Merge tag 'mm-hotfixes-stable-2023-11-17-14-04' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / fs / btrfs / zoned.c
CommitLineData
5b316468
NA
1// SPDX-License-Identifier: GPL-2.0
2
1cd6121f 3#include <linux/bitops.h>
5b316468
NA
4#include <linux/slab.h>
5#include <linux/blkdev.h>
08e11a3d 6#include <linux/sched/mm.h>
ea6f8ddc 7#include <linux/atomic.h>
16beac87 8#include <linux/vmalloc.h>
5b316468
NA
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
1cd6121f 13#include "disk-io.h"
08e11a3d 14#include "block-group.h"
d3575156 15#include "transaction.h"
6143c23c 16#include "dev-replace.h"
7db1c5d1 17#include "space-info.h"
71df088c 18#include "super.h"
c7f13d42 19#include "fs.h"
07e81dc9 20#include "accessors.h"
69ccf3f4 21#include "bio.h"
5b316468
NA
22
23/* Maximum number of zones to report per blkdev_report_zones() call */
24#define BTRFS_REPORT_NR_ZONES 4096
08e11a3d
NA
25/* Invalid allocation pointer value for missing devices */
26#define WP_MISSING_DEV ((u64)-1)
27/* Pseudo write pointer value for conventional zone */
28#define WP_CONVENTIONAL ((u64)-2)
5b316468 29
53b74fa9
NA
30/*
31 * Location of the first zone of superblock logging zone pairs.
32 *
33 * - primary superblock: 0B (zone 0)
34 * - first copy: 512G (zone starting at that offset)
35 * - second copy: 4T (zone starting at that offset)
36 */
37#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
38#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
39#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
40
41#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
12659251
NA
44/* Number of superblock log zones */
45#define BTRFS_NR_SB_LOG_ZONES 2
46
ea6f8ddc
NA
47/*
48 * Minimum of active zones we need:
49 *
50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52 * - 1 zone for tree-log dedicated block group
53 * - 1 zone for relocation
54 */
55#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
56
53b74fa9 57/*
0a05fafe
JT
58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60 * We do not expect the zone size to become larger than 8GiB or smaller than
61 * 4MiB in the near future.
53b74fa9
NA
62 */
63#define BTRFS_MAX_ZONE_SIZE SZ_8G
0a05fafe 64#define BTRFS_MIN_ZONE_SIZE SZ_4M
53b74fa9 65
5daaf552
NA
66#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
13bb483d
NA
68static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
5daaf552
NA
71static inline bool sb_zone_is_full(const struct blk_zone *zone)
72{
73 return (zone->cond == BLK_ZONE_COND_FULL) ||
74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75}
76
5b316468
NA
77static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78{
79 struct blk_zone *zones = data;
80
81 memcpy(&zones[idx], zone, sizeof(*zone));
82
83 return 0;
84}
85
12659251
NA
86static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 u64 *wp_ret)
88{
89 bool empty[BTRFS_NR_SB_LOG_ZONES];
90 bool full[BTRFS_NR_SB_LOG_ZONES];
91 sector_t sector;
5daaf552 92 int i;
12659251 93
5daaf552
NA
94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 full[i] = sb_zone_is_full(&zones[i]);
98 }
12659251
NA
99
100 /*
101 * Possible states of log buffer zones
102 *
103 * Empty[0] In use[0] Full[0]
31f37269
PR
104 * Empty[1] * 0 1
105 * In use[1] x x 1
106 * Full[1] 0 0 C
12659251
NA
107 *
108 * Log position:
109 * *: Special case, no superblock is written
110 * 0: Use write pointer of zones[0]
111 * 1: Use write pointer of zones[1]
1a9fd417 112 * C: Compare super blocks from zones[0] and zones[1], use the latest
12659251
NA
113 * one determined by generation
114 * x: Invalid state
115 */
116
117 if (empty[0] && empty[1]) {
118 /* Special case to distinguish no superblock to read */
119 *wp_ret = zones[0].start << SECTOR_SHIFT;
120 return -ENOENT;
121 } else if (full[0] && full[1]) {
122 /* Compare two super blocks */
123 struct address_space *mapping = bdev->bd_inode->i_mapping;
124 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 int i;
127
128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
02ca9e6f
NA
129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 BTRFS_SUPER_INFO_SIZE;
12659251
NA
132
133 page[i] = read_cache_page_gfp(mapping,
134 bytenr >> PAGE_SHIFT, GFP_NOFS);
135 if (IS_ERR(page[i])) {
136 if (i == 1)
137 btrfs_release_disk_super(super[0]);
138 return PTR_ERR(page[i]);
139 }
140 super[i] = page_address(page[i]);
141 }
142
c51f0e6a
CH
143 if (btrfs_super_generation(super[0]) >
144 btrfs_super_generation(super[1]))
12659251
NA
145 sector = zones[1].start;
146 else
147 sector = zones[0].start;
148
149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 btrfs_release_disk_super(super[i]);
151 } else if (!full[0] && (empty[1] || full[1])) {
152 sector = zones[0].wp;
153 } else if (full[0]) {
154 sector = zones[1].wp;
155 } else {
156 return -EUCLEAN;
157 }
158 *wp_ret = sector << SECTOR_SHIFT;
159 return 0;
160}
161
162/*
53b74fa9 163 * Get the first zone number of the superblock mirror
12659251
NA
164 */
165static inline u32 sb_zone_number(int shift, int mirror)
166{
12adffe6 167 u64 zone = U64_MAX;
12659251 168
53b74fa9 169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
12659251 170 switch (mirror) {
53b74fa9
NA
171 case 0: zone = 0; break;
172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
12659251
NA
174 }
175
53b74fa9
NA
176 ASSERT(zone <= U32_MAX);
177
178 return (u32)zone;
12659251
NA
179}
180
5b434df8
NA
181static inline sector_t zone_start_sector(u32 zone_number,
182 struct block_device *bdev)
183{
184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185}
186
187static inline u64 zone_start_physical(u32 zone_number,
188 struct btrfs_zoned_device_info *zone_info)
189{
190 return (u64)zone_number << zone_info->zone_size_shift;
191}
192
3c9daa09
JT
193/*
194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195 * device into static sized chunks and fake a conventional zone on each of
196 * them.
197 */
198static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 struct blk_zone *zones, unsigned int nr_zones)
200{
201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 unsigned int i;
204
205 pos >>= SECTOR_SHIFT;
206 for (i = 0; i < nr_zones; i++) {
207 zones[i].start = i * zone_sectors + pos;
208 zones[i].len = zone_sectors;
209 zones[i].capacity = zone_sectors;
210 zones[i].wp = zones[i].start + zone_sectors;
211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214 if (zones[i].wp >= bdev_size) {
215 i++;
216 break;
217 }
218 }
219
220 return i;
221}
222
5b316468
NA
223static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 struct blk_zone *zones, unsigned int *nr_zones)
225{
16beac87 226 struct btrfs_zoned_device_info *zinfo = device->zone_info;
5b316468
NA
227 int ret;
228
229 if (!*nr_zones)
230 return 0;
231
3c9daa09
JT
232 if (!bdev_is_zoned(device->bdev)) {
233 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 *nr_zones = ret;
235 return 0;
236 }
237
16beac87
NA
238 /* Check cache */
239 if (zinfo->zone_cache) {
240 unsigned int i;
cd30d3bc 241 u32 zno;
16beac87
NA
242
243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 zno = pos >> zinfo->zone_size_shift;
245 /*
246 * We cannot report zones beyond the zone end. So, it is OK to
247 * cap *nr_zones to at the end.
248 */
249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251 for (i = 0; i < *nr_zones; i++) {
252 struct blk_zone *zone_info;
253
254 zone_info = &zinfo->zone_cache[zno + i];
255 if (!zone_info->len)
256 break;
257 }
258
259 if (i == *nr_zones) {
260 /* Cache hit on all the zones */
261 memcpy(zones, zinfo->zone_cache + zno,
262 sizeof(*zinfo->zone_cache) * *nr_zones);
263 return 0;
264 }
265 }
266
5b316468
NA
267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 copy_zone_info_cb, zones);
269 if (ret < 0) {
270 btrfs_err_in_rcu(device->fs_info,
271 "zoned: failed to read zone %llu on %s (devid %llu)",
272 pos, rcu_str_deref(device->name),
273 device->devid);
274 return ret;
275 }
276 *nr_zones = ret;
277 if (!ret)
278 return -EIO;
279
16beac87 280 /* Populate cache */
cd30d3bc
NA
281 if (zinfo->zone_cache) {
282 u32 zno = pos >> zinfo->zone_size_shift;
283
16beac87
NA
284 memcpy(zinfo->zone_cache + zno, zones,
285 sizeof(*zinfo->zone_cache) * *nr_zones);
cd30d3bc 286 }
16beac87 287
5b316468
NA
288 return 0;
289}
290
3c9daa09
JT
291/* The emulated zone size is determined from the size of device extent */
292static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293{
294 struct btrfs_path *path;
295 struct btrfs_root *root = fs_info->dev_root;
296 struct btrfs_key key;
297 struct extent_buffer *leaf;
298 struct btrfs_dev_extent *dext;
299 int ret = 0;
300
301 key.objectid = 1;
302 key.type = BTRFS_DEV_EXTENT_KEY;
303 key.offset = 0;
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 if (ret < 0)
311 goto out;
312
313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 314 ret = btrfs_next_leaf(root, path);
3c9daa09
JT
315 if (ret < 0)
316 goto out;
317 /* No dev extents at all? Not good */
318 if (ret > 0) {
319 ret = -EUCLEAN;
320 goto out;
321 }
322 }
323
324 leaf = path->nodes[0];
325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 ret = 0;
328
329out:
330 btrfs_free_path(path);
331
332 return ret;
333}
334
73651042
NA
335int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336{
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 struct btrfs_device *device;
339 int ret = 0;
340
341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 if (!btrfs_fs_incompat(fs_info, ZONED))
343 return 0;
344
345 mutex_lock(&fs_devices->device_list_mutex);
346 list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 /* We can skip reading of zone info for missing devices */
348 if (!device->bdev)
349 continue;
350
16beac87 351 ret = btrfs_get_dev_zone_info(device, true);
73651042
NA
352 if (ret)
353 break;
354 }
355 mutex_unlock(&fs_devices->device_list_mutex);
356
357 return ret;
358}
359
16beac87 360int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
5b316468 361{
3c9daa09 362 struct btrfs_fs_info *fs_info = device->fs_info;
5b316468
NA
363 struct btrfs_zoned_device_info *zone_info = NULL;
364 struct block_device *bdev = device->bdev;
ea6f8ddc
NA
365 unsigned int max_active_zones;
366 unsigned int nactive;
5b316468
NA
367 sector_t nr_sectors;
368 sector_t sector = 0;
369 struct blk_zone *zones = NULL;
370 unsigned int i, nreported = 0, nr_zones;
d734492a 371 sector_t zone_sectors;
3c9daa09 372 char *model, *emulated;
5b316468
NA
373 int ret;
374
3c9daa09
JT
375 /*
376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 * yet be set.
