btrfs: merge alloc_device helpers
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
b0643e59 33#include "discard.h"
5b316468 34#include "zoned.h"
0b86a832 35
af902047
ZL
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
8789f4fe 42 .tolerated_failures = 1,
af902047
ZL
43 .devs_increment = 2,
44 .ncopies = 2,
b50836ed 45 .nparity = 0,
ed23467b 46 .raid_name = "raid10",
41a6e891 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
8789f4fe 55 .tolerated_failures = 1,
af902047
ZL
56 .devs_increment = 2,
57 .ncopies = 2,
b50836ed 58 .nparity = 0,
ed23467b 59 .raid_name = "raid1",
41a6e891 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 62 },
47e6f742
DS
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
cf93e15e 66 .devs_max = 3,
47e6f742
DS
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
db26a024 71 .nparity = 0,
47e6f742
DS
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
8d6fac00
DS
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
cf93e15e 79 .devs_max = 4,
8d6fac00
DS
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
db26a024 84 .nparity = 0,
8d6fac00
DS
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
af902047
ZL
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
8789f4fe 94 .tolerated_failures = 0,
af902047
ZL
95 .devs_increment = 1,
96 .ncopies = 2,
b50836ed 97 .nparity = 0,
ed23467b 98 .raid_name = "dup",
41a6e891 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 100 .mindev_error = 0,
af902047
ZL
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
8789f4fe 107 .tolerated_failures = 0,
af902047
ZL
108 .devs_increment = 1,
109 .ncopies = 1,
b50836ed 110 .nparity = 0,
ed23467b 111 .raid_name = "raid0",
41a6e891 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 113 .mindev_error = 0,
af902047
ZL
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
8789f4fe 120 .tolerated_failures = 0,
af902047
ZL
121 .devs_increment = 1,
122 .ncopies = 1,
b50836ed 123 .nparity = 0,
ed23467b 124 .raid_name = "single",
41a6e891 125 .bg_flag = 0,
f9fbcaa2 126 .mindev_error = 0,
af902047
ZL
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
8789f4fe 133 .tolerated_failures = 1,
af902047 134 .devs_increment = 1,
da612e31 135 .ncopies = 1,
b50836ed 136 .nparity = 1,
ed23467b 137 .raid_name = "raid5",
41a6e891 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
8789f4fe 146 .tolerated_failures = 2,
af902047 147 .devs_increment = 1,
da612e31 148 .ncopies = 1,
b50836ed 149 .nparity = 2,
ed23467b 150 .raid_name = "raid6",
41a6e891 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
153 },
154};
155
500a44c9
DS
156/*
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
159 */
160enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161{
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
178
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180}
181
158da513 182const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 183{
158da513
DS
184 const int index = btrfs_bg_flags_to_raid_index(flags);
185
186 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
187 return NULL;
188
158da513 189 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
190}
191
f89e09cf
AJ
192/*
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
195 */
196void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197{
198 int i;
199 int ret;
200 char *bp = buf;
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
203
204 if (!flags) {
205 strcpy(bp, "NONE");
206 return;
207 }
208
209#define DESCRIBE_FLAG(flag, desc) \
210 do { \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
214 goto out_overflow; \
215 size_bp -= ret; \
216 bp += ret; \
217 flags &= ~(flag); \
218 } \
219 } while (0)
220
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
229#undef DESCRIBE_FLAG
230
231 if (flags) {
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 size_bp -= ret;
234 }
235
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239 /*
240 * The text is trimmed, it's up to the caller to provide sufficiently
241 * large buffer
242 */
243out_overflow:;
244}
245
6f8e0fc7 246static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 247static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 248static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 249static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
250static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
2b82032c 255
9c6b1c4d
DS
256/*
257 * Device locking
258 * ==============
259 *
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
262 *
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
268 *
269 * the mutex can be very coarse and can cover long-running operations
270 *
271 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 272 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
273 *
274 * global::fs_devs - add, remove, updates to the global list
275 *
18c850fd
JB
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
278 * scan ioctl
9c6b1c4d
DS
279 *
280 * btrfs_device::name - renames (write side), read is RCU
281 *
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
285 *
286 * simple list traversal with read-only actions can be done with RCU protection
287 *
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
290 *
18c850fd
JB
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
293 *
9c6b1c4d
DS
294 * balance_mutex
295 * -------------
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
298 *
299 * chunk_mutex
300 * -----------
301 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
305 *
306 * cleaner_mutex
307 * -------------
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
310 *
311 *
312 * Lock nesting
313 * ============
314 *
315 * uuid_mutex
ae3e715f
AJ
316 * device_list_mutex
317 * chunk_mutex
318 * balance_mutex
89595e80
AJ
319 *
320 *
c3e1f96c
GR
321 * Exclusive operations
322 * ====================
89595e80
AJ
323 *
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
326 *
327 * - Balance (*)
328 * - Device add
329 * - Device remove
330 * - Device replace (*)
331 * - Resize
332 *
333 * The device operations (as above) can be in one of the following states:
334 *
335 * - Running state
336 * - Paused state
337 * - Completed state
338 *
339 * Only device operations marked with (*) can go into the Paused state for the
340 * following reasons:
341 *
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
347 *
c3e1f96c
GR
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 352 * The exclusive status is cleared when the device operation is canceled or
89595e80 353 * completed.
9c6b1c4d
DS
354 */
355
67a2c45e 356DEFINE_MUTEX(uuid_mutex);
8a4b83cc 357static LIST_HEAD(fs_uuids);
4143cb8b 358struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
359{
360 return &fs_uuids;
361}
8a4b83cc 362
2dfeca9b
DS
363/*
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
367 *
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
371 */
7239ff4b
NB
372static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
2208a378
ID
374{
375 struct btrfs_fs_devices *fs_devs;
376
78f2c9e6 377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
378 if (!fs_devs)
379 return ERR_PTR(-ENOMEM);
380
381 mutex_init(&fs_devs->device_list_mutex);
382
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 385 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 386 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
387 if (fsid)
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 389
7239ff4b
NB
390 if (metadata_fsid)
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 else if (fsid)
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
2208a378
ID
395 return fs_devs;
396}
397
a425f9d4 398void btrfs_free_device(struct btrfs_device *device)
48dae9cf 399{
bbbf7243 400 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 401 rcu_string_free(device->name);
1c11b63e 402 extent_io_tree_release(&device->alloc_state);
48dae9cf 403 bio_put(device->flush_bio);
5b316468 404 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
405 kfree(device);
406}
407
e4404d6e
YZ
408static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409{
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
a425f9d4 416 btrfs_free_device(device);
e4404d6e
YZ
417 }
418 kfree(fs_devices);
419}
420
ffc5a379 421void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
422{
423 struct btrfs_fs_devices *fs_devices;
8a4b83cc 424
2b82032c
YZ
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
e4404d6e 429 free_fs_devices(fs_devices);
8a4b83cc 430 }
8a4b83cc
CM
431}
432
7239ff4b
NB
433static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 435{
8a4b83cc
CM
436 struct btrfs_fs_devices *fs_devices;
437
7239ff4b
NB
438 ASSERT(fsid);
439
7a62d0f0 440 /* Handle non-split brain cases */
c4babc5e 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
8a4b83cc
CM
451 }
452 return NULL;
453}
454
c6730a0e
SY
455static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457{
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493}
494
495
beaf8ab3
SB
496static int
497btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
8f32380d 499 struct btrfs_super_block **disk_super)
beaf8ab3
SB
500{
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
beaf8ab3
SB
507 goto error;
508 }
509
510 if (flush)
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
8f32380d
JT
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527error:
528 *bdev = NULL;
beaf8ab3
SB
529 return ret;
530}
531
70bc7088
AJ
532static bool device_path_matched(const char *path, struct btrfs_device *device)
533{
534 int found;
535
536 rcu_read_lock();
537 found = strcmp(rcu_str_deref(device->name), path);
538 rcu_read_unlock();
539
540 return found == 0;
541}
542
d8367db3
AJ
543/*
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
549 * devices.
70bc7088
AJ
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
d8367db3 553 */
70bc7088 554static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 555 struct btrfs_device *skip_device)
4fde46f0 556{
fa6d2ae5
AJ
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
559 int ret = 0;
560
561 if (path)
562 ret = -ENOENT;
4fde46f0 563
fa6d2ae5 564 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 565
70bc7088 566 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
567 list_for_each_entry_safe(device, tmp_device,
568 &fs_devices->devices, dev_list) {
fa6d2ae5 569 if (skip_device && skip_device == device)
d8367db3 570 continue;
fa6d2ae5 571 if (path && !device->name)
4fde46f0 572 continue;
70bc7088 573 if (path && !device_path_matched(path, device))
38cf665d 574 continue;
70bc7088
AJ
575 if (fs_devices->opened) {
576 /* for an already deleted device return 0 */
577 if (path && ret != 0)
578 ret = -EBUSY;
579 break;
580 }
4fde46f0 581
4fde46f0 582 /* delete the stale device */
7bcb8164
AJ
583 fs_devices->num_devices--;
584 list_del(&device->dev_list);
585 btrfs_free_device(device);
586
70bc7088 587 ret = 0;
7bcb8164
AJ
588 }
589 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 590
7bcb8164
AJ
591 if (fs_devices->num_devices == 0) {
592 btrfs_sysfs_remove_fsid(fs_devices);
593 list_del(&fs_devices->fs_list);
594 free_fs_devices(fs_devices);
4fde46f0
AJ
595 }
596 }
70bc7088
AJ
597
598 return ret;
4fde46f0
AJ
599}
600
18c850fd
JB
601/*
602 * This is only used on mount, and we are protected from competing things
603 * messing with our fs_devices by the uuid_mutex, thus we do not need the
604 * fs_devices->device_list_mutex here.
605 */
0fb08bcc
AJ
606static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 struct btrfs_device *device, fmode_t flags,
608 void *holder)
609{
610 struct request_queue *q;
611 struct block_device *bdev;
0fb08bcc
AJ
612 struct btrfs_super_block *disk_super;
613 u64 devid;
614 int ret;
615
616 if (device->bdev)
617 return -EINVAL;
618 if (!device->name)
619 return -EINVAL;
620
621 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 622 &bdev, &disk_super);
0fb08bcc
AJ
623 if (ret)
624 return ret;
625
0fb08bcc
AJ
626 devid = btrfs_stack_device_id(&disk_super->dev_item);
627 if (devid != device->devid)
8f32380d 628 goto error_free_page;
0fb08bcc
AJ
629
630 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 631 goto error_free_page;
0fb08bcc
AJ
632
633 device->generation = btrfs_super_generation(disk_super);
634
635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
636 if (btrfs_super_incompat_flags(disk_super) &
637 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 pr_err(
639 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 640 goto error_free_page;
7239ff4b
NB
641 }
642
ebbede42 643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 644 fs_devices->seeding = true;
0fb08bcc 645 } else {
ebbede42
AJ
646 if (bdev_read_only(bdev))
647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 else
649 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
650 }
651
652 q = bdev_get_queue(bdev);
0fb08bcc 653 if (!blk_queue_nonrot(q))
7f0432d0 654 fs_devices->rotating = true;
0fb08bcc
AJ
655
656 device->bdev = bdev;
e12c9621 657 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
658 device->mode = flags;
659
660 fs_devices->open_devices++;
ebbede42
AJ
661 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 663 fs_devices->rw_devices++;
b1b8e386 664 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 665 }
8f32380d 666 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
667
668 return 0;
669
8f32380d
JT
670error_free_page:
671 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
672 blkdev_put(bdev, flags);
673
674 return -EINVAL;
675}
676
7a62d0f0
NB
677/*
678 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
679 * being created with a disk that has already completed its fsid change. Such
680 * disk can belong to an fs which has its FSID changed or to one which doesn't.
681 * Handle both cases here.
7a62d0f0
NB
682 */
683static struct btrfs_fs_devices *find_fsid_inprogress(
684 struct btrfs_super_block *disk_super)
685{
686 struct btrfs_fs_devices *fs_devices;
687
688 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 BTRFS_FSID_SIZE) != 0 &&
691 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 return fs_devices;
694 }
695 }
696
c0d81c7c 697 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
698}
699
cc5de4e7
NB
700
701static struct btrfs_fs_devices *find_fsid_changed(
702 struct btrfs_super_block *disk_super)
703{
704 struct btrfs_fs_devices *fs_devices;
705
706 /*
707 * Handles the case where scanned device is part of an fs that had
1a9fd417 708 * multiple successful changes of FSID but currently device didn't
05840710
NB
709 * observe it. Meaning our fsid will be different than theirs. We need
710 * to handle two subcases :
711 * 1 - The fs still continues to have different METADATA/FSID uuids.
712 * 2 - The fs is switched back to its original FSID (METADATA/FSID
713 * are equal).
cc5de4e7
NB
714 */
715 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 716 /* Changed UUIDs */
cc5de4e7
NB
717 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 BTRFS_FSID_SIZE) != 0 &&
719 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 BTRFS_FSID_SIZE) == 0 &&
721 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
722 BTRFS_FSID_SIZE) != 0)
723 return fs_devices;
724
725 /* Unchanged UUIDs */
726 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 BTRFS_FSID_SIZE) == 0 &&
728 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 BTRFS_FSID_SIZE) == 0)
cc5de4e7 730 return fs_devices;
cc5de4e7
NB
731 }
732
733 return NULL;
734}
1362089d
NB
735
736static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 struct btrfs_super_block *disk_super)
738{
739 struct btrfs_fs_devices *fs_devices;
740
741 /*
742 * Handle the case where the scanned device is part of an fs whose last
743 * metadata UUID change reverted it to the original FSID. At the same
744 * time * fs_devices was first created by another constitutent device
745 * which didn't fully observe the operation. This results in an
746 * btrfs_fs_devices created with metadata/fsid different AND
747 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 * fs_devices equal to the FSID of the disk.
749 */
750 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 BTRFS_FSID_SIZE) != 0 &&
753 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 BTRFS_FSID_SIZE) == 0 &&
755 fs_devices->fsid_change)
756 return fs_devices;
757 }
758
759 return NULL;
760}
60999ca4
DS
761/*
762 * Add new device to list of registered devices
763 *
764 * Returns:
e124ece5
AJ
765 * device pointer which was just added or updated when successful
766 * error pointer when failed
60999ca4 767 */
e124ece5 768static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
769 struct btrfs_super_block *disk_super,
770 bool *new_device_added)
8a4b83cc
CM
771{
772 struct btrfs_device *device;
7a62d0f0 773 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 774 struct rcu_string *name;
8a4b83cc 775 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 776 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
777 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
779 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 781
cc5de4e7 782 if (fsid_change_in_progress) {
c0d81c7c 783 if (!has_metadata_uuid)
cc5de4e7 784 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 785 else
cc5de4e7 786 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 787 } else if (has_metadata_uuid) {
c6730a0e 788 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 789 } else {
1362089d
NB
790 fs_devices = find_fsid_reverted_metadata(disk_super);
791 if (!fs_devices)
792 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
793 }
794
8a4b83cc 795
8a4b83cc 796 if (!fs_devices) {
7239ff4b
NB
797 if (has_metadata_uuid)
798 fs_devices = alloc_fs_devices(disk_super->fsid,
799 disk_super->metadata_uuid);
800 else
801 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802
2208a378 803 if (IS_ERR(fs_devices))
e124ece5 804 return ERR_CAST(fs_devices);
2208a378 805
92900e51
AV
806 fs_devices->fsid_change = fsid_change_in_progress;
807
9c6d173e 808 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 809 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 810
8a4b83cc
CM
811 device = NULL;
812 } else {
9c6d173e 813 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9 814 device = btrfs_find_device(fs_devices, devid,
b2598edf 815 disk_super->dev_item.uuid, NULL);
7a62d0f0
NB
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
1362089d 822 if (fs_devices->fsid_change &&
7a62d0f0
NB
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
1362089d
NB
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
834
835 fs_devices->fsid_change = false;
836 }
8a4b83cc 837 }
443f24fe 838
8a4b83cc 839 if (!device) {
9c6d173e
AJ
840 if (fs_devices->opened) {
841 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 842 return ERR_PTR(-EBUSY);
9c6d173e 843 }
2b82032c 844
12bd2fc0
ID
845 device = btrfs_alloc_device(NULL, &devid,
846 disk_super->dev_item.uuid);
847 if (IS_ERR(device)) {
9c6d173e 848 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 849 /* we can safely leave the fs_devices entry around */
e124ece5 850 return device;
8a4b83cc 851 }
606686ee
JB
852
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
a425f9d4 855 btrfs_free_device(device);
9c6d173e 856 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 857 return ERR_PTR(-ENOMEM);
8a4b83cc 858 }
606686ee 859 rcu_assign_pointer(device->name, name);
90519d66 860
1f78160c 861 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 862 fs_devices->num_devices++;
e5e9a520 863
2b82032c 864 device->fs_devices = fs_devices;
4306a974 865 *new_device_added = true;
327f18cc
AJ
866
867 if (disk_super->label[0])
aa6c0df7
AJ
868 pr_info(
869 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 disk_super->label, devid, found_transid, path,
871 current->comm, task_pid_nr(current));
327f18cc 872 else
aa6c0df7
AJ
873 pr_info(
874 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 disk_super->fsid, devid, found_transid, path,
876 current->comm, task_pid_nr(current));
327f18cc 877
606686ee 878 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
879 /*
880 * When FS is already mounted.
881 * 1. If you are here and if the device->name is NULL that
882 * means this device was missing at time of FS mount.
883 * 2. If you are here and if the device->name is different
884 * from 'path' that means either
885 * a. The same device disappeared and reappeared with
886 * different name. or
887 * b. The missing-disk-which-was-replaced, has
888 * reappeared now.
889 *
890 * We must allow 1 and 2a above. But 2b would be a spurious
891 * and unintentional.
892 *
893 * Further in case of 1 and 2a above, the disk at 'path'
894 * would have missed some transaction when it was away and
895 * in case of 2a the stale bdev has to be updated as well.
896 * 2b must not be allowed at all time.
897 */
898
899 /*
0f23ae74
CM
900 * For now, we do allow update to btrfs_fs_device through the
901 * btrfs dev scan cli after FS has been mounted. We're still
902 * tracking a problem where systems fail mount by subvolume id
903 * when we reject replacement on a mounted FS.
b96de000 904 */
0f23ae74 905 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
906 /*
907 * That is if the FS is _not_ mounted and if you
908 * are here, that means there is more than one
909 * disk with same uuid and devid.We keep the one
910 * with larger generation number or the last-in if
911 * generation are equal.
912 */
9c6d173e 913 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 914 return ERR_PTR(-EEXIST);
77bdae4d 915 }
b96de000 916
a9261d41
AJ
917 /*
918 * We are going to replace the device path for a given devid,
919 * make sure it's the same device if the device is mounted
920 */
921 if (device->bdev) {
4e7b5671
CH
922 int error;
923 dev_t path_dev;
a9261d41 924
4e7b5671
CH
925 error = lookup_bdev(path, &path_dev);
926 if (error) {
a9261d41 927 mutex_unlock(&fs_devices->device_list_mutex);
4e7b5671 928 return ERR_PTR(error);
a9261d41
AJ
929 }
930
4e7b5671 931 if (device->bdev->bd_dev != path_dev) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6
JT
933 /*
934 * device->fs_info may not be reliable here, so
935 * pass in a NULL instead. This avoids a
936 * possible use-after-free when the fs_info and
937 * fs_info->sb are already torn down.
938 */
939 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
940 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
941 path, devid, found_transid,
942 current->comm,
943 task_pid_nr(current));
a9261d41
AJ
944 return ERR_PTR(-EEXIST);
945 }
a9261d41 946 btrfs_info_in_rcu(device->fs_info,
79dae17d
AJ
947 "devid %llu device path %s changed to %s scanned by %s (%d)",
948 devid, rcu_str_deref(device->name),
949 path, current->comm,
950 task_pid_nr(current));
a9261d41
AJ
951 }
952
606686ee 953 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
954 if (!name) {
955 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 956 return ERR_PTR(-ENOMEM);
9c6d173e 957 }
606686ee
JB
958 rcu_string_free(device->name);
959 rcu_assign_pointer(device->name, name);
e6e674bd 960 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 961 fs_devices->missing_devices--;
e6e674bd 962 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 963 }
8a4b83cc
CM
964 }
965
77bdae4d
AJ
966 /*
967 * Unmount does not free the btrfs_device struct but would zero
968 * generation along with most of the other members. So just update
969 * it back. We need it to pick the disk with largest generation
970 * (as above).
971 */
d1a63002 972 if (!fs_devices->opened) {
77bdae4d 973 device->generation = found_transid;
d1a63002
NB
974 fs_devices->latest_generation = max_t(u64, found_transid,
975 fs_devices->latest_generation);
976 }
77bdae4d 977
f2788d2f
AJ
978 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
979
9c6d173e 980 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 981 return device;
8a4b83cc
CM
982}
983
e4404d6e
YZ
984static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
985{
986 struct btrfs_fs_devices *fs_devices;
987 struct btrfs_device *device;
988 struct btrfs_device *orig_dev;
d2979aa2 989 int ret = 0;
e4404d6e 990
7239ff4b 991 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
992 if (IS_ERR(fs_devices))
993 return fs_devices;
e4404d6e 994
adbbb863 995 mutex_lock(&orig->device_list_mutex);
02db0844 996 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
997
998 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
999 struct rcu_string *name;
1000
12bd2fc0
ID
1001 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002 orig_dev->uuid);
d2979aa2
AJ
1003 if (IS_ERR(device)) {
1004 ret = PTR_ERR(device);
e4404d6e 1005 goto error;
d2979aa2 1006 }
e4404d6e 1007
606686ee
JB
1008 /*
1009 * This is ok to do without rcu read locked because we hold the
1010 * uuid mutex so nothing we touch in here is going to disappear.
1011 */
e755f780 1012 if (orig_dev->name) {
78f2c9e6
DS
1013 name = rcu_string_strdup(orig_dev->name->str,
1014 GFP_KERNEL);
e755f780 1015 if (!name) {
a425f9d4 1016 btrfs_free_device(device);
d2979aa2 1017 ret = -ENOMEM;
e755f780
AJ
1018 goto error;
1019 }
1020 rcu_assign_pointer(device->name, name);
fd2696f3 1021 }
e4404d6e 1022
e4404d6e
YZ
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
adbbb863 1027 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
1028 return fs_devices;
1029error:
adbbb863 1030 mutex_unlock(&orig->device_list_mutex);
e4404d6e 1031 free_fs_devices(fs_devices);
d2979aa2 1032 return ERR_PTR(ret);
e4404d6e
YZ
1033}
1034
3712ccb7 1035static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1036 struct btrfs_device **latest_dev)
dfe25020 1037{
c6e30871 1038 struct btrfs_device *device, *next;
a6b0d5c8 1039
46224705 1040 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1041 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1042 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1043 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1044 &device->dev_state) &&
998a0671
AJ
1045 !test_bit(BTRFS_DEV_STATE_MISSING,
1046 &device->dev_state) &&
3712ccb7
NB
1047 (!*latest_dev ||
1048 device->generation > (*latest_dev)->generation)) {
1049 *latest_dev = device;
a6b0d5c8 1050 }
2b82032c 1051 continue;
a6b0d5c8 1052 }
2b82032c 1053
cf89af14
AJ
1054 /*
1055 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1056 * in btrfs_init_dev_replace() so just continue.
1057 */
1058 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1059 continue;
1060
2b82032c 1061 if (device->bdev) {
d4d77629 1062 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1063 device->bdev = NULL;
1064 fs_devices->open_devices--;
1065 }
ebbede42 1066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1067 list_del_init(&device->dev_alloc_list);
ebbede42 1068 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1069 fs_devices->rw_devices--;
2b82032c 1070 }
e4404d6e
YZ
1071 list_del_init(&device->dev_list);
1072 fs_devices->num_devices--;
a425f9d4 1073 btrfs_free_device(device);
dfe25020 1074 }
2b82032c 1075
3712ccb7
NB
1076}
1077
1078/*
1079 * After we have read the system tree and know devids belonging to this
1080 * filesystem, remove the device which does not belong there.
1081 */
bacce86a 1082void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1083{
1084 struct btrfs_device *latest_dev = NULL;
944d3f9f 1085 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1086
1087 mutex_lock(&uuid_mutex);
bacce86a 1088 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1089
1090 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1091 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1092
443f24fe 1093 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1094
dfe25020 1095 mutex_unlock(&uuid_mutex);
dfe25020 1096}
a0af469b 1097
14238819
AJ
1098static void btrfs_close_bdev(struct btrfs_device *device)
1099{
08ffcae8
DS
1100 if (!device->bdev)
1101 return;
1102
ebbede42 1103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1104 sync_blockdev(device->bdev);
1105 invalidate_bdev(device->bdev);
1106 }
1107
08ffcae8 1108 blkdev_put(device->bdev, device->mode);
14238819
AJ
1109}
1110
959b1c04 1111static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1112{
1113 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1114
ebbede42 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1116 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1117 list_del_init(&device->dev_alloc_list);
1118 fs_devices->rw_devices--;
1119 }
1120
e6e674bd 1121 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1122 fs_devices->missing_devices--;
1123
959b1c04 1124 btrfs_close_bdev(device);
321f69f8 1125 if (device->bdev) {
3fff3975 1126 fs_devices->open_devices--;
321f69f8 1127 device->bdev = NULL;
f448341a 1128 }
321f69f8 1129 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1130 btrfs_destroy_dev_zone_info(device);
f448341a 1131
321f69f8
JT
1132 device->fs_info = NULL;
1133 atomic_set(&device->dev_stats_ccnt, 0);
1134 extent_io_tree_release(&device->alloc_state);
959b1c04 1135
321f69f8
JT
1136 /* Verify the device is back in a pristine state */
1137 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139 ASSERT(list_empty(&device->dev_alloc_list));
1140 ASSERT(list_empty(&device->post_commit_list));
1141 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1142}
1143
54eed6ae 1144static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1145{
2037a093 1146 struct btrfs_device *device, *tmp;
e4404d6e 1147
425c6ed6
JB
1148 lockdep_assert_held(&uuid_mutex);
1149
2b82032c 1150 if (--fs_devices->opened > 0)
54eed6ae 1151 return;
8a4b83cc 1152
425c6ed6 1153 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1154 btrfs_close_one_device(device);
c9513edb 1155
e4404d6e
YZ
1156 WARN_ON(fs_devices->open_devices);
1157 WARN_ON(fs_devices->rw_devices);
2b82032c 1158 fs_devices->opened = 0;
0395d84f 1159 fs_devices->seeding = false;
c4989c2f 1160 fs_devices->fs_info = NULL;
8a4b83cc
CM
1161}
1162
54eed6ae 1163void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1164{
944d3f9f
NB
1165 LIST_HEAD(list);
1166 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1167
1168 mutex_lock(&uuid_mutex);
54eed6ae 1169 close_fs_devices(fs_devices);
944d3f9f
NB
1170 if (!fs_devices->opened)
1171 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1172
944d3f9f 1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1174 close_fs_devices(fs_devices);
944d3f9f 1175 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1176 free_fs_devices(fs_devices);
1177 }
425c6ed6 1178 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1179}
1180
897fb573 1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1182 fmode_t flags, void *holder)
8a4b83cc 1183{
8a4b83cc 1184 struct btrfs_device *device;
443f24fe 1185 struct btrfs_device *latest_dev = NULL;
96c2e067 1186 struct btrfs_device *tmp_device;
8a4b83cc 1187
d4d77629
TH
1188 flags |= FMODE_EXCL;
1189
96c2e067
AJ
1190 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1191 dev_list) {
1192 int ret;
a0af469b 1193
96c2e067
AJ
1194 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1195 if (ret == 0 &&
1196 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1197 latest_dev = device;
96c2e067
AJ
1198 } else if (ret == -ENODATA) {
1199 fs_devices->num_devices--;
1200 list_del(&device->dev_list);
1201 btrfs_free_device(device);
1202 }
8a4b83cc 1203 }
1ed802c9
AJ
1204 if (fs_devices->open_devices == 0)
1205 return -EINVAL;
1206
2b82032c 1207 fs_devices->opened = 1;
443f24fe 1208 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1209 fs_devices->total_rw_bytes = 0;
c4a816c6 1210 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1211 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1212
1213 return 0;
2b82032c
YZ
1214}
1215
4f0f586b
ST
1216static int devid_cmp(void *priv, const struct list_head *a,
1217 const struct list_head *b)
f8e10cd3
AJ
1218{
1219 struct btrfs_device *dev1, *dev2;
1220
1221 dev1 = list_entry(a, struct btrfs_device, dev_list);
1222 dev2 = list_entry(b, struct btrfs_device, dev_list);
1223
1224 if (dev1->devid < dev2->devid)
1225 return -1;
1226 else if (dev1->devid > dev2->devid)
1227 return 1;
1228 return 0;
1229}
1230
2b82032c 1231int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1232 fmode_t flags, void *holder)
2b82032c
YZ
1233{
1234 int ret;
1235
f5194e34 1236 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1237 /*
1238 * The device_list_mutex cannot be taken here in case opening the
a8698707 1239 * underlying device takes further locks like open_mutex.
18c850fd
JB
1240 *
1241 * We also don't need the lock here as this is called during mount and
1242 * exclusion is provided by uuid_mutex
1243 */
f5194e34 1244
2b82032c 1245 if (fs_devices->opened) {
e4404d6e
YZ
1246 fs_devices->opened++;
1247 ret = 0;
2b82032c 1248 } else {
f8e10cd3 1249 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1250 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1251 }
542c5908 1252
8a4b83cc
CM
1253 return ret;
1254}
1255
8f32380d 1256void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1257{
8f32380d
JT
1258 struct page *page = virt_to_page(super);
1259
6cf86a00
AJ
1260 put_page(page);
1261}
1262
b335eab8 1263static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1264 u64 bytenr, u64 bytenr_orig)
6cf86a00 1265{
b335eab8
NB
1266 struct btrfs_super_block *disk_super;
1267 struct page *page;
6cf86a00
AJ
1268 void *p;
1269 pgoff_t index;
1270
1271 /* make sure our super fits in the device */
1272 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
b335eab8 1273 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1274
1275 /* make sure our super fits in the page */
b335eab8
NB
1276 if (sizeof(*disk_super) > PAGE_SIZE)
1277 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1278
1279 /* make sure our super doesn't straddle pages on disk */
1280 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1281 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1282 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1283
1284 /* pull in the page with our super */
b335eab8 1285 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1286
b335eab8
NB
1287 if (IS_ERR(page))
1288 return ERR_CAST(page);
6cf86a00 1289
b335eab8 1290 p = page_address(page);
6cf86a00
AJ
1291
1292 /* align our pointer to the offset of the super block */
b335eab8 1293 disk_super = p + offset_in_page(bytenr);
6cf86a00 1294
12659251 1295 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1296 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1297 btrfs_release_disk_super(p);
b335eab8 1298 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1299 }
1300
b335eab8
NB
1301 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1302 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1303
b335eab8 1304 return disk_super;
6cf86a00
AJ
1305}
1306
228a73ab
AJ
1307int btrfs_forget_devices(const char *path)
1308{
1309 int ret;
1310
1311 mutex_lock(&uuid_mutex);
1312 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1313 mutex_unlock(&uuid_mutex);
1314
1315 return ret;
1316}
1317
6f60cbd3
DS
1318/*
1319 * Look for a btrfs signature on a device. This may be called out of the mount path
1320 * and we are not allowed to call set_blocksize during the scan. The superblock
1321 * is read via pagecache
1322 */
36350e95
GJ
1323struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1324 void *holder)
8a4b83cc
CM
1325{
1326 struct btrfs_super_block *disk_super;
4306a974 1327 bool new_device_added = false;
36350e95 1328 struct btrfs_device *device = NULL;
8a4b83cc 1329 struct block_device *bdev;
12659251
NA
1330 u64 bytenr, bytenr_orig;
1331 int ret;
8a4b83cc 1332
899f9307
DS
1333 lockdep_assert_held(&uuid_mutex);
1334
6f60cbd3
DS
1335 /*
1336 * we would like to check all the supers, but that would make
1337 * a btrfs mount succeed after a mkfs from a different FS.
