Btrfs: add support for blkio controllers
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
67a2c45e 53DEFINE_MUTEX(uuid_mutex);
8a4b83cc 54static LIST_HEAD(fs_uuids);
c73eccf7
AJ
55struct list_head *btrfs_get_fs_uuids(void)
56{
57 return &fs_uuids;
58}
8a4b83cc 59
2208a378
ID
60static struct btrfs_fs_devices *__alloc_fs_devices(void)
61{
62 struct btrfs_fs_devices *fs_devs;
63
64 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 if (!fs_devs)
66 return ERR_PTR(-ENOMEM);
67
68 mutex_init(&fs_devs->device_list_mutex);
69
70 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 71 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
72 INIT_LIST_HEAD(&fs_devs->alloc_list);
73 INIT_LIST_HEAD(&fs_devs->list);
74
75 return fs_devs;
76}
77
78/**
79 * alloc_fs_devices - allocate struct btrfs_fs_devices
80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
81 * generated.
82 *
83 * Return: a pointer to a new &struct btrfs_fs_devices on success;
84 * ERR_PTR() on error. Returned struct is not linked onto any lists and
85 * can be destroyed with kfree() right away.
86 */
87static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88{
89 struct btrfs_fs_devices *fs_devs;
90
91 fs_devs = __alloc_fs_devices();
92 if (IS_ERR(fs_devs))
93 return fs_devs;
94
95 if (fsid)
96 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 else
98 generate_random_uuid(fs_devs->fsid);
99
100 return fs_devs;
101}
102
e4404d6e
YZ
103static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104{
105 struct btrfs_device *device;
106 WARN_ON(fs_devices->opened);
107 while (!list_empty(&fs_devices->devices)) {
108 device = list_entry(fs_devices->devices.next,
109 struct btrfs_device, dev_list);
110 list_del(&device->dev_list);
606686ee 111 rcu_string_free(device->name);
e4404d6e
YZ
112 kfree(device);
113 }
114 kfree(fs_devices);
115}
116
b8b8ff59
LC
117static void btrfs_kobject_uevent(struct block_device *bdev,
118 enum kobject_action action)
119{
120 int ret;
121
122 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 if (ret)
efe120a0 124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
125 action,
126 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 &disk_to_dev(bdev->bd_disk)->kobj);
128}
129
143bede5 130void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
131{
132 struct btrfs_fs_devices *fs_devices;
8a4b83cc 133
2b82032c
YZ
134 while (!list_empty(&fs_uuids)) {
135 fs_devices = list_entry(fs_uuids.next,
136 struct btrfs_fs_devices, list);
137 list_del(&fs_devices->list);
e4404d6e 138 free_fs_devices(fs_devices);
8a4b83cc 139 }
8a4b83cc
CM
140}
141
12bd2fc0
ID
142static struct btrfs_device *__alloc_device(void)
143{
144 struct btrfs_device *dev;
145
146 dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 if (!dev)
148 return ERR_PTR(-ENOMEM);
149
150 INIT_LIST_HEAD(&dev->dev_list);
151 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 152 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
153
154 spin_lock_init(&dev->io_lock);
155
156 spin_lock_init(&dev->reada_lock);
157 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 158 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
159 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162 return dev;
163}
164
a1b32a59
CM
165static noinline struct btrfs_device *__find_device(struct list_head *head,
166 u64 devid, u8 *uuid)
8a4b83cc
CM
167{
168 struct btrfs_device *dev;
8a4b83cc 169
c6e30871 170 list_for_each_entry(dev, head, dev_list) {
a443755f 171 if (dev->devid == devid &&
8f18cf13 172 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 173 return dev;
a443755f 174 }
8a4b83cc
CM
175 }
176 return NULL;
177}
178
a1b32a59 179static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 180{
8a4b83cc
CM
181 struct btrfs_fs_devices *fs_devices;
182
c6e30871 183 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
184 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 return fs_devices;
186 }
187 return NULL;
188}
189
beaf8ab3
SB
190static int
191btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 int flush, struct block_device **bdev,
193 struct buffer_head **bh)
194{
195 int ret;
196
197 *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199 if (IS_ERR(*bdev)) {
200 ret = PTR_ERR(*bdev);
efe120a0 201 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
202 goto error;
203 }
204
205 if (flush)
206 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 ret = set_blocksize(*bdev, 4096);
208 if (ret) {
209 blkdev_put(*bdev, flags);
210 goto error;
211 }
212 invalidate_bdev(*bdev);
213 *bh = btrfs_read_dev_super(*bdev);
214 if (!*bh) {
215 ret = -EINVAL;
216 blkdev_put(*bdev, flags);
217 goto error;
218 }
219
220 return 0;
221
222error:
223 *bdev = NULL;
224 *bh = NULL;
225 return ret;
226}
227
ffbd517d
CM
228static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 struct bio *head, struct bio *tail)
230{
231
232 struct bio *old_head;
233
234 old_head = pending_bios->head;
235 pending_bios->head = head;
236 if (pending_bios->tail)
237 tail->bi_next = old_head;
238 else
239 pending_bios->tail = tail;
240}
241
8b712842
CM
242/*
243 * we try to collect pending bios for a device so we don't get a large
244 * number of procs sending bios down to the same device. This greatly
245 * improves the schedulers ability to collect and merge the bios.
246 *
247 * But, it also turns into a long list of bios to process and that is sure
248 * to eventually make the worker thread block. The solution here is to
249 * make some progress and then put this work struct back at the end of
250 * the list if the block device is congested. This way, multiple devices
251 * can make progress from a single worker thread.
252 */
143bede5 253static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
254{
255 struct bio *pending;
256 struct backing_dev_info *bdi;
b64a2851 257 struct btrfs_fs_info *fs_info;
ffbd517d 258 struct btrfs_pending_bios *pending_bios;
8b712842
CM
259 struct bio *tail;
260 struct bio *cur;
261 int again = 0;
ffbd517d 262 unsigned long num_run;
d644d8a1 263 unsigned long batch_run = 0;
b64a2851 264 unsigned long limit;
b765ead5 265 unsigned long last_waited = 0;
d84275c9 266 int force_reg = 0;
0e588859 267 int sync_pending = 0;
211588ad
CM
268 struct blk_plug plug;
269
270 /*
271 * this function runs all the bios we've collected for
272 * a particular device. We don't want to wander off to
273 * another device without first sending all of these down.
274 * So, setup a plug here and finish it off before we return
275 */
276 blk_start_plug(&plug);
8b712842 277
bedf762b 278 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
279 fs_info = device->dev_root->fs_info;
280 limit = btrfs_async_submit_limit(fs_info);
281 limit = limit * 2 / 3;
282
8b712842
CM
283loop:
284 spin_lock(&device->io_lock);
285
a6837051 286loop_lock:
d84275c9 287 num_run = 0;
ffbd517d 288
8b712842
CM
289 /* take all the bios off the list at once and process them
290 * later on (without the lock held). But, remember the
291 * tail and other pointers so the bios can be properly reinserted
292 * into the list if we hit congestion
293 */
d84275c9 294 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 295 pending_bios = &device->pending_sync_bios;
d84275c9
CM
296 force_reg = 1;
297 } else {
ffbd517d 298 pending_bios = &device->pending_bios;
d84275c9
CM
299 force_reg = 0;
300 }
ffbd517d
CM
301
302 pending = pending_bios->head;
303 tail = pending_bios->tail;
8b712842 304 WARN_ON(pending && !tail);
8b712842
CM
305
306 /*
307 * if pending was null this time around, no bios need processing
308 * at all and we can stop. Otherwise it'll loop back up again
309 * and do an additional check so no bios are missed.
