btrfs: rename btrfs_alloc_chunk to btrfs_create_chunk
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
b0643e59 33#include "discard.h"
5b316468 34#include "zoned.h"
0b86a832 35
af902047
ZL
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 41 .devs_min = 2,
8789f4fe 42 .tolerated_failures = 1,
af902047
ZL
43 .devs_increment = 2,
44 .ncopies = 2,
b50836ed 45 .nparity = 0,
ed23467b 46 .raid_name = "raid10",
41a6e891 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
8789f4fe 55 .tolerated_failures = 1,
af902047
ZL
56 .devs_increment = 2,
57 .ncopies = 2,
b50836ed 58 .nparity = 0,
ed23467b 59 .raid_name = "raid1",
41a6e891 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 62 },
47e6f742
DS
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
cf93e15e 66 .devs_max = 3,
47e6f742
DS
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
db26a024 71 .nparity = 0,
47e6f742
DS
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
8d6fac00
DS
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
cf93e15e 79 .devs_max = 4,
8d6fac00
DS
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
db26a024 84 .nparity = 0,
8d6fac00
DS
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
af902047
ZL
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
8789f4fe 94 .tolerated_failures = 0,
af902047
ZL
95 .devs_increment = 1,
96 .ncopies = 2,
b50836ed 97 .nparity = 0,
ed23467b 98 .raid_name = "dup",
41a6e891 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 100 .mindev_error = 0,
af902047
ZL
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
b2f78e88 106 .devs_min = 1,
8789f4fe 107 .tolerated_failures = 0,
af902047
ZL
108 .devs_increment = 1,
109 .ncopies = 1,
b50836ed 110 .nparity = 0,
ed23467b 111 .raid_name = "raid0",
41a6e891 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 113 .mindev_error = 0,
af902047
ZL
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
8789f4fe 120 .tolerated_failures = 0,
af902047
ZL
121 .devs_increment = 1,
122 .ncopies = 1,
b50836ed 123 .nparity = 0,
ed23467b 124 .raid_name = "single",
41a6e891 125 .bg_flag = 0,
f9fbcaa2 126 .mindev_error = 0,
af902047
ZL
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
8789f4fe 133 .tolerated_failures = 1,
af902047 134 .devs_increment = 1,
da612e31 135 .ncopies = 1,
b50836ed 136 .nparity = 1,
ed23467b 137 .raid_name = "raid5",
41a6e891 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
8789f4fe 146 .tolerated_failures = 2,
af902047 147 .devs_increment = 1,
da612e31 148 .ncopies = 1,
b50836ed 149 .nparity = 2,
ed23467b 150 .raid_name = "raid6",
41a6e891 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
153 },
154};
155
500a44c9
DS
156/*
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
159 */
160enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161{
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
178
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180}
181
158da513 182const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 183{
158da513
DS
184 const int index = btrfs_bg_flags_to_raid_index(flags);
185
186 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
187 return NULL;
188
158da513 189 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
190}
191
f89e09cf
AJ
192/*
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
195 */
196void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197{
198 int i;
199 int ret;
200 char *bp = buf;
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
203
204 if (!flags) {
205 strcpy(bp, "NONE");
206 return;
207 }
208
209#define DESCRIBE_FLAG(flag, desc) \
210 do { \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
214 goto out_overflow; \
215 size_bp -= ret; \
216 bp += ret; \
217 flags &= ~(flag); \
218 } \
219 } while (0)
220
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
229#undef DESCRIBE_FLAG
230
231 if (flags) {
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 size_bp -= ret;
234 }
235
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239 /*
240 * The text is trimmed, it's up to the caller to provide sufficiently
241 * large buffer
242 */
243out_overflow:;
244}
245
6f8e0fc7 246static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 247static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 248static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 249static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
250static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
2b82032c 255
9c6b1c4d
DS
256/*
257 * Device locking
258 * ==============
259 *
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
262 *
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
268 *
269 * the mutex can be very coarse and can cover long-running operations
270 *
271 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 272 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
273 *
274 * global::fs_devs - add, remove, updates to the global list
275 *
18c850fd
JB
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
278 * scan ioctl
9c6b1c4d
DS
279 *
280 * btrfs_device::name - renames (write side), read is RCU
281 *
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
285 *
286 * simple list traversal with read-only actions can be done with RCU protection
287 *
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
290 *
18c850fd
JB
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
293 *
9c6b1c4d
DS
294 * balance_mutex
295 * -------------
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
298 *
299 * chunk_mutex
300 * -----------
301 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
305 *
306 * cleaner_mutex
307 * -------------
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
310 *
311 *
312 * Lock nesting
313 * ============
314 *
315 * uuid_mutex
ae3e715f
AJ
316 * device_list_mutex
317 * chunk_mutex
318 * balance_mutex
89595e80
AJ
319 *
320 *
c3e1f96c
GR
321 * Exclusive operations
322 * ====================
89595e80
AJ
323 *
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
326 *
327 * - Balance (*)
328 * - Device add
329 * - Device remove
330 * - Device replace (*)
331 * - Resize
332 *
333 * The device operations (as above) can be in one of the following states:
334 *
335 * - Running state
336 * - Paused state
337 * - Completed state
338 *
339 * Only device operations marked with (*) can go into the Paused state for the
340 * following reasons:
341 *
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
347 *
c3e1f96c
GR
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 352 * The exclusive status is cleared when the device operation is canceled or
89595e80 353 * completed.
9c6b1c4d
DS
354 */
355
67a2c45e 356DEFINE_MUTEX(uuid_mutex);
8a4b83cc 357static LIST_HEAD(fs_uuids);
4143cb8b 358struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
359{
360 return &fs_uuids;
361}
8a4b83cc 362
2dfeca9b
DS
363/*
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
367 *
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
371 */
7239ff4b
NB
372static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
2208a378
ID
374{
375 struct btrfs_fs_devices *fs_devs;
376
78f2c9e6 377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
378 if (!fs_devs)
379 return ERR_PTR(-ENOMEM);
380
381 mutex_init(&fs_devs->device_list_mutex);
382
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 385 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 386 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
387 if (fsid)
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 389
7239ff4b
NB
390 if (metadata_fsid)
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 else if (fsid)
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
2208a378
ID
395 return fs_devs;
396}
397
a425f9d4 398void btrfs_free_device(struct btrfs_device *device)
48dae9cf 399{
bbbf7243 400 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 401 rcu_string_free(device->name);
1c11b63e 402 extent_io_tree_release(&device->alloc_state);
48dae9cf 403 bio_put(device->flush_bio);
5b316468 404 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
405 kfree(device);
406}
407
e4404d6e
YZ
408static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409{
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
a425f9d4 416 btrfs_free_device(device);
e4404d6e
YZ
417 }
418 kfree(fs_devices);
419}
420
ffc5a379 421void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
422{
423 struct btrfs_fs_devices *fs_devices;
8a4b83cc 424
2b82032c
YZ
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
e4404d6e 429 free_fs_devices(fs_devices);
8a4b83cc 430 }
8a4b83cc
CM
431}
432
7239ff4b
NB
433static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 435{
8a4b83cc
CM
436 struct btrfs_fs_devices *fs_devices;
437
7239ff4b
NB
438 ASSERT(fsid);
439
7a62d0f0 440 /* Handle non-split brain cases */
c4babc5e 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
8a4b83cc
CM
451 }
452 return NULL;
453}
454
c6730a0e
SY
455static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457{
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493}
494
495
beaf8ab3
SB
496static int
497btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
8f32380d 499 struct btrfs_super_block **disk_super)
beaf8ab3
SB
500{
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
beaf8ab3
SB
507 goto error;
508 }
509
510 if (flush)
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
8f32380d
JT
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527error:
528 *bdev = NULL;
beaf8ab3
SB
529 return ret;
530}
531
70bc7088
AJ
532static bool device_path_matched(const char *path, struct btrfs_device *device)
533{
534 int found;
535
536 rcu_read_lock();
537 found = strcmp(rcu_str_deref(device->name), path);
538 rcu_read_unlock();
539
540 return found == 0;
541}
542
d8367db3
AJ
543/*
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
549 * devices.
70bc7088
AJ
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
d8367db3 553 */
70bc7088 554static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 555 struct btrfs_device *skip_device)
4fde46f0 556{
fa6d2ae5
AJ
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
559 int ret = 0;
560
c1247069
AJ
561 lockdep_assert_held(&uuid_mutex);
562
70bc7088
AJ
563 if (path)
564 ret = -ENOENT;
4fde46f0 565
fa6d2ae5 566 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 567
70bc7088 568 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
569 list_for_each_entry_safe(device, tmp_device,
570 &fs_devices->devices, dev_list) {
fa6d2ae5 571 if (skip_device && skip_device == device)
d8367db3 572 continue;
fa6d2ae5 573 if (path && !device->name)
4fde46f0 574 continue;
70bc7088 575 if (path && !device_path_matched(path, device))
38cf665d 576 continue;
70bc7088
AJ
577 if (fs_devices->opened) {
578 /* for an already deleted device return 0 */
579 if (path && ret != 0)
580 ret = -EBUSY;
581 break;
582 }
4fde46f0 583
4fde46f0 584 /* delete the stale device */
7bcb8164
AJ
585 fs_devices->num_devices--;
586 list_del(&device->dev_list);
587 btrfs_free_device(device);
588
70bc7088 589 ret = 0;
7bcb8164
AJ
590 }
591 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 592
7bcb8164
AJ
593 if (fs_devices->num_devices == 0) {
594 btrfs_sysfs_remove_fsid(fs_devices);
595 list_del(&fs_devices->fs_list);
596 free_fs_devices(fs_devices);
4fde46f0
AJ
597 }
598 }
70bc7088
AJ
599
600 return ret;
4fde46f0
AJ
601}
602
18c850fd
JB
603/*
604 * This is only used on mount, and we are protected from competing things
605 * messing with our fs_devices by the uuid_mutex, thus we do not need the
606 * fs_devices->device_list_mutex here.
607 */
0fb08bcc
AJ
608static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 struct btrfs_device *device, fmode_t flags,
610 void *holder)
611{
612 struct request_queue *q;
613 struct block_device *bdev;
0fb08bcc
AJ
614 struct btrfs_super_block *disk_super;
615 u64 devid;
616 int ret;
617
618 if (device->bdev)
619 return -EINVAL;
620 if (!device->name)
621 return -EINVAL;
622
623 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 624 &bdev, &disk_super);
0fb08bcc
AJ
625 if (ret)
626 return ret;
627
0fb08bcc
AJ
628 devid = btrfs_stack_device_id(&disk_super->dev_item);
629 if (devid != device->devid)
8f32380d 630 goto error_free_page;
0fb08bcc
AJ
631
632 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 633 goto error_free_page;
0fb08bcc
AJ
634
635 device->generation = btrfs_super_generation(disk_super);
636
637 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
638 if (btrfs_super_incompat_flags(disk_super) &
639 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640 pr_err(
641 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 642 goto error_free_page;
7239ff4b
NB
643 }
644
ebbede42 645 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 646 fs_devices->seeding = true;
0fb08bcc 647 } else {
ebbede42
AJ
648 if (bdev_read_only(bdev))
649 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 else
651 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
652 }
653
654 q = bdev_get_queue(bdev);
0fb08bcc 655 if (!blk_queue_nonrot(q))
7f0432d0 656 fs_devices->rotating = true;
0fb08bcc
AJ
657
658 device->bdev = bdev;
e12c9621 659 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
660 device->mode = flags;
661
662 fs_devices->open_devices++;
ebbede42
AJ
663 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 665 fs_devices->rw_devices++;
b1b8e386 666 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 667 }
8f32380d 668 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
669
670 return 0;
671
8f32380d
JT
672error_free_page:
673 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
674 blkdev_put(bdev, flags);
675
676 return -EINVAL;
677}
678
7a62d0f0
NB
679/*
680 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
681 * being created with a disk that has already completed its fsid change. Such
682 * disk can belong to an fs which has its FSID changed or to one which doesn't.
683 * Handle both cases here.
7a62d0f0
NB
684 */
685static struct btrfs_fs_devices *find_fsid_inprogress(
686 struct btrfs_super_block *disk_super)
687{
688 struct btrfs_fs_devices *fs_devices;
689
690 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 BTRFS_FSID_SIZE) != 0 &&
693 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695 return fs_devices;
696 }
697 }
698
c0d81c7c 699 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
700}
701
cc5de4e7
NB
702
703static struct btrfs_fs_devices *find_fsid_changed(
704 struct btrfs_super_block *disk_super)
705{
706 struct btrfs_fs_devices *fs_devices;
707
708 /*
709 * Handles the case where scanned device is part of an fs that had
1a9fd417 710 * multiple successful changes of FSID but currently device didn't
05840710
NB
711 * observe it. Meaning our fsid will be different than theirs. We need
712 * to handle two subcases :
713 * 1 - The fs still continues to have different METADATA/FSID uuids.
714 * 2 - The fs is switched back to its original FSID (METADATA/FSID
715 * are equal).
cc5de4e7
NB
716 */
717 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 718 /* Changed UUIDs */
cc5de4e7
NB
719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 BTRFS_FSID_SIZE) != 0 &&
721 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 BTRFS_FSID_SIZE) == 0 &&
723 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
724 BTRFS_FSID_SIZE) != 0)
725 return fs_devices;
726
727 /* Unchanged UUIDs */
728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 BTRFS_FSID_SIZE) == 0 &&
730 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 BTRFS_FSID_SIZE) == 0)
cc5de4e7 732 return fs_devices;
cc5de4e7
NB
733 }
734
735 return NULL;
736}
1362089d
NB
737
738static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 struct btrfs_super_block *disk_super)
740{
741 struct btrfs_fs_devices *fs_devices;
742
743 /*
744 * Handle the case where the scanned device is part of an fs whose last
745 * metadata UUID change reverted it to the original FSID. At the same
746 * time * fs_devices was first created by another constitutent device
747 * which didn't fully observe the operation. This results in an
748 * btrfs_fs_devices created with metadata/fsid different AND
749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 * fs_devices equal to the FSID of the disk.
751 */
752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 BTRFS_FSID_SIZE) != 0 &&
755 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 BTRFS_FSID_SIZE) == 0 &&
757 fs_devices->fsid_change)
758 return fs_devices;
759 }
760
761 return NULL;
762}
60999ca4
DS
763/*
764 * Add new device to list of registered devices
765 *
766 * Returns:
e124ece5
AJ
767 * device pointer which was just added or updated when successful
768 * error pointer when failed
60999ca4 769 */
e124ece5 770static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
771 struct btrfs_super_block *disk_super,
772 bool *new_device_added)
8a4b83cc
CM
773{
774 struct btrfs_device *device;
7a62d0f0 775 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 776 struct rcu_string *name;
8a4b83cc 777 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 778 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
779 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
781 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 783
cc5de4e7 784 if (fsid_change_in_progress) {
c0d81c7c 785 if (!has_metadata_uuid)
cc5de4e7 786 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 787 else
cc5de4e7 788 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 789 } else if (has_metadata_uuid) {
c6730a0e 790 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 791 } else {
1362089d
NB
792 fs_devices = find_fsid_reverted_metadata(disk_super);
793 if (!fs_devices)
794 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
795 }
796
8a4b83cc 797
8a4b83cc 798 if (!fs_devices) {
7239ff4b
NB
799 if (has_metadata_uuid)
800 fs_devices = alloc_fs_devices(disk_super->fsid,
801 disk_super->metadata_uuid);
802 else
803 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804
2208a378 805 if (IS_ERR(fs_devices))
e124ece5 806 return ERR_CAST(fs_devices);
2208a378 807
92900e51
AV
808 fs_devices->fsid_change = fsid_change_in_progress;
809
9c6d173e 810 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 811 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 812
8a4b83cc
CM
813 device = NULL;
814 } else {
9c6d173e 815 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9 816 device = btrfs_find_device(fs_devices, devid,
b2598edf 817 disk_super->dev_item.uuid, NULL);
7a62d0f0
NB
818
819 /*
820 * If this disk has been pulled into an fs devices created by
821 * a device which had the CHANGING_FSID_V2 flag then replace the
822 * metadata_uuid/fsid values of the fs_devices.
823 */
1362089d 824 if (fs_devices->fsid_change &&
7a62d0f0
NB
825 found_transid > fs_devices->latest_generation) {
826 memcpy(fs_devices->fsid, disk_super->fsid,
827 BTRFS_FSID_SIZE);
1362089d
NB
828
829 if (has_metadata_uuid)
830 memcpy(fs_devices->metadata_uuid,
831 disk_super->metadata_uuid,
832 BTRFS_FSID_SIZE);
833 else
834 memcpy(fs_devices->metadata_uuid,
835 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
836
837 fs_devices->fsid_change = false;
838 }
8a4b83cc 839 }
443f24fe 840
8a4b83cc 841 if (!device) {
9c6d173e
AJ
842 if (fs_devices->opened) {
843 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 844 return ERR_PTR(-EBUSY);
9c6d173e 845 }
2b82032c 846
12bd2fc0
ID
847 device = btrfs_alloc_device(NULL, &devid,
848 disk_super->dev_item.uuid);
849 if (IS_ERR(device)) {
9c6d173e 850 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 851 /* we can safely leave the fs_devices entry around */
e124ece5 852 return device;
8a4b83cc 853 }
606686ee
JB
854
855 name = rcu_string_strdup(path, GFP_NOFS);
856 if (!name) {
a425f9d4 857 btrfs_free_device(device);
9c6d173e 858 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 859 return ERR_PTR(-ENOMEM);
8a4b83cc 860 }
606686ee 861 rcu_assign_pointer(device->name, name);
90519d66 862
1f78160c 863 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 864 fs_devices->num_devices++;
e5e9a520 865
2b82032c 866 device->fs_devices = fs_devices;
4306a974 867 *new_device_added = true;
327f18cc
AJ
868
869 if (disk_super->label[0])
aa6c0df7
AJ
870 pr_info(
871 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 disk_super->label, devid, found_transid, path,
873 current->comm, task_pid_nr(current));
327f18cc 874 else
aa6c0df7
AJ
875 pr_info(
876 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->fsid, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
327f18cc 879
606686ee 880 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
881 /*
882 * When FS is already mounted.
883 * 1. If you are here and if the device->name is NULL that
884 * means this device was missing at time of FS mount.
885 * 2. If you are here and if the device->name is different
886 * from 'path' that means either
887 * a. The same device disappeared and reappeared with
888 * different name. or
889 * b. The missing-disk-which-was-replaced, has
890 * reappeared now.
891 *
892 * We must allow 1 and 2a above. But 2b would be a spurious
893 * and unintentional.
894 *
895 * Further in case of 1 and 2a above, the disk at 'path'
896 * would have missed some transaction when it was away and
897 * in case of 2a the stale bdev has to be updated as well.
898 * 2b must not be allowed at all time.
899 */
900
901 /*
0f23ae74
CM
902 * For now, we do allow update to btrfs_fs_device through the
903 * btrfs dev scan cli after FS has been mounted. We're still
904 * tracking a problem where systems fail mount by subvolume id
905 * when we reject replacement on a mounted FS.
b96de000 906 */
0f23ae74 907 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
908 /*
909 * That is if the FS is _not_ mounted and if you
910 * are here, that means there is more than one
911 * disk with same uuid and devid.We keep the one
912 * with larger generation number or the last-in if
913 * generation are equal.
914 */
9c6d173e 915 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 916 return ERR_PTR(-EEXIST);
77bdae4d 917 }
b96de000 918
a9261d41
AJ
919 /*
920 * We are going to replace the device path for a given devid,
921 * make sure it's the same device if the device is mounted
922 */
923 if (device->bdev) {
4e7b5671
CH
924 int error;
925 dev_t path_dev;
a9261d41 926
4e7b5671
CH
927 error = lookup_bdev(path, &path_dev);
928 if (error) {
a9261d41 929 mutex_unlock(&fs_devices->device_list_mutex);
4e7b5671 930 return ERR_PTR(error);
a9261d41
AJ
931 }
932
4e7b5671 933 if (device->bdev->bd_dev != path_dev) {
a9261d41 934 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6
JT
935 /*
936 * device->fs_info may not be reliable here, so
937 * pass in a NULL instead. This avoids a
938 * possible use-after-free when the fs_info and
939 * fs_info->sb are already torn down.
940 */
941 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
942 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 path, devid, found_transid,
944 current->comm,
945 task_pid_nr(current));
a9261d41
AJ
946 return ERR_PTR(-EEXIST);
947 }
a9261d41 948 btrfs_info_in_rcu(device->fs_info,
79dae17d
AJ
949 "devid %llu device path %s changed to %s scanned by %s (%d)",
950 devid, rcu_str_deref(device->name),
951 path, current->comm,
952 task_pid_nr(current));
a9261d41
AJ
953 }
954
606686ee 955 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
956 if (!name) {
957 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 958 return ERR_PTR(-ENOMEM);
9c6d173e 959 }
606686ee
JB
960 rcu_string_free(device->name);
961 rcu_assign_pointer(device->name, name);
e6e674bd 962 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 963 fs_devices->missing_devices--;
e6e674bd 964 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 965 }
8a4b83cc
CM
966 }
967
77bdae4d
AJ
968 /*
969 * Unmount does not free the btrfs_device struct but would zero
970 * generation along with most of the other members. So just update
971 * it back. We need it to pick the disk with largest generation
972 * (as above).
973 */
d1a63002 974 if (!fs_devices->opened) {
77bdae4d 975 device->generation = found_transid;
d1a63002
NB
976 fs_devices->latest_generation = max_t(u64, found_transid,
977 fs_devices->latest_generation);
978 }
77bdae4d 979
f2788d2f
AJ
980 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981
9c6d173e 982 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 983 return device;
8a4b83cc
CM
984}
985
e4404d6e
YZ
986static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987{
988 struct btrfs_fs_devices *fs_devices;
989 struct btrfs_device *device;
990 struct btrfs_device *orig_dev;
d2979aa2 991 int ret = 0;
e4404d6e 992
c1247069
AJ
993 lockdep_assert_held(&uuid_mutex);
994
7239ff4b 995 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
996 if (IS_ERR(fs_devices))
997 return fs_devices;
e4404d6e 998
02db0844 999 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1000
1001 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
1002 struct rcu_string *name;
1003
12bd2fc0
ID
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid);
d2979aa2
AJ
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
e4404d6e 1008 goto error;
d2979aa2 1009 }
e4404d6e 1010
606686ee
JB
1011 /*
1012 * This is ok to do without rcu read locked because we hold the
1013 * uuid mutex so nothing we touch in here is going to disappear.
1014 */
e755f780 1015 if (orig_dev->name) {
78f2c9e6
DS
1016 name = rcu_string_strdup(orig_dev->name->str,
1017 GFP_KERNEL);
e755f780 1018 if (!name) {
a425f9d4 1019 btrfs_free_device(device);
d2979aa2 1020 ret = -ENOMEM;
e755f780
AJ
1021 goto error;
1022 }
1023 rcu_assign_pointer(device->name, name);
fd2696f3 1024 }
e4404d6e 1025
e4404d6e
YZ
1026 list_add(&device->dev_list, &fs_devices->devices);
1027 device->fs_devices = fs_devices;
1028 fs_devices->num_devices++;
1029 }
1030 return fs_devices;
1031error:
1032 free_fs_devices(fs_devices);
d2979aa2 1033 return ERR_PTR(ret);
e4404d6e
YZ
1034}
1035
3712ccb7 1036static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1037 struct btrfs_device **latest_dev)
dfe25020 1038{
c6e30871 1039 struct btrfs_device *device, *next;
a6b0d5c8 1040
46224705 1041 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1042 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1043 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1044 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1045 &device->dev_state) &&
998a0671
AJ
1046 !test_bit(BTRFS_DEV_STATE_MISSING,
1047 &device->dev_state) &&
3712ccb7
NB
1048 (!*latest_dev ||
1049 device->generation > (*latest_dev)->generation)) {
1050 *latest_dev = device;
a6b0d5c8 1051 }
2b82032c 1052 continue;
a6b0d5c8 1053 }
2b82032c 1054
cf89af14
AJ
1055 /*
1056 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 * in btrfs_init_dev_replace() so just continue.
1058 */
1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 continue;
1061
2b82032c 1062 if (device->bdev) {
d4d77629 1063 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1064 device->bdev = NULL;
1065 fs_devices->open_devices--;
1066 }
ebbede42 1067 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1068 list_del_init(&device->dev_alloc_list);
ebbede42 1069 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1070 fs_devices->rw_devices--;
2b82032c 1071 }
e4404d6e
YZ
1072 list_del_init(&device->dev_list);
1073 fs_devices->num_devices--;
a425f9d4 1074 btrfs_free_device(device);
dfe25020 1075 }
2b82032c 1076
3712ccb7
NB
1077}
1078
1079/*
1080 * After we have read the system tree and know devids belonging to this
1081 * filesystem, remove the device which does not belong there.
1082 */
bacce86a 1083void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1084{
1085 struct btrfs_device *latest_dev = NULL;
944d3f9f 1086 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1087
1088 mutex_lock(&uuid_mutex);
bacce86a 1089 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1090
1091 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1092 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1093
443f24fe 1094 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1095
dfe25020 1096 mutex_unlock(&uuid_mutex);
dfe25020 1097}
a0af469b 1098
14238819
AJ
1099static void btrfs_close_bdev(struct btrfs_device *device)
1100{
08ffcae8
DS
1101 if (!device->bdev)
1102 return;
1103
ebbede42 1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1105 sync_blockdev(device->bdev);
1106 invalidate_bdev(device->bdev);
1107 }
1108
08ffcae8 1109 blkdev_put(device->bdev, device->mode);
14238819
AJ
1110}
1111
959b1c04 1112static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1113{
1114 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1115
ebbede42 1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1117 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 list_del_init(&device->dev_alloc_list);
1119 fs_devices->rw_devices--;
1120 }
1121
0d977e0e
DCZX
1122 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124
e6e674bd 1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1126 fs_devices->missing_devices--;
1127
959b1c04 1128 btrfs_close_bdev(device);
321f69f8 1129 if (device->bdev) {
3fff3975 1130 fs_devices->open_devices--;
321f69f8 1131 device->bdev = NULL;
f448341a 1132 }
321f69f8 1133 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1134 btrfs_destroy_dev_zone_info(device);
f448341a 1135
321f69f8
JT
1136 device->fs_info = NULL;
1137 atomic_set(&device->dev_stats_ccnt, 0);
1138 extent_io_tree_release(&device->alloc_state);
959b1c04 1139
6b225baa
FM
1140 /*
1141 * Reset the flush error record. We might have a transient flush error
1142 * in this mount, and if so we aborted the current transaction and set
1143 * the fs to an error state, guaranteeing no super blocks can be further
1144 * committed. However that error might be transient and if we unmount the
1145 * filesystem and mount it again, we should allow the mount to succeed
1146 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1147 * filesystem again we still get flush errors, then we will again abort
1148 * any transaction and set the error state, guaranteeing no commits of
1149 * unsafe super blocks.
1150 */
1151 device->last_flush_error = 0;
1152
321f69f8
JT
1153 /* Verify the device is back in a pristine state */
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1155 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1156 ASSERT(list_empty(&device->dev_alloc_list));
1157 ASSERT(list_empty(&device->post_commit_list));
1158 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1159}
1160
54eed6ae 1161static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1162{
2037a093 1163 struct btrfs_device *device, *tmp;
e4404d6e 1164
425c6ed6
JB
1165 lockdep_assert_held(&uuid_mutex);
1166
2b82032c 1167 if (--fs_devices->opened > 0)
54eed6ae 1168 return;
8a4b83cc 1169
425c6ed6 1170 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1171 btrfs_close_one_device(device);
c9513edb 1172
e4404d6e
YZ
1173 WARN_ON(fs_devices->open_devices);
1174 WARN_ON(fs_devices->rw_devices);
2b82032c 1175 fs_devices->opened = 0;
0395d84f 1176 fs_devices->seeding = false;
c4989c2f 1177 fs_devices->fs_info = NULL;
8a4b83cc
CM
1178}
1179
54eed6ae 1180void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1181{
944d3f9f
NB
1182 LIST_HEAD(list);
1183 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1184
1185 mutex_lock(&uuid_mutex);
54eed6ae 1186 close_fs_devices(fs_devices);
944d3f9f
NB
1187 if (!fs_devices->opened)
1188 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1189
944d3f9f 1190 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1191 close_fs_devices(fs_devices);
944d3f9f 1192 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1193 free_fs_devices(fs_devices);
1194 }
425c6ed6 1195 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1196}
1197
897fb573 1198static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1199 fmode_t flags, void *holder)
8a4b83cc 1200{
8a4b83cc 1201 struct btrfs_device *device;
443f24fe 1202 struct btrfs_device *latest_dev = NULL;
96c2e067 1203 struct btrfs_device *tmp_device;
8a4b83cc 1204
d4d77629
TH
1205 flags |= FMODE_EXCL;
1206
96c2e067
AJ
1207 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1208 dev_list) {
1209 int ret;
a0af469b 1210
96c2e067
AJ
1211 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1212 if (ret == 0 &&
1213 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1214 latest_dev = device;
96c2e067
AJ
1215 } else if (ret == -ENODATA) {
1216 fs_devices->num_devices--;
1217 list_del(&device->dev_list);
1218 btrfs_free_device(device);
1219 }
8a4b83cc 1220 }
1ed802c9
AJ
1221 if (fs_devices->open_devices == 0)
1222 return -EINVAL;
1223
2b82032c 1224 fs_devices->opened = 1;
443f24fe 1225 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1226 fs_devices->total_rw_bytes = 0;
c4a816c6 1227 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1228 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1229
1230 return 0;
2b82032c
YZ
1231}
1232
4f0f586b
ST
1233static int devid_cmp(void *priv, const struct list_head *a,
1234 const struct list_head *b)
f8e10cd3 1235{
214cc184 1236 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1237
1238 dev1 = list_entry(a, struct btrfs_device, dev_list);
1239 dev2 = list_entry(b, struct btrfs_device, dev_list);
1240
1241 if (dev1->devid < dev2->devid)
1242 return -1;
1243 else if (dev1->devid > dev2->devid)
1244 return 1;
1245 return 0;
1246}
1247
2b82032c 1248int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1249 fmode_t flags, void *holder)
2b82032c
YZ
1250{
1251 int ret;
1252
f5194e34 1253 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1254 /*
1255 * The device_list_mutex cannot be taken here in case opening the
a8698707 1256 * underlying device takes further locks like open_mutex.
