Btrfs: Retry metadata reads in the face of checksum failures
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7
CM
29struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
cea9e445 36 struct btrfs_bio_stripe stripes[];
593060d7
CM
37};
38
39#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 40 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 41
8a4b83cc
CM
42static DEFINE_MUTEX(uuid_mutex);
43static LIST_HEAD(fs_uuids);
44
45int btrfs_cleanup_fs_uuids(void)
46{
47 struct btrfs_fs_devices *fs_devices;
48 struct list_head *uuid_cur;
49 struct list_head *devices_cur;
50 struct btrfs_device *dev;
51
52 list_for_each(uuid_cur, &fs_uuids) {
53 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
54 list);
55 while(!list_empty(&fs_devices->devices)) {
56 devices_cur = fs_devices->devices.next;
57 dev = list_entry(devices_cur, struct btrfs_device,
58 dev_list);
59 printk("uuid cleanup finds %s\n", dev->name);
60 if (dev->bdev) {
61 printk("closing\n");
62 close_bdev_excl(dev->bdev);
63 }
64 list_del(&dev->dev_list);
65 kfree(dev);
66 }
67 }
68 return 0;
69}
70
71static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
72{
73 struct btrfs_device *dev;
74 struct list_head *cur;
75
76 list_for_each(cur, head) {
77 dev = list_entry(cur, struct btrfs_device, dev_list);
78 if (dev->devid == devid)
79 return dev;
80 }
81 return NULL;
82}
83
84static struct btrfs_fs_devices *find_fsid(u8 *fsid)
85{
86 struct list_head *cur;
87 struct btrfs_fs_devices *fs_devices;
88
89 list_for_each(cur, &fs_uuids) {
90 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
91 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
92 return fs_devices;
93 }
94 return NULL;
95}
96
97static int device_list_add(const char *path,
98 struct btrfs_super_block *disk_super,
99 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
100{
101 struct btrfs_device *device;
102 struct btrfs_fs_devices *fs_devices;
103 u64 found_transid = btrfs_super_generation(disk_super);
104
105 fs_devices = find_fsid(disk_super->fsid);
106 if (!fs_devices) {
107 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
108 if (!fs_devices)
109 return -ENOMEM;
110 INIT_LIST_HEAD(&fs_devices->devices);
111 list_add(&fs_devices->list, &fs_uuids);
112 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
113 fs_devices->latest_devid = devid;
114 fs_devices->latest_trans = found_transid;
115 fs_devices->lowest_devid = (u64)-1;
116 fs_devices->num_devices = 0;
117 device = NULL;
118 } else {
119 device = __find_device(&fs_devices->devices, devid);
120 }
121 if (!device) {
122 device = kzalloc(sizeof(*device), GFP_NOFS);
123 if (!device) {
124 /* we can safely leave the fs_devices entry around */
125 return -ENOMEM;
126 }
127 device->devid = devid;
128 device->name = kstrdup(path, GFP_NOFS);
129 if (!device->name) {
130 kfree(device);
131 return -ENOMEM;
132 }
133 list_add(&device->dev_list, &fs_devices->devices);
134 fs_devices->num_devices++;
135 }
136
137 if (found_transid > fs_devices->latest_trans) {
138 fs_devices->latest_devid = devid;
139 fs_devices->latest_trans = found_transid;
140 }
141 if (fs_devices->lowest_devid > devid) {
142 fs_devices->lowest_devid = devid;
143 printk("lowest devid now %Lu\n", devid);
144 }
145 *fs_devices_ret = fs_devices;
146 return 0;
147}
148
149int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
150{
151 struct list_head *head = &fs_devices->devices;
152 struct list_head *cur;
153 struct btrfs_device *device;
154
155 mutex_lock(&uuid_mutex);
156 list_for_each(cur, head) {
157 device = list_entry(cur, struct btrfs_device, dev_list);
158 if (device->bdev) {
159 close_bdev_excl(device->bdev);
160 printk("close devices closes %s\n", device->name);
161 }
162 device->bdev = NULL;
163 }
164 mutex_unlock(&uuid_mutex);
165 return 0;
166}
167
168int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
169 int flags, void *holder)
170{
171 struct block_device *bdev;
172 struct list_head *head = &fs_devices->devices;
