Btrfs: Add mount -o degraded to allow mounts to continue with missing devices
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
593060d7 23#include <asm/div64.h>
0b86a832
CM
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
30
593060d7
CM
31struct map_lookup {
32 u64 type;
33 int io_align;
34 int io_width;
35 int stripe_len;
36 int sector_size;
37 int num_stripes;
321aecc6 38 int sub_stripes;
cea9e445 39 struct btrfs_bio_stripe stripes[];
593060d7
CM
40};
41
42#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 43 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 44
8a4b83cc
CM
45static DEFINE_MUTEX(uuid_mutex);
46static LIST_HEAD(fs_uuids);
47
a061fc8d
CM
48void btrfs_lock_volumes(void)
49{
50 mutex_lock(&uuid_mutex);
51}
52
53void btrfs_unlock_volumes(void)
54{
55 mutex_unlock(&uuid_mutex);
56}
57
8a4b83cc
CM
58int btrfs_cleanup_fs_uuids(void)
59{
60 struct btrfs_fs_devices *fs_devices;
61 struct list_head *uuid_cur;
62 struct list_head *devices_cur;
63 struct btrfs_device *dev;
64
65 list_for_each(uuid_cur, &fs_uuids) {
66 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
67 list);
68 while(!list_empty(&fs_devices->devices)) {
69 devices_cur = fs_devices->devices.next;
70 dev = list_entry(devices_cur, struct btrfs_device,
71 dev_list);
8a4b83cc 72 if (dev->bdev) {
8a4b83cc
CM
73 close_bdev_excl(dev->bdev);
74 }
75 list_del(&dev->dev_list);
dfe25020 76 kfree(dev->name);
8a4b83cc
CM
77 kfree(dev);
78 }
79 }
80 return 0;
81}
82
a443755f
CM
83static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
84 u8 *uuid)
8a4b83cc
CM
85{
86 struct btrfs_device *dev;
87 struct list_head *cur;
88
89 list_for_each(cur, head) {
90 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 91 if (dev->devid == devid &&
8f18cf13 92 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 93 return dev;
a443755f 94 }
8a4b83cc
CM
95 }
96 return NULL;
97}
98
99static struct btrfs_fs_devices *find_fsid(u8 *fsid)
100{
101 struct list_head *cur;
102 struct btrfs_fs_devices *fs_devices;
103
104 list_for_each(cur, &fs_uuids) {
105 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
106 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
107 return fs_devices;
108 }
109 return NULL;
110}
111
112static int device_list_add(const char *path,
113 struct btrfs_super_block *disk_super,
114 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
115{
116 struct btrfs_device *device;
117 struct btrfs_fs_devices *fs_devices;
118 u64 found_transid = btrfs_super_generation(disk_super);
119
120 fs_devices = find_fsid(disk_super->fsid);
121 if (!fs_devices) {
122 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
123 if (!fs_devices)
124 return -ENOMEM;
125 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 126 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
127 list_add(&fs_devices->list, &fs_uuids);
128 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
129 fs_devices->latest_devid = devid;
130 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
131 fs_devices->num_devices = 0;
132 device = NULL;
133 } else {
a443755f
CM
134 device = __find_device(&fs_devices->devices, devid,
135 disk_super->dev_item.uuid);
8a4b83cc
CM
136 }
137 if (!device) {
138 device = kzalloc(sizeof(*device), GFP_NOFS);
139 if (!device) {
140 /* we can safely leave the fs_devices entry around */
141 return -ENOMEM;
142 }
143 device->devid = devid;
a443755f
CM
144 memcpy(device->uuid, disk_super->dev_item.uuid,
145 BTRFS_UUID_SIZE);
f2984462 146 device->barriers = 1;
b248a415 147 spin_lock_init(&device->io_lock);
8a4b83cc
CM
148 device->name = kstrdup(path, GFP_NOFS);
149 if (!device->name) {
150 kfree(device);
151 return -ENOMEM;
152 }
153 list_add(&device->dev_list, &fs_devices->devices);
b3075717 154 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
8a4b83cc
CM
155 fs_devices->num_devices++;
156 }
157
158 if (found_transid > fs_devices->latest_trans) {
159 fs_devices->latest_devid = devid;
160 fs_devices->latest_trans = found_transid;
161 }
8a4b83cc
CM
162 *fs_devices_ret = fs_devices;
163 return 0;
164}
165
dfe25020
CM
166int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
167{
168 struct list_head *head = &fs_devices->devices;
169 struct list_head *cur;
170 struct btrfs_device *device;
171
172 mutex_lock(&uuid_mutex);
173again:
174 list_for_each(cur, head) {
175 device = list_entry(cur, struct btrfs_device, dev_list);
176 if (!device->in_fs_metadata) {
177printk("getting rid of extra dev %s\n", device->name);
178 if (device->bdev)
179 close_bdev_excl(device->bdev);
180 list_del(&device->dev_list);
181 list_del(&device->dev_alloc_list);
182 fs_devices->num_devices--;
183 kfree(device->name);
184 kfree(device);
185 goto again;
186 }
187 }
188 mutex_unlock(&uuid_mutex);
189 return 0;
190}
8a4b83cc
CM
191int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
192{
193 struct list_head *head = &fs_devices->devices;
194 struct list_head *cur;
195 struct btrfs_device *device;
196
197 mutex_lock(&uuid_mutex);
198 list_for_each(cur, head) {
199 device = list_entry(cur, struct btrfs_device, dev_list);
200 if (device->bdev) {
201 close_bdev_excl(device->bdev);
8a4b83cc
CM
202 }
203 device->bdev = NULL;
dfe25020 204 device->in_fs_metadata = 0;
8a4b83cc
CM
205 }
206 mutex_unlock(&uuid_mutex);
207 return 0;
208}
209
210int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
211 int flags, void *holder)
212{
213 struct block_device *bdev;
214 struct list_head *head = &fs_devices->devices;
215 struct list_head *cur;
216 struct btrfs_device *device;
217 int ret;
218
219 mutex_lock(&uuid_mutex);
220 list_for_each(cur, head) {
221 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
222 if (device->bdev)
223 continue;
224
dfe25020
CM
225 if (!device->name)
226 continue;
227
8a4b83cc 228 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 229
8a4b83cc
CM
230 if (IS_ERR(bdev)) {
231 printk("open %s failed\n", device->name);
232 ret = PTR_ERR(bdev);
233 goto fail;
234 }
a061fc8d 235 set_blocksize(bdev, 4096);
8a4b83cc
CM
236 if (device->devid == fs_devices->latest_devid)
237 fs_devices->latest_bdev = bdev;
8a4b83cc 238 device->bdev = bdev;
dfe25020 239 device->in_fs_metadata = 0;
a061fc8d 240
8a4b83cc
CM
241 }
242 mutex_unlock(&uuid_mutex);
243 return 0;
244fail:
245 mutex_unlock(&uuid_mutex);
246 btrfs_close_devices(fs_devices);
247 return ret;
248}
249
250int btrfs_scan_one_device(const char *path, int flags, void *holder,
251 struct btrfs_fs_devices **fs_devices_ret)
252{
253 struct btrfs_super_block *disk_super;
254 struct block_device *bdev;
255 struct buffer_head *bh;
256 int ret;
257 u64 devid;
f2984462 258 u64 transid;
8a4b83cc
CM
259
260 mutex_lock(&uuid_mutex);
261
8a4b83cc
CM
262 bdev = open_bdev_excl(path, flags, holder);
263
264 if (IS_ERR(bdev)) {
8a4b83cc
CM
265 ret = PTR_ERR(bdev);
266 goto error;
267 }
268
269 ret = set_blocksize(bdev, 4096);
270 if (ret)
271 goto error_close;
272 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
273 if (!bh) {
274 ret = -EIO;
275 goto error_close;
276 }
277 disk_super = (struct btrfs_super_block *)bh->b_data;
278 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
279 sizeof(disk_super->magic))) {
e58ca020 280 ret = -EINVAL;
8a4b83cc
CM
281 goto error_brelse;
282 }
283 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 284 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
285 if (disk_super->label[0])
286 printk("device label %s ", disk_super->label);
287 else {
288 /* FIXME, make a readl uuid parser */
289 printk("device fsid %llx-%llx ",
290 *(unsigned long long *)disk_super->fsid,
291 *(unsigned long long *)(disk_super->fsid + 8));
292 }
293 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
294 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
295
296error_brelse:
297 brelse(bh);
298error_close:
299 close_bdev_excl(bdev);
8a4b83cc
CM
300error:
301 mutex_unlock(&uuid_mutex);
302 return ret;
303}
0b86a832
CM
304
305/*
306 * this uses a pretty simple search, the expectation is that it is
307 * called very infrequently and that a given device has a small number
308 * of extents
309 */
310static int find_free_dev_extent(struct btrfs_trans_handle *trans,
311 struct btrfs_device *device,
312 struct btrfs_path *path,
313 u64 num_bytes, u64 *start)
314{
315 struct btrfs_key key;
316 struct btrfs_root *root = device->dev_root;
317 struct btrfs_dev_extent *dev_extent = NULL;
318 u64 hole_size = 0;
319 u64 last_byte = 0;
320 u64 search_start = 0;
321 u64 search_end = device->total_bytes;
322 int ret;
323 int slot = 0;
324 int start_found;
325 struct extent_buffer *l;
326
327 start_found = 0;
328 path->reada = 2;
329
330 /* FIXME use last free of some kind */
331
8a4b83cc
CM
332 /* we don't want to overwrite the superblock on the drive,
333 * so we make sure to start at an offset of at least 1MB
334 */
335 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
336
337 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
338 search_start = max(root->fs_info->alloc_start, search_start);
339
0b86a832
CM
340 key.objectid = device->devid;
341 key.offset = search_start;
342 key.type = BTRFS_DEV_EXTENT_KEY;
343 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
344 if (ret < 0)
345 goto error;
346 ret = btrfs_previous_item(root, path, 0, key.type);
347 if (ret < 0)
348 goto error;
349 l = path->nodes[0];
350 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
351 while (1) {
352 l = path->nodes[0];
353 slot = path->slots[0];
354 if (slot >= btrfs_header_nritems(l)) {
355 ret = btrfs_next_leaf(root, path);
356 if (ret == 0)
357 continue;
358 if (ret < 0)
359 goto error;
360no_more_items:
361 if (!start_found) {
362 if (search_start >= search_end) {
363 ret = -ENOSPC;
364 goto error;
365 }
366 *start = search_start;
367 start_found = 1;
368 goto check_pending;
369 }
370 *start = last_byte > search_start ?