18c850fd
JB
1257 *
1258 * We also don't need the lock here as this is called during mount and
1259 * exclusion is provided by uuid_mutex
1260 */
f5194e34 1261
2b82032c 1262 if (fs_devices->opened) {
e4404d6e
YZ
1263 fs_devices->opened++;
1264 ret = 0;
2b82032c 1265 } else {
f8e10cd3 1266 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1267 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1268 }
542c5908 1269
8a4b83cc
CM
1270 return ret;
1271}
1272
8f32380d 1273void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1274{
8f32380d
JT
1275 struct page *page = virt_to_page(super);
1276
6cf86a00
AJ
1277 put_page(page);
1278}
1279
b335eab8 1280static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1281 u64 bytenr, u64 bytenr_orig)
6cf86a00 1282{
b335eab8
NB
1283 struct btrfs_super_block *disk_super;
1284 struct page *page;
6cf86a00
AJ
1285 void *p;
1286 pgoff_t index;
1287
1288 /* make sure our super fits in the device */
1289 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
b335eab8 1290 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1291
1292 /* make sure our super fits in the page */
b335eab8
NB
1293 if (sizeof(*disk_super) > PAGE_SIZE)
1294 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1295
1296 /* make sure our super doesn't straddle pages on disk */
1297 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1298 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1299 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1300
1301 /* pull in the page with our super */
b335eab8 1302 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1303
b335eab8
NB
1304 if (IS_ERR(page))
1305 return ERR_CAST(page);
6cf86a00 1306
b335eab8 1307 p = page_address(page);
6cf86a00
AJ
1308
1309 /* align our pointer to the offset of the super block */
b335eab8 1310 disk_super = p + offset_in_page(bytenr);
6cf86a00 1311
12659251 1312 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1313 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1314 btrfs_release_disk_super(p);
b335eab8 1315 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1316 }
1317
b335eab8
NB
1318 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1319 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1320
b335eab8 1321 return disk_super;
6cf86a00
AJ
1322}
1323
228a73ab
AJ
1324int btrfs_forget_devices(const char *path)
1325{
1326 int ret;
1327
1328 mutex_lock(&uuid_mutex);
1329 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1330 mutex_unlock(&uuid_mutex);
1331
1332 return ret;
1333}
1334
6f60cbd3
DS
1335/*
1336 * Look for a btrfs signature on a device. This may be called out of the mount path
1337 * and we are not allowed to call set_blocksize during the scan. The superblock
1338 * is read via pagecache
1339 */
36350e95
GJ
1340struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1341 void *holder)
8a4b83cc
CM
1342{
1343 struct btrfs_super_block *disk_super;
4306a974 1344 bool new_device_added = false;
36350e95 1345 struct btrfs_device *device = NULL;
8a4b83cc 1346 struct block_device *bdev;
12659251
NA
1347 u64 bytenr, bytenr_orig;
1348 int ret;
8a4b83cc 1349
899f9307
DS
1350 lockdep_assert_held(&uuid_mutex);
1351
6f60cbd3
DS
1352 /*
1353 * we would like to check all the supers, but that would make
1354 * a btrfs mount succeed after a mkfs from a different FS.
1355 * So, we need to add a special mount option to scan for
1356 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1357 */
d4d77629 1358 flags |= FMODE_EXCL;
6f60cbd3
DS
1359
1360 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1361 if (IS_ERR(bdev))
36350e95 1362 return ERR_CAST(bdev);
6f60cbd3 1363
12659251
NA
1364 bytenr_orig = btrfs_sb_offset(0);
1365 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1366 if (ret)
1367 return ERR_PTR(ret);
1368
1369 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1370 if (IS_ERR(disk_super)) {
1371 device = ERR_CAST(disk_super);
6f60cbd3 1372 goto error_bdev_put;
05a5c55d 1373 }
6f60cbd3 1374
4306a974 1375 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1376 if (!IS_ERR(device)) {
4306a974
AJ
1377 if (new_device_added)
1378 btrfs_free_stale_devices(path, device);
1379 }
6f60cbd3 1380
8f32380d 1381 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1382
1383error_bdev_put:
d4d77629 1384 blkdev_put(bdev, flags);
b6ed73bc 1385
36350e95 1386 return device;
8a4b83cc 1387}
0b86a832 1388
1c11b63e
JM
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1c11b63e
JM
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
6df9a95e 1395{
1c11b63e 1396 u64 physical_start, physical_end;
6df9a95e 1397
1c11b63e 1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1399
1c11b63e
JM
1400 if (!find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
c152b63e 1403
1c11b63e
JM
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
6df9a95e
JB
1409 }
1410 }
1c11b63e 1411 return false;
6df9a95e
JB
1412}
1413
3b4ffa40
NA
1414static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 /*
1419 * We don't want to overwrite the superblock on the drive nor
1420 * any area used by the boot loader (grub for example), so we
1421 * make sure to start at an offset of at least 1MB.
1422 */
1423 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1424 case BTRFS_CHUNK_ALLOC_ZONED:
1425 /*
1426 * We don't care about the starting region like regular
1427 * allocator, because we anyway use/reserve the first two zones
1428 * for superblock logging.
1429 */
1430 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1431 default:
1432 BUG();
1433 }
1434}
1435
1cd6121f
NA
1436static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1437 u64 *hole_start, u64 *hole_size,
1438 u64 num_bytes)
1439{
1440 u64 zone_size = device->zone_info->zone_size;
1441 u64 pos;
1442 int ret;
1443 bool changed = false;
1444
1445 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1446
1447 while (*hole_size > 0) {
1448 pos = btrfs_find_allocatable_zones(device, *hole_start,
1449 *hole_start + *hole_size,
1450 num_bytes);
1451 if (pos != *hole_start) {
1452 *hole_size = *hole_start + *hole_size - pos;
1453 *hole_start = pos;
1454 changed = true;
1455 if (*hole_size < num_bytes)
1456 break;
1457 }
1458
1459 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1460
1461 /* Range is ensured to be empty */
1462 if (!ret)
1463 return changed;
1464
1465 /* Given hole range was invalid (outside of device) */
1466 if (ret == -ERANGE) {
1467 *hole_start += *hole_size;
d6f67afb 1468 *hole_size = 0;
7000babd 1469 return true;
1cd6121f
NA
1470 }
1471
1472 *hole_start += zone_size;
1473 *hole_size -= zone_size;
1474 changed = true;
1475 }
1476
1477 return changed;
1478}
1479
3b4ffa40
NA
1480/**
1481 * dev_extent_hole_check - check if specified hole is suitable for allocation
1482 * @device: the device which we have the hole
1483 * @hole_start: starting position of the hole
1484 * @hole_size: the size of the hole
1485 * @num_bytes: the size of the free space that we need
1486 *
1cd6121f 1487 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1488 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1489 */
1490static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1491 u64 *hole_size, u64 num_bytes)
1492{
1493 bool changed = false;
1494 u64 hole_end = *hole_start + *hole_size;
1495
1cd6121f
NA
1496 for (;;) {
1497 /*
1498 * Check before we set max_hole_start, otherwise we could end up
1499 * sending back this offset anyway.
1500 */
1501 if (contains_pending_extent(device, hole_start, *hole_size)) {
1502 if (hole_end >= *hole_start)
1503 *hole_size = hole_end - *hole_start;
1504 else
1505 *hole_size = 0;
1506 changed = true;
1507 }
1508
1509 switch (device->fs_devices->chunk_alloc_policy) {
1510 case BTRFS_CHUNK_ALLOC_REGULAR:
1511 /* No extra check */
1512 break;
1513 case BTRFS_CHUNK_ALLOC_ZONED:
1514 if (dev_extent_hole_check_zoned(device, hole_start,
1515 hole_size, num_bytes)) {
1516 changed = true;
1517 /*
1518 * The changed hole can contain pending extent.
1519 * Loop again to check that.
1520 */
1521 continue;
1522 }
1523 break;
1524 default:
1525 BUG();
1526 }
3b4ffa40 1527
3b4ffa40 1528 break;
3b4ffa40
NA
1529 }
1530
1531 return changed;
1532}
6df9a95e 1533
0b86a832 1534/*
499f377f
JM
1535 * find_free_dev_extent_start - find free space in the specified device
1536 * @device: the device which we search the free space in
1537 * @num_bytes: the size of the free space that we need
1538 * @search_start: the position from which to begin the search
1539 * @start: store the start of the free space.
1540 * @len: the size of the free space. that we find, or the size
1541 * of the max free space if we don't find suitable free space
7bfc837d 1542 *
0b86a832
CM
1543 * this uses a pretty simple search, the expectation is that it is
1544 * called very infrequently and that a given device has a small number
1545 * of extents
7bfc837d
MX
1546 *
1547 * @start is used to store the start of the free space if we find. But if we
1548 * don't find suitable free space, it will be used to store the start position
1549 * of the max free space.
1550 *
1551 * @len is used to store the size of the free space that we find.
1552 * But if we don't find suitable free space, it is used to store the size of
1553 * the max free space.
135da976
QW
1554 *
1555 * NOTE: This function will search *commit* root of device tree, and does extra
1556 * check to ensure dev extents are not double allocated.
1557 * This makes the function safe to allocate dev extents but may not report
1558 * correct usable device space, as device extent freed in current transaction
1a9fd417 1559 * is not reported as available.
0b86a832 1560 */
9e3246a5
QW
1561static int find_free_dev_extent_start(struct btrfs_device *device,
1562 u64 num_bytes, u64 search_start, u64 *start,
1563 u64 *len)
0b86a832 1564{
0b246afa
JM
1565 struct btrfs_fs_info *fs_info = device->fs_info;
1566 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1567 struct btrfs_key key;
7bfc837d 1568 struct btrfs_dev_extent *dev_extent;
2b82032c 1569 struct btrfs_path *path;
7bfc837d
MX
1570 u64 hole_size;
1571 u64 max_hole_start;
1572 u64 max_hole_size;
1573 u64 extent_end;
0b86a832
CM
1574 u64 search_end = device->total_bytes;
1575 int ret;
7bfc837d 1576 int slot;
0b86a832 1577 struct extent_buffer *l;
8cdc7c5b 1578
3b4ffa40 1579 search_start = dev_extent_search_start(device, search_start);
0b86a832 1580
1cd6121f
NA
1581 WARN_ON(device->zone_info &&
1582 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1583
6df9a95e
JB
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
f2ab7618 1587
7bfc837d
MX
1588 max_hole_start = search_start;
1589 max_hole_size = 0;
1590
f2ab7618 1591again:
401e29c1
AJ
1592 if (search_start >= search_end ||
1593 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1594 ret = -ENOSPC;
6df9a95e 1595 goto out;
7bfc837d
MX
1596 }
1597
e4058b54 1598 path->reada = READA_FORWARD;
6df9a95e
JB
1599 path->search_commit_root = 1;
1600 path->skip_locking = 1;
7bfc837d 1601
0b86a832
CM
1602 key.objectid = device->devid;
1603 key.offset = search_start;
1604 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1605
0ff40a91 1606 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1607 if (ret < 0)
7bfc837d 1608 goto out;
7bfc837d 1609
0b86a832
CM
1610 while (1) {
1611 l = path->nodes[0];
1612 slot = path->slots[0];
1613 if (slot >= btrfs_header_nritems(l)) {
1614 ret = btrfs_next_leaf(root, path);
1615 if (ret == 0)
1616 continue;
1617 if (ret < 0)
7bfc837d
MX
1618 goto out;
1619
1620 break;
0b86a832
CM
1621 }
1622 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624 if (key.objectid < device->devid)
1625 goto next;
1626
1627 if (key.objectid > device->devid)
7bfc837d 1628 break;
0b86a832 1629
962a298f 1630 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1631 goto next;
9779b72f 1632
7bfc837d
MX
1633 if (key.offset > search_start) {
1634 hole_size = key.offset - search_start;
3b4ffa40
NA
1635 dev_extent_hole_check(device, &search_start, &hole_size,
1636 num_bytes);
6df9a95e 1637
7bfc837d
MX
1638 if (hole_size > max_hole_size) {
1639 max_hole_start = search_start;
1640 max_hole_size = hole_size;
1641 }
9779b72f 1642
7bfc837d
MX
1643 /*
1644 * If this free space is greater than which we need,
1645 * it must be the max free space that we have found
1646 * until now, so max_hole_start must point to the start
1647 * of this free space and the length of this free space
1648 * is stored in max_hole_size. Thus, we return
1649 * max_hole_start and max_hole_size and go back to the
1650 * caller.
1651 */
1652 if (hole_size >= num_bytes) {
1653 ret = 0;
1654 goto out;
0b86a832
CM
1655 }
1656 }
0b86a832 1657
0b86a832 1658 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1659 extent_end = key.offset + btrfs_dev_extent_length(l,
1660 dev_extent);
1661 if (extent_end > search_start)
1662 search_start = extent_end;
0b86a832
CM
1663next:
1664 path->slots[0]++;
1665 cond_resched();
1666 }
0b86a832 1667
38c01b96 1668 /*
1669 * At this point, search_start should be the end of
1670 * allocated dev extents, and when shrinking the device,
1671 * search_end may be smaller than search_start.
1672 */
f2ab7618 1673 if (search_end > search_start) {
38c01b96 1674 hole_size = search_end - search_start;
3b4ffa40
NA
1675 if (dev_extent_hole_check(device, &search_start, &hole_size,
1676 num_bytes)) {
f2ab7618
ZL
1677 btrfs_release_path(path);
1678 goto again;
1679 }
0b86a832 1680
f2ab7618
ZL
1681 if (hole_size > max_hole_size) {
1682 max_hole_start = search_start;
1683 max_hole_size = hole_size;
1684 }
6df9a95e
JB
1685 }
1686
7bfc837d 1687 /* See above. */
f2ab7618 1688 if (max_hole_size < num_bytes)
7bfc837d
MX
1689 ret = -ENOSPC;
1690 else
1691 ret = 0;
1692
1693out:
2b82032c 1694 btrfs_free_path(path);
7bfc837d 1695 *start = max_hole_start;
b2117a39 1696 if (len)
7bfc837d 1697 *len = max_hole_size;
0b86a832
CM
1698 return ret;
1699}
1700
60dfdf25 1701int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1702 u64 *start, u64 *len)
1703{
499f377f 1704 /* FIXME use last free of some kind */
60dfdf25 1705 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1706}
1707
b2950863 1708static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1709 struct btrfs_device *device,
2196d6e8 1710 u64 start, u64 *dev_extent_len)
8f18cf13 1711{
0b246afa
JM
1712 struct btrfs_fs_info *fs_info = device->fs_info;
1713 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1714 int ret;
1715 struct btrfs_path *path;
8f18cf13 1716 struct btrfs_key key;
a061fc8d
CM
1717 struct btrfs_key found_key;
1718 struct extent_buffer *leaf = NULL;
1719 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1720
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = device->devid;
1726 key.offset = start;
1727 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1728again:
8f18cf13 1729 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1730 if (ret > 0) {
1731 ret = btrfs_previous_item(root, path, key.objectid,
1732 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1733 if (ret)
1734 goto out;
a061fc8d
CM
1735 leaf = path->nodes[0];
1736 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737 extent = btrfs_item_ptr(leaf, path->slots[0],
1738 struct btrfs_dev_extent);
1739 BUG_ON(found_key.offset > start || found_key.offset +
1740 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1741 key = found_key;
1742 btrfs_release_path(path);
1743 goto again;
a061fc8d
CM
1744 } else if (ret == 0) {
1745 leaf = path->nodes[0];
1746 extent = btrfs_item_ptr(leaf, path->slots[0],
1747 struct btrfs_dev_extent);
79787eaa 1748 } else {
79787eaa 1749 goto out;
a061fc8d 1750 }
8f18cf13 1751
2196d6e8
MX
1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
8f18cf13 1754 ret = btrfs_del_item(trans, root, path);
79bd3712 1755 if (ret == 0)
3204d33c 1756 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1757out:
8f18cf13
CM
1758 btrfs_free_path(path);
1759 return ret;
1760}
1761
6df9a95e 1762static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1763{
6df9a95e
JB
1764 struct extent_map_tree *em_tree;
1765 struct extent_map *em;
1766 struct rb_node *n;
1767 u64 ret = 0;
0b86a832 1768
c8bf1b67 1769 em_tree = &fs_info->mapping_tree;
6df9a95e 1770 read_lock(&em_tree->lock);
07e1ce09 1771 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1772 if (n) {
1773 em = rb_entry(n, struct extent_map, rb_node);
1774 ret = em->start + em->len;
0b86a832 1775 }
6df9a95e
JB
1776 read_unlock(&em_tree->lock);
1777
0b86a832
CM
1778 return ret;
1779}
1780
53f10659
ID
1781static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1782 u64 *devid_ret)
0b86a832
CM
1783{
1784 int ret;
1785 struct btrfs_key key;
1786 struct btrfs_key found_key;
2b82032c
YZ
1787 struct btrfs_path *path;
1788
2b82032c
YZ
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
0b86a832
CM
1792
1793 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1794 key.type = BTRFS_DEV_ITEM_KEY;
1795 key.offset = (u64)-1;
1796
53f10659 1797 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1798 if (ret < 0)
1799 goto error;
1800
a06dee4d
AJ
1801 if (ret == 0) {
1802 /* Corruption */
1803 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1804 ret = -EUCLEAN;
1805 goto error;
1806 }
0b86a832 1807
53f10659
ID
1808 ret = btrfs_previous_item(fs_info->chunk_root, path,
1809 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1810 BTRFS_DEV_ITEM_KEY);
1811 if (ret) {
53f10659 1812 *devid_ret = 1;
0b86a832
CM
1813 } else {
1814 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1815 path->slots[0]);
53f10659 1816 *devid_ret = found_key.offset + 1;
0b86a832
CM
1817 }
1818 ret = 0;
1819error:
2b82032c 1820 btrfs_free_path(path);
0b86a832
CM
1821 return ret;
1822}
1823
1824/*
1825 * the device information is stored in the chunk root
1826 * the btrfs_device struct should be fully filled in
1827 */
c74a0b02 1828static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1829 struct btrfs_device *device)
0b86a832
CM
1830{
1831 int ret;
1832 struct btrfs_path *path;
1833 struct btrfs_dev_item *dev_item;
1834 struct extent_buffer *leaf;
1835 struct btrfs_key key;
1836 unsigned long ptr;
0b86a832 1837
0b86a832
CM
1838 path = btrfs_alloc_path();
1839 if (!path)
1840 return -ENOMEM;
1841
0b86a832
CM
1842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1844 key.offset = device->devid;
0b86a832 1845
8e87e856
NB
1846 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1847 &key, sizeof(*dev_item));
0b86a832
CM
1848 if (ret)
1849 goto out;
1850
1851 leaf = path->nodes[0];
1852 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1853
1854 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1855 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1856 btrfs_set_device_type(leaf, dev_item, device->type);
1857 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1858 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1859 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1860 btrfs_set_device_total_bytes(leaf, dev_item,
1861 btrfs_device_get_disk_total_bytes(device));
1862 btrfs_set_device_bytes_used(leaf, dev_item,
1863 btrfs_device_get_bytes_used(device));
e17cade2
CM
1864 btrfs_set_device_group(leaf, dev_item, 0);
1865 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1866 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1867 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1868
410ba3a2 1869 ptr = btrfs_device_uuid(dev_item);
e17cade2 1870 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1871 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1872 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1873 ptr, BTRFS_FSID_SIZE);
0b86a832 1874 btrfs_mark_buffer_dirty(leaf);
0b86a832 1875
2b82032c 1876 ret = 0;
0b86a832
CM
1877out:
1878 btrfs_free_path(path);
1879 return ret;
1880}
8f18cf13 1881
5a1972bd
QW
1882/*
1883 * Function to update ctime/mtime for a given device path.
1884 * Mainly used for ctime/mtime based probe like libblkid.
1885 */
8f96a5bf 1886static void update_dev_time(struct block_device *bdev)
5a1972bd 1887{
8f96a5bf
JB
1888 struct inode *inode = bdev->bd_inode;
1889 struct timespec64 now;
5a1972bd 1890
8f96a5bf
JB
1891 /* Shouldn't happen but just in case. */
1892 if (!inode)
5a1972bd 1893 return;
8f96a5bf
JB
1894
1895 now = current_time(inode);
1896 generic_update_time(inode, &now, S_MTIME | S_CTIME);
5a1972bd
QW
1897}
1898
f331a952 1899static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1900{
f331a952 1901 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1902 int ret;
1903 struct btrfs_path *path;
a061fc8d 1904 struct btrfs_key key;
a061fc8d
CM
1905 struct btrfs_trans_handle *trans;
1906
a061fc8d
CM
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1910
a22285a6 1911 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1912 if (IS_ERR(trans)) {
1913 btrfs_free_path(path);
1914 return PTR_ERR(trans);
1915 }
a061fc8d
CM
1916 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1917 key.type = BTRFS_DEV_ITEM_KEY;
1918 key.offset = device->devid;
1919
1920 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1921 if (ret) {
1922 if (ret > 0)
1923 ret = -ENOENT;
1924 btrfs_abort_transaction(trans, ret);
1925 btrfs_end_transaction(trans);
a061fc8d
CM
1926 goto out;
1927 }
1928
1929 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1930 if (ret) {
1931 btrfs_abort_transaction(trans, ret);
1932 btrfs_end_transaction(trans);
1933 }
1934
a061fc8d
CM
1935out:
1936 btrfs_free_path(path);
5e9f2ad5
NB
1937 if (!ret)
1938 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1939 return ret;
1940}
1941
3cc31a0d
DS
1942/*
1943 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1944 * filesystem. It's up to the caller to adjust that number regarding eg. device
1945 * replace.
1946 */
1947static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1948 u64 num_devices)
a061fc8d 1949{
a061fc8d 1950 u64 all_avail;
de98ced9 1951 unsigned seq;
418775a2 1952 int i;
a061fc8d 1953
de98ced9 1954 do {
bd45ffbc 1955 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1956
bd45ffbc
AJ
1957 all_avail = fs_info->avail_data_alloc_bits |
1958 fs_info->avail_system_alloc_bits |
1959 fs_info->avail_metadata_alloc_bits;
1960 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1961
418775a2 1962 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1963 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1964 continue;
a061fc8d 1965
efc222f8
AJ
1966 if (num_devices < btrfs_raid_array[i].devs_min)
1967 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1968 }
1969
bd45ffbc 1970 return 0;
f1fa7f26
AJ
1971}
1972
c9162bdf
OS
1973static struct btrfs_device * btrfs_find_next_active_device(
1974 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1975{
2b82032c 1976 struct btrfs_device *next_device;
88acff64
AJ
1977
1978 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1979 if (next_device != device &&
e6e674bd
AJ
1980 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1981 && next_device->bdev)
88acff64
AJ
1982 return next_device;
1983 }
1984
1985 return NULL;
1986}
1987
1988/*
1989 * Helper function to check if the given device is part of s_bdev / latest_bdev
1990 * and replace it with the provided or the next active device, in the context
1991 * where this function called, there should be always be another device (or
1992 * this_dev) which is active.
1993 */
b105e927 1994void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1995 struct btrfs_device *next_device)
88acff64 1996{
d6507cf1 1997 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1998
e493e8f9 1999 if (!next_device)
88acff64 2000 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2001 device);
88acff64
AJ
2002 ASSERT(next_device);
2003
2004 if (fs_info->sb->s_bdev &&
2005 (fs_info->sb->s_bdev == device->bdev))
2006 fs_info->sb->s_bdev = next_device->bdev;
2007
2008 if (fs_info->fs_devices->latest_bdev == device->bdev)
2009 fs_info->fs_devices->latest_bdev = next_device->bdev;
2010}
2011
1da73967
AJ
2012/*
2013 * Return btrfs_fs_devices::num_devices excluding the device that's being
2014 * currently replaced.
2015 */
2016static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2017{
2018 u64 num_devices = fs_info->fs_devices->num_devices;
2019
cb5583dd 2020 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2021 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2022 ASSERT(num_devices > 1);
2023 num_devices--;
2024 }
cb5583dd 2025 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2026
2027 return num_devices;
2028}
2029
313b0858
JB
2030void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2031 struct block_device *bdev,
2032 const char *device_path)
6fbceb9f 2033{
6fbceb9f
JT
2034 struct btrfs_super_block *disk_super;
2035 int copy_num;
2036
2037 if (!bdev)
2038 return;
2039
2040 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2041 struct page *page;
2042 int ret;
6fbceb9f 2043
8f32380d
JT
2044 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2045 if (IS_ERR(disk_super))
2046 continue;
6fbceb9f 2047
12659251
NA
2048 if (bdev_is_zoned(bdev)) {
2049 btrfs_reset_sb_log_zones(bdev, copy_num);
2050 continue;
2051 }
2052
6fbceb9f 2053 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2054
2055 page = virt_to_page(disk_super);
2056 set_page_dirty(page);
2057 lock_page(page);
2058 /* write_on_page() unlocks the page */
2059 ret = write_one_page(page);
2060 if (ret)
2061 btrfs_warn(fs_info,
2062 "error clearing superblock number %d (%d)",
2063 copy_num, ret);
2064 btrfs_release_disk_super(disk_super);
2065
6fbceb9f
JT
2066 }
2067
2068 /* Notify udev that device has changed */
2069 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2070
2071 /* Update ctime/mtime for device path for libblkid */
8f96a5bf 2072 update_dev_time(bdev);
6fbceb9f
JT
2073}
2074
da353f6b 2075int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
3fa421de 2076 u64 devid, struct block_device **bdev, fmode_t *mode)
f1fa7f26
AJ
2077{
2078 struct btrfs_device *device;
1f78160c 2079 struct btrfs_fs_devices *cur_devices;
b5185197 2080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2081 u64 num_devices;
a061fc8d
CM
2082 int ret = 0;
2083
a061fc8d
CM
2084 mutex_lock(&uuid_mutex);
2085
1da73967 2086 num_devices = btrfs_num_devices(fs_info);
8dabb742 2087
0b246afa 2088 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2089 if (ret)
a061fc8d 2090 goto out;
a061fc8d 2091
a27a94c2
NB
2092 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2093
2094 if (IS_ERR(device)) {
2095 if (PTR_ERR(device) == -ENOENT &&
e4571b8c 2096 device_path && strcmp(device_path, "missing") == 0)
a27a94c2
NB
2097 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2098 else
2099 ret = PTR_ERR(device);
53b381b3 2100 goto out;
a27a94c2 2101 }
dfe25020 2102
eede2bf3
OS
2103 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2104 btrfs_warn_in_rcu(fs_info,
2105 "cannot remove device %s (devid %llu) due to active swapfile",
2106 rcu_str_deref(device->name), device->devid);
2107 ret = -ETXTBSY;
2108 goto out;
2109 }
2110
401e29c1 2111 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2112 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2113 goto out;
63a212ab
SB
2114 }
2115
ebbede42
AJ
2116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2117 fs_info->fs_devices->rw_devices == 1) {
183860f6 2118 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2119 goto out;
2b82032c
YZ
2120 }
2121
ebbede42 2122 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2123 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2124 list_del_init(&device->dev_alloc_list);
c3929c36 2125 device->fs_devices->rw_devices--;
34441361 2126 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2127 }
a061fc8d 2128
d7901554 2129 mutex_unlock(&uuid_mutex);
a061fc8d 2130 ret = btrfs_shrink_device(device, 0);
66d204a1
FM
2131 if (!ret)
2132 btrfs_reada_remove_dev(device);
d7901554 2133 mutex_lock(&uuid_mutex);
a061fc8d 2134 if (ret)
9b3517e9 2135 goto error_undo;
a061fc8d 2136
63a212ab
SB
2137 /*
2138 * TODO: the superblock still includes this device in its num_devices
2139 * counter although write_all_supers() is not locked out. This
2140 * could give a filesystem state which requires a degraded mount.
2141 */
f331a952 2142 ret = btrfs_rm_dev_item(device);
a061fc8d 2143 if (ret)
9b3517e9 2144 goto error_undo;
a061fc8d 2145
e12c9621 2146 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2147 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2148
2149 /*
2150 * the device list mutex makes sure that we don't change
2151 * the device list while someone else is writing out all
d7306801
FDBM
2152 * the device supers. Whoever is writing all supers, should
2153 * lock the device list mutex before getting the number of
2154 * devices in the super block (super_copy). Conversely,
2155 * whoever updates the number of devices in the super block
2156 * (super_copy) should hold the device list mutex.
e5e9a520 2157 */
1f78160c 2158
41a52a0f
AJ
2159 /*
2160 * In normal cases the cur_devices == fs_devices. But in case
2161 * of deleting a seed device, the cur_devices should point to
2162 * its own fs_devices listed under the fs_devices->seed.
2163 */
1f78160c 2164 cur_devices = device->fs_devices;
b5185197 2165 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2166 list_del_rcu(&device->dev_list);
e5e9a520 2167
41a52a0f
AJ
2168 cur_devices->num_devices--;
2169 cur_devices->total_devices--;
b4993e64
AJ
2170 /* Update total_devices of the parent fs_devices if it's seed */
2171 if (cur_devices != fs_devices)
2172 fs_devices->total_devices--;
2b82032c 2173
e6e674bd 2174 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2175 cur_devices->missing_devices--;
cd02dca5 2176
d6507cf1 2177 btrfs_assign_next_active_device(device, NULL);
2b82032c 2178
0bfaa9c5 2179 if (device->bdev) {
41a52a0f 2180 cur_devices->open_devices--;
0bfaa9c5 2181 /* remove sysfs entry */
53f8a74c 2182 btrfs_sysfs_remove_device(device);
0bfaa9c5 2183 }
99994cde 2184
0b246afa
JM
2185 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2186 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2187 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2188
cea67ab9 2189 /*
3fa421de
JB
2190 * At this point, the device is zero sized and detached from the
2191 * devices list. All that's left is to zero out the old supers and
2192 * free the device.
2193 *
2194 * We cannot call btrfs_close_bdev() here because we're holding the sb
2195 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2196 * block device and it's dependencies. Instead just flush the device
2197 * and let the caller do the final blkdev_put.
cea67ab9 2198 */
3fa421de 2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2200 btrfs_scratch_superblocks(fs_info, device->bdev,
2201 device->name->str);
3fa421de
JB
2202 if (device->bdev) {
2203 sync_blockdev(device->bdev);
2204 invalidate_bdev(device->bdev);
2205 }
2206 }
cea67ab9 2207
3fa421de
JB
2208 *bdev = device->bdev;
2209 *mode = device->mode;
8e75fd89
NB
2210 synchronize_rcu();
2211 btrfs_free_device(device);
cea67ab9 2212
1f78160c 2213 if (cur_devices->open_devices == 0) {
944d3f9f 2214 list_del_init(&cur_devices->seed_list);
0226e0eb 2215 close_fs_devices(cur_devices);
1f78160c 2216 free_fs_devices(cur_devices);
2b82032c
YZ
2217 }
2218
a061fc8d
CM
2219out:
2220 mutex_unlock(&uuid_mutex);
a061fc8d 2221 return ret;
24fc572f 2222
9b3517e9 2223error_undo:
66d204a1 2224 btrfs_reada_undo_remove_dev(device);
ebbede42 2225 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2226 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2227 list_add(&device->dev_alloc_list,
b5185197 2228 &fs_devices->alloc_list);
c3929c36 2229 device->fs_devices->rw_devices++;
34441361 2230 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2231 }
24fc572f 2232 goto out;
a061fc8d
CM
2233}
2234
68a9db5f 2235void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2236{
d51908ce
AJ
2237 struct btrfs_fs_devices *fs_devices;
2238
68a9db5f 2239 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2240
25e8e911
AJ
2241 /*
2242 * in case of fs with no seed, srcdev->fs_devices will point
2243 * to fs_devices of fs_info. However when the dev being replaced is
2244 * a seed dev it will point to the seed's local fs_devices. In short
2245 * srcdev will have its correct fs_devices in both the cases.