173 struct list_head *cur;
174 struct btrfs_device *device;
175 int ret;
176
177 mutex_lock(&uuid_mutex);
178 list_for_each(cur, head) {
179 device = list_entry(cur, struct btrfs_device, dev_list);
180 bdev = open_bdev_excl(device->name, flags, holder);
181printk("opening %s devid %Lu\n", device->name, device->devid);
182 if (IS_ERR(bdev)) {
183 printk("open %s failed\n", device->name);
184 ret = PTR_ERR(bdev);
185 goto fail;
186 }
187 if (device->devid == fs_devices->latest_devid)
188 fs_devices->latest_bdev = bdev;
189 if (device->devid == fs_devices->lowest_devid) {
190 fs_devices->lowest_bdev = bdev;
191printk("lowest bdev %s\n", device->name);
192 }
193 device->bdev = bdev;
194 }
195 mutex_unlock(&uuid_mutex);
196 return 0;
197fail:
198 mutex_unlock(&uuid_mutex);
199 btrfs_close_devices(fs_devices);
200 return ret;
201}
202
203int btrfs_scan_one_device(const char *path, int flags, void *holder,
204 struct btrfs_fs_devices **fs_devices_ret)
205{
206 struct btrfs_super_block *disk_super;
207 struct block_device *bdev;
208 struct buffer_head *bh;
209 int ret;
210 u64 devid;
211
212 mutex_lock(&uuid_mutex);
213
214 printk("scan one opens %s\n", path);
215 bdev = open_bdev_excl(path, flags, holder);
216
217 if (IS_ERR(bdev)) {
218 printk("open failed\n");
219 ret = PTR_ERR(bdev);
220 goto error;
221 }
222
223 ret = set_blocksize(bdev, 4096);
224 if (ret)
225 goto error_close;
226 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
227 if (!bh) {
228 ret = -EIO;
229 goto error_close;
230 }
231 disk_super = (struct btrfs_super_block *)bh->b_data;
232 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
233 sizeof(disk_super->magic))) {
234 printk("no btrfs found on %s\n", path);
e58ca020 235 ret = -EINVAL;
8a4b83cc
CM
236 goto error_brelse;
237 }
238 devid = le64_to_cpu(disk_super->dev_item.devid);
239 printk("found device %Lu on %s\n", devid, path);
240 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
241
242error_brelse:
243 brelse(bh);
244error_close:
245 close_bdev_excl(bdev);
246 printk("scan one closes bdev %s\n", path);
247error:
248 mutex_unlock(&uuid_mutex);
249 return ret;
250}
0b86a832
CM
251
252/*
253 * this uses a pretty simple search, the expectation is that it is
254 * called very infrequently and that a given device has a small number
255 * of extents
256 */
257static int find_free_dev_extent(struct btrfs_trans_handle *trans,
258 struct btrfs_device *device,
259 struct btrfs_path *path,
260 u64 num_bytes, u64 *start)
261{
262 struct btrfs_key key;
263 struct btrfs_root *root = device->dev_root;
264 struct btrfs_dev_extent *dev_extent = NULL;
265 u64 hole_size = 0;
266 u64 last_byte = 0;
267 u64 search_start = 0;
268 u64 search_end = device->total_bytes;
269 int ret;
270 int slot = 0;
271 int start_found;
272 struct extent_buffer *l;
273
274 start_found = 0;
275 path->reada = 2;
276
277 /* FIXME use last free of some kind */
278
8a4b83cc
CM
279 /* we don't want to overwrite the superblock on the drive,
280 * so we make sure to start at an offset of at least 1MB
281 */
282 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
283 key.objectid = device->devid;
284 key.offset = search_start;
285 key.type = BTRFS_DEV_EXTENT_KEY;
286 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
287 if (ret < 0)
288 goto error;
289 ret = btrfs_previous_item(root, path, 0, key.type);
290 if (ret < 0)
291 goto error;
292 l = path->nodes[0];
293 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
294 while (1) {
295 l = path->nodes[0];
296 slot = path->slots[0];
297 if (slot >= btrfs_header_nritems(l)) {
298 ret = btrfs_next_leaf(root, path);
299 if (ret == 0)
300 continue;
301 if (ret < 0)
302 goto error;
303no_more_items:
304 if (!start_found) {
305 if (search_start >= search_end) {
306 ret = -ENOSPC;
307 goto error;
308 }
309 *start = search_start;
310 start_found = 1;
311 goto check_pending;
312 }
313 *start = last_byte > search_start ?
