
117 } else if (full[0] && full[1]) {
118 /* Compare two super blocks */
119 struct address_space *mapping = bdev->bd_inode->i_mapping;
120 struct page *page[BTRFS_NR_SB_LOG_ZONES];
121 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
122 int i;
123
124 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 u64 bytenr;
126
127 bytenr = ((zones[i].start + zones[i].len)
128 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
129
130 page[i] = read_cache_page_gfp(mapping,
131 bytenr >> PAGE_SHIFT, GFP_NOFS);
132 if (IS_ERR(page[i])) {
133 if (i == 1)
134 btrfs_release_disk_super(super[0]);
135 return PTR_ERR(page[i]);
136 }
137 super[i] = page_address(page[i]);
138 }
139
c51f0e6a
CH
140 if (btrfs_super_generation(super[0]) >
141 btrfs_super_generation(super[1]))
12659251
NA
142 sector = zones[1].start;
143 else
144 sector = zones[0].start;
145
146 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
147 btrfs_release_disk_super(super[i]);
148 } else if (!full[0] && (empty[1] || full[1])) {
149 sector = zones[0].wp;
150 } else if (full[0]) {
151 sector = zones[1].wp;
152 } else {
153 return -EUCLEAN;
154 }
155 *wp_ret = sector << SECTOR_SHIFT;
156 return 0;
157}
158
159/*
53b74fa9 160 * Get the first zone number of the superblock mirror
12659251
NA
161 */
162static inline u32 sb_zone_number(int shift, int mirror)
163{
12adffe6 164 u64 zone = U64_MAX;
12659251 165
53b74fa9 166 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 167 switch (mirror) {
53b74fa9
NA
168 case 0: zone = 0; break;
169 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
170 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
171 }
172
53b74fa9
NA
173 ASSERT(zone <= U32_MAX);
174
175 return (u32)zone;
12659251
NA
176}
177
5b434df8
NA
178static inline sector_t zone_start_sector(u32 zone_number,
179 struct block_device *bdev)
180{
181 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
182}
183
184static inline u64 zone_start_physical(u32 zone_number,
185 struct btrfs_zoned_device_info *zone_info)
186{
187 return (u64)zone_number << zone_info->zone_size_shift;
188}
189
3c9daa09
JT
190/*
191 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
192 * device into static sized chunks and fake a conventional zone on each of
193 * them.
194 */
195static int emulate_report_zones(struct btrfs_device *device, u64 pos,
196 struct blk_zone *zones, unsigned int nr_zones)
197{
198 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
199 sector_t bdev_size = bdev_nr_sectors(device->bdev);
200 unsigned int i;
201
202 pos >>= SECTOR_SHIFT;
203 for (i = 0; i < nr_zones; i++) {
204 zones[i].start = i * zone_sectors + pos;
205 zones[i].len = zone_sectors;
206 zones[i].capacity = zone_sectors;
207 zones[i].wp = zones[i].start + zone_sectors;
208 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
209 zones[i].cond = BLK_ZONE_COND_NOT_WP;
210
211 if (zones[i].wp >= bdev_size) {
212 i++;
213 break;
214 }
215 }
216
217 return i;
218}
219
5b316468
NA
220static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
221 struct blk_zone *zones, unsigned int *nr_zones)
222{
16beac87 223 struct btrfs_zoned_device_info *zinfo = device->zone_info;
5b316468
NA
224 int ret;
225
226 if (!*nr_zones)
227 return 0;
228
3c9daa09
JT
229 if (!bdev_is_zoned(device->bdev)) {
230 ret = emulate_report_zones(device, pos, zones, *nr_zones);
231 *nr_zones = ret;
232 return 0;
233 }
234
16beac87
NA
235 /* Check cache */
236 if (zinfo->zone_cache) {
237 unsigned int i;
cd30d3bc 238 u32 zno;
16beac87
NA
239
240 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
241 zno = pos >> zinfo->zone_size_shift;
242 /*
243 * We cannot report zones beyond the zone end. So, it is OK to
244 * cap *nr_zones to at the end.
245 */
246 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
247
248 for (i = 0; i < *nr_zones; i++) {
249 struct blk_zone *zone_info;
250
251 zone_info = &zinfo->zone_cache[zno + i];
252 if (!zone_info->len)
253 break;
254 }
255
256 if (i == *nr_zones) {
257 /* Cache hit on all the zones */
258 memcpy(zones, zinfo->zone_cache + zno,
259 sizeof(*zinfo->zone_cache) * *nr_zones);
260 return 0;
261 }
262 }
263
5b316468
NA
264 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
265 copy_zone_info_cb, zones);
266 if (ret < 0) {
267 btrfs_err_in_rcu(device->fs_info,
268 "zoned: failed to read zone %llu on %s (devid %llu)",
269 pos, rcu_str_deref(device->name),
270 device->devid);
271 return ret;
272 }
273 *nr_zones = ret;
274 if (!ret)
275 return -EIO;
276
16beac87 277 /* Populate cache */
cd30d3bc
NA
278 if (zinfo->zone_cache) {
279 u32 zno = pos >> zinfo->zone_size_shift;
280
16beac87
NA
281 memcpy(zinfo->zone_cache + zno, zones,
282 sizeof(*zinfo->zone_cache) * *nr_zones);
cd30d3bc 283 }
16beac87 284
5b316468
NA
285 return 0;
286}
287
3c9daa09
JT
288/* The emulated zone size is determined from the size of device extent */
289static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
290{
291 struct btrfs_path *path;
292 struct btrfs_root *root = fs_info->dev_root;
293 struct btrfs_key key;
294 struct extent_buffer *leaf;
295 struct btrfs_dev_extent *dext;
296 int ret = 0;
297
298 key.objectid = 1;
299 key.type = BTRFS_DEV_EXTENT_KEY;
300 key.offset = 0;
301
302 path = btrfs_alloc_path();
303 if (!path)
304 return -ENOMEM;
305
306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
307 if (ret < 0)
308 goto out;
309
310 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 311 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
312 if (ret < 0)
313 goto out;
314 /* No dev extents at all? Not good */
315 if (ret > 0) {
316 ret = -EUCLEAN;
317 goto out;
318 }
319 }
320
321 leaf = path->nodes[0];
322 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
323 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
324 ret = 0;
325
326out:
327 btrfs_free_path(path);
328
329 return ret;
330}
331
73651042
NA
332int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
333{
334 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
335 struct btrfs_device *device;
336 int ret = 0;
337
338 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
339 if (!btrfs_fs_incompat(fs_info, ZONED))
340 return 0;
341
342 mutex_lock(&fs_devices->device_list_mutex);
343 list_for_each_entry(device, &fs_devices->devices, dev_list) {
344 /* We can skip reading of zone info for missing devices */
345 if (!device->bdev)
346 continue;
347
16beac87 348 ret = btrfs_get_dev_zone_info(device, true);
73651042
NA
349 if (ret)
350 break;
351 }
352 mutex_unlock(&fs_devices->device_list_mutex);
353
354 return ret;
355}
356
16beac87 357int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
5b316468 358{
3c9daa09 359 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
360 struct btrfs_zoned_device_info *zone_info = NULL;
361 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
362 unsigned int max_active_zones;
363 unsigned int nactive;
5b316468
NA
364 sector_t nr_sectors;
365 sector_t sector = 0;
366 struct blk_zone *zones = NULL;
367 unsigned int i, nreported = 0, nr_zones;
d734492a 368 sector_t zone_sectors;
3c9daa09 369 char *model, *emulated;
5b316468
NA
370 int ret;
371
3c9daa09
JT
372 /*
373 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
374 * yet be set.
375 */
376 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
377 return 0;
378
379 if (device->zone_info)
380 return 0;
381
382 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
383 if (!zone_info)
384 return -ENOMEM;
385
16beac87
NA
386 device->zone_info = zone_info;
387
3c9daa09
JT
388 if (!bdev_is_zoned(bdev)) {
389 if (!fs_info->zone_size) {
390 ret = calculate_emulated_zone_size(fs_info);
391 if (ret)
392 goto out;
393 }
394
395 ASSERT(fs_info->zone_size);
396 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
397 } else {
398 zone_sectors = bdev_zone_sectors(bdev);
399 }
400
fd463ac4 401 ASSERT(is_power_of_two_u64(zone_sectors));
5b316468 402 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
403
404 /* We reject devices with a zone size larger than 8GB */
405 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
406 btrfs_err_in_rcu(fs_info,
407 "zoned: %s: zone size %llu larger than supported maximum %llu",
408 rcu_str_deref(device->name),
409 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
410 ret = -EINVAL;
411 goto out;
0a05fafe
JT
412 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
413 btrfs_err_in_rcu(fs_info,
414 "zoned: %s: zone size %llu smaller than supported minimum %u",
415 rcu_str_deref(device->name),
416 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
417 ret = -EINVAL;
418 goto out;
53b74fa9
NA
419 }
420
421 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
422 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
423 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
424 if (!IS_ALIGNED(nr_sectors, zone_sectors))
425 zone_info->nr_zones++;
426
c1e7b244 427 max_active_zones = bdev_max_active_zones(bdev);
ea6f8ddc
NA
428 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
429 btrfs_err_in_rcu(fs_info,
430"zoned: %s: max active zones %u is too small, need at least %u active zones",
431 rcu_str_deref(device->name), max_active_zones,
432 BTRFS_MIN_ACTIVE_ZONES);
433 ret = -EINVAL;
434 goto out;
435 }
436 zone_info->max_active_zones = max_active_zones;
437
5b316468
NA
438 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
439 if (!zone_info->seq_zones) {
440 ret = -ENOMEM;
441 goto out;
442 }
443
444 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
445 if (!zone_info->empty_zones) {
446 ret = -ENOMEM;
447 goto out;
448 }
449
ea6f8ddc
NA
450 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
451 if (!zone_info->active_zones) {
452 ret = -ENOMEM;
453 goto out;
454 }
455
8fe97d47 456 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
5b316468
NA
457 if (!zones) {
458 ret = -ENOMEM;
459 goto out;
460 }
461
16beac87
NA
462 /*
463 * Enable zone cache only for a zoned device. On a non-zoned device, we
464 * fill the zone info with emulated CONVENTIONAL zones, so no need to
465 * use the cache.