310 *
311 * device->running_pending is used to synchronize with the
312 * schedule_bio code.
313 */
ffbd517d
CM
314 if (device->pending_sync_bios.head == NULL &&
315 device->pending_bios.head == NULL) {
8b712842
CM
316 again = 0;
317 device->running_pending = 0;
ffbd517d
CM
318 } else {
319 again = 1;
320 device->running_pending = 1;
8b712842 321 }
ffbd517d
CM
322
323 pending_bios->head = NULL;
324 pending_bios->tail = NULL;
325
8b712842
CM
326 spin_unlock(&device->io_lock);
327
d397712b 328 while (pending) {
ffbd517d
CM
329
330 rmb();
d84275c9
CM
331 /* we want to work on both lists, but do more bios on the
332 * sync list than the regular list
333 */
334 if ((num_run > 32 &&
335 pending_bios != &device->pending_sync_bios &&
336 device->pending_sync_bios.head) ||
337 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 device->pending_bios.head)) {
ffbd517d
CM
339 spin_lock(&device->io_lock);
340 requeue_list(pending_bios, pending, tail);
341 goto loop_lock;
342 }
343
8b712842
CM
344 cur = pending;
345 pending = pending->bi_next;
346 cur->bi_next = NULL;
b64a2851 347
66657b31 348 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
349 waitqueue_active(&fs_info->async_submit_wait))
350 wake_up(&fs_info->async_submit_wait);
492bb6de 351
dac56212 352 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 353
2ab1ba68
CM
354 /*
355 * if we're doing the sync list, record that our
356 * plug has some sync requests on it
357 *
358 * If we're doing the regular list and there are
359 * sync requests sitting around, unplug before
360 * we add more
361 */
362 if (pending_bios == &device->pending_sync_bios) {
363 sync_pending = 1;
364 } else if (sync_pending) {
365 blk_finish_plug(&plug);
366 blk_start_plug(&plug);
367 sync_pending = 0;
368 }
369
21adbd5c 370 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
371 num_run++;
372 batch_run++;
853d8ec4
DS
373
374 cond_resched();
8b712842
CM
375
376 /*
377 * we made progress, there is more work to do and the bdi
378 * is now congested. Back off and let other work structs
379 * run instead
380 */
57fd5a5f 381 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 382 fs_info->fs_devices->open_devices > 1) {
b765ead5 383 struct io_context *ioc;
8b712842 384
b765ead5
CM
385 ioc = current->io_context;
386
387 /*
388 * the main goal here is that we don't want to
389 * block if we're going to be able to submit
390 * more requests without blocking.
391 *
392 * This code does two great things, it pokes into
393 * the elevator code from a filesystem _and_
394 * it makes assumptions about how batching works.
395 */
396 if (ioc && ioc->nr_batch_requests > 0 &&
397 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 (last_waited == 0 ||
399 ioc->last_waited == last_waited)) {
400 /*
401 * we want to go through our batch of
402 * requests and stop. So, we copy out
403 * the ioc->last_waited time and test
404 * against it before looping
405 */
406 last_waited = ioc->last_waited;
853d8ec4 407 cond_resched();
b765ead5
CM
408 continue;
409 }
8b712842 410 spin_lock(&device->io_lock);
ffbd517d 411 requeue_list(pending_bios, pending, tail);
a6837051 412 device->running_pending = 1;
8b712842
CM
413
414 spin_unlock(&device->io_lock);
a8c93d4e
QW
415 btrfs_queue_work(fs_info->submit_workers,
416 &device->work);
8b712842
CM
417 goto done;
418 }
d85c8a6f
CM
419 /* unplug every 64 requests just for good measure */
420 if (batch_run % 64 == 0) {
421 blk_finish_plug(&plug);
422 blk_start_plug(&plug);
423 sync_pending = 0;
424 }
8b712842 425 }
ffbd517d 426
51684082
CM
427 cond_resched();
428 if (again)
429 goto loop;
430
431 spin_lock(&device->io_lock);
432 if (device->pending_bios.head || device->pending_sync_bios.head)
433 goto loop_lock;
434 spin_unlock(&device->io_lock);
435
8b712842 436done:
211588ad 437 blk_finish_plug(&plug);
8b712842
CM
438}
439
b2950863 440static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
441{
442 struct btrfs_device *device;
443
444 device = container_of(work, struct btrfs_device, work);
445 run_scheduled_bios(device);
446}
447
4fde46f0
AJ
448
449void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450{
451 struct btrfs_fs_devices *fs_devs;
452 struct btrfs_device *dev;
453
454 if (!cur_dev->name)
455 return;
456
457 list_for_each_entry(fs_devs, &fs_uuids, list) {
458 int del = 1;
459
460 if (fs_devs->opened)
461 continue;
462 if (fs_devs->seeding)
463 continue;
464
465 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467 if (dev == cur_dev)
468 continue;
469 if (!dev->name)
470 continue;
471
472 /*
473 * Todo: This won't be enough. What if the same device
474 * comes back (with new uuid and) with its mapper path?
475 * But for now, this does help as mostly an admin will
476 * either use mapper or non mapper path throughout.
477 */
478 rcu_read_lock();
479 del = strcmp(rcu_str_deref(dev->name),
480 rcu_str_deref(cur_dev->name));
481 rcu_read_unlock();
482 if (!del)
483 break;
484 }
485
486 if (!del) {
487 /* delete the stale device */
488 if (fs_devs->num_devices == 1) {
489 btrfs_sysfs_remove_fsid(fs_devs);
490 list_del(&fs_devs->list);
491 free_fs_devices(fs_devs);
492 } else {
493 fs_devs->num_devices--;
494 list_del(&dev->dev_list);
495 rcu_string_free(dev->name);
496 kfree(dev);
497 }
498 break;
499 }
500 }
501}
502
60999ca4
DS
503/*
504 * Add new device to list of registered devices
505 *
506 * Returns:
507 * 1 - first time device is seen
508 * 0 - device already known
509 * < 0 - error
510 */
a1b32a59 511static noinline int device_list_add(const char *path,
8a4b83cc
CM
512 struct btrfs_super_block *disk_super,
513 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514{
515 struct btrfs_device *device;
516 struct btrfs_fs_devices *fs_devices;
606686ee 517 struct rcu_string *name;
60999ca4 518 int ret = 0;
8a4b83cc
CM
519 u64 found_transid = btrfs_super_generation(disk_super);
520
521 fs_devices = find_fsid(disk_super->fsid);
522 if (!fs_devices) {
2208a378
ID
523 fs_devices = alloc_fs_devices(disk_super->fsid);
524 if (IS_ERR(fs_devices))
525 return PTR_ERR(fs_devices);
526
8a4b83cc 527 list_add(&fs_devices->list, &fs_uuids);
2208a378 528
8a4b83cc
CM
529 device = NULL;
530 } else {
a443755f
CM
531 device = __find_device(&fs_devices->devices, devid,
532 disk_super->dev_item.uuid);
8a4b83cc 533 }
443f24fe 534
8a4b83cc 535 if (!device) {
2b82032c
YZ
536 if (fs_devices->opened)
537 return -EBUSY;
538
12bd2fc0
ID
539 device = btrfs_alloc_device(NULL, &devid,
540 disk_super->dev_item.uuid);
541 if (IS_ERR(device)) {
8a4b83cc 542 /* we can safely leave the fs_devices entry around */
12bd2fc0 543 return PTR_ERR(device);
8a4b83cc 544 }
606686ee
JB
545
546 name = rcu_string_strdup(path, GFP_NOFS);
547 if (!name) {
8a4b83cc
CM
548 kfree(device);
549 return -ENOMEM;
550 }
606686ee 551 rcu_assign_pointer(device->name, name);
90519d66 552
e5e9a520 553 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 554 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 555 fs_devices->num_devices++;
e5e9a520
CM
556 mutex_unlock(&fs_devices->device_list_mutex);
557
60999ca4 558 ret = 1;
2b82032c 559 device->fs_devices = fs_devices;
606686ee 560 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
561 /*
562 * When FS is already mounted.