371 last_byte : search_start;
372 if (search_end <= *start) {
373 ret = -ENOSPC;
374 goto error;
375 }
376 goto check_pending;
377 }
378 btrfs_item_key_to_cpu(l, &key, slot);
379
380 if (key.objectid < device->devid)
381 goto next;
382
383 if (key.objectid > device->devid)
384 goto no_more_items;
385
386 if (key.offset >= search_start && key.offset > last_byte &&
387 start_found) {
388 if (last_byte < search_start)
389 last_byte = search_start;
390 hole_size = key.offset - last_byte;
391 if (key.offset > last_byte &&
392 hole_size >= num_bytes) {
393 *start = last_byte;
394 goto check_pending;
395 }
396 }
397 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
398 goto next;
399 }
400
401 start_found = 1;
402 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
403 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
404next:
405 path->slots[0]++;
406 cond_resched();
407 }
408check_pending:
409 /* we have to make sure we didn't find an extent that has already
410 * been allocated by the map tree or the original allocation
411 */
412 btrfs_release_path(root, path);
413 BUG_ON(*start < search_start);
414
6324fbf3 415 if (*start + num_bytes > search_end) {
0b86a832
CM
416 ret = -ENOSPC;
417 goto error;
418 }
419 /* check for pending inserts here */
420 return 0;
421
422error:
423 btrfs_release_path(root, path);
424 return ret;
425}
426
8f18cf13
CM
427int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
428 struct btrfs_device *device,
429 u64 start)
430{
431 int ret;
432 struct btrfs_path *path;
433 struct btrfs_root *root = device->dev_root;
434 struct btrfs_key key;
a061fc8d
CM
435 struct btrfs_key found_key;
436 struct extent_buffer *leaf = NULL;
437 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
438
439 path = btrfs_alloc_path();
440 if (!path)
441 return -ENOMEM;
442
443 key.objectid = device->devid;
444 key.offset = start;
445 key.type = BTRFS_DEV_EXTENT_KEY;
446
447 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
448 if (ret > 0) {
449 ret = btrfs_previous_item(root, path, key.objectid,
450 BTRFS_DEV_EXTENT_KEY);
451 BUG_ON(ret);
452 leaf = path->nodes[0];
453 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
454 extent = btrfs_item_ptr(leaf, path->slots[0],
455 struct btrfs_dev_extent);
456 BUG_ON(found_key.offset > start || found_key.offset +
457 btrfs_dev_extent_length(leaf, extent) < start);
458 ret = 0;
459 } else if (ret == 0) {
460 leaf = path->nodes[0];
461 extent = btrfs_item_ptr(leaf, path->slots[0],
462 struct btrfs_dev_extent);
463 }
8f18cf13
CM
464 BUG_ON(ret);
465
dfe25020
CM
466 if (device->bytes_used > 0)
467 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
468 ret = btrfs_del_item(trans, root, path);
469 BUG_ON(ret);
470
471 btrfs_free_path(path);
472 return ret;
473}
474
0b86a832
CM
475int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
476 struct btrfs_device *device,
e17cade2
CM
477 u64 chunk_tree, u64 chunk_objectid,
478 u64 chunk_offset,
479 u64 num_bytes, u64 *start)
0b86a832
CM
480{
481 int ret;
482 struct btrfs_path *path;
483 struct btrfs_root *root = device->dev_root;
484 struct btrfs_dev_extent *extent;
485 struct extent_buffer *leaf;
486 struct btrfs_key key;
487
dfe25020 488 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
489 path = btrfs_alloc_path();
490 if (!path)
491 return -ENOMEM;
492
493 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 494 if (ret) {
0b86a832 495 goto err;
6324fbf3 496 }
0b86a832
CM
497
498 key.objectid = device->devid;
499 key.offset = *start;
500 key.type = BTRFS_DEV_EXTENT_KEY;
501 ret = btrfs_insert_empty_item(trans, root, path, &key,
502 sizeof(*extent));
503 BUG_ON(ret);
504
505 leaf = path->nodes[0];
506 extent = btrfs_item_ptr(leaf, path->slots[0],
507 struct btrfs_dev_extent);
e17cade2
CM
508 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
509 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
510 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
511
512 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
513 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
514 BTRFS_UUID_SIZE);
515
0b86a832
CM
516 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
517 btrfs_mark_buffer_dirty(leaf);
518err:
519 btrfs_free_path(path);
520 return ret;
521}
522
e17cade2 523static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
524{
525 struct btrfs_path *path;
526 int ret;
527 struct btrfs_key key;
e17cade2 528 struct btrfs_chunk *chunk;
0b86a832
CM
529 struct btrfs_key found_key;
530
531 path = btrfs_alloc_path();
532 BUG_ON(!path);
533
e17cade2 534 key.objectid = objectid;
0b86a832
CM
535 key.offset = (u64)-1;
536 key.type = BTRFS_CHUNK_ITEM_KEY;
537
538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
539 if (ret < 0)
540 goto error;
541
542 BUG_ON(ret == 0);
543
544 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
545 if (ret) {
e17cade2 546 *offset = 0;
0b86a832
CM
547 } else {
548 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
549 path->slots[0]);
e17cade2
CM
550 if (found_key.objectid != objectid)
551 *offset = 0;
552 else {
553 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
554 struct btrfs_chunk);
555 *offset = found_key.offset +
556 btrfs_chunk_length(path->nodes[0], chunk);
557 }
0b86a832
CM
558 }
559 ret = 0;
560error:
561 btrfs_free_path(path);
562 return ret;
563}
564
0b86a832
CM
565static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
566 u64 *objectid)
567{
568 int ret;
569 struct btrfs_key key;
570 struct btrfs_key found_key;
571
572 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
573 key.type = BTRFS_DEV_ITEM_KEY;
574 key.offset = (u64)-1;
575
576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
577 if (ret < 0)
578 goto error;
579
580 BUG_ON(ret == 0);
581
582 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
583 BTRFS_DEV_ITEM_KEY);
584 if (ret) {
585 *objectid = 1;
586 } else {
587 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
588 path->slots[0]);
589 *objectid = found_key.offset + 1;
590 }
591 ret = 0;
592error:
593 btrfs_release_path(root, path);
594 return ret;
595}
596
597/*
598 * the device information is stored in the chunk root
599 * the btrfs_device struct should be fully filled in
600 */
601int btrfs_add_device(struct btrfs_trans_handle *trans,
602 struct btrfs_root *root,
603 struct btrfs_device *device)
604{
605 int ret;
606 struct btrfs_path *path;
607 struct btrfs_dev_item *dev_item;
608 struct extent_buffer *leaf;
609 struct btrfs_key key;
610 unsigned long ptr;
006a58a2 611 u64 free_devid = 0;
0b86a832
CM
612
613 root = root->fs_info->chunk_root;
614
615 path = btrfs_alloc_path();
616 if (!path)
617 return -ENOMEM;
618
619 ret = find_next_devid(root, path, &free_devid);
620 if (ret)
621 goto out;
622
623 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
624 key.type = BTRFS_DEV_ITEM_KEY;
625 key.offset = free_devid;
626
627 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 628 sizeof(*dev_item));
0b86a832
CM
629 if (ret)
630 goto out;
631
632 leaf = path->nodes[0];
633 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
634
8a4b83cc 635 device->devid = free_devid;
0b86a832
CM
636 btrfs_set_device_id(leaf, dev_item, device->devid);
637 btrfs_set_device_type(leaf, dev_item, device->type);
638 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
639 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
640 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
641 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
642 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
643 btrfs_set_device_group(leaf, dev_item, 0);
644 btrfs_set_device_seek_speed(leaf, dev_item, 0);
645 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 646
0b86a832 647 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 648 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
649 btrfs_mark_buffer_dirty(leaf);
650 ret = 0;
651
652out:
653 btrfs_free_path(path);
654 return ret;
655}
8f18cf13 656
a061fc8d
CM