2246 */
2247 fs_devices = srcdev->fs_devices;
d51908ce 2248
e93c89c1 2249 list_del_rcu(&srcdev->dev_list);
619c47f3 2250 list_del(&srcdev->dev_alloc_list);
d51908ce 2251 fs_devices->num_devices--;
e6e674bd 2252 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2253 fs_devices->missing_devices--;
e93c89c1 2254
ebbede42 2255 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2256 fs_devices->rw_devices--;
1357272f 2257
82372bc8 2258 if (srcdev->bdev)
d51908ce 2259 fs_devices->open_devices--;
084b6e7c
QW
2260}
2261
65237ee3 2262void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2263{
2264 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2265
a466c85e
JB
2266 mutex_lock(&uuid_mutex);
2267
14238819 2268 btrfs_close_bdev(srcdev);
8e75fd89
NB
2269 synchronize_rcu();
2270 btrfs_free_device(srcdev);
94d5f0c2 2271
94d5f0c2
AJ
2272 /* if this is no devs we rather delete the fs_devices */
2273 if (!fs_devices->num_devices) {
6dd38f81
AJ
2274 /*
2275 * On a mounted FS, num_devices can't be zero unless it's a
2276 * seed. In case of a seed device being replaced, the replace
2277 * target added to the sprout FS, so there will be no more
2278 * device left under the seed FS.
2279 */
2280 ASSERT(fs_devices->seeding);
2281
944d3f9f 2282 list_del_init(&fs_devices->seed_list);
0226e0eb 2283 close_fs_devices(fs_devices);
8bef8401 2284 free_fs_devices(fs_devices);
94d5f0c2 2285 }
a466c85e 2286 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2287}
2288
4f5ad7bd 2289void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2290{
4f5ad7bd 2291 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2292
d9a071f0 2293 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2294
53f8a74c 2295 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2296
779bf3fe 2297 if (tgtdev->bdev)
d9a071f0 2298 fs_devices->open_devices--;
779bf3fe 2299
d9a071f0 2300 fs_devices->num_devices--;
e93c89c1 2301
d6507cf1 2302 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2303
e93c89c1 2304 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2305
d9a071f0 2306 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2307
2308 /*
2309 * The update_dev_time() with in btrfs_scratch_superblocks()
2310 * may lead to a call to btrfs_show_devname() which will try
2311 * to hold device_list_mutex. And here this device
2312 * is already out of device list, so we don't have to hold
2313 * the device_list_mutex lock.
2314 */
8f32380d
JT
2315 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2316 tgtdev->name->str);
14238819
AJ
2317
2318 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2319 synchronize_rcu();
2320 btrfs_free_device(tgtdev);
e93c89c1
SB
2321}
2322
b444ad46
NB
2323static struct btrfs_device *btrfs_find_device_by_path(
2324 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2325{
2326 int ret = 0;
2327 struct btrfs_super_block *disk_super;
2328 u64 devid;
2329 u8 *dev_uuid;
2330 struct block_device *bdev;
b444ad46 2331 struct btrfs_device *device;
7ba15b7d 2332
7ba15b7d 2333 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
8f32380d 2334 fs_info->bdev_holder, 0, &bdev, &disk_super);
7ba15b7d 2335 if (ret)
b444ad46 2336 return ERR_PTR(ret);
8f32380d 2337
7ba15b7d
SB
2338 devid = btrfs_stack_device_id(&disk_super->dev_item);
2339 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2340 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2341 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2342 disk_super->metadata_uuid);
7239ff4b 2343 else
e4319cd9 2344 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2345 disk_super->fsid);
7239ff4b 2346
8f32380d 2347 btrfs_release_disk_super(disk_super);
b444ad46
NB
2348 if (!device)
2349 device = ERR_PTR(-ENOENT);
7ba15b7d 2350 blkdev_put(bdev, FMODE_READ);
b444ad46 2351 return device;
7ba15b7d
SB
2352}
2353
5c5c0df0
DS
2354/*
2355 * Lookup a device given by device id, or the path if the id is 0.
2356 */
a27a94c2 2357struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2358 struct btrfs_fs_info *fs_info, u64 devid,
2359 const char *device_path)
24e0474b 2360{
a27a94c2 2361 struct btrfs_device *device;
24e0474b 2362
5c5c0df0 2363 if (devid) {
e4319cd9 2364 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
b2598edf 2365 NULL);
a27a94c2
NB
2366 if (!device)
2367 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2368 return device;
2369 }
2370
2371 if (!device_path || !device_path[0])
2372 return ERR_PTR(-EINVAL);
2373
2374 if (strcmp(device_path, "missing") == 0) {
2375 /* Find first missing device */
2376 list_for_each_entry(device, &fs_info->fs_devices->devices,
2377 dev_list) {
2378 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2379 &device->dev_state) && !device->bdev)
2380 return device;
d95a830c 2381 }
6e927ceb 2382 return ERR_PTR(-ENOENT);
24e0474b 2383 }
6e927ceb
AJ
2384
2385 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2386}
2387
2b82032c
YZ
2388/*
2389 * does all the dirty work required for changing file system's UUID.
2390 */
2ff7e61e 2391static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2392{
0b246afa 2393 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2394 struct btrfs_fs_devices *old_devices;
e4404d6e 2395 struct btrfs_fs_devices *seed_devices;
0b246afa 2396 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2397 struct btrfs_device *device;
2398 u64 super_flags;
2399
a32bf9a3 2400 lockdep_assert_held(&uuid_mutex);
e4404d6e 2401 if (!fs_devices->seeding)
2b82032c
YZ
2402 return -EINVAL;
2403
427c8fdd
NB
2404 /*
2405 * Private copy of the seed devices, anchored at
2406 * fs_info->fs_devices->seed_list
2407 */
7239ff4b 2408 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2409 if (IS_ERR(seed_devices))
2410 return PTR_ERR(seed_devices);
2b82032c 2411
427c8fdd
NB
2412 /*
2413 * It's necessary to retain a copy of the original seed fs_devices in
2414 * fs_uuids so that filesystems which have been seeded can successfully
2415 * reference the seed device from open_seed_devices. This also supports
2416 * multiple fs seed.
2417 */
e4404d6e
YZ
2418 old_devices = clone_fs_devices(fs_devices);
2419 if (IS_ERR(old_devices)) {
2420 kfree(seed_devices);
2421 return PTR_ERR(old_devices);
2b82032c 2422 }
e4404d6e 2423
c4babc5e 2424 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2425
e4404d6e
YZ
2426 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2427 seed_devices->opened = 1;
2428 INIT_LIST_HEAD(&seed_devices->devices);
2429 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2430 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2431
321a4bf7 2432 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2433 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2434 synchronize_rcu);
2196d6e8
MX
2435 list_for_each_entry(device, &seed_devices->devices, dev_list)
2436 device->fs_devices = seed_devices;
c9513edb 2437
0395d84f 2438 fs_devices->seeding = false;
2b82032c
YZ
2439 fs_devices->num_devices = 0;
2440 fs_devices->open_devices = 0;
69611ac8 2441 fs_devices->missing_devices = 0;
7f0432d0 2442 fs_devices->rotating = false;
944d3f9f 2443 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2444
2445 generate_random_uuid(fs_devices->fsid);
7239ff4b 2446 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2447 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2448 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2449
2b82032c
YZ
2450 super_flags = btrfs_super_flags(disk_super) &
2451 ~BTRFS_SUPER_FLAG_SEEDING;
2452 btrfs_set_super_flags(disk_super, super_flags);
2453
2454 return 0;
2455}
2456
2457/*
01327610 2458 * Store the expected generation for seed devices in device items.
2b82032c 2459 */
5c466629 2460static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2461{
5c466629 2462 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2463 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2464 struct btrfs_path *path;
2465 struct extent_buffer *leaf;
2466 struct btrfs_dev_item *dev_item;
2467 struct btrfs_device *device;
2468 struct btrfs_key key;
44880fdc 2469 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2470 u8 dev_uuid[BTRFS_UUID_SIZE];
2471 u64 devid;
2472 int ret;
2473
2474 path = btrfs_alloc_path();
2475 if (!path)
2476 return -ENOMEM;
2477
2b82032c
YZ
2478 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2479 key.offset = 0;
2480 key.type = BTRFS_DEV_ITEM_KEY;
2481
2482 while (1) {
2483 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2484 if (ret < 0)
2485 goto error;
2486
2487 leaf = path->nodes[0];
2488next_slot:
2489 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2490 ret = btrfs_next_leaf(root, path);
2491 if (ret > 0)
2492 break;
2493 if (ret < 0)
2494 goto error;
2495 leaf = path->nodes[0];
2496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2497 btrfs_release_path(path);
2b82032c
YZ
2498 continue;
2499 }
2500
2501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2502 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2503 key.type != BTRFS_DEV_ITEM_KEY)
2504 break;
2505
2506 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2507 struct btrfs_dev_item);
2508 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2509 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2510 BTRFS_UUID_SIZE);
1473b24e 2511 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2512 BTRFS_FSID_SIZE);
e4319cd9 2513 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2514 fs_uuid);
79787eaa 2515 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2516
2517 if (device->fs_devices->seeding) {
2518 btrfs_set_device_generation(leaf, dev_item,
2519 device->generation);
2520 btrfs_mark_buffer_dirty(leaf);
2521 }
2522
2523 path->slots[0]++;
2524 goto next_slot;
2525 }
2526 ret = 0;
2527error:
2528 btrfs_free_path(path);
2529 return ret;
2530}
2531
da353f6b 2532int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2533{
5112febb 2534 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2535 struct request_queue *q;
788f20eb
CM
2536 struct btrfs_trans_handle *trans;
2537 struct btrfs_device *device;
2538 struct block_device *bdev;
0b246afa 2539 struct super_block *sb = fs_info->sb;
606686ee 2540 struct rcu_string *name;
5da54bc1 2541 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2542 u64 orig_super_total_bytes;
2543 u64 orig_super_num_devices;
2b82032c 2544 int seeding_dev = 0;
788f20eb 2545 int ret = 0;
44cab9ba 2546 bool locked = false;
788f20eb 2547
5da54bc1 2548 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2549 return -EROFS;
788f20eb 2550
a5d16333 2551 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2552 fs_info->bdev_holder);
7f59203a
JB
2553 if (IS_ERR(bdev))
2554 return PTR_ERR(bdev);
a2135011 2555
b70f5097
NA
2556 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2557 ret = -EINVAL;
2558 goto error;
2559 }
2560
5da54bc1 2561 if (fs_devices->seeding) {
2b82032c
YZ
2562 seeding_dev = 1;
2563 down_write(&sb->s_umount);
2564 mutex_lock(&uuid_mutex);
44cab9ba 2565 locked = true;
2b82032c
YZ
2566 }
2567
b9ba017f 2568 sync_blockdev(bdev);
a2135011 2569
f4cfa9bd
NB
2570 rcu_read_lock();
2571 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2572 if (device->bdev == bdev) {
2573 ret = -EEXIST;
f4cfa9bd 2574 rcu_read_unlock();
2b82032c 2575 goto error;
788f20eb
CM
2576 }
2577 }
f4cfa9bd 2578 rcu_read_unlock();
788f20eb 2579
0b246afa 2580 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2581 if (IS_ERR(device)) {
788f20eb 2582 /* we can safely leave the fs_devices entry around */
12bd2fc0 2583 ret = PTR_ERR(device);
2b82032c 2584 goto error;
788f20eb
CM
2585 }
2586
78f2c9e6 2587 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2588 if (!name) {
2b82032c 2589 ret = -ENOMEM;
5c4cf6c9 2590 goto error_free_device;
788f20eb 2591 }
606686ee 2592 rcu_assign_pointer(device->name, name);
2b82032c 2593
5b316468
NA
2594 device->fs_info = fs_info;
2595 device->bdev = bdev;
2596
2597 ret = btrfs_get_dev_zone_info(device);
2598 if (ret)
2599 goto error_free_device;
2600
a22285a6 2601 trans = btrfs_start_transaction(root, 0);
98d5dc13 2602 if (IS_ERR(trans)) {
98d5dc13 2603 ret = PTR_ERR(trans);
5b316468 2604 goto error_free_zone;
98d5dc13
TI
2605 }
2606
d5e2003c 2607 q = bdev_get_queue(bdev);
ebbede42 2608 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2609 device->generation = trans->transid;
0b246afa
JM
2610 device->io_width = fs_info->sectorsize;
2611 device->io_align = fs_info->sectorsize;
2612 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2613 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 fs_info->sectorsize);
2cc3c559 2615 device->disk_total_bytes = device->total_bytes;
935e5cc9 2616 device->commit_total_bytes = device->total_bytes;
e12c9621 2617 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2618 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2619 device->mode = FMODE_EXCL;
27087f37 2620 device->dev_stats_valid = 1;
9f6d2510 2621 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2622
2b82032c 2623 if (seeding_dev) {
a0a1db70 2624 btrfs_clear_sb_rdonly(sb);
2ff7e61e 2625 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2626 if (ret) {
2627 btrfs_abort_transaction(trans, ret);
2628 goto error_trans;
2629 }
2b82032c 2630 }
788f20eb 2631
5da54bc1 2632 device->fs_devices = fs_devices;
e5e9a520 2633
5da54bc1 2634 mutex_lock(&fs_devices->device_list_mutex);
34441361 2635 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2636 list_add_rcu(&device->dev_list, &fs_devices->devices);
2637 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2638 fs_devices->num_devices++;
2639 fs_devices->open_devices++;
2640 fs_devices->rw_devices++;
2641 fs_devices->total_devices++;
2642 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2643
a5ed45f8 2644 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2645
e884f4f0 2646 if (!blk_queue_nonrot(q))
7f0432d0 2647 fs_devices->rotating = true;
c289811c 2648
39379faa 2649 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2650 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2651 round_down(orig_super_total_bytes + device->total_bytes,
2652 fs_info->sectorsize));
788f20eb 2653
39379faa
NA
2654 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2655 btrfs_set_super_num_devices(fs_info->super_copy,
2656 orig_super_num_devices + 1);
0d39376a 2657
2196d6e8
MX
2658 /*
2659 * we've got more storage, clear any full flags on the space
2660 * infos
2661 */
0b246afa 2662 btrfs_clear_space_info_full(fs_info);
2196d6e8 2663
34441361 2664 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2665
2666 /* Add sysfs device entry */
cd36da2e 2667 btrfs_sysfs_add_device(device);
ca10845a 2668
5da54bc1 2669 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2670
2b82032c 2671 if (seeding_dev) {
34441361 2672 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2673 ret = init_first_rw_device(trans);
34441361 2674 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2675 if (ret) {
66642832 2676 btrfs_abort_transaction(trans, ret);
d31c32f6 2677 goto error_sysfs;
005d6427 2678 }
2196d6e8
MX
2679 }
2680
8e87e856 2681 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2682 if (ret) {
66642832 2683 btrfs_abort_transaction(trans, ret);
d31c32f6 2684 goto error_sysfs;
2196d6e8
MX
2685 }
2686
2687 if (seeding_dev) {
5c466629 2688 ret = btrfs_finish_sprout(trans);
005d6427 2689 if (ret) {
66642832 2690 btrfs_abort_transaction(trans, ret);
d31c32f6 2691 goto error_sysfs;
005d6427 2692 }
b2373f25 2693
8e560081
NB
2694 /*
2695 * fs_devices now represents the newly sprouted filesystem and
2696 * its fsid has been changed by btrfs_prepare_sprout
2697 */
2698 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2699 }
2700
3a45bb20 2701 ret = btrfs_commit_transaction(trans);
a2135011 2702
2b82032c
YZ
2703 if (seeding_dev) {
2704 mutex_unlock(&uuid_mutex);
2705 up_write(&sb->s_umount);
44cab9ba 2706 locked = false;
788f20eb 2707
79787eaa
JM
2708 if (ret) /* transaction commit */
2709 return ret;
2710
2ff7e61e 2711 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2712 if (ret < 0)
0b246afa 2713 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2714 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2715 trans = btrfs_attach_transaction(root);
2716 if (IS_ERR(trans)) {
2717 if (PTR_ERR(trans) == -ENOENT)
2718 return 0;
7132a262
AJ
2719 ret = PTR_ERR(trans);
2720 trans = NULL;
2721 goto error_sysfs;
671415b7 2722 }
3a45bb20 2723 ret = btrfs_commit_transaction(trans);
2b82032c 2724 }
c9e9f97b 2725
7f551d96
AJ
2726 /*
2727 * Now that we have written a new super block to this device, check all
2728 * other fs_devices list if device_path alienates any other scanned
2729 * device.
2730 * We can ignore the return value as it typically returns -EINVAL and
2731 * only succeeds if the device was an alien.
2732 */
2733 btrfs_forget_devices(device_path);
2734
2735 /* Update ctime/mtime for blkid or udev */
8f96a5bf 2736 update_dev_time(bdev);
7f551d96 2737
2b82032c 2738 return ret;
79787eaa 2739
d31c32f6 2740error_sysfs:
53f8a74c 2741 btrfs_sysfs_remove_device(device);
39379faa
NA
2742 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2743 mutex_lock(&fs_info->chunk_mutex);
2744 list_del_rcu(&device->dev_list);
2745 list_del(&device->dev_alloc_list);
2746 fs_info->fs_devices->num_devices--;
2747 fs_info->fs_devices->open_devices--;
2748 fs_info->fs_devices->rw_devices--;
2749 fs_info->fs_devices->total_devices--;
2750 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2751 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2752 btrfs_set_super_total_bytes(fs_info->super_copy,
2753 orig_super_total_bytes);
2754 btrfs_set_super_num_devices(fs_info->super_copy,
2755 orig_super_num_devices);
2756 mutex_unlock(&fs_info->chunk_mutex);
2757 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2758error_trans:
0af2c4bf 2759 if (seeding_dev)
a0a1db70 2760 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2761 if (trans)
2762 btrfs_end_transaction(trans);
5b316468
NA
2763error_free_zone:
2764 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2765error_free_device:
a425f9d4 2766 btrfs_free_device(device);
2b82032c 2767error:
e525fd89 2768 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2769 if (locked) {
2b82032c
YZ
2770 mutex_unlock(&uuid_mutex);
2771 up_write(&sb->s_umount);
2772 }
c9e9f97b 2773 return ret;
788f20eb
CM
2774}
2775
d397712b
CM
2776static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2777 struct btrfs_device *device)
0b86a832
CM
2778{
2779 int ret;
2780 struct btrfs_path *path;
0b246afa 2781 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2782 struct btrfs_dev_item *dev_item;
2783 struct extent_buffer *leaf;
2784 struct btrfs_key key;
2785
0b86a832
CM
2786 path = btrfs_alloc_path();
2787 if (!path)
2788 return -ENOMEM;
2789
2790 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2791 key.type = BTRFS_DEV_ITEM_KEY;
2792 key.offset = device->devid;
2793
2794 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2795 if (ret < 0)
2796 goto out;
2797
2798 if (ret > 0) {
2799 ret = -ENOENT;
2800 goto out;
2801 }
2802
2803 leaf = path->nodes[0];
2804 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2805
2806 btrfs_set_device_id(leaf, dev_item, device->devid);
2807 btrfs_set_device_type(leaf, dev_item, device->type);
2808 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2809 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2810 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2811 btrfs_set_device_total_bytes(leaf, dev_item,
2812 btrfs_device_get_disk_total_bytes(device));
2813 btrfs_set_device_bytes_used(leaf, dev_item,
2814 btrfs_device_get_bytes_used(device));
0b86a832
CM
2815 btrfs_mark_buffer_dirty(leaf);
2816
2817out:
2818 btrfs_free_path(path);
2819 return ret;
2820}
2821
2196d6e8 2822int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2823 struct btrfs_device *device, u64 new_size)
2824{
0b246afa
JM
2825 struct btrfs_fs_info *fs_info = device->fs_info;
2826 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2827 u64 old_total;
2828 u64 diff;
8f18cf13 2829
ebbede42 2830 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2831 return -EACCES;
2196d6e8 2832
7dfb8be1
NB
2833 new_size = round_down(new_size, fs_info->sectorsize);
2834
34441361 2835 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2836 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2837 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2838
63a212ab 2839 if (new_size <= device->total_bytes ||
401e29c1 2840 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2841 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2842 return -EINVAL;
2196d6e8 2843 }
2b82032c 2844
7dfb8be1
NB
2845 btrfs_set_super_total_bytes(super_copy,
2846 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2847 device->fs_devices->total_rw_bytes += diff;
2848
7cc8e58d
MX
2849 btrfs_device_set_total_bytes(device, new_size);
2850 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2851 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2852 if (list_empty(&device->post_commit_list))
2853 list_add_tail(&device->post_commit_list,
2854 &trans->transaction->dev_update_list);
34441361 2855 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2856
8f18cf13
CM
2857 return btrfs_update_device(trans, device);
2858}
2859
f4208794 2860static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2861{
f4208794 2862 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2863 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2864 int ret;
2865 struct btrfs_path *path;
2866 struct btrfs_key key;
2867
8f18cf13
CM
2868 path = btrfs_alloc_path();
2869 if (!path)
2870 return -ENOMEM;
2871
408fbf19 2872 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2873 key.offset = chunk_offset;
2874 key.type = BTRFS_CHUNK_ITEM_KEY;
2875
2876 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2877 if (ret < 0)
2878 goto out;
2879 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2880 btrfs_handle_fs_error(fs_info, -ENOENT,
2881 "Failed lookup while freeing chunk.");
79787eaa
JM
2882 ret = -ENOENT;
2883 goto out;
2884 }
8f18cf13
CM
2885
2886 ret = btrfs_del_item(trans, root, path);
79787eaa 2887 if (ret < 0)
0b246afa
JM
2888 btrfs_handle_fs_error(fs_info, ret,
2889 "Failed to delete chunk item.");
79787eaa 2890out:
8f18cf13 2891 btrfs_free_path(path);
65a246c5 2892 return ret;
8f18cf13
CM
2893}
2894
408fbf19 2895static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2896{
0b246afa 2897 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2898 struct btrfs_disk_key *disk_key;
2899 struct btrfs_chunk *chunk;
2900 u8 *ptr;
2901 int ret = 0;
2902 u32 num_stripes;
2903 u32 array_size;
2904 u32 len = 0;
2905 u32 cur;
2906 struct btrfs_key key;
2907
79bd3712 2908 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2909 array_size = btrfs_super_sys_array_size(super_copy);
2910
2911 ptr = super_copy->sys_chunk_array;
2912 cur = 0;
2913
2914 while (cur < array_size) {
2915 disk_key = (struct btrfs_disk_key *)ptr;
2916 btrfs_disk_key_to_cpu(&key, disk_key);
2917
2918 len = sizeof(*disk_key);
2919
2920 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2921 chunk = (struct btrfs_chunk *)(ptr + len);
2922 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2923 len += btrfs_chunk_item_size(num_stripes);
2924 } else {
2925 ret = -EIO;
2926 break;
2927 }
408fbf19 2928 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2929 key.offset == chunk_offset) {
2930 memmove(ptr, ptr + len, array_size - (cur + len));
2931 array_size -= len;
2932 btrfs_set_super_sys_array_size(super_copy, array_size);
2933 } else {
2934 ptr += len;
2935 cur += len;
2936 }
2937 }
2938 return ret;
2939}
2940
60ca842e
OS
2941/*
2942 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2943 * @logical: Logical block offset in bytes.
2944 * @length: Length of extent in bytes.
2945 *
2946 * Return: Chunk mapping or ERR_PTR.
2947 */
2948struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2949 u64 logical, u64 length)
592d92ee
LB
2950{
2951 struct extent_map_tree *em_tree;
2952 struct extent_map *em;
2953
c8bf1b67 2954 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2955 read_lock(&em_tree->lock);
2956 em = lookup_extent_mapping(em_tree, logical, length);
2957 read_unlock(&em_tree->lock);
2958
2959 if (!em) {
2960 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2961 logical, length);
2962 return ERR_PTR(-EINVAL);
2963 }
2964
2965 if (em->start > logical || em->start + em->len < logical) {
2966 btrfs_crit(fs_info,
2967 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2968 logical, length, em->start, em->start + em->len);
2969 free_extent_map(em);
2970 return ERR_PTR(-EINVAL);
2971 }
2972
2973 /* callers are responsible for dropping em's ref. */
2974 return em;
2975}
2976
79bd3712
FM
2977static int remove_chunk_item(struct btrfs_trans_handle *trans,
2978 struct map_lookup *map, u64 chunk_offset)
2979{
2980 int i;
2981
2982 /*
2983 * Removing chunk items and updating the device items in the chunks btree
2984 * requires holding the chunk_mutex.
2985 * See the comment at btrfs_chunk_alloc() for the details.
2986 */
2987 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2988
2989 for (i = 0; i < map->num_stripes; i++) {
2990 int ret;
2991
2992 ret = btrfs_update_device(trans, map->stripes[i].dev);
2993 if (ret)
2994 return ret;
2995 }
2996
2997 return btrfs_free_chunk(trans, chunk_offset);
2998}
2999
97aff912 3000int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3001{
97aff912 3002 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3003 struct extent_map *em;
3004 struct map_lookup *map;
2196d6e8 3005 u64 dev_extent_len = 0;
47ab2a6c 3006 int i, ret = 0;
0b246afa 3007 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3008
60ca842e 3009 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3010 if (IS_ERR(em)) {
47ab2a6c
JB
3011 /*
3012 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3013 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3014 * do anything we still error out.
3015 */
3016 ASSERT(0);
592d92ee 3017 return PTR_ERR(em);
47ab2a6c 3018 }
95617d69 3019 map = em->map_lookup;
8f18cf13 3020
57ba4cb8 3021 /*
79bd3712
FM
3022 * First delete the device extent items from the devices btree.
3023 * We take the device_list_mutex to avoid racing with the finishing phase
3024 * of a device replace operation. See the comment below before acquiring
3025 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3026 * because that can result in a deadlock when deleting the device extent
3027 * items from the devices btree - COWing an extent buffer from the btree
3028 * may result in allocating a new metadata chunk, which would attempt to
3029 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3030 */
3031 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3032 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3033 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3034 ret = btrfs_free_dev_extent(trans, device,
3035 map->stripes[i].physical,
3036 &dev_extent_len);
47ab2a6c 3037 if (ret) {
57ba4cb8 3038 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3039 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3040 goto out;
3041 }
a061fc8d 3042
2196d6e8 3043 if (device->bytes_used > 0) {
34441361 3044 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3045 btrfs_device_set_bytes_used(device,
3046 device->bytes_used - dev_extent_len);
a5ed45f8 3047 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3048 btrfs_clear_space_info_full(fs_info);
34441361 3049 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3050 }
79bd3712
FM
3051 }
3052 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3053
79bd3712
FM
3054 /*
3055 * We acquire fs_info->chunk_mutex for 2 reasons:
3056 *
3057 * 1) Just like with the first phase of the chunk allocation, we must
3058 * reserve system space, do all chunk btree updates and deletions, and
3059 * update the system chunk array in the superblock while holding this
3060 * mutex. This is for similar reasons as explained on the comment at
3061 * the top of btrfs_chunk_alloc();
3062 *
3063 * 2) Prevent races with the final phase of a device replace operation
3064 * that replaces the device object associated with the map's stripes,
3065 * because the device object's id can change at any time during that
3066 * final phase of the device replace operation
3067 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3068 * replaced device and then see it with an ID of
3069 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3070 * the device item, which does not exists on the chunk btree.
3071 * The finishing phase of device replace acquires both the
3072 * device_list_mutex and the chunk_mutex, in that order, so we are
3073 * safe by just acquiring the chunk_mutex.
3074 */
3075 trans->removing_chunk = true;
3076 mutex_lock(&fs_info->chunk_mutex);
3077
3078 check_system_chunk(trans, map->type);
3079
3080 ret = remove_chunk_item(trans, map, chunk_offset);
3081 /*
3082 * Normally we should not get -ENOSPC since we reserved space before
3083 * through the call to check_system_chunk().
3084 *
3085 * Despite our system space_info having enough free space, we may not
3086 * be able to allocate extents from its block groups, because all have
3087 * an incompatible profile, which will force us to allocate a new system
3088 * block group with the right profile, or right after we called
3089 * check_system_space() above, a scrub turned the only system block group
3090 * with enough free space into RO mode.
3091 * This is explained with more detail at do_chunk_alloc().
3092 *
3093 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3094 */
3095 if (ret == -ENOSPC) {
3096 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3097 struct btrfs_block_group *sys_bg;
3098
f6f39f7a 3099 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3100 if (IS_ERR(sys_bg)) {
3101 ret = PTR_ERR(sys_bg);
3102 btrfs_abort_transaction(trans, ret);
3103 goto out;
3104 }
3105
3106 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3107 if (ret) {
64bc6c2a
NB
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
dfe25020 3110 }
57ba4cb8 3111
79bd3712
FM
3112 ret = remove_chunk_item(trans, map, chunk_offset);
3113 if (ret) {
3114 btrfs_abort_transaction(trans, ret);
3115 goto out;
3116 }
3117 } else if (ret) {
66642832 3118 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3119 goto out;
3120 }
8f18cf13 3121
6bccf3ab 3122 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3123
8f18cf13 3124 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3125 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3126 if (ret) {
66642832 3127 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3128 goto out;
3129 }
8f18cf13
CM
3130 }
3131
79bd3712
FM
3132 mutex_unlock(&fs_info->chunk_mutex);
3133 trans->removing_chunk = false;
3134
3135 /*
3136 * We are done with chunk btree updates and deletions, so release the
3137 * system space we previously reserved (with check_system_chunk()).
3138 */
3139 btrfs_trans_release_chunk_metadata(trans);
3140
5a98ec01 3141 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3142 if (ret) {
66642832 3143 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3144 goto out;
3145 }
2b82032c 3146
47ab2a6c 3147out:
79bd3712
FM
3148 if (trans->removing_chunk) {
3149 mutex_unlock(&fs_info->chunk_mutex);
3150 trans->removing_chunk = false;
3151 }
2b82032c
YZ
3152 /* once for us */
3153 free_extent_map(em);
47ab2a6c
JB
3154 return ret;
3155}
2b82032c 3156
18bb8bbf 3157int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3158{
5b4aacef 3159 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3160 struct btrfs_trans_handle *trans;
b0643e59 3161 struct btrfs_block_group *block_group;
01e86008 3162 u64 length;
47ab2a6c 3163 int ret;
2b82032c 3164
67c5e7d4
FM
3165 /*
3166 * Prevent races with automatic removal of unused block groups.
3167 * After we relocate and before we remove the chunk with offset
3168 * chunk_offset, automatic removal of the block group can kick in,
3169 * resulting in a failure when calling btrfs_remove_chunk() below.
3170 *
3171 * Make sure to acquire this mutex before doing a tree search (dev
3172 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3173 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3174 * we release the path used to search the chunk/dev tree and before
3175 * the current task acquires this mutex and calls us.
3176 */
f3372065 3177 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3178
47ab2a6c 3179 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3180 btrfs_scrub_pause(fs_info);
0b246afa 3181 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3182 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3183 if (ret)
3184 return ret;
3185
b0643e59
DZ
3186 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3187 if (!block_group)
3188 return -ENOENT;
3189 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3190 length = block_group->length;
b0643e59
DZ
3191 btrfs_put_block_group(block_group);
3192
01e86008
JT
3193 /*
3194 * On a zoned file system, discard the whole block group, this will
3195 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3196 * resetting the zone fails, don't treat it as a fatal problem from the
3197 * filesystem's point of view.