563 * 1. If you are here and if the device->name is NULL that
564 * means this device was missing at time of FS mount.
565 * 2. If you are here and if the device->name is different
566 * from 'path' that means either
567 * a. The same device disappeared and reappeared with
568 * different name. or
569 * b. The missing-disk-which-was-replaced, has
570 * reappeared now.
571 *
572 * We must allow 1 and 2a above. But 2b would be a spurious
573 * and unintentional.
574 *
575 * Further in case of 1 and 2a above, the disk at 'path'
576 * would have missed some transaction when it was away and
577 * in case of 2a the stale bdev has to be updated as well.
578 * 2b must not be allowed at all time.
579 */
580
581 /*
0f23ae74
CM
582 * For now, we do allow update to btrfs_fs_device through the
583 * btrfs dev scan cli after FS has been mounted. We're still
584 * tracking a problem where systems fail mount by subvolume id
585 * when we reject replacement on a mounted FS.
b96de000 586 */
0f23ae74 587 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
588 /*
589 * That is if the FS is _not_ mounted and if you
590 * are here, that means there is more than one
591 * disk with same uuid and devid.We keep the one
592 * with larger generation number or the last-in if
593 * generation are equal.
594 */
0f23ae74 595 return -EEXIST;
77bdae4d 596 }
b96de000 597
606686ee 598 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
599 if (!name)
600 return -ENOMEM;
606686ee
JB
601 rcu_string_free(device->name);
602 rcu_assign_pointer(device->name, name);
cd02dca5
CM
603 if (device->missing) {
604 fs_devices->missing_devices--;
605 device->missing = 0;
606 }
8a4b83cc
CM
607 }
608
77bdae4d
AJ
609 /*
610 * Unmount does not free the btrfs_device struct but would zero
611 * generation along with most of the other members. So just update
612 * it back. We need it to pick the disk with largest generation
613 * (as above).
614 */
615 if (!fs_devices->opened)
616 device->generation = found_transid;
617
4fde46f0
AJ
618 /*
619 * if there is new btrfs on an already registered device,
620 * then remove the stale device entry.
621 */
622 btrfs_free_stale_device(device);
623
8a4b83cc 624 *fs_devices_ret = fs_devices;
60999ca4
DS
625
626 return ret;
8a4b83cc
CM
627}
628
e4404d6e
YZ
629static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630{
631 struct btrfs_fs_devices *fs_devices;
632 struct btrfs_device *device;
633 struct btrfs_device *orig_dev;
634
2208a378
ID
635 fs_devices = alloc_fs_devices(orig->fsid);
636 if (IS_ERR(fs_devices))
637 return fs_devices;
e4404d6e 638
adbbb863 639 mutex_lock(&orig->device_list_mutex);
02db0844 640 fs_devices->total_devices = orig->total_devices;
e4404d6e 641
46224705 642 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 643 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
644 struct rcu_string *name;
645
12bd2fc0
ID
646 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 orig_dev->uuid);
648 if (IS_ERR(device))
e4404d6e
YZ
649 goto error;
650
606686ee
JB
651 /*
652 * This is ok to do without rcu read locked because we hold the
653 * uuid mutex so nothing we touch in here is going to disappear.
654 */
e755f780
AJ
655 if (orig_dev->name) {
656 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 if (!name) {
658 kfree(device);
659 goto error;
660 }
661 rcu_assign_pointer(device->name, name);
fd2696f3 662 }
e4404d6e 663
e4404d6e
YZ
664 list_add(&device->dev_list, &fs_devices->devices);
665 device->fs_devices = fs_devices;
666 fs_devices->num_devices++;
667 }
adbbb863 668 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
669 return fs_devices;
670error:
adbbb863 671 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
672 free_fs_devices(fs_devices);
673 return ERR_PTR(-ENOMEM);
674}
675
9eaed21e 676void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 677{
c6e30871 678 struct btrfs_device *device, *next;
443f24fe 679 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 680
dfe25020
CM
681 mutex_lock(&uuid_mutex);
682again:
46224705 683 /* This is the initialized path, it is safe to release the devices. */
c6e30871 684 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 685 if (device->in_fs_metadata) {
63a212ab 686 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
687 (!latest_dev ||
688 device->generation > latest_dev->generation)) {
689 latest_dev = device;
a6b0d5c8 690 }
2b82032c 691 continue;
a6b0d5c8 692 }
2b82032c 693
8dabb742
SB
694 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 /*
696 * In the first step, keep the device which has
697 * the correct fsid and the devid that is used
698 * for the dev_replace procedure.
699 * In the second step, the dev_replace state is
700 * read from the device tree and it is known
701 * whether the procedure is really active or
702 * not, which means whether this device is
703 * used or whether it should be removed.