378 */
379 if (!btrfs_fs_incompat(fs_info, ZONED))
5b316468
NA
380 return 0;
381
382 if (device->zone_info)
383 return 0;
384
385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 if (!zone_info)
387 return -ENOMEM;
388
16beac87
NA
389 device->zone_info = zone_info;
390
3c9daa09
JT
391 if (!bdev_is_zoned(bdev)) {
392 if (!fs_info->zone_size) {
393 ret = calculate_emulated_zone_size(fs_info);
394 if (ret)
395 goto out;
396 }
397
398 ASSERT(fs_info->zone_size);
399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 } else {
401 zone_sectors = bdev_zone_sectors(bdev);
402 }
403
fd463ac4 404 ASSERT(is_power_of_two_u64(zone_sectors));
5b316468 405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
53b74fa9
NA
406
407 /* We reject devices with a zone size larger than 8GB */
408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 btrfs_err_in_rcu(fs_info,
410 "zoned: %s: zone size %llu larger than supported maximum %llu",
411 rcu_str_deref(device->name),
412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
0a05fafe
JT
415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 btrfs_err_in_rcu(fs_info,
417 "zoned: %s: zone size %llu smaller than supported minimum %u",
418 rcu_str_deref(device->name),
419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 ret = -EINVAL;
421 goto out;
53b74fa9
NA
422 }
423
424 nr_sectors = bdev_nr_sectors(bdev);
5b316468
NA
425 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 zone_info->nr_zones++;
429
c1e7b244 430 max_active_zones = bdev_max_active_zones(bdev);
ea6f8ddc
NA
431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 btrfs_err_in_rcu(fs_info,
433"zoned: %s: max active zones %u is too small, need at least %u active zones",
434 rcu_str_deref(device->name), max_active_zones,
435 BTRFS_MIN_ACTIVE_ZONES);
436 ret = -EINVAL;
437 goto out;
438 }
439 zone_info->max_active_zones = max_active_zones;
440
5b316468
NA
441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 if (!zone_info->seq_zones) {
443 ret = -ENOMEM;
444 goto out;
445 }
446
447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 if (!zone_info->empty_zones) {
449 ret = -ENOMEM;
450 goto out;
451 }
452
ea6f8ddc
NA
453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 if (!zone_info->active_zones) {
455 ret = -ENOMEM;
456 goto out;
457 }
458
8fe97d47 459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
5b316468
NA
460 if (!zones) {
461 ret = -ENOMEM;
462 goto out;
463 }
464
16beac87
NA
465 /*
466 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 * use the cache.
469 */
470 if (populate_cache && bdev_is_zoned(device->bdev)) {
07a3bb95
JL
471 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 sizeof(struct blk_zone));
16beac87
NA
473 if (!zone_info->zone_cache) {
474 btrfs_err_in_rcu(device->fs_info,
475 "zoned: failed to allocate zone cache for %s",
476 rcu_str_deref(device->name));
477 ret = -ENOMEM;
478 goto out;
479 }
480 }
481
5b316468 482 /* Get zones type */
ea6f8ddc 483 nactive = 0;
5b316468
NA
484 while (sector < nr_sectors) {
485 nr_zones = BTRFS_REPORT_NR_ZONES;
486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 &nr_zones);
488 if (ret)
489 goto out;
490
491 for (i = 0; i < nr_zones; i++) {
492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 __set_bit(nreported, zone_info->seq_zones);
ea6f8ddc
NA
494 switch (zones[i].cond) {
495 case BLK_ZONE_COND_EMPTY:
5b316468 496 __set_bit(nreported, zone_info->empty_zones);
ea6f8ddc
NA
497 break;
498 case BLK_ZONE_COND_IMP_OPEN:
499 case BLK_ZONE_COND_EXP_OPEN:
500 case BLK_ZONE_COND_CLOSED:
501 __set_bit(nreported, zone_info->active_zones);
502 nactive++;
503 break;
504 }
5b316468
NA
505 nreported++;
506 }
507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 }
509
510 if (nreported != zone_info->nr_zones) {
511 btrfs_err_in_rcu(device->fs_info,
512 "inconsistent number of zones on %s (%u/%u)",
513 rcu_str_deref(device->name), nreported,
514 zone_info->nr_zones);
515 ret = -EIO;
516 goto out;
517 }
518
ea6f8ddc
NA
519 if (max_active_zones) {
520 if (nactive > max_active_zones) {
521 btrfs_err_in_rcu(device->fs_info,
522 "zoned: %u active zones on %s exceeds max_active_zones %u",
523 nactive, rcu_str_deref(device->name),
524 max_active_zones);
525 ret = -EIO;
526 goto out;
527 }
528 atomic_set(&zone_info->active_zones_left,
529 max_active_zones - nactive);
bf1f1fec 530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
ea6f8ddc
NA
531 }
532
12659251
NA
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
5b434df8
NA
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
12659251
NA
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
1a9fd417 560 * If zones[0] is conventional, always use the beginning of the
12659251
NA
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
8fe97d47 579 kvfree(zones);
5b316468 580
3c9daa09
JT
581 switch (bdev_zoned_model(bdev)) {
582 case BLK_ZONED_HM:
583 model = "host-managed zoned";
584 emulated = "";
585 break;
586 case BLK_ZONED_HA:
587 model = "host-aware zoned";
588 emulated = "";
589 break;
590 case BLK_ZONED_NONE:
591 model = "regular";
592 emulated = "emulated ";
593 break;
594 default:
595 /* Just in case */
596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 bdev_zoned_model(bdev),
598 rcu_str_deref(device->name));
599 ret = -EOPNOTSUPP;
600 goto out_free_zone_info;
601 }
602
603 btrfs_info_in_rcu(fs_info,
604 "%s block device %s, %u %szones of %llu bytes",
605 model, rcu_str_deref(device->name), zone_info->nr_zones,
606 emulated, zone_info->zone_size);
5b316468
NA
607
608 return 0;
609
610out:
8fe97d47 611 kvfree(zones);
3c9daa09 612out_free_zone_info:
16beac87 613 btrfs_destroy_dev_zone_info(device);
5b316468
NA
614
615 return ret;
616}
617
618void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619{
620 struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622 if (!zone_info)
623 return;
624
ea6f8ddc 625 bitmap_free(zone_info->active_zones);
5b316468
NA
626 bitmap_free(zone_info->seq_zones);
627 bitmap_free(zone_info->empty_zones);
16beac87 628 vfree(zone_info->zone_cache);
5b316468
NA
629 kfree(zone_info);
630 device->zone_info = NULL;
631}
632
21e61ec6
JT
633struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634{
635 struct btrfs_zoned_device_info *zone_info;
636
637 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638 if (!zone_info)
639 return NULL;
640
641 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 if (!zone_info->seq_zones)
643 goto out;
644
645 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646 zone_info->nr_zones);
647
648 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649 if (!zone_info->empty_zones)
650 goto out;
651
652 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653 zone_info->nr_zones);
654
655 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656 if (!zone_info->active_zones)
657 goto out;
658
659 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660 zone_info->nr_zones);
661 zone_info->zone_cache = NULL;
662
663 return zone_info;
664
665out:
666 bitmap_free(zone_info->seq_zones);
667 bitmap_free(zone_info->empty_zones);
668 bitmap_free(zone_info->active_zones);
669 kfree(zone_info);
670 return NULL;
671}
672
5b316468
NA
673int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674 struct blk_zone *zone)
675{
676 unsigned int nr_zones = 1;
677 int ret;
678
679 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680 if (ret != 0 || !nr_zones)
681 return ret ? ret : -EIO;
682
683 return 0;
684}
b70f5097 685
650c8a9c
CH
686static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687{
688 struct btrfs_device *device;
689
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 if (device->bdev &&
692 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693 btrfs_err(fs_info,
694 "zoned: mode not enabled but zoned device found: %pg",
695 device->bdev);
696 return -EINVAL;
697 }
698 }
699
700 return 0;
701}
702
b70f5097
NA
703int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704{
243cf8d1 705 struct queue_limits *lim = &fs_info->limits;
b70f5097 706 struct btrfs_device *device;
b70f5097 707 u64 zone_size = 0;
650c8a9c 708 int ret;
b70f5097 709
650c8a9c
CH
710 /*
711 * Host-Managed devices can't be used without the ZONED flag. With the
712 * ZONED all devices can be used, using zone emulation if required.
713 */
714 if (!btrfs_fs_incompat(fs_info, ZONED))
715 return btrfs_check_for_zoned_device(fs_info);
716
243cf8d1
CH
717 blk_set_stacking_limits(lim);
718
650c8a9c
CH
719 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720 struct btrfs_zoned_device_info *zone_info = device->zone_info;
b70f5097
NA
721
722 if (!device->bdev)
723 continue;
724
650c8a9c
CH
725 if (!zone_size) {
726 zone_size = zone_info->zone_size;
727 } else if (zone_info->zone_size != zone_size) {
728 btrfs_err(fs_info,
b70f5097 729 "zoned: unequal block device zone sizes: have %llu found %llu",
650c8a9c
CH
730 zone_info->zone_size, zone_size);
731 return -EINVAL;
b70f5097 732 }
243cf8d1
CH
733
734 /*
735 * With the zoned emulation, we can have non-zoned device on the
736 * zoned mode. In this case, we don't have a valid max zone
737 * append size.
738 */
739 if (bdev_is_zoned(device->bdev)) {
740 blk_stack_limits(lim,
741 &bdev_get_queue(device->bdev)->limits,
742 0);
743 }
b70f5097
NA
744 }
745
746 /*
747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
f6f39f7a 748 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
b70f5097
NA
749 * check the alignment here.