657static int btrfs_rm_dev_item(struct btrfs_root *root,
658 struct btrfs_device *device)
659{
660 int ret;
661 struct btrfs_path *path;
662 struct block_device *bdev = device->bdev;
663 struct btrfs_device *next_dev;
664 struct btrfs_key key;
665 u64 total_bytes;
666 struct btrfs_fs_devices *fs_devices;
667 struct btrfs_trans_handle *trans;
668
669 root = root->fs_info->chunk_root;
670
671 path = btrfs_alloc_path();
672 if (!path)
673 return -ENOMEM;
674
675 trans = btrfs_start_transaction(root, 1);
676 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
677 key.type = BTRFS_DEV_ITEM_KEY;
678 key.offset = device->devid;
679
680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
681 if (ret < 0)
682 goto out;
683
684 if (ret > 0) {
685 ret = -ENOENT;
686 goto out;
687 }
688
689 ret = btrfs_del_item(trans, root, path);
690 if (ret)
691 goto out;
692
693 /*
694 * at this point, the device is zero sized. We want to
695 * remove it from the devices list and zero out the old super
696 */
697 list_del_init(&device->dev_list);
698 list_del_init(&device->dev_alloc_list);
699 fs_devices = root->fs_info->fs_devices;
700
701 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
702 dev_list);
a061fc8d
CM
703 if (bdev == root->fs_info->sb->s_bdev)
704 root->fs_info->sb->s_bdev = next_dev->bdev;
705 if (bdev == fs_devices->latest_bdev)
706 fs_devices->latest_bdev = next_dev->bdev;
707
708 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
709 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
710 total_bytes - device->total_bytes);
711
712 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
713 btrfs_set_super_num_devices(&root->fs_info->super_copy,
714 total_bytes - 1);
715out:
716 btrfs_free_path(path);
717 btrfs_commit_transaction(trans, root);
718 return ret;
719}
720
721int btrfs_rm_device(struct btrfs_root *root, char *device_path)
722{
723 struct btrfs_device *device;
724 struct block_device *bdev;
dfe25020 725 struct buffer_head *bh = NULL;
a061fc8d
CM
726 struct btrfs_super_block *disk_super;
727 u64 all_avail;
728 u64 devid;
729 int ret = 0;
730
731 mutex_lock(&root->fs_info->fs_mutex);
732 mutex_lock(&uuid_mutex);
733
734 all_avail = root->fs_info->avail_data_alloc_bits |
735 root->fs_info->avail_system_alloc_bits |
736 root->fs_info->avail_metadata_alloc_bits;
737
738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
dfe25020 739 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
a061fc8d
CM
740 printk("btrfs: unable to go below four devices on raid10\n");
741 ret = -EINVAL;
742 goto out;
743 }
744
745 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
dfe25020 746 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
a061fc8d
CM
747 printk("btrfs: unable to go below two devices on raid1\n");
748 ret = -EINVAL;
749 goto out;
750 }
751
dfe25020
CM
752 if (strcmp(device_path, "missing") == 0) {
753 struct list_head *cur;
754 struct list_head *devices;
755 struct btrfs_device *tmp;
a061fc8d 756
dfe25020
CM
757 device = NULL;
758 devices = &root->fs_info->fs_devices->devices;
759 list_for_each(cur, devices) {
760 tmp = list_entry(cur, struct btrfs_device, dev_list);
761 if (tmp->in_fs_metadata && !tmp->bdev) {
762 device = tmp;
763 break;
764 }
765 }
766 bdev = NULL;
767 bh = NULL;
768 disk_super = NULL;
769 if (!device) {
770 printk("btrfs: no missing devices found to remove\n");
771 goto out;
772 }
773
774 } else {
775 bdev = open_bdev_excl(device_path, 0,
776 root->fs_info->bdev_holder);
777 if (IS_ERR(bdev)) {
778 ret = PTR_ERR(bdev);
779 goto out;
780 }
a061fc8d 781
dfe25020
CM
782 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
783 if (!bh) {
784 ret = -EIO;
785 goto error_close;
786 }
787 disk_super = (struct btrfs_super_block *)bh->b_data;
788 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
789 sizeof(disk_super->magic))) {
790 ret = -ENOENT;
791 goto error_brelse;
792 }
793 if (memcmp(disk_super->fsid, root->fs_info->fsid,
794 BTRFS_FSID_SIZE)) {
795 ret = -ENOENT;
796 goto error_brelse;
797 }
798 devid = le64_to_cpu(disk_super->dev_item.devid);
799 device = btrfs_find_device(root, devid, NULL);
800 if (!device) {
801 ret = -ENOENT;
802 goto error_brelse;
803 }
804
805 }
a061fc8d
CM
806 root->fs_info->fs_devices->num_devices--;
807
808 ret = btrfs_shrink_device(device, 0);
809 if (ret)
810 goto error_brelse;
811
812
813 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
814 if (ret)
815 goto error_brelse;
816
dfe25020
CM
817 if (bh) {
818 /* make sure this device isn't detected as part of
819 * the FS anymore
820 */
821 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
822 set_buffer_dirty(bh);
823 sync_dirty_buffer(bh);
a061fc8d 824
dfe25020
CM
825 brelse(bh);
826 }
a061fc8d 827
dfe25020
CM
828 if (device->bdev) {
829 /* one close for the device struct or super_block */
830 close_bdev_excl(device->bdev);
831 }
832 if (bdev) {
833 /* one close for us */
834 close_bdev_excl(bdev);
835 }
a061fc8d
CM
836 kfree(device->name);
837 kfree(device);
838 ret = 0;
839 goto out;
840
841error_brelse:
842 brelse(bh);
843error_close:
dfe25020
CM
844 if (bdev)
845 close_bdev_excl(bdev);
a061fc8d
CM
846out:
847 mutex_unlock(&uuid_mutex);
848 mutex_unlock(&root->fs_info->fs_mutex);
849 return ret;
850}
851
788f20eb
CM
852int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
853{
854 struct btrfs_trans_handle *trans;
855 struct btrfs_device *device;
856 struct block_device *bdev;
857 struct list_head *cur;
858 struct list_head *devices;
859 u64 total_bytes;
860 int ret = 0;
861
862
863 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
864 if (!bdev) {
865 return -EIO;
866 }
867 mutex_lock(&root->fs_info->fs_mutex);
868 trans = btrfs_start_transaction(root, 1);
869 devices = &root->fs_info->fs_devices->devices;
870 list_for_each(cur, devices) {
871 device = list_entry(cur, struct btrfs_device, dev_list);
872 if (device->bdev == bdev) {
873 ret = -EEXIST;
874 goto out;
875 }
876 }
877
878 device = kzalloc(sizeof(*device), GFP_NOFS);
879 if (!device) {
880 /* we can safely leave the fs_devices entry around */
881 ret = -ENOMEM;
882 goto out_close_bdev;
883 }
884
885 device->barriers = 1;
886 generate_random_uuid(device->uuid);
887 spin_lock_init(&device->io_lock);
888 device->name = kstrdup(device_path, GFP_NOFS);
889 if (!device->name) {
890 kfree(device);
891 goto out_close_bdev;
892 }
893 device->io_width = root->sectorsize;
894 device->io_align = root->sectorsize;
895 device->sector_size = root->sectorsize;
896 device->total_bytes = i_size_read(bdev->bd_inode);
897 device->dev_root = root->fs_info->dev_root;
898 device->bdev = bdev;
dfe25020 899 device->in_fs_metadata = 1;
788f20eb
CM
900
901 ret = btrfs_add_device(trans, root, device);
902 if (ret)
903 goto out_close_bdev;
904
905 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
906 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
907 total_bytes + device->total_bytes);
908
909 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
910 btrfs_set_super_num_devices(&root->fs_info->super_copy,
911 total_bytes + 1);
912
913 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
914 list_add(&device->dev_alloc_list,
915 &root->fs_info->fs_devices->alloc_list);
916 root->fs_info->fs_devices->num_devices++;
917out:
918 btrfs_end_transaction(trans, root);
919 mutex_unlock(&root->fs_info->fs_mutex);
920 return ret;
921
922out_close_bdev:
923 close_bdev_excl(bdev);
924 goto out;
925}
926
0b86a832
CM
927int btrfs_update_device(struct btrfs_trans_handle *trans,
928 struct btrfs_device *device)
929{
930 int ret;
931 struct btrfs_path *path;
932 struct btrfs_root *root;
933 struct btrfs_dev_item *dev_item;
934 struct extent_buffer *leaf;
935 struct btrfs_key key;
936
937 root = device->dev_root->fs_info->chunk_root;
938
939 path = btrfs_alloc_path();
940 if (!path)
941 return -ENOMEM;
942
943 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
944 key.type = BTRFS_DEV_ITEM_KEY;
945 key.offset = device->devid;
946