3198 */
3199 if (btrfs_is_zoned(fs_info)) {
3200 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3201 if (ret)
3202 btrfs_info(fs_info,
3203 "failed to reset zone %llu after relocation",
3204 chunk_offset);
3205 }
3206
19c4d2f9
CM
3207 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3208 chunk_offset);
3209 if (IS_ERR(trans)) {
3210 ret = PTR_ERR(trans);
3211 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3212 return ret;
3213 }
3214
47ab2a6c 3215 /*
19c4d2f9
CM
3216 * step two, delete the device extents and the
3217 * chunk tree entries
47ab2a6c 3218 */
97aff912 3219 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3220 btrfs_end_transaction(trans);
19c4d2f9 3221 return ret;
2b82032c
YZ
3222}
3223
2ff7e61e 3224static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3225{
0b246afa 3226 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3227 struct btrfs_path *path;
3228 struct extent_buffer *leaf;
3229 struct btrfs_chunk *chunk;
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
2b82032c 3232 u64 chunk_type;
ba1bf481
JB
3233 bool retried = false;
3234 int failed = 0;
2b82032c
YZ
3235 int ret;
3236
3237 path = btrfs_alloc_path();
3238 if (!path)
3239 return -ENOMEM;
3240
ba1bf481 3241again:
2b82032c
YZ
3242 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3243 key.offset = (u64)-1;
3244 key.type = BTRFS_CHUNK_ITEM_KEY;
3245
3246 while (1) {
f3372065 3247 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3248 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3249 if (ret < 0) {
f3372065 3250 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3251 goto error;
67c5e7d4 3252 }
79787eaa 3253 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3254
3255 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3256 key.type);
67c5e7d4 3257 if (ret)
f3372065 3258 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3259 if (ret < 0)
3260 goto error;
3261 if (ret > 0)
3262 break;
1a40e23b 3263
2b82032c
YZ
3264 leaf = path->nodes[0];
3265 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3266
2b82032c
YZ
3267 chunk = btrfs_item_ptr(leaf, path->slots[0],
3268 struct btrfs_chunk);
3269 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3270 btrfs_release_path(path);
8f18cf13 3271
2b82032c 3272 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3273 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3274 if (ret == -ENOSPC)
3275 failed++;
14586651
HS
3276 else
3277 BUG_ON(ret);
2b82032c 3278 }
f3372065 3279 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3280
2b82032c
YZ
3281 if (found_key.offset == 0)
3282 break;
3283 key.offset = found_key.offset - 1;
3284 }
3285 ret = 0;
ba1bf481
JB
3286 if (failed && !retried) {
3287 failed = 0;
3288 retried = true;
3289 goto again;
fae7f21c 3290 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3291 ret = -ENOSPC;
3292 }
2b82032c
YZ
3293error:
3294 btrfs_free_path(path);
3295 return ret;
8f18cf13
CM
3296}
3297
a6f93c71
LB
3298/*
3299 * return 1 : allocate a data chunk successfully,
3300 * return <0: errors during allocating a data chunk,
3301 * return 0 : no need to allocate a data chunk.
3302 */
3303static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3304 u64 chunk_offset)
3305{
32da5386 3306 struct btrfs_block_group *cache;
a6f93c71
LB
3307 u64 bytes_used;
3308 u64 chunk_type;
3309
3310 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3311 ASSERT(cache);
3312 chunk_type = cache->flags;
3313 btrfs_put_block_group(cache);
3314
5ae21692
JT
3315 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3316 return 0;
3317
3318 spin_lock(&fs_info->data_sinfo->lock);
3319 bytes_used = fs_info->data_sinfo->bytes_used;
3320 spin_unlock(&fs_info->data_sinfo->lock);
3321
3322 if (!bytes_used) {
3323 struct btrfs_trans_handle *trans;
3324 int ret;
3325
3326 trans = btrfs_join_transaction(fs_info->tree_root);
3327 if (IS_ERR(trans))
3328 return PTR_ERR(trans);
3329
3330 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3331 btrfs_end_transaction(trans);
3332 if (ret < 0)
3333 return ret;
3334 return 1;
a6f93c71 3335 }
5ae21692 3336
a6f93c71
LB
3337 return 0;
3338}
3339
6bccf3ab 3340static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3341 struct btrfs_balance_control *bctl)
3342{
6bccf3ab 3343 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3344 struct btrfs_trans_handle *trans;
3345 struct btrfs_balance_item *item;
3346 struct btrfs_disk_balance_args disk_bargs;
3347 struct btrfs_path *path;
3348 struct extent_buffer *leaf;
3349 struct btrfs_key key;
3350 int ret, err;
3351
3352 path = btrfs_alloc_path();
3353 if (!path)
3354 return -ENOMEM;
3355
3356 trans = btrfs_start_transaction(root, 0);
3357 if (IS_ERR(trans)) {
3358 btrfs_free_path(path);
3359 return PTR_ERR(trans);
3360 }
3361
3362 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3363 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3364 key.offset = 0;
3365
3366 ret = btrfs_insert_empty_item(trans, root, path, &key,
3367 sizeof(*item));
3368 if (ret)
3369 goto out;
3370
3371 leaf = path->nodes[0];
3372 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3373
b159fa28 3374 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3375
3376 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3377 btrfs_set_balance_data(leaf, item, &disk_bargs);
3378 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3379 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3380 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3381 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3382
3383 btrfs_set_balance_flags(leaf, item, bctl->flags);
3384
3385 btrfs_mark_buffer_dirty(leaf);
3386out:
3387 btrfs_free_path(path);
3a45bb20 3388 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3389 if (err && !ret)
3390 ret = err;
3391 return ret;
3392}
3393
6bccf3ab 3394static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3395{
6bccf3ab 3396 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3397 struct btrfs_trans_handle *trans;
3398 struct btrfs_path *path;
3399 struct btrfs_key key;
3400 int ret, err;
3401
3402 path = btrfs_alloc_path();
3403 if (!path)
3404 return -ENOMEM;
3405
3502a8c0 3406 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3407 if (IS_ERR(trans)) {
3408 btrfs_free_path(path);
3409 return PTR_ERR(trans);
3410 }
3411
3412 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3413 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3414 key.offset = 0;
3415
3416 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3417 if (ret < 0)
3418 goto out;
3419 if (ret > 0) {
3420 ret = -ENOENT;
3421 goto out;
3422 }
3423
3424 ret = btrfs_del_item(trans, root, path);
3425out:
3426 btrfs_free_path(path);
3a45bb20 3427 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3428 if (err && !ret)
3429 ret = err;
3430 return ret;
3431}
3432
59641015
ID
3433/*
3434 * This is a heuristic used to reduce the number of chunks balanced on
3435 * resume after balance was interrupted.
3436 */
3437static void update_balance_args(struct btrfs_balance_control *bctl)
3438{
3439 /*
3440 * Turn on soft mode for chunk types that were being converted.
3441 */
3442 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3443 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3444 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3445 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3446 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448
3449 /*
3450 * Turn on usage filter if is not already used. The idea is
3451 * that chunks that we have already balanced should be
3452 * reasonably full. Don't do it for chunks that are being
3453 * converted - that will keep us from relocating unconverted
3454 * (albeit full) chunks.
3455 */
3456 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3457 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3458 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3459 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3460 bctl->data.usage = 90;
3461 }
3462 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3463 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3464 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3465 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3466 bctl->sys.usage = 90;
3467 }
3468 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3469 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3470 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3471 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3472 bctl->meta.usage = 90;
3473 }
3474}
3475
149196a2
DS
3476/*
3477 * Clear the balance status in fs_info and delete the balance item from disk.
3478 */
3479static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3480{
3481 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3482 int ret;
c9e9f97b
ID
3483
3484 BUG_ON(!fs_info->balance_ctl);
3485
3486 spin_lock(&fs_info->balance_lock);
3487 fs_info->balance_ctl = NULL;
3488 spin_unlock(&fs_info->balance_lock);
3489
3490 kfree(bctl);
149196a2
DS
3491 ret = del_balance_item(fs_info);
3492 if (ret)
3493 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3494}
3495
ed25e9b2
ID
3496/*
3497 * Balance filters. Return 1 if chunk should be filtered out
3498 * (should not be balanced).
3499 */
899c81ea 3500static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3501 struct btrfs_balance_args *bargs)
3502{
899c81ea
ID
3503 chunk_type = chunk_to_extended(chunk_type) &
3504 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3505
899c81ea 3506 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3507 return 0;
3508
3509 return 1;
3510}
3511
dba72cb3 3512static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3513 struct btrfs_balance_args *bargs)
bc309467 3514{
32da5386 3515 struct btrfs_block_group *cache;
bc309467
DS
3516 u64 chunk_used;
3517 u64 user_thresh_min;
3518 u64 user_thresh_max;
3519 int ret = 1;
3520
3521 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3522 chunk_used = cache->used;
bc309467
DS
3523
3524 if (bargs->usage_min == 0)
3525 user_thresh_min = 0;
3526 else
b3470b5d
DS
3527 user_thresh_min = div_factor_fine(cache->length,
3528 bargs->usage_min);
bc309467
DS
3529
3530 if (bargs->usage_max == 0)
3531 user_thresh_max = 1;
3532 else if (bargs->usage_max > 100)
b3470b5d 3533 user_thresh_max = cache->length;
bc309467 3534 else
b3470b5d
DS
3535 user_thresh_max = div_factor_fine(cache->length,
3536 bargs->usage_max);
bc309467
DS
3537
3538 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3539 ret = 0;
3540
3541 btrfs_put_block_group(cache);
3542 return ret;
3543}
3544
dba72cb3 3545static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3546 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3547{
32da5386 3548 struct btrfs_block_group *cache;
5ce5b3c0
ID
3549 u64 chunk_used, user_thresh;
3550 int ret = 1;
3551
3552 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3553 chunk_used = cache->used;
5ce5b3c0 3554
bc309467 3555 if (bargs->usage_min == 0)
3e39cea6 3556 user_thresh = 1;
a105bb88 3557 else if (bargs->usage > 100)
b3470b5d 3558 user_thresh = cache->length;
a105bb88 3559 else
b3470b5d 3560 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3561
5ce5b3c0
ID
3562 if (chunk_used < user_thresh)
3563 ret = 0;
3564
3565 btrfs_put_block_group(cache);
3566 return ret;
3567}
3568
409d404b
ID
3569static int chunk_devid_filter(struct extent_buffer *leaf,
3570 struct btrfs_chunk *chunk,
3571 struct btrfs_balance_args *bargs)
3572{
3573 struct btrfs_stripe *stripe;
3574 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3575 int i;
3576
3577 for (i = 0; i < num_stripes; i++) {
3578 stripe = btrfs_stripe_nr(chunk, i);
3579 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3580 return 0;
3581 }
3582
3583 return 1;
3584}
3585
946c9256
DS
3586static u64 calc_data_stripes(u64 type, int num_stripes)
3587{
3588 const int index = btrfs_bg_flags_to_raid_index(type);
3589 const int ncopies = btrfs_raid_array[index].ncopies;
3590 const int nparity = btrfs_raid_array[index].nparity;
3591
d58ede8d 3592 return (num_stripes - nparity) / ncopies;
946c9256
DS
3593}
3594
94e60d5a
ID
3595/* [pstart, pend) */
3596static int chunk_drange_filter(struct extent_buffer *leaf,
3597 struct btrfs_chunk *chunk,
94e60d5a
ID
3598 struct btrfs_balance_args *bargs)
3599{
3600 struct btrfs_stripe *stripe;
3601 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3602 u64 stripe_offset;
3603 u64 stripe_length;
946c9256 3604 u64 type;
94e60d5a
ID
3605 int factor;
3606 int i;
3607
3608 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3609 return 0;
3610
946c9256
DS
3611 type = btrfs_chunk_type(leaf, chunk);
3612 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3613
3614 for (i = 0; i < num_stripes; i++) {
3615 stripe = btrfs_stripe_nr(chunk, i);
3616 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3617 continue;
3618
3619 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3620 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3621 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3622
3623 if (stripe_offset < bargs->pend &&
3624 stripe_offset + stripe_length > bargs->pstart)
3625 return 0;
3626 }
3627
3628 return 1;
3629}
3630
ea67176a
ID
3631/* [vstart, vend) */
3632static int chunk_vrange_filter(struct extent_buffer *leaf,
3633 struct btrfs_chunk *chunk,
3634 u64 chunk_offset,
3635 struct btrfs_balance_args *bargs)
3636{
3637 if (chunk_offset < bargs->vend &&
3638 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3639 /* at least part of the chunk is inside this vrange */
3640 return 0;
3641
3642 return 1;
3643}
3644
dee32d0a
GAP
3645static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3646 struct btrfs_chunk *chunk,
3647 struct btrfs_balance_args *bargs)
3648{
3649 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3650
3651 if (bargs->stripes_min <= num_stripes
3652 && num_stripes <= bargs->stripes_max)
3653 return 0;
3654
3655 return 1;
3656}
3657
899c81ea 3658static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3659 struct btrfs_balance_args *bargs)
3660{
3661 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3662 return 0;
3663
899c81ea
ID
3664 chunk_type = chunk_to_extended(chunk_type) &
3665 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3666
899c81ea 3667 if (bargs->target == chunk_type)
cfa4c961
ID
3668 return 1;
3669
3670 return 0;
3671}
3672
6ec0896c 3673static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3674 struct btrfs_chunk *chunk, u64 chunk_offset)
3675{
6ec0896c 3676 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3677 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3678 struct btrfs_balance_args *bargs = NULL;
3679 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3680
3681 /* type filter */
3682 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3683 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3684 return 0;
3685 }
3686
3687 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3688 bargs = &bctl->data;
3689 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3690 bargs = &bctl->sys;
3691 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3692 bargs = &bctl->meta;
3693
ed25e9b2
ID
3694 /* profiles filter */
3695 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3696 chunk_profiles_filter(chunk_type, bargs)) {
3697 return 0;
5ce5b3c0
ID
3698 }
3699
3700 /* usage filter */
3701 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3702 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3703 return 0;
bc309467 3704 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3705 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3706 return 0;
409d404b
ID
3707 }
3708
3709 /* devid filter */
3710 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3711 chunk_devid_filter(leaf, chunk, bargs)) {
3712 return 0;
94e60d5a
ID
3713 }
3714
3715 /* drange filter, makes sense only with devid filter */
3716 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3717 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3718 return 0;
ea67176a
ID
3719 }
3720
3721 /* vrange filter */
3722 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3723 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3724 return 0;
ed25e9b2
ID
3725 }
3726
dee32d0a
GAP
3727 /* stripes filter */
3728 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3729 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3730 return 0;
3731 }
3732
cfa4c961
ID
3733 /* soft profile changing mode */
3734 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3735 chunk_soft_convert_filter(chunk_type, bargs)) {
3736 return 0;
3737 }
3738
7d824b6f
DS
3739 /*
3740 * limited by count, must be the last filter
3741 */
3742 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3743 if (bargs->limit == 0)
3744 return 0;
3745 else
3746 bargs->limit--;
12907fc7
DS
3747 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3748 /*
3749 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3750 * determined here because we do not have the global information
12907fc7
DS
3751 * about the count of all chunks that satisfy the filters.
3752 */
3753 if (bargs->limit_max == 0)
3754 return 0;
3755 else
3756 bargs->limit_max--;
7d824b6f
DS
3757 }
3758
f43ffb60
ID
3759 return 1;
3760}
3761
c9e9f97b 3762static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3763{
19a39dce 3764 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3765 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3766 u64 chunk_type;
f43ffb60 3767 struct btrfs_chunk *chunk;
5a488b9d 3768 struct btrfs_path *path = NULL;
ec44a35c 3769 struct btrfs_key key;
ec44a35c 3770 struct btrfs_key found_key;
f43ffb60
ID
3771 struct extent_buffer *leaf;
3772 int slot;
c9e9f97b
ID
3773 int ret;
3774 int enospc_errors = 0;
19a39dce 3775 bool counting = true;
12907fc7 3776 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3777 u64 limit_data = bctl->data.limit;
3778 u64 limit_meta = bctl->meta.limit;
3779 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3780 u32 count_data = 0;
3781 u32 count_meta = 0;
3782 u32 count_sys = 0;
2c9fe835 3783 int chunk_reserved = 0;
ec44a35c 3784
ec44a35c 3785 path = btrfs_alloc_path();
17e9f796
MF
3786 if (!path) {
3787 ret = -ENOMEM;
3788 goto error;
3789 }
19a39dce
ID
3790
3791 /* zero out stat counters */
3792 spin_lock(&fs_info->balance_lock);
3793 memset(&bctl->stat, 0, sizeof(bctl->stat));
3794 spin_unlock(&fs_info->balance_lock);
3795again:
7d824b6f 3796 if (!counting) {
12907fc7
DS
3797 /*
3798 * The single value limit and min/max limits use the same bytes
3799 * in the
3800 */
7d824b6f
DS
3801 bctl->data.limit = limit_data;
3802 bctl->meta.limit = limit_meta;
3803 bctl->sys.limit = limit_sys;
3804 }
ec44a35c
CM
3805 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3806 key.offset = (u64)-1;
3807 key.type = BTRFS_CHUNK_ITEM_KEY;
3808
d397712b 3809 while (1) {
19a39dce 3810 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3811 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3812 ret = -ECANCELED;
3813 goto error;
3814 }
3815
f3372065 3816 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3817 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3818 if (ret < 0) {
f3372065 3819 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3820 goto error;
67c5e7d4 3821 }
ec44a35c
CM
3822
3823 /*
3824 * this shouldn't happen, it means the last relocate
3825 * failed
3826 */
3827 if (ret == 0)
c9e9f97b 3828 BUG(); /* FIXME break ? */
ec44a35c
CM
3829
3830 ret = btrfs_previous_item(chunk_root, path, 0,
3831 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3832 if (ret) {
f3372065 3833 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3834 ret = 0;
ec44a35c 3835 break;
c9e9f97b 3836 }
7d9eb12c 3837
f43ffb60
ID
3838 leaf = path->nodes[0];
3839 slot = path->slots[0];
3840 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3841
67c5e7d4 3842 if (found_key.objectid != key.objectid) {
f3372065 3843 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3844 break;
67c5e7d4 3845 }
7d9eb12c 3846
f43ffb60 3847 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3848 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3849
19a39dce
ID
3850 if (!counting) {
3851 spin_lock(&fs_info->balance_lock);
3852 bctl->stat.considered++;
3853 spin_unlock(&fs_info->balance_lock);
3854 }
3855
6ec0896c 3856 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3857
b3b4aa74 3858 btrfs_release_path(path);
67c5e7d4 3859 if (!ret) {
f3372065 3860 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3861 goto loop;
67c5e7d4 3862 }
f43ffb60 3863
19a39dce 3864 if (counting) {
f3372065 3865 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3866 spin_lock(&fs_info->balance_lock);
3867 bctl->stat.expected++;
3868 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3869
3870 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3871 count_data++;
3872 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3873 count_sys++;
3874 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3875 count_meta++;
3876
3877 goto loop;
3878 }
3879
3880 /*
3881 * Apply limit_min filter, no need to check if the LIMITS
3882 * filter is used, limit_min is 0 by default
3883 */
3884 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3885 count_data < bctl->data.limit_min)
3886 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3887 count_meta < bctl->meta.limit_min)
3888 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3889 count_sys < bctl->sys.limit_min)) {
f3372065 3890 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3891 goto loop;
3892 }
3893
a6f93c71
LB
3894 if (!chunk_reserved) {
3895 /*
3896 * We may be relocating the only data chunk we have,
3897 * which could potentially end up with losing data's
3898 * raid profile, so lets allocate an empty one in
3899 * advance.
3900 */
3901 ret = btrfs_may_alloc_data_chunk(fs_info,
3902 found_key.offset);
2c9fe835 3903 if (ret < 0) {
f3372065 3904 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3905 goto error;
a6f93c71
LB
3906 } else if (ret == 1) {
3907 chunk_reserved = 1;
2c9fe835 3908 }
2c9fe835
ZL
3909 }
3910
5b4aacef 3911 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3912 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3913 if (ret == -ENOSPC) {
c9e9f97b 3914 enospc_errors++;
eede2bf3
OS
3915 } else if (ret == -ETXTBSY) {
3916 btrfs_info(fs_info,
3917 "skipping relocation of block group %llu due to active swapfile",
3918 found_key.offset);
3919 ret = 0;
3920 } else if (ret) {
3921 goto error;
19a39dce
ID
3922 } else {
3923 spin_lock(&fs_info->balance_lock);
3924 bctl->stat.completed++;
3925 spin_unlock(&fs_info->balance_lock);
3926 }
f43ffb60 3927loop:
795a3321
ID
3928 if (found_key.offset == 0)
3929 break;
ba1bf481 3930 key.offset = found_key.offset - 1;
ec44a35c 3931 }
c9e9f97b 3932
19a39dce
ID
3933 if (counting) {
3934 btrfs_release_path(path);
3935 counting = false;
3936 goto again;
3937 }
ec44a35c
CM
3938error:
3939 btrfs_free_path(path);
c9e9f97b 3940 if (enospc_errors) {
efe120a0 3941 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3942 enospc_errors);
c9e9f97b
ID
3943 if (!ret)
3944 ret = -ENOSPC;
3945 }
3946
ec44a35c
CM
3947 return ret;
3948}
3949
0c460c0d
ID
3950/**
3951 * alloc_profile_is_valid - see if a given profile is valid and reduced
3952 * @flags: profile to validate
3953 * @extended: if true @flags is treated as an extended profile
3954 */
3955static int alloc_profile_is_valid(u64 flags, int extended)
3956{
3957 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3958 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3959
3960 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3961
3962 /* 1) check that all other bits are zeroed */
3963 if (flags & ~mask)
3964 return 0;
3965
3966 /* 2) see if profile is reduced */
3967 if (flags == 0)
3968 return !extended; /* "0" is valid for usual profiles */
3969
c1499166 3970 return has_single_bit_set(flags);
0c460c0d
ID
3971}
3972
837d5b6e
ID
3973static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3974{
a7e99c69
ID
3975 /* cancel requested || normal exit path */
3976 return atomic_read(&fs_info->balance_cancel_req) ||
3977 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3978 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3979}
3980
5ba366c3
DS
3981/*
3982 * Validate target profile against allowed profiles and return true if it's OK.
3983 * Otherwise print the error message and return false.
3984 */
3985static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3986 const struct btrfs_balance_args *bargs,
3987 u64 allowed, const char *type)
bdcd3c97 3988{
5ba366c3
DS
3989 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3990 return true;
3991
c8050b3b
QW
3992 if (fs_info->sectorsize < PAGE_SIZE &&
3993 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3994 btrfs_err(fs_info,
3995 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3996 fs_info->sectorsize, PAGE_SIZE);
3997 return false;
3998 }
5ba366c3
DS
3999 /* Profile is valid and does not have bits outside of the allowed set */
4000 if (alloc_profile_is_valid(bargs->target, 1) &&
4001 (bargs->target & ~allowed) == 0)
4002 return true;
4003
4004 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4005 type, btrfs_bg_type_to_raid_name(bargs->target));
4006 return false;
bdcd3c97
AM
4007}
4008
56fc37d9
AJ
4009/*
4010 * Fill @buf with textual description of balance filter flags @bargs, up to
4011 * @size_buf including the terminating null. The output may be trimmed if it
4012 * does not fit into the provided buffer.
4013 */
4014static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4015 u32 size_buf)
4016{
4017 int ret;
4018 u32 size_bp = size_buf;
4019 char *bp = buf;
4020 u64 flags = bargs->flags;
4021 char tmp_buf[128] = {'\0'};
4022
4023 if (!flags)
4024 return;
4025
4026#define CHECK_APPEND_NOARG(a) \
4027 do { \
4028 ret = snprintf(bp, size_bp, (a)); \
4029 if (ret < 0 || ret >= size_bp) \
4030 goto out_overflow; \
4031 size_bp -= ret; \
4032 bp += ret; \
4033 } while (0)
4034
4035#define CHECK_APPEND_1ARG(a, v1) \
4036 do { \
4037 ret = snprintf(bp, size_bp, (a), (v1)); \
4038 if (ret < 0 || ret >= size_bp) \
4039 goto out_overflow; \
4040 size_bp -= ret; \
4041 bp += ret; \
4042 } while (0)
4043
4044#define CHECK_APPEND_2ARG(a, v1, v2) \
4045 do { \
4046 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4047 if (ret < 0 || ret >= size_bp) \
4048 goto out_overflow; \
4049 size_bp -= ret; \
4050 bp += ret; \
4051 } while (0)
4052
158da513
DS
4053 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4054 CHECK_APPEND_1ARG("convert=%s,",
4055 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4056
4057 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4058 CHECK_APPEND_NOARG("soft,");
4059
4060 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4061 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4062 sizeof(tmp_buf));
4063 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4064 }
4065
4066 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4067 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4068
4069 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4070 CHECK_APPEND_2ARG("usage=%u..%u,",
4071 bargs->usage_min, bargs->usage_max);
4072
4073 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4074 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4075
4076 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4077 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4078 bargs->pstart, bargs->pend);
4079
4080 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4081 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4082 bargs->vstart, bargs->vend);
4083
4084 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4085 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4086
4087 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4088 CHECK_APPEND_2ARG("limit=%u..%u,",
4089 bargs->limit_min, bargs->limit_max);
4090
4091 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4092 CHECK_APPEND_2ARG("stripes=%u..%u,",
4093 bargs->stripes_min, bargs->stripes_max);
4094
4095#undef CHECK_APPEND_2ARG
4096#undef CHECK_APPEND_1ARG
4097#undef CHECK_APPEND_NOARG
4098
4099out_overflow:
4100
4101 if (size_bp < size_buf)
4102 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4103 else
4104 buf[0] = '\0';
4105}
4106
4107static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4108{
4109 u32 size_buf = 1024;
4110 char tmp_buf[192] = {'\0'};
4111 char *buf;
4112 char *bp;
4113 u32 size_bp = size_buf;
4114 int ret;
4115 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4116
4117 buf = kzalloc(size_buf, GFP_KERNEL);
4118 if (!buf)
4119 return;
4120
4121 bp = buf;
4122
4123#define CHECK_APPEND_1ARG(a, v1) \
4124 do { \
4125 ret = snprintf(bp, size_bp, (a), (v1)); \
4126 if (ret < 0 || ret >= size_bp) \
4127 goto out_overflow; \
4128 size_bp -= ret; \
4129 bp += ret; \
4130 } while (0)
4131
4132 if (bctl->flags & BTRFS_BALANCE_FORCE)
4133 CHECK_APPEND_1ARG("%s", "-f ");
4134
4135 if (bctl->flags & BTRFS_BALANCE_DATA) {
4136 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4137 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4138 }
4139
4140 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4141 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4142 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4143 }
4144
4145 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4146 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4147 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4148 }
4149
4150#undef CHECK_APPEND_1ARG
4151
4152out_overflow:
4153
4154 if (size_bp < size_buf)
4155 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4156 btrfs_info(fs_info, "balance: %s %s",
4157 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4158 "resume" : "start", buf);
4159
4160 kfree(buf);
4161}
4162
c9e9f97b 4163/*
dccdb07b 4164 * Should be called with balance mutexe held
c9e9f97b 4165 */
6fcf6e2b
DS
4166int btrfs_balance(struct btrfs_fs_info *fs_info,
4167 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4168 struct btrfs_ioctl_balance_args *bargs)
4169{
14506127 4170 u64 meta_target, data_target;
f43ffb60 4171 u64 allowed;
e4837f8f 4172 int mixed = 0;
c9e9f97b 4173 int ret;
8dabb742 4174 u64 num_devices;
de98ced9 4175 unsigned seq;
e62869be 4176 bool reducing_redundancy;
081db89b 4177 int i;
c9e9f97b 4178
837d5b6e 4179 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4180 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4181 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4182 ret = -EINVAL;
4183 goto out;
4184 }
4185
e4837f8f
ID
4186 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4187 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4188 mixed = 1;
4189
f43ffb60
ID
4190 /*
4191 * In case of mixed groups both data and meta should be picked,
4192 * and identical options should be given for both of them.
4193 */
e4837f8f
ID
4194 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4195 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4196 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4197 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4198 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4199 btrfs_err(fs_info,
6dac13f8 4200 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4201 ret = -EINVAL;
4202 goto out;
4203 }
4204 }
4205
b35cf1f0
JB
4206 /*
4207 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4208 * are exclusive
b35cf1f0
JB
4209 */
4210 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4211
4212 /*
4213 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4214 * special bit for it, to make it easier to distinguish. Thus we need
4215 * to set it manually, or balance would refuse the profile.
4216 */
4217 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4218 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4219 if (num_devices >= btrfs_raid_array[i].devs_min)
4220 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4221
5ba366c3
DS
4222 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4223 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4224 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4225 ret = -EINVAL;
4226 goto out;
4227 }
4228
6079e12c
DS
4229 /*
4230 * Allow to reduce metadata or system integrity only if force set for
4231 * profiles with redundancy (copies, parity)
4232 */
4233 allowed = 0;
4234 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4235 if (btrfs_raid_array[i].ncopies >= 2 ||
4236 btrfs_raid_array[i].tolerated_failures >= 1)
4237 allowed |= btrfs_raid_array[i].bg_flag;
4238 }
de98ced9
MX
4239 do {
4240 seq = read_seqbegin(&fs_info->profiles_lock);
4241
4242 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4243 (fs_info->avail_system_alloc_bits & allowed) &&
4244 !(bctl->sys.target & allowed)) ||
4245 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4246 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4247 !(bctl->meta.target & allowed)))
e62869be 4248 reducing_redundancy = true;
5a8067c0 4249 else
e62869be 4250 reducing_redundancy = false;
5a8067c0
FM
4251
4252 /* if we're not converting, the target field is uninitialized */
4253 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4254 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4255 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4256 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4257 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4258
e62869be 4259 if (reducing_redundancy) {
5a8067c0
FM
4260 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4261 btrfs_info(fs_info,
e62869be 4262 "balance: force reducing metadata redundancy");
5a8067c0
FM
4263 } else {
4264 btrfs_err(fs_info,
e62869be 4265 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4266 ret = -EINVAL;
4267 goto out;
4268 }
4269 }
4270
14506127
AB
4271 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4272 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4273 btrfs_warn(fs_info,
6dac13f8 4274 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4275 btrfs_bg_type_to_raid_name(meta_target),
4276 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4277 }
4278
6bccf3ab 4279 ret = insert_balance_item(fs_info, bctl);
59641015 4280 if (ret && ret != -EEXIST)
0940ebf6
ID
4281 goto out;
4282
59641015
ID
4283 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4284 BUG_ON(ret == -EEXIST);
833aae18
DS
4285 BUG_ON(fs_info->balance_ctl);
4286 spin_lock(&fs_info->balance_lock);
4287 fs_info->balance_ctl = bctl;
4288 spin_unlock(&fs_info->balance_lock);
59641015
ID
4289 } else {
4290 BUG_ON(ret != -EEXIST);
4291 spin_lock(&fs_info->balance_lock);
4292 update_balance_args(bctl);
4293 spin_unlock(&fs_info->balance_lock);
4294 }
c9e9f97b 4295
3009a62f
DS
4296 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4297 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4298 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4299 mutex_unlock(&fs_info->balance_mutex);
4300
4301 ret = __btrfs_balance(fs_info);
4302
4303 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4304 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4305 btrfs_info(fs_info, "balance: paused");
44d354ab
QW
4306 /*
4307 * Balance can be canceled by:
4308 *
4309 * - Regular cancel request
4310 * Then ret == -ECANCELED and balance_cancel_req > 0
4311 *
4312 * - Fatal signal to "btrfs" process
4313 * Either the signal caught by wait_reserve_ticket() and callers
4314 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4315 * got -ECANCELED.