1338 * So, we need to add a special mount option to scan for
1339 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1340 */
d4d77629 1341 flags |= FMODE_EXCL;
6f60cbd3
DS
1342
1343 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1344 if (IS_ERR(bdev))
36350e95 1345 return ERR_CAST(bdev);
6f60cbd3 1346
12659251
NA
1347 bytenr_orig = btrfs_sb_offset(0);
1348 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1349 if (ret)
1350 return ERR_PTR(ret);
1351
1352 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1353 if (IS_ERR(disk_super)) {
1354 device = ERR_CAST(disk_super);
6f60cbd3 1355 goto error_bdev_put;
05a5c55d 1356 }
6f60cbd3 1357
4306a974 1358 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1359 if (!IS_ERR(device)) {
4306a974
AJ
1360 if (new_device_added)
1361 btrfs_free_stale_devices(path, device);
1362 }
6f60cbd3 1363
8f32380d 1364 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1365
1366error_bdev_put:
d4d77629 1367 blkdev_put(bdev, flags);
b6ed73bc 1368
36350e95 1369 return device;
8a4b83cc 1370}
0b86a832 1371
1c11b63e
JM
1372/*
1373 * Try to find a chunk that intersects [start, start + len] range and when one
1374 * such is found, record the end of it in *start
1375 */
1c11b63e
JM
1376static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1377 u64 len)
6df9a95e 1378{
1c11b63e 1379 u64 physical_start, physical_end;
6df9a95e 1380
1c11b63e 1381 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1382
1c11b63e
JM
1383 if (!find_first_extent_bit(&device->alloc_state, *start,
1384 &physical_start, &physical_end,
1385 CHUNK_ALLOCATED, NULL)) {
c152b63e 1386
1c11b63e
JM
1387 if (in_range(physical_start, *start, len) ||
1388 in_range(*start, physical_start,
1389 physical_end - physical_start)) {
1390 *start = physical_end + 1;
1391 return true;
6df9a95e
JB
1392 }
1393 }
1c11b63e 1394 return false;
6df9a95e
JB
1395}
1396
3b4ffa40
NA
1397static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1398{
1399 switch (device->fs_devices->chunk_alloc_policy) {
1400 case BTRFS_CHUNK_ALLOC_REGULAR:
1401 /*
1402 * We don't want to overwrite the superblock on the drive nor
1403 * any area used by the boot loader (grub for example), so we
1404 * make sure to start at an offset of at least 1MB.
1405 */
1406 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1407 case BTRFS_CHUNK_ALLOC_ZONED:
1408 /*
1409 * We don't care about the starting region like regular
1410 * allocator, because we anyway use/reserve the first two zones
1411 * for superblock logging.
1412 */
1413 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1414 default:
1415 BUG();
1416 }
1417}
1418
1cd6121f
NA
1419static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1420 u64 *hole_start, u64 *hole_size,
1421 u64 num_bytes)
1422{
1423 u64 zone_size = device->zone_info->zone_size;
1424 u64 pos;
1425 int ret;
1426 bool changed = false;
1427
1428 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1429
1430 while (*hole_size > 0) {
1431 pos = btrfs_find_allocatable_zones(device, *hole_start,
1432 *hole_start + *hole_size,
1433 num_bytes);
1434 if (pos != *hole_start) {
1435 *hole_size = *hole_start + *hole_size - pos;
1436 *hole_start = pos;
1437 changed = true;
1438 if (*hole_size < num_bytes)
1439 break;
1440 }
1441
1442 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1443
1444 /* Range is ensured to be empty */
1445 if (!ret)
1446 return changed;
1447
1448 /* Given hole range was invalid (outside of device) */
1449 if (ret == -ERANGE) {
1450 *hole_start += *hole_size;
d6f67afb 1451 *hole_size = 0;
7000babd 1452 return true;
1cd6121f
NA
1453 }
1454
1455 *hole_start += zone_size;
1456 *hole_size -= zone_size;
1457 changed = true;
1458 }
1459
1460 return changed;
1461}
1462
3b4ffa40
NA
1463/**
1464 * dev_extent_hole_check - check if specified hole is suitable for allocation
1465 * @device: the device which we have the hole
1466 * @hole_start: starting position of the hole
1467 * @hole_size: the size of the hole
1468 * @num_bytes: the size of the free space that we need
1469 *
1cd6121f 1470 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1471 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1472 */
1473static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1474 u64 *hole_size, u64 num_bytes)
1475{
1476 bool changed = false;
1477 u64 hole_end = *hole_start + *hole_size;
1478
1cd6121f
NA
1479 for (;;) {
1480 /*
1481 * Check before we set max_hole_start, otherwise we could end up
1482 * sending back this offset anyway.
1483 */
1484 if (contains_pending_extent(device, hole_start, *hole_size)) {
1485 if (hole_end >= *hole_start)
1486 *hole_size = hole_end - *hole_start;
1487 else
1488 *hole_size = 0;
1489 changed = true;
1490 }
1491
1492 switch (device->fs_devices->chunk_alloc_policy) {
1493 case BTRFS_CHUNK_ALLOC_REGULAR:
1494 /* No extra check */
1495 break;
1496 case BTRFS_CHUNK_ALLOC_ZONED:
1497 if (dev_extent_hole_check_zoned(device, hole_start,
1498 hole_size, num_bytes)) {
1499 changed = true;
1500 /*
1501 * The changed hole can contain pending extent.
1502 * Loop again to check that.
1503 */
1504 continue;
1505 }
1506 break;
1507 default:
1508 BUG();
1509 }
3b4ffa40 1510
3b4ffa40 1511 break;
3b4ffa40
NA
1512 }
1513
1514 return changed;
1515}
6df9a95e 1516
0b86a832 1517/*
499f377f
JM
1518 * find_free_dev_extent_start - find free space in the specified device
1519 * @device: the device which we search the free space in
1520 * @num_bytes: the size of the free space that we need
1521 * @search_start: the position from which to begin the search
1522 * @start: store the start of the free space.
1523 * @len: the size of the free space. that we find, or the size
1524 * of the max free space if we don't find suitable free space
7bfc837d 1525 *
0b86a832
CM
1526 * this uses a pretty simple search, the expectation is that it is
1527 * called very infrequently and that a given device has a small number
1528 * of extents
7bfc837d
MX
1529 *
1530 * @start is used to store the start of the free space if we find. But if we
1531 * don't find suitable free space, it will be used to store the start position
1532 * of the max free space.
1533 *
1534 * @len is used to store the size of the free space that we find.
1535 * But if we don't find suitable free space, it is used to store the size of
1536 * the max free space.
135da976
QW
1537 *
1538 * NOTE: This function will search *commit* root of device tree, and does extra
1539 * check to ensure dev extents are not double allocated.
1540 * This makes the function safe to allocate dev extents but may not report
1541 * correct usable device space, as device extent freed in current transaction
1a9fd417 1542 * is not reported as available.
0b86a832 1543 */
9e3246a5
QW
1544static int find_free_dev_extent_start(struct btrfs_device *device,
1545 u64 num_bytes, u64 search_start, u64 *start,
1546 u64 *len)
0b86a832 1547{
0b246afa
JM
1548 struct btrfs_fs_info *fs_info = device->fs_info;
1549 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1550 struct btrfs_key key;
7bfc837d 1551 struct btrfs_dev_extent *dev_extent;
2b82032c 1552 struct btrfs_path *path;
7bfc837d
MX
1553 u64 hole_size;
1554 u64 max_hole_start;
1555 u64 max_hole_size;
1556 u64 extent_end;
0b86a832
CM
1557 u64 search_end = device->total_bytes;
1558 int ret;
7bfc837d 1559 int slot;
0b86a832 1560 struct extent_buffer *l;
8cdc7c5b 1561
3b4ffa40 1562 search_start = dev_extent_search_start(device, search_start);
0b86a832 1563
1cd6121f
NA
1564 WARN_ON(device->zone_info &&
1565 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1566
6df9a95e
JB
1567 path = btrfs_alloc_path();
1568 if (!path)
1569 return -ENOMEM;
f2ab7618 1570
7bfc837d
MX
1571 max_hole_start = search_start;
1572 max_hole_size = 0;
1573
f2ab7618 1574again:
401e29c1
AJ
1575 if (search_start >= search_end ||
1576 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1577 ret = -ENOSPC;
6df9a95e 1578 goto out;
7bfc837d
MX
1579 }
1580
e4058b54 1581 path->reada = READA_FORWARD;
6df9a95e
JB
1582 path->search_commit_root = 1;
1583 path->skip_locking = 1;
7bfc837d 1584
0b86a832
CM
1585 key.objectid = device->devid;
1586 key.offset = search_start;
1587 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1588
125ccb0a 1589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1590 if (ret < 0)
7bfc837d 1591 goto out;
1fcbac58
YZ
1592 if (ret > 0) {
1593 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1594 if (ret < 0)
7bfc837d 1595 goto out;
1fcbac58 1596 }
7bfc837d 1597
0b86a832
CM
1598 while (1) {
1599 l = path->nodes[0];
1600 slot = path->slots[0];
1601 if (slot >= btrfs_header_nritems(l)) {
1602 ret = btrfs_next_leaf(root, path);
1603 if (ret == 0)
1604 continue;
1605 if (ret < 0)
7bfc837d
MX
1606 goto out;
1607
1608 break;
0b86a832
CM
1609 }
1610 btrfs_item_key_to_cpu(l, &key, slot);
1611
1612 if (key.objectid < device->devid)
1613 goto next;
1614
1615 if (key.objectid > device->devid)
7bfc837d 1616 break;
0b86a832 1617
962a298f 1618 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1619 goto next;
9779b72f 1620
7bfc837d
MX
1621 if (key.offset > search_start) {
1622 hole_size = key.offset - search_start;
3b4ffa40
NA
1623 dev_extent_hole_check(device, &search_start, &hole_size,
1624 num_bytes);
6df9a95e 1625
7bfc837d
MX
1626 if (hole_size > max_hole_size) {
1627 max_hole_start = search_start;
1628 max_hole_size = hole_size;
1629 }
9779b72f 1630
7bfc837d
MX
1631 /*
1632 * If this free space is greater than which we need,
1633 * it must be the max free space that we have found
1634 * until now, so max_hole_start must point to the start
1635 * of this free space and the length of this free space
1636 * is stored in max_hole_size. Thus, we return
1637 * max_hole_start and max_hole_size and go back to the
1638 * caller.
1639 */
1640 if (hole_size >= num_bytes) {
1641 ret = 0;
1642 goto out;
0b86a832
CM
1643 }
1644 }
0b86a832 1645
0b86a832 1646 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1647 extent_end = key.offset + btrfs_dev_extent_length(l,
1648 dev_extent);
1649 if (extent_end > search_start)
1650 search_start = extent_end;
0b86a832
CM
1651next:
1652 path->slots[0]++;
1653 cond_resched();
1654 }
0b86a832 1655
38c01b96 1656 /*
1657 * At this point, search_start should be the end of
1658 * allocated dev extents, and when shrinking the device,
1659 * search_end may be smaller than search_start.
1660 */
f2ab7618 1661 if (search_end > search_start) {
38c01b96 1662 hole_size = search_end - search_start;
3b4ffa40
NA
1663 if (dev_extent_hole_check(device, &search_start, &hole_size,
1664 num_bytes)) {
f2ab7618
ZL
1665 btrfs_release_path(path);
1666 goto again;
1667 }
0b86a832 1668
f2ab7618
ZL
1669 if (hole_size > max_hole_size) {
1670 max_hole_start = search_start;
1671 max_hole_size = hole_size;
1672 }
6df9a95e
JB
1673 }
1674
7bfc837d 1675 /* See above. */
f2ab7618 1676 if (max_hole_size < num_bytes)
7bfc837d
MX
1677 ret = -ENOSPC;
1678 else
1679 ret = 0;
1680
1681out:
2b82032c 1682 btrfs_free_path(path);
7bfc837d 1683 *start = max_hole_start;
b2117a39 1684 if (len)
7bfc837d 1685 *len = max_hole_size;
0b86a832
CM
1686 return ret;
1687}
1688
60dfdf25 1689int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1690 u64 *start, u64 *len)
1691{
499f377f 1692 /* FIXME use last free of some kind */
60dfdf25 1693 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1694}
1695
b2950863 1696static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1697 struct btrfs_device *device,
2196d6e8 1698 u64 start, u64 *dev_extent_len)
8f18cf13 1699{
0b246afa
JM
1700 struct btrfs_fs_info *fs_info = device->fs_info;
1701 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1702 int ret;
1703 struct btrfs_path *path;
8f18cf13 1704 struct btrfs_key key;
a061fc8d
CM
1705 struct btrfs_key found_key;
1706 struct extent_buffer *leaf = NULL;
1707 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1708
1709 path = btrfs_alloc_path();
1710 if (!path)
1711 return -ENOMEM;
1712
1713 key.objectid = device->devid;
1714 key.offset = start;
1715 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1716again:
8f18cf13 1717 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1718 if (ret > 0) {
1719 ret = btrfs_previous_item(root, path, key.objectid,
1720 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1721 if (ret)
1722 goto out;
a061fc8d
CM
1723 leaf = path->nodes[0];
1724 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1725 extent = btrfs_item_ptr(leaf, path->slots[0],
1726 struct btrfs_dev_extent);
1727 BUG_ON(found_key.offset > start || found_key.offset +
1728 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1729 key = found_key;
1730 btrfs_release_path(path);
1731 goto again;
a061fc8d
CM
1732 } else if (ret == 0) {
1733 leaf = path->nodes[0];
1734 extent = btrfs_item_ptr(leaf, path->slots[0],
1735 struct btrfs_dev_extent);
79787eaa 1736 } else {
79787eaa 1737 goto out;
a061fc8d 1738 }
8f18cf13 1739
2196d6e8
MX
1740 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1741
8f18cf13 1742 ret = btrfs_del_item(trans, root, path);
79bd3712 1743 if (ret == 0)
3204d33c 1744 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1745out:
8f18cf13
CM
1746 btrfs_free_path(path);
1747 return ret;
1748}
1749
6df9a95e 1750static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1751{
6df9a95e
JB
1752 struct extent_map_tree *em_tree;
1753 struct extent_map *em;
1754 struct rb_node *n;
1755 u64 ret = 0;
0b86a832 1756
c8bf1b67 1757 em_tree = &fs_info->mapping_tree;
6df9a95e 1758 read_lock(&em_tree->lock);
07e1ce09 1759 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1760 if (n) {
1761 em = rb_entry(n, struct extent_map, rb_node);
1762 ret = em->start + em->len;
0b86a832 1763 }
6df9a95e
JB
1764 read_unlock(&em_tree->lock);
1765
0b86a832
CM
1766 return ret;
1767}
1768
53f10659
ID
1769static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1770 u64 *devid_ret)
0b86a832
CM
1771{
1772 int ret;
1773 struct btrfs_key key;
1774 struct btrfs_key found_key;
2b82032c
YZ
1775 struct btrfs_path *path;
1776
2b82032c
YZ
1777 path = btrfs_alloc_path();
1778 if (!path)
1779 return -ENOMEM;
0b86a832
CM
1780
1781 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1782 key.type = BTRFS_DEV_ITEM_KEY;
1783 key.offset = (u64)-1;
1784
53f10659 1785 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1786 if (ret < 0)
1787 goto error;
1788
a06dee4d
AJ
1789 if (ret == 0) {
1790 /* Corruption */
1791 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1792 ret = -EUCLEAN;
1793 goto error;
1794 }
0b86a832 1795
53f10659
ID
1796 ret = btrfs_previous_item(fs_info->chunk_root, path,
1797 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1798 BTRFS_DEV_ITEM_KEY);
1799 if (ret) {
53f10659 1800 *devid_ret = 1;
0b86a832
CM
1801 } else {
1802 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1803 path->slots[0]);
53f10659 1804 *devid_ret = found_key.offset + 1;
0b86a832
CM
1805 }
1806 ret = 0;
1807error:
2b82032c 1808 btrfs_free_path(path);
0b86a832
CM
1809 return ret;
1810}
1811
1812/*
1813 * the device information is stored in the chunk root
1814 * the btrfs_device struct should be fully filled in
1815 */
c74a0b02 1816static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1817 struct btrfs_device *device)
0b86a832
CM
1818{
1819 int ret;
1820 struct btrfs_path *path;
1821 struct btrfs_dev_item *dev_item;
1822 struct extent_buffer *leaf;
1823 struct btrfs_key key;
1824 unsigned long ptr;
0b86a832 1825
0b86a832
CM
1826 path = btrfs_alloc_path();
1827 if (!path)
1828 return -ENOMEM;
1829
0b86a832
CM
1830 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1831 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1832 key.offset = device->devid;
0b86a832 1833
8e87e856
NB
1834 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1835 &key, sizeof(*dev_item));
0b86a832
CM
1836 if (ret)
1837 goto out;
1838
1839 leaf = path->nodes[0];
1840 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1841
1842 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1843 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1844 btrfs_set_device_type(leaf, dev_item, device->type);
1845 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1846 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1847 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1848 btrfs_set_device_total_bytes(leaf, dev_item,
1849 btrfs_device_get_disk_total_bytes(device));
1850 btrfs_set_device_bytes_used(leaf, dev_item,
1851 btrfs_device_get_bytes_used(device));
e17cade2
CM
1852 btrfs_set_device_group(leaf, dev_item, 0);
1853 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1854 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1855 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1856
410ba3a2 1857 ptr = btrfs_device_uuid(dev_item);
e17cade2 1858 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1859 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1860 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1861 ptr, BTRFS_FSID_SIZE);
0b86a832 1862 btrfs_mark_buffer_dirty(leaf);
0b86a832 1863
2b82032c 1864 ret = 0;
0b86a832
CM
1865out:
1866 btrfs_free_path(path);
1867 return ret;
1868}
8f18cf13 1869
5a1972bd
QW
1870/*
1871 * Function to update ctime/mtime for a given device path.
1872 * Mainly used for ctime/mtime based probe like libblkid.
1873 */
da353f6b 1874static void update_dev_time(const char *path_name)
5a1972bd
QW
1875{
1876 struct file *filp;
1877
1878 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1879 if (IS_ERR(filp))
5a1972bd
QW
1880 return;
1881 file_update_time(filp);
1882 filp_close(filp, NULL);
5a1972bd
QW
1883}
1884
f331a952 1885static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1886{
f331a952 1887 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1888 int ret;
1889 struct btrfs_path *path;
a061fc8d 1890 struct btrfs_key key;
a061fc8d
CM
1891 struct btrfs_trans_handle *trans;
1892
a061fc8d
CM
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
a22285a6 1897 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1898 if (IS_ERR(trans)) {
1899 btrfs_free_path(path);
1900 return PTR_ERR(trans);
1901 }
a061fc8d
CM
1902 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1903 key.type = BTRFS_DEV_ITEM_KEY;
1904 key.offset = device->devid;
1905
1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1907 if (ret) {
1908 if (ret > 0)
1909 ret = -ENOENT;
1910 btrfs_abort_transaction(trans, ret);
1911 btrfs_end_transaction(trans);
a061fc8d
CM
1912 goto out;
1913 }
1914
1915 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1916 if (ret) {
1917 btrfs_abort_transaction(trans, ret);
1918 btrfs_end_transaction(trans);
1919 }
1920
a061fc8d
CM
1921out:
1922 btrfs_free_path(path);
5e9f2ad5
NB
1923 if (!ret)
1924 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1925 return ret;
1926}
1927
3cc31a0d
DS
1928/*
1929 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1930 * filesystem. It's up to the caller to adjust that number regarding eg. device
1931 * replace.
1932 */
1933static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1934 u64 num_devices)
a061fc8d 1935{
a061fc8d 1936 u64 all_avail;
de98ced9 1937 unsigned seq;
418775a2 1938 int i;
a061fc8d 1939
de98ced9 1940 do {
bd45ffbc 1941 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1942
bd45ffbc
AJ
1943 all_avail = fs_info->avail_data_alloc_bits |
1944 fs_info->avail_system_alloc_bits |
1945 fs_info->avail_metadata_alloc_bits;
1946 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1947
418775a2 1948 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1949 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1950 continue;
a061fc8d 1951
418775a2 1952 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 1953 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 1954
418775a2
DS
1955 if (ret)
1956 return ret;
1957 }
53b381b3
DW
1958 }
1959
bd45ffbc 1960 return 0;
f1fa7f26
AJ
1961}
1962
c9162bdf
OS
1963static struct btrfs_device * btrfs_find_next_active_device(
1964 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1965{
2b82032c 1966 struct btrfs_device *next_device;
88acff64
AJ
1967
1968 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1969 if (next_device != device &&
e6e674bd
AJ
1970 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1971 && next_device->bdev)
88acff64
AJ
1972 return next_device;
1973 }
1974
1975 return NULL;
1976}
1977
1978/*
1979 * Helper function to check if the given device is part of s_bdev / latest_bdev
1980 * and replace it with the provided or the next active device, in the context
1981 * where this function called, there should be always be another device (or
1982 * this_dev) which is active.
1983 */
b105e927 1984void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1985 struct btrfs_device *next_device)
88acff64 1986{
d6507cf1 1987 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1988
e493e8f9 1989 if (!next_device)
88acff64 1990 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 1991 device);
88acff64
AJ
1992 ASSERT(next_device);
1993
1994 if (fs_info->sb->s_bdev &&
1995 (fs_info->sb->s_bdev == device->bdev))
1996 fs_info->sb->s_bdev = next_device->bdev;
1997
1998 if (fs_info->fs_devices->latest_bdev == device->bdev)
1999 fs_info->fs_devices->latest_bdev = next_device->bdev;
2000}
2001
1da73967
AJ
2002/*
2003 * Return btrfs_fs_devices::num_devices excluding the device that's being
2004 * currently replaced.
2005 */
2006static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2007{
2008 u64 num_devices = fs_info->fs_devices->num_devices;
2009
cb5583dd 2010 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2011 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2012 ASSERT(num_devices > 1);
2013 num_devices--;
2014 }
cb5583dd 2015 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2016
2017 return num_devices;
2018}
2019
313b0858
JB
2020void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2021 struct block_device *bdev,
2022 const char *device_path)
6fbceb9f 2023{
6fbceb9f
JT
2024 struct btrfs_super_block *disk_super;
2025 int copy_num;
2026
2027 if (!bdev)
2028 return;
2029
2030 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2031 struct page *page;
2032 int ret;
6fbceb9f 2033
8f32380d
JT
2034 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2035 if (IS_ERR(disk_super))
2036 continue;
6fbceb9f 2037
12659251
NA
2038 if (bdev_is_zoned(bdev)) {
2039 btrfs_reset_sb_log_zones(bdev, copy_num);
2040 continue;
2041 }
2042
6fbceb9f 2043 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2044
2045 page = virt_to_page(disk_super);
2046 set_page_dirty(page);
2047 lock_page(page);
2048 /* write_on_page() unlocks the page */
2049 ret = write_one_page(page);
2050 if (ret)
2051 btrfs_warn(fs_info,
2052 "error clearing superblock number %d (%d)",
2053 copy_num, ret);
2054 btrfs_release_disk_super(disk_super);
2055
6fbceb9f
JT
2056 }
2057
2058 /* Notify udev that device has changed */
2059 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2060
2061 /* Update ctime/mtime for device path for libblkid */
2062 update_dev_time(device_path);
2063}
2064
da353f6b 2065int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
53f8a74c 2066 u64 devid)
f1fa7f26
AJ
2067{
2068 struct btrfs_device *device;
1f78160c 2069 struct btrfs_fs_devices *cur_devices;
b5185197 2070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2071 u64 num_devices;
a061fc8d
CM
2072 int ret = 0;
2073
a061fc8d
CM
2074 mutex_lock(&uuid_mutex);
2075
1da73967 2076 num_devices = btrfs_num_devices(fs_info);
8dabb742 2077
0b246afa 2078 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2079 if (ret)
a061fc8d 2080 goto out;
a061fc8d 2081
a27a94c2
NB
2082 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2083
2084 if (IS_ERR(device)) {
2085 if (PTR_ERR(device) == -ENOENT &&
2086 strcmp(device_path, "missing") == 0)
2087 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2088 else
2089 ret = PTR_ERR(device);
53b381b3 2090 goto out;
a27a94c2 2091 }
dfe25020 2092
eede2bf3
OS
2093 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2094 btrfs_warn_in_rcu(fs_info,
2095 "cannot remove device %s (devid %llu) due to active swapfile",
2096 rcu_str_deref(device->name), device->devid);
2097 ret = -ETXTBSY;
2098 goto out;
2099 }
2100
401e29c1 2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2102 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2103 goto out;
63a212ab
SB
2104 }
2105
ebbede42
AJ
2106 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2107 fs_info->fs_devices->rw_devices == 1) {
183860f6 2108 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2109 goto out;
2b82032c
YZ
2110 }
2111
ebbede42 2112 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2113 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2114 list_del_init(&device->dev_alloc_list);
c3929c36 2115 device->fs_devices->rw_devices--;
34441361 2116 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2117 }
a061fc8d 2118
d7901554 2119 mutex_unlock(&uuid_mutex);
a061fc8d 2120 ret = btrfs_shrink_device(device, 0);
66d204a1
FM
2121 if (!ret)
2122 btrfs_reada_remove_dev(device);
d7901554 2123 mutex_lock(&uuid_mutex);
a061fc8d 2124 if (ret)
9b3517e9 2125 goto error_undo;
a061fc8d 2126
63a212ab
SB
2127 /*
2128 * TODO: the superblock still includes this device in its num_devices
2129 * counter although write_all_supers() is not locked out. This
2130 * could give a filesystem state which requires a degraded mount.
2131 */
f331a952 2132 ret = btrfs_rm_dev_item(device);
a061fc8d 2133 if (ret)
9b3517e9 2134 goto error_undo;
a061fc8d 2135
e12c9621 2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2137 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
d7306801
FDBM
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
e5e9a520 2147 */
1f78160c 2148
41a52a0f
AJ
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed.
2153 */
1f78160c 2154 cur_devices = device->fs_devices;
b5185197 2155 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2156 list_del_rcu(&device->dev_list);
e5e9a520 2157
41a52a0f
AJ
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
b4993e64
AJ
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2b82032c 2163
e6e674bd 2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2165 cur_devices->missing_devices--;
cd02dca5 2166
d6507cf1 2167 btrfs_assign_next_active_device(device, NULL);
2b82032c 2168
0bfaa9c5 2169 if (device->bdev) {
41a52a0f 2170 cur_devices->open_devices--;
0bfaa9c5 2171 /* remove sysfs entry */
53f8a74c 2172 btrfs_sysfs_remove_device(device);
0bfaa9c5 2173 }
99994cde 2174
0b246afa
JM
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2177 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2178
cea67ab9
JM
2179 /*
2180 * at this point, the device is zero sized and detached from
2181 * the devices list. All that's left is to zero out the old
2182 * supers and free the device.
2183 */
ebbede42 2184 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
8f32380d
JT
2185 btrfs_scratch_superblocks(fs_info, device->bdev,
2186 device->name->str);
cea67ab9
JM
2187
2188 btrfs_close_bdev(device);
8e75fd89
NB
2189 synchronize_rcu();
2190 btrfs_free_device(device);
cea67ab9 2191
1f78160c 2192 if (cur_devices->open_devices == 0) {
944d3f9f 2193 list_del_init(&cur_devices->seed_list);
0226e0eb 2194 close_fs_devices(cur_devices);
1f78160c 2195 free_fs_devices(cur_devices);
2b82032c
YZ
2196 }
2197
a061fc8d
CM
2198out:
2199 mutex_unlock(&uuid_mutex);
a061fc8d 2200 return ret;
24fc572f 2201
9b3517e9 2202error_undo:
66d204a1 2203 btrfs_reada_undo_remove_dev(device);
ebbede42 2204 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2205 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2206 list_add(&device->dev_alloc_list,
b5185197 2207 &fs_devices->alloc_list);
c3929c36 2208 device->fs_devices->rw_devices++;
34441361 2209 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2210 }
24fc572f 2211 goto out;
a061fc8d
CM
2212}
2213
68a9db5f 2214void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2215{
d51908ce
AJ
2216 struct btrfs_fs_devices *fs_devices;
2217
68a9db5f 2218 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2219
25e8e911
AJ
2220 /*
2221 * in case of fs with no seed, srcdev->fs_devices will point
2222 * to fs_devices of fs_info. However when the dev being replaced is
2223 * a seed dev it will point to the seed's local fs_devices. In short
2224 * srcdev will have its correct fs_devices in both the cases.
2225 */
2226 fs_devices = srcdev->fs_devices;
d51908ce 2227
e93c89c1 2228 list_del_rcu(&srcdev->dev_list);
619c47f3 2229 list_del(&srcdev->dev_alloc_list);
d51908ce 2230 fs_devices->num_devices--;
e6e674bd 2231 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2232 fs_devices->missing_devices--;
e93c89c1 2233
ebbede42 2234 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2235 fs_devices->rw_devices--;
1357272f 2236
82372bc8 2237 if (srcdev->bdev)
d51908ce 2238 fs_devices->open_devices--;
084b6e7c
QW
2239}
2240
65237ee3 2241void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2242{
2243 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2244
a466c85e
JB
2245 mutex_lock(&uuid_mutex);
2246
14238819 2247 btrfs_close_bdev(srcdev);
8e75fd89
NB
2248 synchronize_rcu();
2249 btrfs_free_device(srcdev);
94d5f0c2 2250
94d5f0c2
AJ
2251 /* if this is no devs we rather delete the fs_devices */
2252 if (!fs_devices->num_devices) {
6dd38f81
AJ
2253 /*
2254 * On a mounted FS, num_devices can't be zero unless it's a
2255 * seed. In case of a seed device being replaced, the replace
2256 * target added to the sprout FS, so there will be no more
2257 * device left under the seed FS.