947 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
948 if (ret < 0)
949 goto out;
950
951 if (ret > 0) {
952 ret = -ENOENT;
953 goto out;
954 }
955
956 leaf = path->nodes[0];
957 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
958
959 btrfs_set_device_id(leaf, dev_item, device->devid);
960 btrfs_set_device_type(leaf, dev_item, device->type);
961 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
962 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
963 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
964 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
965 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
966 btrfs_mark_buffer_dirty(leaf);
967
968out:
969 btrfs_free_path(path);
970 return ret;
971}
972
8f18cf13
CM
973int btrfs_grow_device(struct btrfs_trans_handle *trans,
974 struct btrfs_device *device, u64 new_size)
975{
976 struct btrfs_super_block *super_copy =
977 &device->dev_root->fs_info->super_copy;
978 u64 old_total = btrfs_super_total_bytes(super_copy);
979 u64 diff = new_size - device->total_bytes;
980
981 btrfs_set_super_total_bytes(super_copy, old_total + diff);
982 return btrfs_update_device(trans, device);
983}
984
985static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
986 struct btrfs_root *root,
987 u64 chunk_tree, u64 chunk_objectid,
988 u64 chunk_offset)
989{
990 int ret;
991 struct btrfs_path *path;
992 struct btrfs_key key;
993
994 root = root->fs_info->chunk_root;
995 path = btrfs_alloc_path();
996 if (!path)
997 return -ENOMEM;
998
999 key.objectid = chunk_objectid;
1000 key.offset = chunk_offset;
1001 key.type = BTRFS_CHUNK_ITEM_KEY;
1002
1003 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1004 BUG_ON(ret);
1005
1006 ret = btrfs_del_item(trans, root, path);
1007 BUG_ON(ret);
1008
1009 btrfs_free_path(path);
1010 return 0;
1011}
1012
1013int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1014 chunk_offset)
1015{
1016 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1017 struct btrfs_disk_key *disk_key;
1018 struct btrfs_chunk *chunk;
1019 u8 *ptr;
1020 int ret = 0;
1021 u32 num_stripes;
1022 u32 array_size;
1023 u32 len = 0;
1024 u32 cur;
1025 struct btrfs_key key;
1026
1027 array_size = btrfs_super_sys_array_size(super_copy);
1028
1029 ptr = super_copy->sys_chunk_array;
1030 cur = 0;
1031
1032 while (cur < array_size) {
1033 disk_key = (struct btrfs_disk_key *)ptr;
1034 btrfs_disk_key_to_cpu(&key, disk_key);
1035
1036 len = sizeof(*disk_key);
1037
1038 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1039 chunk = (struct btrfs_chunk *)(ptr + len);
1040 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1041 len += btrfs_chunk_item_size(num_stripes);
1042 } else {
1043 ret = -EIO;
1044 break;
1045 }
1046 if (key.objectid == chunk_objectid &&
1047 key.offset == chunk_offset) {
1048 memmove(ptr, ptr + len, array_size - (cur + len));
1049 array_size -= len;
1050 btrfs_set_super_sys_array_size(super_copy, array_size);
1051 } else {
1052 ptr += len;
1053 cur += len;
1054 }
1055 }
1056 return ret;
1057}
1058
1059
1060int btrfs_relocate_chunk(struct btrfs_root *root,
1061 u64 chunk_tree, u64 chunk_objectid,
1062 u64 chunk_offset)
1063{
1064 struct extent_map_tree *em_tree;
1065 struct btrfs_root *extent_root;
1066 struct btrfs_trans_handle *trans;
1067 struct extent_map *em;
1068 struct map_lookup *map;
1069 int ret;
1070 int i;
1071
323da79c
CM
1072 printk("btrfs relocating chunk %llu\n",
1073 (unsigned long long)chunk_offset);
8f18cf13
CM
1074 root = root->fs_info->chunk_root;
1075 extent_root = root->fs_info->extent_root;
1076 em_tree = &root->fs_info->mapping_tree.map_tree;
1077
1078 /* step one, relocate all the extents inside this chunk */
1079 ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1080 BUG_ON(ret);
1081
1082 trans = btrfs_start_transaction(root, 1);
1083 BUG_ON(!trans);
1084
1085 /*
1086 * step two, delete the device extents and the
1087 * chunk tree entries
1088 */
1089 spin_lock(&em_tree->lock);
1090 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1091 spin_unlock(&em_tree->lock);
1092
a061fc8d
CM
1093 BUG_ON(em->start > chunk_offset ||
1094 em->start + em->len < chunk_offset);
8f18cf13
CM
1095 map = (struct map_lookup *)em->bdev;
1096
1097 for (i = 0; i < map->num_stripes; i++) {
1098 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1099 map->stripes[i].physical);
1100 BUG_ON(ret);
a061fc8d 1101
dfe25020
CM
1102 if (map->stripes[i].dev) {
1103 ret = btrfs_update_device(trans, map->stripes[i].dev);
1104 BUG_ON(ret);
1105 }
8f18cf13
CM
1106 }
1107 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1108 chunk_offset);
1109
1110 BUG_ON(ret);
1111
1112 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1113 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1114 BUG_ON(ret);
8f18cf13
CM
1115 }
1116
8f18cf13
CM
1117 spin_lock(&em_tree->lock);
1118 remove_extent_mapping(em_tree, em);
1119 kfree(map);
1120 em->bdev = NULL;
1121
1122 /* once for the tree */
1123 free_extent_map(em);
1124 spin_unlock(&em_tree->lock);
1125
8f18cf13
CM
1126 /* once for us */
1127 free_extent_map(em);
1128
1129 btrfs_end_transaction(trans, root);
1130 return 0;
1131}
1132
ec44a35c
CM
1133static u64 div_factor(u64 num, int factor)
1134{
1135 if (factor == 10)
1136 return num;
1137 num *= factor;
1138 do_div(num, 10);
1139 return num;
1140}
1141
1142
1143int btrfs_balance(struct btrfs_root *dev_root)
1144{
1145 int ret;
1146 struct list_head *cur;
1147 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1148 struct btrfs_device *device;
1149 u64 old_size;
1150 u64 size_to_free;
1151 struct btrfs_path *path;
1152 struct btrfs_key key;
1153 struct btrfs_chunk *chunk;
1154 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1155 struct btrfs_trans_handle *trans;
1156 struct btrfs_key found_key;
1157
1158
1159 dev_root = dev_root->fs_info->dev_root;
1160
1161 mutex_lock(&dev_root->fs_info->fs_mutex);
1162 /* step one make some room on all the devices */
1163 list_for_each(cur, devices) {
1164 device = list_entry(cur, struct btrfs_device, dev_list);
1165 old_size = device->total_bytes;
1166 size_to_free = div_factor(old_size, 1);
1167 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1168 if (device->total_bytes - device->bytes_used > size_to_free)
1169 continue;
1170
1171 ret = btrfs_shrink_device(device, old_size - size_to_free);
1172 BUG_ON(ret);
1173
1174 trans = btrfs_start_transaction(dev_root, 1);
1175 BUG_ON(!trans);
1176
1177 ret = btrfs_grow_device(trans, device, old_size);
1178 BUG_ON(ret);
1179
1180 btrfs_end_transaction(trans, dev_root);
1181 }
1182
1183 /* step two, relocate all the chunks */
1184 path = btrfs_alloc_path();
1185 BUG_ON(!path);
1186
1187 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1188 key.offset = (u64)-1;
1189 key.type = BTRFS_CHUNK_ITEM_KEY;
1190
1191 while(1) {
1192 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1193 if (ret < 0)
1194 goto error;
1195
1196 /*
1197 * this shouldn't happen, it means the last relocate
1198 * failed
1199 */
1200 if (ret == 0)
1201 break;
1202
1203 ret = btrfs_previous_item(chunk_root, path, 0,
1204 BTRFS_CHUNK_ITEM_KEY);
1205 if (ret) {
1206 break;
1207 }
1208 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1209 path->slots[0]);
1210 if (found_key.objectid != key.objectid)
1211 break;
1212 chunk = btrfs_item_ptr(path->nodes[0],
1213 path->slots[0],
1214 struct btrfs_chunk);
1215 key.offset = found_key.offset;
1216 /* chunk zero is special */
1217 if (key.offset == 0)
1218 break;
1219
1220 ret = btrfs_relocate_chunk(chunk_root,
1221 chunk_root->root_key.objectid,
1222 found_key.objectid,
1223 found_key.offset);
1224 BUG_ON(ret);
1225 btrfs_release_path(chunk_root, path);
1226 }
1227 ret = 0;
1228error:
1229 btrfs_free_path(path);
1230 mutex_unlock(&dev_root->fs_info->fs_mutex);
1231 return ret;
1232}
1233
8f18cf13
CM
1234/*
1235 * shrinking a device means finding all of the device extents past
1236 * the new size, and then following the back refs to the chunks.