4316 * Either way, in this case balance_cancel_req = 0, and
4317 * ret == -EINTR or ret == -ECANCELED.
4318 *
4319 * So here we only check the return value to catch canceled balance.
4320 */
4321 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4322 btrfs_info(fs_info, "balance: canceled");
4323 else
4324 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4325
3009a62f 4326 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4327
4328 if (bargs) {
4329 memset(bargs, 0, sizeof(*bargs));
008ef096 4330 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4331 }
4332
3a01aa7a
ID
4333 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4334 balance_need_close(fs_info)) {
149196a2 4335 reset_balance_state(fs_info);
c3e1f96c 4336 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4337 }
4338
837d5b6e 4339 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4340
4341 return ret;
4342out:
59641015 4343 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4344 reset_balance_state(fs_info);
a17c95df 4345 else
59641015 4346 kfree(bctl);
c3e1f96c 4347 btrfs_exclop_finish(fs_info);
a17c95df 4348
59641015
ID
4349 return ret;
4350}
4351
4352static int balance_kthread(void *data)
4353{
2b6ba629 4354 struct btrfs_fs_info *fs_info = data;
9555c6c1 4355 int ret = 0;
59641015 4356
59641015 4357 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4358 if (fs_info->balance_ctl)
6fcf6e2b 4359 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4360 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4361
59641015
ID
4362 return ret;
4363}
4364
2b6ba629
ID
4365int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4366{
4367 struct task_struct *tsk;
4368
1354e1a1 4369 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4370 if (!fs_info->balance_ctl) {
1354e1a1 4371 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4372 return 0;
4373 }
1354e1a1 4374 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4375
3cdde224 4376 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4377 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4378 return 0;
4379 }
4380
02ee654d
AJ
4381 /*
4382 * A ro->rw remount sequence should continue with the paused balance
4383 * regardless of who pauses it, system or the user as of now, so set
4384 * the resume flag.
4385 */
4386 spin_lock(&fs_info->balance_lock);
4387 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4388 spin_unlock(&fs_info->balance_lock);
4389
2b6ba629 4390 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4391 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4392}
4393
68310a5e 4394int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4395{
59641015
ID
4396 struct btrfs_balance_control *bctl;
4397 struct btrfs_balance_item *item;
4398 struct btrfs_disk_balance_args disk_bargs;
4399 struct btrfs_path *path;
4400 struct extent_buffer *leaf;
4401 struct btrfs_key key;
4402 int ret;
4403
4404 path = btrfs_alloc_path();
4405 if (!path)
4406 return -ENOMEM;
4407
59641015 4408 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4409 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4410 key.offset = 0;
4411
68310a5e 4412 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4413 if (ret < 0)
68310a5e 4414 goto out;
59641015
ID
4415 if (ret > 0) { /* ret = -ENOENT; */
4416 ret = 0;
68310a5e
ID
4417 goto out;
4418 }
4419
4420 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4421 if (!bctl) {
4422 ret = -ENOMEM;
4423 goto out;
59641015
ID
4424 }
4425
4426 leaf = path->nodes[0];
4427 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4428
68310a5e
ID
4429 bctl->flags = btrfs_balance_flags(leaf, item);
4430 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4431
4432 btrfs_balance_data(leaf, item, &disk_bargs);
4433 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4434 btrfs_balance_meta(leaf, item, &disk_bargs);
4435 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4436 btrfs_balance_sys(leaf, item, &disk_bargs);
4437 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4438
eee95e3f
DS
4439 /*
4440 * This should never happen, as the paused balance state is recovered
4441 * during mount without any chance of other exclusive ops to collide.
4442 *
4443 * This gives the exclusive op status to balance and keeps in paused
4444 * state until user intervention (cancel or umount). If the ownership
4445 * cannot be assigned, show a message but do not fail. The balance
4446 * is in a paused state and must have fs_info::balance_ctl properly
4447 * set up.
4448 */
c3e1f96c 4449 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
eee95e3f 4450 btrfs_warn(fs_info,
6dac13f8 4451 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4452
fb286100
JB
4453 btrfs_release_path(path);
4454
68310a5e 4455 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4456 BUG_ON(fs_info->balance_ctl);
4457 spin_lock(&fs_info->balance_lock);
4458 fs_info->balance_ctl = bctl;
4459 spin_unlock(&fs_info->balance_lock);
68310a5e 4460 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4461out:
4462 btrfs_free_path(path);
ec44a35c
CM
4463 return ret;
4464}
4465
837d5b6e
ID
4466int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4467{
4468 int ret = 0;
4469
4470 mutex_lock(&fs_info->balance_mutex);
4471 if (!fs_info->balance_ctl) {
4472 mutex_unlock(&fs_info->balance_mutex);
4473 return -ENOTCONN;
4474 }
4475
3009a62f 4476 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4477 atomic_inc(&fs_info->balance_pause_req);
4478 mutex_unlock(&fs_info->balance_mutex);
4479
4480 wait_event(fs_info->balance_wait_q,
3009a62f 4481 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4482
4483 mutex_lock(&fs_info->balance_mutex);
4484 /* we are good with balance_ctl ripped off from under us */
3009a62f 4485 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4486 atomic_dec(&fs_info->balance_pause_req);
4487 } else {
4488 ret = -ENOTCONN;
4489 }
4490
4491 mutex_unlock(&fs_info->balance_mutex);
4492 return ret;
4493}
4494
a7e99c69
ID
4495int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4496{
4497 mutex_lock(&fs_info->balance_mutex);
4498 if (!fs_info->balance_ctl) {
4499 mutex_unlock(&fs_info->balance_mutex);
4500 return -ENOTCONN;
4501 }
4502
cf7d20f4
DS
4503 /*
4504 * A paused balance with the item stored on disk can be resumed at
4505 * mount time if the mount is read-write. Otherwise it's still paused
4506 * and we must not allow cancelling as it deletes the item.
4507 */
4508 if (sb_rdonly(fs_info->sb)) {
4509 mutex_unlock(&fs_info->balance_mutex);
4510 return -EROFS;
4511 }
4512
a7e99c69
ID
4513 atomic_inc(&fs_info->balance_cancel_req);
4514 /*
4515 * if we are running just wait and return, balance item is
4516 * deleted in btrfs_balance in this case
4517 */
3009a62f 4518 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4519 mutex_unlock(&fs_info->balance_mutex);
4520 wait_event(fs_info->balance_wait_q,
3009a62f 4521 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4522 mutex_lock(&fs_info->balance_mutex);
4523 } else {
a7e99c69 4524 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4525 /*
4526 * Lock released to allow other waiters to continue, we'll
4527 * reexamine the status again.
4528 */
a7e99c69
ID
4529 mutex_lock(&fs_info->balance_mutex);
4530
a17c95df 4531 if (fs_info->balance_ctl) {
149196a2 4532 reset_balance_state(fs_info);
c3e1f96c 4533 btrfs_exclop_finish(fs_info);
6dac13f8 4534 btrfs_info(fs_info, "balance: canceled");
a17c95df 4535 }
a7e99c69
ID
4536 }
4537
3009a62f
DS
4538 BUG_ON(fs_info->balance_ctl ||
4539 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4540 atomic_dec(&fs_info->balance_cancel_req);
4541 mutex_unlock(&fs_info->balance_mutex);
4542 return 0;
4543}
4544
97f4dd09 4545int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4546{
4547 struct btrfs_fs_info *fs_info = data;
4548 struct btrfs_root *root = fs_info->tree_root;
4549 struct btrfs_key key;
803b2f54
SB
4550 struct btrfs_path *path = NULL;
4551 int ret = 0;
4552 struct extent_buffer *eb;
4553 int slot;
4554 struct btrfs_root_item root_item;
4555 u32 item_size;
f45388f3 4556 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4557 bool closing = false;
803b2f54
SB
4558
4559 path = btrfs_alloc_path();
4560 if (!path) {
4561 ret = -ENOMEM;
4562 goto out;
4563 }
4564
4565 key.objectid = 0;
4566 key.type = BTRFS_ROOT_ITEM_KEY;
4567 key.offset = 0;
4568
803b2f54 4569 while (1) {
c94bec2c
JB
4570 if (btrfs_fs_closing(fs_info)) {
4571 closing = true;
4572 break;
4573 }
7c829b72
AJ
4574 ret = btrfs_search_forward(root, &key, path,
4575 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4576 if (ret) {
4577 if (ret > 0)
4578 ret = 0;
4579 break;
4580 }
4581
4582 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4583 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4584 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4585 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4586 goto skip;
4587
4588 eb = path->nodes[0];
4589 slot = path->slots[0];
4590 item_size = btrfs_item_size_nr(eb, slot);
4591 if (item_size < sizeof(root_item))
4592 goto skip;
4593
803b2f54
SB
4594 read_extent_buffer(eb, &root_item,
4595 btrfs_item_ptr_offset(eb, slot),
4596 (int)sizeof(root_item));
4597 if (btrfs_root_refs(&root_item) == 0)
4598 goto skip;
f45388f3
FDBM
4599
4600 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4601 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4602 if (trans)
4603 goto update_tree;
4604
4605 btrfs_release_path(path);
803b2f54
SB
4606 /*
4607 * 1 - subvol uuid item
4608 * 1 - received_subvol uuid item
4609 */
4610 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4611 if (IS_ERR(trans)) {
4612 ret = PTR_ERR(trans);
4613 break;
4614 }
f45388f3
FDBM
4615 continue;
4616 } else {
4617 goto skip;
4618 }
4619update_tree:
9771a5cf 4620 btrfs_release_path(path);
f45388f3 4621 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4622 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4623 BTRFS_UUID_KEY_SUBVOL,
4624 key.objectid);
4625 if (ret < 0) {
efe120a0 4626 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4627 ret);
803b2f54
SB
4628 break;
4629 }
4630 }
4631
4632 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4633 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4634 root_item.received_uuid,
4635 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4636 key.objectid);
4637 if (ret < 0) {
efe120a0 4638 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4639 ret);
803b2f54
SB
4640 break;
4641 }
4642 }
4643
f45388f3 4644skip:
9771a5cf 4645 btrfs_release_path(path);
803b2f54 4646 if (trans) {
3a45bb20 4647 ret = btrfs_end_transaction(trans);
f45388f3 4648 trans = NULL;
803b2f54
SB
4649 if (ret)
4650 break;
4651 }
4652
803b2f54
SB
4653 if (key.offset < (u64)-1) {
4654 key.offset++;
4655 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4656 key.offset = 0;
4657 key.type = BTRFS_ROOT_ITEM_KEY;
4658 } else if (key.objectid < (u64)-1) {
4659 key.offset = 0;
4660 key.type = BTRFS_ROOT_ITEM_KEY;
4661 key.objectid++;
4662 } else {
4663 break;
4664 }
4665 cond_resched();
4666 }
4667
4668out:
4669 btrfs_free_path(path);
f45388f3 4670 if (trans && !IS_ERR(trans))
3a45bb20 4671 btrfs_end_transaction(trans);
803b2f54 4672 if (ret)
efe120a0 4673 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4674 else if (!closing)
afcdd129 4675 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4676 up(&fs_info->uuid_tree_rescan_sem);
4677 return 0;
4678}
4679
f7a81ea4
SB
4680int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4681{
4682 struct btrfs_trans_handle *trans;
4683 struct btrfs_root *tree_root = fs_info->tree_root;
4684 struct btrfs_root *uuid_root;
803b2f54
SB
4685 struct task_struct *task;
4686 int ret;
f7a81ea4
SB
4687
4688 /*
4689 * 1 - root node
4690 * 1 - root item
4691 */
4692 trans = btrfs_start_transaction(tree_root, 2);
4693 if (IS_ERR(trans))
4694 return PTR_ERR(trans);
4695
9b7a2440 4696 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4697 if (IS_ERR(uuid_root)) {
6d13f549 4698 ret = PTR_ERR(uuid_root);
66642832 4699 btrfs_abort_transaction(trans, ret);
3a45bb20 4700 btrfs_end_transaction(trans);
6d13f549 4701 return ret;
f7a81ea4
SB
4702 }
4703
4704 fs_info->uuid_root = uuid_root;
4705
3a45bb20 4706 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4707 if (ret)
4708 return ret;
4709
4710 down(&fs_info->uuid_tree_rescan_sem);
4711 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4712 if (IS_ERR(task)) {
70f80175 4713 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4714 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4715 up(&fs_info->uuid_tree_rescan_sem);
4716 return PTR_ERR(task);
4717 }
4718
4719 return 0;
f7a81ea4 4720}
803b2f54 4721
8f18cf13
CM
4722/*
4723 * shrinking a device means finding all of the device extents past
4724 * the new size, and then following the back refs to the chunks.
4725 * The chunk relocation code actually frees the device extent
4726 */
4727int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4728{
0b246afa
JM
4729 struct btrfs_fs_info *fs_info = device->fs_info;
4730 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4731 struct btrfs_trans_handle *trans;
8f18cf13
CM
4732 struct btrfs_dev_extent *dev_extent = NULL;
4733 struct btrfs_path *path;
4734 u64 length;
8f18cf13
CM
4735 u64 chunk_offset;
4736 int ret;
4737 int slot;
ba1bf481
JB
4738 int failed = 0;
4739 bool retried = false;
8f18cf13
CM
4740 struct extent_buffer *l;
4741 struct btrfs_key key;
0b246afa 4742 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4743 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4744 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4745 u64 diff;
61d0d0d2 4746 u64 start;
7dfb8be1
NB
4747
4748 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4749 start = new_size;
0e4324a4 4750 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4751
401e29c1 4752 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4753 return -EINVAL;
4754
8f18cf13
CM
4755 path = btrfs_alloc_path();
4756 if (!path)
4757 return -ENOMEM;
4758
0338dff6 4759 path->reada = READA_BACK;
8f18cf13 4760
61d0d0d2
NB
4761 trans = btrfs_start_transaction(root, 0);
4762 if (IS_ERR(trans)) {
4763 btrfs_free_path(path);
4764 return PTR_ERR(trans);
4765 }
4766
34441361 4767 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4768
7cc8e58d 4769 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4770 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4771 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4772 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4773 }
61d0d0d2
NB
4774
4775 /*
4776 * Once the device's size has been set to the new size, ensure all
4777 * in-memory chunks are synced to disk so that the loop below sees them
4778 * and relocates them accordingly.
4779 */
1c11b63e 4780 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4781 mutex_unlock(&fs_info->chunk_mutex);
4782 ret = btrfs_commit_transaction(trans);
4783 if (ret)
4784 goto done;
4785 } else {
4786 mutex_unlock(&fs_info->chunk_mutex);
4787 btrfs_end_transaction(trans);
4788 }
8f18cf13 4789
ba1bf481 4790again:
8f18cf13
CM
4791 key.objectid = device->devid;
4792 key.offset = (u64)-1;
4793 key.type = BTRFS_DEV_EXTENT_KEY;
4794
213e64da 4795 do {
f3372065 4796 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4798 if (ret < 0) {
f3372065 4799 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4800 goto done;
67c5e7d4 4801 }
8f18cf13
CM
4802
4803 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4804 if (ret) {
f3372065 4805 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4806 if (ret < 0)
4807 goto done;
8f18cf13 4808 ret = 0;
b3b4aa74 4809 btrfs_release_path(path);
bf1fb512 4810 break;
8f18cf13
CM
4811 }
4812
4813 l = path->nodes[0];
4814 slot = path->slots[0];
4815 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4816
ba1bf481 4817 if (key.objectid != device->devid) {
f3372065 4818 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4819 btrfs_release_path(path);
bf1fb512 4820 break;
ba1bf481 4821 }
8f18cf13
CM
4822
4823 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4824 length = btrfs_dev_extent_length(l, dev_extent);
4825
ba1bf481 4826 if (key.offset + length <= new_size) {
f3372065 4827 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4828 btrfs_release_path(path);
d6397bae 4829 break;
ba1bf481 4830 }
8f18cf13 4831
8f18cf13 4832 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4833 btrfs_release_path(path);
8f18cf13 4834
a6f93c71
LB
4835 /*
4836 * We may be relocating the only data chunk we have,
4837 * which could potentially end up with losing data's
4838 * raid profile, so lets allocate an empty one in
4839 * advance.
4840 */
4841 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4842 if (ret < 0) {
f3372065 4843 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4844 goto done;
4845 }
4846
0b246afa 4847 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4848 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4849 if (ret == -ENOSPC) {
ba1bf481 4850 failed++;
eede2bf3
OS
4851 } else if (ret) {
4852 if (ret == -ETXTBSY) {
4853 btrfs_warn(fs_info,
4854 "could not shrink block group %llu due to active swapfile",
4855 chunk_offset);
4856 }
4857 goto done;
4858 }
213e64da 4859 } while (key.offset-- > 0);
ba1bf481
JB
4860
4861 if (failed && !retried) {
4862 failed = 0;
4863 retried = true;
4864 goto again;
4865 } else if (failed && retried) {
4866 ret = -ENOSPC;
ba1bf481 4867 goto done;
8f18cf13
CM
4868 }
4869
d6397bae 4870 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4871 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4872 if (IS_ERR(trans)) {
4873 ret = PTR_ERR(trans);
4874 goto done;
4875 }
4876
34441361 4877 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4878 /* Clear all state bits beyond the shrunk device size */
4879 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4880 CHUNK_STATE_MASK);
4881
7cc8e58d 4882 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4883 if (list_empty(&device->post_commit_list))
4884 list_add_tail(&device->post_commit_list,
4885 &trans->transaction->dev_update_list);
d6397bae 4886
d6397bae 4887 WARN_ON(diff > old_total);
7dfb8be1
NB
4888 btrfs_set_super_total_bytes(super_copy,
4889 round_down(old_total - diff, fs_info->sectorsize));
34441361 4890 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4891
4892 /* Now btrfs_update_device() will change the on-disk size. */
4893 ret = btrfs_update_device(trans, device);
801660b0
AJ
4894 if (ret < 0) {
4895 btrfs_abort_transaction(trans, ret);
4896 btrfs_end_transaction(trans);
4897 } else {
4898 ret = btrfs_commit_transaction(trans);
4899 }
8f18cf13
CM
4900done:
4901 btrfs_free_path(path);
53e489bc 4902 if (ret) {
34441361 4903 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4904 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4905 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4906 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4907 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4908 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4909 }
8f18cf13
CM
4910 return ret;
4911}
4912
2ff7e61e 4913static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4914 struct btrfs_key *key,
4915 struct btrfs_chunk *chunk, int item_size)
4916{
0b246afa 4917 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4918 struct btrfs_disk_key disk_key;
4919 u32 array_size;
4920 u8 *ptr;
4921
79bd3712
FM
4922 lockdep_assert_held(&fs_info->chunk_mutex);
4923
0b86a832 4924 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4925 if (array_size + item_size + sizeof(disk_key)
79bd3712 4926 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4927 return -EFBIG;
4928
4929 ptr = super_copy->sys_chunk_array + array_size;
4930 btrfs_cpu_key_to_disk(&disk_key, key);
4931 memcpy(ptr, &disk_key, sizeof(disk_key));
4932 ptr += sizeof(disk_key);
4933 memcpy(ptr, chunk, item_size);
4934 item_size += sizeof(disk_key);
4935 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 4936
0b86a832
CM
4937 return 0;
4938}
4939
73c5de00
AJ
4940/*
4941 * sort the devices in descending order by max_avail, total_avail
4942 */
4943static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4944{
73c5de00
AJ
4945 const struct btrfs_device_info *di_a = a;
4946 const struct btrfs_device_info *di_b = b;
9b3f68b9 4947
73c5de00 4948 if (di_a->max_avail > di_b->max_avail)
b2117a39 4949 return -1;
73c5de00 4950 if (di_a->max_avail < di_b->max_avail)
b2117a39 4951 return 1;
73c5de00
AJ
4952 if (di_a->total_avail > di_b->total_avail)
4953 return -1;
4954 if (di_a->total_avail < di_b->total_avail)
4955 return 1;
4956 return 0;
b2117a39 4957}
0b86a832 4958
53b381b3
DW
4959static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4960{
ffe2d203 4961 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4962 return;
4963
ceda0864 4964 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4965}
4966
cfbb825c
DS
4967static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4968{
4969 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4970 return;
4971
4972 btrfs_set_fs_incompat(info, RAID1C34);
4973}
4974
4f2bafe8 4975/*
f6f39f7a 4976 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
4977 * Wraps needed parameters.
4978 */
4979struct alloc_chunk_ctl {
4980 u64 start;
4981 u64 type;
4982 /* Total number of stripes to allocate */
4983 int num_stripes;
4984 /* sub_stripes info for map */
4985 int sub_stripes;
4986 /* Stripes per device */
4987 int dev_stripes;
4988 /* Maximum number of devices to use */
4989 int devs_max;
4990 /* Minimum number of devices to use */
4991 int devs_min;
4992 /* ndevs has to be a multiple of this */
4993 int devs_increment;
4994 /* Number of copies */
4995 int ncopies;
4996 /* Number of stripes worth of bytes to store parity information */
4997 int nparity;
4998 u64 max_stripe_size;
4999 u64 max_chunk_size;
6aafb303 5000 u64 dev_extent_min;
4f2bafe8
NA
5001 u64 stripe_size;
5002 u64 chunk_size;
5003 int ndevs;
5004};
5005
27c314d5
NA
5006static void init_alloc_chunk_ctl_policy_regular(
5007 struct btrfs_fs_devices *fs_devices,
5008 struct alloc_chunk_ctl *ctl)
5009{
5010 u64 type = ctl->type;
5011
5012 if (type & BTRFS_BLOCK_GROUP_DATA) {
5013 ctl->max_stripe_size = SZ_1G;
5014 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5015 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5016 /* For larger filesystems, use larger metadata chunks */
5017 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5018 ctl->max_stripe_size = SZ_1G;
5019 else
5020 ctl->max_stripe_size = SZ_256M;
5021 ctl->max_chunk_size = ctl->max_stripe_size;
5022 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5023 ctl->max_stripe_size = SZ_32M;
5024 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5025 ctl->devs_max = min_t(int, ctl->devs_max,
5026 BTRFS_MAX_DEVS_SYS_CHUNK);
5027 } else {
5028 BUG();
5029 }
5030
5031 /* We don't want a chunk larger than 10% of writable space */
5032 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5033 ctl->max_chunk_size);
6aafb303 5034 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5035}
5036
1cd6121f
NA
5037static void init_alloc_chunk_ctl_policy_zoned(
5038 struct btrfs_fs_devices *fs_devices,
5039 struct alloc_chunk_ctl *ctl)
5040{
5041 u64 zone_size = fs_devices->fs_info->zone_size;
5042 u64 limit;
5043 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5044 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5045 u64 min_chunk_size = min_data_stripes * zone_size;
5046 u64 type = ctl->type;
5047
5048 ctl->max_stripe_size = zone_size;
5049 if (type & BTRFS_BLOCK_GROUP_DATA) {
5050 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5051 zone_size);
5052 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5053 ctl->max_chunk_size = ctl->max_stripe_size;
5054 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5055 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5056 ctl->devs_max = min_t(int, ctl->devs_max,
5057 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5058 } else {
5059 BUG();
1cd6121f
NA
5060 }
5061
5062 /* We don't want a chunk larger than 10% of writable space */
5063 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5064 zone_size),
5065 min_chunk_size);
5066 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5067 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5068}
5069
27c314d5
NA
5070static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5071 struct alloc_chunk_ctl *ctl)
5072{
5073 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5074
5075 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5076 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5077 ctl->devs_max = btrfs_raid_array[index].devs_max;
5078 if (!ctl->devs_max)
5079 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5080 ctl->devs_min = btrfs_raid_array[index].devs_min;
5081 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5082 ctl->ncopies = btrfs_raid_array[index].ncopies;
5083 ctl->nparity = btrfs_raid_array[index].nparity;
5084 ctl->ndevs = 0;
5085
5086 switch (fs_devices->chunk_alloc_policy) {
5087 case BTRFS_CHUNK_ALLOC_REGULAR:
5088 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5089 break;
1cd6121f
NA
5090 case BTRFS_CHUNK_ALLOC_ZONED:
5091 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5092 break;
27c314d5
NA
5093 default:
5094 BUG();
5095 }
5096}
5097
560156cb
NA
5098static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5099 struct alloc_chunk_ctl *ctl,
5100 struct btrfs_device_info *devices_info)
b2117a39 5101{
560156cb 5102 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5103 struct btrfs_device *device;
73c5de00 5104 u64 total_avail;
560156cb 5105 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5106 int ret;
560156cb
NA
5107 int ndevs = 0;
5108 u64 max_avail;
5109 u64 dev_offset;
0cad8a11 5110
9f680ce0 5111 /*
73c5de00
AJ
5112 * in the first pass through the devices list, we gather information
5113 * about the available holes on each device.
9f680ce0 5114 */
ebcc9301 5115 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5116 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5117 WARN(1, KERN_ERR
efe120a0 5118 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5119 continue;
5120 }
b2117a39 5121
e12c9621
AJ
5122 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5123 &device->dev_state) ||
401e29c1 5124 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5125 continue;
b2117a39 5126
73c5de00
AJ
5127 if (device->total_bytes > device->bytes_used)
5128 total_avail = device->total_bytes - device->bytes_used;
5129 else
5130 total_avail = 0;
38c01b96 5131
5132 /* If there is no space on this device, skip it. */
6aafb303 5133 if (total_avail < ctl->dev_extent_min)
38c01b96 5134 continue;
b2117a39 5135
560156cb
NA
5136 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5137 &max_avail);
73c5de00 5138 if (ret && ret != -ENOSPC)
560156cb 5139 return ret;
b2117a39 5140
73c5de00 5141 if (ret == 0)
560156cb 5142 max_avail = dev_extent_want;
b2117a39 5143
6aafb303 5144 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5145 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5146 btrfs_debug(info,
560156cb 5147 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5148 __func__, device->devid, max_avail,
6aafb303 5149 ctl->dev_extent_min);
73c5de00 5150 continue;
4117f207 5151 }
b2117a39 5152
063d006f
ES
5153 if (ndevs == fs_devices->rw_devices) {
5154 WARN(1, "%s: found more than %llu devices\n",
5155 __func__, fs_devices->rw_devices);
5156 break;
5157 }
73c5de00
AJ
5158 devices_info[ndevs].dev_offset = dev_offset;
5159 devices_info[ndevs].max_avail = max_avail;
5160 devices_info[ndevs].total_avail = total_avail;
5161 devices_info[ndevs].dev = device;
5162 ++ndevs;
5163 }
560156cb 5164 ctl->ndevs = ndevs;
b2117a39 5165
73c5de00
AJ
5166 /*
5167 * now sort the devices by hole size / available space
5168 */
560156cb 5169 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5170 btrfs_cmp_device_info, NULL);
b2117a39 5171
560156cb
NA
5172 return 0;
5173}
5174
5badf512
NA
5175static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5176 struct btrfs_device_info *devices_info)
5177{
5178 /* Number of stripes that count for block group size */
5179 int data_stripes;
5180
5181 /*
5182 * The primary goal is to maximize the number of stripes, so use as
5183 * many devices as possible, even if the stripes are not maximum sized.
5184 *
5185 * The DUP profile stores more than one stripe per device, the
5186 * max_avail is the total size so we have to adjust.
5187 */
5188 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5189 ctl->dev_stripes);
5190 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5191
5192 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5193 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5194
5195 /*
5196 * Use the number of data stripes to figure out how big this chunk is
5197 * really going to be in terms of logical address space, and compare
5198 * that answer with the max chunk size. If it's higher, we try to
5199 * reduce stripe_size.
5200 */
5201 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5202 /*
5203 * Reduce stripe_size, round it up to a 16MB boundary again and
5204 * then use it, unless it ends up being even bigger than the
5205 * previous value we had already.
5206 */
5207 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5208 data_stripes), SZ_16M),
5209 ctl->stripe_size);
5210 }
5211
5212 /* Align to BTRFS_STRIPE_LEN */
5213 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5214 ctl->chunk_size = ctl->stripe_size * data_stripes;
5215
5216 return 0;
5217}
5218
1cd6121f
NA
5219static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5220 struct btrfs_device_info *devices_info)
5221{
5222 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5223 /* Number of stripes that count for block group size */
5224 int data_stripes;
5225
5226 /*
5227 * It should hold because:
5228 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5229 */
5230 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5231
5232 ctl->stripe_size = zone_size;
5233 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5234 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5235
5236 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5237 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5238 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5239 ctl->stripe_size) + ctl->nparity,
5240 ctl->dev_stripes);
5241 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5242 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5243 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5244 }
5245
5246 ctl->chunk_size = ctl->stripe_size * data_stripes;
5247
5248 return 0;
5249}
5250
5badf512
NA
5251static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5252 struct alloc_chunk_ctl *ctl,
5253 struct btrfs_device_info *devices_info)
5254{
5255 struct btrfs_fs_info *info = fs_devices->fs_info;
5256
5257 /*
5258 * Round down to number of usable stripes, devs_increment can be any
5259 * number so we can't use round_down() that requires power of 2, while
5260 * rounddown is safe.