750 */
751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 btrfs_err(fs_info,
753 "zoned: zone size %llu not aligned to stripe %u",
754 zone_size, BTRFS_STRIPE_LEN);
650c8a9c 755 return -EINVAL;
b70f5097
NA
756 }
757
a589dde0
NA
758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 btrfs_err(fs_info, "zoned: mixed block groups not supported");
650c8a9c 760 return -EINVAL;
a589dde0
NA
761 }
762
b70f5097 763 fs_info->zone_size = zone_size;
243cf8d1
CH
764 /*
765 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766 * Technically, we can have multiple pages per segment. But, since
767 * we add the pages one by one to a bio, and cannot increase the
768 * metadata reservation even if it increases the number of extents, it
769 * is safe to stick with the limit.
770 */
771 fs_info->max_zone_append_size = ALIGN_DOWN(
772 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773 (u64)lim->max_sectors << SECTOR_SHIFT,
774 (u64)lim->max_segments << PAGE_SHIFT),
775 fs_info->sectorsize);
1cd6121f 776 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
f7b12a62
NA
777 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778 fs_info->max_extent_size = fs_info->max_zone_append_size;
b70f5097 779
b53429ba
JT
780 /*
781 * Check mount options here, because we might change fs_info->zoned
782 * from fs_info->zone_size.
783 */
784 ret = btrfs_check_mountopts_zoned(fs_info);
785 if (ret)
650c8a9c 786 return ret;
b53429ba 787
b70f5097 788 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
650c8a9c 789 return 0;
b70f5097 790}
5d1ab66c
NA
791
792int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793{
794 if (!btrfs_is_zoned(info))
795 return 0;
796
797 /*
798 * Space cache writing is not COWed. Disable that to avoid write errors
799 * in sequential zones.
800 */
801 if (btrfs_test_opt(info, SPACE_CACHE)) {
802 btrfs_err(info, "zoned: space cache v1 is not supported");
803 return -EINVAL;
804 }
805
d206e9c9
NA
806 if (btrfs_test_opt(info, NODATACOW)) {
807 btrfs_err(info, "zoned: NODATACOW not supported");
808 return -EINVAL;
809 }
810
95ca6599
NA
811 btrfs_clear_and_info(info, DISCARD_ASYNC,
812 "zoned: async discard ignored and disabled for zoned mode");
813
5d1ab66c
NA
814 return 0;
815}
12659251
NA
816
817static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818 int rw, u64 *bytenr_ret)
819{
820 u64 wp;
821 int ret;
822
823 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
825 return 0;
826 }
827
828 ret = sb_write_pointer(bdev, zones, &wp);
829 if (ret != -ENOENT && ret < 0)
830 return ret;
831
832 if (rw == WRITE) {
833 struct blk_zone *reset = NULL;
834
835 if (wp == zones[0].start << SECTOR_SHIFT)
836 reset = &zones[0];
837 else if (wp == zones[1].start << SECTOR_SHIFT)
838 reset = &zones[1];
839
840 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
5daaf552 841 ASSERT(sb_zone_is_full(reset));
12659251
NA
842
843 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844 reset->start, reset->len,
845 GFP_NOFS);
846 if (ret)
847 return ret;
848
849 reset->cond = BLK_ZONE_COND_EMPTY;
850 reset->wp = reset->start;
851 }
852 } else if (ret != -ENOENT) {
9658b72e
NA
853 /*
854 * For READ, we want the previous one. Move write pointer to
855 * the end of a zone, if it is at the head of a zone.
856 */
857 u64 zone_end = 0;
858
12659251 859 if (wp == zones[0].start << SECTOR_SHIFT)
9658b72e
NA
860 zone_end = zones[1].start + zones[1].capacity;
861 else if (wp == zones[1].start << SECTOR_SHIFT)
862 zone_end = zones[0].start + zones[0].capacity;
863 if (zone_end)
864 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865 BTRFS_SUPER_INFO_SIZE);
866
12659251
NA
867 wp -= BTRFS_SUPER_INFO_SIZE;
868 }
869
870 *bytenr_ret = wp;
871 return 0;
872
873}
874
875int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876 u64 *bytenr_ret)
877{
878 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
d734492a 879 sector_t zone_sectors;
12659251
NA
880 u32 sb_zone;
881 int ret;
12659251
NA
882 u8 zone_sectors_shift;
883 sector_t nr_sectors;
884 u32 nr_zones;
885
886 if (!bdev_is_zoned(bdev)) {
887 *bytenr_ret = btrfs_sb_offset(mirror);
888 return 0;
889 }
890
891 ASSERT(rw == READ || rw == WRITE);
892
893 zone_sectors = bdev_zone_sectors(bdev);
894 if (!is_power_of_2(zone_sectors))
895 return -EINVAL;
12659251 896 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 897 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
898 nr_zones = nr_sectors >> zone_sectors_shift;
899
900 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901 if (sb_zone + 1 >= nr_zones)
902 return -ENOENT;
903
5b434df8 904 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
12659251
NA
905 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906 zones);
907 if (ret < 0)
908 return ret;
909 if (ret != BTRFS_NR_SB_LOG_ZONES)
910 return -EIO;
911
912 return sb_log_location(bdev, zones, rw, bytenr_ret);
913}
914
915int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916 u64 *bytenr_ret)
917{
918 struct btrfs_zoned_device_info *zinfo = device->zone_info;
919 u32 zone_num;
920
d6639b35
NA
921 /*
922 * For a zoned filesystem on a non-zoned block device, use the same
923 * super block locations as regular filesystem. Doing so, the super
924 * block can always be retrieved and the zoned flag of the volume
925 * detected from the super block information.
926 */
927 if (!bdev_is_zoned(device->bdev)) {
12659251
NA
928 *bytenr_ret = btrfs_sb_offset(mirror);
929 return 0;
930 }
931
932 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933 if (zone_num + 1 >= zinfo->nr_zones)
934 return -ENOENT;
935
936 return sb_log_location(device->bdev,
937 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938 rw, bytenr_ret);
939}
940
941static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942 int mirror)
943{
944 u32 zone_num;
945
946 if (!zinfo)
947 return false;
948
949 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950 if (zone_num + 1 >= zinfo->nr_zones)
951 return false;
952
953 if (!test_bit(zone_num, zinfo->seq_zones))
954 return false;
955
956 return true;
957}
958
8376d9e1 959int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
12659251
NA
960{
961 struct btrfs_zoned_device_info *zinfo = device->zone_info;
962 struct blk_zone *zone;
8376d9e1 963 int i;
12659251
NA
964
965 if (!is_sb_log_zone(zinfo, mirror))
8376d9e1 966 return 0;
12659251
NA
967
968 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
8376d9e1
NA
969 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970 /* Advance the next zone */
971 if (zone->cond == BLK_ZONE_COND_FULL) {
972 zone++;
973 continue;
974 }
975
12659251
NA
976 if (zone->cond == BLK_ZONE_COND_EMPTY)
977 zone->cond = BLK_ZONE_COND_IMP_OPEN;
978
8376d9e1
NA
979 zone->wp += SUPER_INFO_SECTORS;
980
981 if (sb_zone_is_full(zone)) {
982 /*
983 * No room left to write new superblock. Since
984 * superblock is written with REQ_SYNC, it is safe to
985 * finish the zone now.
986 *
987 * If the write pointer is exactly at the capacity,
988 * explicit ZONE_FINISH is not necessary.
989 */
990 if (zone->wp != zone->start + zone->capacity) {
991 int ret;
992
993 ret = blkdev_zone_mgmt(device->bdev,
994 REQ_OP_ZONE_FINISH, zone->start,
995 zone->len, GFP_NOFS);
996 if (ret)
997 return ret;
998 }
12659251 999
8376d9e1 1000 zone->wp = zone->start + zone->len;
12659251 1001 zone->cond = BLK_ZONE_COND_FULL;
8376d9e1
NA
1002 }
1003 return 0;
12659251
NA
1004 }
1005
8376d9e1
NA
1006 /* All the zones are FULL. Should not reach here. */
1007 ASSERT(0);
1008 return -EIO;
12659251
NA
1009}
1010
1011int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012{
1013 sector_t zone_sectors;
1014 sector_t nr_sectors;
1015 u8 zone_sectors_shift;
1016 u32 sb_zone;
1017 u32 nr_zones;
1018
1019 zone_sectors = bdev_zone_sectors(bdev);
1020 zone_sectors_shift = ilog2(zone_sectors);
ac7ac461 1021 nr_sectors = bdev_nr_sectors(bdev);
12659251
NA
1022 nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 if (sb_zone + 1 >= nr_zones)
1026 return -ENOENT;
1027
1028 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
5b434df8 1029 zone_start_sector(sb_zone, bdev),
12659251
NA
1030 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031}
1cd6121f 1032
43dd529a
DS
1033/*
1034 * Find allocatable zones within a given region.
1cd6121f
NA
1035 *
1036 * @device: the device to allocate a region on
1037 * @hole_start: the position of the hole to allocate the region
1038 * @num_bytes: size of wanted region
1039 * @hole_end: the end of the hole
1040 * @return: position of allocatable zones
1041 *
1042 * Allocatable region should not contain any superblock locations.