704 */
705 if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 continue;
707 }
708 }
2b82032c 709 if (device->bdev) {
d4d77629 710 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
711 device->bdev = NULL;
712 fs_devices->open_devices--;
713 }
714 if (device->writeable) {
715 list_del_init(&device->dev_alloc_list);
716 device->writeable = 0;
8dabb742
SB
717 if (!device->is_tgtdev_for_dev_replace)
718 fs_devices->rw_devices--;
2b82032c 719 }
e4404d6e
YZ
720 list_del_init(&device->dev_list);
721 fs_devices->num_devices--;
606686ee 722 rcu_string_free(device->name);
e4404d6e 723 kfree(device);
dfe25020 724 }
2b82032c
YZ
725
726 if (fs_devices->seed) {
727 fs_devices = fs_devices->seed;
2b82032c
YZ
728 goto again;
729 }
730
443f24fe 731 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 732
dfe25020 733 mutex_unlock(&uuid_mutex);
dfe25020 734}
a0af469b 735
1f78160c
XG
736static void __free_device(struct work_struct *work)
737{
738 struct btrfs_device *device;
739
740 device = container_of(work, struct btrfs_device, rcu_work);
741
742 if (device->bdev)
743 blkdev_put(device->bdev, device->mode);
744
606686ee 745 rcu_string_free(device->name);
1f78160c
XG
746 kfree(device);
747}
748
749static void free_device(struct rcu_head *head)
750{
751 struct btrfs_device *device;
752
753 device = container_of(head, struct btrfs_device, rcu);
754
755 INIT_WORK(&device->rcu_work, __free_device);
756 schedule_work(&device->rcu_work);
757}
758
2b82032c 759static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 760{
2037a093 761 struct btrfs_device *device, *tmp;
e4404d6e 762
2b82032c
YZ
763 if (--fs_devices->opened > 0)
764 return 0;
8a4b83cc 765
c9513edb 766 mutex_lock(&fs_devices->device_list_mutex);
2037a093 767 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1f78160c 768 struct btrfs_device *new_device;
606686ee 769 struct rcu_string *name;
1f78160c
XG
770
771 if (device->bdev)
a0af469b 772 fs_devices->open_devices--;
1f78160c 773
f747cab7
ID
774 if (device->writeable &&
775 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
776 list_del_init(&device->dev_alloc_list);
777 fs_devices->rw_devices--;
778 }
779
726551eb
JB
780 if (device->missing)
781 fs_devices->missing_devices--;
d5e2003c 782
a1e8780a
ID
783 new_device = btrfs_alloc_device(NULL, &device->devid,
784 device->uuid);
785 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
786
787 /* Safe because we are under uuid_mutex */
99f5944b
JB
788 if (device->name) {
789 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 790 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
791 rcu_assign_pointer(new_device->name, name);
792 }
a1e8780a 793
1f78160c 794 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 795 new_device->fs_devices = device->fs_devices;
1f78160c
XG
796
797 call_rcu(&device->rcu, free_device);
8a4b83cc 798 }
c9513edb
XG
799 mutex_unlock(&fs_devices->device_list_mutex);
800
e4404d6e
YZ
801 WARN_ON(fs_devices->open_devices);
802 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
803 fs_devices->opened = 0;
804 fs_devices->seeding = 0;
2b82032c 805
8a4b83cc
CM
806 return 0;
807}
808
2b82032c
YZ
809int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810{
e4404d6e 811 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
812 int ret;
813
814 mutex_lock(&uuid_mutex);
815 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
816 if (!fs_devices->opened) {
817 seed_devices = fs_devices->seed;
818 fs_devices->seed = NULL;
819 }
2b82032c 820 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
821
822 while (seed_devices) {
823 fs_devices = seed_devices;
824 seed_devices = fs_devices->seed;
825 __btrfs_close_devices(fs_devices);
826 free_fs_devices(fs_devices);
827 }
bc178622
ES
828 /*
829 * Wait for rcu kworkers under __btrfs_close_devices
830 * to finish all blkdev_puts so device is really
831 * free when umount is done.
832 */
833 rcu_barrier();
2b82032c
YZ
834 return ret;
835}
836
e4404d6e
YZ
837static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 fmode_t flags, void *holder)
8a4b83cc 839{
d5e2003c 840 struct request_queue *q;
8a4b83cc
CM
841 struct block_device *bdev;
842 struct list_head *head = &fs_devices->devices;
8a4b83cc 843 struct btrfs_device *device;
443f24fe 844 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
845 struct buffer_head *bh;
846 struct btrfs_super_block *disk_super;
a0af469b 847 u64 devid;
2b82032c 848 int seeding = 1;
a0af469b 849 int ret = 0;
8a4b83cc 850
d4d77629
TH
851 flags |= FMODE_EXCL;
852
c6e30871 853 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
854 if (device->bdev)
855 continue;
dfe25020
CM
856 if (!device->name)
857 continue;
858
f63e0cca
ES
859 /* Just open everything we can; ignore failures here */
860 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 &bdev, &bh))
beaf8ab3 862 continue;
a0af469b
CM
863
864 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 865 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
866 if (devid != device->devid)
867 goto error_brelse;
868
2b82032c
YZ
869 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 BTRFS_UUID_SIZE))
871 goto error_brelse;
872
873 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
874 if (!latest_dev ||
875 device->generation > latest_dev->generation)
876 latest_dev = device;
a0af469b 877
2b82032c
YZ
878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 device->writeable = 0;
880 } else {
881 device->writeable = !bdev_read_only(bdev);
882 seeding = 0;
883 }
884
d5e2003c 885 q = bdev_get_queue(bdev);
90180da4 886 if (blk_queue_discard(q))
d5e2003c 887 device->can_discard = 1;
d5e2003c 888
8a4b83cc 889 device->bdev = bdev;
dfe25020 890 device->in_fs_metadata = 0;
15916de8
CM
891 device->mode = flags;
892
c289811c
CM
893 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 fs_devices->rotating = 1;
895
a0af469b 896 fs_devices->open_devices++;
55e50e45
ID
897 if (device->writeable &&
898 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
899 fs_devices->rw_devices++;
900 list_add(&device->dev_alloc_list,
901 &fs_devices->alloc_list);
902 }
4f6c9328 903 brelse(bh);
a0af469b 904 continue;
a061fc8d 905
a0af469b
CM
906error_brelse:
907 brelse(bh);
d4d77629 908 blkdev_put(bdev, flags);
a0af469b 909 continue;
8a4b83cc 910 }
a0af469b 911 if (fs_devices->open_devices == 0) {
20bcd649 912 ret = -EINVAL;
a0af469b
CM
913 goto out;
914 }
2b82032c
YZ
915 fs_devices->seeding = seeding;
916 fs_devices->opened = 1;
443f24fe 917 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 918 fs_devices->total_rw_bytes = 0;
a0af469b 919out:
2b82032c
YZ
920 return ret;
921}
922
923int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 924 fmode_t flags, void *holder)
2b82032c
YZ
925{
926 int ret;
927
928 mutex_lock(&uuid_mutex);
929 if (fs_devices->opened) {
e4404d6e
YZ
930 fs_devices->opened++;
931 ret = 0;
2b82032c 932 } else {
15916de8 933 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 934 }
8a4b83cc 935 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
936 return ret;
937}
938
6f60cbd3
DS
939/*
940 * Look for a btrfs signature on a device. This may be called out of the mount path
941 * and we are not allowed to call set_blocksize during the scan. The superblock
942 * is read via pagecache
943 */
97288f2c 944int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
945 struct btrfs_fs_devices **fs_devices_ret)
946{
947 struct btrfs_super_block *disk_super;
948 struct block_device *bdev;
6f60cbd3
DS
949 struct page *page;
950 void *p;
951 int ret = -EINVAL;
8a4b83cc 952 u64 devid;
f2984462 953 u64 transid;
02db0844 954 u64 total_devices;
6f60cbd3
DS
955 u64 bytenr;
956 pgoff_t index;
8a4b83cc 957
6f60cbd3
DS
958 /*
959 * we would like to check all the supers, but that would make
960 * a btrfs mount succeed after a mkfs from a different FS.