2258 */
2259 ASSERT(fs_devices->seeding);
2260
944d3f9f 2261 list_del_init(&fs_devices->seed_list);
0226e0eb 2262 close_fs_devices(fs_devices);
8bef8401 2263 free_fs_devices(fs_devices);
94d5f0c2 2264 }
a466c85e 2265 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2266}
2267
4f5ad7bd 2268void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2269{
4f5ad7bd 2270 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2271
d9a071f0 2272 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2273
53f8a74c 2274 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2275
779bf3fe 2276 if (tgtdev->bdev)
d9a071f0 2277 fs_devices->open_devices--;
779bf3fe 2278
d9a071f0 2279 fs_devices->num_devices--;
e93c89c1 2280
d6507cf1 2281 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2282
e93c89c1 2283 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2284
d9a071f0 2285 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2286
2287 /*
2288 * The update_dev_time() with in btrfs_scratch_superblocks()
2289 * may lead to a call to btrfs_show_devname() which will try
2290 * to hold device_list_mutex. And here this device
2291 * is already out of device list, so we don't have to hold
2292 * the device_list_mutex lock.
2293 */
8f32380d
JT
2294 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2295 tgtdev->name->str);
14238819
AJ
2296
2297 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2298 synchronize_rcu();
2299 btrfs_free_device(tgtdev);
e93c89c1
SB
2300}
2301
b444ad46
NB
2302static struct btrfs_device *btrfs_find_device_by_path(
2303 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2304{
2305 int ret = 0;
2306 struct btrfs_super_block *disk_super;
2307 u64 devid;
2308 u8 *dev_uuid;
2309 struct block_device *bdev;
b444ad46 2310 struct btrfs_device *device;
7ba15b7d 2311
7ba15b7d 2312 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
8f32380d 2313 fs_info->bdev_holder, 0, &bdev, &disk_super);
7ba15b7d 2314 if (ret)
b444ad46 2315 return ERR_PTR(ret);
8f32380d 2316
7ba15b7d
SB
2317 devid = btrfs_stack_device_id(&disk_super->dev_item);
2318 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2319 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2320 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2321 disk_super->metadata_uuid);
7239ff4b 2322 else
e4319cd9 2323 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2324 disk_super->fsid);
7239ff4b 2325
8f32380d 2326 btrfs_release_disk_super(disk_super);
b444ad46
NB
2327 if (!device)
2328 device = ERR_PTR(-ENOENT);
7ba15b7d 2329 blkdev_put(bdev, FMODE_READ);
b444ad46 2330 return device;
7ba15b7d
SB
2331}
2332
5c5c0df0
DS
2333/*
2334 * Lookup a device given by device id, or the path if the id is 0.
2335 */
a27a94c2 2336struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2337 struct btrfs_fs_info *fs_info, u64 devid,
2338 const char *device_path)
24e0474b 2339{
a27a94c2 2340 struct btrfs_device *device;
24e0474b 2341
5c5c0df0 2342 if (devid) {
e4319cd9 2343 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
b2598edf 2344 NULL);
a27a94c2
NB
2345 if (!device)
2346 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2347 return device;
2348 }
2349
2350 if (!device_path || !device_path[0])
2351 return ERR_PTR(-EINVAL);
2352
2353 if (strcmp(device_path, "missing") == 0) {
2354 /* Find first missing device */
2355 list_for_each_entry(device, &fs_info->fs_devices->devices,
2356 dev_list) {
2357 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2358 &device->dev_state) && !device->bdev)
2359 return device;
d95a830c 2360 }
6e927ceb 2361 return ERR_PTR(-ENOENT);
24e0474b 2362 }
6e927ceb
AJ
2363
2364 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2365}
2366
2b82032c
YZ
2367/*
2368 * does all the dirty work required for changing file system's UUID.
2369 */
2ff7e61e 2370static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2371{
0b246afa 2372 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2373 struct btrfs_fs_devices *old_devices;
e4404d6e 2374 struct btrfs_fs_devices *seed_devices;
0b246afa 2375 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2376 struct btrfs_device *device;
2377 u64 super_flags;
2378
a32bf9a3 2379 lockdep_assert_held(&uuid_mutex);
e4404d6e 2380 if (!fs_devices->seeding)
2b82032c
YZ
2381 return -EINVAL;
2382
427c8fdd
NB
2383 /*
2384 * Private copy of the seed devices, anchored at
2385 * fs_info->fs_devices->seed_list
2386 */
7239ff4b 2387 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2388 if (IS_ERR(seed_devices))
2389 return PTR_ERR(seed_devices);
2b82032c 2390
427c8fdd
NB
2391 /*
2392 * It's necessary to retain a copy of the original seed fs_devices in
2393 * fs_uuids so that filesystems which have been seeded can successfully
2394 * reference the seed device from open_seed_devices. This also supports
2395 * multiple fs seed.
2396 */
e4404d6e
YZ
2397 old_devices = clone_fs_devices(fs_devices);
2398 if (IS_ERR(old_devices)) {
2399 kfree(seed_devices);
2400 return PTR_ERR(old_devices);
2b82032c 2401 }
e4404d6e 2402
c4babc5e 2403 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2404
e4404d6e
YZ
2405 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2406 seed_devices->opened = 1;
2407 INIT_LIST_HEAD(&seed_devices->devices);
2408 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2409 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2410
321a4bf7 2411 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2412 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2413 synchronize_rcu);
2196d6e8
MX
2414 list_for_each_entry(device, &seed_devices->devices, dev_list)
2415 device->fs_devices = seed_devices;
c9513edb 2416
0395d84f 2417 fs_devices->seeding = false;
2b82032c
YZ
2418 fs_devices->num_devices = 0;
2419 fs_devices->open_devices = 0;
69611ac8 2420 fs_devices->missing_devices = 0;
7f0432d0 2421 fs_devices->rotating = false;
944d3f9f 2422 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2423
2424 generate_random_uuid(fs_devices->fsid);
7239ff4b 2425 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2426 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2427 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2428
2b82032c
YZ
2429 super_flags = btrfs_super_flags(disk_super) &
2430 ~BTRFS_SUPER_FLAG_SEEDING;
2431 btrfs_set_super_flags(disk_super, super_flags);
2432
2433 return 0;
2434}
2435
2436/*
01327610 2437 * Store the expected generation for seed devices in device items.
2b82032c 2438 */
5c466629 2439static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2440{
5c466629 2441 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2442 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2443 struct btrfs_path *path;
2444 struct extent_buffer *leaf;
2445 struct btrfs_dev_item *dev_item;
2446 struct btrfs_device *device;
2447 struct btrfs_key key;
44880fdc 2448 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2449 u8 dev_uuid[BTRFS_UUID_SIZE];
2450 u64 devid;
2451 int ret;
2452
2453 path = btrfs_alloc_path();
2454 if (!path)
2455 return -ENOMEM;
2456
2b82032c
YZ
2457 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2458 key.offset = 0;
2459 key.type = BTRFS_DEV_ITEM_KEY;
2460
2461 while (1) {
2462 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2463 if (ret < 0)
2464 goto error;
2465
2466 leaf = path->nodes[0];
2467next_slot:
2468 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2469 ret = btrfs_next_leaf(root, path);
2470 if (ret > 0)
2471 break;
2472 if (ret < 0)
2473 goto error;
2474 leaf = path->nodes[0];
2475 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2476 btrfs_release_path(path);
2b82032c
YZ
2477 continue;
2478 }
2479
2480 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2481 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2482 key.type != BTRFS_DEV_ITEM_KEY)
2483 break;
2484
2485 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2486 struct btrfs_dev_item);
2487 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2488 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2489 BTRFS_UUID_SIZE);
1473b24e 2490 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2491 BTRFS_FSID_SIZE);
e4319cd9 2492 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2493 fs_uuid);
79787eaa 2494 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2495
2496 if (device->fs_devices->seeding) {
2497 btrfs_set_device_generation(leaf, dev_item,
2498 device->generation);
2499 btrfs_mark_buffer_dirty(leaf);
2500 }
2501
2502 path->slots[0]++;
2503 goto next_slot;
2504 }
2505 ret = 0;
2506error:
2507 btrfs_free_path(path);
2508 return ret;
2509}
2510
da353f6b 2511int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2512{
5112febb 2513 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2514 struct request_queue *q;
788f20eb
CM
2515 struct btrfs_trans_handle *trans;
2516 struct btrfs_device *device;
2517 struct block_device *bdev;
0b246afa 2518 struct super_block *sb = fs_info->sb;
606686ee 2519 struct rcu_string *name;
5da54bc1 2520 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2521 u64 orig_super_total_bytes;
2522 u64 orig_super_num_devices;
2b82032c 2523 int seeding_dev = 0;
788f20eb 2524 int ret = 0;
44cab9ba 2525 bool locked = false;
788f20eb 2526
5da54bc1 2527 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2528 return -EROFS;
788f20eb 2529
a5d16333 2530 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2531 fs_info->bdev_holder);
7f59203a
JB
2532 if (IS_ERR(bdev))
2533 return PTR_ERR(bdev);
a2135011 2534
b70f5097
NA
2535 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2536 ret = -EINVAL;
2537 goto error;
2538 }
2539
5da54bc1 2540 if (fs_devices->seeding) {
2b82032c
YZ
2541 seeding_dev = 1;
2542 down_write(&sb->s_umount);
2543 mutex_lock(&uuid_mutex);
44cab9ba 2544 locked = true;
2b82032c
YZ
2545 }
2546
b9ba017f 2547 sync_blockdev(bdev);
a2135011 2548
f4cfa9bd
NB
2549 rcu_read_lock();
2550 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2551 if (device->bdev == bdev) {
2552 ret = -EEXIST;
f4cfa9bd 2553 rcu_read_unlock();
2b82032c 2554 goto error;
788f20eb
CM
2555 }
2556 }
f4cfa9bd 2557 rcu_read_unlock();
788f20eb 2558
0b246afa 2559 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2560 if (IS_ERR(device)) {
788f20eb 2561 /* we can safely leave the fs_devices entry around */
12bd2fc0 2562 ret = PTR_ERR(device);
2b82032c 2563 goto error;
788f20eb
CM
2564 }
2565
78f2c9e6 2566 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2567 if (!name) {
2b82032c 2568 ret = -ENOMEM;
5c4cf6c9 2569 goto error_free_device;
788f20eb 2570 }
606686ee 2571 rcu_assign_pointer(device->name, name);
2b82032c 2572
5b316468
NA
2573 device->fs_info = fs_info;
2574 device->bdev = bdev;
2575
2576 ret = btrfs_get_dev_zone_info(device);
2577 if (ret)
2578 goto error_free_device;
2579
a22285a6 2580 trans = btrfs_start_transaction(root, 0);
98d5dc13 2581 if (IS_ERR(trans)) {
98d5dc13 2582 ret = PTR_ERR(trans);
5b316468 2583 goto error_free_zone;
98d5dc13
TI
2584 }
2585
d5e2003c 2586 q = bdev_get_queue(bdev);
ebbede42 2587 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2588 device->generation = trans->transid;
0b246afa
JM
2589 device->io_width = fs_info->sectorsize;
2590 device->io_align = fs_info->sectorsize;
2591 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2592 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2593 fs_info->sectorsize);
2cc3c559 2594 device->disk_total_bytes = device->total_bytes;
935e5cc9 2595 device->commit_total_bytes = device->total_bytes;
e12c9621 2596 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2597 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2598 device->mode = FMODE_EXCL;
27087f37 2599 device->dev_stats_valid = 1;
9f6d2510 2600 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2601
2b82032c 2602 if (seeding_dev) {
a0a1db70 2603 btrfs_clear_sb_rdonly(sb);
2ff7e61e 2604 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2605 if (ret) {
2606 btrfs_abort_transaction(trans, ret);
2607 goto error_trans;
2608 }
2b82032c 2609 }
788f20eb 2610
5da54bc1 2611 device->fs_devices = fs_devices;
e5e9a520 2612
5da54bc1 2613 mutex_lock(&fs_devices->device_list_mutex);
34441361 2614 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2615 list_add_rcu(&device->dev_list, &fs_devices->devices);
2616 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2617 fs_devices->num_devices++;
2618 fs_devices->open_devices++;
2619 fs_devices->rw_devices++;
2620 fs_devices->total_devices++;
2621 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2622
a5ed45f8 2623 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2624
e884f4f0 2625 if (!blk_queue_nonrot(q))
7f0432d0 2626 fs_devices->rotating = true;
c289811c 2627
39379faa 2628 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2629 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2630 round_down(orig_super_total_bytes + device->total_bytes,
2631 fs_info->sectorsize));
788f20eb 2632
39379faa
NA
2633 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2634 btrfs_set_super_num_devices(fs_info->super_copy,
2635 orig_super_num_devices + 1);
0d39376a 2636
2196d6e8
MX
2637 /*
2638 * we've got more storage, clear any full flags on the space
2639 * infos
2640 */
0b246afa 2641 btrfs_clear_space_info_full(fs_info);
2196d6e8 2642
34441361 2643 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2644
2645 /* Add sysfs device entry */
cd36da2e 2646 btrfs_sysfs_add_device(device);
ca10845a 2647
5da54bc1 2648 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2649
2b82032c 2650 if (seeding_dev) {
34441361 2651 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2652 ret = init_first_rw_device(trans);
34441361 2653 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2654 if (ret) {
66642832 2655 btrfs_abort_transaction(trans, ret);
d31c32f6 2656 goto error_sysfs;
005d6427 2657 }
2196d6e8
MX
2658 }
2659
8e87e856 2660 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2661 if (ret) {
66642832 2662 btrfs_abort_transaction(trans, ret);
d31c32f6 2663 goto error_sysfs;
2196d6e8
MX
2664 }
2665
2666 if (seeding_dev) {
5c466629 2667 ret = btrfs_finish_sprout(trans);
005d6427 2668 if (ret) {
66642832 2669 btrfs_abort_transaction(trans, ret);
d31c32f6 2670 goto error_sysfs;
005d6427 2671 }
b2373f25 2672
8e560081
NB
2673 /*
2674 * fs_devices now represents the newly sprouted filesystem and
2675 * its fsid has been changed by btrfs_prepare_sprout
2676 */
2677 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2678 }
2679
3a45bb20 2680 ret = btrfs_commit_transaction(trans);
a2135011 2681
2b82032c
YZ
2682 if (seeding_dev) {
2683 mutex_unlock(&uuid_mutex);
2684 up_write(&sb->s_umount);
44cab9ba 2685 locked = false;
788f20eb 2686
79787eaa
JM
2687 if (ret) /* transaction commit */
2688 return ret;
2689
2ff7e61e 2690 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2691 if (ret < 0)
0b246afa 2692 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2693 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2694 trans = btrfs_attach_transaction(root);
2695 if (IS_ERR(trans)) {
2696 if (PTR_ERR(trans) == -ENOENT)
2697 return 0;
7132a262
AJ
2698 ret = PTR_ERR(trans);
2699 trans = NULL;
2700 goto error_sysfs;
671415b7 2701 }
3a45bb20 2702 ret = btrfs_commit_transaction(trans);
2b82032c 2703 }
c9e9f97b 2704
7f551d96
AJ
2705 /*
2706 * Now that we have written a new super block to this device, check all
2707 * other fs_devices list if device_path alienates any other scanned
2708 * device.
2709 * We can ignore the return value as it typically returns -EINVAL and
2710 * only succeeds if the device was an alien.
2711 */
2712 btrfs_forget_devices(device_path);
2713
2714 /* Update ctime/mtime for blkid or udev */
5a1972bd 2715 update_dev_time(device_path);
7f551d96 2716
2b82032c 2717 return ret;
79787eaa 2718
d31c32f6 2719error_sysfs:
53f8a74c 2720 btrfs_sysfs_remove_device(device);
39379faa
NA
2721 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2722 mutex_lock(&fs_info->chunk_mutex);
2723 list_del_rcu(&device->dev_list);
2724 list_del(&device->dev_alloc_list);
2725 fs_info->fs_devices->num_devices--;
2726 fs_info->fs_devices->open_devices--;
2727 fs_info->fs_devices->rw_devices--;
2728 fs_info->fs_devices->total_devices--;
2729 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2730 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2731 btrfs_set_super_total_bytes(fs_info->super_copy,
2732 orig_super_total_bytes);
2733 btrfs_set_super_num_devices(fs_info->super_copy,
2734 orig_super_num_devices);
2735 mutex_unlock(&fs_info->chunk_mutex);
2736 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2737error_trans:
0af2c4bf 2738 if (seeding_dev)
a0a1db70 2739 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2740 if (trans)
2741 btrfs_end_transaction(trans);
5b316468
NA
2742error_free_zone:
2743 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2744error_free_device:
a425f9d4 2745 btrfs_free_device(device);
2b82032c 2746error:
e525fd89 2747 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2748 if (locked) {
2b82032c
YZ
2749 mutex_unlock(&uuid_mutex);
2750 up_write(&sb->s_umount);
2751 }
c9e9f97b 2752 return ret;
788f20eb
CM
2753}
2754
d397712b
CM
2755static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2756 struct btrfs_device *device)
0b86a832
CM
2757{
2758 int ret;
2759 struct btrfs_path *path;
0b246afa 2760 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2761 struct btrfs_dev_item *dev_item;
2762 struct extent_buffer *leaf;
2763 struct btrfs_key key;
2764
0b86a832
CM
2765 path = btrfs_alloc_path();
2766 if (!path)
2767 return -ENOMEM;
2768
2769 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2770 key.type = BTRFS_DEV_ITEM_KEY;
2771 key.offset = device->devid;
2772
2773 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2774 if (ret < 0)
2775 goto out;
2776
2777 if (ret > 0) {
2778 ret = -ENOENT;
2779 goto out;
2780 }
2781
2782 leaf = path->nodes[0];
2783 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2784
2785 btrfs_set_device_id(leaf, dev_item, device->devid);
2786 btrfs_set_device_type(leaf, dev_item, device->type);
2787 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2788 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2789 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2790 btrfs_set_device_total_bytes(leaf, dev_item,
2791 btrfs_device_get_disk_total_bytes(device));
2792 btrfs_set_device_bytes_used(leaf, dev_item,
2793 btrfs_device_get_bytes_used(device));
0b86a832
CM
2794 btrfs_mark_buffer_dirty(leaf);
2795
2796out:
2797 btrfs_free_path(path);
2798 return ret;
2799}
2800
2196d6e8 2801int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2802 struct btrfs_device *device, u64 new_size)
2803{
0b246afa
JM
2804 struct btrfs_fs_info *fs_info = device->fs_info;
2805 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2806 u64 old_total;
2807 u64 diff;
8f18cf13 2808
ebbede42 2809 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2810 return -EACCES;
2196d6e8 2811
7dfb8be1
NB
2812 new_size = round_down(new_size, fs_info->sectorsize);
2813
34441361 2814 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2815 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2816 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2817
63a212ab 2818 if (new_size <= device->total_bytes ||
401e29c1 2819 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2820 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2821 return -EINVAL;
2196d6e8 2822 }
2b82032c 2823
7dfb8be1
NB
2824 btrfs_set_super_total_bytes(super_copy,
2825 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2826 device->fs_devices->total_rw_bytes += diff;
2827
7cc8e58d
MX
2828 btrfs_device_set_total_bytes(device, new_size);
2829 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2830 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2831 if (list_empty(&device->post_commit_list))
2832 list_add_tail(&device->post_commit_list,
2833 &trans->transaction->dev_update_list);
34441361 2834 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2835
8f18cf13
CM
2836 return btrfs_update_device(trans, device);
2837}
2838
f4208794 2839static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2840{
f4208794 2841 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2842 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2843 int ret;
2844 struct btrfs_path *path;
2845 struct btrfs_key key;
2846
8f18cf13
CM
2847 path = btrfs_alloc_path();
2848 if (!path)
2849 return -ENOMEM;
2850
408fbf19 2851 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2852 key.offset = chunk_offset;
2853 key.type = BTRFS_CHUNK_ITEM_KEY;
2854
2855 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2856 if (ret < 0)
2857 goto out;
2858 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2859 btrfs_handle_fs_error(fs_info, -ENOENT,
2860 "Failed lookup while freeing chunk.");
79787eaa
JM
2861 ret = -ENOENT;
2862 goto out;
2863 }
8f18cf13
CM
2864
2865 ret = btrfs_del_item(trans, root, path);
79787eaa 2866 if (ret < 0)
0b246afa
JM
2867 btrfs_handle_fs_error(fs_info, ret,
2868 "Failed to delete chunk item.");
79787eaa 2869out:
8f18cf13 2870 btrfs_free_path(path);
65a246c5 2871 return ret;
8f18cf13
CM
2872}
2873
408fbf19 2874static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2875{
0b246afa 2876 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2877 struct btrfs_disk_key *disk_key;
2878 struct btrfs_chunk *chunk;
2879 u8 *ptr;
2880 int ret = 0;
2881 u32 num_stripes;
2882 u32 array_size;
2883 u32 len = 0;
2884 u32 cur;
2885 struct btrfs_key key;
2886
79bd3712 2887 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2888 array_size = btrfs_super_sys_array_size(super_copy);
2889
2890 ptr = super_copy->sys_chunk_array;
2891 cur = 0;
2892
2893 while (cur < array_size) {
2894 disk_key = (struct btrfs_disk_key *)ptr;
2895 btrfs_disk_key_to_cpu(&key, disk_key);
2896
2897 len = sizeof(*disk_key);
2898
2899 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2900 chunk = (struct btrfs_chunk *)(ptr + len);
2901 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2902 len += btrfs_chunk_item_size(num_stripes);
2903 } else {
2904 ret = -EIO;
2905 break;
2906 }
408fbf19 2907 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2908 key.offset == chunk_offset) {
2909 memmove(ptr, ptr + len, array_size - (cur + len));
2910 array_size -= len;
2911 btrfs_set_super_sys_array_size(super_copy, array_size);
2912 } else {
2913 ptr += len;
2914 cur += len;
2915 }
2916 }
2917 return ret;
2918}
2919
60ca842e
OS
2920/*
2921 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2922 * @logical: Logical block offset in bytes.
2923 * @length: Length of extent in bytes.
2924 *
2925 * Return: Chunk mapping or ERR_PTR.
2926 */
2927struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2928 u64 logical, u64 length)
592d92ee
LB
2929{
2930 struct extent_map_tree *em_tree;
2931 struct extent_map *em;
2932
c8bf1b67 2933 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2934 read_lock(&em_tree->lock);
2935 em = lookup_extent_mapping(em_tree, logical, length);
2936 read_unlock(&em_tree->lock);
2937
2938 if (!em) {
2939 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2940 logical, length);
2941 return ERR_PTR(-EINVAL);
2942 }
2943
2944 if (em->start > logical || em->start + em->len < logical) {
2945 btrfs_crit(fs_info,
2946 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2947 logical, length, em->start, em->start + em->len);
2948 free_extent_map(em);
2949 return ERR_PTR(-EINVAL);
2950 }
2951
2952 /* callers are responsible for dropping em's ref. */
2953 return em;
2954}
2955
79bd3712
FM
2956static int remove_chunk_item(struct btrfs_trans_handle *trans,
2957 struct map_lookup *map, u64 chunk_offset)
2958{
2959 int i;
2960
2961 /*
2962 * Removing chunk items and updating the device items in the chunks btree
2963 * requires holding the chunk_mutex.
2964 * See the comment at btrfs_chunk_alloc() for the details.
2965 */
2966 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2967
2968 for (i = 0; i < map->num_stripes; i++) {
2969 int ret;
2970
2971 ret = btrfs_update_device(trans, map->stripes[i].dev);
2972 if (ret)
2973 return ret;
2974 }
2975
2976 return btrfs_free_chunk(trans, chunk_offset);
2977}
2978
97aff912 2979int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2980{
97aff912 2981 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2982 struct extent_map *em;
2983 struct map_lookup *map;
2196d6e8 2984 u64 dev_extent_len = 0;
47ab2a6c 2985 int i, ret = 0;
0b246afa 2986 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2987
60ca842e 2988 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2989 if (IS_ERR(em)) {
47ab2a6c
JB
2990 /*
2991 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2992 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2993 * do anything we still error out.
2994 */
2995 ASSERT(0);
592d92ee 2996 return PTR_ERR(em);
47ab2a6c 2997 }
95617d69 2998 map = em->map_lookup;
8f18cf13 2999
57ba4cb8 3000 /*
79bd3712
FM
3001 * First delete the device extent items from the devices btree.
3002 * We take the device_list_mutex to avoid racing with the finishing phase
3003 * of a device replace operation. See the comment below before acquiring
3004 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3005 * because that can result in a deadlock when deleting the device extent
3006 * items from the devices btree - COWing an extent buffer from the btree
3007 * may result in allocating a new metadata chunk, which would attempt to
3008 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3009 */
3010 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3011 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3012 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3013 ret = btrfs_free_dev_extent(trans, device,
3014 map->stripes[i].physical,
3015 &dev_extent_len);
47ab2a6c 3016 if (ret) {
57ba4cb8 3017 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3018 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3019 goto out;
3020 }
a061fc8d 3021
2196d6e8 3022 if (device->bytes_used > 0) {
34441361 3023 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3024 btrfs_device_set_bytes_used(device,
3025 device->bytes_used - dev_extent_len);
a5ed45f8 3026 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3027 btrfs_clear_space_info_full(fs_info);
34441361 3028 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3029 }
79bd3712
FM
3030 }
3031 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3032
79bd3712
FM
3033 /*
3034 * We acquire fs_info->chunk_mutex for 2 reasons:
3035 *
3036 * 1) Just like with the first phase of the chunk allocation, we must
3037 * reserve system space, do all chunk btree updates and deletions, and
3038 * update the system chunk array in the superblock while holding this
3039 * mutex. This is for similar reasons as explained on the comment at
3040 * the top of btrfs_chunk_alloc();
3041 *
3042 * 2) Prevent races with the final phase of a device replace operation
3043 * that replaces the device object associated with the map's stripes,
3044 * because the device object's id can change at any time during that
3045 * final phase of the device replace operation
3046 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3047 * replaced device and then see it with an ID of
3048 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3049 * the device item, which does not exists on the chunk btree.
3050 * The finishing phase of device replace acquires both the
3051 * device_list_mutex and the chunk_mutex, in that order, so we are
3052 * safe by just acquiring the chunk_mutex.
3053 */
3054 trans->removing_chunk = true;
3055 mutex_lock(&fs_info->chunk_mutex);
3056
3057 check_system_chunk(trans, map->type);
3058
3059 ret = remove_chunk_item(trans, map, chunk_offset);
3060 /*
3061 * Normally we should not get -ENOSPC since we reserved space before
3062 * through the call to check_system_chunk().
3063 *
3064 * Despite our system space_info having enough free space, we may not
3065 * be able to allocate extents from its block groups, because all have
3066 * an incompatible profile, which will force us to allocate a new system
3067 * block group with the right profile, or right after we called
3068 * check_system_space() above, a scrub turned the only system block group
3069 * with enough free space into RO mode.
3070 * This is explained with more detail at do_chunk_alloc().
3071 *
3072 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3073 */
3074 if (ret == -ENOSPC) {
3075 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3076 struct btrfs_block_group *sys_bg;
3077
3078 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3079 if (IS_ERR(sys_bg)) {
3080 ret = PTR_ERR(sys_bg);
3081 btrfs_abort_transaction(trans, ret);
3082 goto out;
3083 }
3084
3085 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3086 if (ret) {
64bc6c2a
NB
3087 btrfs_abort_transaction(trans, ret);
3088 goto out;
dfe25020 3089 }
57ba4cb8 3090
79bd3712
FM
3091 ret = remove_chunk_item(trans, map, chunk_offset);
3092 if (ret) {
3093 btrfs_abort_transaction(trans, ret);
3094 goto out;
3095 }
3096 } else if (ret) {
66642832 3097 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3098 goto out;
3099 }
8f18cf13 3100
6bccf3ab 3101 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3102
8f18cf13 3103 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3104 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3105 if (ret) {
66642832 3106 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3107 goto out;
3108 }
8f18cf13
CM
3109 }
3110
79bd3712
FM
3111 mutex_unlock(&fs_info->chunk_mutex);
3112 trans->removing_chunk = false;
3113
3114 /*
3115 * We are done with chunk btree updates and deletions, so release the
3116 * system space we previously reserved (with check_system_chunk()).
3117 */
3118 btrfs_trans_release_chunk_metadata(trans);
3119
5a98ec01 3120 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3121 if (ret) {
66642832 3122 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3123 goto out;
3124 }
2b82032c 3125
47ab2a6c 3126out:
79bd3712
FM
3127 if (trans->removing_chunk) {
3128 mutex_unlock(&fs_info->chunk_mutex);
3129 trans->removing_chunk = false;
3130 }
2b82032c
YZ
3131 /* once for us */
3132 free_extent_map(em);
47ab2a6c
JB
3133 return ret;
3134}
2b82032c 3135
18bb8bbf 3136int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3137{
5b4aacef 3138 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3139 struct btrfs_trans_handle *trans;
b0643e59 3140 struct btrfs_block_group *block_group;
01e86008 3141 u64 length;
47ab2a6c 3142 int ret;
2b82032c 3143
67c5e7d4
FM
3144 /*
3145 * Prevent races with automatic removal of unused block groups.
3146 * After we relocate and before we remove the chunk with offset
3147 * chunk_offset, automatic removal of the block group can kick in,
3148 * resulting in a failure when calling btrfs_remove_chunk() below.
3149 *
3150 * Make sure to acquire this mutex before doing a tree search (dev
3151 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3152 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3153 * we release the path used to search the chunk/dev tree and before
3154 * the current task acquires this mutex and calls us.
3155 */
f3372065 3156 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3157
47ab2a6c 3158 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3159 btrfs_scrub_pause(fs_info);
0b246afa 3160 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3161 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3162 if (ret)
3163 return ret;
3164
b0643e59
DZ
3165 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3166 if (!block_group)
3167 return -ENOENT;
3168 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3169 length = block_group->length;
b0643e59
DZ
3170 btrfs_put_block_group(block_group);
3171
01e86008
JT
3172 /*
3173 * On a zoned file system, discard the whole block group, this will
3174 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3175 * resetting the zone fails, don't treat it as a fatal problem from the
3176 * filesystem's point of view.