1043 */
1044u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045 u64 hole_end, u64 num_bytes)
1046{
1047 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048 const u8 shift = zinfo->zone_size_shift;
1049 u64 nzones = num_bytes >> shift;
1050 u64 pos = hole_start;
1051 u64 begin, end;
1052 bool have_sb;
1053 int i;
1054
1055 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057
1058 while (pos < hole_end) {
1059 begin = pos >> shift;
1060 end = begin + nzones;
1061
1062 if (end > zinfo->nr_zones)
1063 return hole_end;
1064
1065 /* Check if zones in the region are all empty */
1066 if (btrfs_dev_is_sequential(device, pos) &&
b5345d6c 1067 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1cd6121f
NA
1068 pos += zinfo->zone_size;
1069 continue;
1070 }
1071
1072 have_sb = false;
1073 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074 u32 sb_zone;
1075 u64 sb_pos;
1076
1077 sb_zone = sb_zone_number(shift, i);
1078 if (!(end <= sb_zone ||
1079 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080 have_sb = true;
5b434df8
NA
1081 pos = zone_start_physical(
1082 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1cd6121f
NA
1083 break;
1084 }
1085
1086 /* We also need to exclude regular superblock positions */
1087 sb_pos = btrfs_sb_offset(i);
1088 if (!(pos + num_bytes <= sb_pos ||
1089 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090 have_sb = true;
1091 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092 zinfo->zone_size);
1093 break;
1094 }
1095 }
1096 if (!have_sb)
1097 break;
1098 }
1099
1100 return pos;
1101}
1102
afba2bc0
NA
1103static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104{
1105 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106 unsigned int zno = (pos >> zone_info->zone_size_shift);
1107
1108 /* We can use any number of zones */
1109 if (zone_info->max_active_zones == 0)
1110 return true;
1111
1112 if (!test_bit(zno, zone_info->active_zones)) {
1113 /* Active zone left? */
1114 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115 return false;
1116 if (test_and_set_bit(zno, zone_info->active_zones)) {
1117 /* Someone already set the bit */
1118 atomic_inc(&zone_info->active_zones_left);
1119 }
1120 }
1121
1122 return true;
1123}
1124
1125static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126{
1127 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128 unsigned int zno = (pos >> zone_info->zone_size_shift);
1129
1130 /* We can use any number of zones */
1131 if (zone_info->max_active_zones == 0)
1132 return;
1133
1134 if (test_and_clear_bit(zno, zone_info->active_zones))
1135 atomic_inc(&zone_info->active_zones_left);
1136}
1137
1cd6121f
NA
1138int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139 u64 length, u64 *bytes)
1140{
1141 int ret;
1142
1143 *bytes = 0;
1144 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146 GFP_NOFS);
1147 if (ret)
1148 return ret;
1149
1150 *bytes = length;
1151 while (length) {
1152 btrfs_dev_set_zone_empty(device, physical);
afba2bc0 1153 btrfs_dev_clear_active_zone(device, physical);
1cd6121f
NA
1154 physical += device->zone_info->zone_size;
1155 length -= device->zone_info->zone_size;
1156 }
1157
1158 return 0;
1159}
1160
1161int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162{
1163 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164 const u8 shift = zinfo->zone_size_shift;
1165 unsigned long begin = start >> shift;
b5345d6c 1166 unsigned long nbits = size >> shift;
1cd6121f
NA
1167 u64 pos;
1168 int ret;
1169
1170 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172
b5345d6c 1173 if (begin + nbits > zinfo->nr_zones)
1cd6121f
NA
1174 return -ERANGE;
1175
1176 /* All the zones are conventional */
b5345d6c 1177 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1cd6121f
NA
1178 return 0;
1179
1180 /* All the zones are sequential and empty */
b5345d6c
NA
1181 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1cd6121f
NA
1183 return 0;
1184
1185 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186 u64 reset_bytes;
1187
1188 if (!btrfs_dev_is_sequential(device, pos) ||
1189 btrfs_dev_is_empty_zone(device, pos))
1190 continue;
1191
1192 /* Free regions should be empty */
1193 btrfs_warn_in_rcu(
1194 device->fs_info,
1195 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196 rcu_str_deref(device->name), device->devid, pos >> shift);
1197 WARN_ON_ONCE(1);
1198
1199 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200 &reset_bytes);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 return 0;
1206}
08e11a3d 1207
a94794d5
NA
1208/*
1209 * Calculate an allocation pointer from the extent allocation information
1210 * for a block group consist of conventional zones. It is pointed to the
1211 * end of the highest addressed extent in the block group as an allocation
1212 * offset.
1213 */
1214static int calculate_alloc_pointer(struct btrfs_block_group *cache,
6ca64ac2 1215 u64 *offset_ret, bool new)
a94794d5
NA
1216{
1217 struct btrfs_fs_info *fs_info = cache->fs_info;
29cbcf40 1218 struct btrfs_root *root;
a94794d5
NA
1219 struct btrfs_path *path;
1220 struct btrfs_key key;
1221 struct btrfs_key found_key;
1222 int ret;
1223 u64 length;
1224
6ca64ac2
JT
1225 /*
1226 * Avoid tree lookups for a new block group, there's no use for it.
1227 * It must always be 0.
1228 *
1229 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230 * For new a block group, this function is called from
1231 * btrfs_make_block_group() which is already taking the chunk mutex.
1232 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233 * buffer locks to avoid deadlock.
1234 */
1235 if (new) {
1236 *offset_ret = 0;
1237 return 0;
1238 }
1239
a94794d5
NA
1240 path = btrfs_alloc_path();
1241 if (!path)
1242 return -ENOMEM;
1243
1244 key.objectid = cache->start + cache->length;
1245 key.type = 0;
1246 key.offset = 0;
1247
29cbcf40 1248 root = btrfs_extent_root(fs_info, key.objectid);
a94794d5
NA
1249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250 /* We should not find the exact match */
1251 if (!ret)
1252 ret = -EUCLEAN;
1253 if (ret < 0)
1254 goto out;
1255
1256 ret = btrfs_previous_extent_item(root, path, cache->start);
1257 if (ret) {
1258 if (ret == 1) {
1259 ret = 0;
1260 *offset_ret = 0;
1261 }
1262 goto out;
1263 }
1264
1265 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266
1267 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268 length = found_key.offset;
1269 else
1270 length = fs_info->nodesize;
1271
1272 if (!(found_key.objectid >= cache->start &&
1273 found_key.objectid + length <= cache->start + cache->length)) {
1274 ret = -EUCLEAN;
1275 goto out;
1276 }
1277 *offset_ret = found_key.objectid + length - cache->start;
1278 ret = 0;
1279
1280out:
1281 btrfs_free_path(path);
1282 return ret;
1283}
1284
15c12fcc
CH
1285struct zone_info {
1286 u64 physical;
1287 u64 capacity;
1288 u64 alloc_offset;
1289};
1290
09a46725
CH
1291static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1292 struct zone_info *info, unsigned long *active,
1293 struct map_lookup *map)
1294{
1295 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1296 struct btrfs_device *device = map->stripes[zone_idx].dev;
1297 int dev_replace_is_ongoing = 0;
1298 unsigned int nofs_flag;
1299 struct blk_zone zone;
1300 int ret;
1301
1302 info->physical = map->stripes[zone_idx].physical;
1303
1304 if (!device->bdev) {
1305 info->alloc_offset = WP_MISSING_DEV;
1306 return 0;
1307 }
1308
1309 /* Consider a zone as active if we can allow any number of active zones. */
1310 if (!device->zone_info->max_active_zones)
1311 __set_bit(zone_idx, active);
1312
1313 if (!btrfs_dev_is_sequential(device, info->physical)) {
1314 info->alloc_offset = WP_CONVENTIONAL;
1315 return 0;
1316 }
1317
1318 /* This zone will be used for allocation, so mark this zone non-empty. */
1319 btrfs_dev_clear_zone_empty(device, info->physical);
1320
1321 down_read(&dev_replace->rwsem);
1322 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1323 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1324 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1325 up_read(&dev_replace->rwsem);
1326
1327 /*
1328 * The group is mapped to a sequential zone. Get the zone write pointer
1329 * to determine the allocation offset within the zone.
1330 */
1331 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1332 nofs_flag = memalloc_nofs_save();
1333 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1334 memalloc_nofs_restore(nofs_flag);
1335 if (ret) {
1336 if (ret != -EIO && ret != -EOPNOTSUPP)
1337 return ret;
1338 info->alloc_offset = WP_MISSING_DEV;
1339 return 0;
1340 }
1341
1342 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1343 btrfs_err_in_rcu(fs_info,
1344 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1345 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1346 device->devid);
1347 return -EIO;
1348 }
1349
1350 info->capacity = (zone.capacity << SECTOR_SHIFT);
1351
1352 switch (zone.cond) {
1353 case BLK_ZONE_COND_OFFLINE:
1354 case BLK_ZONE_COND_READONLY:
1355 btrfs_err(fs_info,
1356 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1357 (info->physical >> device->zone_info->zone_size_shift),
1358 rcu_str_deref(device->name), device->devid);
1359 info->alloc_offset = WP_MISSING_DEV;
1360 break;
1361 case BLK_ZONE_COND_EMPTY:
1362 info->alloc_offset = 0;
1363 break;
1364 case BLK_ZONE_COND_FULL:
1365 info->alloc_offset = info->capacity;
1366 break;
1367 default:
1368 /* Partially used zone. */
1369 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1370 __set_bit(zone_idx, active);
1371 break;
1372 }
1373
1374 return 0;
1375}
1376
9e0e3e74
CH
1377static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1378 struct zone_info *info,
1379 unsigned long *active)
1380{
1381 if (info->alloc_offset == WP_MISSING_DEV) {
1382 btrfs_err(bg->fs_info,
1383 "zoned: cannot recover write pointer for zone %llu",
1384 info->physical);
1385 return -EIO;
1386 }
1387
1388 bg->alloc_offset = info->alloc_offset;
1389 bg->zone_capacity = info->capacity;
1390 if (test_bit(0, active))
1391 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1392 return 0;
1393}
1394
87463f7e
CH
1395static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1396 struct map_lookup *map,
1397 struct zone_info *zone_info,
1398 unsigned long *active)
1399{
568220fa
JT
1400 struct btrfs_fs_info *fs_info = bg->fs_info;
1401
1402 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1403 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
87463f7e
CH
1404 return -EINVAL;
1405 }
1406
1407 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1408 btrfs_err(bg->fs_info,
1409 "zoned: cannot recover write pointer for zone %llu",
1410 zone_info[0].physical);
1411 return -EIO;
1412 }
1413 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1414 btrfs_err(bg->fs_info,
1415 "zoned: cannot recover write pointer for zone %llu",