961 * So, we need to add a special mount option to scan for
962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 */
964 bytenr = btrfs_sb_offset(0);
d4d77629 965 flags |= FMODE_EXCL;
10f6327b 966 mutex_lock(&uuid_mutex);
6f60cbd3
DS
967
968 bdev = blkdev_get_by_path(path, flags, holder);
969
970 if (IS_ERR(bdev)) {
971 ret = PTR_ERR(bdev);
beaf8ab3 972 goto error;
6f60cbd3
DS
973 }
974
975 /* make sure our super fits in the device */
976 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 goto error_bdev_put;
978
979 /* make sure our super fits in the page */
980 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 goto error_bdev_put;
982
983 /* make sure our super doesn't straddle pages on disk */
984 index = bytenr >> PAGE_CACHE_SHIFT;
985 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 goto error_bdev_put;
987
988 /* pull in the page with our super */
989 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 index, GFP_NOFS);
991
992 if (IS_ERR_OR_NULL(page))
993 goto error_bdev_put;
994
995 p = kmap(page);
996
997 /* align our pointer to the offset of the super block */
998 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 1001 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
1002 goto error_unmap;
1003
a343832f 1004 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1005 transid = btrfs_super_generation(disk_super);
02db0844 1006 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1007
8a4b83cc 1008 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1009 if (ret > 0) {
1010 if (disk_super->label[0]) {
1011 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 } else {
1015 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 }
1017
1018 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 ret = 0;
1020 }
02db0844
JB
1021 if (!ret && fs_devices_ret)
1022 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
1023
1024error_unmap:
1025 kunmap(page);
1026 page_cache_release(page);
1027
1028error_bdev_put:
d4d77629 1029 blkdev_put(bdev, flags);
8a4b83cc 1030error:
beaf8ab3 1031 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1032 return ret;
1033}
0b86a832 1034
6d07bcec
MX
1035/* helper to account the used device space in the range */
1036int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 u64 end, u64 *length)
1038{
1039 struct btrfs_key key;
1040 struct btrfs_root *root = device->dev_root;
1041 struct btrfs_dev_extent *dev_extent;
1042 struct btrfs_path *path;
1043 u64 extent_end;
1044 int ret;
1045 int slot;
1046 struct extent_buffer *l;
1047
1048 *length = 0;
1049
63a212ab 1050 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1051 return 0;
1052
1053 path = btrfs_alloc_path();
1054 if (!path)
1055 return -ENOMEM;
1056 path->reada = 2;
1057
1058 key.objectid = device->devid;
1059 key.offset = start;
1060 key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 if (ret < 0)
1064 goto out;
1065 if (ret > 0) {
1066 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 if (ret < 0)
1068 goto out;
1069 }
1070
1071 while (1) {
1072 l = path->nodes[0];
1073 slot = path->slots[0];
1074 if (slot >= btrfs_header_nritems(l)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret == 0)
1077 continue;
1078 if (ret < 0)
1079 goto out;
1080
1081 break;
1082 }
1083 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085 if (key.objectid < device->devid)
1086 goto next;
1087
1088 if (key.objectid > device->devid)
1089 break;
1090
962a298f 1091 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1092 goto next;
1093
1094 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 extent_end = key.offset + btrfs_dev_extent_length(l,
1096 dev_extent);
1097 if (key.offset <= start && extent_end > end) {
1098 *length = end - start + 1;
1099 break;
1100 } else if (key.offset <= start && extent_end > start)
1101 *length += extent_end - start;
1102 else if (key.offset > start && extent_end <= end)
1103 *length += extent_end - key.offset;
1104 else if (key.offset > start && key.offset <= end) {
1105 *length += end - key.offset + 1;
1106 break;
1107 } else if (key.offset > end)
1108 break;
1109
1110next:
1111 path->slots[0]++;
1112 }
1113 ret = 0;
1114out:
1115 btrfs_free_path(path);
1116 return ret;
1117}
1118
6df9a95e
JB
1119static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120 struct btrfs_device *device,
1121 u64 *start, u64 len)
1122{
1123 struct extent_map *em;
04216820 1124 struct list_head *search_list = &trans->transaction->pending_chunks;
6df9a95e 1125 int ret = 0;
1b984508 1126 u64 physical_start = *start;
6df9a95e 1127
04216820
FM
1128again:
1129 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1130 struct map_lookup *map;
1131 int i;
1132
1133 map = (struct map_lookup *)em->bdev;
1134 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1135 u64 end;
1136
6df9a95e
JB
1137 if (map->stripes[i].dev != device)
1138 continue;
1b984508 1139 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1140 map->stripes[i].physical + em->orig_block_len <=
1b984508 1141 physical_start)
6df9a95e 1142 continue;
c152b63e
FM
1143 /*
1144 * Make sure that while processing the pinned list we do
1145 * not override our *start with a lower value, because
1146 * we can have pinned chunks that fall within this
1147 * device hole and that have lower physical addresses
1148 * than the pending chunks we processed before. If we
1149 * do not take this special care we can end up getting
1150 * 2 pending chunks that start at the same physical
1151 * device offsets because the end offset of a pinned
1152 * chunk can be equal to the start offset of some
1153 * pending chunk.
1154 */
1155 end = map->stripes[i].physical + em->orig_block_len;
1156 if (end > *start) {
1157 *start = end;
1158 ret = 1;
1159 }
6df9a95e
JB
1160 }
1161 }
04216820
FM
1162 if (search_list == &trans->transaction->pending_chunks) {
1163 search_list = &trans->root->fs_info->pinned_chunks;
1164 goto again;
1165 }
6df9a95e
JB
1166
1167 return ret;
1168}
1169
1170
0b86a832 1171/*
7bfc837d 1172 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1173 * @device: the device which we search the free space in
1174 * @num_bytes: the size of the free space that we need
1175 * @start: store the start of the free space.
1176 * @len: the size of the free space. that we find, or the size of the max
1177 * free space if we don't find suitable free space
1178 *
0b86a832
CM
1179 * this uses a pretty simple search, the expectation is that it is
1180 * called very infrequently and that a given device has a small number
1181 * of extents
7bfc837d
MX
1182 *
1183 * @start is used to store the start of the free space if we find. But if we
1184 * don't find suitable free space, it will be used to store the start position
1185 * of the max free space.
1186 *
1187 * @len is used to store the size of the free space that we find.
1188 * But if we don't find suitable free space, it is used to store the size of
1189 * the max free space.