3177 */
3178 if (btrfs_is_zoned(fs_info)) {
3179 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3180 if (ret)
3181 btrfs_info(fs_info,
3182 "failed to reset zone %llu after relocation",
3183 chunk_offset);
3184 }
3185
19c4d2f9
CM
3186 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3187 chunk_offset);
3188 if (IS_ERR(trans)) {
3189 ret = PTR_ERR(trans);
3190 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3191 return ret;
3192 }
3193
47ab2a6c 3194 /*
19c4d2f9
CM
3195 * step two, delete the device extents and the
3196 * chunk tree entries
47ab2a6c 3197 */
97aff912 3198 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3199 btrfs_end_transaction(trans);
19c4d2f9 3200 return ret;
2b82032c
YZ
3201}
3202
2ff7e61e 3203static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3204{
0b246afa 3205 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3206 struct btrfs_path *path;
3207 struct extent_buffer *leaf;
3208 struct btrfs_chunk *chunk;
3209 struct btrfs_key key;
3210 struct btrfs_key found_key;
2b82032c 3211 u64 chunk_type;
ba1bf481
JB
3212 bool retried = false;
3213 int failed = 0;
2b82032c
YZ
3214 int ret;
3215
3216 path = btrfs_alloc_path();
3217 if (!path)
3218 return -ENOMEM;
3219
ba1bf481 3220again:
2b82032c
YZ
3221 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3222 key.offset = (u64)-1;
3223 key.type = BTRFS_CHUNK_ITEM_KEY;
3224
3225 while (1) {
f3372065 3226 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3227 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3228 if (ret < 0) {
f3372065 3229 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3230 goto error;
67c5e7d4 3231 }
79787eaa 3232 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3233
3234 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3235 key.type);
67c5e7d4 3236 if (ret)
f3372065 3237 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3238 if (ret < 0)
3239 goto error;
3240 if (ret > 0)
3241 break;
1a40e23b 3242
2b82032c
YZ
3243 leaf = path->nodes[0];
3244 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3245
2b82032c
YZ
3246 chunk = btrfs_item_ptr(leaf, path->slots[0],
3247 struct btrfs_chunk);
3248 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3249 btrfs_release_path(path);
8f18cf13 3250
2b82032c 3251 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3252 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3253 if (ret == -ENOSPC)
3254 failed++;
14586651
HS
3255 else
3256 BUG_ON(ret);
2b82032c 3257 }
f3372065 3258 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3259
2b82032c
YZ
3260 if (found_key.offset == 0)
3261 break;
3262 key.offset = found_key.offset - 1;
3263 }
3264 ret = 0;
ba1bf481
JB
3265 if (failed && !retried) {
3266 failed = 0;
3267 retried = true;
3268 goto again;
fae7f21c 3269 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3270 ret = -ENOSPC;
3271 }
2b82032c
YZ
3272error:
3273 btrfs_free_path(path);
3274 return ret;
8f18cf13
CM
3275}
3276
a6f93c71
LB
3277/*
3278 * return 1 : allocate a data chunk successfully,
3279 * return <0: errors during allocating a data chunk,
3280 * return 0 : no need to allocate a data chunk.
3281 */
3282static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3283 u64 chunk_offset)
3284{
32da5386 3285 struct btrfs_block_group *cache;
a6f93c71
LB
3286 u64 bytes_used;
3287 u64 chunk_type;
3288
3289 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3290 ASSERT(cache);
3291 chunk_type = cache->flags;
3292 btrfs_put_block_group(cache);
3293
5ae21692
JT
3294 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3295 return 0;
3296
3297 spin_lock(&fs_info->data_sinfo->lock);
3298 bytes_used = fs_info->data_sinfo->bytes_used;
3299 spin_unlock(&fs_info->data_sinfo->lock);
3300
3301 if (!bytes_used) {
3302 struct btrfs_trans_handle *trans;
3303 int ret;
3304
3305 trans = btrfs_join_transaction(fs_info->tree_root);
3306 if (IS_ERR(trans))
3307 return PTR_ERR(trans);
3308
3309 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3310 btrfs_end_transaction(trans);
3311 if (ret < 0)
3312 return ret;
3313 return 1;
a6f93c71 3314 }
5ae21692 3315
a6f93c71
LB
3316 return 0;
3317}
3318
6bccf3ab 3319static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3320 struct btrfs_balance_control *bctl)
3321{
6bccf3ab 3322 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3323 struct btrfs_trans_handle *trans;
3324 struct btrfs_balance_item *item;
3325 struct btrfs_disk_balance_args disk_bargs;
3326 struct btrfs_path *path;
3327 struct extent_buffer *leaf;
3328 struct btrfs_key key;
3329 int ret, err;
3330
3331 path = btrfs_alloc_path();
3332 if (!path)
3333 return -ENOMEM;
3334
3335 trans = btrfs_start_transaction(root, 0);
3336 if (IS_ERR(trans)) {
3337 btrfs_free_path(path);
3338 return PTR_ERR(trans);
3339 }
3340
3341 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3342 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3343 key.offset = 0;
3344
3345 ret = btrfs_insert_empty_item(trans, root, path, &key,
3346 sizeof(*item));
3347 if (ret)
3348 goto out;
3349
3350 leaf = path->nodes[0];
3351 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3352
b159fa28 3353 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3354
3355 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3356 btrfs_set_balance_data(leaf, item, &disk_bargs);
3357 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3358 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3359 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3360 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3361
3362 btrfs_set_balance_flags(leaf, item, bctl->flags);
3363
3364 btrfs_mark_buffer_dirty(leaf);
3365out:
3366 btrfs_free_path(path);
3a45bb20 3367 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3368 if (err && !ret)
3369 ret = err;
3370 return ret;
3371}
3372
6bccf3ab 3373static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3374{
6bccf3ab 3375 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3376 struct btrfs_trans_handle *trans;
3377 struct btrfs_path *path;
3378 struct btrfs_key key;
3379 int ret, err;
3380
3381 path = btrfs_alloc_path();
3382 if (!path)
3383 return -ENOMEM;
3384
3502a8c0 3385 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3386 if (IS_ERR(trans)) {
3387 btrfs_free_path(path);
3388 return PTR_ERR(trans);
3389 }
3390
3391 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3392 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3393 key.offset = 0;
3394
3395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3396 if (ret < 0)
3397 goto out;
3398 if (ret > 0) {
3399 ret = -ENOENT;
3400 goto out;
3401 }
3402
3403 ret = btrfs_del_item(trans, root, path);
3404out:
3405 btrfs_free_path(path);
3a45bb20 3406 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3407 if (err && !ret)
3408 ret = err;
3409 return ret;
3410}
3411
59641015
ID
3412/*
3413 * This is a heuristic used to reduce the number of chunks balanced on
3414 * resume after balance was interrupted.
3415 */
3416static void update_balance_args(struct btrfs_balance_control *bctl)
3417{
3418 /*
3419 * Turn on soft mode for chunk types that were being converted.
3420 */
3421 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3422 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3423 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3424 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3425 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3426 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3427
3428 /*
3429 * Turn on usage filter if is not already used. The idea is
3430 * that chunks that we have already balanced should be
3431 * reasonably full. Don't do it for chunks that are being
3432 * converted - that will keep us from relocating unconverted
3433 * (albeit full) chunks.
3434 */
3435 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3436 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3437 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3438 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3439 bctl->data.usage = 90;
3440 }
3441 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3442 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3443 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3444 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3445 bctl->sys.usage = 90;
3446 }
3447 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3448 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3449 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3450 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3451 bctl->meta.usage = 90;
3452 }
3453}
3454
149196a2
DS
3455/*
3456 * Clear the balance status in fs_info and delete the balance item from disk.
3457 */
3458static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3459{
3460 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3461 int ret;
c9e9f97b
ID
3462
3463 BUG_ON(!fs_info->balance_ctl);
3464
3465 spin_lock(&fs_info->balance_lock);
3466 fs_info->balance_ctl = NULL;
3467 spin_unlock(&fs_info->balance_lock);
3468
3469 kfree(bctl);
149196a2
DS
3470 ret = del_balance_item(fs_info);
3471 if (ret)
3472 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3473}
3474
ed25e9b2
ID
3475/*
3476 * Balance filters. Return 1 if chunk should be filtered out
3477 * (should not be balanced).
3478 */
899c81ea 3479static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3480 struct btrfs_balance_args *bargs)
3481{
899c81ea
ID
3482 chunk_type = chunk_to_extended(chunk_type) &
3483 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3484
899c81ea 3485 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3486 return 0;
3487
3488 return 1;
3489}
3490
dba72cb3 3491static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3492 struct btrfs_balance_args *bargs)
bc309467 3493{
32da5386 3494 struct btrfs_block_group *cache;
bc309467
DS
3495 u64 chunk_used;
3496 u64 user_thresh_min;
3497 u64 user_thresh_max;
3498 int ret = 1;
3499
3500 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3501 chunk_used = cache->used;
bc309467
DS
3502
3503 if (bargs->usage_min == 0)
3504 user_thresh_min = 0;
3505 else
b3470b5d
DS
3506 user_thresh_min = div_factor_fine(cache->length,
3507 bargs->usage_min);
bc309467
DS
3508
3509 if (bargs->usage_max == 0)
3510 user_thresh_max = 1;
3511 else if (bargs->usage_max > 100)
b3470b5d 3512 user_thresh_max = cache->length;
bc309467 3513 else
b3470b5d
DS
3514 user_thresh_max = div_factor_fine(cache->length,
3515 bargs->usage_max);
bc309467
DS
3516
3517 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3518 ret = 0;
3519
3520 btrfs_put_block_group(cache);
3521 return ret;
3522}
3523
dba72cb3 3524static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3525 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3526{
32da5386 3527 struct btrfs_block_group *cache;
5ce5b3c0
ID
3528 u64 chunk_used, user_thresh;
3529 int ret = 1;
3530
3531 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3532 chunk_used = cache->used;
5ce5b3c0 3533
bc309467 3534 if (bargs->usage_min == 0)
3e39cea6 3535 user_thresh = 1;
a105bb88 3536 else if (bargs->usage > 100)
b3470b5d 3537 user_thresh = cache->length;
a105bb88 3538 else
b3470b5d 3539 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3540
5ce5b3c0
ID
3541 if (chunk_used < user_thresh)
3542 ret = 0;
3543
3544 btrfs_put_block_group(cache);
3545 return ret;
3546}
3547
409d404b
ID
3548static int chunk_devid_filter(struct extent_buffer *leaf,
3549 struct btrfs_chunk *chunk,
3550 struct btrfs_balance_args *bargs)
3551{
3552 struct btrfs_stripe *stripe;
3553 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3554 int i;
3555
3556 for (i = 0; i < num_stripes; i++) {
3557 stripe = btrfs_stripe_nr(chunk, i);
3558 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3559 return 0;
3560 }
3561
3562 return 1;
3563}
3564
946c9256
DS
3565static u64 calc_data_stripes(u64 type, int num_stripes)
3566{
3567 const int index = btrfs_bg_flags_to_raid_index(type);
3568 const int ncopies = btrfs_raid_array[index].ncopies;
3569 const int nparity = btrfs_raid_array[index].nparity;
3570
3571 if (nparity)
3572 return num_stripes - nparity;
3573 else
3574 return num_stripes / ncopies;
3575}
3576
94e60d5a
ID
3577/* [pstart, pend) */
3578static int chunk_drange_filter(struct extent_buffer *leaf,
3579 struct btrfs_chunk *chunk,
94e60d5a
ID
3580 struct btrfs_balance_args *bargs)
3581{
3582 struct btrfs_stripe *stripe;
3583 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3584 u64 stripe_offset;
3585 u64 stripe_length;
946c9256 3586 u64 type;
94e60d5a
ID
3587 int factor;
3588 int i;
3589
3590 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3591 return 0;
3592
946c9256
DS
3593 type = btrfs_chunk_type(leaf, chunk);
3594 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3595
3596 for (i = 0; i < num_stripes; i++) {
3597 stripe = btrfs_stripe_nr(chunk, i);
3598 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3599 continue;
3600
3601 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3602 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3603 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3604
3605 if (stripe_offset < bargs->pend &&
3606 stripe_offset + stripe_length > bargs->pstart)
3607 return 0;
3608 }
3609
3610 return 1;
3611}
3612
ea67176a
ID
3613/* [vstart, vend) */
3614static int chunk_vrange_filter(struct extent_buffer *leaf,
3615 struct btrfs_chunk *chunk,
3616 u64 chunk_offset,
3617 struct btrfs_balance_args *bargs)
3618{
3619 if (chunk_offset < bargs->vend &&
3620 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3621 /* at least part of the chunk is inside this vrange */
3622 return 0;
3623
3624 return 1;
3625}
3626
dee32d0a
GAP
3627static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3628 struct btrfs_chunk *chunk,
3629 struct btrfs_balance_args *bargs)
3630{
3631 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3632
3633 if (bargs->stripes_min <= num_stripes
3634 && num_stripes <= bargs->stripes_max)
3635 return 0;
3636
3637 return 1;
3638}
3639
899c81ea 3640static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3641 struct btrfs_balance_args *bargs)
3642{
3643 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3644 return 0;
3645
899c81ea
ID
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3648
899c81ea 3649 if (bargs->target == chunk_type)
cfa4c961
ID
3650 return 1;
3651
3652 return 0;
3653}
3654
6ec0896c 3655static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3656 struct btrfs_chunk *chunk, u64 chunk_offset)
3657{
6ec0896c 3658 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3659 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3660 struct btrfs_balance_args *bargs = NULL;
3661 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3662
3663 /* type filter */
3664 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3665 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3666 return 0;
3667 }
3668
3669 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3670 bargs = &bctl->data;
3671 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3672 bargs = &bctl->sys;
3673 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3674 bargs = &bctl->meta;
3675
ed25e9b2
ID
3676 /* profiles filter */
3677 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3678 chunk_profiles_filter(chunk_type, bargs)) {
3679 return 0;
5ce5b3c0
ID
3680 }
3681
3682 /* usage filter */
3683 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3684 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3685 return 0;
bc309467 3686 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3687 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3688 return 0;
409d404b
ID
3689 }
3690
3691 /* devid filter */
3692 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3693 chunk_devid_filter(leaf, chunk, bargs)) {
3694 return 0;
94e60d5a
ID
3695 }
3696
3697 /* drange filter, makes sense only with devid filter */
3698 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3699 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3700 return 0;
ea67176a
ID
3701 }
3702
3703 /* vrange filter */
3704 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3705 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3706 return 0;
ed25e9b2
ID
3707 }
3708
dee32d0a
GAP
3709 /* stripes filter */
3710 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3711 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3712 return 0;
3713 }
3714
cfa4c961
ID
3715 /* soft profile changing mode */
3716 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3717 chunk_soft_convert_filter(chunk_type, bargs)) {
3718 return 0;
3719 }
3720
7d824b6f
DS
3721 /*
3722 * limited by count, must be the last filter
3723 */
3724 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3725 if (bargs->limit == 0)
3726 return 0;
3727 else
3728 bargs->limit--;
12907fc7
DS
3729 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3730 /*
3731 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3732 * determined here because we do not have the global information
12907fc7
DS
3733 * about the count of all chunks that satisfy the filters.
3734 */
3735 if (bargs->limit_max == 0)
3736 return 0;
3737 else
3738 bargs->limit_max--;
7d824b6f
DS
3739 }
3740
f43ffb60
ID
3741 return 1;
3742}
3743
c9e9f97b 3744static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3745{
19a39dce 3746 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3747 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3748 u64 chunk_type;
f43ffb60 3749 struct btrfs_chunk *chunk;
5a488b9d 3750 struct btrfs_path *path = NULL;
ec44a35c 3751 struct btrfs_key key;
ec44a35c 3752 struct btrfs_key found_key;
f43ffb60
ID
3753 struct extent_buffer *leaf;
3754 int slot;
c9e9f97b
ID
3755 int ret;
3756 int enospc_errors = 0;
19a39dce 3757 bool counting = true;
12907fc7 3758 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3759 u64 limit_data = bctl->data.limit;
3760 u64 limit_meta = bctl->meta.limit;
3761 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3762 u32 count_data = 0;
3763 u32 count_meta = 0;
3764 u32 count_sys = 0;
2c9fe835 3765 int chunk_reserved = 0;
ec44a35c 3766
ec44a35c 3767 path = btrfs_alloc_path();
17e9f796
MF
3768 if (!path) {
3769 ret = -ENOMEM;
3770 goto error;
3771 }
19a39dce
ID
3772
3773 /* zero out stat counters */
3774 spin_lock(&fs_info->balance_lock);
3775 memset(&bctl->stat, 0, sizeof(bctl->stat));
3776 spin_unlock(&fs_info->balance_lock);
3777again:
7d824b6f 3778 if (!counting) {
12907fc7
DS
3779 /*
3780 * The single value limit and min/max limits use the same bytes
3781 * in the
3782 */
7d824b6f
DS
3783 bctl->data.limit = limit_data;
3784 bctl->meta.limit = limit_meta;
3785 bctl->sys.limit = limit_sys;
3786 }
ec44a35c
CM
3787 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3788 key.offset = (u64)-1;
3789 key.type = BTRFS_CHUNK_ITEM_KEY;
3790
d397712b 3791 while (1) {
19a39dce 3792 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3793 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3794 ret = -ECANCELED;
3795 goto error;
3796 }
3797
f3372065 3798 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3799 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3800 if (ret < 0) {
f3372065 3801 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3802 goto error;
67c5e7d4 3803 }
ec44a35c
CM
3804
3805 /*
3806 * this shouldn't happen, it means the last relocate
3807 * failed
3808 */
3809 if (ret == 0)
c9e9f97b 3810 BUG(); /* FIXME break ? */
ec44a35c
CM
3811
3812 ret = btrfs_previous_item(chunk_root, path, 0,
3813 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3814 if (ret) {
f3372065 3815 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3816 ret = 0;
ec44a35c 3817 break;
c9e9f97b 3818 }
7d9eb12c 3819
f43ffb60
ID
3820 leaf = path->nodes[0];
3821 slot = path->slots[0];
3822 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3823
67c5e7d4 3824 if (found_key.objectid != key.objectid) {
f3372065 3825 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3826 break;
67c5e7d4 3827 }
7d9eb12c 3828
f43ffb60 3829 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3830 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3831
19a39dce
ID
3832 if (!counting) {
3833 spin_lock(&fs_info->balance_lock);
3834 bctl->stat.considered++;
3835 spin_unlock(&fs_info->balance_lock);
3836 }
3837
6ec0896c 3838 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3839
b3b4aa74 3840 btrfs_release_path(path);
67c5e7d4 3841 if (!ret) {
f3372065 3842 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3843 goto loop;
67c5e7d4 3844 }
f43ffb60 3845
19a39dce 3846 if (counting) {
f3372065 3847 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3848 spin_lock(&fs_info->balance_lock);
3849 bctl->stat.expected++;
3850 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3851
3852 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3853 count_data++;
3854 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3855 count_sys++;
3856 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3857 count_meta++;
3858
3859 goto loop;
3860 }
3861
3862 /*
3863 * Apply limit_min filter, no need to check if the LIMITS
3864 * filter is used, limit_min is 0 by default
3865 */
3866 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3867 count_data < bctl->data.limit_min)
3868 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3869 count_meta < bctl->meta.limit_min)
3870 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3871 count_sys < bctl->sys.limit_min)) {
f3372065 3872 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3873 goto loop;
3874 }
3875
a6f93c71
LB
3876 if (!chunk_reserved) {
3877 /*
3878 * We may be relocating the only data chunk we have,
3879 * which could potentially end up with losing data's
3880 * raid profile, so lets allocate an empty one in
3881 * advance.
3882 */
3883 ret = btrfs_may_alloc_data_chunk(fs_info,
3884 found_key.offset);
2c9fe835 3885 if (ret < 0) {
f3372065 3886 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3887 goto error;
a6f93c71
LB
3888 } else if (ret == 1) {
3889 chunk_reserved = 1;
2c9fe835 3890 }
2c9fe835
ZL
3891 }
3892
5b4aacef 3893 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3894 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3895 if (ret == -ENOSPC) {
c9e9f97b 3896 enospc_errors++;
eede2bf3
OS
3897 } else if (ret == -ETXTBSY) {
3898 btrfs_info(fs_info,
3899 "skipping relocation of block group %llu due to active swapfile",
3900 found_key.offset);
3901 ret = 0;
3902 } else if (ret) {
3903 goto error;
19a39dce
ID
3904 } else {
3905 spin_lock(&fs_info->balance_lock);
3906 bctl->stat.completed++;
3907 spin_unlock(&fs_info->balance_lock);
3908 }
f43ffb60 3909loop:
795a3321
ID
3910 if (found_key.offset == 0)
3911 break;
ba1bf481 3912 key.offset = found_key.offset - 1;
ec44a35c 3913 }
c9e9f97b 3914
19a39dce
ID
3915 if (counting) {
3916 btrfs_release_path(path);
3917 counting = false;
3918 goto again;
3919 }
ec44a35c
CM
3920error:
3921 btrfs_free_path(path);
c9e9f97b 3922 if (enospc_errors) {
efe120a0 3923 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3924 enospc_errors);
c9e9f97b
ID
3925 if (!ret)
3926 ret = -ENOSPC;
3927 }
3928
ec44a35c
CM
3929 return ret;
3930}
3931
0c460c0d
ID
3932/**
3933 * alloc_profile_is_valid - see if a given profile is valid and reduced
3934 * @flags: profile to validate
3935 * @extended: if true @flags is treated as an extended profile
3936 */
3937static int alloc_profile_is_valid(u64 flags, int extended)
3938{
3939 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3940 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3941
3942 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3943
3944 /* 1) check that all other bits are zeroed */
3945 if (flags & ~mask)
3946 return 0;
3947
3948 /* 2) see if profile is reduced */
3949 if (flags == 0)
3950 return !extended; /* "0" is valid for usual profiles */
3951
c1499166 3952 return has_single_bit_set(flags);
0c460c0d
ID
3953}
3954
837d5b6e
ID
3955static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3956{
a7e99c69
ID
3957 /* cancel requested || normal exit path */
3958 return atomic_read(&fs_info->balance_cancel_req) ||
3959 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3960 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3961}
3962
5ba366c3
DS
3963/*
3964 * Validate target profile against allowed profiles and return true if it's OK.
3965 * Otherwise print the error message and return false.
3966 */
3967static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3968 const struct btrfs_balance_args *bargs,
3969 u64 allowed, const char *type)
bdcd3c97 3970{
5ba366c3
DS
3971 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3972 return true;
3973
3974 /* Profile is valid and does not have bits outside of the allowed set */
3975 if (alloc_profile_is_valid(bargs->target, 1) &&
3976 (bargs->target & ~allowed) == 0)
3977 return true;
3978
3979 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3980 type, btrfs_bg_type_to_raid_name(bargs->target));
3981 return false;
bdcd3c97
AM
3982}
3983
56fc37d9
AJ
3984/*
3985 * Fill @buf with textual description of balance filter flags @bargs, up to
3986 * @size_buf including the terminating null. The output may be trimmed if it
3987 * does not fit into the provided buffer.
3988 */
3989static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3990 u32 size_buf)
3991{
3992 int ret;
3993 u32 size_bp = size_buf;
3994 char *bp = buf;
3995 u64 flags = bargs->flags;
3996 char tmp_buf[128] = {'\0'};
3997
3998 if (!flags)
3999 return;
4000
4001#define CHECK_APPEND_NOARG(a) \
4002 do { \
4003 ret = snprintf(bp, size_bp, (a)); \
4004 if (ret < 0 || ret >= size_bp) \
4005 goto out_overflow; \
4006 size_bp -= ret; \
4007 bp += ret; \
4008 } while (0)
4009
4010#define CHECK_APPEND_1ARG(a, v1) \
4011 do { \
4012 ret = snprintf(bp, size_bp, (a), (v1)); \
4013 if (ret < 0 || ret >= size_bp) \
4014 goto out_overflow; \
4015 size_bp -= ret; \
4016 bp += ret; \
4017 } while (0)
4018
4019#define CHECK_APPEND_2ARG(a, v1, v2) \
4020 do { \
4021 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4022 if (ret < 0 || ret >= size_bp) \
4023 goto out_overflow; \
4024 size_bp -= ret; \
4025 bp += ret; \
4026 } while (0)
4027
158da513
DS
4028 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4029 CHECK_APPEND_1ARG("convert=%s,",
4030 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4031
4032 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4033 CHECK_APPEND_NOARG("soft,");
4034
4035 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4036 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4037 sizeof(tmp_buf));
4038 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4039 }
4040
4041 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4042 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4043
4044 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4045 CHECK_APPEND_2ARG("usage=%u..%u,",
4046 bargs->usage_min, bargs->usage_max);
4047
4048 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4049 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4050
4051 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4052 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4053 bargs->pstart, bargs->pend);
4054
4055 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4056 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4057 bargs->vstart, bargs->vend);
4058
4059 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4060 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4061
4062 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4063 CHECK_APPEND_2ARG("limit=%u..%u,",
4064 bargs->limit_min, bargs->limit_max);
4065
4066 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4067 CHECK_APPEND_2ARG("stripes=%u..%u,",
4068 bargs->stripes_min, bargs->stripes_max);
4069
4070#undef CHECK_APPEND_2ARG
4071#undef CHECK_APPEND_1ARG
4072#undef CHECK_APPEND_NOARG
4073
4074out_overflow:
4075
4076 if (size_bp < size_buf)
4077 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4078 else
4079 buf[0] = '\0';
4080}
4081
4082static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4083{
4084 u32 size_buf = 1024;
4085 char tmp_buf[192] = {'\0'};
4086 char *buf;
4087 char *bp;
4088 u32 size_bp = size_buf;
4089 int ret;
4090 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4091
4092 buf = kzalloc(size_buf, GFP_KERNEL);
4093 if (!buf)
4094 return;
4095
4096 bp = buf;
4097
4098#define CHECK_APPEND_1ARG(a, v1) \
4099 do { \
4100 ret = snprintf(bp, size_bp, (a), (v1)); \
4101 if (ret < 0 || ret >= size_bp) \
4102 goto out_overflow; \
4103 size_bp -= ret; \
4104 bp += ret; \
4105 } while (0)
4106
4107 if (bctl->flags & BTRFS_BALANCE_FORCE)
4108 CHECK_APPEND_1ARG("%s", "-f ");
4109
4110 if (bctl->flags & BTRFS_BALANCE_DATA) {
4111 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4112 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4113 }
4114
4115 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4116 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4117 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4118 }
4119
4120 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4121 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4122 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4123 }
4124
4125#undef CHECK_APPEND_1ARG
4126
4127out_overflow:
4128
4129 if (size_bp < size_buf)
4130 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4131 btrfs_info(fs_info, "balance: %s %s",
4132 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4133 "resume" : "start", buf);
4134
4135 kfree(buf);
4136}
4137
c9e9f97b 4138/*
dccdb07b 4139 * Should be called with balance mutexe held
c9e9f97b 4140 */
6fcf6e2b
DS
4141int btrfs_balance(struct btrfs_fs_info *fs_info,
4142 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4143 struct btrfs_ioctl_balance_args *bargs)
4144{
14506127 4145 u64 meta_target, data_target;
f43ffb60 4146 u64 allowed;
e4837f8f 4147 int mixed = 0;
c9e9f97b 4148 int ret;
8dabb742 4149 u64 num_devices;
de98ced9 4150 unsigned seq;
e62869be 4151 bool reducing_redundancy;
081db89b 4152 int i;
c9e9f97b 4153
837d5b6e 4154 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4155 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4156 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4157 ret = -EINVAL;
4158 goto out;
4159 }
4160
e4837f8f
ID
4161 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4162 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4163 mixed = 1;
4164
f43ffb60
ID
4165 /*
4166 * In case of mixed groups both data and meta should be picked,
4167 * and identical options should be given for both of them.
4168 */
e4837f8f
ID
4169 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4170 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4171 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4172 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4173 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4174 btrfs_err(fs_info,
6dac13f8 4175 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4176 ret = -EINVAL;
4177 goto out;
4178 }
4179 }
4180
b35cf1f0
JB
4181 /*
4182 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4183 * are exclusive
b35cf1f0
JB
4184 */
4185 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4186
4187 /*
4188 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4189 * special bit for it, to make it easier to distinguish. Thus we need
4190 * to set it manually, or balance would refuse the profile.
4191 */
4192 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4193 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4194 if (num_devices >= btrfs_raid_array[i].devs_min)
4195 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4196
5ba366c3
DS
4197 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4198 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4199 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4200 ret = -EINVAL;
4201 goto out;
4202 }
4203
6079e12c
DS
4204 /*
4205 * Allow to reduce metadata or system integrity only if force set for
4206 * profiles with redundancy (copies, parity)
4207 */
4208 allowed = 0;
4209 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4210 if (btrfs_raid_array[i].ncopies >= 2 ||
4211 btrfs_raid_array[i].tolerated_failures >= 1)
4212 allowed |= btrfs_raid_array[i].bg_flag;
4213 }
de98ced9
MX
4214 do {
4215 seq = read_seqbegin(&fs_info->profiles_lock);
4216
4217 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4218 (fs_info->avail_system_alloc_bits & allowed) &&
4219 !(bctl->sys.target & allowed)) ||
4220 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4221 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4222 !(bctl->meta.target & allowed)))
e62869be 4223 reducing_redundancy = true;
5a8067c0 4224 else
e62869be 4225 reducing_redundancy = false;
5a8067c0
FM
4226
4227 /* if we're not converting, the target field is uninitialized */
4228 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4229 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4230 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4231 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4232 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4233
e62869be 4234 if (reducing_redundancy) {
5a8067c0
FM
4235 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4236 btrfs_info(fs_info,
e62869be 4237 "balance: force reducing metadata redundancy");
5a8067c0
FM
4238 } else {
4239 btrfs_err(fs_info,
e62869be 4240 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244 }
4245
14506127
AB
4246 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4247 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4248 btrfs_warn(fs_info,
6dac13f8 4249 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4250 btrfs_bg_type_to_raid_name(meta_target),
4251 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4252 }
4253
6bccf3ab 4254 ret = insert_balance_item(fs_info, bctl);
59641015 4255 if (ret && ret != -EEXIST)
0940ebf6
ID
4256 goto out;
4257
59641015
ID
4258 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4259 BUG_ON(ret == -EEXIST);
833aae18
DS
4260 BUG_ON(fs_info->balance_ctl);
4261 spin_lock(&fs_info->balance_lock);
4262 fs_info->balance_ctl = bctl;
4263 spin_unlock(&fs_info->balance_lock);
59641015
ID
4264 } else {
4265 BUG_ON(ret != -EEXIST);
4266 spin_lock(&fs_info->balance_lock);
4267 update_balance_args(bctl);
4268 spin_unlock(&fs_info->balance_lock);
4269 }
c9e9f97b 4270
3009a62f
DS
4271 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4272 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4273 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4274 mutex_unlock(&fs_info->balance_mutex);
4275
4276 ret = __btrfs_balance(fs_info);
4277
4278 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4279 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4280 btrfs_info(fs_info, "balance: paused");
44d354ab
QW
4281 /*
4282 * Balance can be canceled by:
4283 *
4284 * - Regular cancel request
4285 * Then ret == -ECANCELED and balance_cancel_req > 0
4286 *
4287 * - Fatal signal to "btrfs" process
4288 * Either the signal caught by wait_reserve_ticket() and callers
4289 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4290 * got -ECANCELED.
4291 * Either way, in this case balance_cancel_req = 0, and
4292 * ret == -EINTR or ret == -ECANCELED.
4293 *
4294 * So here we only check the return value to catch canceled balance.