314 last_byte : search_start;
315 if (search_end <= *start) {
316 ret = -ENOSPC;
317 goto error;
318 }
319 goto check_pending;
320 }
321 btrfs_item_key_to_cpu(l, &key, slot);
322
323 if (key.objectid < device->devid)
324 goto next;
325
326 if (key.objectid > device->devid)
327 goto no_more_items;
328
329 if (key.offset >= search_start && key.offset > last_byte &&
330 start_found) {
331 if (last_byte < search_start)
332 last_byte = search_start;
333 hole_size = key.offset - last_byte;
334 if (key.offset > last_byte &&
335 hole_size >= num_bytes) {
336 *start = last_byte;
337 goto check_pending;
338 }
339 }
340 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
341 goto next;
342 }
343
344 start_found = 1;
345 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
346 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
347next:
348 path->slots[0]++;
349 cond_resched();
350 }
351check_pending:
352 /* we have to make sure we didn't find an extent that has already
353 * been allocated by the map tree or the original allocation
354 */
355 btrfs_release_path(root, path);
356 BUG_ON(*start < search_start);
357
6324fbf3 358 if (*start + num_bytes > search_end) {
0b86a832
CM
359 ret = -ENOSPC;
360 goto error;
361 }
362 /* check for pending inserts here */
363 return 0;
364
365error:
366 btrfs_release_path(root, path);
367 return ret;
368}
369
370int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
371 struct btrfs_device *device,
372 u64 owner, u64 num_bytes, u64 *start)
373{
374 int ret;
375 struct btrfs_path *path;
376 struct btrfs_root *root = device->dev_root;
377 struct btrfs_dev_extent *extent;
378 struct extent_buffer *leaf;
379 struct btrfs_key key;
380
381 path = btrfs_alloc_path();
382 if (!path)
383 return -ENOMEM;
384
385 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 386 if (ret) {
0b86a832 387 goto err;
6324fbf3 388 }
0b86a832
CM
389
390 key.objectid = device->devid;
391 key.offset = *start;
392 key.type = BTRFS_DEV_EXTENT_KEY;
393 ret = btrfs_insert_empty_item(trans, root, path, &key,
394 sizeof(*extent));
395 BUG_ON(ret);
396
397 leaf = path->nodes[0];
398 extent = btrfs_item_ptr(leaf, path->slots[0],
399 struct btrfs_dev_extent);
400 btrfs_set_dev_extent_owner(leaf, extent, owner);
401 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
402 btrfs_mark_buffer_dirty(leaf);
403err:
404 btrfs_free_path(path);
405 return ret;
406}
407
408static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
409{
410 struct btrfs_path *path;
411 int ret;
412 struct btrfs_key key;
413 struct btrfs_key found_key;
414
415 path = btrfs_alloc_path();
416 BUG_ON(!path);
417
418 key.objectid = (u64)-1;
419 key.offset = (u64)-1;
420 key.type = BTRFS_CHUNK_ITEM_KEY;
421
422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
423 if (ret < 0)
424 goto error;
425
426 BUG_ON(ret == 0);
427
428 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
429 if (ret) {
430 *objectid = 0;
431 } else {
432 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
433 path->slots[0]);
434 *objectid = found_key.objectid + found_key.offset;
435 }
436 ret = 0;
437error:
438 btrfs_free_path(path);
439 return ret;
440}
441
0b86a832
CM
442static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
443 u64 *objectid)
444{
445 int ret;
446 struct btrfs_key key;
447 struct btrfs_key found_key;
448
449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
450 key.type = BTRFS_DEV_ITEM_KEY;
451 key.offset = (u64)-1;
452
453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
454 if (ret < 0)
455 goto error;
456
457 BUG_ON(ret == 0);
458
459 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
460 BTRFS_DEV_ITEM_KEY);
461 if (ret) {
462 *objectid = 1;
463 } else {
464 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
465 path->slots[0]);
466 *objectid = found_key.offset + 1;
467 }
468 ret = 0;
469error:
470 btrfs_release_path(root, path);
471 return ret;
472}
473
474/*
475 * the device information is stored in the chunk root
476 * the btrfs_device struct should be fully filled in
477 */
478int btrfs_add_device(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root,
480 struct btrfs_device *device)
481{
482 int ret;
483 struct btrfs_path *path;
484 struct btrfs_dev_item *dev_item;
485 struct extent_buffer *leaf;
486 struct btrfs_key key;
487 unsigned long ptr;
488 u64 free_devid;
489
490 root = root->fs_info->chunk_root;
491
492 path = btrfs_alloc_path();
493 if (!path)
494 return -ENOMEM;
495
496 ret = find_next_devid(root, path, &free_devid);
497 if (ret)
498 goto out;
499
500 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
501 key.type = BTRFS_DEV_ITEM_KEY;
502 key.offset = free_devid;
503
504 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 505 sizeof(*dev_item));
0b86a832
CM
506 if (ret)