1416 zone_info[1].physical);
1417 return -EIO;
1418 }
1419 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1420 btrfs_err(bg->fs_info,
1421 "zoned: write pointer offset mismatch of zones in DUP profile");
1422 return -EIO;
1423 }
1424
1425 if (test_bit(0, active) != test_bit(1, active)) {
1426 if (!btrfs_zone_activate(bg))
1427 return -EIO;
1428 } else if (test_bit(0, active)) {
1429 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1430 }
1431
1432 bg->alloc_offset = zone_info[0].alloc_offset;
1433 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1434 return 0;
1435}
1436
568220fa
JT
1437static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1438 struct map_lookup *map,
1439 struct zone_info *zone_info,
1440 unsigned long *active)
1441{
1442 struct btrfs_fs_info *fs_info = bg->fs_info;
1443 int i;
1444
1445 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1446 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1447 btrfs_bg_type_to_raid_name(map->type));
1448 return -EINVAL;
1449 }
1450
1451 for (i = 0; i < map->num_stripes; i++) {
1452 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1453 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1454 continue;
1455
1456 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1457 !btrfs_test_opt(fs_info, DEGRADED)) {
1458 btrfs_err(fs_info,
1459 "zoned: write pointer offset mismatch of zones in %s profile",
1460 btrfs_bg_type_to_raid_name(map->type));
1461 return -EIO;
1462 }
1463 if (test_bit(0, active) != test_bit(i, active)) {
1464 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1465 !btrfs_zone_activate(bg)) {
1466 return -EIO;
1467 }
1468 } else {
1469 if (test_bit(0, active))
1470 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1471 }
1472 /* In case a device is missing we have a cap of 0, so don't use it. */
1473 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1474 zone_info[1].capacity);
1475 }
1476
1477 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1478 bg->alloc_offset = zone_info[0].alloc_offset;
1479 else
1480 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1481
1482 return 0;
1483}
1484
1485static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1486 struct map_lookup *map,
1487 struct zone_info *zone_info,
1488 unsigned long *active)
1489{
1490 struct btrfs_fs_info *fs_info = bg->fs_info;
1491
1492 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1493 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1494 btrfs_bg_type_to_raid_name(map->type));
1495 return -EINVAL;
1496 }
1497
1498 for (int i = 0; i < map->num_stripes; i++) {
1499 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1500 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1501 continue;
1502
1503 if (test_bit(0, active) != test_bit(i, active)) {
1504 if (!btrfs_zone_activate(bg))
1505 return -EIO;
1506 } else {
1507 if (test_bit(0, active))
1508 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1509 }
1510 bg->zone_capacity += zone_info[i].capacity;
1511 bg->alloc_offset += zone_info[i].alloc_offset;
1512 }
1513
1514 return 0;
1515}
1516
1517static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1518 struct map_lookup *map,
1519 struct zone_info *zone_info,
1520 unsigned long *active)
1521{
1522 struct btrfs_fs_info *fs_info = bg->fs_info;
1523
1524 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1525 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1526 btrfs_bg_type_to_raid_name(map->type));
1527 return -EINVAL;
1528 }
1529
1530 for (int i = 0; i < map->num_stripes; i++) {
1531 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1532 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1533 continue;
1534
1535 if (test_bit(0, active) != test_bit(i, active)) {
1536 if (!btrfs_zone_activate(bg))
1537 return -EIO;
1538 } else {
1539 if (test_bit(0, active))
1540 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1541 }
1542
1543 if ((i % map->sub_stripes) == 0) {
1544 bg->zone_capacity += zone_info[i].capacity;
1545 bg->alloc_offset += zone_info[i].alloc_offset;
1546 }
1547 }
1548
1549 return 0;
1550}
1551
a94794d5 1552int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
08e11a3d
NA
1553{
1554 struct btrfs_fs_info *fs_info = cache->fs_info;
1555 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1556 struct extent_map *em;
1557 struct map_lookup *map;
08e11a3d
NA
1558 u64 logical = cache->start;
1559 u64 length = cache->length;
15c12fcc 1560 struct zone_info *zone_info = NULL;
08e11a3d
NA
1561 int ret;
1562 int i;
68a384b5 1563 unsigned long *active = NULL;
a94794d5 1564 u64 last_alloc = 0;
08e11a3d
NA
1565 u32 num_sequential = 0, num_conventional = 0;
1566
1567 if (!btrfs_is_zoned(fs_info))
1568 return 0;
1569
1570 /* Sanity check */
1571 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1572 btrfs_err(fs_info,
1573 "zoned: block group %llu len %llu unaligned to zone size %llu",
1574 logical, length, fs_info->zone_size);
1575 return -EIO;
1576 }
1577
1578 /* Get the chunk mapping */
1579 read_lock(&em_tree->lock);
1580 em = lookup_extent_mapping(em_tree, logical, length);
1581 read_unlock(&em_tree->lock);
1582
1583 if (!em)
1584 return -EINVAL;
1585
1586 map = em->map_lookup;
1587
64259baa 1588 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
dafc340d
NA
1589 if (!cache->physical_map) {
1590 ret = -ENOMEM;
1591 goto out;
1592 }
1593
15c12fcc
CH
1594 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1595 if (!zone_info) {
dbfcc18f
JT
1596 ret = -ENOMEM;
1597 goto out;
1598 }
1599
68a384b5
NA
1600 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1601 if (!active) {
1602 ret = -ENOMEM;
1603 goto out;
1604 }
1605
08e11a3d 1606 for (i = 0; i < map->num_stripes; i++) {
09a46725
CH
1607 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1608 if (ret)
784daf2b 1609 goto out;
8eae532b 1610
09a46725
CH
1611 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1612 num_conventional++;
1613 else
1614 num_sequential++;
08e11a3d
NA
1615 }
1616
08f45559 1617 if (num_sequential > 0)
961f5b8b 1618 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
08f45559 1619
08e11a3d 1620 if (num_conventional > 0) {
8eae532b
NA
1621 /* Zone capacity is always zone size in emulation */
1622 cache->zone_capacity = cache->length;
6ca64ac2
JT
1623 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1624 if (ret) {
1625 btrfs_err(fs_info,
a94794d5 1626 "zoned: failed to determine allocation offset of bg %llu",
6ca64ac2
JT
1627 cache->start);
1628 goto out;
1629 } else if (map->num_stripes == num_conventional) {
1630 cache->alloc_offset = last_alloc;
3349b57f 1631 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
a94794d5
NA
1632 goto out;
1633 }
08e11a3d
NA
1634 }
1635
1636 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1637 case 0: /* single */
9e0e3e74 1638 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
08e11a3d
NA
1639 break;
1640 case BTRFS_BLOCK_GROUP_DUP:
87463f7e 1641 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
265f7237 1642 break;
08e11a3d 1643 case BTRFS_BLOCK_GROUP_RAID1:
568220fa
JT
1644 case BTRFS_BLOCK_GROUP_RAID1C3:
1645 case BTRFS_BLOCK_GROUP_RAID1C4:
1646 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1647 break;
08e11a3d 1648 case BTRFS_BLOCK_GROUP_RAID0:
568220fa
JT
1649 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1650 break;
08e11a3d 1651 case BTRFS_BLOCK_GROUP_RAID10:
568220fa
JT
1652 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1653 break;
08e11a3d
NA
1654 case BTRFS_BLOCK_GROUP_RAID5:
1655 case BTRFS_BLOCK_GROUP_RAID6:
08e11a3d
NA
1656 default:
1657 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1658 btrfs_bg_type_to_raid_name(map->type));
1659 ret = -EINVAL;
1660 goto out;
1661 }
1662
1663out:
8eae532b
NA
1664 if (cache->alloc_offset > cache->zone_capacity) {
1665 btrfs_err(fs_info,
1666"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1667 cache->alloc_offset, cache->zone_capacity,
1668 cache->start);
1669 ret = -EIO;
1670 }
1671
a94794d5
NA
1672 /* An extent is allocated after the write pointer */
1673 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1674 btrfs_err(fs_info,
1675 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1676 logical, last_alloc, cache->alloc_offset);
1677 ret = -EIO;
1678 }
1679
6ca64ac2 1680 if (!ret) {
0bc09ca1 1681 cache->meta_write_pointer = cache->alloc_offset + cache->start;
3349b57f 1682 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
6ca64ac2
JT
1683 btrfs_get_block_group(cache);
1684 spin_lock(&fs_info->zone_active_bgs_lock);
1685 list_add_tail(&cache->active_bg_list,
1686 &fs_info->zone_active_bgs);
1687 spin_unlock(&fs_info->zone_active_bgs_lock);
1688 }
1689 } else {
dafc340d
NA
1690 kfree(cache->physical_map);
1691 cache->physical_map = NULL;
1692 }
68a384b5 1693 bitmap_free(active);
15c12fcc 1694 kfree(zone_info);
08e11a3d
NA
1695 free_extent_map(em);
1696
1697 return ret;
1698}
169e0da9
NA
1699
1700void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1701{
1702 u64 unusable, free;
1703
1704 if (!btrfs_is_zoned(cache->fs_info))
1705 return;
1706
1707 WARN_ON(cache->bytes_super != 0);
6a8ebc77
NA
1708 unusable = (cache->alloc_offset - cache->used) +
1709 (cache->length - cache->zone_capacity);
1710 free = cache->zone_capacity - cache->alloc_offset;
169e0da9
NA
1711
1712 /* We only need ->free_space in ALLOC_SEQ block groups */
169e0da9
NA
1713 cache->cached = BTRFS_CACHE_FINISHED;
1714 cache->free_space_ctl->free_space = free;
1715 cache->zone_unusable = unusable;
169e0da9 1716}
d3575156
NA
1717
1718void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1719 struct extent_buffer *eb)
1720{
f880fe6e
CH
1721 if (!btrfs_is_zoned(eb->fs_info) ||
1722 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
d3575156
NA
1723 return;
1724
f880fe6e
CH
1725 ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1726
c83b56d1
CH
1727 memzero_extent_buffer(eb, 0, eb->len);
1728 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
d3575156 1729 set_extent_buffer_dirty(eb);
e85de967 1730 set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1c94674b 1731 EXTENT_DIRTY, NULL);
d3575156 1732}
08f45559 1733
921603c7 1734bool btrfs_use_zone_append(struct btrfs_bio *bbio)
08f45559 1735{
921603c7
CH
1736 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1737 struct btrfs_inode *inode = bbio->inode;
4317ff00 1738 struct btrfs_fs_info *fs_info = bbio->fs_info;
08f45559
JT
1739 struct btrfs_block_group *cache;
1740 bool ret = false;
1741
1742 if (!btrfs_is_zoned(fs_info))
1743 return false;
1744
4317ff00 1745 if (!inode || !is_data_inode(&inode->vfs_inode))
08f45559
JT
1746 return false;
1747
fdf9a37d
CH
1748 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1749 return false;
1750
e6d261e3
JT
1751 /*
1752 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1753 * extent layout the relocation code has.