4295 */
4296 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4297 btrfs_info(fs_info, "balance: canceled");
4298 else
4299 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4300
3009a62f 4301 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4302
4303 if (bargs) {
4304 memset(bargs, 0, sizeof(*bargs));
008ef096 4305 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4306 }
4307
3a01aa7a
ID
4308 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4309 balance_need_close(fs_info)) {
149196a2 4310 reset_balance_state(fs_info);
c3e1f96c 4311 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4312 }
4313
837d5b6e 4314 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4315
4316 return ret;
4317out:
59641015 4318 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4319 reset_balance_state(fs_info);
a17c95df 4320 else
59641015 4321 kfree(bctl);
c3e1f96c 4322 btrfs_exclop_finish(fs_info);
a17c95df 4323
59641015
ID
4324 return ret;
4325}
4326
4327static int balance_kthread(void *data)
4328{
2b6ba629 4329 struct btrfs_fs_info *fs_info = data;
9555c6c1 4330 int ret = 0;
59641015 4331
59641015 4332 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4333 if (fs_info->balance_ctl)
6fcf6e2b 4334 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4335 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4336
59641015
ID
4337 return ret;
4338}
4339
2b6ba629
ID
4340int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4341{
4342 struct task_struct *tsk;
4343
1354e1a1 4344 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4345 if (!fs_info->balance_ctl) {
1354e1a1 4346 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4347 return 0;
4348 }
1354e1a1 4349 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4350
3cdde224 4351 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4352 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4353 return 0;
4354 }
4355
02ee654d
AJ
4356 /*
4357 * A ro->rw remount sequence should continue with the paused balance
4358 * regardless of who pauses it, system or the user as of now, so set
4359 * the resume flag.
4360 */
4361 spin_lock(&fs_info->balance_lock);
4362 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4363 spin_unlock(&fs_info->balance_lock);
4364
2b6ba629 4365 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4366 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4367}
4368
68310a5e 4369int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4370{
59641015
ID
4371 struct btrfs_balance_control *bctl;
4372 struct btrfs_balance_item *item;
4373 struct btrfs_disk_balance_args disk_bargs;
4374 struct btrfs_path *path;
4375 struct extent_buffer *leaf;
4376 struct btrfs_key key;
4377 int ret;
4378
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382
59641015 4383 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4384 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4385 key.offset = 0;
4386
68310a5e 4387 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4388 if (ret < 0)
68310a5e 4389 goto out;
59641015
ID
4390 if (ret > 0) { /* ret = -ENOENT; */
4391 ret = 0;
68310a5e
ID
4392 goto out;
4393 }
4394
4395 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4396 if (!bctl) {
4397 ret = -ENOMEM;
4398 goto out;
59641015
ID
4399 }
4400
4401 leaf = path->nodes[0];
4402 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4403
68310a5e
ID
4404 bctl->flags = btrfs_balance_flags(leaf, item);
4405 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4406
4407 btrfs_balance_data(leaf, item, &disk_bargs);
4408 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4409 btrfs_balance_meta(leaf, item, &disk_bargs);
4410 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4411 btrfs_balance_sys(leaf, item, &disk_bargs);
4412 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4413
eee95e3f
DS
4414 /*
4415 * This should never happen, as the paused balance state is recovered
4416 * during mount without any chance of other exclusive ops to collide.
4417 *
4418 * This gives the exclusive op status to balance and keeps in paused
4419 * state until user intervention (cancel or umount). If the ownership
4420 * cannot be assigned, show a message but do not fail. The balance
4421 * is in a paused state and must have fs_info::balance_ctl properly
4422 * set up.
4423 */
c3e1f96c 4424 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
eee95e3f 4425 btrfs_warn(fs_info,
6dac13f8 4426 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4427
fb286100
JB
4428 btrfs_release_path(path);
4429
68310a5e 4430 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4431 BUG_ON(fs_info->balance_ctl);
4432 spin_lock(&fs_info->balance_lock);
4433 fs_info->balance_ctl = bctl;
4434 spin_unlock(&fs_info->balance_lock);
68310a5e 4435 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4436out:
4437 btrfs_free_path(path);
ec44a35c
CM
4438 return ret;
4439}
4440
837d5b6e
ID
4441int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4442{
4443 int ret = 0;
4444
4445 mutex_lock(&fs_info->balance_mutex);
4446 if (!fs_info->balance_ctl) {
4447 mutex_unlock(&fs_info->balance_mutex);
4448 return -ENOTCONN;
4449 }
4450
3009a62f 4451 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4452 atomic_inc(&fs_info->balance_pause_req);
4453 mutex_unlock(&fs_info->balance_mutex);
4454
4455 wait_event(fs_info->balance_wait_q,
3009a62f 4456 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4457
4458 mutex_lock(&fs_info->balance_mutex);
4459 /* we are good with balance_ctl ripped off from under us */
3009a62f 4460 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4461 atomic_dec(&fs_info->balance_pause_req);
4462 } else {
4463 ret = -ENOTCONN;
4464 }
4465
4466 mutex_unlock(&fs_info->balance_mutex);
4467 return ret;
4468}
4469
a7e99c69
ID
4470int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4471{
4472 mutex_lock(&fs_info->balance_mutex);
4473 if (!fs_info->balance_ctl) {
4474 mutex_unlock(&fs_info->balance_mutex);
4475 return -ENOTCONN;
4476 }
4477
cf7d20f4
DS
4478 /*
4479 * A paused balance with the item stored on disk can be resumed at
4480 * mount time if the mount is read-write. Otherwise it's still paused
4481 * and we must not allow cancelling as it deletes the item.
4482 */
4483 if (sb_rdonly(fs_info->sb)) {
4484 mutex_unlock(&fs_info->balance_mutex);
4485 return -EROFS;
4486 }
4487
a7e99c69
ID
4488 atomic_inc(&fs_info->balance_cancel_req);
4489 /*
4490 * if we are running just wait and return, balance item is
4491 * deleted in btrfs_balance in this case
4492 */
3009a62f 4493 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4494 mutex_unlock(&fs_info->balance_mutex);
4495 wait_event(fs_info->balance_wait_q,
3009a62f 4496 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4497 mutex_lock(&fs_info->balance_mutex);
4498 } else {
a7e99c69 4499 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4500 /*
4501 * Lock released to allow other waiters to continue, we'll
4502 * reexamine the status again.
4503 */
a7e99c69
ID
4504 mutex_lock(&fs_info->balance_mutex);
4505
a17c95df 4506 if (fs_info->balance_ctl) {
149196a2 4507 reset_balance_state(fs_info);
c3e1f96c 4508 btrfs_exclop_finish(fs_info);
6dac13f8 4509 btrfs_info(fs_info, "balance: canceled");
a17c95df 4510 }
a7e99c69
ID
4511 }
4512
3009a62f
DS
4513 BUG_ON(fs_info->balance_ctl ||
4514 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4515 atomic_dec(&fs_info->balance_cancel_req);
4516 mutex_unlock(&fs_info->balance_mutex);
4517 return 0;
4518}
4519
97f4dd09 4520int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4521{
4522 struct btrfs_fs_info *fs_info = data;
4523 struct btrfs_root *root = fs_info->tree_root;
4524 struct btrfs_key key;
803b2f54
SB
4525 struct btrfs_path *path = NULL;
4526 int ret = 0;
4527 struct extent_buffer *eb;
4528 int slot;
4529 struct btrfs_root_item root_item;
4530 u32 item_size;
f45388f3 4531 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4532 bool closing = false;
803b2f54
SB
4533
4534 path = btrfs_alloc_path();
4535 if (!path) {
4536 ret = -ENOMEM;
4537 goto out;
4538 }
4539
4540 key.objectid = 0;
4541 key.type = BTRFS_ROOT_ITEM_KEY;
4542 key.offset = 0;
4543
803b2f54 4544 while (1) {
c94bec2c
JB
4545 if (btrfs_fs_closing(fs_info)) {
4546 closing = true;
4547 break;
4548 }
7c829b72
AJ
4549 ret = btrfs_search_forward(root, &key, path,
4550 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4551 if (ret) {
4552 if (ret > 0)
4553 ret = 0;
4554 break;
4555 }
4556
4557 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4558 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4559 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4560 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4561 goto skip;
4562
4563 eb = path->nodes[0];
4564 slot = path->slots[0];
4565 item_size = btrfs_item_size_nr(eb, slot);
4566 if (item_size < sizeof(root_item))
4567 goto skip;
4568
803b2f54
SB
4569 read_extent_buffer(eb, &root_item,
4570 btrfs_item_ptr_offset(eb, slot),
4571 (int)sizeof(root_item));
4572 if (btrfs_root_refs(&root_item) == 0)
4573 goto skip;
f45388f3
FDBM
4574
4575 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4576 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4577 if (trans)
4578 goto update_tree;
4579
4580 btrfs_release_path(path);
803b2f54
SB
4581 /*
4582 * 1 - subvol uuid item
4583 * 1 - received_subvol uuid item
4584 */
4585 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4586 if (IS_ERR(trans)) {
4587 ret = PTR_ERR(trans);
4588 break;
4589 }
f45388f3
FDBM
4590 continue;
4591 } else {
4592 goto skip;
4593 }
4594update_tree:
9771a5cf 4595 btrfs_release_path(path);
f45388f3 4596 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4597 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4598 BTRFS_UUID_KEY_SUBVOL,
4599 key.objectid);
4600 if (ret < 0) {
efe120a0 4601 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4602 ret);
803b2f54
SB
4603 break;
4604 }
4605 }
4606
4607 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4608 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4609 root_item.received_uuid,
4610 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4611 key.objectid);
4612 if (ret < 0) {
efe120a0 4613 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4614 ret);
803b2f54
SB
4615 break;
4616 }
4617 }
4618
f45388f3 4619skip:
9771a5cf 4620 btrfs_release_path(path);
803b2f54 4621 if (trans) {
3a45bb20 4622 ret = btrfs_end_transaction(trans);
f45388f3 4623 trans = NULL;
803b2f54
SB
4624 if (ret)
4625 break;
4626 }
4627
803b2f54
SB
4628 if (key.offset < (u64)-1) {
4629 key.offset++;
4630 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4631 key.offset = 0;
4632 key.type = BTRFS_ROOT_ITEM_KEY;
4633 } else if (key.objectid < (u64)-1) {
4634 key.offset = 0;
4635 key.type = BTRFS_ROOT_ITEM_KEY;
4636 key.objectid++;
4637 } else {
4638 break;
4639 }
4640 cond_resched();
4641 }
4642
4643out:
4644 btrfs_free_path(path);
f45388f3 4645 if (trans && !IS_ERR(trans))
3a45bb20 4646 btrfs_end_transaction(trans);
803b2f54 4647 if (ret)
efe120a0 4648 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4649 else if (!closing)
afcdd129 4650 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4651 up(&fs_info->uuid_tree_rescan_sem);
4652 return 0;
4653}
4654
f7a81ea4
SB
4655int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4656{
4657 struct btrfs_trans_handle *trans;
4658 struct btrfs_root *tree_root = fs_info->tree_root;
4659 struct btrfs_root *uuid_root;
803b2f54
SB
4660 struct task_struct *task;
4661 int ret;
f7a81ea4
SB
4662
4663 /*
4664 * 1 - root node
4665 * 1 - root item
4666 */
4667 trans = btrfs_start_transaction(tree_root, 2);
4668 if (IS_ERR(trans))
4669 return PTR_ERR(trans);
4670
9b7a2440 4671 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4672 if (IS_ERR(uuid_root)) {
6d13f549 4673 ret = PTR_ERR(uuid_root);
66642832 4674 btrfs_abort_transaction(trans, ret);
3a45bb20 4675 btrfs_end_transaction(trans);
6d13f549 4676 return ret;
f7a81ea4
SB
4677 }
4678
4679 fs_info->uuid_root = uuid_root;
4680
3a45bb20 4681 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4682 if (ret)
4683 return ret;
4684
4685 down(&fs_info->uuid_tree_rescan_sem);
4686 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4687 if (IS_ERR(task)) {
70f80175 4688 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4689 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4690 up(&fs_info->uuid_tree_rescan_sem);
4691 return PTR_ERR(task);
4692 }
4693
4694 return 0;
f7a81ea4 4695}
803b2f54 4696
8f18cf13
CM
4697/*
4698 * shrinking a device means finding all of the device extents past
4699 * the new size, and then following the back refs to the chunks.
4700 * The chunk relocation code actually frees the device extent
4701 */
4702int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4703{
0b246afa
JM
4704 struct btrfs_fs_info *fs_info = device->fs_info;
4705 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4706 struct btrfs_trans_handle *trans;
8f18cf13
CM
4707 struct btrfs_dev_extent *dev_extent = NULL;
4708 struct btrfs_path *path;
4709 u64 length;
8f18cf13
CM
4710 u64 chunk_offset;
4711 int ret;
4712 int slot;
ba1bf481
JB
4713 int failed = 0;
4714 bool retried = false;
8f18cf13
CM
4715 struct extent_buffer *l;
4716 struct btrfs_key key;
0b246afa 4717 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4718 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4719 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4720 u64 diff;
61d0d0d2 4721 u64 start;
7dfb8be1
NB
4722
4723 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4724 start = new_size;
0e4324a4 4725 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4726
401e29c1 4727 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4728 return -EINVAL;
4729
8f18cf13
CM
4730 path = btrfs_alloc_path();
4731 if (!path)
4732 return -ENOMEM;
4733
0338dff6 4734 path->reada = READA_BACK;
8f18cf13 4735
61d0d0d2
NB
4736 trans = btrfs_start_transaction(root, 0);
4737 if (IS_ERR(trans)) {
4738 btrfs_free_path(path);
4739 return PTR_ERR(trans);
4740 }
4741
34441361 4742 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4743
7cc8e58d 4744 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4745 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4746 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4747 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4748 }
61d0d0d2
NB
4749
4750 /*
4751 * Once the device's size has been set to the new size, ensure all
4752 * in-memory chunks are synced to disk so that the loop below sees them
4753 * and relocates them accordingly.
4754 */
1c11b63e 4755 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4756 mutex_unlock(&fs_info->chunk_mutex);
4757 ret = btrfs_commit_transaction(trans);
4758 if (ret)
4759 goto done;
4760 } else {
4761 mutex_unlock(&fs_info->chunk_mutex);
4762 btrfs_end_transaction(trans);
4763 }
8f18cf13 4764
ba1bf481 4765again:
8f18cf13
CM
4766 key.objectid = device->devid;
4767 key.offset = (u64)-1;
4768 key.type = BTRFS_DEV_EXTENT_KEY;
4769
213e64da 4770 do {
f3372065 4771 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4772 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4773 if (ret < 0) {
f3372065 4774 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4775 goto done;
67c5e7d4 4776 }
8f18cf13
CM
4777
4778 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4779 if (ret) {
f3372065 4780 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4781 if (ret < 0)
4782 goto done;
8f18cf13 4783 ret = 0;
b3b4aa74 4784 btrfs_release_path(path);
bf1fb512 4785 break;
8f18cf13
CM
4786 }
4787
4788 l = path->nodes[0];
4789 slot = path->slots[0];
4790 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4791
ba1bf481 4792 if (key.objectid != device->devid) {
f3372065 4793 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4794 btrfs_release_path(path);
bf1fb512 4795 break;
ba1bf481 4796 }
8f18cf13
CM
4797
4798 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4799 length = btrfs_dev_extent_length(l, dev_extent);
4800
ba1bf481 4801 if (key.offset + length <= new_size) {
f3372065 4802 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4803 btrfs_release_path(path);
d6397bae 4804 break;
ba1bf481 4805 }
8f18cf13 4806
8f18cf13 4807 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4808 btrfs_release_path(path);
8f18cf13 4809
a6f93c71
LB
4810 /*
4811 * We may be relocating the only data chunk we have,
4812 * which could potentially end up with losing data's
4813 * raid profile, so lets allocate an empty one in
4814 * advance.
4815 */
4816 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4817 if (ret < 0) {
f3372065 4818 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4819 goto done;
4820 }
4821
0b246afa 4822 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4823 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4824 if (ret == -ENOSPC) {
ba1bf481 4825 failed++;
eede2bf3
OS
4826 } else if (ret) {
4827 if (ret == -ETXTBSY) {
4828 btrfs_warn(fs_info,
4829 "could not shrink block group %llu due to active swapfile",
4830 chunk_offset);
4831 }
4832 goto done;
4833 }
213e64da 4834 } while (key.offset-- > 0);
ba1bf481
JB
4835
4836 if (failed && !retried) {
4837 failed = 0;
4838 retried = true;
4839 goto again;
4840 } else if (failed && retried) {
4841 ret = -ENOSPC;
ba1bf481 4842 goto done;
8f18cf13
CM
4843 }
4844
d6397bae 4845 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4846 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4847 if (IS_ERR(trans)) {
4848 ret = PTR_ERR(trans);
4849 goto done;
4850 }
4851
34441361 4852 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4853 /* Clear all state bits beyond the shrunk device size */
4854 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4855 CHUNK_STATE_MASK);
4856
7cc8e58d 4857 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4858 if (list_empty(&device->post_commit_list))
4859 list_add_tail(&device->post_commit_list,
4860 &trans->transaction->dev_update_list);
d6397bae 4861
d6397bae 4862 WARN_ON(diff > old_total);
7dfb8be1
NB
4863 btrfs_set_super_total_bytes(super_copy,
4864 round_down(old_total - diff, fs_info->sectorsize));
34441361 4865 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4866
4867 /* Now btrfs_update_device() will change the on-disk size. */
4868 ret = btrfs_update_device(trans, device);
801660b0
AJ
4869 if (ret < 0) {
4870 btrfs_abort_transaction(trans, ret);
4871 btrfs_end_transaction(trans);
4872 } else {
4873 ret = btrfs_commit_transaction(trans);
4874 }
8f18cf13
CM
4875done:
4876 btrfs_free_path(path);
53e489bc 4877 if (ret) {
34441361 4878 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4879 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4880 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4881 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4882 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4883 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4884 }
8f18cf13
CM
4885 return ret;
4886}
4887
2ff7e61e 4888static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4889 struct btrfs_key *key,
4890 struct btrfs_chunk *chunk, int item_size)
4891{
0b246afa 4892 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4893 struct btrfs_disk_key disk_key;
4894 u32 array_size;
4895 u8 *ptr;
4896
79bd3712
FM
4897 lockdep_assert_held(&fs_info->chunk_mutex);
4898
0b86a832 4899 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4900 if (array_size + item_size + sizeof(disk_key)
79bd3712 4901 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4902 return -EFBIG;
4903
4904 ptr = super_copy->sys_chunk_array + array_size;
4905 btrfs_cpu_key_to_disk(&disk_key, key);
4906 memcpy(ptr, &disk_key, sizeof(disk_key));
4907 ptr += sizeof(disk_key);
4908 memcpy(ptr, chunk, item_size);
4909 item_size += sizeof(disk_key);
4910 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 4911
0b86a832
CM
4912 return 0;
4913}
4914
73c5de00
AJ
4915/*
4916 * sort the devices in descending order by max_avail, total_avail
4917 */
4918static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4919{
73c5de00
AJ
4920 const struct btrfs_device_info *di_a = a;
4921 const struct btrfs_device_info *di_b = b;
9b3f68b9 4922
73c5de00 4923 if (di_a->max_avail > di_b->max_avail)
b2117a39 4924 return -1;
73c5de00 4925 if (di_a->max_avail < di_b->max_avail)
b2117a39 4926 return 1;
73c5de00
AJ
4927 if (di_a->total_avail > di_b->total_avail)
4928 return -1;
4929 if (di_a->total_avail < di_b->total_avail)
4930 return 1;
4931 return 0;
b2117a39 4932}
0b86a832 4933
53b381b3
DW
4934static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4935{
ffe2d203 4936 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4937 return;
4938
ceda0864 4939 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4940}
4941
cfbb825c
DS
4942static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4943{
4944 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4945 return;
4946
4947 btrfs_set_fs_incompat(info, RAID1C34);
4948}
4949
4f2bafe8
NA
4950/*
4951 * Structure used internally for __btrfs_alloc_chunk() function.
4952 * Wraps needed parameters.
4953 */
4954struct alloc_chunk_ctl {
4955 u64 start;
4956 u64 type;
4957 /* Total number of stripes to allocate */
4958 int num_stripes;
4959 /* sub_stripes info for map */
4960 int sub_stripes;
4961 /* Stripes per device */
4962 int dev_stripes;
4963 /* Maximum number of devices to use */
4964 int devs_max;
4965 /* Minimum number of devices to use */
4966 int devs_min;
4967 /* ndevs has to be a multiple of this */
4968 int devs_increment;
4969 /* Number of copies */
4970 int ncopies;
4971 /* Number of stripes worth of bytes to store parity information */
4972 int nparity;
4973 u64 max_stripe_size;
4974 u64 max_chunk_size;
6aafb303 4975 u64 dev_extent_min;
4f2bafe8
NA
4976 u64 stripe_size;
4977 u64 chunk_size;
4978 int ndevs;
4979};
4980
27c314d5
NA
4981static void init_alloc_chunk_ctl_policy_regular(
4982 struct btrfs_fs_devices *fs_devices,
4983 struct alloc_chunk_ctl *ctl)
4984{
4985 u64 type = ctl->type;
4986
4987 if (type & BTRFS_BLOCK_GROUP_DATA) {
4988 ctl->max_stripe_size = SZ_1G;
4989 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4990 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4991 /* For larger filesystems, use larger metadata chunks */
4992 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4993 ctl->max_stripe_size = SZ_1G;
4994 else
4995 ctl->max_stripe_size = SZ_256M;
4996 ctl->max_chunk_size = ctl->max_stripe_size;
4997 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4998 ctl->max_stripe_size = SZ_32M;
4999 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5000 ctl->devs_max = min_t(int, ctl->devs_max,
5001 BTRFS_MAX_DEVS_SYS_CHUNK);
5002 } else {
5003 BUG();
5004 }
5005
5006 /* We don't want a chunk larger than 10% of writable space */
5007 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5008 ctl->max_chunk_size);
6aafb303 5009 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5010}
5011
1cd6121f
NA
5012static void init_alloc_chunk_ctl_policy_zoned(
5013 struct btrfs_fs_devices *fs_devices,
5014 struct alloc_chunk_ctl *ctl)
5015{
5016 u64 zone_size = fs_devices->fs_info->zone_size;
5017 u64 limit;
5018 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5019 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5020 u64 min_chunk_size = min_data_stripes * zone_size;
5021 u64 type = ctl->type;
5022
5023 ctl->max_stripe_size = zone_size;
5024 if (type & BTRFS_BLOCK_GROUP_DATA) {
5025 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5026 zone_size);
5027 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5028 ctl->max_chunk_size = ctl->max_stripe_size;
5029 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5030 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5031 ctl->devs_max = min_t(int, ctl->devs_max,
5032 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5033 } else {
5034 BUG();
1cd6121f
NA
5035 }
5036
5037 /* We don't want a chunk larger than 10% of writable space */
5038 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5039 zone_size),
5040 min_chunk_size);
5041 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5042 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5043}
5044
27c314d5
NA
5045static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5046 struct alloc_chunk_ctl *ctl)
5047{
5048 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5049
5050 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5051 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5052 ctl->devs_max = btrfs_raid_array[index].devs_max;
5053 if (!ctl->devs_max)
5054 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5055 ctl->devs_min = btrfs_raid_array[index].devs_min;
5056 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5057 ctl->ncopies = btrfs_raid_array[index].ncopies;
5058 ctl->nparity = btrfs_raid_array[index].nparity;
5059 ctl->ndevs = 0;
5060
5061 switch (fs_devices->chunk_alloc_policy) {
5062 case BTRFS_CHUNK_ALLOC_REGULAR:
5063 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5064 break;
1cd6121f
NA
5065 case BTRFS_CHUNK_ALLOC_ZONED:
5066 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5067 break;
27c314d5
NA
5068 default:
5069 BUG();
5070 }
5071}
5072
560156cb
NA
5073static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5074 struct alloc_chunk_ctl *ctl,
5075 struct btrfs_device_info *devices_info)
b2117a39 5076{
560156cb 5077 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5078 struct btrfs_device *device;
73c5de00 5079 u64 total_avail;
560156cb 5080 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5081 int ret;
560156cb
NA
5082 int ndevs = 0;
5083 u64 max_avail;
5084 u64 dev_offset;
0cad8a11 5085
9f680ce0 5086 /*
73c5de00
AJ
5087 * in the first pass through the devices list, we gather information
5088 * about the available holes on each device.
9f680ce0 5089 */
ebcc9301 5090 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5091 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5092 WARN(1, KERN_ERR
efe120a0 5093 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5094 continue;
5095 }
b2117a39 5096
e12c9621
AJ
5097 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5098 &device->dev_state) ||
401e29c1 5099 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5100 continue;
b2117a39 5101
73c5de00
AJ
5102 if (device->total_bytes > device->bytes_used)
5103 total_avail = device->total_bytes - device->bytes_used;
5104 else
5105 total_avail = 0;
38c01b96 5106
5107 /* If there is no space on this device, skip it. */
6aafb303 5108 if (total_avail < ctl->dev_extent_min)
38c01b96 5109 continue;
b2117a39 5110
560156cb
NA
5111 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5112 &max_avail);
73c5de00 5113 if (ret && ret != -ENOSPC)
560156cb 5114 return ret;
b2117a39 5115
73c5de00 5116 if (ret == 0)
560156cb 5117 max_avail = dev_extent_want;
b2117a39 5118
6aafb303 5119 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5120 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5121 btrfs_debug(info,
560156cb 5122 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5123 __func__, device->devid, max_avail,
6aafb303 5124 ctl->dev_extent_min);
73c5de00 5125 continue;
4117f207 5126 }
b2117a39 5127
063d006f
ES
5128 if (ndevs == fs_devices->rw_devices) {
5129 WARN(1, "%s: found more than %llu devices\n",
5130 __func__, fs_devices->rw_devices);
5131 break;
5132 }
73c5de00
AJ
5133 devices_info[ndevs].dev_offset = dev_offset;
5134 devices_info[ndevs].max_avail = max_avail;
5135 devices_info[ndevs].total_avail = total_avail;
5136 devices_info[ndevs].dev = device;
5137 ++ndevs;
5138 }
560156cb 5139 ctl->ndevs = ndevs;
b2117a39 5140
73c5de00
AJ
5141 /*
5142 * now sort the devices by hole size / available space
5143 */
560156cb 5144 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5145 btrfs_cmp_device_info, NULL);
b2117a39 5146
560156cb
NA
5147 return 0;
5148}
5149
5badf512
NA
5150static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5151 struct btrfs_device_info *devices_info)
5152{
5153 /* Number of stripes that count for block group size */
5154 int data_stripes;
5155
5156 /*
5157 * The primary goal is to maximize the number of stripes, so use as
5158 * many devices as possible, even if the stripes are not maximum sized.
5159 *
5160 * The DUP profile stores more than one stripe per device, the
5161 * max_avail is the total size so we have to adjust.
5162 */
5163 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5164 ctl->dev_stripes);
5165 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5166
5167 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5168 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5169
5170 /*
5171 * Use the number of data stripes to figure out how big this chunk is
5172 * really going to be in terms of logical address space, and compare
5173 * that answer with the max chunk size. If it's higher, we try to
5174 * reduce stripe_size.
5175 */
5176 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5177 /*
5178 * Reduce stripe_size, round it up to a 16MB boundary again and
5179 * then use it, unless it ends up being even bigger than the
5180 * previous value we had already.
5181 */
5182 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5183 data_stripes), SZ_16M),
5184 ctl->stripe_size);
5185 }
5186
5187 /* Align to BTRFS_STRIPE_LEN */
5188 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5189 ctl->chunk_size = ctl->stripe_size * data_stripes;
5190
5191 return 0;
5192}
5193
1cd6121f
NA
5194static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5195 struct btrfs_device_info *devices_info)
5196{
5197 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5198 /* Number of stripes that count for block group size */
5199 int data_stripes;
5200
5201 /*
5202 * It should hold because:
5203 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5204 */
5205 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5206
5207 ctl->stripe_size = zone_size;
5208 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5209 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5210
5211 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5212 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5213 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5214 ctl->stripe_size) + ctl->nparity,
5215 ctl->dev_stripes);
5216 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5217 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5218 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5219 }
5220
5221 ctl->chunk_size = ctl->stripe_size * data_stripes;
5222
5223 return 0;
5224}
5225
5badf512
NA
5226static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5227 struct alloc_chunk_ctl *ctl,
5228 struct btrfs_device_info *devices_info)
5229{
5230 struct btrfs_fs_info *info = fs_devices->fs_info;
5231
5232 /*
5233 * Round down to number of usable stripes, devs_increment can be any
5234 * number so we can't use round_down() that requires power of 2, while
5235 * rounddown is safe.