466 */
467 if (populate_cache && bdev_is_zoned(device->bdev)) {
468 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
469 zone_info->nr_zones);
470 if (!zone_info->zone_cache) {
471 btrfs_err_in_rcu(device->fs_info,
472 "zoned: failed to allocate zone cache for %s",
473 rcu_str_deref(device->name));
474 ret = -ENOMEM;
475 goto out;
476 }
477 }
478
5b316468 479 /* Get zones type */
ea6f8ddc 480 nactive = 0;
5b316468
NA
481 while (sector < nr_sectors) {
482 nr_zones = BTRFS_REPORT_NR_ZONES;
483 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
484 &nr_zones);
485 if (ret)
486 goto out;
487
488 for (i = 0; i < nr_zones; i++) {
489 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
490 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
491 switch (zones[i].cond) {
492 case BLK_ZONE_COND_EMPTY:
5b316468 493 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
494 break;
495 case BLK_ZONE_COND_IMP_OPEN:
496 case BLK_ZONE_COND_EXP_OPEN:
497 case BLK_ZONE_COND_CLOSED:
498 __set_bit(nreported, zone_info->active_zones);
499 nactive++;
500 break;
501 }
5b316468
NA
502 nreported++;
503 }
504 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
505 }
506
507 if (nreported != zone_info->nr_zones) {
508 btrfs_err_in_rcu(device->fs_info,
509 "inconsistent number of zones on %s (%u/%u)",
510 rcu_str_deref(device->name), nreported,
511 zone_info->nr_zones);
512 ret = -EIO;
513 goto out;
514 }
515
ea6f8ddc
NA
516 if (max_active_zones) {
517 if (nactive > max_active_zones) {
518 btrfs_err_in_rcu(device->fs_info,
519 "zoned: %u active zones on %s exceeds max_active_zones %u",
520 nactive, rcu_str_deref(device->name),
521 max_active_zones);
522 ret = -EIO;
523 goto out;
524 }
525 atomic_set(&zone_info->active_zones_left,
526 max_active_zones - nactive);
bf1f1fec 527 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
ea6f8ddc
NA
528 }
529
12659251
NA
530 /* Validate superblock log */
531 nr_zones = BTRFS_NR_SB_LOG_ZONES;
532 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
533 u32 sb_zone;
534 u64 sb_wp;
535 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
536
537 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
538 if (sb_zone + 1 >= zone_info->nr_zones)
539 continue;
540
5b434df8
NA
541 ret = btrfs_get_dev_zones(device,
542 zone_start_physical(sb_zone, zone_info),
12659251
NA
543 &zone_info->sb_zones[sb_pos],
544 &nr_zones);
545 if (ret)
546 goto out;
547
548 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
549 btrfs_err_in_rcu(device->fs_info,
550 "zoned: failed to read super block log zone info at devid %llu zone %u",
551 device->devid, sb_zone);
552 ret = -EUCLEAN;
553 goto out;
554 }
555
556 /*
1a9fd417 557 * If zones[0] is conventional, always use the beginning of the
12659251
NA
558 * zone to record superblock. No need to validate in that case.
559 */
560 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
561 BLK_ZONE_TYPE_CONVENTIONAL)
562 continue;
563
564 ret = sb_write_pointer(device->bdev,
565 &zone_info->sb_zones[sb_pos], &sb_wp);
566 if (ret != -ENOENT && ret) {
567 btrfs_err_in_rcu(device->fs_info,
568 "zoned: super block log zone corrupted devid %llu zone %u",
569 device->devid, sb_zone);
570 ret = -EUCLEAN;
571 goto out;
572 }
573 }
574
575
8fe97d47 576 kvfree(zones);
5b316468 577
3c9daa09
JT
578 switch (bdev_zoned_model(bdev)) {
579 case BLK_ZONED_HM:
580 model = "host-managed zoned";
581 emulated = "";
582 break;
583 case BLK_ZONED_HA:
584 model = "host-aware zoned";
585 emulated = "";
586 break;
587 case BLK_ZONED_NONE:
588 model = "regular";
589 emulated = "emulated ";
590 break;
591 default:
592 /* Just in case */
593 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
594 bdev_zoned_model(bdev),
595 rcu_str_deref(device->name));
596 ret = -EOPNOTSUPP;
597 goto out_free_zone_info;
598 }
599
600 btrfs_info_in_rcu(fs_info,
601 "%s block device %s, %u %szones of %llu bytes",
602 model, rcu_str_deref(device->name), zone_info->nr_zones,
603 emulated, zone_info->zone_size);
5b316468
NA
604
605 return 0;
606
607out:
8fe97d47 608 kvfree(zones);
3c9daa09 609out_free_zone_info:
16beac87 610 btrfs_destroy_dev_zone_info(device);
5b316468
NA
611
612 return ret;
613}
614
615void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
616{
617 struct btrfs_zoned_device_info *zone_info = device->zone_info;
618
619 if (!zone_info)
620 return;
621
ea6f8ddc 622 bitmap_free(zone_info->active_zones);
5b316468
NA
623 bitmap_free(zone_info->seq_zones);
624 bitmap_free(zone_info->empty_zones);
16beac87 625 vfree(zone_info->zone_cache);
5b316468
NA
626 kfree(zone_info);
627 device->zone_info = NULL;
628}
629
21e61ec6
JT
630struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
631{
632 struct btrfs_zoned_device_info *zone_info;
633
634 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
635 if (!zone_info)
636 return NULL;
637
638 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
639 if (!zone_info->seq_zones)
640 goto out;
641
642 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
643 zone_info->nr_zones);
644
645 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
646 if (!zone_info->empty_zones)
647 goto out;
648
649 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
650 zone_info->nr_zones);
651
652 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
653 if (!zone_info->active_zones)
654 goto out;
655
656 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
657 zone_info->nr_zones);
658 zone_info->zone_cache = NULL;
659
660 return zone_info;
661
662out:
663 bitmap_free(zone_info->seq_zones);
664 bitmap_free(zone_info->empty_zones);
665 bitmap_free(zone_info->active_zones);
666 kfree(zone_info);
667 return NULL;
668}
669
5b316468
NA
670int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
671 struct blk_zone *zone)
672{
673 unsigned int nr_zones = 1;
674 int ret;
675
676 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
677 if (ret != 0 || !nr_zones)
678 return ret ? ret : -EIO;
679
680 return 0;
681}
b70f5097 682
650c8a9c
CH
683static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
684{
685 struct btrfs_device *device;
686
687 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
688 if (device->bdev &&
689 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
690 btrfs_err(fs_info,
691 "zoned: mode not enabled but zoned device found: %pg",
692 device->bdev);
693 return -EINVAL;
694 }
695 }
696
697 return 0;
698}
699
b70f5097
NA
700int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
701{
243cf8d1 702 struct queue_limits *lim = &fs_info->limits;
b70f5097 703 struct btrfs_device *device;
b70f5097 704 u64 zone_size = 0;
650c8a9c 705 int ret;
b70f5097 706
650c8a9c
CH
707 /*
708 * Host-Managed devices can't be used without the ZONED flag. With the
709 * ZONED all devices can be used, using zone emulation if required.
710 */
711 if (!btrfs_fs_incompat(fs_info, ZONED))
712 return btrfs_check_for_zoned_device(fs_info);
713
243cf8d1
CH
714 blk_set_stacking_limits(lim);
715
650c8a9c
CH
716 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
717 struct btrfs_zoned_device_info *zone_info = device->zone_info;
b70f5097
NA
718
719 if (!device->bdev)
720 continue;
721
650c8a9c
CH
722 if (!zone_size) {
723 zone_size = zone_info->zone_size;
724 } else if (zone_info->zone_size != zone_size) {
725 btrfs_err(fs_info,
b70f5097 726 "zoned: unequal block device zone sizes: have %llu found %llu",
650c8a9c
CH
727 zone_info->zone_size, zone_size);
728 return -EINVAL;
b70f5097 729 }
243cf8d1
CH
730
731 /*
732 * With the zoned emulation, we can have non-zoned device on the
733 * zoned mode. In this case, we don't have a valid max zone
734 * append size.