1754 * Furthermore we have set aside own block-group from which only the
1755 * relocation "process" can allocate and make sure only one process at a
1756 * time can add pages to an extent that gets relocated, so it's safe to
1757 * use regular REQ_OP_WRITE for this special case.
1758 */
1759 if (btrfs_is_data_reloc_root(inode->root))
1760 return false;
1761
e380adfc 1762 cache = btrfs_lookup_block_group(fs_info, start);
08f45559
JT
1763 ASSERT(cache);
1764 if (!cache)
1765 return false;
1766
961f5b8b 1767 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
08f45559
JT
1768 btrfs_put_block_group(cache);
1769
1770 return ret;
1771}
d8e3fb10 1772
69ccf3f4 1773void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
d8e3fb10 1774{
69ccf3f4 1775 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
cbfce4c7 1776 struct btrfs_ordered_sum *sum = bbio->sums;
d8e3fb10 1777
cbfce4c7
CH
1778 if (physical < bbio->orig_physical)
1779 sum->logical -= bbio->orig_physical - physical;
1780 else
1781 sum->logical += physical - bbio->orig_physical;
d8e3fb10
NA
1782}
1783
71df088c
CH
1784static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1785 u64 logical)
d8e3fb10 1786{
71df088c 1787 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
d8e3fb10 1788 struct extent_map *em;
d8e3fb10 1789
04f0847c 1790 ordered->disk_bytenr = logical;
d8e3fb10 1791
d8e3fb10
NA
1792 write_lock(&em_tree->lock);
1793 em = search_extent_mapping(em_tree, ordered->file_offset,
1794 ordered->num_bytes);
04f0847c 1795 em->block_start = logical;
d8e3fb10
NA
1796 free_extent_map(em);
1797 write_unlock(&em_tree->lock);
71df088c
CH
1798}
1799
1800static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1801 u64 logical, u64 len)
1802{
1803 struct btrfs_ordered_extent *new;
1804
1805 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1806 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
f000bc6f 1807 ordered->num_bytes, len, logical))
71df088c
CH
1808 return false;
1809
1810 new = btrfs_split_ordered_extent(ordered, len);
1811 if (IS_ERR(new))
1812 return false;
f000bc6f 1813 new->disk_bytenr = logical;
71df088c
CH
1814 btrfs_finish_one_ordered(new);
1815 return true;
1816}
1817
1818void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1819{
1820 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1821 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c02d35d8
NA
1822 struct btrfs_ordered_sum *sum;
1823 u64 logical, len;
1824
1825 /*
1826 * Write to pre-allocated region is for the data relocation, and so
1827 * it should use WRITE operation. No split/rewrite are necessary.
1828 */
1829 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1830 return;
1831
1832 ASSERT(!list_empty(&ordered->list));
1833 /* The ordered->list can be empty in the above pre-alloc case. */
1834 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1835 logical = sum->logical;
1836 len = sum->len;
71df088c
CH
1837
1838 while (len < ordered->disk_num_bytes) {
1839 sum = list_next_entry(sum, list);
1840 if (sum->logical == logical + len) {
1841 len += sum->len;
1842 continue;
1843 }
1844 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1845 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1846 btrfs_err(fs_info, "failed to split ordered extent");
1847 goto out;
1848 }
1849 logical = sum->logical;
1850 len = sum->len;
1851 }
1852
1853 if (ordered->disk_bytenr != logical)
1854 btrfs_rewrite_logical_zoned(ordered, logical);
d8e3fb10 1855
cbfce4c7
CH
1856out:
1857 /*
1858 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1859 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1860 * addresses and don't contain actual checksums. We thus must free them
1861 * here so that we don't attempt to log the csums later.
1862 */
1863 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
71df088c
CH
1864 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1865 while ((sum = list_first_entry_or_null(&ordered->list,
1866 typeof(*sum), list))) {
1867 list_del(&sum->list);
1868 kfree(sum);
1869 }
d8e3fb10 1870 }
d8e3fb10 1871}
0bc09ca1 1872
13bb483d
NA
1873static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1874 struct btrfs_block_group **active_bg)
1875{
1876 const struct writeback_control *wbc = ctx->wbc;
1877 struct btrfs_block_group *block_group = ctx->zoned_bg;
1878 struct btrfs_fs_info *fs_info = block_group->fs_info;
1879
1880 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1881 return true;
1882
1883 if (fs_info->treelog_bg == block_group->start) {
1884 if (!btrfs_zone_activate(block_group)) {
1885 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1886
1887 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1888 return false;
1889 }
1890 } else if (*active_bg != block_group) {
1891 struct btrfs_block_group *tgt = *active_bg;
1892
1893 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1894 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1895
1896 if (tgt) {
1897 /*
1898 * If there is an unsent IO left in the allocated area,
1899 * we cannot wait for them as it may cause a deadlock.
1900 */
1901 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1902 if (wbc->sync_mode == WB_SYNC_NONE ||
1903 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1904 return false;
1905 }
1906
1907 /* Pivot active metadata/system block group. */
1908 btrfs_zoned_meta_io_unlock(fs_info);
1909 wait_eb_writebacks(tgt);
1910 do_zone_finish(tgt, true);
1911 btrfs_zoned_meta_io_lock(fs_info);
1912 if (*active_bg == tgt) {
1913 btrfs_put_block_group(tgt);
1914 *active_bg = NULL;
1915 }
1916 }
1917 if (!btrfs_zone_activate(block_group))
1918 return false;
1919 if (*active_bg != block_group) {
1920 ASSERT(*active_bg == NULL);
1921 *active_bg = block_group;
1922 btrfs_get_block_group(block_group);
1923 }
1924 }
1925
1926 return true;
1927}
1928
2ad8c051
NA
1929/*
1930 * Check if @ctx->eb is aligned to the write pointer.
1931 *
1932 * Return:
1933 * 0: @ctx->eb is at the write pointer. You can write it.
1934 * -EAGAIN: There is a hole. The caller should handle the case.
1935 * -EBUSY: There is a hole, but the caller can just bail out.
1936 */
1937int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1938 struct btrfs_eb_write_context *ctx)
0bc09ca1 1939{
2ad8c051 1940 const struct writeback_control *wbc = ctx->wbc;
7db94301
NA
1941 const struct extent_buffer *eb = ctx->eb;
1942 struct btrfs_block_group *block_group = ctx->zoned_bg;
0bc09ca1
NA
1943
1944 if (!btrfs_is_zoned(fs_info))
2ad8c051 1945 return 0;
0bc09ca1 1946
7db94301
NA
1947 if (block_group) {
1948 if (block_group->start > eb->start ||
1949 block_group->start + block_group->length <= eb->start) {
1950 btrfs_put_block_group(block_group);
1951 block_group = NULL;
1952 ctx->zoned_bg = NULL;
1953 }
1954 }
0bc09ca1 1955
7db94301
NA
1956 if (!block_group) {
1957 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1958 if (!block_group)
2ad8c051 1959 return 0;
7db94301 1960 ctx->zoned_bg = block_group;
0bc09ca1
NA
1961 }
1962
13bb483d
NA
1963 if (block_group->meta_write_pointer == eb->start) {
1964 struct btrfs_block_group **tgt;
1965
1966 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1967 return 0;
1968
1969 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1970 tgt = &fs_info->active_system_bg;
1971 else
1972 tgt = &fs_info->active_meta_bg;
1973 if (check_bg_is_active(ctx, tgt))
1974 return 0;
1975 }
1976
1977 /*
1978 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1979 * start writing this eb. In that case, we can just bail out.
1980 */
1981 if (block_group->meta_write_pointer > eb->start)
1982 return -EBUSY;
2ad8c051
NA
1983
1984 /* If for_sync, this hole will be filled with trasnsaction commit. */
1985 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1986 return -EAGAIN;
1987 return -EBUSY;
0bc09ca1
NA
1988}
1989
de17addc
NA
1990int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1991{
1992 if (!btrfs_dev_is_sequential(device, physical))
1993 return -EOPNOTSUPP;
1994
1995 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1996 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1997}
7db1c5d1
NA
1998
1999static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2000 struct blk_zone *zone)
2001{
4c664611 2002 struct btrfs_io_context *bioc = NULL;
7db1c5d1
NA
2003 u64 mapped_length = PAGE_SIZE;
2004 unsigned int nofs_flag;
2005 int nmirrors;
2006 int i, ret;
2007
723b8bb1 2008 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
9fb2acc2 2009 &mapped_length, &bioc, NULL, NULL);
4c664611 2010 if (ret || !bioc || mapped_length < PAGE_SIZE) {
29634578
CH
2011 ret = -EIO;
2012 goto out_put_bioc;
7db1c5d1
NA
2013 }
2014
29634578
CH
2015 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2016 ret = -EINVAL;
2017 goto out_put_bioc;
2018 }
7db1c5d1
NA
2019
2020 nofs_flag = memalloc_nofs_save();
4c664611 2021 nmirrors = (int)bioc->num_stripes;
7db1c5d1 2022 for (i = 0; i < nmirrors; i++) {
4c664611
QW
2023 u64 physical = bioc->stripes[i].physical;
2024 struct btrfs_device *dev = bioc->stripes[i].dev;
7db1c5d1
NA
2025
2026 /* Missing device */
2027 if (!dev->bdev)
2028 continue;
2029
2030 ret = btrfs_get_dev_zone(dev, physical, zone);
2031 /* Failing device */
2032 if (ret == -EIO || ret == -EOPNOTSUPP)
2033 continue;
2034 break;
2035 }
2036 memalloc_nofs_restore(nofs_flag);
29634578
CH
2037out_put_bioc:
2038 btrfs_put_bioc(bioc);
7db1c5d1
NA
2039 return ret;
2040}
2041
2042/*
2043 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2044 * filling zeros between @physical_pos to a write pointer of dev-replace
2045 * source device.