507 goto out;
508
509 leaf = path->nodes[0];
510 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
511
8a4b83cc 512 device->devid = free_devid;
0b86a832
CM
513 btrfs_set_device_id(leaf, dev_item, device->devid);
514 btrfs_set_device_type(leaf, dev_item, device->type);
515 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
516 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
517 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
518 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
519 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
520
0b86a832
CM
521 ptr = (unsigned long)btrfs_device_uuid(dev_item);
522 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
523 btrfs_mark_buffer_dirty(leaf);
524 ret = 0;
525
526out:
527 btrfs_free_path(path);
528 return ret;
529}
530int btrfs_update_device(struct btrfs_trans_handle *trans,
531 struct btrfs_device *device)
532{
533 int ret;
534 struct btrfs_path *path;
535 struct btrfs_root *root;
536 struct btrfs_dev_item *dev_item;
537 struct extent_buffer *leaf;
538 struct btrfs_key key;
539
540 root = device->dev_root->fs_info->chunk_root;
541
542 path = btrfs_alloc_path();
543 if (!path)
544 return -ENOMEM;
545
546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
547 key.type = BTRFS_DEV_ITEM_KEY;
548 key.offset = device->devid;
549
550 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
551 if (ret < 0)
552 goto out;
553
554 if (ret > 0) {
555 ret = -ENOENT;
556 goto out;
557 }
558
559 leaf = path->nodes[0];
560 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
561
562 btrfs_set_device_id(leaf, dev_item, device->devid);
563 btrfs_set_device_type(leaf, dev_item, device->type);
564 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
565 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
566 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
567 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
568 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
569 btrfs_mark_buffer_dirty(leaf);
570
571out:
572 btrfs_free_path(path);
573 return ret;
574}
575
576int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root,
578 struct btrfs_key *key,
579 struct btrfs_chunk *chunk, int item_size)
580{
581 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
582 struct btrfs_disk_key disk_key;
583 u32 array_size;
584 u8 *ptr;
585
586 array_size = btrfs_super_sys_array_size(super_copy);
587 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
588 return -EFBIG;
589
590 ptr = super_copy->sys_chunk_array + array_size;
591 btrfs_cpu_key_to_disk(&disk_key, key);
592 memcpy(ptr, &disk_key, sizeof(disk_key));
593 ptr += sizeof(disk_key);
594 memcpy(ptr, chunk, item_size);
595 item_size += sizeof(disk_key);
596 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
597 return 0;
598}
599
600int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
601 struct btrfs_root *extent_root, u64 *start,
6324fbf3 602 u64 *num_bytes, u64 type)
0b86a832
CM
603{
604 u64 dev_offset;
593060d7 605 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
606 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
607 struct btrfs_stripe *stripes;
608 struct btrfs_device *device = NULL;
609 struct btrfs_chunk *chunk;
6324fbf3 610 struct list_head private_devs;
8a4b83cc 611 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 612 struct list_head *cur;
0b86a832
CM
613 struct extent_map_tree *em_tree;
614 struct map_lookup *map;
615 struct extent_map *em;
616 u64 physical;
617 u64 calc_size = 1024 * 1024 * 1024;
611f0e00 618 u64 min_free = calc_size;
6324fbf3
CM
619 u64 avail;
620 u64 max_avail = 0;
621 int num_stripes = 1;
622 int looped = 0;
0b86a832 623 int ret;
6324fbf3 624 int index;
593060d7 625 int stripe_len = 64 * 1024;
0b86a832
CM
626 struct btrfs_key key;
627
6324fbf3
CM
628 if (list_empty(dev_list))
629 return -ENOSPC;
593060d7 630
8790d502 631 if (type & (BTRFS_BLOCK_GROUP_RAID0))
593060d7 632 num_stripes = btrfs_super_num_devices(&info->super_copy);
611f0e00
CM
633 if (type & (BTRFS_BLOCK_GROUP_DUP))
634 num_stripes = 2;
8790d502
CM
635 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
636 num_stripes = min_t(u64, 2,
637 btrfs_super_num_devices(&info->super_copy));
638 }
6324fbf3
CM
639again:
640 INIT_LIST_HEAD(&private_devs);
641 cur = dev_list->next;
642 index = 0;
611f0e00
CM
643
644 if (type & BTRFS_BLOCK_GROUP_DUP)
645 min_free = calc_size * 2;
646
6324fbf3
CM
647 /* build a private list of devices we will allocate from */
648 while(index < num_stripes) {
649 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00 650
6324fbf3
CM
651 avail = device->total_bytes - device->bytes_used;
652 cur = cur->next;
653 if (avail > max_avail)
654 max_avail = avail;
611f0e00 655 if (avail >= min_free) {
6324fbf3
CM