735 */
736 if (bdev_is_zoned(device->bdev)) {
737 blk_stack_limits(lim,
738 &bdev_get_queue(device->bdev)->limits,
739 0);
740 }
b70f5097
NA
741 }
742
743 /*
744 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 745 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
746 * check the alignment here.
747 */
748 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
749 btrfs_err(fs_info,
750 "zoned: zone size %llu not aligned to stripe %u",
751 zone_size, BTRFS_STRIPE_LEN);
650c8a9c 752 return -EINVAL;
b70f5097
NA
753 }
754
a589dde0
NA
755 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
756 btrfs_err(fs_info, "zoned: mixed block groups not supported");
650c8a9c 757 return -EINVAL;
a589dde0
NA
758 }
759
b70f5097 760 fs_info->zone_size = zone_size;
243cf8d1
CH
761 /*
762 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
763 * Technically, we can have multiple pages per segment. But, since
764 * we add the pages one by one to a bio, and cannot increase the
765 * metadata reservation even if it increases the number of extents, it
766 * is safe to stick with the limit.
767 */
768 fs_info->max_zone_append_size = ALIGN_DOWN(
769 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
770 (u64)lim->max_sectors << SECTOR_SHIFT,
771 (u64)lim->max_segments << PAGE_SHIFT),
772 fs_info->sectorsize);
1cd6121f 773 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
f7b12a62
NA
774 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
775 fs_info->max_extent_size = fs_info->max_zone_append_size;
b70f5097 776
b53429ba
JT
777 /*
778 * Check mount options here, because we might change fs_info->zoned
779 * from fs_info->zone_size.
780 */
781 ret = btrfs_check_mountopts_zoned(fs_info);
782 if (ret)
650c8a9c 783 return ret;
b53429ba 784
b70f5097 785 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
650c8a9c 786 return 0;
b70f5097 787}
5d1ab66c
NA
788
789int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
790{
791 if (!btrfs_is_zoned(info))
792 return 0;
793
794 /*
795 * Space cache writing is not COWed. Disable that to avoid write errors
796 * in sequential zones.
797 */
798 if (btrfs_test_opt(info, SPACE_CACHE)) {
799 btrfs_err(info, "zoned: space cache v1 is not supported");
800 return -EINVAL;
801 }
802
d206e9c9
NA
803 if (btrfs_test_opt(info, NODATACOW)) {
804 btrfs_err(info, "zoned: NODATACOW not supported");
805 return -EINVAL;
806 }
807
5d1ab66c
NA
808 return 0;
809}
12659251
NA
810
811static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
812 int rw, u64 *bytenr_ret)
813{
814 u64 wp;
815 int ret;
816
817 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
818 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
819 return 0;
820 }
821
822 ret = sb_write_pointer(bdev, zones, &wp);
823 if (ret != -ENOENT && ret < 0)
824 return ret;
825
826 if (rw == WRITE) {
827 struct blk_zone *reset = NULL;
828
829 if (wp == zones[0].start << SECTOR_SHIFT)
830 reset = &zones[0];
831 else if (wp == zones[1].start << SECTOR_SHIFT)
832 reset = &zones[1];
833
834 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 835 ASSERT(sb_zone_is_full(reset));
12659251
NA
836
837 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
838 reset->start, reset->len,
839 GFP_NOFS);
840 if (ret)
841 return ret;
842
843 reset->cond = BLK_ZONE_COND_EMPTY;
844 reset->wp = reset->start;
845 }
846 } else if (ret != -ENOENT) {
9658b72e
NA
847 /*
848 * For READ, we want the previous one. Move write pointer to
849 * the end of a zone, if it is at the head of a zone.
850 */
851 u64 zone_end = 0;
852
12659251 853 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
854 zone_end = zones[1].start + zones[1].capacity;
855 else if (wp == zones[1].start << SECTOR_SHIFT)
856 zone_end = zones[0].start + zones[0].capacity;
857 if (zone_end)
858 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
859 BTRFS_SUPER_INFO_SIZE);
860
12659251
NA
861 wp -= BTRFS_SUPER_INFO_SIZE;
862 }
863
864 *bytenr_ret = wp;
865 return 0;
866
867}
868
869int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
870 u64 *bytenr_ret)
871{
872 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 873 sector_t zone_sectors;
12659251
NA
874 u32 sb_zone;
875 int ret;
12659251
NA
876 u8 zone_sectors_shift;
877 sector_t nr_sectors;
878 u32 nr_zones;
879
880 if (!bdev_is_zoned(bdev)) {
881 *bytenr_ret = btrfs_sb_offset(mirror);
882 return 0;
883 }
884
885 ASSERT(rw == READ || rw == WRITE);
886
887 zone_sectors = bdev_zone_sectors(bdev);
888 if (!is_power_of_2(zone_sectors))
889 return -EINVAL;
12659251 890 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 891 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
892 nr_zones = nr_sectors >> zone_sectors_shift;
893
894 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
895 if (sb_zone + 1 >= nr_zones)
896 return -ENOENT;
897
5b434df8 898 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
899 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
900 zones);
901 if (ret < 0)
902 return ret;
903 if (ret != BTRFS_NR_SB_LOG_ZONES)
904 return -EIO;
905
906 return sb_log_location(bdev, zones, rw, bytenr_ret);
907}
908
909int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
910 u64 *bytenr_ret)
911{
912 struct btrfs_zoned_device_info *zinfo = device->zone_info;
913 u32 zone_num;
914
d6639b35
NA
915 /*
916 * For a zoned filesystem on a non-zoned block device, use the same
917 * super block locations as regular filesystem. Doing so, the super
918 * block can always be retrieved and the zoned flag of the volume
919 * detected from the super block information.
920 */
921 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
922 *bytenr_ret = btrfs_sb_offset(mirror);
923 return 0;
924 }
925
926 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
927 if (zone_num + 1 >= zinfo->nr_zones)
928 return -ENOENT;
929
930 return sb_log_location(device->bdev,
931 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
932 rw, bytenr_ret);
933}
934
935static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
936 int mirror)
937{
938 u32 zone_num;
939
940 if (!zinfo)
941 return false;
942
943 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
944 if (zone_num + 1 >= zinfo->nr_zones)
945 return false;
946
947 if (!test_bit(zone_num, zinfo->seq_zones))
948 return false;
949
950 return true;
951}
952
8376d9e1 953int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
954{
955 struct btrfs_zoned_device_info *zinfo = device->zone_info;
956 struct blk_zone *zone;
8376d9e1 957 int i;
12659251
NA
958
959 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 960 return 0;
12659251
NA
961
962 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
963 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
964 /* Advance the next zone */
965 if (zone->cond == BLK_ZONE_COND_FULL) {
966 zone++;
967 continue;
968 }
969
12659251
NA
970 if (zone->cond == BLK_ZONE_COND_EMPTY)
971 zone->cond = BLK_ZONE_COND_IMP_OPEN;
972
8376d9e1
NA
973 zone->wp += SUPER_INFO_SECTORS;
974
975 if (sb_zone_is_full(zone)) {
976 /*
977 * No room left to write new superblock. Since
978 * superblock is written with REQ_SYNC, it is safe to
979 * finish the zone now.
980 *
981 * If the write pointer is exactly at the capacity,
982 * explicit ZONE_FINISH is not necessary.
983 */
984 if (zone->wp != zone->start + zone->capacity) {
985 int ret;
986
987 ret = blkdev_zone_mgmt(device->bdev,
988 REQ_OP_ZONE_FINISH, zone->start,
989 zone->len, GFP_NOFS);
990 if (ret)
991 return ret;
992 }
12659251 993
8376d9e1 994 zone->wp = zone->start + zone->len;
12659251 995 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
996 }
997 return 0;
12659251
NA
998 }
999
8376d9e1
NA
1000 /* All the zones are FULL. Should not reach here. */
1001 ASSERT(0);
1002 return -EIO;
12659251
NA
1003}
1004
1005int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1006{
1007 sector_t zone_sectors;
1008 sector_t nr_sectors;
1009 u8 zone_sectors_shift;
1010 u32 sb_zone;
1011 u32 nr_zones;
1012
1013 zone_sectors = bdev_zone_sectors(bdev);
1014 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 1015 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
1016 nr_zones = nr_sectors >> zone_sectors_shift;
1017
1018 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1019 if (sb_zone + 1 >= nr_zones)
1020 return -ENOENT;
1021
1022 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 1023 zone_start_sector(sb_zone, bdev),
12659251
NA
1024 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1025}
1cd6121f 1026
43dd529a
DS
1027/*
1028 * Find allocatable zones within a given region.