5261 */
5262 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5263
5264 if (ctl->ndevs < ctl->devs_min) {
5265 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5266 btrfs_debug(info,
5267 "%s: not enough devices with free space: have=%d minimum required=%d",
5268 __func__, ctl->ndevs, ctl->devs_min);
5269 }
5270 return -ENOSPC;
5271 }
5272
5273 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5274
5275 switch (fs_devices->chunk_alloc_policy) {
5276 case BTRFS_CHUNK_ALLOC_REGULAR:
5277 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5278 case BTRFS_CHUNK_ALLOC_ZONED:
5279 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5280 default:
5281 BUG();
5282 }
5283}
5284
79bd3712 5285static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5286 struct alloc_chunk_ctl *ctl,
5287 struct btrfs_device_info *devices_info)
560156cb
NA
5288{
5289 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5290 struct map_lookup *map = NULL;
5291 struct extent_map_tree *em_tree;
79bd3712 5292 struct btrfs_block_group *block_group;
560156cb 5293 struct extent_map *em;
dce580ca
NA
5294 u64 start = ctl->start;
5295 u64 type = ctl->type;
560156cb
NA
5296 int ret;
5297 int i;
5298 int j;
5299
dce580ca
NA
5300 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5301 if (!map)
79bd3712 5302 return ERR_PTR(-ENOMEM);
dce580ca 5303 map->num_stripes = ctl->num_stripes;
560156cb 5304
dce580ca
NA
5305 for (i = 0; i < ctl->ndevs; ++i) {
5306 for (j = 0; j < ctl->dev_stripes; ++j) {
5307 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5308 map->stripes[s].dev = devices_info[i].dev;
5309 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5310 j * ctl->stripe_size;
6324fbf3 5311 }
6324fbf3 5312 }
500ceed8
NB
5313 map->stripe_len = BTRFS_STRIPE_LEN;
5314 map->io_align = BTRFS_STRIPE_LEN;
5315 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5316 map->type = type;
dce580ca 5317 map->sub_stripes = ctl->sub_stripes;
0b86a832 5318
dce580ca 5319 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5320
172ddd60 5321 em = alloc_extent_map();
2b82032c 5322 if (!em) {
298a8f9c 5323 kfree(map);
79bd3712 5324 return ERR_PTR(-ENOMEM);
593060d7 5325 }
298a8f9c 5326 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5327 em->map_lookup = map;
2b82032c 5328 em->start = start;
dce580ca 5329 em->len = ctl->chunk_size;
2b82032c
YZ
5330 em->block_start = 0;
5331 em->block_len = em->len;
dce580ca 5332 em->orig_block_len = ctl->stripe_size;
593060d7 5333
c8bf1b67 5334 em_tree = &info->mapping_tree;
890871be 5335 write_lock(&em_tree->lock);
09a2a8f9 5336 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5337 if (ret) {
1efb72a3 5338 write_unlock(&em_tree->lock);
0f5d42b2 5339 free_extent_map(em);
79bd3712 5340 return ERR_PTR(ret);
0f5d42b2 5341 }
1efb72a3
NB
5342 write_unlock(&em_tree->lock);
5343
79bd3712
FM
5344 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5345 if (IS_ERR(block_group))
6df9a95e 5346 goto error_del_extent;
2b82032c 5347
bbbf7243
NB
5348 for (i = 0; i < map->num_stripes; i++) {
5349 struct btrfs_device *dev = map->stripes[i].dev;
5350
4f2bafe8 5351 btrfs_device_set_bytes_used(dev,
dce580ca 5352 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5353 if (list_empty(&dev->post_commit_list))
5354 list_add_tail(&dev->post_commit_list,
5355 &trans->transaction->dev_update_list);
5356 }
43530c46 5357
dce580ca 5358 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5359 &info->free_chunk_space);
1c116187 5360
0f5d42b2 5361 free_extent_map(em);
0b246afa 5362 check_raid56_incompat_flag(info, type);
cfbb825c 5363 check_raid1c34_incompat_flag(info, type);
53b381b3 5364
79bd3712 5365 return block_group;
b2117a39 5366
6df9a95e 5367error_del_extent:
0f5d42b2
JB
5368 write_lock(&em_tree->lock);
5369 remove_extent_mapping(em_tree, em);
5370 write_unlock(&em_tree->lock);
5371
5372 /* One for our allocation */
5373 free_extent_map(em);
5374 /* One for the tree reference */
5375 free_extent_map(em);
dce580ca 5376
79bd3712 5377 return block_group;
dce580ca
NA
5378}
5379
f6f39f7a 5380struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5381 u64 type)
dce580ca
NA
5382{
5383 struct btrfs_fs_info *info = trans->fs_info;
5384 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5385 struct btrfs_device_info *devices_info = NULL;
5386 struct alloc_chunk_ctl ctl;
79bd3712 5387 struct btrfs_block_group *block_group;
dce580ca
NA
5388 int ret;
5389
11c67b1a
NB
5390 lockdep_assert_held(&info->chunk_mutex);
5391
dce580ca
NA
5392 if (!alloc_profile_is_valid(type, 0)) {
5393 ASSERT(0);
79bd3712 5394 return ERR_PTR(-EINVAL);
dce580ca
NA
5395 }
5396
5397 if (list_empty(&fs_devices->alloc_list)) {
5398 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5399 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5400 return ERR_PTR(-ENOSPC);
dce580ca
NA
5401 }
5402
5403 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5404 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5405 ASSERT(0);
79bd3712 5406 return ERR_PTR(-EINVAL);
dce580ca
NA
5407 }
5408
11c67b1a 5409 ctl.start = find_next_chunk(info);
dce580ca
NA
5410 ctl.type = type;
5411 init_alloc_chunk_ctl(fs_devices, &ctl);
5412
5413 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5414 GFP_NOFS);
5415 if (!devices_info)
79bd3712 5416 return ERR_PTR(-ENOMEM);
dce580ca
NA
5417
5418 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5419 if (ret < 0) {
5420 block_group = ERR_PTR(ret);
dce580ca 5421 goto out;
79bd3712 5422 }
dce580ca
NA
5423
5424 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5425 if (ret < 0) {
5426 block_group = ERR_PTR(ret);
dce580ca 5427 goto out;
79bd3712 5428 }
dce580ca 5429
79bd3712 5430 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5431
5432out:
b2117a39 5433 kfree(devices_info);
79bd3712 5434 return block_group;
2b82032c
YZ
5435}
5436
79bd3712
FM
5437/*
5438 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5439 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5440 * chunks.
5441 *
5442 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5443 * phases.
5444 */
5445int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5446 struct btrfs_block_group *bg)
5447{
5448 struct btrfs_fs_info *fs_info = trans->fs_info;
5449 struct btrfs_root *extent_root = fs_info->extent_root;
5450 struct btrfs_root *chunk_root = fs_info->chunk_root;
5451 struct btrfs_key key;
5452 struct btrfs_chunk *chunk;
5453 struct btrfs_stripe *stripe;
5454 struct extent_map *em;
5455 struct map_lookup *map;
5456 size_t item_size;
5457 int i;
5458 int ret;
5459
5460 /*
5461 * We take the chunk_mutex for 2 reasons:
5462 *
5463 * 1) Updates and insertions in the chunk btree must be done while holding
5464 * the chunk_mutex, as well as updating the system chunk array in the
5465 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5466 * details;
5467 *
5468 * 2) To prevent races with the final phase of a device replace operation
5469 * that replaces the device object associated with the map's stripes,
5470 * because the device object's id can change at any time during that
5471 * final phase of the device replace operation
5472 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5473 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5474 * which would cause a failure when updating the device item, which does
5475 * not exists, or persisting a stripe of the chunk item with such ID.
5476 * Here we can't use the device_list_mutex because our caller already
5477 * has locked the chunk_mutex, and the final phase of device replace
5478 * acquires both mutexes - first the device_list_mutex and then the
5479 * chunk_mutex. Using any of those two mutexes protects us from a
5480 * concurrent device replace.
5481 */
5482 lockdep_assert_held(&fs_info->chunk_mutex);
5483
5484 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5485 if (IS_ERR(em)) {
5486 ret = PTR_ERR(em);
5487 btrfs_abort_transaction(trans, ret);
5488 return ret;
5489 }
5490
5491 map = em->map_lookup;
5492 item_size = btrfs_chunk_item_size(map->num_stripes);
5493
5494 chunk = kzalloc(item_size, GFP_NOFS);
5495 if (!chunk) {
5496 ret = -ENOMEM;
5497 btrfs_abort_transaction(trans, ret);
50460e37 5498 goto out;
2b82032c
YZ
5499 }
5500
79bd3712
FM
5501 for (i = 0; i < map->num_stripes; i++) {
5502 struct btrfs_device *device = map->stripes[i].dev;
5503
5504 ret = btrfs_update_device(trans, device);
5505 if (ret)
5506 goto out;
5507 }
5508
2b82032c 5509 stripe = &chunk->stripe;
6df9a95e 5510 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5511 struct btrfs_device *device = map->stripes[i].dev;
5512 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5513
e17cade2
CM
5514 btrfs_set_stack_stripe_devid(stripe, device->devid);
5515 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5516 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5517 stripe++;
0b86a832
CM
5518 }
5519
79bd3712 5520 btrfs_set_stack_chunk_length(chunk, bg->length);
0b86a832 5521 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5522 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5523 btrfs_set_stack_chunk_type(chunk, map->type);
5524 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5525 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5526 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5527 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5528 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5529
2b82032c
YZ
5530 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5531 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5532 key.offset = bg->start;
0b86a832 5533
2b82032c 5534 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5535 if (ret)
5536 goto out;
5537
5538 bg->chunk_item_inserted = 1;
5539
5540 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5541 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5542 if (ret)
5543 goto out;
8f18cf13 5544 }
1abe9b8a 5545
6df9a95e 5546out:
0b86a832 5547 kfree(chunk);
6df9a95e 5548 free_extent_map(em);
4ed1d16e 5549 return ret;
2b82032c 5550}
0b86a832 5551
6f8e0fc7 5552static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5553{
6f8e0fc7 5554 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5555 u64 alloc_profile;
79bd3712
FM
5556 struct btrfs_block_group *meta_bg;
5557 struct btrfs_block_group *sys_bg;
5558
5559 /*
5560 * When adding a new device for sprouting, the seed device is read-only
5561 * so we must first allocate a metadata and a system chunk. But before
5562 * adding the block group items to the extent, device and chunk btrees,
5563 * we must first:
5564 *
5565 * 1) Create both chunks without doing any changes to the btrees, as
5566 * otherwise we would get -ENOSPC since the block groups from the
5567 * seed device are read-only;
5568 *
5569 * 2) Add the device item for the new sprout device - finishing the setup
5570 * of a new block group requires updating the device item in the chunk
5571 * btree, so it must exist when we attempt to do it. The previous step
5572 * ensures this does not fail with -ENOSPC.
5573 *
5574 * After that we can add the block group items to their btrees:
5575 * update existing device item in the chunk btree, add a new block group
5576 * item to the extent btree, add a new chunk item to the chunk btree and
5577 * finally add the new device extent items to the devices btree.
5578 */
2b82032c 5579
1b86826d 5580 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5581 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5582 if (IS_ERR(meta_bg))
5583 return PTR_ERR(meta_bg);
2b82032c 5584
1b86826d 5585 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5586 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5587 if (IS_ERR(sys_bg))
5588 return PTR_ERR(sys_bg);
5589
5590 return 0;
2b82032c
YZ
5591}
5592
d20983b4
MX
5593static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5594{
fc9a2ac7 5595 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5596
fc9a2ac7 5597 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5598}
5599
2ff7e61e 5600int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5601{
5602 struct extent_map *em;
5603 struct map_lookup *map;
2b82032c 5604 int readonly = 0;
d20983b4 5605 int miss_ndevs = 0;
2b82032c
YZ
5606 int i;
5607
60ca842e 5608 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5609 if (IS_ERR(em))
2b82032c
YZ
5610 return 1;
5611
95617d69 5612 map = em->map_lookup;
2b82032c 5613 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5614 if (test_bit(BTRFS_DEV_STATE_MISSING,
5615 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5616 miss_ndevs++;
5617 continue;
5618 }
ebbede42
AJ
5619 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5620 &map->stripes[i].dev->dev_state)) {
2b82032c 5621 readonly = 1;
d20983b4 5622 goto end;
2b82032c
YZ
5623 }
5624 }
d20983b4
MX
5625
5626 /*
5627 * If the number of missing devices is larger than max errors,
5628 * we can not write the data into that chunk successfully, so
5629 * set it readonly.
5630 */
5631 if (miss_ndevs > btrfs_chunk_max_errors(map))
5632 readonly = 1;
5633end:
0b86a832 5634 free_extent_map(em);
2b82032c 5635 return readonly;
0b86a832
CM
5636}
5637
c8bf1b67 5638void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5639{
5640 struct extent_map *em;
5641
d397712b 5642 while (1) {
c8bf1b67
DS
5643 write_lock(&tree->lock);
5644 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5645 if (em)
c8bf1b67
DS
5646 remove_extent_mapping(tree, em);
5647 write_unlock(&tree->lock);
0b86a832
CM
5648 if (!em)
5649 break;
0b86a832
CM
5650 /* once for us */
5651 free_extent_map(em);
5652 /* once for the tree */
5653 free_extent_map(em);
5654 }
5655}
5656
5d964051 5657int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5658{
5659 struct extent_map *em;
5660 struct map_lookup *map;
f188591e
CM
5661 int ret;
5662
60ca842e 5663 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5664 if (IS_ERR(em))
5665 /*
5666 * We could return errors for these cases, but that could get
5667 * ugly and we'd probably do the same thing which is just not do
5668 * anything else and exit, so return 1 so the callers don't try
5669 * to use other copies.
5670 */
fb7669b5 5671 return 1;
fb7669b5 5672
95617d69 5673 map = em->map_lookup;
c7369b3f 5674 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5675 ret = map->num_stripes;
321aecc6
CM
5676 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5677 ret = map->sub_stripes;
53b381b3
DW
5678 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5679 ret = 2;
5680 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5681 /*
5682 * There could be two corrupted data stripes, we need
5683 * to loop retry in order to rebuild the correct data.
e7e02096 5684 *
8810f751
LB
5685 * Fail a stripe at a time on every retry except the
5686 * stripe under reconstruction.
5687 */
5688 ret = map->num_stripes;
f188591e
CM
5689 else
5690 ret = 1;
5691 free_extent_map(em);
ad6d620e 5692
cb5583dd 5693 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5694 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5695 fs_info->dev_replace.tgtdev)
ad6d620e 5696 ret++;
cb5583dd 5697 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5698
f188591e
CM
5699 return ret;
5700}
5701
2ff7e61e 5702unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5703 u64 logical)
5704{
5705 struct extent_map *em;
5706 struct map_lookup *map;
0b246afa 5707 unsigned long len = fs_info->sectorsize;
53b381b3 5708
60ca842e 5709 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5710
69f03f13
NB
5711 if (!WARN_ON(IS_ERR(em))) {
5712 map = em->map_lookup;
5713 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5714 len = map->stripe_len * nr_data_stripes(map);
5715 free_extent_map(em);
5716 }
53b381b3
DW
5717 return len;
5718}
5719
e4ff5fb5 5720int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5721{
5722 struct extent_map *em;
5723 struct map_lookup *map;
53b381b3
DW
5724 int ret = 0;
5725
60ca842e 5726 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5727
69f03f13
NB
5728 if(!WARN_ON(IS_ERR(em))) {
5729 map = em->map_lookup;
5730 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5731 ret = 1;
5732 free_extent_map(em);
5733 }
53b381b3
DW
5734 return ret;
5735}
5736
30d9861f 5737static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5738 struct map_lookup *map, int first,
8ba0ae78 5739 int dev_replace_is_ongoing)
dfe25020
CM
5740{
5741 int i;
99f92a7c 5742 int num_stripes;
8ba0ae78 5743 int preferred_mirror;
30d9861f
SB
5744 int tolerance;
5745 struct btrfs_device *srcdev;
5746
99f92a7c 5747 ASSERT((map->type &
c7369b3f 5748 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5749
5750 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5751 num_stripes = map->sub_stripes;
5752 else
5753 num_stripes = map->num_stripes;
5754
33fd2f71
AJ
5755 switch (fs_info->fs_devices->read_policy) {
5756 default:
5757 /* Shouldn't happen, just warn and use pid instead of failing */
5758 btrfs_warn_rl(fs_info,
5759 "unknown read_policy type %u, reset to pid",
5760 fs_info->fs_devices->read_policy);
5761 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5762 fallthrough;
5763 case BTRFS_READ_POLICY_PID:
5764 preferred_mirror = first + (current->pid % num_stripes);
5765 break;
5766 }
8ba0ae78 5767
30d9861f
SB
5768 if (dev_replace_is_ongoing &&
5769 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5770 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5771 srcdev = fs_info->dev_replace.srcdev;
5772 else
5773 srcdev = NULL;
5774
5775 /*
5776 * try to avoid the drive that is the source drive for a
5777 * dev-replace procedure, only choose it if no other non-missing
5778 * mirror is available
5779 */
5780 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5781 if (map->stripes[preferred_mirror].dev->bdev &&
5782 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5783 return preferred_mirror;
99f92a7c 5784 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5785 if (map->stripes[i].dev->bdev &&
5786 (tolerance || map->stripes[i].dev != srcdev))
5787 return i;
5788 }
dfe25020 5789 }
30d9861f 5790
dfe25020
CM
5791 /* we couldn't find one that doesn't fail. Just return something
5792 * and the io error handling code will clean up eventually
5793 */
8ba0ae78 5794 return preferred_mirror;
dfe25020
CM
5795}
5796
53b381b3 5797/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5798static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3 5799{
53b381b3 5800 int i;
53b381b3
DW
5801 int again = 1;
5802
5803 while (again) {
5804 again = 0;
cc7539ed 5805 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172
DS
5806 /* Swap if parity is on a smaller index */
5807 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5808 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5809 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
53b381b3
DW
5810 again = 1;
5811 }
5812 }
5813 }
5814}
5815
6e9606d2
ZL
5816static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5817{
5818 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5819 /* the size of the btrfs_bio */
6e9606d2 5820 sizeof(struct btrfs_bio) +
e57cf21e 5821 /* plus the variable array for the stripes */
6e9606d2 5822 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5823 /* plus the variable array for the tgt dev */
6e9606d2 5824 sizeof(int) * (real_stripes) +
e57cf21e
CM
5825 /*
5826 * plus the raid_map, which includes both the tgt dev
5827 * and the stripes
5828 */
5829 sizeof(u64) * (total_stripes),
277fb5fc 5830 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5831
5832 atomic_set(&bbio->error, 0);
140475ae 5833 refcount_set(&bbio->refs, 1);
6e9606d2 5834
608769a4
NB
5835 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5836 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5837
6e9606d2
ZL
5838 return bbio;
5839}
5840
5841void btrfs_get_bbio(struct btrfs_bio *bbio)
5842{
140475ae
ER
5843 WARN_ON(!refcount_read(&bbio->refs));
5844 refcount_inc(&bbio->refs);
6e9606d2
ZL
5845}
5846
5847void btrfs_put_bbio(struct btrfs_bio *bbio)
5848{
5849 if (!bbio)
5850 return;
140475ae 5851 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5852 kfree(bbio);
5853}
5854
0b3d4cd3
LB
5855/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5856/*
5857 * Please note that, discard won't be sent to target device of device
5858 * replace.
5859 */
5860static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5861 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5862 struct btrfs_bio **bbio_ret)
5863{
5864 struct extent_map *em;
5865 struct map_lookup *map;
5866 struct btrfs_bio *bbio;
6b7faadd 5867 u64 length = *length_ret;
0b3d4cd3
LB
5868 u64 offset;
5869 u64 stripe_nr;
5870 u64 stripe_nr_end;
5871 u64 stripe_end_offset;
5872 u64 stripe_cnt;
5873 u64 stripe_len;
5874 u64 stripe_offset;
5875 u64 num_stripes;
5876 u32 stripe_index;
5877 u32 factor = 0;
5878 u32 sub_stripes = 0;
5879 u64 stripes_per_dev = 0;
5880 u32 remaining_stripes = 0;
5881 u32 last_stripe = 0;
5882 int ret = 0;
5883 int i;
5884
5885 /* discard always return a bbio */
5886 ASSERT(bbio_ret);
5887
60ca842e 5888 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5889 if (IS_ERR(em))
5890 return PTR_ERR(em);
5891
5892 map = em->map_lookup;
5893 /* we don't discard raid56 yet */
5894 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5895 ret = -EOPNOTSUPP;
5896 goto out;
5897 }
5898
5899 offset = logical - em->start;
2d974619 5900 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5901 *length_ret = length;
0b3d4cd3
LB
5902
5903 stripe_len = map->stripe_len;
5904 /*
5905 * stripe_nr counts the total number of stripes we have to stride
5906 * to get to this block
5907 */
5908 stripe_nr = div64_u64(offset, stripe_len);
5909
5910 /* stripe_offset is the offset of this block in its stripe */
5911 stripe_offset = offset - stripe_nr * stripe_len;
5912
5913 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5914 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5915 stripe_cnt = stripe_nr_end - stripe_nr;
5916 stripe_end_offset = stripe_nr_end * map->stripe_len -
5917 (offset + length);
5918 /*
5919 * after this, stripe_nr is the number of stripes on this
5920 * device we have to walk to find the data, and stripe_index is
5921 * the number of our device in the stripe array
5922 */
5923 num_stripes = 1;
5924 stripe_index = 0;
5925 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5926 BTRFS_BLOCK_GROUP_RAID10)) {
5927 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5928 sub_stripes = 1;
5929 else
5930 sub_stripes = map->sub_stripes;
5931
5932 factor = map->num_stripes / sub_stripes;
5933 num_stripes = min_t(u64, map->num_stripes,
5934 sub_stripes * stripe_cnt);
5935 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5936 stripe_index *= sub_stripes;
5937 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5938 &remaining_stripes);
5939 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5940 last_stripe *= sub_stripes;
c7369b3f 5941 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5942 BTRFS_BLOCK_GROUP_DUP)) {
5943 num_stripes = map->num_stripes;
5944 } else {
5945 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5946 &stripe_index);
5947 }
5948
5949 bbio = alloc_btrfs_bio(num_stripes, 0);
5950 if (!bbio) {
5951 ret = -ENOMEM;
5952 goto out;
5953 }
5954
5955 for (i = 0; i < num_stripes; i++) {
5956 bbio->stripes[i].physical =
5957 map->stripes[stripe_index].physical +
5958 stripe_offset + stripe_nr * map->stripe_len;
5959 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5960
5961 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5962 BTRFS_BLOCK_GROUP_RAID10)) {
5963 bbio->stripes[i].length = stripes_per_dev *
5964 map->stripe_len;
5965
5966 if (i / sub_stripes < remaining_stripes)
5967 bbio->stripes[i].length +=
5968 map->stripe_len;
5969
5970 /*
5971 * Special for the first stripe and
5972 * the last stripe:
5973 *
5974 * |-------|...|-------|
5975 * |----------|
5976 * off end_off
5977 */
5978 if (i < sub_stripes)
5979 bbio->stripes[i].length -=
5980 stripe_offset;
5981
5982 if (stripe_index >= last_stripe &&
5983 stripe_index <= (last_stripe +
5984 sub_stripes - 1))
5985 bbio->stripes[i].length -=
5986 stripe_end_offset;
5987
5988 if (i == sub_stripes - 1)
5989 stripe_offset = 0;
5990 } else {
5991 bbio->stripes[i].length = length;
5992 }
5993
5994 stripe_index++;
5995 if (stripe_index == map->num_stripes) {
5996 stripe_index = 0;
5997 stripe_nr++;
5998 }
5999 }
6000
6001 *bbio_ret = bbio;
6002 bbio->map_type = map->type;
6003 bbio->num_stripes = num_stripes;
6004out:
6005 free_extent_map(em);
6006 return ret;
6007}
6008
5ab56090
LB
6009/*
6010 * In dev-replace case, for repair case (that's the only case where the mirror
6011 * is selected explicitly when calling btrfs_map_block), blocks left of the
6012 * left cursor can also be read from the target drive.
6013 *
6014 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6015 * array of stripes.
6016 * For READ, it also needs to be supported using the same mirror number.
6017 *
6018 * If the requested block is not left of the left cursor, EIO is returned. This
6019 * can happen because btrfs_num_copies() returns one more in the dev-replace
6020 * case.
6021 */
6022static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6023 u64 logical, u64 length,
6024 u64 srcdev_devid, int *mirror_num,
6025 u64 *physical)
6026{
6027 struct btrfs_bio *bbio = NULL;
6028 int num_stripes;
6029 int index_srcdev = 0;
6030 int found = 0;
6031 u64 physical_of_found = 0;
6032 int i;
6033 int ret = 0;
6034
6035 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6036 logical, &length, &bbio, 0, 0);
6037 if (ret) {
6038 ASSERT(bbio == NULL);
6039 return ret;
6040 }
6041
6042 num_stripes = bbio->num_stripes;
6043 if (*mirror_num > num_stripes) {
6044 /*
6045 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6046 * that means that the requested area is not left of the left
6047 * cursor
6048 */
6049 btrfs_put_bbio(bbio);
6050 return -EIO;
6051 }
6052
6053 /*
6054 * process the rest of the function using the mirror_num of the source
6055 * drive. Therefore look it up first. At the end, patch the device
6056 * pointer to the one of the target drive.
6057 */
6058 for (i = 0; i < num_stripes; i++) {
6059 if (bbio->stripes[i].dev->devid != srcdev_devid)
6060 continue;
6061
6062 /*
6063 * In case of DUP, in order to keep it simple, only add the
6064 * mirror with the lowest physical address
6065 */
6066 if (found &&
6067 physical_of_found <= bbio->stripes[i].physical)
6068 continue;
6069
6070 index_srcdev = i;
6071 found = 1;
6072 physical_of_found = bbio->stripes[i].physical;
6073 }
6074
6075 btrfs_put_bbio(bbio);
6076
6077 ASSERT(found);
6078 if (!found)
6079 return -EIO;
6080
6081 *mirror_num = index_srcdev + 1;
6082 *physical = physical_of_found;
6083 return ret;
6084}
6085
6143c23c
NA
6086static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6087{
6088 struct btrfs_block_group *cache;
6089 bool ret;
6090
de17addc 6091 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6092 if (!btrfs_is_zoned(fs_info))
6093 return false;
6094
6095 cache = btrfs_lookup_block_group(fs_info, logical);
6096
6097 spin_lock(&cache->lock);
6098 ret = cache->to_copy;
6099 spin_unlock(&cache->lock);
6100
6101 btrfs_put_block_group(cache);
6102 return ret;
6103}
6104
73c0f228
LB
6105static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6106 struct btrfs_bio **bbio_ret,
6107 struct btrfs_dev_replace *dev_replace,
6143c23c 6108 u64 logical,
73c0f228
LB
6109 int *num_stripes_ret, int *max_errors_ret)
6110{
6111 struct btrfs_bio *bbio = *bbio_ret;
6112 u64 srcdev_devid = dev_replace->srcdev->devid;
6113 int tgtdev_indexes = 0;
6114 int num_stripes = *num_stripes_ret;
6115 int max_errors = *max_errors_ret;
6116 int i;
6117
6118 if (op == BTRFS_MAP_WRITE) {
6119 int index_where_to_add;
6120
6143c23c
NA
6121 /*
6122 * A block group which have "to_copy" set will eventually
6123 * copied by dev-replace process. We can avoid cloning IO here.
6124 */
6125 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6126 return;
6127
73c0f228
LB
6128 /*
6129 * duplicate the write operations while the dev replace
6130 * procedure is running. Since the copying of the old disk to
6131 * the new disk takes place at run time while the filesystem is
6132 * mounted writable, the regular write operations to the old
6133 * disk have to be duplicated to go to the new disk as well.
6134 *
6135 * Note that device->missing is handled by the caller, and that
6136 * the write to the old disk is already set up in the stripes
6137 * array.
6138 */
6139 index_where_to_add = num_stripes;
6140 for (i = 0; i < num_stripes; i++) {
6141 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6142 /* write to new disk, too */
6143 struct btrfs_bio_stripe *new =
6144 bbio->stripes + index_where_to_add;
6145 struct btrfs_bio_stripe *old =
6146 bbio->stripes + i;
6147
6148 new->physical = old->physical;
6149 new->length = old->length;
6150 new->dev = dev_replace->tgtdev;
6151 bbio->tgtdev_map[i] = index_where_to_add;
6152 index_where_to_add++;
6153 max_errors++;
6154 tgtdev_indexes++;
6155 }
6156 }
6157 num_stripes = index_where_to_add;
6158 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6159 int index_srcdev = 0;
6160 int found = 0;
6161 u64 physical_of_found = 0;
6162
6163 /*
6164 * During the dev-replace procedure, the target drive can also
6165 * be used to read data in case it is needed to repair a corrupt
6166 * block elsewhere. This is possible if the requested area is
6167 * left of the left cursor. In this area, the target drive is a
6168 * full copy of the source drive.
6169 */
6170 for (i = 0; i < num_stripes; i++) {
6171 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6172 /*
6173 * In case of DUP, in order to keep it simple,
6174 * only add the mirror with the lowest physical
6175 * address
6176 */
6177 if (found &&
6178 physical_of_found <=
6179 bbio->stripes[i].physical)
6180 continue;
6181 index_srcdev = i;
6182 found = 1;
6183 physical_of_found = bbio->stripes[i].physical;
6184 }
6185 }
6186 if (found) {
6187 struct btrfs_bio_stripe *tgtdev_stripe =
6188 bbio->stripes + num_stripes;
6189
6190 tgtdev_stripe->physical = physical_of_found;
6191 tgtdev_stripe->length =
6192 bbio->stripes[index_srcdev].length;
6193 tgtdev_stripe->dev = dev_replace->tgtdev;
6194 bbio->tgtdev_map[index_srcdev] = num_stripes;
6195
6196 tgtdev_indexes++;
6197 num_stripes++;
6198 }
6199 }
6200
6201 *num_stripes_ret = num_stripes;
6202 *max_errors_ret = max_errors;
6203 bbio->num_tgtdevs = tgtdev_indexes;
6204 *bbio_ret = bbio;
6205}
6206
2b19a1fe
LB
6207static bool need_full_stripe(enum btrfs_map_op op)
6208{
6209 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6210}
6211
5f141126 6212/*
42034313
MR
6213 * Calculate the geometry of a particular (address, len) tuple. This
6214 * information is used to calculate how big a particular bio can get before it
6215 * straddles a stripe.
5f141126 6216 *
42034313
MR
6217 * @fs_info: the filesystem
6218 * @em: mapping containing the logical extent
6219 * @op: type of operation - write or read
6220 * @logical: address that we want to figure out the geometry of
42034313 6221 * @io_geom: pointer used to return values
5f141126
NB
6222 *
6223 * Returns < 0 in case a chunk for the given logical address cannot be found,
6224 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6225 */
42034313 6226int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6227 enum btrfs_map_op op, u64 logical,
42034313 6228 struct btrfs_io_geometry *io_geom)
5f141126 6229{
5f141126 6230 struct map_lookup *map;
43c0d1a5 6231 u64 len;
5f141126
NB
6232 u64 offset;
6233 u64 stripe_offset;
6234 u64 stripe_nr;
6235 u64 stripe_len;
6236 u64 raid56_full_stripe_start = (u64)-1;
6237 int data_stripes;
6238
6239 ASSERT(op != BTRFS_MAP_DISCARD);
6240
5f141126
NB
6241 map = em->map_lookup;
6242 /* Offset of this logical address in the chunk */
6243 offset = logical - em->start;
6244 /* Len of a stripe in a chunk */
6245 stripe_len = map->stripe_len;
1a9fd417 6246 /* Stripe where this block falls in */
5f141126
NB
6247 stripe_nr = div64_u64(offset, stripe_len);
6248 /* Offset of stripe in the chunk */
6249 stripe_offset = stripe_nr * stripe_len;
6250 if (offset < stripe_offset) {
6251 btrfs_crit(fs_info,
6252"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6253 stripe_offset, offset, em->start, logical, stripe_len);
42034313 6254 return -EINVAL;
5f141126
NB
6255 }
6256
6257 /* stripe_offset is the offset of this block in its stripe */
6258 stripe_offset = offset - stripe_offset;
6259 data_stripes = nr_data_stripes(map);
6260
6261 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6262 u64 max_len = stripe_len - stripe_offset;
6263
6264 /*
6265 * In case of raid56, we need to know the stripe aligned start
6266 */
6267 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6268 unsigned long full_stripe_len = stripe_len * data_stripes;
6269 raid56_full_stripe_start = offset;
6270
6271 /*
6272 * Allow a write of a full stripe, but make sure we
6273 * don't allow straddling of stripes
6274 */
6275 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6276 full_stripe_len);
6277 raid56_full_stripe_start *= full_stripe_len;
6278
6279 /*
6280 * For writes to RAID[56], allow a full stripeset across
6281 * all disks. For other RAID types and for RAID[56]
6282 * reads, just allow a single stripe (on a single disk).