1237 * The chunk relocation code actually frees the device extent
1238 */
1239int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1240{
1241 struct btrfs_trans_handle *trans;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_dev_extent *dev_extent = NULL;
1244 struct btrfs_path *path;
1245 u64 length;
1246 u64 chunk_tree;
1247 u64 chunk_objectid;
1248 u64 chunk_offset;
1249 int ret;
1250 int slot;
1251 struct extent_buffer *l;
1252 struct btrfs_key key;
1253 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1254 u64 old_total = btrfs_super_total_bytes(super_copy);
1255 u64 diff = device->total_bytes - new_size;
1256
1257
1258 path = btrfs_alloc_path();
1259 if (!path)
1260 return -ENOMEM;
1261
1262 trans = btrfs_start_transaction(root, 1);
1263 if (!trans) {
1264 ret = -ENOMEM;
1265 goto done;
1266 }
1267
1268 path->reada = 2;
1269
1270 device->total_bytes = new_size;
1271 ret = btrfs_update_device(trans, device);
1272 if (ret) {
1273 btrfs_end_transaction(trans, root);
1274 goto done;
1275 }
1276 WARN_ON(diff > old_total);
1277 btrfs_set_super_total_bytes(super_copy, old_total - diff);
1278 btrfs_end_transaction(trans, root);
1279
1280 key.objectid = device->devid;
1281 key.offset = (u64)-1;
1282 key.type = BTRFS_DEV_EXTENT_KEY;
1283
1284 while (1) {
1285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1286 if (ret < 0)
1287 goto done;
1288
1289 ret = btrfs_previous_item(root, path, 0, key.type);
1290 if (ret < 0)
1291 goto done;
1292 if (ret) {
1293 ret = 0;
1294 goto done;
1295 }
1296
1297 l = path->nodes[0];
1298 slot = path->slots[0];
1299 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1300
1301 if (key.objectid != device->devid)
1302 goto done;
1303
1304 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1305 length = btrfs_dev_extent_length(l, dev_extent);
1306
1307 if (key.offset + length <= new_size)
1308 goto done;
1309
1310 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1311 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1312 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1313 btrfs_release_path(root, path);
1314
1315 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1316 chunk_offset);
1317 if (ret)
1318 goto done;
1319 }
1320
1321done:
1322 btrfs_free_path(path);
1323 return ret;
1324}
1325
0b86a832
CM
1326int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root,
1328 struct btrfs_key *key,
1329 struct btrfs_chunk *chunk, int item_size)
1330{
1331 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1332 struct btrfs_disk_key disk_key;
1333 u32 array_size;
1334 u8 *ptr;
1335
1336 array_size = btrfs_super_sys_array_size(super_copy);
1337 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1338 return -EFBIG;
1339
1340 ptr = super_copy->sys_chunk_array + array_size;
1341 btrfs_cpu_key_to_disk(&disk_key, key);
1342 memcpy(ptr, &disk_key, sizeof(disk_key));
1343 ptr += sizeof(disk_key);
1344 memcpy(ptr, chunk, item_size);
1345 item_size += sizeof(disk_key);
1346 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1347 return 0;
1348}
1349
9b3f68b9
CM
1350static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1351 int sub_stripes)
1352{
1353 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1354 return calc_size;
1355 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1356 return calc_size * (num_stripes / sub_stripes);
1357 else
1358 return calc_size * num_stripes;
1359}
1360
1361
0b86a832
CM
1362int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *extent_root, u64 *start,
6324fbf3 1364 u64 *num_bytes, u64 type)
0b86a832
CM
1365{
1366 u64 dev_offset;
593060d7 1367 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1368 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
8f18cf13 1369 struct btrfs_path *path;
0b86a832
CM
1370 struct btrfs_stripe *stripes;
1371 struct btrfs_device *device = NULL;
1372 struct btrfs_chunk *chunk;
6324fbf3 1373 struct list_head private_devs;
b3075717 1374 struct list_head *dev_list;
6324fbf3 1375 struct list_head *cur;
0b86a832
CM
1376 struct extent_map_tree *em_tree;
1377 struct map_lookup *map;
1378 struct extent_map *em;
a40a90a0 1379 int min_stripe_size = 1 * 1024 * 1024;
0b86a832
CM
1380 u64 physical;
1381 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1382 u64 max_chunk_size = calc_size;
1383 u64 min_free;
6324fbf3
CM
1384 u64 avail;
1385 u64 max_avail = 0;
9b3f68b9 1386 u64 percent_max;
6324fbf3 1387 int num_stripes = 1;
a40a90a0 1388 int min_stripes = 1;
321aecc6 1389 int sub_stripes = 0;
6324fbf3 1390 int looped = 0;
0b86a832 1391 int ret;
6324fbf3 1392 int index;
593060d7 1393 int stripe_len = 64 * 1024;
0b86a832
CM
1394 struct btrfs_key key;
1395
ec44a35c
CM
1396 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1397 (type & BTRFS_BLOCK_GROUP_DUP)) {
1398 WARN_ON(1);
1399 type &= ~BTRFS_BLOCK_GROUP_DUP;
1400 }
b3075717 1401 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
6324fbf3
CM
1402 if (list_empty(dev_list))
1403 return -ENOSPC;
593060d7 1404
a40a90a0 1405 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
593060d7 1406 num_stripes = btrfs_super_num_devices(&info->super_copy);
a40a90a0
CM
1407 min_stripes = 2;
1408 }
1409 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1410 num_stripes = 2;
a40a90a0
CM
1411 min_stripes = 2;
1412 }
8790d502
CM
1413 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1414 num_stripes = min_t(u64, 2,
1415 btrfs_super_num_devices(&info->super_copy));
9b3f68b9
CM
1416 if (num_stripes < 2)
1417 return -ENOSPC;
a40a90a0 1418 min_stripes = 2;
8790d502 1419 }
321aecc6
CM
1420 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1421 num_stripes = btrfs_super_num_devices(&info->super_copy);
1422 if (num_stripes < 4)
1423 return -ENOSPC;
1424 num_stripes &= ~(u32)1;
1425 sub_stripes = 2;
a40a90a0 1426 min_stripes = 4;
321aecc6 1427 }
9b3f68b9
CM
1428
1429 if (type & BTRFS_BLOCK_GROUP_DATA) {
1430 max_chunk_size = 10 * calc_size;
a40a90a0 1431 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1432 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1433 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1434 min_stripe_size = 32 * 1024 * 1024;
1435 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1436 calc_size = 8 * 1024 * 1024;
1437 max_chunk_size = calc_size * 2;
1438 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1439 }
1440
8f18cf13
CM
1441 path = btrfs_alloc_path();
1442 if (!path)
1443 return -ENOMEM;
1444
9b3f68b9
CM
1445 /* we don't want a chunk larger than 10% of the FS */
1446 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1447 max_chunk_size = min(percent_max, max_chunk_size);
1448
a40a90a0 1449again:
9b3f68b9
CM
1450 if (calc_size * num_stripes > max_chunk_size) {
1451 calc_size = max_chunk_size;
1452 do_div(calc_size, num_stripes);
1453 do_div(calc_size, stripe_len);
1454 calc_size *= stripe_len;
1455 }
1456 /* we don't want tiny stripes */
a40a90a0 1457 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 1458
9b3f68b9
CM
1459 do_div(calc_size, stripe_len);
1460 calc_size *= stripe_len;
1461
6324fbf3
CM
1462 INIT_LIST_HEAD(&private_devs);
1463 cur = dev_list->next;
1464 index = 0;
611f0e00
CM
1465
1466 if (type & BTRFS_BLOCK_GROUP_DUP)
1467 min_free = calc_size * 2;
9b3f68b9
CM
1468 else
1469 min_free = calc_size;
611f0e00 1470
ad5bd91e
CM
1471 /* we add 1MB because we never use the first 1MB of the device */
1472 min_free += 1024 * 1024;
1473
6324fbf3
CM
1474 /* build a private list of devices we will allocate from */
1475 while(index < num_stripes) {
b3075717 1476 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00 1477
dfe25020
CM
1478 if (device->total_bytes > device->bytes_used)
1479 avail = device->total_bytes - device->bytes_used;
1480 else
1481 avail = 0;
6324fbf3 1482 cur = cur->next;
8f18cf13 1483
dfe25020 1484 if (device->in_fs_metadata && avail >= min_free) {
8f18cf13
CM
1485 u64 ignored_start = 0;
1486 ret = find_free_dev_extent(trans, device, path,
1487 min_free,
1488 &ignored_start);
1489 if (ret == 0) {
1490 list_move_tail(&device->dev_alloc_list,
1491 &private_devs);
611f0e00 1492 index++;
8f18cf13
CM
1493 if (type & BTRFS_BLOCK_GROUP_DUP)
1494 index++;
1495 }
dfe25020 1496 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 1497 max_avail = avail;
6324fbf3
CM
1498 if (cur == dev_list)
1499 break;
1500 }
1501 if (index < num_stripes) {
1502 list_splice(&private_devs, dev_list);
a40a90a0
CM