1cd6121f
NA
1029 *
1030 * @device: the device to allocate a region on
1031 * @hole_start: the position of the hole to allocate the region
1032 * @num_bytes: size of wanted region
1033 * @hole_end: the end of the hole
1034 * @return: position of allocatable zones
1035 *
1036 * Allocatable region should not contain any superblock locations.
1037 */
1038u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1039 u64 hole_end, u64 num_bytes)
1040{
1041 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1042 const u8 shift = zinfo->zone_size_shift;
1043 u64 nzones = num_bytes >> shift;
1044 u64 pos = hole_start;
1045 u64 begin, end;
1046 bool have_sb;
1047 int i;
1048
1049 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1050 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1051
1052 while (pos < hole_end) {
1053 begin = pos >> shift;
1054 end = begin + nzones;
1055
1056 if (end > zinfo->nr_zones)
1057 return hole_end;
1058
1059 /* Check if zones in the region are all empty */
1060 if (btrfs_dev_is_sequential(device, pos) &&
1061 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1062 pos += zinfo->zone_size;
1063 continue;
1064 }
1065
1066 have_sb = false;
1067 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1068 u32 sb_zone;
1069 u64 sb_pos;
1070
1071 sb_zone = sb_zone_number(shift, i);
1072 if (!(end <= sb_zone ||
1073 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1074 have_sb = true;
5b434df8
NA
1075 pos = zone_start_physical(
1076 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
1077 break;
1078 }
1079
1080 /* We also need to exclude regular superblock positions */
1081 sb_pos = btrfs_sb_offset(i);
1082 if (!(pos + num_bytes <= sb_pos ||
1083 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1084 have_sb = true;
1085 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1086 zinfo->zone_size);
1087 break;
1088 }
1089 }
1090 if (!have_sb)
1091 break;
1092 }
1093
1094 return pos;
1095}
1096
afba2bc0
NA
1097static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1098{
1099 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1100 unsigned int zno = (pos >> zone_info->zone_size_shift);
1101
1102 /* We can use any number of zones */
1103 if (zone_info->max_active_zones == 0)
1104 return true;
1105
1106 if (!test_bit(zno, zone_info->active_zones)) {
1107 /* Active zone left? */
1108 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1109 return false;
1110 if (test_and_set_bit(zno, zone_info->active_zones)) {
1111 /* Someone already set the bit */
1112 atomic_inc(&zone_info->active_zones_left);
1113 }
1114 }
1115
1116 return true;
1117}
1118
1119static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1120{
1121 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1122 unsigned int zno = (pos >> zone_info->zone_size_shift);
1123
1124 /* We can use any number of zones */
1125 if (zone_info->max_active_zones == 0)
1126 return;
1127
1128 if (test_and_clear_bit(zno, zone_info->active_zones))
1129 atomic_inc(&zone_info->active_zones_left);
1130}
1131
1cd6121f
NA
1132int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1133 u64 length, u64 *bytes)
1134{
1135 int ret;
1136
1137 *bytes = 0;
1138 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1139 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1140 GFP_NOFS);
1141 if (ret)
1142 return ret;
1143
1144 *bytes = length;
1145 while (length) {
1146 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1147 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1148 physical += device->zone_info->zone_size;
1149 length -= device->zone_info->zone_size;
1150 }
1151
1152 return 0;
1153}
1154
1155int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1156{
1157 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1158 const u8 shift = zinfo->zone_size_shift;
1159 unsigned long begin = start >> shift;
1160 unsigned long end = (start + size) >> shift;
1161 u64 pos;
1162 int ret;
1163
1164 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1165 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1166
1167 if (end > zinfo->nr_zones)
1168 return -ERANGE;
1169
1170 /* All the zones are conventional */
1171 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1172 return 0;
1173
1174 /* All the zones are sequential and empty */
1175 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1176 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1177 return 0;
1178
1179 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1180 u64 reset_bytes;
1181
1182 if (!btrfs_dev_is_sequential(device, pos) ||
1183 btrfs_dev_is_empty_zone(device, pos))
1184 continue;
1185
1186 /* Free regions should be empty */
1187 btrfs_warn_in_rcu(
1188 device->fs_info,
1189 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1190 rcu_str_deref(device->name), device->devid, pos >> shift);
1191 WARN_ON_ONCE(1);
1192
1193 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1194 &reset_bytes);
1195 if (ret)
1196 return ret;
1197 }
1198
1199 return 0;
1200}
08e11a3d 1201
a94794d5
NA
1202/*
1203 * Calculate an allocation pointer from the extent allocation information
1204 * for a block group consist of conventional zones. It is pointed to the
1205 * end of the highest addressed extent in the block group as an allocation
1206 * offset.
1207 */
1208static int calculate_alloc_pointer(struct btrfs_block_group *cache,
6ca64ac2 1209 u64 *offset_ret, bool new)
a94794d5
NA
1210{
1211 struct btrfs_fs_info *fs_info = cache->fs_info;
29cbcf40 1212 struct btrfs_root *root;
a94794d5
NA
1213 struct btrfs_path *path;
1214 struct btrfs_key key;
1215 struct btrfs_key found_key;
1216 int ret;
1217 u64 length;
1218
6ca64ac2
JT
1219 /*
1220 * Avoid tree lookups for a new block group, there's no use for it.
1221 * It must always be 0.
1222 *
1223 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1224 * For new a block group, this function is called from
1225 * btrfs_make_block_group() which is already taking the chunk mutex.
1226 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1227 * buffer locks to avoid deadlock.
1228 */
1229 if (new) {
1230 *offset_ret = 0;
1231 return 0;
1232 }
1233
a94794d5
NA
1234 path = btrfs_alloc_path();
1235 if (!path)
1236 return -ENOMEM;
1237
1238 key.objectid = cache->start + cache->length;
1239 key.type = 0;
1240 key.offset = 0;
1241
29cbcf40 1242 root = btrfs_extent_root(fs_info, key.objectid);
a94794d5
NA
1243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1244 /* We should not find the exact match */
1245 if (!ret)
1246 ret = -EUCLEAN;
1247 if (ret < 0)
1248 goto out;
1249
1250 ret = btrfs_previous_extent_item(root, path, cache->start);
1251 if (ret) {
1252 if (ret == 1) {
1253 ret = 0;
1254 *offset_ret = 0;
1255 }
1256 goto out;
1257 }
1258
1259 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1260
1261 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1262 length = found_key.offset;
1263 else
1264 length = fs_info->nodesize;
1265
1266 if (!(found_key.objectid >= cache->start &&
1267 found_key.objectid + length <= cache->start + cache->length)) {
1268 ret = -EUCLEAN;
1269 goto out;
1270 }
1271 *offset_ret = found_key.objectid + length - cache->start;
1272 ret = 0;
1273
1274out:
1275 btrfs_free_path(path);
1276 return ret;
1277}
1278
1279int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1280{
1281 struct btrfs_fs_info *fs_info = cache->fs_info;
1282 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1283 struct extent_map *em;
1284 struct map_lookup *map;
1285 struct btrfs_device *device;
1286 u64 logical = cache->start;
1287 u64 length = cache->length;
08e11a3d
NA
1288 int ret;
1289 int i;
1290 unsigned int nofs_flag;
1291 u64 *alloc_offsets = NULL;
8eae532b 1292 u64 *caps = NULL;
dbfcc18f 1293 u64 *physical = NULL;
68a384b5 1294 unsigned long *active = NULL;
a94794d5 1295 u64 last_alloc = 0;
08e11a3d
NA
1296 u32 num_sequential = 0, num_conventional = 0;
1297
1298 if (!btrfs_is_zoned(fs_info))
1299 return 0;
1300
1301 /* Sanity check */
1302 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1303 btrfs_err(fs_info,
1304 "zoned: block group %llu len %llu unaligned to zone size %llu",
1305 logical, length, fs_info->zone_size);
1306 return -EIO;
1307 }
1308
1309 /* Get the chunk mapping */
1310 read_lock(&em_tree->lock);
1311 em = lookup_extent_mapping(em_tree, logical, length);
1312 read_unlock(&em_tree->lock);
1313
1314 if (!em)
1315 return -EINVAL;
1316
1317 map = em->map_lookup;
1318
64259baa 1319 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
dafc340d
NA
1320 if (!cache->physical_map) {
1321 ret = -ENOMEM;
1322 goto out;
1323 }
1324
08e11a3d
NA
1325 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1326 if (!alloc_offsets) {
dafc340d
NA
1327 ret = -ENOMEM;
1328 goto out;
08e11a3d
NA
1329 }
1330
8eae532b
NA
1331 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1332 if (!caps) {
1333 ret = -ENOMEM;
1334 goto out;
1335 }
1336
dbfcc18f
JT
1337 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1338 if (!physical) {
1339 ret = -ENOMEM;
1340 goto out;
1341 }
1342
68a384b5
NA
1343 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1344 if (!active) {
1345 ret = -ENOMEM;
1346 goto out;
1347 }
1348
08e11a3d
NA
1349 for (i = 0; i < map->num_stripes; i++) {
1350 bool is_sequential;
1351 struct blk_zone zone;
6143c23c
NA
1352 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1353 int dev_replace_is_ongoing = 0;
08e11a3d
NA
1354
1355 device = map->stripes[i].dev;
dbfcc18f 1356 physical[i] = map->stripes[i].physical;
08e11a3d
NA
1357
1358 if (device->bdev == NULL) {
1359 alloc_offsets[i] = WP_MISSING_DEV;
1360 continue;
1361 }
1362
dbfcc18f 1363 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
08e11a3d
NA
1364 if (is_sequential)
1365 num_sequential++;
1366 else
1367 num_conventional++;
1368
6ca64ac2
JT
1369 /*
1370 * Consider a zone as active if we can allow any number of
1371 * active zones.