5236 */
5237 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5238
5239 if (ctl->ndevs < ctl->devs_min) {
5240 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5241 btrfs_debug(info,
5242 "%s: not enough devices with free space: have=%d minimum required=%d",
5243 __func__, ctl->ndevs, ctl->devs_min);
5244 }
5245 return -ENOSPC;
5246 }
5247
5248 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5249
5250 switch (fs_devices->chunk_alloc_policy) {
5251 case BTRFS_CHUNK_ALLOC_REGULAR:
5252 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5253 case BTRFS_CHUNK_ALLOC_ZONED:
5254 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5255 default:
5256 BUG();
5257 }
5258}
5259
79bd3712 5260static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5261 struct alloc_chunk_ctl *ctl,
5262 struct btrfs_device_info *devices_info)
560156cb
NA
5263{
5264 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5265 struct map_lookup *map = NULL;
5266 struct extent_map_tree *em_tree;
79bd3712 5267 struct btrfs_block_group *block_group;
560156cb 5268 struct extent_map *em;
dce580ca
NA
5269 u64 start = ctl->start;
5270 u64 type = ctl->type;
560156cb
NA
5271 int ret;
5272 int i;
5273 int j;
5274
dce580ca
NA
5275 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5276 if (!map)
79bd3712 5277 return ERR_PTR(-ENOMEM);
dce580ca 5278 map->num_stripes = ctl->num_stripes;
560156cb 5279
dce580ca
NA
5280 for (i = 0; i < ctl->ndevs; ++i) {
5281 for (j = 0; j < ctl->dev_stripes; ++j) {
5282 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5283 map->stripes[s].dev = devices_info[i].dev;
5284 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5285 j * ctl->stripe_size;
6324fbf3 5286 }
6324fbf3 5287 }
500ceed8
NB
5288 map->stripe_len = BTRFS_STRIPE_LEN;
5289 map->io_align = BTRFS_STRIPE_LEN;
5290 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5291 map->type = type;
dce580ca 5292 map->sub_stripes = ctl->sub_stripes;
0b86a832 5293
dce580ca 5294 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5295
172ddd60 5296 em = alloc_extent_map();
2b82032c 5297 if (!em) {
298a8f9c 5298 kfree(map);
79bd3712 5299 return ERR_PTR(-ENOMEM);
593060d7 5300 }
298a8f9c 5301 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5302 em->map_lookup = map;
2b82032c 5303 em->start = start;
dce580ca 5304 em->len = ctl->chunk_size;
2b82032c
YZ
5305 em->block_start = 0;
5306 em->block_len = em->len;
dce580ca 5307 em->orig_block_len = ctl->stripe_size;
593060d7 5308
c8bf1b67 5309 em_tree = &info->mapping_tree;
890871be 5310 write_lock(&em_tree->lock);
09a2a8f9 5311 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5312 if (ret) {
1efb72a3 5313 write_unlock(&em_tree->lock);
0f5d42b2 5314 free_extent_map(em);
79bd3712 5315 return ERR_PTR(ret);
0f5d42b2 5316 }
1efb72a3
NB
5317 write_unlock(&em_tree->lock);
5318
79bd3712
FM
5319 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5320 if (IS_ERR(block_group))
6df9a95e 5321 goto error_del_extent;
2b82032c 5322
bbbf7243
NB
5323 for (i = 0; i < map->num_stripes; i++) {
5324 struct btrfs_device *dev = map->stripes[i].dev;
5325
4f2bafe8 5326 btrfs_device_set_bytes_used(dev,
dce580ca 5327 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5328 if (list_empty(&dev->post_commit_list))
5329 list_add_tail(&dev->post_commit_list,
5330 &trans->transaction->dev_update_list);
5331 }
43530c46 5332
dce580ca 5333 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5334 &info->free_chunk_space);
1c116187 5335
0f5d42b2 5336 free_extent_map(em);
0b246afa 5337 check_raid56_incompat_flag(info, type);
cfbb825c 5338 check_raid1c34_incompat_flag(info, type);
53b381b3 5339
79bd3712 5340 return block_group;
b2117a39 5341
6df9a95e 5342error_del_extent:
0f5d42b2
JB
5343 write_lock(&em_tree->lock);
5344 remove_extent_mapping(em_tree, em);
5345 write_unlock(&em_tree->lock);
5346
5347 /* One for our allocation */
5348 free_extent_map(em);
5349 /* One for the tree reference */
5350 free_extent_map(em);
dce580ca 5351
79bd3712 5352 return block_group;
dce580ca
NA
5353}
5354
79bd3712
FM
5355struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5356 u64 type)
dce580ca
NA
5357{
5358 struct btrfs_fs_info *info = trans->fs_info;
5359 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5360 struct btrfs_device_info *devices_info = NULL;
5361 struct alloc_chunk_ctl ctl;
79bd3712 5362 struct btrfs_block_group *block_group;
dce580ca
NA
5363 int ret;
5364
11c67b1a
NB
5365 lockdep_assert_held(&info->chunk_mutex);
5366
dce580ca
NA
5367 if (!alloc_profile_is_valid(type, 0)) {
5368 ASSERT(0);
79bd3712 5369 return ERR_PTR(-EINVAL);
dce580ca
NA
5370 }
5371
5372 if (list_empty(&fs_devices->alloc_list)) {
5373 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5374 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5375 return ERR_PTR(-ENOSPC);
dce580ca
NA
5376 }
5377
5378 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5379 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5380 ASSERT(0);
79bd3712 5381 return ERR_PTR(-EINVAL);
dce580ca
NA
5382 }
5383
11c67b1a 5384 ctl.start = find_next_chunk(info);
dce580ca
NA
5385 ctl.type = type;
5386 init_alloc_chunk_ctl(fs_devices, &ctl);
5387
5388 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5389 GFP_NOFS);
5390 if (!devices_info)
79bd3712 5391 return ERR_PTR(-ENOMEM);
dce580ca
NA
5392
5393 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5394 if (ret < 0) {
5395 block_group = ERR_PTR(ret);
dce580ca 5396 goto out;
79bd3712 5397 }
dce580ca
NA
5398
5399 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5400 if (ret < 0) {
5401 block_group = ERR_PTR(ret);
dce580ca 5402 goto out;
79bd3712 5403 }
dce580ca 5404
79bd3712 5405 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5406
5407out:
b2117a39 5408 kfree(devices_info);
79bd3712 5409 return block_group;
2b82032c
YZ
5410}
5411
79bd3712
FM
5412/*
5413 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5414 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5415 * chunks.
5416 *
5417 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5418 * phases.
5419 */
5420int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5421 struct btrfs_block_group *bg)
5422{
5423 struct btrfs_fs_info *fs_info = trans->fs_info;
5424 struct btrfs_root *extent_root = fs_info->extent_root;
5425 struct btrfs_root *chunk_root = fs_info->chunk_root;
5426 struct btrfs_key key;
5427 struct btrfs_chunk *chunk;
5428 struct btrfs_stripe *stripe;
5429 struct extent_map *em;
5430 struct map_lookup *map;
5431 size_t item_size;
5432 int i;
5433 int ret;
5434
5435 /*
5436 * We take the chunk_mutex for 2 reasons:
5437 *
5438 * 1) Updates and insertions in the chunk btree must be done while holding
5439 * the chunk_mutex, as well as updating the system chunk array in the
5440 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5441 * details;
5442 *
5443 * 2) To prevent races with the final phase of a device replace operation
5444 * that replaces the device object associated with the map's stripes,
5445 * because the device object's id can change at any time during that
5446 * final phase of the device replace operation
5447 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5448 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5449 * which would cause a failure when updating the device item, which does
5450 * not exists, or persisting a stripe of the chunk item with such ID.
5451 * Here we can't use the device_list_mutex because our caller already
5452 * has locked the chunk_mutex, and the final phase of device replace
5453 * acquires both mutexes - first the device_list_mutex and then the
5454 * chunk_mutex. Using any of those two mutexes protects us from a
5455 * concurrent device replace.
5456 */
5457 lockdep_assert_held(&fs_info->chunk_mutex);
5458
5459 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5460 if (IS_ERR(em)) {
5461 ret = PTR_ERR(em);
5462 btrfs_abort_transaction(trans, ret);
5463 return ret;
5464 }
5465
5466 map = em->map_lookup;
5467 item_size = btrfs_chunk_item_size(map->num_stripes);
5468
5469 chunk = kzalloc(item_size, GFP_NOFS);
5470 if (!chunk) {
5471 ret = -ENOMEM;
5472 btrfs_abort_transaction(trans, ret);
50460e37 5473 goto out;
2b82032c
YZ
5474 }
5475
79bd3712
FM
5476 for (i = 0; i < map->num_stripes; i++) {
5477 struct btrfs_device *device = map->stripes[i].dev;
5478
5479 ret = btrfs_update_device(trans, device);
5480 if (ret)
5481 goto out;
5482 }
5483
2b82032c 5484 stripe = &chunk->stripe;
6df9a95e 5485 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5486 struct btrfs_device *device = map->stripes[i].dev;
5487 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5488
e17cade2
CM
5489 btrfs_set_stack_stripe_devid(stripe, device->devid);
5490 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5491 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5492 stripe++;
0b86a832
CM
5493 }
5494
79bd3712 5495 btrfs_set_stack_chunk_length(chunk, bg->length);
0b86a832 5496 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5497 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5498 btrfs_set_stack_chunk_type(chunk, map->type);
5499 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5500 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5501 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5502 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5503 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5504
2b82032c
YZ
5505 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5506 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5507 key.offset = bg->start;
0b86a832 5508
2b82032c 5509 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5510 if (ret)
5511 goto out;
5512
5513 bg->chunk_item_inserted = 1;
5514
5515 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5516 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5517 if (ret)
5518 goto out;
8f18cf13 5519 }
1abe9b8a 5520
6df9a95e 5521out:
0b86a832 5522 kfree(chunk);
6df9a95e 5523 free_extent_map(em);
4ed1d16e 5524 return ret;
2b82032c 5525}
0b86a832 5526
6f8e0fc7 5527static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5528{
6f8e0fc7 5529 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5530 u64 alloc_profile;
79bd3712
FM
5531 struct btrfs_block_group *meta_bg;
5532 struct btrfs_block_group *sys_bg;
5533
5534 /*
5535 * When adding a new device for sprouting, the seed device is read-only
5536 * so we must first allocate a metadata and a system chunk. But before
5537 * adding the block group items to the extent, device and chunk btrees,
5538 * we must first:
5539 *
5540 * 1) Create both chunks without doing any changes to the btrees, as
5541 * otherwise we would get -ENOSPC since the block groups from the
5542 * seed device are read-only;
5543 *
5544 * 2) Add the device item for the new sprout device - finishing the setup
5545 * of a new block group requires updating the device item in the chunk
5546 * btree, so it must exist when we attempt to do it. The previous step
5547 * ensures this does not fail with -ENOSPC.
5548 *
5549 * After that we can add the block group items to their btrees:
5550 * update existing device item in the chunk btree, add a new block group
5551 * item to the extent btree, add a new chunk item to the chunk btree and
5552 * finally add the new device extent items to the devices btree.
5553 */
2b82032c 5554
1b86826d 5555 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
79bd3712
FM
5556 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5557 if (IS_ERR(meta_bg))
5558 return PTR_ERR(meta_bg);
2b82032c 5559
1b86826d 5560 alloc_profile = btrfs_system_alloc_profile(fs_info);
79bd3712
FM
5561 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5562 if (IS_ERR(sys_bg))
5563 return PTR_ERR(sys_bg);
5564
5565 return 0;
2b82032c
YZ
5566}
5567
d20983b4
MX
5568static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5569{
fc9a2ac7 5570 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5571
fc9a2ac7 5572 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5573}
5574
2ff7e61e 5575int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5576{
5577 struct extent_map *em;
5578 struct map_lookup *map;
2b82032c 5579 int readonly = 0;
d20983b4 5580 int miss_ndevs = 0;
2b82032c
YZ
5581 int i;
5582
60ca842e 5583 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5584 if (IS_ERR(em))
2b82032c
YZ
5585 return 1;
5586
95617d69 5587 map = em->map_lookup;
2b82032c 5588 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5589 if (test_bit(BTRFS_DEV_STATE_MISSING,
5590 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5591 miss_ndevs++;
5592 continue;
5593 }
ebbede42
AJ
5594 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5595 &map->stripes[i].dev->dev_state)) {
2b82032c 5596 readonly = 1;
d20983b4 5597 goto end;
2b82032c
YZ
5598 }
5599 }
d20983b4
MX
5600
5601 /*
5602 * If the number of missing devices is larger than max errors,
5603 * we can not write the data into that chunk successfully, so
5604 * set it readonly.
5605 */
5606 if (miss_ndevs > btrfs_chunk_max_errors(map))
5607 readonly = 1;
5608end:
0b86a832 5609 free_extent_map(em);
2b82032c 5610 return readonly;
0b86a832
CM
5611}
5612
c8bf1b67 5613void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5614{
5615 struct extent_map *em;
5616
d397712b 5617 while (1) {
c8bf1b67
DS
5618 write_lock(&tree->lock);
5619 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5620 if (em)
c8bf1b67
DS
5621 remove_extent_mapping(tree, em);
5622 write_unlock(&tree->lock);
0b86a832
CM
5623 if (!em)
5624 break;
0b86a832
CM
5625 /* once for us */
5626 free_extent_map(em);
5627 /* once for the tree */
5628 free_extent_map(em);
5629 }
5630}
5631
5d964051 5632int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5633{
5634 struct extent_map *em;
5635 struct map_lookup *map;
f188591e
CM
5636 int ret;
5637
60ca842e 5638 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5639 if (IS_ERR(em))
5640 /*
5641 * We could return errors for these cases, but that could get
5642 * ugly and we'd probably do the same thing which is just not do
5643 * anything else and exit, so return 1 so the callers don't try
5644 * to use other copies.
5645 */
fb7669b5 5646 return 1;
fb7669b5 5647
95617d69 5648 map = em->map_lookup;
c7369b3f 5649 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5650 ret = map->num_stripes;
321aecc6
CM
5651 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5652 ret = map->sub_stripes;
53b381b3
DW
5653 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5654 ret = 2;
5655 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5656 /*
5657 * There could be two corrupted data stripes, we need
5658 * to loop retry in order to rebuild the correct data.
e7e02096 5659 *
8810f751
LB
5660 * Fail a stripe at a time on every retry except the
5661 * stripe under reconstruction.
5662 */
5663 ret = map->num_stripes;
f188591e
CM
5664 else
5665 ret = 1;
5666 free_extent_map(em);
ad6d620e 5667
cb5583dd 5668 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5669 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5670 fs_info->dev_replace.tgtdev)
ad6d620e 5671 ret++;
cb5583dd 5672 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5673
f188591e
CM
5674 return ret;
5675}
5676
2ff7e61e 5677unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5678 u64 logical)
5679{
5680 struct extent_map *em;
5681 struct map_lookup *map;
0b246afa 5682 unsigned long len = fs_info->sectorsize;
53b381b3 5683
60ca842e 5684 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5685
69f03f13
NB
5686 if (!WARN_ON(IS_ERR(em))) {
5687 map = em->map_lookup;
5688 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5689 len = map->stripe_len * nr_data_stripes(map);
5690 free_extent_map(em);
5691 }
53b381b3
DW
5692 return len;
5693}
5694
e4ff5fb5 5695int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5696{
5697 struct extent_map *em;
5698 struct map_lookup *map;
53b381b3
DW
5699 int ret = 0;
5700
60ca842e 5701 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5702
69f03f13
NB
5703 if(!WARN_ON(IS_ERR(em))) {
5704 map = em->map_lookup;
5705 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5706 ret = 1;
5707 free_extent_map(em);
5708 }
53b381b3
DW
5709 return ret;
5710}
5711
30d9861f 5712static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5713 struct map_lookup *map, int first,
8ba0ae78 5714 int dev_replace_is_ongoing)
dfe25020
CM
5715{
5716 int i;
99f92a7c 5717 int num_stripes;
8ba0ae78 5718 int preferred_mirror;
30d9861f
SB
5719 int tolerance;
5720 struct btrfs_device *srcdev;
5721
99f92a7c 5722 ASSERT((map->type &
c7369b3f 5723 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5724
5725 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5726 num_stripes = map->sub_stripes;
5727 else
5728 num_stripes = map->num_stripes;
5729
33fd2f71
AJ
5730 switch (fs_info->fs_devices->read_policy) {
5731 default:
5732 /* Shouldn't happen, just warn and use pid instead of failing */
5733 btrfs_warn_rl(fs_info,
5734 "unknown read_policy type %u, reset to pid",
5735 fs_info->fs_devices->read_policy);
5736 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5737 fallthrough;
5738 case BTRFS_READ_POLICY_PID:
5739 preferred_mirror = first + (current->pid % num_stripes);
5740 break;
5741 }
8ba0ae78 5742
30d9861f
SB
5743 if (dev_replace_is_ongoing &&
5744 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5745 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5746 srcdev = fs_info->dev_replace.srcdev;
5747 else
5748 srcdev = NULL;
5749
5750 /*
5751 * try to avoid the drive that is the source drive for a
5752 * dev-replace procedure, only choose it if no other non-missing
5753 * mirror is available
5754 */
5755 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5756 if (map->stripes[preferred_mirror].dev->bdev &&
5757 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5758 return preferred_mirror;
99f92a7c 5759 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5760 if (map->stripes[i].dev->bdev &&
5761 (tolerance || map->stripes[i].dev != srcdev))
5762 return i;
5763 }
dfe25020 5764 }
30d9861f 5765
dfe25020
CM
5766 /* we couldn't find one that doesn't fail. Just return something
5767 * and the io error handling code will clean up eventually
5768 */
8ba0ae78 5769 return preferred_mirror;
dfe25020
CM
5770}
5771
53b381b3 5772/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5773static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3 5774{
53b381b3 5775 int i;
53b381b3
DW
5776 int again = 1;
5777
5778 while (again) {
5779 again = 0;
cc7539ed 5780 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172
DS
5781 /* Swap if parity is on a smaller index */
5782 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5783 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5784 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
53b381b3
DW
5785 again = 1;
5786 }
5787 }
5788 }
5789}
5790
6e9606d2
ZL
5791static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5792{
5793 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5794 /* the size of the btrfs_bio */
6e9606d2 5795 sizeof(struct btrfs_bio) +
e57cf21e 5796 /* plus the variable array for the stripes */
6e9606d2 5797 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5798 /* plus the variable array for the tgt dev */
6e9606d2 5799 sizeof(int) * (real_stripes) +
e57cf21e
CM
5800 /*
5801 * plus the raid_map, which includes both the tgt dev
5802 * and the stripes
5803 */
5804 sizeof(u64) * (total_stripes),
277fb5fc 5805 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5806
5807 atomic_set(&bbio->error, 0);
140475ae 5808 refcount_set(&bbio->refs, 1);
6e9606d2 5809
608769a4
NB
5810 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5811 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5812
6e9606d2
ZL
5813 return bbio;
5814}
5815
5816void btrfs_get_bbio(struct btrfs_bio *bbio)
5817{
140475ae
ER
5818 WARN_ON(!refcount_read(&bbio->refs));
5819 refcount_inc(&bbio->refs);
6e9606d2
ZL
5820}
5821
5822void btrfs_put_bbio(struct btrfs_bio *bbio)
5823{
5824 if (!bbio)
5825 return;
140475ae 5826 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5827 kfree(bbio);
5828}
5829
0b3d4cd3
LB
5830/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5831/*
5832 * Please note that, discard won't be sent to target device of device
5833 * replace.
5834 */
5835static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5836 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5837 struct btrfs_bio **bbio_ret)
5838{
5839 struct extent_map *em;
5840 struct map_lookup *map;
5841 struct btrfs_bio *bbio;
6b7faadd 5842 u64 length = *length_ret;
0b3d4cd3
LB
5843 u64 offset;
5844 u64 stripe_nr;
5845 u64 stripe_nr_end;
5846 u64 stripe_end_offset;
5847 u64 stripe_cnt;
5848 u64 stripe_len;
5849 u64 stripe_offset;
5850 u64 num_stripes;
5851 u32 stripe_index;
5852 u32 factor = 0;
5853 u32 sub_stripes = 0;
5854 u64 stripes_per_dev = 0;
5855 u32 remaining_stripes = 0;
5856 u32 last_stripe = 0;
5857 int ret = 0;
5858 int i;
5859
5860 /* discard always return a bbio */
5861 ASSERT(bbio_ret);
5862
60ca842e 5863 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5864 if (IS_ERR(em))
5865 return PTR_ERR(em);
5866
5867 map = em->map_lookup;
5868 /* we don't discard raid56 yet */
5869 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5870 ret = -EOPNOTSUPP;
5871 goto out;
5872 }
5873
5874 offset = logical - em->start;
2d974619 5875 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5876 *length_ret = length;
0b3d4cd3
LB
5877
5878 stripe_len = map->stripe_len;
5879 /*
5880 * stripe_nr counts the total number of stripes we have to stride
5881 * to get to this block
5882 */
5883 stripe_nr = div64_u64(offset, stripe_len);
5884
5885 /* stripe_offset is the offset of this block in its stripe */
5886 stripe_offset = offset - stripe_nr * stripe_len;
5887
5888 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5889 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5890 stripe_cnt = stripe_nr_end - stripe_nr;
5891 stripe_end_offset = stripe_nr_end * map->stripe_len -
5892 (offset + length);
5893 /*
5894 * after this, stripe_nr is the number of stripes on this
5895 * device we have to walk to find the data, and stripe_index is
5896 * the number of our device in the stripe array
5897 */
5898 num_stripes = 1;
5899 stripe_index = 0;
5900 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5901 BTRFS_BLOCK_GROUP_RAID10)) {
5902 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5903 sub_stripes = 1;
5904 else
5905 sub_stripes = map->sub_stripes;
5906
5907 factor = map->num_stripes / sub_stripes;
5908 num_stripes = min_t(u64, map->num_stripes,
5909 sub_stripes * stripe_cnt);
5910 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5911 stripe_index *= sub_stripes;
5912 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5913 &remaining_stripes);
5914 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5915 last_stripe *= sub_stripes;
c7369b3f 5916 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5917 BTRFS_BLOCK_GROUP_DUP)) {
5918 num_stripes = map->num_stripes;
5919 } else {
5920 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5921 &stripe_index);
5922 }
5923
5924 bbio = alloc_btrfs_bio(num_stripes, 0);
5925 if (!bbio) {
5926 ret = -ENOMEM;
5927 goto out;
5928 }
5929
5930 for (i = 0; i < num_stripes; i++) {
5931 bbio->stripes[i].physical =
5932 map->stripes[stripe_index].physical +
5933 stripe_offset + stripe_nr * map->stripe_len;
5934 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5935
5936 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5937 BTRFS_BLOCK_GROUP_RAID10)) {
5938 bbio->stripes[i].length = stripes_per_dev *
5939 map->stripe_len;
5940
5941 if (i / sub_stripes < remaining_stripes)
5942 bbio->stripes[i].length +=
5943 map->stripe_len;
5944
5945 /*
5946 * Special for the first stripe and
5947 * the last stripe:
5948 *
5949 * |-------|...|-------|
5950 * |----------|
5951 * off end_off
5952 */
5953 if (i < sub_stripes)
5954 bbio->stripes[i].length -=
5955 stripe_offset;
5956
5957 if (stripe_index >= last_stripe &&
5958 stripe_index <= (last_stripe +
5959 sub_stripes - 1))
5960 bbio->stripes[i].length -=
5961 stripe_end_offset;
5962
5963 if (i == sub_stripes - 1)
5964 stripe_offset = 0;
5965 } else {
5966 bbio->stripes[i].length = length;
5967 }
5968
5969 stripe_index++;
5970 if (stripe_index == map->num_stripes) {
5971 stripe_index = 0;
5972 stripe_nr++;
5973 }
5974 }
5975
5976 *bbio_ret = bbio;
5977 bbio->map_type = map->type;
5978 bbio->num_stripes = num_stripes;
5979out:
5980 free_extent_map(em);
5981 return ret;
5982}
5983
5ab56090
LB
5984/*
5985 * In dev-replace case, for repair case (that's the only case where the mirror
5986 * is selected explicitly when calling btrfs_map_block), blocks left of the
5987 * left cursor can also be read from the target drive.
5988 *
5989 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5990 * array of stripes.
5991 * For READ, it also needs to be supported using the same mirror number.
5992 *
5993 * If the requested block is not left of the left cursor, EIO is returned. This
5994 * can happen because btrfs_num_copies() returns one more in the dev-replace
5995 * case.
5996 */
5997static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5998 u64 logical, u64 length,
5999 u64 srcdev_devid, int *mirror_num,
6000 u64 *physical)
6001{
6002 struct btrfs_bio *bbio = NULL;
6003 int num_stripes;
6004 int index_srcdev = 0;
6005 int found = 0;
6006 u64 physical_of_found = 0;
6007 int i;
6008 int ret = 0;
6009
6010 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6011 logical, &length, &bbio, 0, 0);
6012 if (ret) {
6013 ASSERT(bbio == NULL);
6014 return ret;
6015 }
6016
6017 num_stripes = bbio->num_stripes;
6018 if (*mirror_num > num_stripes) {
6019 /*
6020 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6021 * that means that the requested area is not left of the left
6022 * cursor
6023 */
6024 btrfs_put_bbio(bbio);
6025 return -EIO;
6026 }
6027
6028 /*
6029 * process the rest of the function using the mirror_num of the source
6030 * drive. Therefore look it up first. At the end, patch the device
6031 * pointer to the one of the target drive.
6032 */
6033 for (i = 0; i < num_stripes; i++) {
6034 if (bbio->stripes[i].dev->devid != srcdev_devid)
6035 continue;
6036
6037 /*
6038 * In case of DUP, in order to keep it simple, only add the
6039 * mirror with the lowest physical address
6040 */
6041 if (found &&
6042 physical_of_found <= bbio->stripes[i].physical)
6043 continue;
6044
6045 index_srcdev = i;
6046 found = 1;
6047 physical_of_found = bbio->stripes[i].physical;
6048 }
6049
6050 btrfs_put_bbio(bbio);
6051
6052 ASSERT(found);
6053 if (!found)
6054 return -EIO;
6055
6056 *mirror_num = index_srcdev + 1;
6057 *physical = physical_of_found;
6058 return ret;
6059}
6060
6143c23c
NA
6061static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6062{
6063 struct btrfs_block_group *cache;
6064 bool ret;
6065
de17addc 6066 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6067 if (!btrfs_is_zoned(fs_info))
6068 return false;
6069
6070 cache = btrfs_lookup_block_group(fs_info, logical);
6071
6072 spin_lock(&cache->lock);
6073 ret = cache->to_copy;
6074 spin_unlock(&cache->lock);
6075
6076 btrfs_put_block_group(cache);
6077 return ret;
6078}
6079
73c0f228
LB
6080static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6081 struct btrfs_bio **bbio_ret,
6082 struct btrfs_dev_replace *dev_replace,
6143c23c 6083 u64 logical,
73c0f228
LB
6084 int *num_stripes_ret, int *max_errors_ret)
6085{
6086 struct btrfs_bio *bbio = *bbio_ret;
6087 u64 srcdev_devid = dev_replace->srcdev->devid;
6088 int tgtdev_indexes = 0;
6089 int num_stripes = *num_stripes_ret;
6090 int max_errors = *max_errors_ret;
6091 int i;
6092
6093 if (op == BTRFS_MAP_WRITE) {
6094 int index_where_to_add;
6095
6143c23c
NA
6096 /*
6097 * A block group which have "to_copy" set will eventually
6098 * copied by dev-replace process. We can avoid cloning IO here.
6099 */
6100 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6101 return;
6102
73c0f228
LB
6103 /*
6104 * duplicate the write operations while the dev replace
6105 * procedure is running. Since the copying of the old disk to
6106 * the new disk takes place at run time while the filesystem is
6107 * mounted writable, the regular write operations to the old
6108 * disk have to be duplicated to go to the new disk as well.
6109 *
6110 * Note that device->missing is handled by the caller, and that
6111 * the write to the old disk is already set up in the stripes
6112 * array.
6113 */
6114 index_where_to_add = num_stripes;
6115 for (i = 0; i < num_stripes; i++) {
6116 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6117 /* write to new disk, too */
6118 struct btrfs_bio_stripe *new =
6119 bbio->stripes + index_where_to_add;
6120 struct btrfs_bio_stripe *old =
6121 bbio->stripes + i;
6122
6123 new->physical = old->physical;
6124 new->length = old->length;
6125 new->dev = dev_replace->tgtdev;
6126 bbio->tgtdev_map[i] = index_where_to_add;
6127 index_where_to_add++;
6128 max_errors++;
6129 tgtdev_indexes++;
6130 }
6131 }
6132 num_stripes = index_where_to_add;
6133 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6134 int index_srcdev = 0;
6135 int found = 0;
6136 u64 physical_of_found = 0;
6137
6138 /*
6139 * During the dev-replace procedure, the target drive can also
6140 * be used to read data in case it is needed to repair a corrupt
6141 * block elsewhere. This is possible if the requested area is
6142 * left of the left cursor. In this area, the target drive is a
6143 * full copy of the source drive.
6144 */
6145 for (i = 0; i < num_stripes; i++) {
6146 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6147 /*
6148 * In case of DUP, in order to keep it simple,
6149 * only add the mirror with the lowest physical
6150 * address
6151 */
6152 if (found &&
6153 physical_of_found <=
6154 bbio->stripes[i].physical)
6155 continue;
6156 index_srcdev = i;
6157 found = 1;
6158 physical_of_found = bbio->stripes[i].physical;
6159 }
6160 }
6161 if (found) {
6162 struct btrfs_bio_stripe *tgtdev_stripe =
6163 bbio->stripes + num_stripes;
6164
6165 tgtdev_stripe->physical = physical_of_found;
6166 tgtdev_stripe->length =
6167 bbio->stripes[index_srcdev].length;
6168 tgtdev_stripe->dev = dev_replace->tgtdev;
6169 bbio->tgtdev_map[index_srcdev] = num_stripes;
6170
6171 tgtdev_indexes++;
6172 num_stripes++;
6173 }
6174 }
6175
6176 *num_stripes_ret = num_stripes;
6177 *max_errors_ret = max_errors;
6178 bbio->num_tgtdevs = tgtdev_indexes;
6179 *bbio_ret = bbio;
6180}
6181
2b19a1fe
LB
6182static bool need_full_stripe(enum btrfs_map_op op)
6183{
6184 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6185}
6186
5f141126 6187/*
42034313
MR
6188 * Calculate the geometry of a particular (address, len) tuple. This
6189 * information is used to calculate how big a particular bio can get before it
6190 * straddles a stripe.
5f141126 6191 *
42034313
MR
6192 * @fs_info: the filesystem
6193 * @em: mapping containing the logical extent
6194 * @op: type of operation - write or read
6195 * @logical: address that we want to figure out the geometry of
42034313 6196 * @io_geom: pointer used to return values
5f141126
NB
6197 *
6198 * Returns < 0 in case a chunk for the given logical address cannot be found,
6199 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6200 */
42034313 6201int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6202 enum btrfs_map_op op, u64 logical,
42034313 6203 struct btrfs_io_geometry *io_geom)
5f141126 6204{
5f141126 6205 struct map_lookup *map;
43c0d1a5 6206 u64 len;
5f141126
NB
6207 u64 offset;
6208 u64 stripe_offset;
6209 u64 stripe_nr;
6210 u64 stripe_len;
6211 u64 raid56_full_stripe_start = (u64)-1;
6212 int data_stripes;
6213
6214 ASSERT(op != BTRFS_MAP_DISCARD);
6215
5f141126
NB
6216 map = em->map_lookup;
6217 /* Offset of this logical address in the chunk */
6218 offset = logical - em->start;
6219 /* Len of a stripe in a chunk */
6220 stripe_len = map->stripe_len;
1a9fd417 6221 /* Stripe where this block falls in */
5f141126
NB
6222 stripe_nr = div64_u64(offset, stripe_len);
6223 /* Offset of stripe in the chunk */
6224 stripe_offset = stripe_nr * stripe_len;
6225 if (offset < stripe_offset) {
6226 btrfs_crit(fs_info,
6227"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6228 stripe_offset, offset, em->start, logical, stripe_len);
42034313 6229 return -EINVAL;
5f141126
NB
6230 }
6231
6232 /* stripe_offset is the offset of this block in its stripe */
6233 stripe_offset = offset - stripe_offset;
6234 data_stripes = nr_data_stripes(map);
6235
6236 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6237 u64 max_len = stripe_len - stripe_offset;
6238
6239 /*
6240 * In case of raid56, we need to know the stripe aligned start
6241 */
6242 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6243 unsigned long full_stripe_len = stripe_len * data_stripes;
6244 raid56_full_stripe_start = offset;
6245
6246 /*
6247 * Allow a write of a full stripe, but make sure we
6248 * don't allow straddling of stripes
6249 */
6250 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6251 full_stripe_len);
6252 raid56_full_stripe_start *= full_stripe_len;
6253
6254 /*
6255 * For writes to RAID[56], allow a full stripeset across
6256 * all disks. For other RAID types and for RAID[56]
6257 * reads, just allow a single stripe (on a single disk).