1503 if (index >= min_stripes) {
1504 num_stripes = index;
1505 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1506 num_stripes /= sub_stripes;
1507 num_stripes *= sub_stripes;
1508 }
1509 looped = 1;
1510 goto again;
1511 }
6324fbf3
CM
1512 if (!looped && max_avail > 0) {
1513 looped = 1;
1514 calc_size = max_avail;
1515 goto again;
1516 }
8f18cf13 1517 btrfs_free_path(path);
6324fbf3
CM
1518 return -ENOSPC;
1519 }
e17cade2
CM
1520 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1521 key.type = BTRFS_CHUNK_ITEM_KEY;
1522 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1523 &key.offset);
8f18cf13
CM
1524 if (ret) {
1525 btrfs_free_path(path);
0b86a832 1526 return ret;
8f18cf13 1527 }
0b86a832 1528
0b86a832 1529 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
8f18cf13
CM
1530 if (!chunk) {
1531 btrfs_free_path(path);
0b86a832 1532 return -ENOMEM;
8f18cf13 1533 }
0b86a832 1534
593060d7
CM
1535 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1536 if (!map) {
1537 kfree(chunk);
8f18cf13 1538 btrfs_free_path(path);
593060d7
CM
1539 return -ENOMEM;
1540 }
8f18cf13
CM
1541 btrfs_free_path(path);
1542 path = NULL;
593060d7 1543
0b86a832 1544 stripes = &chunk->stripe;
9b3f68b9
CM
1545 *num_bytes = chunk_bytes_by_type(type, calc_size,
1546 num_stripes, sub_stripes);
0b86a832 1547
6324fbf3 1548 index = 0;
0b86a832 1549 while(index < num_stripes) {
e17cade2 1550 struct btrfs_stripe *stripe;
6324fbf3
CM
1551 BUG_ON(list_empty(&private_devs));
1552 cur = private_devs.next;
b3075717 1553 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00
CM
1554
1555 /* loop over this device again if we're doing a dup group */
1556 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1557 (index == num_stripes - 1))
b3075717 1558 list_move_tail(&device->dev_alloc_list, dev_list);
0b86a832
CM
1559
1560 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
1561 info->chunk_root->root_key.objectid,
1562 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1563 calc_size, &dev_offset);
0b86a832 1564 BUG_ON(ret);
0b86a832
CM
1565 device->bytes_used += calc_size;
1566 ret = btrfs_update_device(trans, device);
1567 BUG_ON(ret);
1568
593060d7
CM
1569 map->stripes[index].dev = device;
1570 map->stripes[index].physical = dev_offset;
e17cade2
CM
1571 stripe = stripes + index;
1572 btrfs_set_stack_stripe_devid(stripe, device->devid);
1573 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1574 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
1575 physical = dev_offset;
1576 index++;
1577 }
6324fbf3 1578 BUG_ON(!list_empty(&private_devs));
0b86a832 1579
e17cade2
CM
1580 /* key was set above */
1581 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 1582 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 1583 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
1584 btrfs_set_stack_chunk_type(chunk, type);
1585 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
1586 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1587 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 1588 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 1589 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
1590 map->sector_size = extent_root->sectorsize;
1591 map->stripe_len = stripe_len;
1592 map->io_align = stripe_len;
1593 map->io_width = stripe_len;
1594 map->type = type;
1595 map->num_stripes = num_stripes;
321aecc6 1596 map->sub_stripes = sub_stripes;
0b86a832
CM
1597
1598 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1599 btrfs_chunk_item_size(num_stripes));
1600 BUG_ON(ret);
e17cade2 1601 *start = key.offset;;
0b86a832
CM
1602
1603 em = alloc_extent_map(GFP_NOFS);
1604 if (!em)
1605 return -ENOMEM;
0b86a832 1606 em->bdev = (struct block_device *)map;
e17cade2
CM
1607 em->start = key.offset;
1608 em->len = *num_bytes;
0b86a832
CM
1609 em->block_start = 0;
1610
8f18cf13
CM
1611 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1612 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1613 chunk, btrfs_chunk_item_size(num_stripes));
1614 BUG_ON(ret);
1615 }
0b86a832
CM
1616 kfree(chunk);
1617
1618 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1619 spin_lock(&em_tree->lock);
1620 ret = add_extent_mapping(em_tree, em);
0b86a832 1621 spin_unlock(&em_tree->lock);
b248a415 1622 BUG_ON(ret);
0b86a832
CM
1623 free_extent_map(em);
1624 return ret;
1625}
1626
1627void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1628{
1629 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1630}
1631
1632void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1633{
1634 struct extent_map *em;
1635
1636 while(1) {
1637 spin_lock(&tree->map_tree.lock);
1638 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1639 if (em)
1640 remove_extent_mapping(&tree->map_tree, em);
1641 spin_unlock(&tree->map_tree.lock);
1642 if (!em)
1643 break;
1644 kfree(em->bdev);
1645 /* once for us */
1646 free_extent_map(em);
1647 /* once for the tree */
1648 free_extent_map(em);
1649 }
1650}
1651
f188591e
CM
1652int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1653{
1654 struct extent_map *em;
1655 struct map_lookup *map;
1656 struct extent_map_tree *em_tree = &map_tree->map_tree;
1657 int ret;
1658
1659 spin_lock(&em_tree->lock);
1660 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 1661 spin_unlock(&em_tree->lock);
f188591e
CM
1662 BUG_ON(!em);
1663
1664 BUG_ON(em->start > logical || em->start + em->len < logical);
1665 map = (struct map_lookup *)em->bdev;
1666 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1667 ret = map->num_stripes;
321aecc6
CM
1668 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1669 ret = map->sub_stripes;
f188591e
CM
1670 else
1671 ret = 1;
1672 free_extent_map(em);
f188591e
CM
1673 return ret;
1674}
1675
dfe25020
CM
1676static int find_live_mirror(struct map_lookup *map, int first, int num,
1677 int optimal)
1678{
1679 int i;
1680 if (map->stripes[optimal].dev->bdev)
1681 return optimal;
1682 for (i = first; i < first + num; i++) {
1683 if (map->stripes[i].dev->bdev)
1684 return i;
1685 }
1686 /* we couldn't find one that doesn't fail. Just return something
1687 * and the io error handling code will clean up eventually
1688 */
1689 return optimal;
1690}
1691
f2d8d74d
CM
1692static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1693 u64 logical, u64 *length,
1694 struct btrfs_multi_bio **multi_ret,
1695 int mirror_num, struct page *unplug_page)
0b86a832
CM
1696{
1697 struct extent_map *em;
1698 struct map_lookup *map;
1699 struct extent_map_tree *em_tree = &map_tree->map_tree;
1700 u64 offset;
593060d7
CM
1701 u64 stripe_offset;
1702 u64 stripe_nr;
cea9e445 1703 int stripes_allocated = 8;
321aecc6 1704 int stripes_required = 1;
593060d7 1705 int stripe_index;
cea9e445 1706 int i;
f2d8d74d 1707 int num_stripes;
a236aed1 1708 int max_errors = 0;
cea9e445 1709 struct btrfs_multi_bio *multi = NULL;
0b86a832 1710
cea9e445
CM
1711 if (multi_ret && !(rw & (1 << BIO_RW))) {
1712 stripes_allocated = 1;
1713 }
1714again:
1715 if (multi_ret) {
1716 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1717 GFP_NOFS);
1718 if (!multi)
1719 return -ENOMEM;
a236aed1
CM
1720
1721 atomic_set(&multi->error, 0);
cea9e445 1722 }
0b86a832
CM
1723
1724 spin_lock(&em_tree->lock);
1725 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 1726 spin_unlock(&em_tree->lock);
f2d8d74d
CM
1727
1728 if (!em && unplug_page)
1729 return 0;
1730
3b951516 1731 if (!em) {
a061fc8d 1732 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 1733 BUG();
3b951516 1734 }
0b86a832
CM
1735
1736 BUG_ON(em->start > logical || em->start + em->len < logical);
1737 map = (struct map_lookup *)em->bdev;
1738 offset = logical - em->start;
593060d7 1739
f188591e
CM
1740 if (mirror_num > map->num_stripes)
1741 mirror_num = 0;
1742
cea9e445 1743 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
1744 if (rw & (1 << BIO_RW)) {
1745 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1746 BTRFS_BLOCK_GROUP_DUP)) {
1747 stripes_required = map->num_stripes;
a236aed1 1748 max_errors = 1;
321aecc6
CM
1749 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1750 stripes_required = map->sub_stripes;
a236aed1 1751 max_errors = 1;
321aecc6
CM
1752 }
1753 }
1754 if (multi_ret && rw == WRITE &&
1755 stripes_allocated < stripes_required) {
cea9e445 1756 stripes_allocated = map->num_stripes;
cea9e445
CM
1757 free_extent_map(em);
1758 kfree(multi);