6283 */
6284 if (op == BTRFS_MAP_WRITE) {
6285 max_len = stripe_len * data_stripes -
6286 (offset - raid56_full_stripe_start);
6287 }
6288 }
6289 len = min_t(u64, em->len - offset, max_len);
6290 } else {
6291 len = em->len - offset;
6292 }
6293
6294 io_geom->len = len;
6295 io_geom->offset = offset;
6296 io_geom->stripe_len = stripe_len;
6297 io_geom->stripe_nr = stripe_nr;
6298 io_geom->stripe_offset = stripe_offset;
6299 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6300
42034313 6301 return 0;
5f141126
NB
6302}
6303
cf8cddd3
CH
6304static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6305 enum btrfs_map_op op,
f2d8d74d 6306 u64 logical, u64 *length,
a1d3c478 6307 struct btrfs_bio **bbio_ret,
8e5cfb55 6308 int mirror_num, int need_raid_map)
0b86a832
CM
6309{
6310 struct extent_map *em;
6311 struct map_lookup *map;
593060d7
CM
6312 u64 stripe_offset;
6313 u64 stripe_nr;
53b381b3 6314 u64 stripe_len;
9d644a62 6315 u32 stripe_index;
cff82672 6316 int data_stripes;
cea9e445 6317 int i;
de11cc12 6318 int ret = 0;
f2d8d74d 6319 int num_stripes;
a236aed1 6320 int max_errors = 0;
2c8cdd6e 6321 int tgtdev_indexes = 0;
a1d3c478 6322 struct btrfs_bio *bbio = NULL;
472262f3
SB
6323 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6324 int dev_replace_is_ongoing = 0;
6325 int num_alloc_stripes;
ad6d620e
SB
6326 int patch_the_first_stripe_for_dev_replace = 0;
6327 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6328 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6329 struct btrfs_io_geometry geom;
6330
6331 ASSERT(bbio_ret);
75fb2e9e 6332 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6333
42034313
MR
6334 em = btrfs_get_chunk_map(fs_info, logical, *length);
6335 ASSERT(!IS_ERR(em));
6336
43c0d1a5 6337 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6338 if (ret < 0)
6339 return ret;
0b86a832 6340
95617d69 6341 map = em->map_lookup;
593060d7 6342
89b798ad 6343 *length = geom.len;
89b798ad
NB
6344 stripe_len = geom.stripe_len;
6345 stripe_nr = geom.stripe_nr;
6346 stripe_offset = geom.stripe_offset;
6347 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6348 data_stripes = nr_data_stripes(map);
593060d7 6349
cb5583dd 6350 down_read(&dev_replace->rwsem);
472262f3 6351 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6352 /*
6353 * Hold the semaphore for read during the whole operation, write is
6354 * requested at commit time but must wait.
6355 */
472262f3 6356 if (!dev_replace_is_ongoing)
cb5583dd 6357 up_read(&dev_replace->rwsem);
472262f3 6358
ad6d620e 6359 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6360 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6361 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6362 dev_replace->srcdev->devid,
6363 &mirror_num,
6364 &physical_to_patch_in_first_stripe);
6365 if (ret)
ad6d620e 6366 goto out;
5ab56090
LB
6367 else
6368 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6369 } else if (mirror_num > map->num_stripes) {
6370 mirror_num = 0;
6371 }
6372
f2d8d74d 6373 num_stripes = 1;
cea9e445 6374 stripe_index = 0;
fce3bb9a 6375 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6376 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6377 &stripe_index);
de483734 6378 if (!need_full_stripe(op))
28e1cc7d 6379 mirror_num = 1;
c7369b3f 6380 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6381 if (need_full_stripe(op))
f2d8d74d 6382 num_stripes = map->num_stripes;
2fff734f 6383 else if (mirror_num)
f188591e 6384 stripe_index = mirror_num - 1;
dfe25020 6385 else {
30d9861f 6386 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6387 dev_replace_is_ongoing);
a1d3c478 6388 mirror_num = stripe_index + 1;
dfe25020 6389 }
2fff734f 6390
611f0e00 6391 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6392 if (need_full_stripe(op)) {
f2d8d74d 6393 num_stripes = map->num_stripes;
a1d3c478 6394 } else if (mirror_num) {
f188591e 6395 stripe_index = mirror_num - 1;
a1d3c478
JS
6396 } else {
6397 mirror_num = 1;
6398 }
2fff734f 6399
321aecc6 6400 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6401 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6402
47c5713f 6403 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6404 stripe_index *= map->sub_stripes;
6405
de483734 6406 if (need_full_stripe(op))
f2d8d74d 6407 num_stripes = map->sub_stripes;
321aecc6
CM
6408 else if (mirror_num)
6409 stripe_index += mirror_num - 1;
dfe25020 6410 else {
3e74317a 6411 int old_stripe_index = stripe_index;
30d9861f
SB
6412 stripe_index = find_live_mirror(fs_info, map,
6413 stripe_index,
30d9861f 6414 dev_replace_is_ongoing);
3e74317a 6415 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6416 }
53b381b3 6417
ffe2d203 6418 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6419 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6420 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6421 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6422 stripe_len * data_stripes);
53b381b3
DW
6423
6424 /* RAID[56] write or recovery. Return all stripes */
6425 num_stripes = map->num_stripes;
6426 max_errors = nr_parity_stripes(map);
6427
53b381b3
DW
6428 *length = map->stripe_len;
6429 stripe_index = 0;
6430 stripe_offset = 0;
6431 } else {
6432 /*
6433 * Mirror #0 or #1 means the original data block.
6434 * Mirror #2 is RAID5 parity block.
6435 * Mirror #3 is RAID6 Q block.
6436 */
47c5713f 6437 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6438 data_stripes, &stripe_index);
53b381b3 6439 if (mirror_num > 1)
cff82672 6440 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6441
6442 /* We distribute the parity blocks across stripes */
47c5713f
DS
6443 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6444 &stripe_index);
de483734 6445 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6446 mirror_num = 1;
53b381b3 6447 }
8790d502
CM
6448 } else {
6449 /*
47c5713f
DS
6450 * after this, stripe_nr is the number of stripes on this
6451 * device we have to walk to find the data, and stripe_index is
6452 * the number of our device in the stripe array
8790d502 6453 */
47c5713f
DS
6454 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6455 &stripe_index);
a1d3c478 6456 mirror_num = stripe_index + 1;
8790d502 6457 }
e042d1ec 6458 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6459 btrfs_crit(fs_info,
6460 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6461 stripe_index, map->num_stripes);
6462 ret = -EINVAL;
6463 goto out;
6464 }
cea9e445 6465
472262f3 6466 num_alloc_stripes = num_stripes;
6fad823f 6467 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6468 if (op == BTRFS_MAP_WRITE)
ad6d620e 6469 num_alloc_stripes <<= 1;
cf8cddd3 6470 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6471 num_alloc_stripes++;
2c8cdd6e 6472 tgtdev_indexes = num_stripes;
ad6d620e 6473 }
2c8cdd6e 6474
6e9606d2 6475 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6476 if (!bbio) {
6477 ret = -ENOMEM;
6478 goto out;
6479 }
608769a4
NB
6480
6481 for (i = 0; i < num_stripes; i++) {
6482 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6483 stripe_offset + stripe_nr * map->stripe_len;
6484 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6485 stripe_index++;
6486 }
de11cc12 6487
8e5cfb55 6488 /* build raid_map */
2b19a1fe
LB
6489 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6490 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6491 u64 tmp;
9d644a62 6492 unsigned rot;
8e5cfb55 6493
8e5cfb55 6494 /* Work out the disk rotation on this stripe-set */
47c5713f 6495 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6496
6497 /* Fill in the logical address of each stripe */
cff82672
DS
6498 tmp = stripe_nr * data_stripes;
6499 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6500 bbio->raid_map[(i+rot) % num_stripes] =
6501 em->start + (tmp + i) * map->stripe_len;
6502
6503 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6504 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6505 bbio->raid_map[(i+rot+1) % num_stripes] =
6506 RAID6_Q_STRIPE;
8e5cfb55 6507
608769a4 6508 sort_parity_stripes(bbio, num_stripes);
593060d7 6509 }
de11cc12 6510
2b19a1fe 6511 if (need_full_stripe(op))
d20983b4 6512 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6513
73c0f228 6514 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6515 need_full_stripe(op)) {
6143c23c
NA
6516 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6517 &num_stripes, &max_errors);
472262f3
SB
6518 }
6519
de11cc12 6520 *bbio_ret = bbio;
10f11900 6521 bbio->map_type = map->type;
de11cc12
LZ
6522 bbio->num_stripes = num_stripes;
6523 bbio->max_errors = max_errors;
6524 bbio->mirror_num = mirror_num;
ad6d620e
SB
6525
6526 /*
6527 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6528 * mirror_num == num_stripes + 1 && dev_replace target drive is
6529 * available as a mirror
6530 */
6531 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6532 WARN_ON(num_stripes > 1);
6533 bbio->stripes[0].dev = dev_replace->tgtdev;
6534 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6535 bbio->mirror_num = map->num_stripes + 1;
6536 }
cea9e445 6537out:
73beece9 6538 if (dev_replace_is_ongoing) {
53176dde
DS
6539 lockdep_assert_held(&dev_replace->rwsem);
6540 /* Unlock and let waiting writers proceed */
cb5583dd 6541 up_read(&dev_replace->rwsem);
73beece9 6542 }
0b86a832 6543 free_extent_map(em);
de11cc12 6544 return ret;
0b86a832
CM
6545}
6546
cf8cddd3 6547int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6548 u64 logical, u64 *length,
a1d3c478 6549 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6550{
75fb2e9e
DS
6551 if (op == BTRFS_MAP_DISCARD)
6552 return __btrfs_map_block_for_discard(fs_info, logical,
6553 length, bbio_ret);
6554
b3d3fa51 6555 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6556 mirror_num, 0);
f2d8d74d
CM
6557}
6558
af8e2d1d 6559/* For Scrub/replace */
cf8cddd3 6560int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6561 u64 logical, u64 *length,
825ad4c9 6562 struct btrfs_bio **bbio_ret)
af8e2d1d 6563{
825ad4c9 6564 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6565}
6566
4246a0b6 6567static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6568{
326e1dbb
MS
6569 bio->bi_private = bbio->private;
6570 bio->bi_end_io = bbio->end_io;
4246a0b6 6571 bio_endio(bio);
326e1dbb 6572
6e9606d2 6573 btrfs_put_bbio(bbio);
8408c716
MX
6574}
6575
4246a0b6 6576static void btrfs_end_bio(struct bio *bio)
8790d502 6577{
9be3395b 6578 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6579 int is_orig_bio = 0;
8790d502 6580
4e4cbee9 6581 if (bio->bi_status) {
a1d3c478 6582 atomic_inc(&bbio->error);
4e4cbee9
CH
6583 if (bio->bi_status == BLK_STS_IOERR ||
6584 bio->bi_status == BLK_STS_TARGET) {
c31efbdf 6585 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
442a4f63 6586
3eee86c8 6587 ASSERT(dev->bdev);
cfe94440 6588 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6589 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6590 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6591 else if (!(bio->bi_opf & REQ_RAHEAD))
6592 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6593 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6594 if (bio->bi_opf & REQ_PREFLUSH)
6595 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6596 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6597 }
6598 }
8790d502 6599
a1d3c478 6600 if (bio == bbio->orig_bio)
7d2b4daa
CM
6601 is_orig_bio = 1;
6602
c404e0dc
MX
6603 btrfs_bio_counter_dec(bbio->fs_info);
6604
a1d3c478 6605 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6606 if (!is_orig_bio) {
6607 bio_put(bio);
a1d3c478 6608 bio = bbio->orig_bio;
7d2b4daa 6609 }
c7b22bb1 6610
9be3395b 6611 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6612 /* only send an error to the higher layers if it is
53b381b3 6613 * beyond the tolerance of the btrfs bio
a236aed1 6614 */
a1d3c478 6615 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6616 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6617 } else {
1259ab75
CM
6618 /*
6619 * this bio is actually up to date, we didn't
6620 * go over the max number of errors
6621 */
2dbe0c77 6622 bio->bi_status = BLK_STS_OK;
1259ab75 6623 }
c55f1396 6624
4246a0b6 6625 btrfs_end_bbio(bbio, bio);
7d2b4daa 6626 } else if (!is_orig_bio) {
8790d502
CM
6627 bio_put(bio);
6628 }
8790d502
CM
6629}
6630
2ff7e61e 6631static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
c31efbdf 6632 u64 physical, struct btrfs_device *dev)
de1ee92a 6633{
2ff7e61e 6634 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6635
6636 bio->bi_private = bbio;
c31efbdf 6637 btrfs_io_bio(bio)->device = dev;
de1ee92a 6638 bio->bi_end_io = btrfs_end_bio;
4f024f37 6639 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6640 /*
6641 * For zone append writing, bi_sector must point the beginning of the
6642 * zone
6643 */
6644 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6645 if (btrfs_dev_is_sequential(dev, physical)) {
6646 u64 zone_start = round_down(physical, fs_info->zone_size);
6647
6648 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6649 } else {
6650 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6651 bio->bi_opf |= REQ_OP_WRITE;
6652 }
6653 }
672d5990
MT
6654 btrfs_debug_in_rcu(fs_info,
6655 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6656 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6657 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6658 dev->devid, bio->bi_iter.bi_size);
74d46992 6659 bio_set_dev(bio, dev->bdev);
c404e0dc 6660
2ff7e61e 6661 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6662
08635bae 6663 btrfsic_submit_bio(bio);
de1ee92a
JB
6664}
6665
de1ee92a
JB
6666static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6667{
6668 atomic_inc(&bbio->error);
6669 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6670 /* Should be the original bio. */
8408c716
MX
6671 WARN_ON(bio != bbio->orig_bio);
6672
9be3395b 6673 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6674 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6675 if (atomic_read(&bbio->error) > bbio->max_errors)
6676 bio->bi_status = BLK_STS_IOERR;
6677 else
6678 bio->bi_status = BLK_STS_OK;
4246a0b6 6679 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6680 }
6681}
6682
58efbc9f 6683blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6684 int mirror_num)
0b86a832 6685{
0b86a832 6686 struct btrfs_device *dev;
8790d502 6687 struct bio *first_bio = bio;
1201b58b 6688 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6689 u64 length = 0;
6690 u64 map_length;
0b86a832 6691 int ret;
08da757d
ZL
6692 int dev_nr;
6693 int total_devs;
a1d3c478 6694 struct btrfs_bio *bbio = NULL;
0b86a832 6695
4f024f37 6696 length = bio->bi_iter.bi_size;
0b86a832 6697 map_length = length;
cea9e445 6698
0b246afa 6699 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6700 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6701 &map_length, &bbio, mirror_num, 1);
c404e0dc 6702 if (ret) {
0b246afa 6703 btrfs_bio_counter_dec(fs_info);
58efbc9f 6704 return errno_to_blk_status(ret);
c404e0dc 6705 }
cea9e445 6706
a1d3c478 6707 total_devs = bbio->num_stripes;
53b381b3
DW
6708 bbio->orig_bio = first_bio;
6709 bbio->private = first_bio->bi_private;
6710 bbio->end_io = first_bio->bi_end_io;
0b246afa 6711 bbio->fs_info = fs_info;
53b381b3
DW
6712 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6713
ad1ba2a0 6714 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6715 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6716 /* In this case, map_length has been set to the length of
6717 a single stripe; not the whole write */
cfe94440 6718 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
2ff7e61e
JM
6719 ret = raid56_parity_write(fs_info, bio, bbio,
6720 map_length);
53b381b3 6721 } else {
2ff7e61e
JM
6722 ret = raid56_parity_recover(fs_info, bio, bbio,
6723 map_length, mirror_num, 1);
53b381b3 6724 }
4245215d 6725
0b246afa 6726 btrfs_bio_counter_dec(fs_info);
58efbc9f 6727 return errno_to_blk_status(ret);
53b381b3
DW
6728 }
6729
cea9e445 6730 if (map_length < length) {
0b246afa 6731 btrfs_crit(fs_info,
5d163e0e
JM
6732 "mapping failed logical %llu bio len %llu len %llu",
6733 logical, length, map_length);
cea9e445
CM
6734 BUG();
6735 }
a1d3c478 6736
08da757d 6737 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6738 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6739 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6740 &dev->dev_state) ||
cfe94440 6741 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6742 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6743 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6744 continue;
6745 }
6746
3aa8e074 6747 if (dev_nr < total_devs - 1)
8b6c1d56 6748 bio = btrfs_bio_clone(first_bio);
3aa8e074 6749 else
a1d3c478 6750 bio = first_bio;
de1ee92a 6751
c31efbdf 6752 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
8790d502 6753 }
0b246afa 6754 btrfs_bio_counter_dec(fs_info);
58efbc9f 6755 return BLK_STS_OK;
0b86a832
CM
6756}
6757
09ba3bc9
AJ
6758/*
6759 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6760 * return NULL.
6761 *
6762 * If devid and uuid are both specified, the match must be exact, otherwise
6763 * only devid is used.
09ba3bc9 6764 */
e4319cd9 6765struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
b2598edf 6766 u64 devid, u8 *uuid, u8 *fsid)
0b86a832 6767{
2b82032c 6768 struct btrfs_device *device;
944d3f9f
NB
6769 struct btrfs_fs_devices *seed_devs;
6770
6771 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6772 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6773 if (device->devid == devid &&
6774 (!uuid || memcmp(device->uuid, uuid,
6775 BTRFS_UUID_SIZE) == 0))
6776 return device;
6777 }
6778 }
2b82032c 6779
944d3f9f 6780 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
2b82032c 6781 if (!fsid ||
944d3f9f
NB
6782 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6783 list_for_each_entry(device, &seed_devs->devices,
09ba3bc9
AJ
6784 dev_list) {
6785 if (device->devid == devid &&
6786 (!uuid || memcmp(device->uuid, uuid,
6787 BTRFS_UUID_SIZE) == 0))
6788 return device;
6789 }
2b82032c 6790 }
2b82032c 6791 }
944d3f9f 6792
2b82032c 6793 return NULL;
0b86a832
CM
6794}
6795
2ff7e61e 6796static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6797 u64 devid, u8 *dev_uuid)
6798{
6799 struct btrfs_device *device;
fccc0007 6800 unsigned int nofs_flag;
dfe25020 6801
fccc0007
JB
6802 /*
6803 * We call this under the chunk_mutex, so we want to use NOFS for this
6804 * allocation, however we don't want to change btrfs_alloc_device() to
6805 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6806 * places.
6807 */
6808 nofs_flag = memalloc_nofs_save();
12bd2fc0 6809 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6810 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6811 if (IS_ERR(device))
adfb69af 6812 return device;
12bd2fc0
ID
6813
6814 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6815 device->fs_devices = fs_devices;
dfe25020 6816 fs_devices->num_devices++;
12bd2fc0 6817
e6e674bd 6818 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6819 fs_devices->missing_devices++;
12bd2fc0 6820
dfe25020
CM
6821 return device;
6822}
6823
12bd2fc0
ID
6824/**
6825 * btrfs_alloc_device - allocate struct btrfs_device
6826 * @fs_info: used only for generating a new devid, can be NULL if
6827 * devid is provided (i.e. @devid != NULL).
6828 * @devid: a pointer to devid for this device. If NULL a new devid
6829 * is generated.
6830 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6831 * is generated.
6832 *
6833 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6834 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6835 * destroyed with btrfs_free_device.
12bd2fc0
ID
6836 */
6837struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6838 const u64 *devid,
6839 const u8 *uuid)
6840{
6841 struct btrfs_device *dev;
6842 u64 tmp;
6843
fae7f21c 6844 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6845 return ERR_PTR(-EINVAL);
12bd2fc0 6846
fe4f46d4
DS
6847 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6848 if (!dev)
6849 return ERR_PTR(-ENOMEM);
6850
6851 /*
6852 * Preallocate a bio that's always going to be used for flushing device
6853 * barriers and matches the device lifespan
6854 */
6855 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6856 if (!dev->flush_bio) {
6857 kfree(dev);
6858 return ERR_PTR(-ENOMEM);
6859 }
6860
6861 INIT_LIST_HEAD(&dev->dev_list);
6862 INIT_LIST_HEAD(&dev->dev_alloc_list);
6863 INIT_LIST_HEAD(&dev->post_commit_list);
6864
6865 atomic_set(&dev->reada_in_flight, 0);
6866 atomic_set(&dev->dev_stats_ccnt, 0);
6867 btrfs_device_data_ordered_init(dev);
6868 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6869 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6870 extent_io_tree_init(fs_info, &dev->alloc_state,
6871 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6872
6873 if (devid)
6874 tmp = *devid;
6875 else {
6876 int ret;
6877
6878 ret = find_next_devid(fs_info, &tmp);
6879 if (ret) {
a425f9d4 6880 btrfs_free_device(dev);
12bd2fc0
ID
6881 return ERR_PTR(ret);
6882 }
6883 }
6884 dev->devid = tmp;
6885
6886 if (uuid)
6887 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6888 else
6889 generate_random_uuid(dev->uuid);
6890
12bd2fc0
ID
6891 return dev;
6892}
6893
5a2b8e60 6894static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6895 u64 devid, u8 *uuid, bool error)
5a2b8e60 6896{
2b902dfc
AJ
6897 if (error)
6898 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6899 devid, uuid);
6900 else
6901 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6902 devid, uuid);
5a2b8e60
AJ
6903}
6904
39e264a4
NB
6905static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6906{
d58ede8d 6907 const int data_stripes = calc_data_stripes(type, num_stripes);
e4f6c6be 6908
39e264a4
NB
6909 return div_u64(chunk_len, data_stripes);
6910}
6911
e9306ad4
QW
6912#if BITS_PER_LONG == 32
6913/*
6914 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6915 * can't be accessed on 32bit systems.
6916 *
6917 * This function do mount time check to reject the fs if it already has
6918 * metadata chunk beyond that limit.
6919 */
6920static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6921 u64 logical, u64 length, u64 type)
6922{
6923 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6924 return 0;
6925
6926 if (logical + length < MAX_LFS_FILESIZE)
6927 return 0;
6928
6929 btrfs_err_32bit_limit(fs_info);
6930 return -EOVERFLOW;
6931}
6932
6933/*
6934 * This is to give early warning for any metadata chunk reaching
6935 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6936 * Although we can still access the metadata, it's not going to be possible
6937 * once the limit is reached.
6938 */
6939static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6940 u64 logical, u64 length, u64 type)
6941{
6942 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6943 return;
6944
6945 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6946 return;
6947
6948 btrfs_warn_32bit_limit(fs_info);
6949}
6950#endif
6951
9690ac09 6952static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6953 struct btrfs_chunk *chunk)
6954{
9690ac09 6955 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6956 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6957 struct map_lookup *map;
6958 struct extent_map *em;
6959 u64 logical;
6960 u64 length;
e06cd3dd 6961 u64 devid;
e9306ad4 6962 u64 type;
e06cd3dd
LB
6963 u8 uuid[BTRFS_UUID_SIZE];
6964 int num_stripes;
6965 int ret;
6966 int i;
6967
6968 logical = key->offset;
6969 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6970 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
6971 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6972
e9306ad4
QW
6973#if BITS_PER_LONG == 32
6974 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6975 if (ret < 0)
6976 return ret;
6977 warn_32bit_meta_chunk(fs_info, logical, length, type);
6978#endif
6979
075cb3c7
QW
6980 /*
6981 * Only need to verify chunk item if we're reading from sys chunk array,
6982 * as chunk item in tree block is already verified by tree-checker.
6983 */
6984 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6985 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6986 if (ret)
6987 return ret;
6988 }
a061fc8d 6989
c8bf1b67
DS
6990 read_lock(&map_tree->lock);
6991 em = lookup_extent_mapping(map_tree, logical, 1);
6992 read_unlock(&map_tree->lock);
0b86a832
CM
6993
6994 /* already mapped? */
6995 if (em && em->start <= logical && em->start + em->len > logical) {
6996 free_extent_map(em);
0b86a832
CM
6997 return 0;
6998 } else if (em) {
6999 free_extent_map(em);
7000 }
0b86a832 7001
172ddd60 7002 em = alloc_extent_map();
0b86a832
CM
7003 if (!em)
7004 return -ENOMEM;
593060d7 7005 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
7006 if (!map) {
7007 free_extent_map(em);
7008 return -ENOMEM;
7009 }
7010
298a8f9c 7011 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 7012 em->map_lookup = map;
0b86a832
CM
7013 em->start = logical;
7014 em->len = length;
70c8a91c 7015 em->orig_start = 0;
0b86a832 7016 em->block_start = 0;
c8b97818 7017 em->block_len = em->len;
0b86a832 7018
593060d7
CM
7019 map->num_stripes = num_stripes;
7020 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7021 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 7022 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 7023 map->type = type;
321aecc6 7024 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 7025 map->verified_stripes = 0;
e9306ad4 7026 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 7027 map->num_stripes);
593060d7
CM
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
7032 read_extent_buffer(leaf, uuid, (unsigned long)
7033 btrfs_stripe_dev_uuid_nr(chunk, i),
7034 BTRFS_UUID_SIZE);
e4319cd9 7035 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
b2598edf 7036 devid, uuid, NULL);
3cdde224 7037 if (!map->stripes[i].dev &&
0b246afa 7038 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 7039 free_extent_map(em);
2b902dfc 7040 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 7041 return -ENOENT;
593060d7 7042 }
dfe25020
CM
7043 if (!map->stripes[i].dev) {
7044 map->stripes[i].dev =
2ff7e61e
JM
7045 add_missing_dev(fs_info->fs_devices, devid,
7046 uuid);
adfb69af 7047 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7048 free_extent_map(em);
adfb69af
AJ
7049 btrfs_err(fs_info,
7050 "failed to init missing dev %llu: %ld",
7051 devid, PTR_ERR(map->stripes[i].dev));
7052 return PTR_ERR(map->stripes[i].dev);
dfe25020 7053 }
2b902dfc 7054 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 7055 }
e12c9621
AJ
7056 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7057 &(map->stripes[i].dev->dev_state));
7058
0b86a832
CM
7059 }
7060
c8bf1b67
DS
7061 write_lock(&map_tree->lock);
7062 ret = add_extent_mapping(map_tree, em, 0);
7063 write_unlock(&map_tree->lock);
64f64f43
QW
7064 if (ret < 0) {
7065 btrfs_err(fs_info,
7066 "failed to add chunk map, start=%llu len=%llu: %d",
7067 em->start, em->len, ret);
7068 }
0b86a832
CM
7069 free_extent_map(em);
7070
64f64f43 7071 return ret;
0b86a832
CM
7072}
7073
143bede5 7074static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7075 struct btrfs_dev_item *dev_item,
7076 struct btrfs_device *device)
7077{
7078 unsigned long ptr;
0b86a832
CM
7079
7080 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7081 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7082 device->total_bytes = device->disk_total_bytes;
935e5cc9 7083 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7084 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7085 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7086 device->type = btrfs_device_type(leaf, dev_item);
7087 device->io_align = btrfs_device_io_align(leaf, dev_item);
7088 device->io_width = btrfs_device_io_width(leaf, dev_item);
7089 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7090 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7091 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7092
410ba3a2 7093 ptr = btrfs_device_uuid(dev_item);
e17cade2 7094 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7095}
7096
2ff7e61e 7097static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7098 u8 *fsid)
2b82032c
YZ
7099{
7100 struct btrfs_fs_devices *fs_devices;
7101 int ret;
7102
a32bf9a3 7103 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7104 ASSERT(fsid);
2b82032c 7105
427c8fdd 7106 /* This will match only for multi-device seed fs */
944d3f9f 7107 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7108 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7109 return fs_devices;
7110
2b82032c 7111
7239ff4b 7112 fs_devices = find_fsid(fsid, NULL);
2b82032c 7113 if (!fs_devices) {
0b246afa 7114 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7115 return ERR_PTR(-ENOENT);
7116
7239ff4b 7117 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7118 if (IS_ERR(fs_devices))
7119 return fs_devices;
7120
0395d84f 7121 fs_devices->seeding = true;
5f375835
MX
7122 fs_devices->opened = 1;
7123 return fs_devices;
2b82032c 7124 }
e4404d6e 7125
427c8fdd
NB
7126 /*
7127 * Upon first call for a seed fs fsid, just create a private copy of the
7128 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7129 */
e4404d6e 7130 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7131 if (IS_ERR(fs_devices))
7132 return fs_devices;
2b82032c 7133
897fb573 7134 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7135 if (ret) {
7136 free_fs_devices(fs_devices);
c83b60c0 7137 return ERR_PTR(ret);
48d28232 7138 }
2b82032c
YZ
7139
7140 if (!fs_devices->seeding) {
0226e0eb 7141 close_fs_devices(fs_devices);
e4404d6e 7142 free_fs_devices(fs_devices);
c83b60c0 7143 return ERR_PTR(-EINVAL);
2b82032c
YZ
7144 }
7145
944d3f9f 7146 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7147
5f375835 7148 return fs_devices;
2b82032c
YZ
7149}
7150
17850759 7151static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7152 struct btrfs_dev_item *dev_item)
7153{
17850759 7154 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7155 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7156 struct btrfs_device *device;
7157 u64 devid;
7158 int ret;
44880fdc 7159 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7160 u8 dev_uuid[BTRFS_UUID_SIZE];
7161
0b86a832 7162 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7163 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7164 BTRFS_UUID_SIZE);
1473b24e 7165 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7166 BTRFS_FSID_SIZE);
2b82032c 7167
de37aa51 7168 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7169 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7170 if (IS_ERR(fs_devices))
7171 return PTR_ERR(fs_devices);
2b82032c
YZ
7172 }
7173
e4319cd9 7174 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 7175 fs_uuid);
5f375835 7176 if (!device) {
c5502451 7177 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7178 btrfs_report_missing_device(fs_info, devid,
7179 dev_uuid, true);
45dbdbc9 7180 return -ENOENT;
c5502451 7181 }
2b82032c 7182
2ff7e61e 7183 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7184 if (IS_ERR(device)) {
7185 btrfs_err(fs_info,
7186 "failed to add missing dev %llu: %ld",
7187 devid, PTR_ERR(device));
7188 return PTR_ERR(device);
7189 }
2b902dfc 7190 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7191 } else {
c5502451 7192 if (!device->bdev) {
2b902dfc
AJ
7193 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7194 btrfs_report_missing_device(fs_info,
7195 devid, dev_uuid, true);
45dbdbc9 7196 return -ENOENT;
2b902dfc
AJ
7197 }
7198 btrfs_report_missing_device(fs_info, devid,
7199 dev_uuid, false);
c5502451 7200 }
5f375835 7201
e6e674bd
AJ
7202 if (!device->bdev &&
7203 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7204 /*
7205 * this happens when a device that was properly setup
7206 * in the device info lists suddenly goes bad.