1372 */
1373 if (!device->zone_info->max_active_zones)
1374 __set_bit(i, active);
1375
08e11a3d
NA
1376 if (!is_sequential) {
1377 alloc_offsets[i] = WP_CONVENTIONAL;
1378 continue;
1379 }
1380
1381 /*
1382 * This zone will be used for allocation, so mark this zone
1383 * non-empty.
1384 */
dbfcc18f 1385 btrfs_dev_clear_zone_empty(device, physical[i]);
08e11a3d 1386
6143c23c
NA
1387 down_read(&dev_replace->rwsem);
1388 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1389 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
dbfcc18f 1390 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
6143c23c
NA
1391 up_read(&dev_replace->rwsem);
1392
08e11a3d
NA
1393 /*
1394 * The group is mapped to a sequential zone. Get the zone write
1395 * pointer to determine the allocation offset within the zone.
1396 */
dbfcc18f 1397 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
08e11a3d 1398 nofs_flag = memalloc_nofs_save();
dbfcc18f 1399 ret = btrfs_get_dev_zone(device, physical[i], &zone);
08e11a3d
NA
1400 memalloc_nofs_restore(nofs_flag);
1401 if (ret == -EIO || ret == -EOPNOTSUPP) {
1402 ret = 0;
1403 alloc_offsets[i] = WP_MISSING_DEV;
1404 continue;
1405 } else if (ret) {
1406 goto out;
1407 }
1408
784daf2b 1409 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
47cdfb5e
NA
1410 btrfs_err_in_rcu(fs_info,
1411 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1412 zone.start << SECTOR_SHIFT,
1413 rcu_str_deref(device->name), device->devid);
784daf2b
NA
1414 ret = -EIO;
1415 goto out;
1416 }
1417
8eae532b
NA
1418 caps[i] = (zone.capacity << SECTOR_SHIFT);
1419
08e11a3d
NA
1420 switch (zone.cond) {
1421 case BLK_ZONE_COND_OFFLINE:
1422 case BLK_ZONE_COND_READONLY:
1423 btrfs_err(fs_info,
1424 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
dbfcc18f 1425 physical[i] >> device->zone_info->zone_size_shift,
08e11a3d
NA
1426 rcu_str_deref(device->name), device->devid);
1427 alloc_offsets[i] = WP_MISSING_DEV;
1428 break;
1429 case BLK_ZONE_COND_EMPTY:
1430 alloc_offsets[i] = 0;
1431 break;
1432 case BLK_ZONE_COND_FULL:
8eae532b 1433 alloc_offsets[i] = caps[i];
08e11a3d
NA
1434 break;
1435 default:
1436 /* Partially used zone */
1437 alloc_offsets[i] =
1438 ((zone.wp - zone.start) << SECTOR_SHIFT);
68a384b5 1439 __set_bit(i, active);
08e11a3d
NA
1440 break;
1441 }
1442 }
1443
08f45559 1444 if (num_sequential > 0)
961f5b8b 1445 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
08f45559 1446
08e11a3d 1447 if (num_conventional > 0) {
8eae532b
NA
1448 /* Zone capacity is always zone size in emulation */
1449 cache->zone_capacity = cache->length;
6ca64ac2
JT
1450 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1451 if (ret) {
1452 btrfs_err(fs_info,
a94794d5 1453 "zoned: failed to determine allocation offset of bg %llu",
6ca64ac2
JT
1454 cache->start);
1455 goto out;
1456 } else if (map->num_stripes == num_conventional) {
1457 cache->alloc_offset = last_alloc;
3349b57f 1458 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
a94794d5
NA
1459 goto out;
1460 }
08e11a3d
NA
1461 }
1462
1463 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1464 case 0: /* single */
06e1e7f4
JT
1465 if (alloc_offsets[0] == WP_MISSING_DEV) {
1466 btrfs_err(fs_info,
1467 "zoned: cannot recover write pointer for zone %llu",
dbfcc18f 1468 physical[0]);
06e1e7f4
JT
1469 ret = -EIO;
1470 goto out;
1471 }
08e11a3d 1472 cache->alloc_offset = alloc_offsets[0];
8eae532b 1473 cache->zone_capacity = caps[0];
3349b57f
JB
1474 if (test_bit(0, active))
1475 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
08e11a3d
NA
1476 break;
1477 case BTRFS_BLOCK_GROUP_DUP:
265f7237
JT
1478 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1479 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1480 ret = -EINVAL;
1481 goto out;
1482 }
1483 if (alloc_offsets[0] == WP_MISSING_DEV) {
1484 btrfs_err(fs_info,
1485 "zoned: cannot recover write pointer for zone %llu",
1486 physical[0]);
1487 ret = -EIO;
1488 goto out;
1489 }
1490 if (alloc_offsets[1] == WP_MISSING_DEV) {
1491 btrfs_err(fs_info,
1492 "zoned: cannot recover write pointer for zone %llu",
1493 physical[1]);
1494 ret = -EIO;
1495 goto out;
1496 }
1497 if (alloc_offsets[0] != alloc_offsets[1]) {
1498 btrfs_err(fs_info,
1499 "zoned: write pointer offset mismatch of zones in DUP profile");
1500 ret = -EIO;
1501 goto out;
1502 }
1503 if (test_bit(0, active) != test_bit(1, active)) {
1504 if (!btrfs_zone_activate(cache)) {
1505 ret = -EIO;
1506 goto out;
1507 }
1508 } else {
3349b57f
JB
1509 if (test_bit(0, active))
1510 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1511 &cache->runtime_flags);
265f7237
JT
1512 }
1513 cache->alloc_offset = alloc_offsets[0];
1514 cache->zone_capacity = min(caps[0], caps[1]);
1515 break;
08e11a3d
NA
1516 case BTRFS_BLOCK_GROUP_RAID1:
1517 case BTRFS_BLOCK_GROUP_RAID0:
1518 case BTRFS_BLOCK_GROUP_RAID10:
1519 case BTRFS_BLOCK_GROUP_RAID5:
1520 case BTRFS_BLOCK_GROUP_RAID6:
1521 /* non-single profiles are not supported yet */
1522 default:
1523 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1524 btrfs_bg_type_to_raid_name(map->type));
1525 ret = -EINVAL;
1526 goto out;
1527 }
1528
1529out:
06e1e7f4
JT
1530 if (cache->alloc_offset > fs_info->zone_size) {
1531 btrfs_err(fs_info,
1532 "zoned: invalid write pointer %llu in block group %llu",
1533 cache->alloc_offset, cache->start);
1534 ret = -EIO;
1535 }
1536
8eae532b
NA
1537 if (cache->alloc_offset > cache->zone_capacity) {
1538 btrfs_err(fs_info,
1539"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1540 cache->alloc_offset, cache->zone_capacity,
1541 cache->start);
1542 ret = -EIO;
1543 }
1544
a94794d5
NA
1545 /* An extent is allocated after the write pointer */
1546 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1547 btrfs_err(fs_info,
1548 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1549 logical, last_alloc, cache->alloc_offset);
1550 ret = -EIO;
1551 }
1552
6ca64ac2 1553 if (!ret) {
0bc09ca1 1554 cache->meta_write_pointer = cache->alloc_offset + cache->start;
3349b57f 1555 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
6ca64ac2
JT
1556 btrfs_get_block_group(cache);
1557 spin_lock(&fs_info->zone_active_bgs_lock);
1558 list_add_tail(&cache->active_bg_list,
1559 &fs_info->zone_active_bgs);
1560 spin_unlock(&fs_info->zone_active_bgs_lock);
1561 }
1562 } else {
dafc340d
NA
1563 kfree(cache->physical_map);
1564 cache->physical_map = NULL;
1565 }
68a384b5 1566 bitmap_free(active);
dbfcc18f 1567 kfree(physical);
8eae532b 1568 kfree(caps);
08e11a3d
NA
1569 kfree(alloc_offsets);
1570 free_extent_map(em);
1571
1572 return ret;
1573}
169e0da9
NA
1574
1575void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1576{
1577 u64 unusable, free;
1578
1579 if (!btrfs_is_zoned(cache->fs_info))
1580 return;
1581
1582 WARN_ON(cache->bytes_super != 0);
fa2068d7
NA
1583
1584 /* Check for block groups never get activated */
1585 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) &&
1586 cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) &&
1587 !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) &&
1588 cache->alloc_offset == 0) {
1589 unusable = cache->length;
1590 free = 0;
1591 } else {
1592 unusable = (cache->alloc_offset - cache->used) +
1593 (cache->length - cache->zone_capacity);
1594 free = cache->zone_capacity - cache->alloc_offset;
1595 }
169e0da9
NA
1596
1597 /* We only need ->free_space in ALLOC_SEQ block groups */
169e0da9
NA
1598 cache->cached = BTRFS_CACHE_FINISHED;
1599 cache->free_space_ctl->free_space = free;