1759 goto again;
1760 }
593060d7
CM
1761 stripe_nr = offset;
1762 /*
1763 * stripe_nr counts the total number of stripes we have to stride
1764 * to get to this block
1765 */
1766 do_div(stripe_nr, map->stripe_len);
1767
1768 stripe_offset = stripe_nr * map->stripe_len;
1769 BUG_ON(offset < stripe_offset);
1770
1771 /* stripe_offset is the offset of this block in its stripe*/
1772 stripe_offset = offset - stripe_offset;
1773
cea9e445 1774 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 1775 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
1776 BTRFS_BLOCK_GROUP_DUP)) {
1777 /* we limit the length of each bio to what fits in a stripe */
1778 *length = min_t(u64, em->len - offset,
1779 map->stripe_len - stripe_offset);
1780 } else {
1781 *length = em->len - offset;
1782 }
f2d8d74d
CM
1783
1784 if (!multi_ret && !unplug_page)
cea9e445
CM
1785 goto out;
1786
f2d8d74d 1787 num_stripes = 1;
cea9e445 1788 stripe_index = 0;
8790d502 1789 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
1790 if (unplug_page || (rw & (1 << BIO_RW)))
1791 num_stripes = map->num_stripes;
2fff734f 1792 else if (mirror_num)
f188591e 1793 stripe_index = mirror_num - 1;
dfe25020
CM
1794 else {
1795 stripe_index = find_live_mirror(map, 0,
1796 map->num_stripes,
1797 current->pid % map->num_stripes);
1798 }
2fff734f 1799
611f0e00 1800 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 1801 if (rw & (1 << BIO_RW))
f2d8d74d 1802 num_stripes = map->num_stripes;
f188591e
CM
1803 else if (mirror_num)
1804 stripe_index = mirror_num - 1;
2fff734f 1805
321aecc6
CM
1806 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1807 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
1808
1809 stripe_index = do_div(stripe_nr, factor);
1810 stripe_index *= map->sub_stripes;
1811
f2d8d74d
CM
1812 if (unplug_page || (rw & (1 << BIO_RW)))
1813 num_stripes = map->sub_stripes;
321aecc6
CM
1814 else if (mirror_num)
1815 stripe_index += mirror_num - 1;
dfe25020
CM
1816 else {
1817 stripe_index = find_live_mirror(map, stripe_index,
1818 map->sub_stripes, stripe_index +
1819 current->pid % map->sub_stripes);
1820 }
8790d502
CM
1821 } else {
1822 /*
1823 * after this do_div call, stripe_nr is the number of stripes
1824 * on this device we have to walk to find the data, and
1825 * stripe_index is the number of our device in the stripe array
1826 */
1827 stripe_index = do_div(stripe_nr, map->num_stripes);
1828 }
593060d7 1829 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 1830
f2d8d74d
CM
1831 for (i = 0; i < num_stripes; i++) {
1832 if (unplug_page) {
1833 struct btrfs_device *device;
1834 struct backing_dev_info *bdi;
1835
1836 device = map->stripes[stripe_index].dev;
dfe25020
CM
1837 if (device->bdev) {
1838 bdi = blk_get_backing_dev_info(device->bdev);
1839 if (bdi->unplug_io_fn) {
1840 bdi->unplug_io_fn(bdi, unplug_page);
1841 }
f2d8d74d
CM
1842 }
1843 } else {
1844 multi->stripes[i].physical =
1845 map->stripes[stripe_index].physical +
1846 stripe_offset + stripe_nr * map->stripe_len;
1847 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1848 }
cea9e445 1849 stripe_index++;
593060d7 1850 }
f2d8d74d
CM
1851 if (multi_ret) {
1852 *multi_ret = multi;
1853 multi->num_stripes = num_stripes;
a236aed1 1854 multi->max_errors = max_errors;
f2d8d74d 1855 }
cea9e445 1856out:
0b86a832 1857 free_extent_map(em);
0b86a832
CM
1858 return 0;
1859}
1860
f2d8d74d
CM
1861int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1862 u64 logical, u64 *length,
1863 struct btrfs_multi_bio **multi_ret, int mirror_num)
1864{
1865 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
1866 mirror_num, NULL);
1867}
1868
1869int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
1870 u64 logical, struct page *page)
1871{
1872 u64 length = PAGE_CACHE_SIZE;
1873 return __btrfs_map_block(map_tree, READ, logical, &length,
1874 NULL, 0, page);
1875}
1876
1877
8790d502
CM
1878#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1879static void end_bio_multi_stripe(struct bio *bio, int err)
1880#else
1881static int end_bio_multi_stripe(struct bio *bio,
1882 unsigned int bytes_done, int err)
1883#endif
1884{
cea9e445 1885 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
1886
1887#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1888 if (bio->bi_size)
1889 return 1;
1890#endif
1891 if (err)
a236aed1 1892 atomic_inc(&multi->error);
8790d502 1893
cea9e445 1894 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
1895 bio->bi_private = multi->private;
1896 bio->bi_end_io = multi->end_io;
a236aed1
CM
1897 /* only send an error to the higher layers if it is
1898 * beyond the tolerance of the multi-bio
1899 */
1259ab75 1900 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 1901 err = -EIO;
1259ab75
CM
1902 } else if (err) {
1903 /*
1904 * this bio is actually up to date, we didn't
1905 * go over the max number of errors
1906 */
1907 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 1908 err = 0;
1259ab75 1909 }
8790d502
CM
1910 kfree(multi);
1911
73f61b2a
M
1912#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1913 bio_endio(bio, bio->bi_size, err);
1914#else
8790d502 1915 bio_endio(bio, err);
73f61b2a 1916#endif
8790d502
CM
1917 } else {
1918 bio_put(bio);
1919 }
1920#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1921 return 0;
1922#endif
1923}
1924
f188591e
CM
1925int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1926 int mirror_num)
0b86a832
CM
1927{
1928 struct btrfs_mapping_tree *map_tree;
1929 struct btrfs_device *dev;
8790d502 1930 struct bio *first_bio = bio;
0b86a832 1931 u64 logical = bio->bi_sector << 9;
0b86a832
CM
1932 u64 length = 0;
1933 u64 map_length;
cea9e445 1934 struct btrfs_multi_bio *multi = NULL;
0b86a832 1935 int ret;
8790d502
CM
1936 int dev_nr = 0;
1937 int total_devs = 1;
0b86a832 1938
f2d8d74d 1939 length = bio->bi_size;
0b86a832
CM
1940 map_tree = &root->fs_info->mapping_tree;
1941 map_length = length;
cea9e445 1942
f188591e
CM
1943 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1944 mirror_num);
cea9e445
CM
1945 BUG_ON(ret);
1946
1947 total_devs = multi->num_stripes;
1948 if (map_length < length) {
1949 printk("mapping failed logical %Lu bio len %Lu "
1950 "len %Lu\n", logical, length, map_length);
1951 BUG();
1952 }
1953 multi->end_io = first_bio->bi_end_io;
1954 multi->private = first_bio->bi_private;
1955 atomic_set(&multi->stripes_pending, multi->num_stripes);
1956
8790d502 1957 while(dev_nr < total_devs) {
8790d502 1958 if (total_devs > 1) {
8790d502
CM
1959 if (dev_nr < total_devs - 1) {
1960 bio = bio_clone(first_bio, GFP_NOFS);
1961 BUG_ON(!bio);
1962 } else {
1963 bio = first_bio;
1964 }
1965 bio->bi_private = multi;
1966 bio->bi_end_io = end_bio_multi_stripe;
1967 }
cea9e445
CM
1968 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1969 dev = multi->stripes[dev_nr].dev;
dfe25020
CM
1970 if (dev && dev->bdev) {
1971 bio->bi_bdev = dev->bdev;
1972 spin_lock(&dev->io_lock);
1973 dev->total_ios++;
1974 spin_unlock(&dev->io_lock);
1975 submit_bio(rw, bio);
1976 } else {
1977 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
1978 bio->bi_sector = logical >> 9;
1979#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1980 bio_endio(bio, bio->bi_size, -EIO);
1981#else
1982 bio_endio(bio, -EIO);
1983#endif
1984 }
8790d502
CM
1985 dev_nr++;
1986 }
cea9e445
CM
1987 if (total_devs == 1)
1988 kfree(multi);
0b86a832
CM
1989 return 0;
1990}
1991
a443755f
CM
1992struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1993 u8 *uuid)
0b86a832 1994{
8a4b83cc 1995 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1996
a443755f 1997 return __find_device(head, devid, uuid);
0b86a832
CM
1998}
1999
dfe25020
CM
2000static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2001 u64 devid, u8 *dev_uuid)
2002{
2003 struct btrfs_device *device;
2004 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2005
2006 device = kzalloc(sizeof(*device), GFP_NOFS);
2007 list_add(&device->dev_list,
2008 &fs_devices->devices);
2009 list_add(&device->dev_alloc_list,
2010 &fs_devices->alloc_list);
2011 device->barriers = 1;
2012 device->dev_root = root->fs_info->dev_root;
2013 device->devid = devid;
2014 fs_devices->num_devices++;
2015 spin_lock_init(&device->io_lock);
2016 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2017 return device;
2018}
2019
2020
0b86a832
CM
2021static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2022 struct extent_buffer *leaf,