6258 */
6259 if (op == BTRFS_MAP_WRITE) {
6260 max_len = stripe_len * data_stripes -
6261 (offset - raid56_full_stripe_start);
6262 }
6263 }
6264 len = min_t(u64, em->len - offset, max_len);
6265 } else {
6266 len = em->len - offset;
6267 }
6268
6269 io_geom->len = len;
6270 io_geom->offset = offset;
6271 io_geom->stripe_len = stripe_len;
6272 io_geom->stripe_nr = stripe_nr;
6273 io_geom->stripe_offset = stripe_offset;
6274 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6275
42034313 6276 return 0;
5f141126
NB
6277}
6278
cf8cddd3
CH
6279static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6280 enum btrfs_map_op op,
f2d8d74d 6281 u64 logical, u64 *length,
a1d3c478 6282 struct btrfs_bio **bbio_ret,
8e5cfb55 6283 int mirror_num, int need_raid_map)
0b86a832
CM
6284{
6285 struct extent_map *em;
6286 struct map_lookup *map;
593060d7
CM
6287 u64 stripe_offset;
6288 u64 stripe_nr;
53b381b3 6289 u64 stripe_len;
9d644a62 6290 u32 stripe_index;
cff82672 6291 int data_stripes;
cea9e445 6292 int i;
de11cc12 6293 int ret = 0;
f2d8d74d 6294 int num_stripes;
a236aed1 6295 int max_errors = 0;
2c8cdd6e 6296 int tgtdev_indexes = 0;
a1d3c478 6297 struct btrfs_bio *bbio = NULL;
472262f3
SB
6298 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6299 int dev_replace_is_ongoing = 0;
6300 int num_alloc_stripes;
ad6d620e
SB
6301 int patch_the_first_stripe_for_dev_replace = 0;
6302 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6303 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6304 struct btrfs_io_geometry geom;
6305
6306 ASSERT(bbio_ret);
75fb2e9e 6307 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6308
42034313
MR
6309 em = btrfs_get_chunk_map(fs_info, logical, *length);
6310 ASSERT(!IS_ERR(em));
6311
43c0d1a5 6312 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6313 if (ret < 0)
6314 return ret;
0b86a832 6315
95617d69 6316 map = em->map_lookup;
593060d7 6317
89b798ad 6318 *length = geom.len;
89b798ad
NB
6319 stripe_len = geom.stripe_len;
6320 stripe_nr = geom.stripe_nr;
6321 stripe_offset = geom.stripe_offset;
6322 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6323 data_stripes = nr_data_stripes(map);
593060d7 6324
cb5583dd 6325 down_read(&dev_replace->rwsem);
472262f3 6326 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6327 /*
6328 * Hold the semaphore for read during the whole operation, write is
6329 * requested at commit time but must wait.
6330 */
472262f3 6331 if (!dev_replace_is_ongoing)
cb5583dd 6332 up_read(&dev_replace->rwsem);
472262f3 6333
ad6d620e 6334 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6335 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6336 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6337 dev_replace->srcdev->devid,
6338 &mirror_num,
6339 &physical_to_patch_in_first_stripe);
6340 if (ret)
ad6d620e 6341 goto out;
5ab56090
LB
6342 else
6343 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6344 } else if (mirror_num > map->num_stripes) {
6345 mirror_num = 0;
6346 }
6347
f2d8d74d 6348 num_stripes = 1;
cea9e445 6349 stripe_index = 0;
fce3bb9a 6350 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6351 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6352 &stripe_index);
de483734 6353 if (!need_full_stripe(op))
28e1cc7d 6354 mirror_num = 1;
c7369b3f 6355 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6356 if (need_full_stripe(op))
f2d8d74d 6357 num_stripes = map->num_stripes;
2fff734f 6358 else if (mirror_num)
f188591e 6359 stripe_index = mirror_num - 1;
dfe25020 6360 else {
30d9861f 6361 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6362 dev_replace_is_ongoing);
a1d3c478 6363 mirror_num = stripe_index + 1;
dfe25020 6364 }
2fff734f 6365
611f0e00 6366 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6367 if (need_full_stripe(op)) {
f2d8d74d 6368 num_stripes = map->num_stripes;
a1d3c478 6369 } else if (mirror_num) {
f188591e 6370 stripe_index = mirror_num - 1;
a1d3c478
JS
6371 } else {
6372 mirror_num = 1;
6373 }
2fff734f 6374
321aecc6 6375 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6376 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6377
47c5713f 6378 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6379 stripe_index *= map->sub_stripes;
6380
de483734 6381 if (need_full_stripe(op))
f2d8d74d 6382 num_stripes = map->sub_stripes;
321aecc6
CM
6383 else if (mirror_num)
6384 stripe_index += mirror_num - 1;
dfe25020 6385 else {
3e74317a 6386 int old_stripe_index = stripe_index;
30d9861f
SB
6387 stripe_index = find_live_mirror(fs_info, map,
6388 stripe_index,
30d9861f 6389 dev_replace_is_ongoing);
3e74317a 6390 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6391 }
53b381b3 6392
ffe2d203 6393 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6394 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6395 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6396 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6397 stripe_len * data_stripes);
53b381b3
DW
6398
6399 /* RAID[56] write or recovery. Return all stripes */
6400 num_stripes = map->num_stripes;
6401 max_errors = nr_parity_stripes(map);
6402
53b381b3
DW
6403 *length = map->stripe_len;
6404 stripe_index = 0;
6405 stripe_offset = 0;
6406 } else {
6407 /*
6408 * Mirror #0 or #1 means the original data block.
6409 * Mirror #2 is RAID5 parity block.
6410 * Mirror #3 is RAID6 Q block.
6411 */
47c5713f 6412 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6413 data_stripes, &stripe_index);
53b381b3 6414 if (mirror_num > 1)
cff82672 6415 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6416
6417 /* We distribute the parity blocks across stripes */
47c5713f
DS
6418 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6419 &stripe_index);
de483734 6420 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6421 mirror_num = 1;
53b381b3 6422 }
8790d502
CM
6423 } else {
6424 /*
47c5713f
DS
6425 * after this, stripe_nr is the number of stripes on this
6426 * device we have to walk to find the data, and stripe_index is
6427 * the number of our device in the stripe array
8790d502 6428 */
47c5713f
DS
6429 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6430 &stripe_index);
a1d3c478 6431 mirror_num = stripe_index + 1;
8790d502 6432 }
e042d1ec 6433 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6434 btrfs_crit(fs_info,
6435 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6436 stripe_index, map->num_stripes);
6437 ret = -EINVAL;
6438 goto out;
6439 }
cea9e445 6440
472262f3 6441 num_alloc_stripes = num_stripes;
6fad823f 6442 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6443 if (op == BTRFS_MAP_WRITE)
ad6d620e 6444 num_alloc_stripes <<= 1;
cf8cddd3 6445 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6446 num_alloc_stripes++;
2c8cdd6e 6447 tgtdev_indexes = num_stripes;
ad6d620e 6448 }
2c8cdd6e 6449
6e9606d2 6450 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6451 if (!bbio) {
6452 ret = -ENOMEM;
6453 goto out;
6454 }
608769a4
NB
6455
6456 for (i = 0; i < num_stripes; i++) {
6457 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6458 stripe_offset + stripe_nr * map->stripe_len;
6459 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6460 stripe_index++;
6461 }
de11cc12 6462
8e5cfb55 6463 /* build raid_map */
2b19a1fe
LB
6464 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6465 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6466 u64 tmp;
9d644a62 6467 unsigned rot;
8e5cfb55 6468
8e5cfb55 6469 /* Work out the disk rotation on this stripe-set */
47c5713f 6470 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6471
6472 /* Fill in the logical address of each stripe */
cff82672
DS
6473 tmp = stripe_nr * data_stripes;
6474 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6475 bbio->raid_map[(i+rot) % num_stripes] =
6476 em->start + (tmp + i) * map->stripe_len;
6477
6478 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6479 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6480 bbio->raid_map[(i+rot+1) % num_stripes] =
6481 RAID6_Q_STRIPE;
8e5cfb55 6482
608769a4 6483 sort_parity_stripes(bbio, num_stripes);
593060d7 6484 }
de11cc12 6485
2b19a1fe 6486 if (need_full_stripe(op))
d20983b4 6487 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6488
73c0f228 6489 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6490 need_full_stripe(op)) {
6143c23c
NA
6491 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6492 &num_stripes, &max_errors);
472262f3
SB
6493 }
6494
de11cc12 6495 *bbio_ret = bbio;
10f11900 6496 bbio->map_type = map->type;
de11cc12
LZ
6497 bbio->num_stripes = num_stripes;
6498 bbio->max_errors = max_errors;
6499 bbio->mirror_num = mirror_num;
ad6d620e
SB
6500
6501 /*
6502 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6503 * mirror_num == num_stripes + 1 && dev_replace target drive is
6504 * available as a mirror
6505 */
6506 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6507 WARN_ON(num_stripes > 1);
6508 bbio->stripes[0].dev = dev_replace->tgtdev;
6509 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6510 bbio->mirror_num = map->num_stripes + 1;
6511 }
cea9e445 6512out:
73beece9 6513 if (dev_replace_is_ongoing) {
53176dde
DS
6514 lockdep_assert_held(&dev_replace->rwsem);
6515 /* Unlock and let waiting writers proceed */
cb5583dd 6516 up_read(&dev_replace->rwsem);
73beece9 6517 }
0b86a832 6518 free_extent_map(em);
de11cc12 6519 return ret;
0b86a832
CM
6520}
6521
cf8cddd3 6522int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6523 u64 logical, u64 *length,
a1d3c478 6524 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6525{
75fb2e9e
DS
6526 if (op == BTRFS_MAP_DISCARD)
6527 return __btrfs_map_block_for_discard(fs_info, logical,
6528 length, bbio_ret);
6529
b3d3fa51 6530 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6531 mirror_num, 0);
f2d8d74d
CM
6532}
6533
af8e2d1d 6534/* For Scrub/replace */
cf8cddd3 6535int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6536 u64 logical, u64 *length,
825ad4c9 6537 struct btrfs_bio **bbio_ret)
af8e2d1d 6538{
825ad4c9 6539 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6540}
6541
4246a0b6 6542static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6543{
326e1dbb
MS
6544 bio->bi_private = bbio->private;
6545 bio->bi_end_io = bbio->end_io;
4246a0b6 6546 bio_endio(bio);
326e1dbb 6547
6e9606d2 6548 btrfs_put_bbio(bbio);
8408c716
MX
6549}
6550
4246a0b6 6551static void btrfs_end_bio(struct bio *bio)
8790d502 6552{
9be3395b 6553 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6554 int is_orig_bio = 0;
8790d502 6555
4e4cbee9 6556 if (bio->bi_status) {
a1d3c478 6557 atomic_inc(&bbio->error);
4e4cbee9
CH
6558 if (bio->bi_status == BLK_STS_IOERR ||
6559 bio->bi_status == BLK_STS_TARGET) {
c31efbdf 6560 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
442a4f63 6561
3eee86c8 6562 ASSERT(dev->bdev);
cfe94440 6563 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6564 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6565 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6566 else if (!(bio->bi_opf & REQ_RAHEAD))
6567 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6568 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6569 if (bio->bi_opf & REQ_PREFLUSH)
6570 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6571 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6572 }
6573 }
8790d502 6574
a1d3c478 6575 if (bio == bbio->orig_bio)
7d2b4daa
CM
6576 is_orig_bio = 1;
6577
c404e0dc
MX
6578 btrfs_bio_counter_dec(bbio->fs_info);
6579
a1d3c478 6580 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6581 if (!is_orig_bio) {
6582 bio_put(bio);
a1d3c478 6583 bio = bbio->orig_bio;
7d2b4daa 6584 }
c7b22bb1 6585
9be3395b 6586 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6587 /* only send an error to the higher layers if it is
53b381b3 6588 * beyond the tolerance of the btrfs bio
a236aed1 6589 */
a1d3c478 6590 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6591 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6592 } else {
1259ab75
CM
6593 /*
6594 * this bio is actually up to date, we didn't
6595 * go over the max number of errors
6596 */
2dbe0c77 6597 bio->bi_status = BLK_STS_OK;
1259ab75 6598 }
c55f1396 6599
4246a0b6 6600 btrfs_end_bbio(bbio, bio);
7d2b4daa 6601 } else if (!is_orig_bio) {
8790d502
CM
6602 bio_put(bio);
6603 }
8790d502
CM
6604}
6605
2ff7e61e 6606static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
c31efbdf 6607 u64 physical, struct btrfs_device *dev)
de1ee92a 6608{
2ff7e61e 6609 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6610
6611 bio->bi_private = bbio;
c31efbdf 6612 btrfs_io_bio(bio)->device = dev;
de1ee92a 6613 bio->bi_end_io = btrfs_end_bio;
4f024f37 6614 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6615 /*
6616 * For zone append writing, bi_sector must point the beginning of the
6617 * zone
6618 */
6619 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6620 if (btrfs_dev_is_sequential(dev, physical)) {
6621 u64 zone_start = round_down(physical, fs_info->zone_size);
6622
6623 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6624 } else {
6625 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6626 bio->bi_opf |= REQ_OP_WRITE;
6627 }
6628 }
672d5990
MT
6629 btrfs_debug_in_rcu(fs_info,
6630 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6631 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6632 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6633 dev->devid, bio->bi_iter.bi_size);
74d46992 6634 bio_set_dev(bio, dev->bdev);
c404e0dc 6635
2ff7e61e 6636 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6637
08635bae 6638 btrfsic_submit_bio(bio);
de1ee92a
JB
6639}
6640
de1ee92a
JB
6641static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6642{
6643 atomic_inc(&bbio->error);
6644 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6645 /* Should be the original bio. */
8408c716
MX
6646 WARN_ON(bio != bbio->orig_bio);
6647
9be3395b 6648 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6649 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6650 if (atomic_read(&bbio->error) > bbio->max_errors)
6651 bio->bi_status = BLK_STS_IOERR;
6652 else
6653 bio->bi_status = BLK_STS_OK;
4246a0b6 6654 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6655 }
6656}
6657
58efbc9f 6658blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6659 int mirror_num)
0b86a832 6660{
0b86a832 6661 struct btrfs_device *dev;
8790d502 6662 struct bio *first_bio = bio;
1201b58b 6663 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6664 u64 length = 0;
6665 u64 map_length;
0b86a832 6666 int ret;
08da757d
ZL
6667 int dev_nr;
6668 int total_devs;
a1d3c478 6669 struct btrfs_bio *bbio = NULL;
0b86a832 6670
4f024f37 6671 length = bio->bi_iter.bi_size;
0b86a832 6672 map_length = length;
cea9e445 6673
0b246afa 6674 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6675 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6676 &map_length, &bbio, mirror_num, 1);
c404e0dc 6677 if (ret) {
0b246afa 6678 btrfs_bio_counter_dec(fs_info);
58efbc9f 6679 return errno_to_blk_status(ret);
c404e0dc 6680 }
cea9e445 6681
a1d3c478 6682 total_devs = bbio->num_stripes;
53b381b3
DW
6683 bbio->orig_bio = first_bio;
6684 bbio->private = first_bio->bi_private;
6685 bbio->end_io = first_bio->bi_end_io;
0b246afa 6686 bbio->fs_info = fs_info;
53b381b3
DW
6687 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6688
ad1ba2a0 6689 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6690 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6691 /* In this case, map_length has been set to the length of
6692 a single stripe; not the whole write */
cfe94440 6693 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
2ff7e61e
JM
6694 ret = raid56_parity_write(fs_info, bio, bbio,
6695 map_length);
53b381b3 6696 } else {
2ff7e61e
JM
6697 ret = raid56_parity_recover(fs_info, bio, bbio,
6698 map_length, mirror_num, 1);
53b381b3 6699 }
4245215d 6700
0b246afa 6701 btrfs_bio_counter_dec(fs_info);
58efbc9f 6702 return errno_to_blk_status(ret);
53b381b3
DW
6703 }
6704
cea9e445 6705 if (map_length < length) {
0b246afa 6706 btrfs_crit(fs_info,
5d163e0e
JM
6707 "mapping failed logical %llu bio len %llu len %llu",
6708 logical, length, map_length);
cea9e445
CM
6709 BUG();
6710 }
a1d3c478 6711
08da757d 6712 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6713 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6714 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6715 &dev->dev_state) ||
cfe94440 6716 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6717 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6718 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6719 continue;
6720 }
6721
3aa8e074 6722 if (dev_nr < total_devs - 1)
8b6c1d56 6723 bio = btrfs_bio_clone(first_bio);
3aa8e074 6724 else
a1d3c478 6725 bio = first_bio;
de1ee92a 6726
c31efbdf 6727 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
8790d502 6728 }
0b246afa 6729 btrfs_bio_counter_dec(fs_info);
58efbc9f 6730 return BLK_STS_OK;
0b86a832
CM
6731}
6732
09ba3bc9
AJ
6733/*
6734 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6735 * return NULL.
6736 *
6737 * If devid and uuid are both specified, the match must be exact, otherwise
6738 * only devid is used.
09ba3bc9 6739 */
e4319cd9 6740struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
b2598edf 6741 u64 devid, u8 *uuid, u8 *fsid)
0b86a832 6742{
2b82032c 6743 struct btrfs_device *device;
944d3f9f
NB
6744 struct btrfs_fs_devices *seed_devs;
6745
6746 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6747 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6748 if (device->devid == devid &&
6749 (!uuid || memcmp(device->uuid, uuid,
6750 BTRFS_UUID_SIZE) == 0))
6751 return device;
6752 }
6753 }
2b82032c 6754
944d3f9f 6755 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
2b82032c 6756 if (!fsid ||
944d3f9f
NB
6757 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6758 list_for_each_entry(device, &seed_devs->devices,
09ba3bc9
AJ
6759 dev_list) {
6760 if (device->devid == devid &&
6761 (!uuid || memcmp(device->uuid, uuid,
6762 BTRFS_UUID_SIZE) == 0))
6763 return device;
6764 }
2b82032c 6765 }
2b82032c 6766 }
944d3f9f 6767
2b82032c 6768 return NULL;
0b86a832
CM
6769}
6770
2ff7e61e 6771static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6772 u64 devid, u8 *dev_uuid)
6773{
6774 struct btrfs_device *device;
fccc0007 6775 unsigned int nofs_flag;
dfe25020 6776
fccc0007
JB
6777 /*
6778 * We call this under the chunk_mutex, so we want to use NOFS for this
6779 * allocation, however we don't want to change btrfs_alloc_device() to
6780 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6781 * places.
6782 */
6783 nofs_flag = memalloc_nofs_save();
12bd2fc0 6784 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6785 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6786 if (IS_ERR(device))
adfb69af 6787 return device;
12bd2fc0
ID
6788
6789 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6790 device->fs_devices = fs_devices;
dfe25020 6791 fs_devices->num_devices++;
12bd2fc0 6792
e6e674bd 6793 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6794 fs_devices->missing_devices++;
12bd2fc0 6795
dfe25020
CM
6796 return device;
6797}
6798
12bd2fc0
ID
6799/**
6800 * btrfs_alloc_device - allocate struct btrfs_device
6801 * @fs_info: used only for generating a new devid, can be NULL if
6802 * devid is provided (i.e. @devid != NULL).
6803 * @devid: a pointer to devid for this device. If NULL a new devid
6804 * is generated.
6805 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6806 * is generated.
6807 *
6808 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6809 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6810 * destroyed with btrfs_free_device.
12bd2fc0
ID
6811 */
6812struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6813 const u64 *devid,
6814 const u8 *uuid)
6815{
6816 struct btrfs_device *dev;
6817 u64 tmp;
6818
fae7f21c 6819 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6820 return ERR_PTR(-EINVAL);
12bd2fc0 6821
fe4f46d4
DS
6822 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6823 if (!dev)
6824 return ERR_PTR(-ENOMEM);
6825
6826 /*
6827 * Preallocate a bio that's always going to be used for flushing device
6828 * barriers and matches the device lifespan
6829 */
6830 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6831 if (!dev->flush_bio) {
6832 kfree(dev);
6833 return ERR_PTR(-ENOMEM);
6834 }
6835
6836 INIT_LIST_HEAD(&dev->dev_list);
6837 INIT_LIST_HEAD(&dev->dev_alloc_list);
6838 INIT_LIST_HEAD(&dev->post_commit_list);
6839
6840 atomic_set(&dev->reada_in_flight, 0);
6841 atomic_set(&dev->dev_stats_ccnt, 0);
6842 btrfs_device_data_ordered_init(dev);
6843 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6844 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6845 extent_io_tree_init(fs_info, &dev->alloc_state,
6846 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6847
6848 if (devid)
6849 tmp = *devid;
6850 else {
6851 int ret;
6852
6853 ret = find_next_devid(fs_info, &tmp);
6854 if (ret) {
a425f9d4 6855 btrfs_free_device(dev);
12bd2fc0
ID
6856 return ERR_PTR(ret);
6857 }
6858 }
6859 dev->devid = tmp;
6860
6861 if (uuid)
6862 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6863 else
6864 generate_random_uuid(dev->uuid);
6865
12bd2fc0
ID
6866 return dev;
6867}
6868
5a2b8e60 6869static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6870 u64 devid, u8 *uuid, bool error)
5a2b8e60 6871{
2b902dfc
AJ
6872 if (error)
6873 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6874 devid, uuid);
6875 else
6876 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6877 devid, uuid);
5a2b8e60
AJ
6878}
6879
39e264a4
NB
6880static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6881{
6882 int index = btrfs_bg_flags_to_raid_index(type);
6883 int ncopies = btrfs_raid_array[index].ncopies;
e4f6c6be 6884 const int nparity = btrfs_raid_array[index].nparity;
39e264a4
NB
6885 int data_stripes;
6886
e4f6c6be
DS
6887 if (nparity)
6888 data_stripes = num_stripes - nparity;
6889 else
39e264a4 6890 data_stripes = num_stripes / ncopies;
e4f6c6be 6891
39e264a4
NB
6892 return div_u64(chunk_len, data_stripes);
6893}
6894
e9306ad4
QW
6895#if BITS_PER_LONG == 32
6896/*
6897 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6898 * can't be accessed on 32bit systems.
6899 *
6900 * This function do mount time check to reject the fs if it already has
6901 * metadata chunk beyond that limit.
6902 */
6903static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6904 u64 logical, u64 length, u64 type)
6905{
6906 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6907 return 0;
6908
6909 if (logical + length < MAX_LFS_FILESIZE)
6910 return 0;
6911
6912 btrfs_err_32bit_limit(fs_info);
6913 return -EOVERFLOW;
6914}
6915
6916/*
6917 * This is to give early warning for any metadata chunk reaching
6918 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6919 * Although we can still access the metadata, it's not going to be possible
6920 * once the limit is reached.
6921 */
6922static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6923 u64 logical, u64 length, u64 type)
6924{
6925 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6926 return;
6927
6928 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6929 return;
6930
6931 btrfs_warn_32bit_limit(fs_info);
6932}
6933#endif
6934
9690ac09 6935static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6936 struct btrfs_chunk *chunk)
6937{
9690ac09 6938 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6939 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6940 struct map_lookup *map;
6941 struct extent_map *em;
6942 u64 logical;
6943 u64 length;
e06cd3dd 6944 u64 devid;
e9306ad4 6945 u64 type;
e06cd3dd
LB
6946 u8 uuid[BTRFS_UUID_SIZE];
6947 int num_stripes;
6948 int ret;
6949 int i;
6950
6951 logical = key->offset;
6952 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6953 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
6954 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6955
e9306ad4
QW
6956#if BITS_PER_LONG == 32
6957 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6958 if (ret < 0)
6959 return ret;
6960 warn_32bit_meta_chunk(fs_info, logical, length, type);
6961#endif
6962
075cb3c7
QW
6963 /*
6964 * Only need to verify chunk item if we're reading from sys chunk array,
6965 * as chunk item in tree block is already verified by tree-checker.
6966 */
6967 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6968 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6969 if (ret)
6970 return ret;
6971 }
a061fc8d 6972
c8bf1b67
DS
6973 read_lock(&map_tree->lock);
6974 em = lookup_extent_mapping(map_tree, logical, 1);
6975 read_unlock(&map_tree->lock);
0b86a832
CM
6976
6977 /* already mapped? */
6978 if (em && em->start <= logical && em->start + em->len > logical) {
6979 free_extent_map(em);
0b86a832
CM
6980 return 0;
6981 } else if (em) {
6982 free_extent_map(em);
6983 }
0b86a832 6984
172ddd60 6985 em = alloc_extent_map();
0b86a832
CM
6986 if (!em)
6987 return -ENOMEM;
593060d7 6988 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6989 if (!map) {
6990 free_extent_map(em);
6991 return -ENOMEM;
6992 }
6993
298a8f9c 6994 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6995 em->map_lookup = map;
0b86a832
CM
6996 em->start = logical;
6997 em->len = length;
70c8a91c 6998 em->orig_start = 0;
0b86a832 6999 em->block_start = 0;
c8b97818 7000 em->block_len = em->len;
0b86a832 7001
593060d7
CM
7002 map->num_stripes = num_stripes;
7003 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7004 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 7005 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 7006 map->type = type;
321aecc6 7007 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 7008 map->verified_stripes = 0;
e9306ad4 7009 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 7010 map->num_stripes);
593060d7
CM
7011 for (i = 0; i < num_stripes; i++) {
7012 map->stripes[i].physical =
7013 btrfs_stripe_offset_nr(leaf, chunk, i);
7014 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
7015 read_extent_buffer(leaf, uuid, (unsigned long)
7016 btrfs_stripe_dev_uuid_nr(chunk, i),
7017 BTRFS_UUID_SIZE);
e4319cd9 7018 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
b2598edf 7019 devid, uuid, NULL);
3cdde224 7020 if (!map->stripes[i].dev &&
0b246afa 7021 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 7022 free_extent_map(em);
2b902dfc 7023 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 7024 return -ENOENT;
593060d7 7025 }
dfe25020
CM
7026 if (!map->stripes[i].dev) {
7027 map->stripes[i].dev =
2ff7e61e
JM
7028 add_missing_dev(fs_info->fs_devices, devid,
7029 uuid);
adfb69af 7030 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7031 free_extent_map(em);
adfb69af
AJ
7032 btrfs_err(fs_info,
7033 "failed to init missing dev %llu: %ld",
7034 devid, PTR_ERR(map->stripes[i].dev));
7035 return PTR_ERR(map->stripes[i].dev);
dfe25020 7036 }
2b902dfc 7037 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 7038 }
e12c9621
AJ
7039 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7040 &(map->stripes[i].dev->dev_state));
7041
0b86a832
CM
7042 }
7043
c8bf1b67
DS
7044 write_lock(&map_tree->lock);
7045 ret = add_extent_mapping(map_tree, em, 0);
7046 write_unlock(&map_tree->lock);
64f64f43
QW
7047 if (ret < 0) {
7048 btrfs_err(fs_info,
7049 "failed to add chunk map, start=%llu len=%llu: %d",
7050 em->start, em->len, ret);
7051 }
0b86a832
CM
7052 free_extent_map(em);
7053
64f64f43 7054 return ret;
0b86a832
CM
7055}
7056
143bede5 7057static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7058 struct btrfs_dev_item *dev_item,
7059 struct btrfs_device *device)
7060{
7061 unsigned long ptr;
0b86a832
CM
7062
7063 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7064 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7065 device->total_bytes = device->disk_total_bytes;
935e5cc9 7066 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7067 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7068 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7069 device->type = btrfs_device_type(leaf, dev_item);
7070 device->io_align = btrfs_device_io_align(leaf, dev_item);
7071 device->io_width = btrfs_device_io_width(leaf, dev_item);
7072 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7073 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7074 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7075
410ba3a2 7076 ptr = btrfs_device_uuid(dev_item);
e17cade2 7077 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7078}
7079
2ff7e61e 7080static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7081 u8 *fsid)
2b82032c
YZ
7082{
7083 struct btrfs_fs_devices *fs_devices;
7084 int ret;
7085
a32bf9a3 7086 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7087 ASSERT(fsid);
2b82032c 7088
427c8fdd 7089 /* This will match only for multi-device seed fs */
944d3f9f 7090 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7091 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7092 return fs_devices;
7093
2b82032c 7094
7239ff4b 7095 fs_devices = find_fsid(fsid, NULL);
2b82032c 7096 if (!fs_devices) {
0b246afa 7097 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7098 return ERR_PTR(-ENOENT);
7099
7239ff4b 7100 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7101 if (IS_ERR(fs_devices))
7102 return fs_devices;
7103
0395d84f 7104 fs_devices->seeding = true;
5f375835
MX
7105 fs_devices->opened = 1;
7106 return fs_devices;
2b82032c 7107 }
e4404d6e 7108
427c8fdd
NB
7109 /*
7110 * Upon first call for a seed fs fsid, just create a private copy of the
7111 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7112 */
e4404d6e 7113 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7114 if (IS_ERR(fs_devices))
7115 return fs_devices;
2b82032c 7116
897fb573 7117 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7118 if (ret) {
7119 free_fs_devices(fs_devices);
c83b60c0 7120 return ERR_PTR(ret);
48d28232 7121 }
2b82032c
YZ
7122
7123 if (!fs_devices->seeding) {
0226e0eb 7124 close_fs_devices(fs_devices);
e4404d6e 7125 free_fs_devices(fs_devices);
c83b60c0 7126 return ERR_PTR(-EINVAL);
2b82032c
YZ
7127 }
7128
944d3f9f 7129 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7130
5f375835 7131 return fs_devices;
2b82032c
YZ
7132}
7133
17850759 7134static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7135 struct btrfs_dev_item *dev_item)
7136{
17850759 7137 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7139 struct btrfs_device *device;
7140 u64 devid;
7141 int ret;
44880fdc 7142 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7143 u8 dev_uuid[BTRFS_UUID_SIZE];
7144
0b86a832 7145 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7146 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7147 BTRFS_UUID_SIZE);
1473b24e 7148 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7149 BTRFS_FSID_SIZE);
2b82032c 7150
de37aa51 7151 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7152 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7153 if (IS_ERR(fs_devices))
7154 return PTR_ERR(fs_devices);
2b82032c
YZ
7155 }
7156
e4319cd9 7157 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 7158 fs_uuid);
5f375835 7159 if (!device) {
c5502451 7160 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7161 btrfs_report_missing_device(fs_info, devid,
7162 dev_uuid, true);
45dbdbc9 7163 return -ENOENT;
c5502451 7164 }
2b82032c 7165
2ff7e61e 7166 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7167 if (IS_ERR(device)) {
7168 btrfs_err(fs_info,
7169 "failed to add missing dev %llu: %ld",
7170 devid, PTR_ERR(device));
7171 return PTR_ERR(device);
7172 }
2b902dfc 7173 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7174 } else {
c5502451 7175 if (!device->bdev) {
2b902dfc
AJ
7176 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7177 btrfs_report_missing_device(fs_info,
7178 devid, dev_uuid, true);
45dbdbc9 7179 return -ENOENT;
2b902dfc
AJ
7180 }
7181 btrfs_report_missing_device(fs_info, devid,
7182 dev_uuid, false);
c5502451 7183 }
5f375835 7184
e6e674bd
AJ
7185 if (!device->bdev &&
7186 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7187 /*
7188 * this happens when a device that was properly setup
7189 * in the device info lists suddenly goes bad.