656 list_move_tail(&device->dev_list, &private_devs);
657 index++;
611f0e00
CM
658 if (type & BTRFS_BLOCK_GROUP_DUP)
659 index++;
6324fbf3
CM
660 }
661 if (cur == dev_list)
662 break;
663 }
664 if (index < num_stripes) {
665 list_splice(&private_devs, dev_list);
666 if (!looped && max_avail > 0) {
667 looped = 1;
668 calc_size = max_avail;
669 goto again;
670 }
671 return -ENOSPC;
672 }
0b86a832
CM
673
674 ret = find_next_chunk(chunk_root, &key.objectid);
675 if (ret)
676 return ret;
677
0b86a832
CM
678 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
679 if (!chunk)
680 return -ENOMEM;
681
593060d7
CM
682 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
683 if (!map) {
684 kfree(chunk);
685 return -ENOMEM;
686 }
687
0b86a832
CM
688 stripes = &chunk->stripe;
689
611f0e00 690 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
8790d502
CM
691 *num_bytes = calc_size;
692 else
693 *num_bytes = calc_size * num_stripes;
694
6324fbf3 695 index = 0;
611f0e00 696printk("new chunk type %Lu start %Lu size %Lu\n", type, key.objectid, *num_bytes);
0b86a832 697 while(index < num_stripes) {
6324fbf3
CM
698 BUG_ON(list_empty(&private_devs));
699 cur = private_devs.next;
700 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00
CM
701
702 /* loop over this device again if we're doing a dup group */
703 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
704 (index == num_stripes - 1))
705 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
706
707 ret = btrfs_alloc_dev_extent(trans, device,
708 key.objectid,
709 calc_size, &dev_offset);
710 BUG_ON(ret);
8790d502 711printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.objectid, calc_size, device->devid, type);
0b86a832
CM
712 device->bytes_used += calc_size;
713 ret = btrfs_update_device(trans, device);
714 BUG_ON(ret);
715
593060d7
CM
716 map->stripes[index].dev = device;
717 map->stripes[index].physical = dev_offset;
0b86a832
CM
718 btrfs_set_stack_stripe_devid(stripes + index, device->devid);
719 btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
720 physical = dev_offset;
721 index++;
722 }
6324fbf3 723 BUG_ON(!list_empty(&private_devs));
0b86a832
CM
724
725 /* key.objectid was set above */
726 key.offset = *num_bytes;
727 key.type = BTRFS_CHUNK_ITEM_KEY;
728 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 729 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
730 btrfs_set_stack_chunk_type(chunk, type);
731 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
732 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
733 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 734 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
593060d7
CM
735 map->sector_size = extent_root->sectorsize;
736 map->stripe_len = stripe_len;
737 map->io_align = stripe_len;
738 map->io_width = stripe_len;
739 map->type = type;
740 map->num_stripes = num_stripes;
0b86a832
CM
741
742 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
743 btrfs_chunk_item_size(num_stripes));
744 BUG_ON(ret);
745 *start = key.objectid;
746
747 em = alloc_extent_map(GFP_NOFS);
748 if (!em)
749 return -ENOMEM;
0b86a832
CM
750 em->bdev = (struct block_device *)map;
751 em->start = key.objectid;
752 em->len = key.offset;
753 em->block_start = 0;
754
0b86a832
CM
755 kfree(chunk);
756
757 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
758 spin_lock(&em_tree->lock);
759 ret = add_extent_mapping(em_tree, em);
760 BUG_ON(ret);
761 spin_unlock(&em_tree->lock);
762 free_extent_map(em);
763 return ret;
764}
765
766void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
767{
768 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
769}
770
771void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
772{
773 struct extent_map *em;
774
775 while(1) {
776 spin_lock(&tree->map_tree.lock);
777 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
778 if (em)
779 remove_extent_mapping(&tree->map_tree, em);
780 spin_unlock(&tree->map_tree.lock);
781 if (!em)
782 break;
783 kfree(em->bdev);
784 /* once for us */
785 free_extent_map(em);
786 /* once for the tree */
787 free_extent_map(em);
788 }
789}
790
f188591e
CM
791int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
792{
793 struct extent_map *em;
794 struct map_lookup *map;
795 struct extent_map_tree *em_tree = &map_tree->map_tree;
796 int ret;
797
798 spin_lock(&em_tree->lock);
799 em = lookup_extent_mapping(em_tree, logical, len);
800 BUG_ON(!em);
801
802 BUG_ON(em->start > logical || em->start + em->len < logical);
803 map = (struct map_lookup *)em->bdev;
804 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
805 ret = map->num_stripes;
806 else
807 ret = 1;
808 free_extent_map(em);
809 spin_unlock(&em_tree->lock);
810 return ret;
811}
812
8790d502 813int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