1600 cache->zone_unusable = unusable;
169e0da9 1601}
d3575156
NA
1602
1603void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1604 struct extent_buffer *eb)
1605{
1606 struct btrfs_fs_info *fs_info = eb->fs_info;
1607
1608 if (!btrfs_is_zoned(fs_info) ||
1609 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1610 !list_empty(&eb->release_list))
1611 return;
1612
1613 set_extent_buffer_dirty(eb);
1614 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1615 eb->start + eb->len - 1, EXTENT_DIRTY);
1616 memzero_extent_buffer(eb, 0, eb->len);
1617 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1618
1619 spin_lock(&trans->releasing_ebs_lock);
1620 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1621 spin_unlock(&trans->releasing_ebs_lock);
1622 atomic_inc(&eb->refs);
1623}
1624
1625void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1626{
1627 spin_lock(&trans->releasing_ebs_lock);
1628 while (!list_empty(&trans->releasing_ebs)) {
1629 struct extent_buffer *eb;
1630
1631 eb = list_first_entry(&trans->releasing_ebs,
1632 struct extent_buffer, release_list);
1633 list_del_init(&eb->release_list);
1634 free_extent_buffer(eb);
1635 }
1636 spin_unlock(&trans->releasing_ebs_lock);
1637}
08f45559 1638
921603c7 1639bool btrfs_use_zone_append(struct btrfs_bio *bbio)
08f45559 1640{
921603c7
CH
1641 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1642 struct btrfs_inode *inode = bbio->inode;
08f45559
JT
1643 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1644 struct btrfs_block_group *cache;
1645 bool ret = false;
1646
1647 if (!btrfs_is_zoned(fs_info))
1648 return false;
1649
08f45559
JT
1650 if (!is_data_inode(&inode->vfs_inode))
1651 return false;
1652
fdf9a37d
CH
1653 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1654 return false;
1655
e6d261e3
JT
1656 /*
1657 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1658 * extent layout the relocation code has.
1659 * Furthermore we have set aside own block-group from which only the
1660 * relocation "process" can allocate and make sure only one process at a
1661 * time can add pages to an extent that gets relocated, so it's safe to
1662 * use regular REQ_OP_WRITE for this special case.
1663 */
1664 if (btrfs_is_data_reloc_root(inode->root))
1665 return false;
1666
e380adfc 1667 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1668 ASSERT(cache);
1669 if (!cache)
1670 return false;
1671
961f5b8b 1672 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
08f45559
JT
1673 btrfs_put_block_group(cache);
1674
1675 return ret;
1676}
d8e3fb10 1677
69ccf3f4 1678void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
d8e3fb10 1679{
69ccf3f4 1680 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
d8e3fb10 1681 struct btrfs_ordered_extent *ordered;
d8e3fb10 1682
69ccf3f4 1683 ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
d8e3fb10
NA
1684 if (WARN_ON(!ordered))
1685 return;
1686
1687 ordered->physical = physical;
d8e3fb10
NA
1688 btrfs_put_ordered_extent(ordered);
1689}
1690
1691void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1692{
1693 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1694 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1695 struct extent_map_tree *em_tree;
1696 struct extent_map *em;
1697 struct btrfs_ordered_sum *sum;
d8e3fb10 1698 u64 orig_logical = ordered->disk_bytenr;
04f0847c
CH
1699 struct map_lookup *map;
1700 u64 physical = ordered->physical;
1701 u64 chunk_start_phys;
1702 u64 logical;
d8e3fb10 1703
04f0847c
CH
1704 em = btrfs_get_chunk_map(fs_info, orig_logical, 1);
1705 if (IS_ERR(em))
d8e3fb10 1706 return;
04f0847c
CH
1707 map = em->map_lookup;
1708 chunk_start_phys = map->stripes[0].physical;
d8e3fb10 1709
04f0847c
CH
1710 if (WARN_ON_ONCE(map->num_stripes > 1) ||
1711 WARN_ON_ONCE((map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) ||
1712 WARN_ON_ONCE(physical < chunk_start_phys) ||
1713 WARN_ON_ONCE(physical > chunk_start_phys + em->orig_block_len)) {
1714 free_extent_map(em);
1715 return;
1716 }
1717 logical = em->start + (physical - map->stripes[0].physical);
1718 free_extent_map(em);
d8e3fb10 1719
04f0847c
CH
1720 if (orig_logical == logical)
1721 return;
d8e3fb10 1722
04f0847c 1723 ordered->disk_bytenr = logical;
d8e3fb10
NA
1724
1725 em_tree = &inode->extent_tree;
1726 write_lock(&em_tree->lock);
1727 em = search_extent_mapping(em_tree, ordered->file_offset,
1728 ordered->num_bytes);
04f0847c 1729 em->block_start = logical;
d8e3fb10
NA
1730 free_extent_map(em);
1731 write_unlock(&em_tree->lock);
1732
1733 list_for_each_entry(sum, &ordered->list, list) {
04f0847c
CH
1734 if (logical < orig_logical)
1735 sum->bytenr -= orig_logical - logical;
d8e3fb10 1736 else
04f0847c 1737 sum->bytenr += logical - orig_logical;
d8e3fb10 1738 }
d8e3fb10 1739}
0bc09ca1
NA
1740
1741bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1742 struct extent_buffer *eb,
1743 struct btrfs_block_group **cache_ret)
1744{
1745 struct btrfs_block_group *cache;
1746 bool ret = true;
1747
1748 if (!btrfs_is_zoned(fs_info))
1749 return true;
1750
8fdf54fe
JT
1751 cache = btrfs_lookup_block_group(fs_info, eb->start);
1752 if (!cache)
1753 return true;
0bc09ca1 1754
8fdf54fe 1755 if (cache->meta_write_pointer != eb->start) {
0bc09ca1
NA
1756 btrfs_put_block_group(cache);
1757 cache = NULL;
8fdf54fe
JT
1758 ret = false;
1759 } else {
1760 cache->meta_write_pointer = eb->start + eb->len;
0bc09ca1
NA
1761 }
1762
8fdf54fe 1763 *cache_ret = cache;
0bc09ca1
NA
1764
1765 return ret;
1766}
1767
1768void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1769 struct extent_buffer *eb)
1770{
1771 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1772 return;
1773
1774 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1775 cache->meta_write_pointer = eb->start;
1776}
de17addc
NA
1777
1778int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1779{
1780 if (!btrfs_dev_is_sequential(device, physical))
1781 return -EOPNOTSUPP;
1782
1783 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1784 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1785}
7db1c5d1
NA
1786
1787static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1788 struct blk_zone *zone)
1789{
4c664611 1790 struct btrfs_io_context *bioc = NULL;
7db1c5d1
NA
1791 u64 mapped_length = PAGE_SIZE;
1792 unsigned int nofs_flag;
1793 int nmirrors;
1794 int i, ret;
1795
1796 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
4c664611
QW
1797 &mapped_length, &bioc);
1798 if (ret || !bioc || mapped_length < PAGE_SIZE) {
29634578
CH
1799 ret = -EIO;
1800 goto out_put_bioc;
7db1c5d1
NA
1801 }
1802
29634578
CH
1803 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1804 ret = -EINVAL;
1805 goto out_put_bioc;
1806 }
7db1c5d1
NA
1807
1808 nofs_flag = memalloc_nofs_save();
4c664611 1809 nmirrors = (int)bioc->num_stripes;
7db1c5d1 1810 for (i = 0; i < nmirrors; i++) {
4c664611
QW
1811 u64 physical = bioc->stripes[i].physical;
1812 struct btrfs_device *dev = bioc->stripes[i].dev;
7db1c5d1
NA
1813
1814 /* Missing device */
1815 if (!dev->bdev)
1816 continue;
1817
1818 ret = btrfs_get_dev_zone(dev, physical, zone);
1819 /* Failing device */
1820 if (ret == -EIO || ret == -EOPNOTSUPP)
1821 continue;
1822 break;
1823 }
1824 memalloc_nofs_restore(nofs_flag);
29634578
CH
1825out_put_bioc:
1826 btrfs_put_bioc(bioc);
7db1c5d1
NA
1827 return ret;
1828}
1829
1830/*
1831 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1832 * filling zeros between @physical_pos to a write pointer of dev-replace
1833 * source device.