0b86a832 1190 */
6df9a95e
JB
1191int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1193 u64 *start, u64 *len)
0b86a832
CM
1194{
1195 struct btrfs_key key;
1196 struct btrfs_root *root = device->dev_root;
7bfc837d 1197 struct btrfs_dev_extent *dev_extent;
2b82032c 1198 struct btrfs_path *path;
7bfc837d
MX
1199 u64 hole_size;
1200 u64 max_hole_start;
1201 u64 max_hole_size;
1202 u64 extent_end;
1203 u64 search_start;
0b86a832
CM
1204 u64 search_end = device->total_bytes;
1205 int ret;
7bfc837d 1206 int slot;
0b86a832
CM
1207 struct extent_buffer *l;
1208
0b86a832
CM
1209 /* FIXME use last free of some kind */
1210
8a4b83cc
CM
1211 /* we don't want to overwrite the superblock on the drive,
1212 * so we make sure to start at an offset of at least 1MB
1213 */
a9c9bf68 1214 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1215
6df9a95e
JB
1216 path = btrfs_alloc_path();
1217 if (!path)
1218 return -ENOMEM;
f2ab7618 1219
7bfc837d
MX
1220 max_hole_start = search_start;
1221 max_hole_size = 0;
1222
f2ab7618 1223again:
63a212ab 1224 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1225 ret = -ENOSPC;
6df9a95e 1226 goto out;
7bfc837d
MX
1227 }
1228
7bfc837d 1229 path->reada = 2;
6df9a95e
JB
1230 path->search_commit_root = 1;
1231 path->skip_locking = 1;
7bfc837d 1232
0b86a832
CM
1233 key.objectid = device->devid;
1234 key.offset = search_start;
1235 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1236
125ccb0a 1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1238 if (ret < 0)
7bfc837d 1239 goto out;
1fcbac58
YZ
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242 if (ret < 0)
7bfc837d 1243 goto out;
1fcbac58 1244 }
7bfc837d 1245
0b86a832
CM
1246 while (1) {
1247 l = path->nodes[0];
1248 slot = path->slots[0];
1249 if (slot >= btrfs_header_nritems(l)) {
1250 ret = btrfs_next_leaf(root, path);
1251 if (ret == 0)
1252 continue;
1253 if (ret < 0)
7bfc837d
MX
1254 goto out;
1255
1256 break;
0b86a832
CM
1257 }
1258 btrfs_item_key_to_cpu(l, &key, slot);
1259
1260 if (key.objectid < device->devid)
1261 goto next;
1262
1263 if (key.objectid > device->devid)
7bfc837d 1264 break;
0b86a832 1265
962a298f 1266 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1267 goto next;
9779b72f 1268
7bfc837d
MX
1269 if (key.offset > search_start) {
1270 hole_size = key.offset - search_start;
9779b72f 1271
6df9a95e
JB
1272 /*
1273 * Have to check before we set max_hole_start, otherwise
1274 * we could end up sending back this offset anyway.
1275 */
1276 if (contains_pending_extent(trans, device,
1277 &search_start,
1b984508
FL
1278 hole_size)) {
1279 if (key.offset >= search_start) {
1280 hole_size = key.offset - search_start;
1281 } else {
1282 WARN_ON_ONCE(1);
1283 hole_size = 0;
1284 }
1285 }
6df9a95e 1286
7bfc837d
MX
1287 if (hole_size > max_hole_size) {
1288 max_hole_start = search_start;
1289 max_hole_size = hole_size;
1290 }
9779b72f 1291
7bfc837d
MX
1292 /*
1293 * If this free space is greater than which we need,
1294 * it must be the max free space that we have found
1295 * until now, so max_hole_start must point to the start
1296 * of this free space and the length of this free space
1297 * is stored in max_hole_size. Thus, we return
1298 * max_hole_start and max_hole_size and go back to the
1299 * caller.
1300 */
1301 if (hole_size >= num_bytes) {
1302 ret = 0;
1303 goto out;
0b86a832
CM
1304 }
1305 }
0b86a832 1306
0b86a832 1307 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1308 extent_end = key.offset + btrfs_dev_extent_length(l,
1309 dev_extent);
1310 if (extent_end > search_start)
1311 search_start = extent_end;
0b86a832
CM
1312next:
1313 path->slots[0]++;
1314 cond_resched();
1315 }
0b86a832 1316
38c01b96 1317 /*
1318 * At this point, search_start should be the end of
1319 * allocated dev extents, and when shrinking the device,
1320 * search_end may be smaller than search_start.
1321 */
f2ab7618 1322 if (search_end > search_start) {
38c01b96 1323 hole_size = search_end - search_start;
1324
f2ab7618
ZL
1325 if (contains_pending_extent(trans, device, &search_start,
1326 hole_size)) {
1327 btrfs_release_path(path);
1328 goto again;
1329 }
0b86a832 1330
f2ab7618
ZL
1331 if (hole_size > max_hole_size) {
1332 max_hole_start = search_start;
1333 max_hole_size = hole_size;
1334 }
6df9a95e
JB
1335 }
1336
7bfc837d 1337 /* See above. */
f2ab7618 1338 if (max_hole_size < num_bytes)
7bfc837d
MX
1339 ret = -ENOSPC;
1340 else
1341 ret = 0;
1342
1343out:
2b82032c 1344 btrfs_free_path(path);
7bfc837d 1345 *start = max_hole_start;
b2117a39 1346 if (len)
7bfc837d 1347 *len = max_hole_size;
0b86a832
CM
1348 return ret;
1349}
1350
b2950863 1351static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1352 struct btrfs_device *device,
2196d6e8 1353 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1354{
1355 int ret;
1356 struct btrfs_path *path;
1357 struct btrfs_root *root = device->dev_root;
1358 struct btrfs_key key;
a061fc8d
CM
1359 struct btrfs_key found_key;
1360 struct extent_buffer *leaf = NULL;
1361 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 key.objectid = device->devid;
1368 key.offset = start;
1369 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1370again:
8f18cf13 1371 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1372 if (ret > 0) {
1373 ret = btrfs_previous_item(root, path, key.objectid,
1374 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1375 if (ret)
1376 goto out;
a061fc8d
CM
1377 leaf = path->nodes[0];
1378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379 extent = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_dev_extent);
1381 BUG_ON(found_key.offset > start || found_key.offset +
1382 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1383 key = found_key;
1384 btrfs_release_path(path);
1385 goto again;
a061fc8d
CM
1386 } else if (ret == 0) {
1387 leaf = path->nodes[0];
1388 extent = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_dev_extent);
79787eaa
JM
1390 } else {
1391 btrfs_error(root->fs_info, ret, "Slot search failed");
1392 goto out;
a061fc8d 1393 }
8f18cf13 1394
2196d6e8
MX
1395 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396
8f18cf13 1397 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1398 if (ret) {
1399 btrfs_error(root->fs_info, ret,
1400 "Failed to remove dev extent item");
13212b54
ZL
1401 } else {
1402 trans->transaction->have_free_bgs = 1;
79787eaa 1403 }
b0b802d7 1404out:
8f18cf13
CM
1405 btrfs_free_path(path);
1406 return ret;
1407}
1408
48a3b636
ES
1409static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410 struct btrfs_device *device,
1411 u64 chunk_tree, u64 chunk_objectid,
1412 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1413{
1414 int ret;
1415 struct btrfs_path *path;
1416 struct btrfs_root *root = device->dev_root;
1417 struct btrfs_dev_extent *extent;
1418 struct extent_buffer *leaf;
1419 struct btrfs_key key;
1420
dfe25020 1421 WARN_ON(!device->in_fs_metadata);
63a212ab 1422 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1423 path = btrfs_alloc_path();
1424 if (!path)
1425 return -ENOMEM;
1426
0b86a832 1427 key.objectid = device->devid;
2b82032c 1428 key.offset = start;
0b86a832
CM
1429 key.type = BTRFS_DEV_EXTENT_KEY;
1430 ret = btrfs_insert_empty_item(trans, root, path, &key,
1431 sizeof(*extent));
2cdcecbc
MF
1432 if (ret)
1433 goto out;
0b86a832
CM
1434
1435 leaf = path->nodes[0];