cea9e445 814 u64 logical, u64 *length,
f188591e 815 struct btrfs_multi_bio **multi_ret, int mirror_num)
0b86a832
CM
816{
817 struct extent_map *em;
818 struct map_lookup *map;
819 struct extent_map_tree *em_tree = &map_tree->map_tree;
820 u64 offset;
593060d7
CM
821 u64 stripe_offset;
822 u64 stripe_nr;
cea9e445 823 int stripes_allocated = 8;
593060d7 824 int stripe_index;
cea9e445
CM
825 int i;
826 struct btrfs_multi_bio *multi = NULL;
0b86a832 827
cea9e445
CM
828 if (multi_ret && !(rw & (1 << BIO_RW))) {
829 stripes_allocated = 1;
830 }
831again:
832 if (multi_ret) {
833 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
834 GFP_NOFS);
835 if (!multi)
836 return -ENOMEM;
837 }
0b86a832
CM
838
839 spin_lock(&em_tree->lock);
840 em = lookup_extent_mapping(em_tree, logical, *length);
841 BUG_ON(!em);
842
843 BUG_ON(em->start > logical || em->start + em->len < logical);
844 map = (struct map_lookup *)em->bdev;
845 offset = logical - em->start;
593060d7 846
f188591e
CM
847 if (mirror_num > map->num_stripes)
848 mirror_num = 0;
849
cea9e445
CM
850 /* if our multi bio struct is too small, back off and try again */
851 if (multi_ret && (rw & (1 << BIO_RW)) &&
852 stripes_allocated < map->num_stripes &&
853 ((map->type & BTRFS_BLOCK_GROUP_RAID1) ||
854 (map->type & BTRFS_BLOCK_GROUP_DUP))) {
855 stripes_allocated = map->num_stripes;
856 spin_unlock(&em_tree->lock);
857 free_extent_map(em);
858 kfree(multi);
859 goto again;
860 }
593060d7
CM
861 stripe_nr = offset;
862 /*
863 * stripe_nr counts the total number of stripes we have to stride
864 * to get to this block
865 */
866 do_div(stripe_nr, map->stripe_len);
867
868 stripe_offset = stripe_nr * map->stripe_len;
869 BUG_ON(offset < stripe_offset);
870
871 /* stripe_offset is the offset of this block in its stripe*/
872 stripe_offset = offset - stripe_offset;
873
cea9e445
CM
874 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
875 BTRFS_BLOCK_GROUP_DUP)) {
876 /* we limit the length of each bio to what fits in a stripe */
877 *length = min_t(u64, em->len - offset,
878 map->stripe_len - stripe_offset);
879 } else {
880 *length = em->len - offset;
881 }
882 if (!multi_ret)
883 goto out;
884
885 multi->num_stripes = 1;
886 stripe_index = 0;
8790d502 887 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
8790d502 888 if (rw & (1 << BIO_RW))
cea9e445 889 multi->num_stripes = map->num_stripes;
f188591e
CM
890 else if (mirror_num) {
891 stripe_index = mirror_num - 1;
892 } else {
8790d502
CM
893 int i;
894 u64 least = (u64)-1;
895 struct btrfs_device *cur;
896
897 for (i = 0; i < map->num_stripes; i++) {
898 cur = map->stripes[i].dev;
899 spin_lock(&cur->io_lock);
900 if (cur->total_ios < least) {
901 least = cur->total_ios;
902 stripe_index = i;
903 }
904 spin_unlock(&cur->io_lock);
905 }
8790d502 906 }
611f0e00 907 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445
CM
908 if (rw & (1 << BIO_RW))
909 multi->num_stripes = map->num_stripes;
f188591e
CM
910 else if (mirror_num)
911 stripe_index = mirror_num - 1;
8790d502
CM
912 } else {
913 /*
914 * after this do_div call, stripe_nr is the number of stripes
915 * on this device we have to walk to find the data, and
916 * stripe_index is the number of our device in the stripe array
917 */
918 stripe_index = do_div(stripe_nr, map->num_stripes);
919 }
593060d7 920 BUG_ON(stripe_index >= map->num_stripes);
cea9e445
CM
921 BUG_ON(stripe_index != 0 && multi->num_stripes > 1);
922
923 for (i = 0; i < multi->num_stripes; i++) {
924 multi->stripes[i].physical =
925 map->stripes[stripe_index].physical + stripe_offset +
926 stripe_nr * map->stripe_len;
927 multi->stripes[i].dev = map->stripes[stripe_index].dev;
928 stripe_index++;
593060d7 929 }
cea9e445
CM
930 *multi_ret = multi;
931out:
0b86a832
CM
932 free_extent_map(em);
933 spin_unlock(&em_tree->lock);
934 return 0;
935}
936
8790d502
CM
937#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
938static void end_bio_multi_stripe(struct bio *bio, int err)
939#else
940static int end_bio_multi_stripe(struct bio *bio,
941 unsigned int bytes_done, int err)
942#endif
943{
cea9e445 944 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
945
946#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
947 if (bio->bi_size)
948 return 1;
949#endif
950 if (err)
951 multi->error = err;
952
cea9e445 953 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
954 bio->bi_private = multi->private;
955 bio->bi_end_io = multi->end_io;
956
957 if (!err && multi->error)
958 err = multi->error;
959 kfree(multi);
960
961 bio_endio(bio, err);
962 } else {
963 bio_put(bio);
964 }
965#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
966 return 0;
967#endif
968}
969
f188591e
CM
970int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
971 int mirror_num)