1834 */
1835int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1836 u64 physical_start, u64 physical_pos)
1837{
1838 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1839 struct blk_zone zone;
1840 u64 length;
1841 u64 wp;
1842 int ret;
1843
1844 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1845 return 0;
1846
1847 ret = read_zone_info(fs_info, logical, &zone);
1848 if (ret)
1849 return ret;
1850
1851 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1852
1853 if (physical_pos == wp)
1854 return 0;
1855
1856 if (physical_pos > wp)
1857 return -EUCLEAN;
1858
1859 length = wp - physical_pos;
1860 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1861}
e7ff9e6b 1862
43dd529a 1863/*
afba2bc0
NA
1864 * Activate block group and underlying device zones
1865 *
1866 * @block_group: the block group to activate
1867 *
1868 * Return: true on success, false otherwise
1869 */
1870bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1871{
1872 struct btrfs_fs_info *fs_info = block_group->fs_info;
6a921de5 1873 struct btrfs_space_info *space_info = block_group->space_info;
afba2bc0
NA
1874 struct map_lookup *map;
1875 struct btrfs_device *device;
1876 u64 physical;
1877 bool ret;
f9a912a3 1878 int i;
afba2bc0
NA
1879
1880 if (!btrfs_is_zoned(block_group->fs_info))
1881 return true;
1882
1883 map = block_group->physical_map;
afba2bc0 1884
6a921de5 1885 spin_lock(&space_info->lock);
afba2bc0 1886 spin_lock(&block_group->lock);
3349b57f 1887 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
1888 ret = true;
1889 goto out_unlock;
1890 }
1891
54957712 1892 /* No space left */
1bfd4767 1893 if (btrfs_zoned_bg_is_full(block_group)) {
54957712
NA
1894 ret = false;
1895 goto out_unlock;
1896 }
1897
f9a912a3
JT
1898 for (i = 0; i < map->num_stripes; i++) {
1899 device = map->stripes[i].dev;
1900 physical = map->stripes[i].physical;
afba2bc0 1901
f9a912a3
JT
1902 if (device->zone_info->max_active_zones == 0)
1903 continue;
1904
f9a912a3
JT
1905 if (!btrfs_dev_set_active_zone(device, physical)) {
1906 /* Cannot activate the zone */
1907 ret = false;
1908 goto out_unlock;
1909 }
f9a912a3 1910 }
ceb4f608
NA
1911
1912 /* Successfully activated all the zones */
3349b57f 1913 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
fa2068d7
NA
1914 WARN_ON(block_group->alloc_offset != 0);
1915 if (block_group->zone_unusable == block_group->length) {
1916 block_group->zone_unusable = block_group->length - block_group->zone_capacity;
1917 space_info->bytes_zone_unusable -= block_group->zone_capacity;
1918 }
afba2bc0 1919 spin_unlock(&block_group->lock);
6a921de5
NA
1920 btrfs_try_granting_tickets(fs_info, space_info);
1921 spin_unlock(&space_info->lock);
afba2bc0 1922
ceb4f608
NA
1923 /* For the active block group list */
1924 btrfs_get_block_group(block_group);
afba2bc0 1925
ceb4f608
NA
1926 spin_lock(&fs_info->zone_active_bgs_lock);
1927 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1928 spin_unlock(&fs_info->zone_active_bgs_lock);
afba2bc0
NA
1929
1930 return true;
1931
1932out_unlock:
1933 spin_unlock(&block_group->lock);
6a921de5 1934 spin_unlock(&space_info->lock);
afba2bc0
NA
1935 return ret;
1936}
1937
2dd7e7bc
NA
1938static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1939{
1940 struct btrfs_fs_info *fs_info = block_group->fs_info;
1941 const u64 end = block_group->start + block_group->length;
1942 struct radix_tree_iter iter;
1943 struct extent_buffer *eb;
1944 void __rcu **slot;
1945
1946 rcu_read_lock();
1947 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1948 block_group->start >> fs_info->sectorsize_bits) {
1949 eb = radix_tree_deref_slot(slot);
1950 if (!eb)
1951 continue;
1952 if (radix_tree_deref_retry(eb)) {
1953 slot = radix_tree_iter_retry(&iter);
1954 continue;
1955 }
1956
1957 if (eb->start < block_group->start)
1958 continue;
1959 if (eb->start >= end)
1960 break;
1961
1962 slot = radix_tree_iter_resume(slot, &iter);
1963 rcu_read_unlock();
1964 wait_on_extent_buffer_writeback(eb);
1965 rcu_read_lock();
1966 }
1967 rcu_read_unlock();
1968}
1969
d70cbdda 1970static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
afba2bc0
NA
1971{
1972 struct btrfs_fs_info *fs_info = block_group->fs_info;
1973 struct map_lookup *map;
2dd7e7bc
NA
1974 const bool is_metadata = (block_group->flags &
1975 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
afba2bc0 1976 int ret = 0;
4dcbb8ab 1977 int i;
afba2bc0 1978
afba2bc0 1979 spin_lock(&block_group->lock);
3349b57f 1980 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
1981 spin_unlock(&block_group->lock);
1982 return 0;
1983 }
1984
1985 /* Check if we have unwritten allocated space */
2dd7e7bc 1986 if (is_metadata &&
aa9ffadf 1987 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
afba2bc0
NA
1988 spin_unlock(&block_group->lock);
1989 return -EAGAIN;
1990 }
afba2bc0
NA
1991
1992 /*
d70cbdda
NA
1993 * If we are sure that the block group is full (= no more room left for
1994 * new allocation) and the IO for the last usable block is completed, we
1995 * don't need to wait for the other IOs. This holds because we ensure
1996 * the sequential IO submissions using the ZONE_APPEND command for data
1997 * and block_group->meta_write_pointer for metadata.
afba2bc0 1998 */
d70cbdda 1999 if (!fully_written) {
afba2bc0 2000 spin_unlock(&block_group->lock);
afba2bc0 2001
d70cbdda
NA
2002 ret = btrfs_inc_block_group_ro(block_group, false);
2003 if (ret)
2004 return ret;
2005
2006 /* Ensure all writes in this block group finish */
2007 btrfs_wait_block_group_reservations(block_group);
2008 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2009 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2010 block_group->length);
2dd7e7bc
NA
2011 /* Wait for extent buffers to be written. */
2012 if (is_metadata)
2013 wait_eb_writebacks(block_group);
d70cbdda
NA
2014
2015 spin_lock(&block_group->lock);
2016
2017 /*
2018 * Bail out if someone already deactivated the block group, or
2019 * allocated space is left in the block group.