1436 extent = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_dev_extent);
e17cade2
CM
1438 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441
1442 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1443 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1444
0b86a832
CM
1445 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1447out:
0b86a832
CM
1448 btrfs_free_path(path);
1449 return ret;
1450}
1451
6df9a95e 1452static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1453{
6df9a95e
JB
1454 struct extent_map_tree *em_tree;
1455 struct extent_map *em;
1456 struct rb_node *n;
1457 u64 ret = 0;
0b86a832 1458
6df9a95e
JB
1459 em_tree = &fs_info->mapping_tree.map_tree;
1460 read_lock(&em_tree->lock);
1461 n = rb_last(&em_tree->map);
1462 if (n) {
1463 em = rb_entry(n, struct extent_map, rb_node);
1464 ret = em->start + em->len;
0b86a832 1465 }
6df9a95e
JB
1466 read_unlock(&em_tree->lock);
1467
0b86a832
CM
1468 return ret;
1469}
1470
53f10659
ID
1471static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472 u64 *devid_ret)
0b86a832
CM
1473{
1474 int ret;
1475 struct btrfs_key key;
1476 struct btrfs_key found_key;
2b82032c
YZ
1477 struct btrfs_path *path;
1478
2b82032c
YZ
1479 path = btrfs_alloc_path();
1480 if (!path)
1481 return -ENOMEM;
0b86a832
CM
1482
1483 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484 key.type = BTRFS_DEV_ITEM_KEY;
1485 key.offset = (u64)-1;
1486
53f10659 1487 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1488 if (ret < 0)
1489 goto error;
1490
79787eaa 1491 BUG_ON(ret == 0); /* Corruption */
0b86a832 1492
53f10659
ID
1493 ret = btrfs_previous_item(fs_info->chunk_root, path,
1494 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1495 BTRFS_DEV_ITEM_KEY);
1496 if (ret) {
53f10659 1497 *devid_ret = 1;
0b86a832
CM
1498 } else {
1499 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500 path->slots[0]);
53f10659 1501 *devid_ret = found_key.offset + 1;
0b86a832
CM
1502 }
1503 ret = 0;
1504error:
2b82032c 1505 btrfs_free_path(path);
0b86a832
CM
1506 return ret;
1507}
1508
1509/*
1510 * the device information is stored in the chunk root
1511 * the btrfs_device struct should be fully filled in
1512 */
48a3b636
ES
1513static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_device *device)
0b86a832
CM
1516{
1517 int ret;
1518 struct btrfs_path *path;
1519 struct btrfs_dev_item *dev_item;
1520 struct extent_buffer *leaf;
1521 struct btrfs_key key;
1522 unsigned long ptr;
0b86a832
CM
1523
1524 root = root->fs_info->chunk_root;
1525
1526 path = btrfs_alloc_path();
1527 if (!path)
1528 return -ENOMEM;
1529
0b86a832
CM
1530 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1532 key.offset = device->devid;
0b86a832
CM
1533
1534 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1535 sizeof(*dev_item));
0b86a832
CM
1536 if (ret)
1537 goto out;
1538
1539 leaf = path->nodes[0];
1540 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541
1542 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1543 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1544 btrfs_set_device_type(leaf, dev_item, device->type);
1545 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1548 btrfs_set_device_total_bytes(leaf, dev_item,
1549 btrfs_device_get_disk_total_bytes(device));
1550 btrfs_set_device_bytes_used(leaf, dev_item,
1551 btrfs_device_get_bytes_used(device));
e17cade2
CM
1552 btrfs_set_device_group(leaf, dev_item, 0);
1553 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1555 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1556
410ba3a2 1557 ptr = btrfs_device_uuid(dev_item);
e17cade2 1558 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1559 ptr = btrfs_device_fsid(dev_item);
2b82032c 1560 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1561 btrfs_mark_buffer_dirty(leaf);
0b86a832 1562
2b82032c 1563 ret = 0;
0b86a832
CM
1564out:
1565 btrfs_free_path(path);
1566 return ret;
1567}
8f18cf13 1568
5a1972bd
QW
1569/*
1570 * Function to update ctime/mtime for a given device path.
1571 * Mainly used for ctime/mtime based probe like libblkid.
1572 */
1573static void update_dev_time(char *path_name)
1574{
1575 struct file *filp;
1576
1577 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1578 if (IS_ERR(filp))
5a1972bd
QW
1579 return;
1580 file_update_time(filp);
1581 filp_close(filp, NULL);
1582 return;
1583}
1584
a061fc8d
CM
1585static int btrfs_rm_dev_item(struct btrfs_root *root,
1586 struct btrfs_device *device)
1587{
1588 int ret;
1589 struct btrfs_path *path;
a061fc8d 1590 struct btrfs_key key;
a061fc8d
CM
1591 struct btrfs_trans_handle *trans;
1592
1593 root = root->fs_info->chunk_root;
1594
1595 path = btrfs_alloc_path();
1596 if (!path)
1597 return -ENOMEM;
1598
a22285a6 1599 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1600 if (IS_ERR(trans)) {
1601 btrfs_free_path(path);
1602 return PTR_ERR(trans);
1603 }
a061fc8d
CM
1604 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605 key.type = BTRFS_DEV_ITEM_KEY;
1606 key.offset = device->devid;
1607
1608 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609 if (ret < 0)
1610 goto out;
1611
1612 if (ret > 0) {
1613 ret = -ENOENT;
1614 goto out;
1615 }
1616
1617 ret = btrfs_del_item(trans, root, path);
1618 if (ret)
1619 goto out;
a061fc8d
CM
1620out:
1621 btrfs_free_path(path);
1622 btrfs_commit_transaction(trans, root);
1623 return ret;
1624}
1625
1626int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627{
1628 struct btrfs_device *device;
2b82032c 1629 struct btrfs_device *next_device;
a061fc8d 1630 struct block_device *bdev;
dfe25020 1631 struct buffer_head *bh = NULL;
a061fc8d 1632 struct btrfs_super_block *disk_super;
1f78160c 1633 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1634 u64 all_avail;
1635 u64 devid;
2b82032c
YZ
1636 u64 num_devices;
1637 u8 *dev_uuid;
de98ced9 1638 unsigned seq;
a061fc8d 1639 int ret = 0;
1f78160c 1640 bool clear_super = false;
a061fc8d 1641
a061fc8d
CM
1642 mutex_lock(&uuid_mutex);
1643
de98ced9
MX
1644 do {
1645 seq = read_seqbegin(&root->fs_info->profiles_lock);
1646
1647 all_avail = root->fs_info->avail_data_alloc_bits |
1648 root->fs_info->avail_system_alloc_bits |
1649 root->fs_info->avail_metadata_alloc_bits;
1650 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1651
8dabb742
SB
1652 num_devices = root->fs_info->fs_devices->num_devices;
1653 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655 WARN_ON(num_devices < 1);
1656 num_devices--;
1657 }
1658 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659
1660 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1661 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1662 goto out;
1663 }
1664
8dabb742 1665 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1666 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1667 goto out;
1668 }
1669
53b381b3
DW
1670 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1672 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1673 goto out;
1674 }
1675 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1677 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1678 goto out;
1679 }
1680
dfe25020 1681 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1682 struct list_head *devices;
1683 struct btrfs_device *tmp;
a061fc8d 1684
dfe25020
CM
1685 device = NULL;
1686 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1687 /*
1688 * It is safe to read the devices since the volume_mutex
1689 * is held.