2046 */
2047int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2048 u64 physical_start, u64 physical_pos)
2049{
2050 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2051 struct blk_zone zone;
2052 u64 length;
2053 u64 wp;
2054 int ret;
2055
2056 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2057 return 0;
2058
2059 ret = read_zone_info(fs_info, logical, &zone);
2060 if (ret)
2061 return ret;
2062
2063 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2064
2065 if (physical_pos == wp)
2066 return 0;
2067
2068 if (physical_pos > wp)
2069 return -EUCLEAN;
2070
2071 length = wp - physical_pos;
2072 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2073}
e7ff9e6b 2074
43dd529a 2075/*
afba2bc0
NA
2076 * Activate block group and underlying device zones
2077 *
2078 * @block_group: the block group to activate
2079 *
2080 * Return: true on success, false otherwise
2081 */
2082bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2083{
2084 struct btrfs_fs_info *fs_info = block_group->fs_info;
2085 struct map_lookup *map;
2086 struct btrfs_device *device;
2087 u64 physical;
a7e1ac7b 2088 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
afba2bc0 2089 bool ret;
f9a912a3 2090 int i;
afba2bc0
NA
2091
2092 if (!btrfs_is_zoned(block_group->fs_info))
2093 return true;
2094
2095 map = block_group->physical_map;
afba2bc0
NA
2096
2097 spin_lock(&block_group->lock);
3349b57f 2098 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
2099 ret = true;
2100 goto out_unlock;
2101 }
2102
54957712 2103 /* No space left */
1bfd4767 2104 if (btrfs_zoned_bg_is_full(block_group)) {
54957712
NA
2105 ret = false;
2106 goto out_unlock;
2107 }
2108
a7e1ac7b 2109 spin_lock(&fs_info->zone_active_bgs_lock);
f9a912a3 2110 for (i = 0; i < map->num_stripes; i++) {
a7e1ac7b
NA
2111 struct btrfs_zoned_device_info *zinfo;
2112 int reserved = 0;
2113
f9a912a3
JT
2114 device = map->stripes[i].dev;
2115 physical = map->stripes[i].physical;
a7e1ac7b 2116 zinfo = device->zone_info;
afba2bc0 2117
a7e1ac7b 2118 if (zinfo->max_active_zones == 0)
f9a912a3
JT
2119 continue;
2120
a7e1ac7b
NA
2121 if (is_data)
2122 reserved = zinfo->reserved_active_zones;
2123 /*
2124 * For the data block group, leave active zones for one
2125 * metadata block group and one system block group.
2126 */
2127 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2128 ret = false;
2129 spin_unlock(&fs_info->zone_active_bgs_lock);
2130 goto out_unlock;
2131 }
2132
f9a912a3
JT
2133 if (!btrfs_dev_set_active_zone(device, physical)) {
2134 /* Cannot activate the zone */
2135 ret = false;
a7e1ac7b 2136 spin_unlock(&fs_info->zone_active_bgs_lock);
f9a912a3
JT
2137 goto out_unlock;
2138 }
a7e1ac7b
NA
2139 if (!is_data)
2140 zinfo->reserved_active_zones--;
f9a912a3 2141 }
a7e1ac7b 2142 spin_unlock(&fs_info->zone_active_bgs_lock);
ceb4f608
NA
2143
2144 /* Successfully activated all the zones */
3349b57f 2145 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
afba2bc0
NA
2146 spin_unlock(&block_group->lock);
2147
ceb4f608
NA
2148 /* For the active block group list */
2149 btrfs_get_block_group(block_group);
afba2bc0 2150
ceb4f608
NA
2151 spin_lock(&fs_info->zone_active_bgs_lock);
2152 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2153 spin_unlock(&fs_info->zone_active_bgs_lock);
afba2bc0
NA
2154
2155 return true;
2156
2157out_unlock:
2158 spin_unlock(&block_group->lock);
2159 return ret;
2160}
2161
2dd7e7bc
NA
2162static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2163{
2164 struct btrfs_fs_info *fs_info = block_group->fs_info;
2165 const u64 end = block_group->start + block_group->length;
2166 struct radix_tree_iter iter;
2167 struct extent_buffer *eb;
2168 void __rcu **slot;
2169
2170 rcu_read_lock();
2171 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2172 block_group->start >> fs_info->sectorsize_bits) {
2173 eb = radix_tree_deref_slot(slot);
2174 if (!eb)
2175 continue;
2176 if (radix_tree_deref_retry(eb)) {
2177 slot = radix_tree_iter_retry(&iter);
2178 continue;
2179 }
2180
2181 if (eb->start < block_group->start)
2182 continue;
2183 if (eb->start >= end)
2184 break;
2185
2186 slot = radix_tree_iter_resume(slot, &iter);
2187 rcu_read_unlock();
2188 wait_on_extent_buffer_writeback(eb);
2189 rcu_read_lock();
2190 }
2191 rcu_read_unlock();
2192}
2193
d70cbdda 2194static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
afba2bc0
NA
2195{
2196 struct btrfs_fs_info *fs_info = block_group->fs_info;
2197 struct map_lookup *map;
2dd7e7bc
NA
2198 const bool is_metadata = (block_group->flags &
2199 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
afba2bc0 2200 int ret = 0;
4dcbb8ab 2201 int i;
afba2bc0 2202
afba2bc0 2203 spin_lock(&block_group->lock);
3349b57f 2204 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
afba2bc0
NA
2205 spin_unlock(&block_group->lock);
2206 return 0;
2207 }
2208
2209 /* Check if we have unwritten allocated space */
2dd7e7bc 2210 if (is_metadata &&
aa9ffadf 2211 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
afba2bc0
NA
2212 spin_unlock(&block_group->lock);
2213 return -EAGAIN;
2214 }
afba2bc0
NA
2215
2216 /*
d70cbdda
NA
2217 * If we are sure that the block group is full (= no more room left for
2218 * new allocation) and the IO for the last usable block is completed, we
2219 * don't need to wait for the other IOs. This holds because we ensure
2220 * the sequential IO submissions using the ZONE_APPEND command for data
2221 * and block_group->meta_write_pointer for metadata.
afba2bc0 2222 */
d70cbdda 2223 if (!fully_written) {
332581bd
NA
2224 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2225 spin_unlock(&block_group->lock);
2226 return -EAGAIN;
2227 }
afba2bc0 2228 spin_unlock(&block_group->lock);
afba2bc0 2229
d70cbdda
NA
2230 ret = btrfs_inc_block_group_ro(block_group, false);
2231 if (ret)
2232 return ret;
2233
2234 /* Ensure all writes in this block group finish */
2235 btrfs_wait_block_group_reservations(block_group);
2236 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2237 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2238 block_group->length);
2dd7e7bc
NA
2239 /* Wait for extent buffers to be written. */
2240 if (is_metadata)
2241 wait_eb_writebacks(block_group);
d70cbdda
NA
2242
2243 spin_lock(&block_group->lock);
2244
2245 /*
2246 * Bail out if someone already deactivated the block group, or
2247 * allocated space is left in the block group.
2248 */
3349b57f
JB
2249 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2250 &block_group->runtime_flags)) {
d70cbdda
NA
2251 spin_unlock(&block_group->lock);
2252 btrfs_dec_block_group_ro(block_group);
2253 return 0;
2254 }
2255
332581bd
NA
2256 if (block_group->reserved ||
2257 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2258 &block_group->runtime_flags)) {
d70cbdda
NA
2259 spin_unlock(&block_group->lock);
2260 btrfs_dec_block_group_ro(block_group);
2261 return -EAGAIN;
2262 }
afba2bc0
NA
2263 }
2264
3349b57f 2265 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
afba2bc0 2266 block_group->alloc_offset = block_group->zone_capacity;
c1c3c2bc
NA
2267 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2268 block_group->meta_write_pointer = block_group->start +
2269 block_group->zone_capacity;
afba2bc0
NA
2270 block_group->free_space_ctl->free_space = 0;
2271 btrfs_clear_treelog_bg(block_group);
5911f538 2272 btrfs_clear_data_reloc_bg(block_group);
afba2bc0
NA
2273 spin_unlock(&block_group->lock);
2274
d70cbdda 2275 map = block_group->physical_map;
4dcbb8ab 2276 for (i = 0; i < map->num_stripes; i++) {
d70cbdda
NA
2277 struct btrfs_device *device = map->stripes[i].dev;
2278 const u64 physical = map->stripes[i].physical;
a7e1ac7b 2279 struct btrfs_zoned_device_info *zinfo = device->zone_info;
afba2bc0 2280
a7e1ac7b 2281 if (zinfo->max_active_zones == 0)
4dcbb8ab 2282 continue;
afba2bc0 2283
b3a3b025
NA
2284 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2285 physical >> SECTOR_SHIFT,
a7e1ac7b 2286 zinfo->zone_size >> SECTOR_SHIFT,
b3a3b025 2287 GFP_NOFS);
4dcbb8ab 2288
b3a3b025
NA
2289 if (ret)
2290 return ret;
afba2bc0 2291
a7e1ac7b
NA
2292 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2293 zinfo->reserved_active_zones++;
4dcbb8ab 2294 btrfs_dev_clear_active_zone(device, physical);
afba2bc0 2295 }
d70cbdda
NA
2296
2297 if (!fully_written)
2298 btrfs_dec_block_group_ro(block_group);
afba2bc0 2299
4dcbb8ab
JT
2300 spin_lock(&fs_info->zone_active_bgs_lock);
2301 ASSERT(!list_empty(&block_group->active_bg_list));
2302 list_del_init(&block_group->active_bg_list);
2303 spin_unlock(&fs_info->zone_active_bgs_lock);
2304
2305 /* For active_bg_list */
2306 btrfs_put_block_group(block_group);
2307
d5b81ced 2308 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2ce543f4 2309
4dcbb8ab 2310 return 0;
afba2bc0 2311}
a85f05e5 2312
d70cbdda
NA
2313int btrfs_zone_finish(struct btrfs_block_group *block_group)
2314{
2315 if (!btrfs_is_zoned(block_group->fs_info))
2316 return 0;
2317
2318 return do_zone_finish(block_group, false);
2319}
2320
82187d2e 2321bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
a85f05e5 2322{
0b9e6676 2323 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
a85f05e5
NA
2324 struct btrfs_device *device;
2325 bool ret = false;
2326
0b9e6676 2327 if (!btrfs_is_zoned(fs_info))
a85f05e5
NA
2328 return true;
2329
a85f05e5 2330 /* Check if there is a device with active zones left */
0b9e6676 2331 mutex_lock(&fs_info->chunk_mutex);
a7e1ac7b 2332 spin_lock(&fs_info->zone_active_bgs_lock);
0b9e6676 2333 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
a85f05e5 2334 struct btrfs_zoned_device_info *zinfo = device->zone_info;
a7e1ac7b 2335 int reserved = 0;
a85f05e5
NA
2336
2337 if (!device->bdev)