2020 */
3349b57f
JB
2021 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2022 &block_group->runtime_flags)) {
d70cbdda
NA
2023 spin_unlock(&block_group->lock);
2024 btrfs_dec_block_group_ro(block_group);
2025 return 0;
2026 }
2027
2028 if (block_group->reserved) {
2029 spin_unlock(&block_group->lock);
2030 btrfs_dec_block_group_ro(block_group);
2031 return -EAGAIN;
2032 }
afba2bc0
NA
2033 }
2034
3349b57f 2035 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
afba2bc0
NA
2036 block_group->alloc_offset = block_group->zone_capacity;
2037 block_group->free_space_ctl->free_space = 0;
2038 btrfs_clear_treelog_bg(block_group);
5911f538 2039 btrfs_clear_data_reloc_bg(block_group);
afba2bc0
NA
2040 spin_unlock(&block_group->lock);
2041
d70cbdda 2042 map = block_group->physical_map;
4dcbb8ab 2043 for (i = 0; i < map->num_stripes; i++) {
d70cbdda
NA
2044 struct btrfs_device *device = map->stripes[i].dev;
2045 const u64 physical = map->stripes[i].physical;
afba2bc0 2046
4dcbb8ab
JT
2047 if (device->zone_info->max_active_zones == 0)
2048 continue;
afba2bc0 2049
b3a3b025
NA
2050 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2051 physical >> SECTOR_SHIFT,
2052 device->zone_info->zone_size >> SECTOR_SHIFT,
2053 GFP_NOFS);
4dcbb8ab 2054
b3a3b025
NA
2055 if (ret)
2056 return ret;
afba2bc0 2057
4dcbb8ab 2058 btrfs_dev_clear_active_zone(device, physical);
afba2bc0 2059 }
d70cbdda
NA
2060
2061 if (!fully_written)
2062 btrfs_dec_block_group_ro(block_group);
afba2bc0 2063
4dcbb8ab
JT
2064 spin_lock(&fs_info->zone_active_bgs_lock);
2065 ASSERT(!list_empty(&block_group->active_bg_list));
2066 list_del_init(&block_group->active_bg_list);
2067 spin_unlock(&fs_info->zone_active_bgs_lock);
2068
2069 /* For active_bg_list */
2070 btrfs_put_block_group(block_group);
2071
d5b81ced 2072 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2ce543f4 2073
4dcbb8ab 2074 return 0;
afba2bc0 2075}
a85f05e5 2076
d70cbdda
NA
2077int btrfs_zone_finish(struct btrfs_block_group *block_group)
2078{
2079 if (!btrfs_is_zoned(block_group->fs_info))
2080 return 0;
2081
2082 return do_zone_finish(block_group, false);
2083}
2084
82187d2e 2085bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
a85f05e5 2086{
0b9e6676 2087 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
a85f05e5
NA
2088 struct btrfs_device *device;
2089 bool ret = false;
2090
0b9e6676 2091 if (!btrfs_is_zoned(fs_info))
a85f05e5
NA
2092 return true;
2093
a85f05e5 2094 /* Check if there is a device with active zones left */
0b9e6676
JT
2095 mutex_lock(&fs_info->chunk_mutex);
2096 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
a85f05e5
NA
2097 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2098
2099 if (!device->bdev)
2100 continue;
2101
9e1cdf0c 2102 if (!zinfo->max_active_zones) {
a85f05e5
NA
2103 ret = true;
2104 break;
2105 }
9e1cdf0c
NA
2106
2107 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2108 case 0: /* single */
2109 ret = (atomic_read(&zinfo->active_zones_left) >= 1);
2110 break;
2111 case BTRFS_BLOCK_GROUP_DUP:
2112 ret = (atomic_read(&zinfo->active_zones_left) >= 2);
2113 break;
2114 }
2115 if (ret)
2116 break;
a85f05e5 2117 }
0b9e6676 2118 mutex_unlock(&fs_info->chunk_mutex);
a85f05e5 2119
2ce543f4
NA
2120 if (!ret)
2121 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2122
a85f05e5
NA
2123 return ret;
2124}
be1a1d7a
NA
2125
2126void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2127{
2128 struct btrfs_block_group *block_group;
8b8a5399 2129 u64 min_alloc_bytes;
be1a1d7a
NA
2130
2131 if (!btrfs_is_zoned(fs_info))
2132 return;
2133
2134 block_group = btrfs_lookup_block_group(fs_info, logical);
2135 ASSERT(block_group);
2136
8b8a5399
NA
2137 /* No MIXED_BG on zoned btrfs. */
2138 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2139 min_alloc_bytes = fs_info->sectorsize;
2140 else
2141 min_alloc_bytes = fs_info->nodesize;
be1a1d7a 2142
8b8a5399
NA
2143 /* Bail out if we can allocate more data from this block group. */
2144 if (logical + length + min_alloc_bytes <=
2145 block_group->start + block_group->zone_capacity)
be1a1d7a 2146 goto out;
be1a1d7a 2147
d70cbdda 2148 do_zone_finish(block_group, true);
be1a1d7a 2149
be1a1d7a
NA
2150out:
2151 btrfs_put_block_group(block_group);
2152}
be1a1d7a 2153
56fbb0a4
NA
2154static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2155{
2156 struct btrfs_block_group *bg =
2157 container_of(work, struct btrfs_block_group, zone_finish_work);
be1a1d7a 2158
56fbb0a4
NA
2159 wait_on_extent_buffer_writeback(bg->last_eb);
2160 free_extent_buffer(bg->last_eb);
2161 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2162 btrfs_put_block_group(bg);
2163}
be1a1d7a 2164
56fbb0a4
NA
2165void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2166 struct extent_buffer *eb)
2167{
961f5b8b
DS
2168 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2169 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
56fbb0a4 2170 return;
be1a1d7a 2171
56fbb0a4
NA
2172 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2173 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2174 bg->start);
2175 return;
2176 }
be1a1d7a 2177
56fbb0a4
NA
2178 /* For the work */
2179 btrfs_get_block_group(bg);
2180 atomic_inc(&eb->refs);
2181 bg->last_eb = eb;
2182 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2183 queue_work(system_unbound_wq, &bg->zone_finish_work);
be1a1d7a 2184}
c2707a25
JT
2185
2186void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2187{
2188 struct btrfs_fs_info *fs_info = bg->fs_info;
2189
2190 spin_lock(&fs_info->relocation_bg_lock);
2191 if (fs_info->data_reloc_bg == bg->start)
2192 fs_info->data_reloc_bg = 0;
2193 spin_unlock(&fs_info->relocation_bg_lock);
2194}
16beac87
NA
2195
2196void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2197{
2198 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2199 struct btrfs_device *device;
2200
2201 if (!btrfs_is_zoned(fs_info))
2202 return;
2203
2204 mutex_lock(&fs_devices->device_list_mutex);
2205 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2206 if (device->zone_info) {
2207 vfree(device->zone_info->zone_cache);
2208 device->zone_info->zone_cache = NULL;
2209 }
2210 }
2211 mutex_unlock(&fs_devices->device_list_mutex);
2212}
3687fcb0
JT
2213
2214bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2215{
2216 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2217 struct btrfs_device *device;
2218 u64 used = 0;
2219 u64 total = 0;
2220 u64 factor;
2221
2222 ASSERT(btrfs_is_zoned(fs_info));
2223
2224 if (fs_info->bg_reclaim_threshold == 0)
2225 return false;
2226
2227 mutex_lock(&fs_devices->device_list_mutex);
2228 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2229 if (!device->bdev)
2230 continue;
2231
2232 total += device->disk_total_bytes;
2233 used += device->bytes_used;
2234 }
2235 mutex_unlock(&fs_devices->device_list_mutex);
2236
2237 factor = div64_u64(used * 100, total);
2238 return factor >= fs_info->bg_reclaim_threshold;
2239}
343d8a30
NA
2240
2241void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2242 u64 length)
2243{
2244 struct btrfs_block_group *block_group;
2245
2246 if (!btrfs_is_zoned(fs_info))
2247 return;
2248
2249 block_group = btrfs_lookup_block_group(fs_info, logical);
2250 /* It should be called on a previous data relocation block group. */
2251 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2252
2253 spin_lock(&block_group->lock);
3349b57f 2254 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
343d8a30
NA
2255 goto out;
2256
2257 /* All relocation extents are written. */
2258 if (block_group->start + block_group->alloc_offset == logical + length) {
2259 /* Now, release this block group for further allocations. */
3349b57f
JB
2260 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2261 &block_group->runtime_flags);
343d8a30
NA
2262 }
2263
2264out:
2265 spin_unlock(&block_group->lock);
2266 btrfs_put_block_group(block_group);
2267}
393f646e
NA
2268
2269int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2270{
2271 struct btrfs_block_group *block_group;
2272 struct btrfs_block_group *min_bg = NULL;
2273 u64 min_avail = U64_MAX;
2274 int ret;
2275
2276 spin_lock(&fs_info->zone_active_bgs_lock);
2277 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2278 active_bg_list) {
2279 u64 avail;
2280
2281 spin_lock(&block_group->lock);
fa2068d7 2282 if (block_group->reserved || block_group->alloc_offset == 0 ||
393f646e
NA
2283 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2284 spin_unlock(&block_group->lock);
2285 continue;
2286 }
2287
2288 avail = block_group->zone_capacity - block_group->alloc_offset;
2289 if (min_avail > avail) {
2290 if (min_bg)
2291 btrfs_put_block_group(min_bg);
2292 min_bg = block_group;
2293 min_avail = avail;
2294 btrfs_get_block_group(min_bg);
2295 }
2296 spin_unlock(&block_group->lock);
2297 }
2298 spin_unlock(&fs_info->zone_active_bgs_lock);
2299
2300 if (!min_bg)
2301 return 0;
2302
2303 ret = btrfs_zone_finish(min_bg);
2304 btrfs_put_block_group(min_bg);
2305
2306 return ret < 0 ? ret : 1;
2307}
b0931513
NA
2308
2309int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2310 struct btrfs_space_info *space_info,
2311 bool do_finish)
2312{
2313 struct btrfs_block_group *bg;
2314 int index;
2315
2316 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2317 return 0;
2318
b0931513
NA
2319 for (;;) {
2320 int ret;
2321 bool need_finish = false;
2322
2323 down_read(&space_info->groups_sem);
2324 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2325 list_for_each_entry(bg, &space_info->block_groups[index],
2326 list) {
2327 if (!spin_trylock(&bg->lock))
2328 continue;
3349b57f
JB
2329 if (btrfs_zoned_bg_is_full(bg) ||
2330 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2331 &bg->runtime_flags)) {
b0931513
NA
2332 spin_unlock(&bg->lock);
2333 continue;
2334 }
2335 spin_unlock(&bg->lock);
2336
2337 if (btrfs_zone_activate(bg)) {
2338 up_read(&space_info->groups_sem);
2339 return 1;
2340 }
2341
2342 need_finish = true;
2343 }
2344 }
2345 up_read(&space_info->groups_sem);
2346
2347 if (!do_finish || !need_finish)
2348 break;
2349
2350 ret = btrfs_zone_finish_one_bg(fs_info);
2351 if (ret == 0)
2352 break;
2353 if (ret < 0)
2354 return ret;
2355 }
2356
2357 return 0;
2358}