7190 * device->bdev is NULL, and so we have to set
7191 * device->missing to one here
7192 */
5f375835 7193 device->fs_devices->missing_devices++;
e6e674bd 7194 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7195 }
5f375835
MX
7196
7197 /* Move the device to its own fs_devices */
7198 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7199 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7200 &device->dev_state));
5f375835
MX
7201
7202 list_move(&device->dev_list, &fs_devices->devices);
7203 device->fs_devices->num_devices--;
7204 fs_devices->num_devices++;
7205
7206 device->fs_devices->missing_devices--;
7207 fs_devices->missing_devices++;
7208
7209 device->fs_devices = fs_devices;
7210 }
2b82032c
YZ
7211 }
7212
0b246afa 7213 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7214 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7215 if (device->generation !=
7216 btrfs_device_generation(leaf, dev_item))
7217 return -EINVAL;
6324fbf3 7218 }
0b86a832
CM
7219
7220 fill_device_from_item(leaf, dev_item, device);
3a160a93
AJ
7221 if (device->bdev) {
7222 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7223
7224 if (device->total_bytes > max_total_bytes) {
7225 btrfs_err(fs_info,
7226 "device total_bytes should be at most %llu but found %llu",
7227 max_total_bytes, device->total_bytes);
7228 return -EINVAL;
7229 }
7230 }
e12c9621 7231 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7233 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7234 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7235 atomic64_add(device->total_bytes - device->bytes_used,
7236 &fs_info->free_chunk_space);
2bf64758 7237 }
0b86a832 7238 ret = 0;
0b86a832
CM
7239 return ret;
7240}
7241
6bccf3ab 7242int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7243{
6bccf3ab 7244 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7245 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7246 struct extent_buffer *sb;
0b86a832 7247 struct btrfs_disk_key *disk_key;
0b86a832 7248 struct btrfs_chunk *chunk;
1ffb22cf
DS
7249 u8 *array_ptr;
7250 unsigned long sb_array_offset;
84eed90f 7251 int ret = 0;
0b86a832
CM
7252 u32 num_stripes;
7253 u32 array_size;
7254 u32 len = 0;
1ffb22cf 7255 u32 cur_offset;
e06cd3dd 7256 u64 type;
84eed90f 7257 struct btrfs_key key;
0b86a832 7258
0b246afa 7259 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7260 /*
7261 * This will create extent buffer of nodesize, superblock size is
7262 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7263 * overallocate but we can keep it as-is, only the first page is used.
7264 */
3fbaf258
JB
7265 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7266 root->root_key.objectid, 0);
c871b0f2
LB
7267 if (IS_ERR(sb))
7268 return PTR_ERR(sb);
4db8c528 7269 set_extent_buffer_uptodate(sb);
8a334426 7270 /*
01327610 7271 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7272 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7273 * pages up-to-date when the page is larger: extent does not cover the
7274 * whole page and consequently check_page_uptodate does not find all
7275 * the page's extents up-to-date (the hole beyond sb),
7276 * write_extent_buffer then triggers a WARN_ON.
7277 *
7278 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7279 * but sb spans only this function. Add an explicit SetPageUptodate call
7280 * to silence the warning eg. on PowerPC 64.
7281 */
09cbfeaf 7282 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7283 SetPageUptodate(sb->pages[0]);
4008c04a 7284
a061fc8d 7285 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7286 array_size = btrfs_super_sys_array_size(super_copy);
7287
1ffb22cf
DS
7288 array_ptr = super_copy->sys_chunk_array;
7289 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7290 cur_offset = 0;
0b86a832 7291
1ffb22cf
DS
7292 while (cur_offset < array_size) {
7293 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7294 len = sizeof(*disk_key);
7295 if (cur_offset + len > array_size)
7296 goto out_short_read;
7297
0b86a832
CM
7298 btrfs_disk_key_to_cpu(&key, disk_key);
7299
1ffb22cf
DS
7300 array_ptr += len;
7301 sb_array_offset += len;
7302 cur_offset += len;
0b86a832 7303
32ab3d1b
JT
7304 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7305 btrfs_err(fs_info,
7306 "unexpected item type %u in sys_array at offset %u",
7307 (u32)key.type, cur_offset);
7308 ret = -EIO;
7309 break;
7310 }
f5cdedd7 7311
32ab3d1b
JT
7312 chunk = (struct btrfs_chunk *)sb_array_offset;
7313 /*
7314 * At least one btrfs_chunk with one stripe must be present,
7315 * exact stripe count check comes afterwards
7316 */
7317 len = btrfs_chunk_item_size(1);
7318 if (cur_offset + len > array_size)
7319 goto out_short_read;
e06cd3dd 7320
32ab3d1b
JT
7321 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7322 if (!num_stripes) {
7323 btrfs_err(fs_info,
7324 "invalid number of stripes %u in sys_array at offset %u",
7325 num_stripes, cur_offset);
7326 ret = -EIO;
7327 break;
7328 }
e3540eab 7329
32ab3d1b
JT
7330 type = btrfs_chunk_type(sb, chunk);
7331 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7332 btrfs_err(fs_info,
32ab3d1b
JT
7333 "invalid chunk type %llu in sys_array at offset %u",
7334 type, cur_offset);
84eed90f
CM
7335 ret = -EIO;
7336 break;
0b86a832 7337 }
32ab3d1b
JT
7338
7339 len = btrfs_chunk_item_size(num_stripes);
7340 if (cur_offset + len > array_size)
7341 goto out_short_read;
7342
7343 ret = read_one_chunk(&key, sb, chunk);
7344 if (ret)
7345 break;
7346
1ffb22cf
DS
7347 array_ptr += len;
7348 sb_array_offset += len;
7349 cur_offset += len;
0b86a832 7350 }
d865177a 7351 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7352 free_extent_buffer_stale(sb);
84eed90f 7353 return ret;
e3540eab
DS
7354
7355out_short_read:
ab8d0fc4 7356 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7357 len, cur_offset);
d865177a 7358 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7359 free_extent_buffer_stale(sb);
e3540eab 7360 return -EIO;
0b86a832
CM
7361}
7362
21634a19
QW
7363/*
7364 * Check if all chunks in the fs are OK for read-write degraded mount
7365 *
6528b99d
AJ
7366 * If the @failing_dev is specified, it's accounted as missing.
7367 *
21634a19
QW
7368 * Return true if all chunks meet the minimal RW mount requirements.
7369 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7370 */
6528b99d
AJ
7371bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7372 struct btrfs_device *failing_dev)
21634a19 7373{
c8bf1b67 7374 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7375 struct extent_map *em;
7376 u64 next_start = 0;
7377 bool ret = true;
7378
c8bf1b67
DS
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7381 read_unlock(&map_tree->lock);
21634a19
QW
7382 /* No chunk at all? Return false anyway */
7383 if (!em) {
7384 ret = false;
7385 goto out;
7386 }
7387 while (em) {
7388 struct map_lookup *map;
7389 int missing = 0;
7390 int max_tolerated;
7391 int i;
7392
7393 map = em->map_lookup;
7394 max_tolerated =
7395 btrfs_get_num_tolerated_disk_barrier_failures(
7396 map->type);
7397 for (i = 0; i < map->num_stripes; i++) {
7398 struct btrfs_device *dev = map->stripes[i].dev;
7399
e6e674bd
AJ
7400 if (!dev || !dev->bdev ||
7401 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7402 dev->last_flush_error)
7403 missing++;
6528b99d
AJ
7404 else if (failing_dev && failing_dev == dev)
7405 missing++;
21634a19
QW
7406 }
7407 if (missing > max_tolerated) {
6528b99d
AJ
7408 if (!failing_dev)
7409 btrfs_warn(fs_info,
52042d8e 7410 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7411 em->start, missing, max_tolerated);
7412 free_extent_map(em);
7413 ret = false;
7414 goto out;
7415 }
7416 next_start = extent_map_end(em);
7417 free_extent_map(em);
7418
c8bf1b67
DS
7419 read_lock(&map_tree->lock);
7420 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7421 (u64)(-1) - next_start);
c8bf1b67 7422 read_unlock(&map_tree->lock);
21634a19
QW
7423 }
7424out:
7425 return ret;
7426}
7427
d85327b1
DS
7428static void readahead_tree_node_children(struct extent_buffer *node)
7429{
7430 int i;
7431 const int nr_items = btrfs_header_nritems(node);
7432
bfb484d9
JB
7433 for (i = 0; i < nr_items; i++)
7434 btrfs_readahead_node_child(node, i);
d85327b1
DS
7435}
7436
5b4aacef 7437int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7438{
5b4aacef 7439 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7440 struct btrfs_path *path;
7441 struct extent_buffer *leaf;
7442 struct btrfs_key key;
7443 struct btrfs_key found_key;
7444 int ret;
7445 int slot;
99e3ecfc 7446 u64 total_dev = 0;
d85327b1 7447 u64 last_ra_node = 0;
0b86a832 7448
0b86a832
CM
7449 path = btrfs_alloc_path();
7450 if (!path)
7451 return -ENOMEM;
7452
3dd0f7a3
AJ
7453 /*
7454 * uuid_mutex is needed only if we are mounting a sprout FS
7455 * otherwise we don't need it.
7456 */
b367e47f 7457 mutex_lock(&uuid_mutex);
b367e47f 7458
48cfa61b
BB
7459 /*
7460 * It is possible for mount and umount to race in such a way that
7461 * we execute this code path, but open_fs_devices failed to clear
7462 * total_rw_bytes. We certainly want it cleared before reading the
7463 * device items, so clear it here.
7464 */
7465 fs_info->fs_devices->total_rw_bytes = 0;
7466
395927a9
FDBM
7467 /*
7468 * Read all device items, and then all the chunk items. All
7469 * device items are found before any chunk item (their object id
7470 * is smaller than the lowest possible object id for a chunk
7471 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7472 */
7473 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7474 key.offset = 0;
7475 key.type = 0;
0b86a832 7476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7477 if (ret < 0)
7478 goto error;
d397712b 7479 while (1) {
d85327b1
DS
7480 struct extent_buffer *node;
7481
0b86a832
CM
7482 leaf = path->nodes[0];
7483 slot = path->slots[0];
7484 if (slot >= btrfs_header_nritems(leaf)) {
7485 ret = btrfs_next_leaf(root, path);
7486 if (ret == 0)
7487 continue;
7488 if (ret < 0)
7489 goto error;
7490 break;
7491 }
d85327b1
DS
7492 /*
7493 * The nodes on level 1 are not locked but we don't need to do
7494 * that during mount time as nothing else can access the tree
7495 */
7496 node = path->nodes[1];
7497 if (node) {
7498 if (last_ra_node != node->start) {
7499 readahead_tree_node_children(node);
7500 last_ra_node = node->start;
7501 }
7502 }
0b86a832 7503 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7504 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7505 struct btrfs_dev_item *dev_item;
7506 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7507 struct btrfs_dev_item);
17850759 7508 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7509 if (ret)
7510 goto error;
99e3ecfc 7511 total_dev++;
0b86a832
CM
7512 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7513 struct btrfs_chunk *chunk;
79bd3712
FM
7514
7515 /*
7516 * We are only called at mount time, so no need to take
7517 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7518 * we always lock first fs_info->chunk_mutex before
7519 * acquiring any locks on the chunk tree. This is a
7520 * requirement for chunk allocation, see the comment on
7521 * top of btrfs_chunk_alloc() for details.
7522 */
7523 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
0b86a832 7524 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7525 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7526 if (ret)
7527 goto error;
0b86a832
CM
7528 }
7529 path->slots[0]++;
7530 }
99e3ecfc
LB
7531
7532 /*
7533 * After loading chunk tree, we've got all device information,
7534 * do another round of validation checks.
7535 */
0b246afa
JM
7536 if (total_dev != fs_info->fs_devices->total_devices) {
7537 btrfs_err(fs_info,
99e3ecfc 7538 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7539 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7540 total_dev);
7541 ret = -EINVAL;
7542 goto error;
7543 }
0b246afa
JM
7544 if (btrfs_super_total_bytes(fs_info->super_copy) <
7545 fs_info->fs_devices->total_rw_bytes) {
7546 btrfs_err(fs_info,
99e3ecfc 7547 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7548 btrfs_super_total_bytes(fs_info->super_copy),
7549 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7550 ret = -EINVAL;
7551 goto error;
7552 }
0b86a832
CM
7553 ret = 0;
7554error:
b367e47f
LZ
7555 mutex_unlock(&uuid_mutex);
7556
2b82032c 7557 btrfs_free_path(path);
0b86a832
CM
7558 return ret;
7559}
442a4f63 7560
cb517eab
MX
7561void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7562{
944d3f9f 7563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7564 struct btrfs_device *device;
7565
944d3f9f
NB
7566 fs_devices->fs_info = fs_info;
7567
7568 mutex_lock(&fs_devices->device_list_mutex);
7569 list_for_each_entry(device, &fs_devices->devices, dev_list)
7570 device->fs_info = fs_info;
944d3f9f
NB
7571
7572 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7573 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7574 device->fs_info = fs_info;
29cc83f6 7575
944d3f9f 7576 seed_devs->fs_info = fs_info;
29cc83f6 7577 }
e17125b5 7578 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7579}
7580
1dc990df
DS
7581static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7582 const struct btrfs_dev_stats_item *ptr,
7583 int index)
7584{
7585 u64 val;
7586
7587 read_extent_buffer(eb, &val,
7588 offsetof(struct btrfs_dev_stats_item, values) +
7589 ((unsigned long)ptr) + (index * sizeof(u64)),
7590 sizeof(val));
7591 return val;
7592}
7593
7594static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7595 struct btrfs_dev_stats_item *ptr,
7596 int index, u64 val)
7597{
7598 write_extent_buffer(eb, &val,
7599 offsetof(struct btrfs_dev_stats_item, values) +
7600 ((unsigned long)ptr) + (index * sizeof(u64)),
7601 sizeof(val));
7602}
7603
92e26df4
JB
7604static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7605 struct btrfs_path *path)
733f4fbb 7606{
124604eb 7607 struct btrfs_dev_stats_item *ptr;
733f4fbb 7608 struct extent_buffer *eb;
124604eb
JB
7609 struct btrfs_key key;
7610 int item_size;
7611 int i, ret, slot;
7612
82d62d06
JB
7613 if (!device->fs_info->dev_root)
7614 return 0;
7615
124604eb
JB
7616 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7617 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7618 key.offset = device->devid;
7619 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7620 if (ret) {
7621 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7622 btrfs_dev_stat_set(device, i, 0);
7623 device->dev_stats_valid = 1;
7624 btrfs_release_path(path);
92e26df4 7625 return ret < 0 ? ret : 0;
124604eb
JB
7626 }
7627 slot = path->slots[0];
7628 eb = path->nodes[0];
7629 item_size = btrfs_item_size_nr(eb, slot);
7630
7631 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7632
7633 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7634 if (item_size >= (1 + i) * sizeof(__le64))
7635 btrfs_dev_stat_set(device, i,
7636 btrfs_dev_stats_value(eb, ptr, i));
7637 else
7638 btrfs_dev_stat_set(device, i, 0);
7639 }
7640
7641 device->dev_stats_valid = 1;
7642 btrfs_dev_stat_print_on_load(device);
7643 btrfs_release_path(path);
92e26df4
JB
7644
7645 return 0;
124604eb
JB
7646}
7647
7648int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7649{
7650 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7651 struct btrfs_device *device;
7652 struct btrfs_path *path = NULL;
92e26df4 7653 int ret = 0;
733f4fbb
SB
7654
7655 path = btrfs_alloc_path();
3b80a984
AJ
7656 if (!path)
7657 return -ENOMEM;
733f4fbb
SB
7658
7659 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7660 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7661 ret = btrfs_device_init_dev_stats(device, path);
7662 if (ret)
7663 goto out;
7664 }
124604eb 7665 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7666 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7667 ret = btrfs_device_init_dev_stats(device, path);
7668 if (ret)
7669 goto out;
7670 }
733f4fbb 7671 }
92e26df4 7672out:
733f4fbb
SB
7673 mutex_unlock(&fs_devices->device_list_mutex);
7674
733f4fbb 7675 btrfs_free_path(path);
92e26df4 7676 return ret;
733f4fbb
SB
7677}
7678
7679static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7680 struct btrfs_device *device)
7681{
5495f195 7682 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7683 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7684 struct btrfs_path *path;
7685 struct btrfs_key key;
7686 struct extent_buffer *eb;
7687 struct btrfs_dev_stats_item *ptr;
7688 int ret;
7689 int i;
7690
242e2956
DS
7691 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7692 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7693 key.offset = device->devid;
7694
7695 path = btrfs_alloc_path();
fa252992
DS
7696 if (!path)
7697 return -ENOMEM;
733f4fbb
SB
7698 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7699 if (ret < 0) {
0b246afa 7700 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7701 "error %d while searching for dev_stats item for device %s",
606686ee 7702 ret, rcu_str_deref(device->name));
733f4fbb
SB
7703 goto out;
7704 }
7705
7706 if (ret == 0 &&
7707 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7708 /* need to delete old one and insert a new one */
7709 ret = btrfs_del_item(trans, dev_root, path);
7710 if (ret != 0) {
0b246afa 7711 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7712 "delete too small dev_stats item for device %s failed %d",
606686ee 7713 rcu_str_deref(device->name), ret);
733f4fbb
SB
7714 goto out;
7715 }
7716 ret = 1;
7717 }
7718
7719 if (ret == 1) {
7720 /* need to insert a new item */
7721 btrfs_release_path(path);
7722 ret = btrfs_insert_empty_item(trans, dev_root, path,
7723 &key, sizeof(*ptr));
7724 if (ret < 0) {
0b246afa 7725 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7726 "insert dev_stats item for device %s failed %d",
7727 rcu_str_deref(device->name), ret);
733f4fbb
SB
7728 goto out;
7729 }
7730 }
7731
7732 eb = path->nodes[0];
7733 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7735 btrfs_set_dev_stats_value(eb, ptr, i,
7736 btrfs_dev_stat_read(device, i));
7737 btrfs_mark_buffer_dirty(eb);
7738
7739out:
7740 btrfs_free_path(path);
7741 return ret;
7742}
7743
7744/*
7745 * called from commit_transaction. Writes all changed device stats to disk.
7746 */
196c9d8d 7747int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7748{
196c9d8d 7749 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7750 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7751 struct btrfs_device *device;
addc3fa7 7752 int stats_cnt;
733f4fbb
SB
7753 int ret = 0;
7754
7755 mutex_lock(&fs_devices->device_list_mutex);
7756 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7757 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7758 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7759 continue;
7760
9deae968
NB
7761
7762 /*
7763 * There is a LOAD-LOAD control dependency between the value of
7764 * dev_stats_ccnt and updating the on-disk values which requires
7765 * reading the in-memory counters. Such control dependencies
7766 * require explicit read memory barriers.
7767 *
7768 * This memory barriers pairs with smp_mb__before_atomic in
7769 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7770 * barrier implied by atomic_xchg in
7771 * btrfs_dev_stats_read_and_reset
7772 */
7773 smp_rmb();
7774
5495f195 7775 ret = update_dev_stat_item(trans, device);
733f4fbb 7776 if (!ret)
addc3fa7 7777 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7778 }
7779 mutex_unlock(&fs_devices->device_list_mutex);
7780
7781 return ret;
7782}
7783
442a4f63
SB
7784void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7785{
7786 btrfs_dev_stat_inc(dev, index);
7787 btrfs_dev_stat_print_on_error(dev);
7788}
7789
48a3b636 7790static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7791{
733f4fbb
SB
7792 if (!dev->dev_stats_valid)
7793 return;
fb456252 7794 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7795 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7796 rcu_str_deref(dev->name),
442a4f63
SB
7797 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7798 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7799 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7800 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7801 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7802}
c11d2c23 7803
733f4fbb
SB
7804static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7805{
a98cdb85
SB
7806 int i;
7807
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7809 if (btrfs_dev_stat_read(dev, i) != 0)
7810 break;
7811 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7812 return; /* all values == 0, suppress message */
7813
fb456252 7814 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7815 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7816 rcu_str_deref(dev->name),
733f4fbb
SB
7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7819 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7820 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7821 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7822}
7823
2ff7e61e 7824int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7825 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7826{
7827 struct btrfs_device *dev;
0b246afa 7828 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7829 int i;
7830
7831 mutex_lock(&fs_devices->device_list_mutex);
b2598edf 7832 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
c11d2c23
SB
7833 mutex_unlock(&fs_devices->device_list_mutex);
7834
7835 if (!dev) {
0b246afa 7836 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7837 return -ENODEV;
733f4fbb 7838 } else if (!dev->dev_stats_valid) {
0b246afa 7839 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7840 return -ENODEV;
b27f7c0c 7841 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7842 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7843 if (stats->nr_items > i)
7844 stats->values[i] =
7845 btrfs_dev_stat_read_and_reset(dev, i);
7846 else
4e411a7d 7847 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7848 }
a69976bc
AJ
7849 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7850 current->comm, task_pid_nr(current));
c11d2c23
SB
7851 } else {
7852 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7853 if (stats->nr_items > i)
7854 stats->values[i] = btrfs_dev_stat_read(dev, i);
7855 }
7856 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7857 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7858 return 0;
7859}
a8a6dab7 7860
935e5cc9 7861/*
bbbf7243
NB
7862 * Update the size and bytes used for each device where it changed. This is
7863 * delayed since we would otherwise get errors while writing out the
7864 * superblocks.
7865 *
7866 * Must be invoked during transaction commit.
935e5cc9 7867 */
bbbf7243 7868void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7869{
935e5cc9
MX
7870 struct btrfs_device *curr, *next;
7871
bbbf7243 7872 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7873
bbbf7243 7874 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7875 return;
7876
bbbf7243
NB
7877 /*
7878 * We don't need the device_list_mutex here. This list is owned by the
7879 * transaction and the transaction must complete before the device is
7880 * released.
7881 */
7882 mutex_lock(&trans->fs_info->chunk_mutex);
7883 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7884 post_commit_list) {
7885 list_del_init(&curr->post_commit_list);
7886 curr->commit_total_bytes = curr->disk_total_bytes;
7887 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7888 }
bbbf7243 7889 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7890}
5a13f430 7891
46df06b8
DS
7892/*
7893 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7894 */
7895int btrfs_bg_type_to_factor(u64 flags)
7896{
44b28ada
DS
7897 const int index = btrfs_bg_flags_to_raid_index(flags);
7898
7899 return btrfs_raid_array[index].ncopies;
46df06b8 7900}
cf90d884
QW
7901
7902
cf90d884
QW
7903
7904static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7905 u64 chunk_offset, u64 devid,
7906 u64 physical_offset, u64 physical_len)
7907{
c8bf1b67 7908 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7909 struct extent_map *em;
7910 struct map_lookup *map;
05a37c48 7911 struct btrfs_device *dev;
cf90d884
QW
7912 u64 stripe_len;
7913 bool found = false;
7914 int ret = 0;
7915 int i;
7916
7917 read_lock(&em_tree->lock);
7918 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7919 read_unlock(&em_tree->lock);
7920
7921 if (!em) {
7922 btrfs_err(fs_info,
7923"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7924 physical_offset, devid);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928
7929 map = em->map_lookup;
7930 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7931 if (physical_len != stripe_len) {
7932 btrfs_err(fs_info,
7933"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7934 physical_offset, devid, em->start, physical_len,
7935 stripe_len);
7936 ret = -EUCLEAN;
7937 goto out;
7938 }
7939
7940 for (i = 0; i < map->num_stripes; i++) {
7941 if (map->stripes[i].dev->devid == devid &&
7942 map->stripes[i].physical == physical_offset) {
7943 found = true;
7944 if (map->verified_stripes >= map->num_stripes) {
7945 btrfs_err(fs_info,
7946 "too many dev extents for chunk %llu found",
7947 em->start);
7948 ret = -EUCLEAN;
7949 goto out;
7950 }
7951 map->verified_stripes++;
7952 break;
7953 }
7954 }
7955 if (!found) {
7956 btrfs_err(fs_info,
7957 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7958 physical_offset, devid);
7959 ret = -EUCLEAN;
7960 }
05a37c48 7961
1a9fd417 7962 /* Make sure no dev extent is beyond device boundary */
b2598edf 7963 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
05a37c48
QW
7964 if (!dev) {
7965 btrfs_err(fs_info, "failed to find devid %llu", devid);
7966 ret = -EUCLEAN;
7967 goto out;
7968 }
1b3922a8 7969
05a37c48
QW
7970 if (physical_offset + physical_len > dev->disk_total_bytes) {
7971 btrfs_err(fs_info,
7972"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7973 devid, physical_offset, physical_len,
7974 dev->disk_total_bytes);
7975 ret = -EUCLEAN;
7976 goto out;
7977 }
381a696e
NA
7978
7979 if (dev->zone_info) {
7980 u64 zone_size = dev->zone_info->zone_size;
7981
7982 if (!IS_ALIGNED(physical_offset, zone_size) ||
7983 !IS_ALIGNED(physical_len, zone_size)) {
7984 btrfs_err(fs_info,
7985"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7986 devid, physical_offset, physical_len);
7987 ret = -EUCLEAN;
7988 goto out;
7989 }
7990 }
7991
cf90d884
QW
7992out:
7993 free_extent_map(em);
7994 return ret;
7995}
7996
7997static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7998{
c8bf1b67 7999 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8000 struct extent_map *em;
8001 struct rb_node *node;
8002 int ret = 0;
8003
8004 read_lock(&em_tree->lock);
07e1ce09 8005 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
8006 em = rb_entry(node, struct extent_map, rb_node);
8007 if (em->map_lookup->num_stripes !=
8008 em->map_lookup->verified_stripes) {
8009 btrfs_err(fs_info,
8010 "chunk %llu has missing dev extent, have %d expect %d",
8011 em->start, em->map_lookup->verified_stripes,
8012 em->map_lookup->num_stripes);
8013 ret = -EUCLEAN;
8014 goto out;
8015 }
8016 }
8017out:
8018 read_unlock(&em_tree->lock);
8019 return ret;
8020}
8021
8022/*
8023 * Ensure that all dev extents are mapped to correct chunk, otherwise
8024 * later chunk allocation/free would cause unexpected behavior.
8025 *
8026 * NOTE: This will iterate through the whole device tree, which should be of
8027 * the same size level as the chunk tree. This slightly increases mount time.
8028 */
8029int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8030{
8031 struct btrfs_path *path;
8032 struct btrfs_root *root = fs_info->dev_root;
8033 struct btrfs_key key;
5eb19381
QW
8034 u64 prev_devid = 0;
8035 u64 prev_dev_ext_end = 0;
cf90d884
QW
8036 int ret = 0;
8037
42437a63
JB
8038 /*
8039 * We don't have a dev_root because we mounted with ignorebadroots and
8040 * failed to load the root, so we want to skip the verification in this
8041 * case for sure.
8042 *
8043 * However if the dev root is fine, but the tree itself is corrupted
8044 * we'd still fail to mount. This verification is only to make sure
8045 * writes can happen safely, so instead just bypass this check
8046 * completely in the case of IGNOREBADROOTS.
8047 */
8048 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8049 return 0;
8050
cf90d884
QW
8051 key.objectid = 1;
8052 key.type = BTRFS_DEV_EXTENT_KEY;
8053 key.offset = 0;
8054
8055 path = btrfs_alloc_path();
8056 if (!path)
8057 return -ENOMEM;
8058
8059 path->reada = READA_FORWARD;
8060 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8061 if (ret < 0)
8062 goto out;
8063
8064 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8065 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8066 if (ret < 0)
8067 goto out;
8068 /* No dev extents at all? Not good */
8069 if (ret > 0) {
8070 ret = -EUCLEAN;
8071 goto out;
8072 }
8073 }
8074 while (1) {
8075 struct extent_buffer *leaf = path->nodes[0];
8076 struct btrfs_dev_extent *dext;
8077 int slot = path->slots[0];
8078 u64 chunk_offset;
8079 u64 physical_offset;
8080 u64 physical_len;
8081 u64 devid;
8082
8083 btrfs_item_key_to_cpu(leaf, &key, slot);
8084 if (key.type != BTRFS_DEV_EXTENT_KEY)
8085 break;
8086 devid = key.objectid;
8087 physical_offset = key.offset;
8088
8089 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8090 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8091 physical_len = btrfs_dev_extent_length(leaf, dext);
8092
5eb19381
QW
8093 /* Check if this dev extent overlaps with the previous one */
8094 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8095 btrfs_err(fs_info,
8096"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8097 devid, physical_offset, prev_dev_ext_end);
8098 ret = -EUCLEAN;
8099 goto out;
8100 }
8101
cf90d884
QW
8102 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8103 physical_offset, physical_len);
8104 if (ret < 0)
8105 goto out;
5eb19381
QW
8106 prev_devid = devid;
8107 prev_dev_ext_end = physical_offset + physical_len;
8108
cf90d884
QW
8109 ret = btrfs_next_item(root, path);
8110 if (ret < 0)
8111 goto out;
8112 if (ret > 0) {
8113 ret = 0;
8114 break;
8115 }
8116 }
8117
8118 /* Ensure all chunks have corresponding dev extents */
8119 ret = verify_chunk_dev_extent_mapping(fs_info);
8120out:
8121 btrfs_free_path(path);
8122 return ret;
8123}
eede2bf3
OS
8124
8125/*
8126 * Check whether the given block group or device is pinned by any inode being
8127 * used as a swapfile.
8128 */
8129bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8130{
8131 struct btrfs_swapfile_pin *sp;
8132 struct rb_node *node;
8133
8134 spin_lock(&fs_info->swapfile_pins_lock);
8135 node = fs_info->swapfile_pins.rb_node;
8136 while (node) {
8137 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8138 if (ptr < sp->ptr)
8139 node = node->rb_left;
8140 else if (ptr > sp->ptr)
8141 node = node->rb_right;
8142 else
8143 break;
8144 }
8145 spin_unlock(&fs_info->swapfile_pins_lock);
8146 return node != NULL;
8147}
f7ef5287
NA
8148
8149static int relocating_repair_kthread(void *data)
8150{
8151 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8152 struct btrfs_fs_info *fs_info = cache->fs_info;
8153 u64 target;
8154 int ret = 0;
8155
8156 target = cache->start;
8157 btrfs_put_block_group(cache);
8158
8159 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8160 btrfs_info(fs_info,
8161 "zoned: skip relocating block group %llu to repair: EBUSY",
8162 target);
8163 return -EBUSY;
8164 }
8165
f3372065 8166 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8167
8168 /* Ensure block group still exists */
8169 cache = btrfs_lookup_block_group(fs_info, target);
8170 if (!cache)
8171 goto out;
8172
8173 if (!cache->relocating_repair)
8174 goto out;
8175
8176 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8177 if (ret < 0)
8178 goto out;
8179
8180 btrfs_info(fs_info,
8181 "zoned: relocating block group %llu to repair IO failure",
8182 target);
8183 ret = btrfs_relocate_chunk(fs_info, target);
8184
8185out:
8186 if (cache)
8187 btrfs_put_block_group(cache);
f3372065 8188 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8189 btrfs_exclop_finish(fs_info);
8190
8191 return ret;
8192}
8193
8194int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8195{
8196 struct btrfs_block_group *cache;
8197
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8200 return 0;
8201
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8203 if (!cache)
8204 return 0;
8205
8206 spin_lock(&cache->lock);
8207 if (cache->relocating_repair) {
8208 spin_unlock(&cache->lock);
8209 btrfs_put_block_group(cache);
8210 return 0;
8211 }
8212 cache->relocating_repair = 1;
8213 spin_unlock(&cache->lock);
8214
8215 kthread_run(relocating_repair_kthread, cache,
8216 "btrfs-relocating-repair");
8217
8218 return 0;
8219}