0b86a832
CM
972{
973 struct btrfs_mapping_tree *map_tree;
974 struct btrfs_device *dev;
8790d502 975 struct bio *first_bio = bio;
0b86a832 976 u64 logical = bio->bi_sector << 9;
0b86a832
CM
977 u64 length = 0;
978 u64 map_length;
979 struct bio_vec *bvec;
cea9e445 980 struct btrfs_multi_bio *multi = NULL;
0b86a832
CM
981 int i;
982 int ret;
8790d502
CM
983 int dev_nr = 0;
984 int total_devs = 1;
0b86a832
CM
985
986 bio_for_each_segment(bvec, bio, i) {
987 length += bvec->bv_len;
988 }
8790d502 989
0b86a832
CM
990 map_tree = &root->fs_info->mapping_tree;
991 map_length = length;
cea9e445 992
f188591e
CM
993 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
994 mirror_num);
cea9e445
CM
995 BUG_ON(ret);
996
997 total_devs = multi->num_stripes;
998 if (map_length < length) {
999 printk("mapping failed logical %Lu bio len %Lu "
1000 "len %Lu\n", logical, length, map_length);
1001 BUG();
1002 }
1003 multi->end_io = first_bio->bi_end_io;
1004 multi->private = first_bio->bi_private;
1005 atomic_set(&multi->stripes_pending, multi->num_stripes);
1006
8790d502 1007 while(dev_nr < total_devs) {
8790d502 1008 if (total_devs > 1) {
8790d502
CM
1009 if (dev_nr < total_devs - 1) {
1010 bio = bio_clone(first_bio, GFP_NOFS);
1011 BUG_ON(!bio);
1012 } else {
1013 bio = first_bio;
1014 }
1015 bio->bi_private = multi;
1016 bio->bi_end_io = end_bio_multi_stripe;
1017 }
cea9e445
CM
1018 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1019 dev = multi->stripes[dev_nr].dev;
8790d502
CM
1020 bio->bi_bdev = dev->bdev;
1021 spin_lock(&dev->io_lock);
1022 dev->total_ios++;
1023 spin_unlock(&dev->io_lock);
1024 submit_bio(rw, bio);
1025 dev_nr++;
1026 }
cea9e445
CM
1027 if (total_devs == 1)
1028 kfree(multi);
0b86a832
CM
1029 return 0;
1030}
1031
1032struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
1033{
8a4b83cc 1034 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1035
8a4b83cc 1036 return __find_device(head, devid);
0b86a832
CM
1037}
1038
1039static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1040 struct extent_buffer *leaf,
1041 struct btrfs_chunk *chunk)
1042{
1043 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1044 struct map_lookup *map;
1045 struct extent_map *em;
1046 u64 logical;
1047 u64 length;
1048 u64 devid;
593060d7 1049 int num_stripes;
0b86a832 1050 int ret;
593060d7 1051 int i;
0b86a832
CM
1052
1053 logical = key->objectid;
1054 length = key->offset;
1055 spin_lock(&map_tree->map_tree.lock);
1056 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1057
1058 /* already mapped? */
1059 if (em && em->start <= logical && em->start + em->len > logical) {
1060 free_extent_map(em);
1061 spin_unlock(&map_tree->map_tree.lock);
1062 return 0;
1063 } else if (em) {
1064 free_extent_map(em);
1065 }
1066 spin_unlock(&map_tree->map_tree.lock);
1067
1068 map = kzalloc(sizeof(*map), GFP_NOFS);
1069 if (!map)
1070 return -ENOMEM;
1071
1072 em = alloc_extent_map(GFP_NOFS);
1073 if (!em)
1074 return -ENOMEM;
593060d7
CM
1075 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1076 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
1077 if (!map) {
1078 free_extent_map(em);
1079 return -ENOMEM;
1080 }
1081
1082 em->bdev = (struct block_device *)map;
1083 em->start = logical;
1084 em->len = length;
1085 em->block_start = 0;
1086
593060d7
CM
1087 map->num_stripes = num_stripes;
1088 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1089 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1090 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1091 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1092 map->type = btrfs_chunk_type(leaf, chunk);
1093 for (i = 0; i < num_stripes; i++) {
1094 map->stripes[i].physical =
1095 btrfs_stripe_offset_nr(leaf, chunk, i);
1096 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1097 map->stripes[i].dev = btrfs_find_device(root, devid);
1098 if (!map->stripes[i].dev) {
1099 kfree(map);
1100 free_extent_map(em);
1101 return -EIO;
1102 }
0b86a832
CM
1103 }
1104
1105 spin_lock(&map_tree->map_tree.lock);
1106 ret = add_extent_mapping(&map_tree->map_tree, em);
1107 BUG_ON(ret);
1108 spin_unlock(&map_tree->map_tree.lock);
1109 free_extent_map(em);
1110
1111 return 0;
1112}
1113
1114static int fill_device_from_item(struct extent_buffer *leaf,
1115 struct btrfs_dev_item *dev_item,
1116 struct btrfs_device *device)
1117{
1118 unsigned long ptr;
0b86a832
CM
1119
1120 device->devid = btrfs_device_id(leaf, dev_item);
1121 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1122 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1123 device->type = btrfs_device_type(leaf, dev_item);
1124 device->io_align = btrfs_device_io_align(leaf, dev_item);
1125 device->io_width = btrfs_device_io_width(leaf, dev_item);