2023 struct btrfs_chunk *chunk)
2024{
2025 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2026 struct map_lookup *map;
2027 struct extent_map *em;
2028 u64 logical;
2029 u64 length;
2030 u64 devid;
a443755f 2031 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2032 int num_stripes;
0b86a832 2033 int ret;
593060d7 2034 int i;
0b86a832 2035
e17cade2
CM
2036 logical = key->offset;
2037 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2038
0b86a832
CM
2039 spin_lock(&map_tree->map_tree.lock);
2040 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2041 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2042
2043 /* already mapped? */
2044 if (em && em->start <= logical && em->start + em->len > logical) {
2045 free_extent_map(em);
0b86a832
CM
2046 return 0;
2047 } else if (em) {
2048 free_extent_map(em);
2049 }
0b86a832
CM
2050
2051 map = kzalloc(sizeof(*map), GFP_NOFS);
2052 if (!map)
2053 return -ENOMEM;
2054
2055 em = alloc_extent_map(GFP_NOFS);
2056 if (!em)
2057 return -ENOMEM;
593060d7
CM
2058 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2059 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2060 if (!map) {
2061 free_extent_map(em);
2062 return -ENOMEM;
2063 }
2064
2065 em->bdev = (struct block_device *)map;
2066 em->start = logical;
2067 em->len = length;
2068 em->block_start = 0;
2069
593060d7
CM
2070 map->num_stripes = num_stripes;
2071 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2072 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2073 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2074 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2075 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2076 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2077 for (i = 0; i < num_stripes; i++) {
2078 map->stripes[i].physical =
2079 btrfs_stripe_offset_nr(leaf, chunk, i);
2080 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2081 read_extent_buffer(leaf, uuid, (unsigned long)
2082 btrfs_stripe_dev_uuid_nr(chunk, i),
2083 BTRFS_UUID_SIZE);
2084 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
dfe25020
CM
2085
2086 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2087 kfree(map);
2088 free_extent_map(em);
2089 return -EIO;
2090 }
dfe25020
CM
2091 if (!map->stripes[i].dev) {
2092 map->stripes[i].dev =
2093 add_missing_dev(root, devid, uuid);
2094 if (!map->stripes[i].dev) {
2095 kfree(map);
2096 free_extent_map(em);
2097 return -EIO;
2098 }
2099 }
2100 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2101 }
2102
2103 spin_lock(&map_tree->map_tree.lock);
2104 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2105 spin_unlock(&map_tree->map_tree.lock);
b248a415 2106 BUG_ON(ret);
0b86a832
CM
2107 free_extent_map(em);
2108
2109 return 0;
2110}
2111
2112static int fill_device_from_item(struct extent_buffer *leaf,
2113 struct btrfs_dev_item *dev_item,
2114 struct btrfs_device *device)
2115{
2116 unsigned long ptr;
0b86a832
CM
2117
2118 device->devid = btrfs_device_id(leaf, dev_item);
2119 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2120 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2121 device->type = btrfs_device_type(leaf, dev_item);
2122 device->io_align = btrfs_device_io_align(leaf, dev_item);
2123 device->io_width = btrfs_device_io_width(leaf, dev_item);
2124 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2125
2126 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2127 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2128
0b86a832
CM
2129 return 0;
2130}
2131
0d81ba5d 2132static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
2133 struct extent_buffer *leaf,
2134 struct btrfs_dev_item *dev_item)
2135{
2136 struct btrfs_device *device;
2137 u64 devid;
2138 int ret;
a443755f
CM
2139 u8 dev_uuid[BTRFS_UUID_SIZE];
2140
0b86a832 2141 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
2142 read_extent_buffer(leaf, dev_uuid,
2143 (unsigned long)btrfs_device_uuid(dev_item),
2144 BTRFS_UUID_SIZE);
2145 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 2146 if (!device) {
dfe25020
CM
2147 printk("warning devid %Lu missing\n", devid);
2148 device = add_missing_dev(root, devid, dev_uuid);
6324fbf3
CM
2149 if (!device)
2150 return -ENOMEM;
6324fbf3 2151 }
0b86a832
CM
2152
2153 fill_device_from_item(leaf, dev_item, device);
2154 device->dev_root = root->fs_info->dev_root;
dfe25020 2155 device->in_fs_metadata = 1;
0b86a832
CM
2156 ret = 0;
2157#if 0
2158 ret = btrfs_open_device(device);
2159 if (ret) {
2160 kfree(device);
2161 }
2162#endif
2163 return ret;
2164}
2165
0d81ba5d
CM
2166int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2167{
2168 struct btrfs_dev_item *dev_item;
2169
2170 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2171 dev_item);
2172 return read_one_dev(root, buf, dev_item);
2173}
2174
0b86a832
CM
2175int btrfs_read_sys_array(struct btrfs_root *root)
2176{
2177 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 2178 struct extent_buffer *sb;
0b86a832 2179 struct btrfs_disk_key *disk_key;
0b86a832 2180 struct btrfs_chunk *chunk;
84eed90f
CM
2181 u8 *ptr;
2182 unsigned long sb_ptr;
2183 int ret = 0;
0b86a832
CM
2184 u32 num_stripes;
2185 u32 array_size;
2186 u32 len = 0;
0b86a832 2187 u32 cur;
84eed90f 2188 struct btrfs_key key;
0b86a832 2189
a061fc8d
CM
2190 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2191 BTRFS_SUPER_INFO_SIZE);
2192 if (!sb)
2193 return -ENOMEM;
2194 btrfs_set_buffer_uptodate(sb);
2195 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
2196 array_size = btrfs_super_sys_array_size(super_copy);
2197
0b86a832
CM
2198 ptr = super_copy->sys_chunk_array;
2199 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2200 cur = 0;
2201
2202 while (cur < array_size) {
2203 disk_key = (struct btrfs_disk_key *)ptr;
2204 btrfs_disk_key_to_cpu(&key, disk_key);
2205
a061fc8d 2206 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
2207 sb_ptr += len;
2208 cur += len;
2209
0d81ba5d 2210 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 2211 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 2212 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
2213 if (ret)
2214 break;
0b86a832
CM
2215 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2216 len = btrfs_chunk_item_size(num_stripes);
2217 } else {
84eed90f
CM
2218 ret = -EIO;
2219 break;
0b86a832
CM
2220 }
2221 ptr += len;
2222 sb_ptr += len;
2223 cur += len;
2224 }
a061fc8d 2225 free_extent_buffer(sb);
84eed90f 2226 return ret;
0b86a832
CM
2227}
2228
2229int btrfs_read_chunk_tree(struct btrfs_root *root)
2230{
2231 struct btrfs_path *path;
2232 struct extent_buffer *leaf;
2233 struct btrfs_key key;
2234 struct btrfs_key found_key;
2235 int ret;
2236 int slot;
2237
2238 root = root->fs_info->chunk_root;
2239
2240 path = btrfs_alloc_path();
2241 if (!path)
2242 return -ENOMEM;
2243
2244 /* first we search for all of the device items, and then we
2245 * read in all of the chunk items. This way we can create chunk
2246 * mappings that reference all of the devices that are afound
2247 */
2248 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2249 key.offset = 0;
2250 key.type = 0;
2251again:
2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253 while(1) {
2254 leaf = path->nodes[0];
2255 slot = path->slots[0];
2256 if (slot >= btrfs_header_nritems(leaf)) {
2257 ret = btrfs_next_leaf(root, path);
2258 if (ret == 0)
2259 continue;
2260 if (ret < 0)
2261 goto error;
2262 break;
2263 }
2264 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2265 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2266 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2267 break;
2268 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2269 struct btrfs_dev_item *dev_item;
2270 dev_item = btrfs_item_ptr(leaf, slot,
2271 struct btrfs_dev_item);
0d81ba5d 2272 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
2273 BUG_ON(ret);
2274 }
2275 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2276 struct btrfs_chunk *chunk;
2277 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2278 ret = read_one_chunk(root, &found_key, leaf, chunk);
2279 }
2280 path->slots[0]++;
2281 }
2282 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2283 key.objectid = 0;
2284 btrfs_release_path(root, path);
2285 goto again;
2286 }
2287
2288 btrfs_free_path(path);
2289 ret = 0;
2290error:
2291 return ret;
2292}
2293