2338 continue;
2339
9e1cdf0c 2340 if (!zinfo->max_active_zones) {
a85f05e5
NA
2341 ret = true;
2342 break;
2343 }
9e1cdf0c 2344
a7e1ac7b
NA
2345 if (flags & BTRFS_BLOCK_GROUP_DATA)
2346 reserved = zinfo->reserved_active_zones;
2347
9e1cdf0c
NA
2348 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2349 case 0: /* single */
a7e1ac7b 2350 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
9e1cdf0c
NA
2351 break;
2352 case BTRFS_BLOCK_GROUP_DUP:
a7e1ac7b 2353 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
9e1cdf0c
NA
2354 break;
2355 }
2356 if (ret)
2357 break;
a85f05e5 2358 }
a7e1ac7b 2359 spin_unlock(&fs_info->zone_active_bgs_lock);
0b9e6676 2360 mutex_unlock(&fs_info->chunk_mutex);
a85f05e5 2361
2ce543f4
NA
2362 if (!ret)
2363 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2364
a85f05e5
NA
2365 return ret;
2366}
be1a1d7a
NA
2367
2368void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2369{
2370 struct btrfs_block_group *block_group;
8b8a5399 2371 u64 min_alloc_bytes;
be1a1d7a
NA
2372
2373 if (!btrfs_is_zoned(fs_info))
2374 return;
2375
2376 block_group = btrfs_lookup_block_group(fs_info, logical);
2377 ASSERT(block_group);
2378
8b8a5399
NA
2379 /* No MIXED_BG on zoned btrfs. */
2380 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2381 min_alloc_bytes = fs_info->sectorsize;
2382 else
2383 min_alloc_bytes = fs_info->nodesize;
be1a1d7a 2384
8b8a5399
NA
2385 /* Bail out if we can allocate more data from this block group. */
2386 if (logical + length + min_alloc_bytes <=
2387 block_group->start + block_group->zone_capacity)
be1a1d7a 2388 goto out;
be1a1d7a 2389
d70cbdda 2390 do_zone_finish(block_group, true);
be1a1d7a 2391
be1a1d7a
NA
2392out:
2393 btrfs_put_block_group(block_group);
2394}
be1a1d7a 2395
56fbb0a4
NA
2396static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2397{
2398 struct btrfs_block_group *bg =
2399 container_of(work, struct btrfs_block_group, zone_finish_work);
be1a1d7a 2400
56fbb0a4
NA
2401 wait_on_extent_buffer_writeback(bg->last_eb);
2402 free_extent_buffer(bg->last_eb);
2403 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2404 btrfs_put_block_group(bg);
2405}
be1a1d7a 2406
56fbb0a4
NA
2407void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2408 struct extent_buffer *eb)
2409{
961f5b8b
DS
2410 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2411 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
56fbb0a4 2412 return;
be1a1d7a 2413
56fbb0a4
NA
2414 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2415 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2416 bg->start);
2417 return;
2418 }
be1a1d7a 2419
56fbb0a4
NA
2420 /* For the work */
2421 btrfs_get_block_group(bg);
2422 atomic_inc(&eb->refs);
2423 bg->last_eb = eb;
2424 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2425 queue_work(system_unbound_wq, &bg->zone_finish_work);
be1a1d7a 2426}
c2707a25
JT
2427
2428void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2429{
2430 struct btrfs_fs_info *fs_info = bg->fs_info;
2431
2432 spin_lock(&fs_info->relocation_bg_lock);
2433 if (fs_info->data_reloc_bg == bg->start)
2434 fs_info->data_reloc_bg = 0;
2435 spin_unlock(&fs_info->relocation_bg_lock);
2436}
16beac87
NA
2437
2438void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2439{
2440 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2441 struct btrfs_device *device;
2442
2443 if (!btrfs_is_zoned(fs_info))
2444 return;
2445
2446 mutex_lock(&fs_devices->device_list_mutex);
2447 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2448 if (device->zone_info) {
2449 vfree(device->zone_info->zone_cache);
2450 device->zone_info->zone_cache = NULL;
2451 }
2452 }
2453 mutex_unlock(&fs_devices->device_list_mutex);
2454}
3687fcb0
JT
2455
2456bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2457{
2458 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2459 struct btrfs_device *device;
2460 u64 used = 0;
2461 u64 total = 0;
2462 u64 factor;
2463
2464 ASSERT(btrfs_is_zoned(fs_info));
2465
2466 if (fs_info->bg_reclaim_threshold == 0)
2467 return false;
2468
2469 mutex_lock(&fs_devices->device_list_mutex);
2470 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2471 if (!device->bdev)
2472 continue;
2473
2474 total += device->disk_total_bytes;
2475 used += device->bytes_used;
2476 }
2477 mutex_unlock(&fs_devices->device_list_mutex);
2478
2479 factor = div64_u64(used * 100, total);
2480 return factor >= fs_info->bg_reclaim_threshold;
2481}
343d8a30
NA
2482
2483void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2484 u64 length)
2485{
2486 struct btrfs_block_group *block_group;
2487
2488 if (!btrfs_is_zoned(fs_info))
2489 return;
2490
2491 block_group = btrfs_lookup_block_group(fs_info, logical);
2492 /* It should be called on a previous data relocation block group. */
2493 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2494
2495 spin_lock(&block_group->lock);
3349b57f 2496 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
343d8a30
NA
2497 goto out;
2498
2499 /* All relocation extents are written. */
2500 if (block_group->start + block_group->alloc_offset == logical + length) {
332581bd
NA
2501 /*
2502 * Now, release this block group for further allocations and
2503 * zone finish.
2504 */
3349b57f
JB
2505 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2506 &block_group->runtime_flags);
343d8a30
NA
2507 }
2508
2509out:
2510 spin_unlock(&block_group->lock);
2511 btrfs_put_block_group(block_group);
2512}
393f646e
NA
2513
2514int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2515{
2516 struct btrfs_block_group *block_group;
2517 struct btrfs_block_group *min_bg = NULL;
2518 u64 min_avail = U64_MAX;
2519 int ret;
2520
2521 spin_lock(&fs_info->zone_active_bgs_lock);
2522 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2523 active_bg_list) {
2524 u64 avail;
2525
2526 spin_lock(&block_group->lock);
fa2068d7 2527 if (block_group->reserved || block_group->alloc_offset == 0 ||
332581bd
NA
2528 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2529 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
393f646e
NA
2530 spin_unlock(&block_group->lock);
2531 continue;
2532 }
2533
2534 avail = block_group->zone_capacity - block_group->alloc_offset;
2535 if (min_avail > avail) {
2536 if (min_bg)
2537 btrfs_put_block_group(min_bg);
2538 min_bg = block_group;
2539 min_avail = avail;
2540 btrfs_get_block_group(min_bg);
2541 }
2542 spin_unlock(&block_group->lock);
2543 }
2544 spin_unlock(&fs_info->zone_active_bgs_lock);
2545
2546 if (!min_bg)
2547 return 0;
2548
2549 ret = btrfs_zone_finish(min_bg);
2550 btrfs_put_block_group(min_bg);
2551
2552 return ret < 0 ? ret : 1;
2553}
b0931513
NA
2554
2555int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2556 struct btrfs_space_info *space_info,
2557 bool do_finish)
2558{
2559 struct btrfs_block_group *bg;
2560 int index;
2561
2562 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2563 return 0;
2564
b0931513
NA
2565 for (;;) {
2566 int ret;
2567 bool need_finish = false;
2568
2569 down_read(&space_info->groups_sem);
2570 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2571 list_for_each_entry(bg, &space_info->block_groups[index],
2572 list) {
2573 if (!spin_trylock(&bg->lock))
2574 continue;
3349b57f
JB
2575 if (btrfs_zoned_bg_is_full(bg) ||
2576 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2577 &bg->runtime_flags)) {
b0931513
NA
2578 spin_unlock(&bg->lock);
2579 continue;
2580 }
2581 spin_unlock(&bg->lock);
2582
2583 if (btrfs_zone_activate(bg)) {
2584 up_read(&space_info->groups_sem);
2585 return 1;
2586 }
2587
2588 need_finish = true;
2589 }
2590 }
2591 up_read(&space_info->groups_sem);
2592
2593 if (!do_finish || !need_finish)
2594 break;
2595
2596 ret = btrfs_zone_finish_one_bg(fs_info);
2597 if (ret == 0)
2598 break;
2599 if (ret < 0)
2600 return ret;
2601 }
2602
2603 return 0;
2604}
a7e1ac7b
NA
2605
2606/*
2607 * Reserve zones for one metadata block group, one tree-log block group, and one
2608 * system block group.
2609 */
2610void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2611{
2612 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2613 struct btrfs_block_group *block_group;
2614 struct btrfs_device *device;
2615 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2616 unsigned int metadata_reserve = 2;
2617 /* Reserve a zone for SINGLE system block group. */
2618 unsigned int system_reserve = 1;
2619
2620 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2621 return;
2622
2623 /*
2624 * This function is called from the mount context. So, there is no
2625 * parallel process touching the bits. No need for read_seqretry().
2626 */
2627 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2628 metadata_reserve = 4;
2629 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2630 system_reserve = 2;
2631
2632 /* Apply the reservation on all the devices. */
2633 mutex_lock(&fs_devices->device_list_mutex);
2634 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2635 if (!device->bdev)
2636 continue;
2637
2638 device->zone_info->reserved_active_zones =
2639 metadata_reserve + system_reserve;
2640 }
2641 mutex_unlock(&fs_devices->device_list_mutex);
2642
2643 /* Release reservation for currently active block groups. */
2644 spin_lock(&fs_info->zone_active_bgs_lock);
2645 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2646 struct map_lookup *map = block_group->physical_map;
2647
2648 if (!(block_group->flags &
2649 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2650 continue;
2651
2652 for (int i = 0; i < map->num_stripes; i++)
2653 map->stripes[i].dev->zone_info->reserved_active_zones--;
2654 }
2655 spin_unlock(&fs_info->zone_active_bgs_lock);
2656}