1126 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
1127
1128 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1129 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
1130
0b86a832
CM
1131 return 0;
1132}
1133
0d81ba5d 1134static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
1135 struct extent_buffer *leaf,
1136 struct btrfs_dev_item *dev_item)
1137{
1138 struct btrfs_device *device;
1139 u64 devid;
1140 int ret;
1141
1142 devid = btrfs_device_id(leaf, dev_item);
6324fbf3
CM
1143 device = btrfs_find_device(root, devid);
1144 if (!device) {
8a4b83cc 1145 printk("warning devid %Lu not found already\n", devid);
6324fbf3
CM
1146 device = kmalloc(sizeof(*device), GFP_NOFS);
1147 if (!device)
1148 return -ENOMEM;
8a4b83cc
CM
1149 list_add(&device->dev_list,
1150 &root->fs_info->fs_devices->devices);
8790d502
CM
1151 device->total_ios = 0;
1152 spin_lock_init(&device->io_lock);
6324fbf3 1153 }
0b86a832
CM
1154
1155 fill_device_from_item(leaf, dev_item, device);
1156 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
1157 ret = 0;
1158#if 0
1159 ret = btrfs_open_device(device);
1160 if (ret) {
1161 kfree(device);
1162 }
1163#endif
1164 return ret;
1165}
1166
0d81ba5d
CM
1167int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1168{
1169 struct btrfs_dev_item *dev_item;
1170
1171 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1172 dev_item);
1173 return read_one_dev(root, buf, dev_item);
1174}
1175
0b86a832
CM
1176int btrfs_read_sys_array(struct btrfs_root *root)
1177{
1178 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1179 struct extent_buffer *sb = root->fs_info->sb_buffer;
1180 struct btrfs_disk_key *disk_key;
0b86a832
CM
1181 struct btrfs_chunk *chunk;
1182 struct btrfs_key key;
1183 u32 num_stripes;
1184 u32 array_size;
1185 u32 len = 0;
1186 u8 *ptr;
1187 unsigned long sb_ptr;
1188 u32 cur;
1189 int ret;
0b86a832
CM
1190
1191 array_size = btrfs_super_sys_array_size(super_copy);
1192
1193 /*
1194 * we do this loop twice, once for the device items and
1195 * once for all of the chunks. This way there are device
1196 * structs filled in for every chunk
1197 */
0b86a832
CM
1198 ptr = super_copy->sys_chunk_array;
1199 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1200 cur = 0;
1201
1202 while (cur < array_size) {
1203 disk_key = (struct btrfs_disk_key *)ptr;
1204 btrfs_disk_key_to_cpu(&key, disk_key);
1205
1206 len = sizeof(*disk_key);
1207 ptr += len;
1208 sb_ptr += len;
1209 cur += len;
1210
0d81ba5d 1211 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1212 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1213 ret = read_one_chunk(root, &key, sb, chunk);
1214 BUG_ON(ret);
0b86a832
CM
1215 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1216 len = btrfs_chunk_item_size(num_stripes);
1217 } else {
1218 BUG();
1219 }
1220 ptr += len;
1221 sb_ptr += len;
1222 cur += len;
1223 }
0b86a832
CM
1224 return 0;
1225}
1226
1227int btrfs_read_chunk_tree(struct btrfs_root *root)
1228{
1229 struct btrfs_path *path;
1230 struct extent_buffer *leaf;
1231 struct btrfs_key key;
1232 struct btrfs_key found_key;
1233 int ret;
1234 int slot;
1235
1236 root = root->fs_info->chunk_root;
1237
1238 path = btrfs_alloc_path();
1239 if (!path)
1240 return -ENOMEM;
1241
1242 /* first we search for all of the device items, and then we
1243 * read in all of the chunk items. This way we can create chunk
1244 * mappings that reference all of the devices that are afound
1245 */
1246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1247 key.offset = 0;
1248 key.type = 0;
1249again:
1250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1251 while(1) {
1252 leaf = path->nodes[0];
1253 slot = path->slots[0];
1254 if (slot >= btrfs_header_nritems(leaf)) {
1255 ret = btrfs_next_leaf(root, path);
1256 if (ret == 0)
1257 continue;
1258 if (ret < 0)
1259 goto error;
1260 break;
1261 }
1262 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1263 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1264 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1265 break;
1266 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1267 struct btrfs_dev_item *dev_item;
1268 dev_item = btrfs_item_ptr(leaf, slot,
1269 struct btrfs_dev_item);
0d81ba5d 1270 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1271 BUG_ON(ret);
1272 }
1273 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1274 struct btrfs_chunk *chunk;
1275 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1276 ret = read_one_chunk(root, &found_key, leaf, chunk);
1277 }
1278 path->slots[0]++;
1279 }
1280 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1281 key.objectid = 0;
1282 btrfs_release_path(root, path);
1283 goto again;
1284 }
1285
1286 btrfs_free_path(path);
1287 ret = 0;
1288error:
1289 return ret;
1290}
1291