7207 * device->bdev is NULL, and so we have to set
7208 * device->missing to one here
7209 */
5f375835 7210 device->fs_devices->missing_devices++;
e6e674bd 7211 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7212 }
5f375835
MX
7213
7214 /* Move the device to its own fs_devices */
7215 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7216 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7217 &device->dev_state));
5f375835
MX
7218
7219 list_move(&device->dev_list, &fs_devices->devices);
7220 device->fs_devices->num_devices--;
7221 fs_devices->num_devices++;
7222
7223 device->fs_devices->missing_devices--;
7224 fs_devices->missing_devices++;
7225
7226 device->fs_devices = fs_devices;
7227 }
2b82032c
YZ
7228 }
7229
0b246afa 7230 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7231 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7232 if (device->generation !=
7233 btrfs_device_generation(leaf, dev_item))
7234 return -EINVAL;
6324fbf3 7235 }
0b86a832
CM
7236
7237 fill_device_from_item(leaf, dev_item, device);
3a160a93
AJ
7238 if (device->bdev) {
7239 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7240
7241 if (device->total_bytes > max_total_bytes) {
7242 btrfs_err(fs_info,
7243 "device total_bytes should be at most %llu but found %llu",
7244 max_total_bytes, device->total_bytes);
7245 return -EINVAL;
7246 }
7247 }
e12c9621 7248 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7249 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7250 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7251 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7252 atomic64_add(device->total_bytes - device->bytes_used,
7253 &fs_info->free_chunk_space);
2bf64758 7254 }
0b86a832 7255 ret = 0;
0b86a832
CM
7256 return ret;
7257}
7258
6bccf3ab 7259int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7260{
6bccf3ab 7261 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7262 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7263 struct extent_buffer *sb;
0b86a832 7264 struct btrfs_disk_key *disk_key;
0b86a832 7265 struct btrfs_chunk *chunk;
1ffb22cf
DS
7266 u8 *array_ptr;
7267 unsigned long sb_array_offset;
84eed90f 7268 int ret = 0;
0b86a832
CM
7269 u32 num_stripes;
7270 u32 array_size;
7271 u32 len = 0;
1ffb22cf 7272 u32 cur_offset;
e06cd3dd 7273 u64 type;
84eed90f 7274 struct btrfs_key key;
0b86a832 7275
0b246afa 7276 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7277 /*
7278 * This will create extent buffer of nodesize, superblock size is
7279 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7280 * overallocate but we can keep it as-is, only the first page is used.
7281 */
3fbaf258
JB
7282 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7283 root->root_key.objectid, 0);
c871b0f2
LB
7284 if (IS_ERR(sb))
7285 return PTR_ERR(sb);
4db8c528 7286 set_extent_buffer_uptodate(sb);
8a334426 7287 /*
01327610 7288 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7289 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7290 * pages up-to-date when the page is larger: extent does not cover the
7291 * whole page and consequently check_page_uptodate does not find all
7292 * the page's extents up-to-date (the hole beyond sb),
7293 * write_extent_buffer then triggers a WARN_ON.
7294 *
7295 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7296 * but sb spans only this function. Add an explicit SetPageUptodate call
7297 * to silence the warning eg. on PowerPC 64.
7298 */
09cbfeaf 7299 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7300 SetPageUptodate(sb->pages[0]);
4008c04a 7301
a061fc8d 7302 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7303 array_size = btrfs_super_sys_array_size(super_copy);
7304
1ffb22cf
DS
7305 array_ptr = super_copy->sys_chunk_array;
7306 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7307 cur_offset = 0;
0b86a832 7308
1ffb22cf
DS
7309 while (cur_offset < array_size) {
7310 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7311 len = sizeof(*disk_key);
7312 if (cur_offset + len > array_size)
7313 goto out_short_read;
7314
0b86a832
CM
7315 btrfs_disk_key_to_cpu(&key, disk_key);
7316
1ffb22cf
DS
7317 array_ptr += len;
7318 sb_array_offset += len;
7319 cur_offset += len;
0b86a832 7320
32ab3d1b
JT
7321 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7322 btrfs_err(fs_info,
7323 "unexpected item type %u in sys_array at offset %u",
7324 (u32)key.type, cur_offset);
7325 ret = -EIO;
7326 break;
7327 }
f5cdedd7 7328
32ab3d1b
JT
7329 chunk = (struct btrfs_chunk *)sb_array_offset;
7330 /*
7331 * At least one btrfs_chunk with one stripe must be present,
7332 * exact stripe count check comes afterwards
7333 */
7334 len = btrfs_chunk_item_size(1);
7335 if (cur_offset + len > array_size)
7336 goto out_short_read;
e06cd3dd 7337
32ab3d1b
JT
7338 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7339 if (!num_stripes) {
7340 btrfs_err(fs_info,
7341 "invalid number of stripes %u in sys_array at offset %u",
7342 num_stripes, cur_offset);
7343 ret = -EIO;
7344 break;
7345 }
e3540eab 7346
32ab3d1b
JT
7347 type = btrfs_chunk_type(sb, chunk);
7348 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7349 btrfs_err(fs_info,
32ab3d1b
JT
7350 "invalid chunk type %llu in sys_array at offset %u",
7351 type, cur_offset);
84eed90f
CM
7352 ret = -EIO;
7353 break;
0b86a832 7354 }
32ab3d1b
JT
7355
7356 len = btrfs_chunk_item_size(num_stripes);
7357 if (cur_offset + len > array_size)
7358 goto out_short_read;
7359
7360 ret = read_one_chunk(&key, sb, chunk);
7361 if (ret)
7362 break;
7363
1ffb22cf
DS
7364 array_ptr += len;
7365 sb_array_offset += len;
7366 cur_offset += len;
0b86a832 7367 }
d865177a 7368 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7369 free_extent_buffer_stale(sb);
84eed90f 7370 return ret;
e3540eab
DS
7371
7372out_short_read:
ab8d0fc4 7373 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7374 len, cur_offset);
d865177a 7375 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7376 free_extent_buffer_stale(sb);
e3540eab 7377 return -EIO;
0b86a832
CM
7378}
7379
21634a19
QW
7380/*
7381 * Check if all chunks in the fs are OK for read-write degraded mount
7382 *
6528b99d
AJ
7383 * If the @failing_dev is specified, it's accounted as missing.
7384 *
21634a19
QW
7385 * Return true if all chunks meet the minimal RW mount requirements.
7386 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7387 */
6528b99d
AJ
7388bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7389 struct btrfs_device *failing_dev)
21634a19 7390{
c8bf1b67 7391 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7392 struct extent_map *em;
7393 u64 next_start = 0;
7394 bool ret = true;
7395
c8bf1b67
DS
7396 read_lock(&map_tree->lock);
7397 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7398 read_unlock(&map_tree->lock);
21634a19
QW
7399 /* No chunk at all? Return false anyway */
7400 if (!em) {
7401 ret = false;
7402 goto out;
7403 }
7404 while (em) {
7405 struct map_lookup *map;
7406 int missing = 0;
7407 int max_tolerated;
7408 int i;
7409
7410 map = em->map_lookup;
7411 max_tolerated =
7412 btrfs_get_num_tolerated_disk_barrier_failures(
7413 map->type);
7414 for (i = 0; i < map->num_stripes; i++) {
7415 struct btrfs_device *dev = map->stripes[i].dev;
7416
e6e674bd
AJ
7417 if (!dev || !dev->bdev ||
7418 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7419 dev->last_flush_error)
7420 missing++;
6528b99d
AJ
7421 else if (failing_dev && failing_dev == dev)
7422 missing++;
21634a19
QW
7423 }
7424 if (missing > max_tolerated) {
6528b99d
AJ
7425 if (!failing_dev)
7426 btrfs_warn(fs_info,
52042d8e 7427 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7428 em->start, missing, max_tolerated);
7429 free_extent_map(em);
7430 ret = false;
7431 goto out;
7432 }
7433 next_start = extent_map_end(em);
7434 free_extent_map(em);
7435
c8bf1b67
DS
7436 read_lock(&map_tree->lock);
7437 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7438 (u64)(-1) - next_start);
c8bf1b67 7439 read_unlock(&map_tree->lock);
21634a19
QW
7440 }
7441out:
7442 return ret;
7443}
7444
d85327b1
DS
7445static void readahead_tree_node_children(struct extent_buffer *node)
7446{
7447 int i;
7448 const int nr_items = btrfs_header_nritems(node);
7449
bfb484d9
JB
7450 for (i = 0; i < nr_items; i++)
7451 btrfs_readahead_node_child(node, i);
d85327b1
DS
7452}
7453
5b4aacef 7454int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7455{
5b4aacef 7456 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7457 struct btrfs_path *path;
7458 struct extent_buffer *leaf;
7459 struct btrfs_key key;
7460 struct btrfs_key found_key;
7461 int ret;
7462 int slot;
99e3ecfc 7463 u64 total_dev = 0;
d85327b1 7464 u64 last_ra_node = 0;
0b86a832 7465
0b86a832
CM
7466 path = btrfs_alloc_path();
7467 if (!path)
7468 return -ENOMEM;
7469
3dd0f7a3
AJ
7470 /*
7471 * uuid_mutex is needed only if we are mounting a sprout FS
7472 * otherwise we don't need it.
7473 */
b367e47f 7474 mutex_lock(&uuid_mutex);
b367e47f 7475
48cfa61b
BB
7476 /*
7477 * It is possible for mount and umount to race in such a way that
7478 * we execute this code path, but open_fs_devices failed to clear
7479 * total_rw_bytes. We certainly want it cleared before reading the
7480 * device items, so clear it here.
7481 */
7482 fs_info->fs_devices->total_rw_bytes = 0;
7483
395927a9
FDBM
7484 /*
7485 * Read all device items, and then all the chunk items. All
7486 * device items are found before any chunk item (their object id
7487 * is smaller than the lowest possible object id for a chunk
7488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7489 */
7490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 key.offset = 0;
7492 key.type = 0;
0b86a832 7493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7494 if (ret < 0)
7495 goto error;
d397712b 7496 while (1) {
d85327b1
DS
7497 struct extent_buffer *node;
7498
0b86a832
CM
7499 leaf = path->nodes[0];
7500 slot = path->slots[0];
7501 if (slot >= btrfs_header_nritems(leaf)) {
7502 ret = btrfs_next_leaf(root, path);
7503 if (ret == 0)
7504 continue;
7505 if (ret < 0)
7506 goto error;
7507 break;
7508 }
d85327b1
DS
7509 /*
7510 * The nodes on level 1 are not locked but we don't need to do
7511 * that during mount time as nothing else can access the tree
7512 */
7513 node = path->nodes[1];
7514 if (node) {
7515 if (last_ra_node != node->start) {
7516 readahead_tree_node_children(node);
7517 last_ra_node = node->start;
7518 }
7519 }
0b86a832 7520 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7521 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7522 struct btrfs_dev_item *dev_item;
7523 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7524 struct btrfs_dev_item);
17850759 7525 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7526 if (ret)
7527 goto error;
99e3ecfc 7528 total_dev++;
0b86a832
CM
7529 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7530 struct btrfs_chunk *chunk;
79bd3712
FM
7531
7532 /*
7533 * We are only called at mount time, so no need to take
7534 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7535 * we always lock first fs_info->chunk_mutex before
7536 * acquiring any locks on the chunk tree. This is a
7537 * requirement for chunk allocation, see the comment on
7538 * top of btrfs_chunk_alloc() for details.
7539 */
7540 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
0b86a832 7541 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7542 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7543 if (ret)
7544 goto error;
0b86a832
CM
7545 }
7546 path->slots[0]++;
7547 }
99e3ecfc
LB
7548
7549 /*
7550 * After loading chunk tree, we've got all device information,
7551 * do another round of validation checks.
7552 */
0b246afa
JM
7553 if (total_dev != fs_info->fs_devices->total_devices) {
7554 btrfs_err(fs_info,
99e3ecfc 7555 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7556 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7557 total_dev);
7558 ret = -EINVAL;
7559 goto error;
7560 }
0b246afa
JM
7561 if (btrfs_super_total_bytes(fs_info->super_copy) <
7562 fs_info->fs_devices->total_rw_bytes) {
7563 btrfs_err(fs_info,
99e3ecfc 7564 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7565 btrfs_super_total_bytes(fs_info->super_copy),
7566 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7567 ret = -EINVAL;
7568 goto error;
7569 }
0b86a832
CM
7570 ret = 0;
7571error:
b367e47f
LZ
7572 mutex_unlock(&uuid_mutex);
7573
2b82032c 7574 btrfs_free_path(path);
0b86a832
CM
7575 return ret;
7576}
442a4f63 7577
cb517eab
MX
7578void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7579{
944d3f9f 7580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7581 struct btrfs_device *device;
7582
944d3f9f
NB
7583 fs_devices->fs_info = fs_info;
7584
7585 mutex_lock(&fs_devices->device_list_mutex);
7586 list_for_each_entry(device, &fs_devices->devices, dev_list)
7587 device->fs_info = fs_info;
944d3f9f
NB
7588
7589 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7590 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7591 device->fs_info = fs_info;
29cc83f6 7592
944d3f9f 7593 seed_devs->fs_info = fs_info;
29cc83f6 7594 }
e17125b5 7595 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7596}
7597
1dc990df
DS
7598static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7599 const struct btrfs_dev_stats_item *ptr,
7600 int index)
7601{
7602 u64 val;
7603
7604 read_extent_buffer(eb, &val,
7605 offsetof(struct btrfs_dev_stats_item, values) +
7606 ((unsigned long)ptr) + (index * sizeof(u64)),
7607 sizeof(val));
7608 return val;
7609}
7610
7611static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7612 struct btrfs_dev_stats_item *ptr,
7613 int index, u64 val)
7614{
7615 write_extent_buffer(eb, &val,
7616 offsetof(struct btrfs_dev_stats_item, values) +
7617 ((unsigned long)ptr) + (index * sizeof(u64)),
7618 sizeof(val));
7619}
7620
92e26df4
JB
7621static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7622 struct btrfs_path *path)
733f4fbb 7623{
124604eb 7624 struct btrfs_dev_stats_item *ptr;
733f4fbb 7625 struct extent_buffer *eb;
124604eb
JB
7626 struct btrfs_key key;
7627 int item_size;
7628 int i, ret, slot;
7629
82d62d06
JB
7630 if (!device->fs_info->dev_root)
7631 return 0;
7632
124604eb
JB
7633 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7634 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7635 key.offset = device->devid;
7636 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7637 if (ret) {
7638 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7639 btrfs_dev_stat_set(device, i, 0);
7640 device->dev_stats_valid = 1;
7641 btrfs_release_path(path);
92e26df4 7642 return ret < 0 ? ret : 0;
124604eb
JB
7643 }
7644 slot = path->slots[0];
7645 eb = path->nodes[0];
7646 item_size = btrfs_item_size_nr(eb, slot);
7647
7648 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7649
7650 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7651 if (item_size >= (1 + i) * sizeof(__le64))
7652 btrfs_dev_stat_set(device, i,
7653 btrfs_dev_stats_value(eb, ptr, i));
7654 else
7655 btrfs_dev_stat_set(device, i, 0);
7656 }
7657
7658 device->dev_stats_valid = 1;
7659 btrfs_dev_stat_print_on_load(device);
7660 btrfs_release_path(path);
92e26df4
JB
7661
7662 return 0;
124604eb
JB
7663}
7664
7665int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7666{
7667 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7668 struct btrfs_device *device;
7669 struct btrfs_path *path = NULL;
92e26df4 7670 int ret = 0;
733f4fbb
SB
7671
7672 path = btrfs_alloc_path();
3b80a984
AJ
7673 if (!path)
7674 return -ENOMEM;
733f4fbb
SB
7675
7676 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7677 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7678 ret = btrfs_device_init_dev_stats(device, path);
7679 if (ret)
7680 goto out;
7681 }
124604eb 7682 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7683 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7684 ret = btrfs_device_init_dev_stats(device, path);
7685 if (ret)
7686 goto out;
7687 }
733f4fbb 7688 }
92e26df4 7689out:
733f4fbb
SB
7690 mutex_unlock(&fs_devices->device_list_mutex);
7691
733f4fbb 7692 btrfs_free_path(path);
92e26df4 7693 return ret;
733f4fbb
SB
7694}
7695
7696static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7697 struct btrfs_device *device)
7698{
5495f195 7699 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7700 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7701 struct btrfs_path *path;
7702 struct btrfs_key key;
7703 struct extent_buffer *eb;
7704 struct btrfs_dev_stats_item *ptr;
7705 int ret;
7706 int i;
7707
242e2956
DS
7708 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7709 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7710 key.offset = device->devid;
7711
7712 path = btrfs_alloc_path();
fa252992
DS
7713 if (!path)
7714 return -ENOMEM;
733f4fbb
SB
7715 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7716 if (ret < 0) {
0b246afa 7717 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7718 "error %d while searching for dev_stats item for device %s",
606686ee 7719 ret, rcu_str_deref(device->name));
733f4fbb
SB
7720 goto out;
7721 }
7722
7723 if (ret == 0 &&
7724 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7725 /* need to delete old one and insert a new one */
7726 ret = btrfs_del_item(trans, dev_root, path);
7727 if (ret != 0) {
0b246afa 7728 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7729 "delete too small dev_stats item for device %s failed %d",
606686ee 7730 rcu_str_deref(device->name), ret);
733f4fbb
SB
7731 goto out;
7732 }
7733 ret = 1;
7734 }
7735
7736 if (ret == 1) {
7737 /* need to insert a new item */
7738 btrfs_release_path(path);
7739 ret = btrfs_insert_empty_item(trans, dev_root, path,
7740 &key, sizeof(*ptr));
7741 if (ret < 0) {
0b246afa 7742 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7743 "insert dev_stats item for device %s failed %d",
7744 rcu_str_deref(device->name), ret);
733f4fbb
SB
7745 goto out;
7746 }
7747 }
7748
7749 eb = path->nodes[0];
7750 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7751 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7752 btrfs_set_dev_stats_value(eb, ptr, i,
7753 btrfs_dev_stat_read(device, i));
7754 btrfs_mark_buffer_dirty(eb);
7755
7756out:
7757 btrfs_free_path(path);
7758 return ret;
7759}
7760
7761/*
7762 * called from commit_transaction. Writes all changed device stats to disk.
7763 */
196c9d8d 7764int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7765{
196c9d8d 7766 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7768 struct btrfs_device *device;
addc3fa7 7769 int stats_cnt;
733f4fbb
SB
7770 int ret = 0;
7771
7772 mutex_lock(&fs_devices->device_list_mutex);
7773 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7774 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7775 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7776 continue;
7777
9deae968
NB
7778
7779 /*
7780 * There is a LOAD-LOAD control dependency between the value of
7781 * dev_stats_ccnt and updating the on-disk values which requires
7782 * reading the in-memory counters. Such control dependencies
7783 * require explicit read memory barriers.
7784 *
7785 * This memory barriers pairs with smp_mb__before_atomic in
7786 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7787 * barrier implied by atomic_xchg in
7788 * btrfs_dev_stats_read_and_reset
7789 */
7790 smp_rmb();
7791
5495f195 7792 ret = update_dev_stat_item(trans, device);
733f4fbb 7793 if (!ret)
addc3fa7 7794 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7795 }
7796 mutex_unlock(&fs_devices->device_list_mutex);
7797
7798 return ret;
7799}
7800
442a4f63
SB
7801void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7802{
7803 btrfs_dev_stat_inc(dev, index);
7804 btrfs_dev_stat_print_on_error(dev);
7805}
7806
48a3b636 7807static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7808{
733f4fbb
SB
7809 if (!dev->dev_stats_valid)
7810 return;
fb456252 7811 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7813 rcu_str_deref(dev->name),
442a4f63
SB
7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7819}
c11d2c23 7820
733f4fbb
SB
7821static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7822{
a98cdb85
SB
7823 int i;
7824
7825 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7826 if (btrfs_dev_stat_read(dev, i) != 0)
7827 break;
7828 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7829 return; /* all values == 0, suppress message */
7830
fb456252 7831 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7832 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7833 rcu_str_deref(dev->name),
733f4fbb
SB
7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7837 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7838 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7839}
7840
2ff7e61e 7841int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7842 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7843{
7844 struct btrfs_device *dev;
0b246afa 7845 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7846 int i;
7847
7848 mutex_lock(&fs_devices->device_list_mutex);
b2598edf 7849 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
c11d2c23
SB
7850 mutex_unlock(&fs_devices->device_list_mutex);
7851
7852 if (!dev) {
0b246afa 7853 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7854 return -ENODEV;
733f4fbb 7855 } else if (!dev->dev_stats_valid) {
0b246afa 7856 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7857 return -ENODEV;
b27f7c0c 7858 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7859 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7860 if (stats->nr_items > i)
7861 stats->values[i] =
7862 btrfs_dev_stat_read_and_reset(dev, i);
7863 else
4e411a7d 7864 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7865 }
a69976bc
AJ
7866 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7867 current->comm, task_pid_nr(current));
c11d2c23
SB
7868 } else {
7869 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7870 if (stats->nr_items > i)
7871 stats->values[i] = btrfs_dev_stat_read(dev, i);
7872 }
7873 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7874 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7875 return 0;
7876}
a8a6dab7 7877
935e5cc9 7878/*
bbbf7243
NB
7879 * Update the size and bytes used for each device where it changed. This is
7880 * delayed since we would otherwise get errors while writing out the
7881 * superblocks.
7882 *
7883 * Must be invoked during transaction commit.
935e5cc9 7884 */
bbbf7243 7885void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7886{
935e5cc9
MX
7887 struct btrfs_device *curr, *next;
7888
bbbf7243 7889 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7890
bbbf7243 7891 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7892 return;
7893
bbbf7243
NB
7894 /*
7895 * We don't need the device_list_mutex here. This list is owned by the
7896 * transaction and the transaction must complete before the device is
7897 * released.
7898 */
7899 mutex_lock(&trans->fs_info->chunk_mutex);
7900 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7901 post_commit_list) {
7902 list_del_init(&curr->post_commit_list);
7903 curr->commit_total_bytes = curr->disk_total_bytes;
7904 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7905 }
bbbf7243 7906 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7907}
5a13f430 7908
46df06b8
DS
7909/*
7910 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7911 */
7912int btrfs_bg_type_to_factor(u64 flags)
7913{
44b28ada
DS
7914 const int index = btrfs_bg_flags_to_raid_index(flags);
7915
7916 return btrfs_raid_array[index].ncopies;
46df06b8 7917}
cf90d884
QW
7918
7919
cf90d884
QW
7920
7921static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7922 u64 chunk_offset, u64 devid,
7923 u64 physical_offset, u64 physical_len)
7924{
c8bf1b67 7925 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7926 struct extent_map *em;
7927 struct map_lookup *map;
05a37c48 7928 struct btrfs_device *dev;
cf90d884
QW
7929 u64 stripe_len;
7930 bool found = false;
7931 int ret = 0;
7932 int i;
7933
7934 read_lock(&em_tree->lock);
7935 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7936 read_unlock(&em_tree->lock);
7937
7938 if (!em) {
7939 btrfs_err(fs_info,
7940"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7941 physical_offset, devid);
7942 ret = -EUCLEAN;
7943 goto out;
7944 }
7945
7946 map = em->map_lookup;
7947 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7948 if (physical_len != stripe_len) {
7949 btrfs_err(fs_info,
7950"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7951 physical_offset, devid, em->start, physical_len,
7952 stripe_len);
7953 ret = -EUCLEAN;
7954 goto out;
7955 }
7956
7957 for (i = 0; i < map->num_stripes; i++) {
7958 if (map->stripes[i].dev->devid == devid &&
7959 map->stripes[i].physical == physical_offset) {
7960 found = true;
7961 if (map->verified_stripes >= map->num_stripes) {
7962 btrfs_err(fs_info,
7963 "too many dev extents for chunk %llu found",
7964 em->start);
7965 ret = -EUCLEAN;
7966 goto out;
7967 }
7968 map->verified_stripes++;
7969 break;
7970 }
7971 }
7972 if (!found) {
7973 btrfs_err(fs_info,
7974 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7975 physical_offset, devid);
7976 ret = -EUCLEAN;
7977 }
05a37c48 7978
1a9fd417 7979 /* Make sure no dev extent is beyond device boundary */
b2598edf 7980 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
05a37c48
QW
7981 if (!dev) {
7982 btrfs_err(fs_info, "failed to find devid %llu", devid);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
1b3922a8 7986
05a37c48
QW
7987 if (physical_offset + physical_len > dev->disk_total_bytes) {
7988 btrfs_err(fs_info,
7989"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7990 devid, physical_offset, physical_len,
7991 dev->disk_total_bytes);
7992 ret = -EUCLEAN;
7993 goto out;
7994 }
381a696e
NA
7995
7996 if (dev->zone_info) {
7997 u64 zone_size = dev->zone_info->zone_size;
7998
7999 if (!IS_ALIGNED(physical_offset, zone_size) ||
8000 !IS_ALIGNED(physical_len, zone_size)) {
8001 btrfs_err(fs_info,
8002"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8003 devid, physical_offset, physical_len);
8004 ret = -EUCLEAN;
8005 goto out;
8006 }
8007 }
8008
cf90d884
QW
8009out:
8010 free_extent_map(em);
8011 return ret;
8012}
8013
8014static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8015{
c8bf1b67 8016 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8017 struct extent_map *em;
8018 struct rb_node *node;
8019 int ret = 0;
8020
8021 read_lock(&em_tree->lock);
07e1ce09 8022 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
8023 em = rb_entry(node, struct extent_map, rb_node);
8024 if (em->map_lookup->num_stripes !=
8025 em->map_lookup->verified_stripes) {
8026 btrfs_err(fs_info,
8027 "chunk %llu has missing dev extent, have %d expect %d",
8028 em->start, em->map_lookup->verified_stripes,
8029 em->map_lookup->num_stripes);
8030 ret = -EUCLEAN;
8031 goto out;
8032 }
8033 }
8034out:
8035 read_unlock(&em_tree->lock);
8036 return ret;
8037}
8038
8039/*
8040 * Ensure that all dev extents are mapped to correct chunk, otherwise
8041 * later chunk allocation/free would cause unexpected behavior.
8042 *
8043 * NOTE: This will iterate through the whole device tree, which should be of
8044 * the same size level as the chunk tree. This slightly increases mount time.
8045 */
8046int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047{
8048 struct btrfs_path *path;
8049 struct btrfs_root *root = fs_info->dev_root;
8050 struct btrfs_key key;
5eb19381
QW
8051 u64 prev_devid = 0;
8052 u64 prev_dev_ext_end = 0;
cf90d884
QW
8053 int ret = 0;
8054
42437a63
JB
8055 /*
8056 * We don't have a dev_root because we mounted with ignorebadroots and
8057 * failed to load the root, so we want to skip the verification in this
8058 * case for sure.
8059 *
8060 * However if the dev root is fine, but the tree itself is corrupted
8061 * we'd still fail to mount. This verification is only to make sure
8062 * writes can happen safely, so instead just bypass this check
8063 * completely in the case of IGNOREBADROOTS.
8064 */
8065 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066 return 0;
8067
cf90d884
QW
8068 key.objectid = 1;
8069 key.type = BTRFS_DEV_EXTENT_KEY;
8070 key.offset = 0;
8071
8072 path = btrfs_alloc_path();
8073 if (!path)
8074 return -ENOMEM;
8075
8076 path->reada = READA_FORWARD;
8077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078 if (ret < 0)
8079 goto out;
8080
8081 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8082 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8083 if (ret < 0)
8084 goto out;
8085 /* No dev extents at all? Not good */
8086 if (ret > 0) {
8087 ret = -EUCLEAN;
8088 goto out;
8089 }
8090 }
8091 while (1) {
8092 struct extent_buffer *leaf = path->nodes[0];
8093 struct btrfs_dev_extent *dext;
8094 int slot = path->slots[0];
8095 u64 chunk_offset;
8096 u64 physical_offset;
8097 u64 physical_len;
8098 u64 devid;
8099
8100 btrfs_item_key_to_cpu(leaf, &key, slot);
8101 if (key.type != BTRFS_DEV_EXTENT_KEY)
8102 break;
8103 devid = key.objectid;
8104 physical_offset = key.offset;
8105
8106 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108 physical_len = btrfs_dev_extent_length(leaf, dext);
8109
5eb19381
QW
8110 /* Check if this dev extent overlaps with the previous one */
8111 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112 btrfs_err(fs_info,
8113"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114 devid, physical_offset, prev_dev_ext_end);
8115 ret = -EUCLEAN;
8116 goto out;
8117 }
8118
cf90d884
QW
8119 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120 physical_offset, physical_len);
8121 if (ret < 0)
8122 goto out;
5eb19381
QW
8123 prev_devid = devid;
8124 prev_dev_ext_end = physical_offset + physical_len;
8125
cf90d884
QW
8126 ret = btrfs_next_item(root, path);
8127 if (ret < 0)
8128 goto out;
8129 if (ret > 0) {
8130 ret = 0;
8131 break;
8132 }
8133 }
8134
8135 /* Ensure all chunks have corresponding dev extents */
8136 ret = verify_chunk_dev_extent_mapping(fs_info);
8137out:
8138 btrfs_free_path(path);
8139 return ret;
8140}
eede2bf3
OS
8141
8142/*
8143 * Check whether the given block group or device is pinned by any inode being
8144 * used as a swapfile.
8145 */
8146bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147{
8148 struct btrfs_swapfile_pin *sp;
8149 struct rb_node *node;
8150
8151 spin_lock(&fs_info->swapfile_pins_lock);
8152 node = fs_info->swapfile_pins.rb_node;
8153 while (node) {
8154 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155 if (ptr < sp->ptr)
8156 node = node->rb_left;
8157 else if (ptr > sp->ptr)
8158 node = node->rb_right;
8159 else
8160 break;
8161 }
8162 spin_unlock(&fs_info->swapfile_pins_lock);
8163 return node != NULL;
8164}
f7ef5287
NA
8165
8166static int relocating_repair_kthread(void *data)
8167{
8168 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8169 struct btrfs_fs_info *fs_info = cache->fs_info;
8170 u64 target;
8171 int ret = 0;
8172
8173 target = cache->start;
8174 btrfs_put_block_group(cache);
8175
8176 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8177 btrfs_info(fs_info,
8178 "zoned: skip relocating block group %llu to repair: EBUSY",
8179 target);
8180 return -EBUSY;
8181 }
8182
f3372065 8183 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8184
8185 /* Ensure block group still exists */
8186 cache = btrfs_lookup_block_group(fs_info, target);
8187 if (!cache)
8188 goto out;
8189
8190 if (!cache->relocating_repair)
8191 goto out;
8192
8193 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8194 if (ret < 0)
8195 goto out;
8196
8197 btrfs_info(fs_info,
8198 "zoned: relocating block group %llu to repair IO failure",
8199 target);
8200 ret = btrfs_relocate_chunk(fs_info, target);
8201
8202out:
8203 if (cache)
8204 btrfs_put_block_group(cache);
f3372065 8205 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8206 btrfs_exclop_finish(fs_info);
8207
8208 return ret;
8209}
8210
8211int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8212{
8213 struct btrfs_block_group *cache;
8214
8215 /* Do not attempt to repair in degraded state */
8216 if (btrfs_test_opt(fs_info, DEGRADED))
8217 return 0;
8218
8219 cache = btrfs_lookup_block_group(fs_info, logical);
8220 if (!cache)
8221 return 0;
8222
8223 spin_lock(&cache->lock);
8224 if (cache->relocating_repair) {
8225 spin_unlock(&cache->lock);
8226 btrfs_put_block_group(cache);
8227 return 0;
8228 }
8229 cache->relocating_repair = 1;
8230 spin_unlock(&cache->lock);
8231
8232 kthread_run(relocating_repair_kthread, cache,
8233 "btrfs-relocating-repair");
8234
8235 return 0;
8236}