1690 */
c6e30871 1691 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1692 if (tmp->in_fs_metadata &&
1693 !tmp->is_tgtdev_for_dev_replace &&
1694 !tmp->bdev) {
dfe25020
CM
1695 device = tmp;
1696 break;
1697 }
1698 }
1699 bdev = NULL;
1700 bh = NULL;
1701 disk_super = NULL;
1702 if (!device) {
183860f6 1703 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1704 goto out;
1705 }
dfe25020 1706 } else {
beaf8ab3 1707 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1708 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1709 root->fs_info->bdev_holder, 0,
1710 &bdev, &bh);
1711 if (ret)
dfe25020 1712 goto out;
dfe25020 1713 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1714 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1715 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1716 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1717 disk_super->fsid);
dfe25020
CM
1718 if (!device) {
1719 ret = -ENOENT;
1720 goto error_brelse;
1721 }
2b82032c 1722 }
dfe25020 1723
63a212ab 1724 if (device->is_tgtdev_for_dev_replace) {
183860f6 1725 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1726 goto error_brelse;
1727 }
1728
2b82032c 1729 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1730 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1731 goto error_brelse;
1732 }
1733
1734 if (device->writeable) {
0c1daee0 1735 lock_chunks(root);
2b82032c 1736 list_del_init(&device->dev_alloc_list);
c3929c36 1737 device->fs_devices->rw_devices--;
0c1daee0 1738 unlock_chunks(root);
1f78160c 1739 clear_super = true;
dfe25020 1740 }
a061fc8d 1741
d7901554 1742 mutex_unlock(&uuid_mutex);
a061fc8d 1743 ret = btrfs_shrink_device(device, 0);
d7901554 1744 mutex_lock(&uuid_mutex);
a061fc8d 1745 if (ret)
9b3517e9 1746 goto error_undo;
a061fc8d 1747
63a212ab
SB
1748 /*
1749 * TODO: the superblock still includes this device in its num_devices
1750 * counter although write_all_supers() is not locked out. This
1751 * could give a filesystem state which requires a degraded mount.
1752 */
a061fc8d
CM
1753 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754 if (ret)
9b3517e9 1755 goto error_undo;
a061fc8d 1756
2b82032c 1757 device->in_fs_metadata = 0;
aa1b8cd4 1758 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1759
1760 /*
1761 * the device list mutex makes sure that we don't change
1762 * the device list while someone else is writing out all
d7306801
FDBM
1763 * the device supers. Whoever is writing all supers, should
1764 * lock the device list mutex before getting the number of
1765 * devices in the super block (super_copy). Conversely,
1766 * whoever updates the number of devices in the super block
1767 * (super_copy) should hold the device list mutex.
e5e9a520 1768 */
1f78160c
XG
1769
1770 cur_devices = device->fs_devices;
e5e9a520 1771 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1772 list_del_rcu(&device->dev_list);
e5e9a520 1773
e4404d6e 1774 device->fs_devices->num_devices--;
02db0844 1775 device->fs_devices->total_devices--;
2b82032c 1776
cd02dca5 1777 if (device->missing)
3a7d55c8 1778 device->fs_devices->missing_devices--;
cd02dca5 1779
2b82032c
YZ
1780 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781 struct btrfs_device, dev_list);
1782 if (device->bdev == root->fs_info->sb->s_bdev)
1783 root->fs_info->sb->s_bdev = next_device->bdev;
1784 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786
0bfaa9c5 1787 if (device->bdev) {
e4404d6e 1788 device->fs_devices->open_devices--;
0bfaa9c5 1789 /* remove sysfs entry */
6c14a164 1790 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
0bfaa9c5 1791 }
99994cde 1792
1f78160c 1793 call_rcu(&device->rcu, free_device);
e4404d6e 1794
6c41761f
DS
1795 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1797 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1798
1f78160c 1799 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1800 struct btrfs_fs_devices *fs_devices;
1801 fs_devices = root->fs_info->fs_devices;
1802 while (fs_devices) {
8321cf25
RS
1803 if (fs_devices->seed == cur_devices) {
1804 fs_devices->seed = cur_devices->seed;
e4404d6e 1805 break;
8321cf25 1806 }
e4404d6e 1807 fs_devices = fs_devices->seed;
2b82032c 1808 }
1f78160c 1809 cur_devices->seed = NULL;
1f78160c 1810 __btrfs_close_devices(cur_devices);
1f78160c 1811 free_fs_devices(cur_devices);
2b82032c
YZ
1812 }
1813
5af3e8cc
SB
1814 root->fs_info->num_tolerated_disk_barrier_failures =
1815 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816
2b82032c
YZ
1817 /*
1818 * at this point, the device is zero sized. We want to
1819 * remove it from the devices list and zero out the old super
1820 */
aa1b8cd4 1821 if (clear_super && disk_super) {
4d90d28b
AJ
1822 u64 bytenr;
1823 int i;
1824
dfe25020
CM
1825 /* make sure this device isn't detected as part of
1826 * the FS anymore
1827 */
1828 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829 set_buffer_dirty(bh);
1830 sync_dirty_buffer(bh);
4d90d28b
AJ
1831
1832 /* clear the mirror copies of super block on the disk
1833 * being removed, 0th copy is been taken care above and
1834 * the below would take of the rest
1835 */
1836 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837 bytenr = btrfs_sb_offset(i);
1838 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839 i_size_read(bdev->bd_inode))
1840 break;
1841
1842 brelse(bh);
1843 bh = __bread(bdev, bytenr / 4096,
1844 BTRFS_SUPER_INFO_SIZE);
1845 if (!bh)
1846 continue;
1847
1848 disk_super = (struct btrfs_super_block *)bh->b_data;
1849
1850 if (btrfs_super_bytenr(disk_super) != bytenr ||
1851 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852 continue;
1853 }
1854 memset(&disk_super->magic, 0,
1855 sizeof(disk_super->magic));
1856 set_buffer_dirty(bh);
1857 sync_dirty_buffer(bh);
1858 }
dfe25020 1859 }
a061fc8d 1860
a061fc8d 1861 ret = 0;
a061fc8d 1862
5a1972bd
QW
1863 if (bdev) {
1864 /* Notify udev that device has changed */
3c911608 1865 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1866
5a1972bd
QW
1867 /* Update ctime/mtime for device path for libblkid */
1868 update_dev_time(device_path);
1869 }
1870
a061fc8d
CM
1871error_brelse:
1872 brelse(bh);
dfe25020 1873 if (bdev)
e525fd89 1874 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1875out:
1876 mutex_unlock(&uuid_mutex);
a061fc8d 1877 return ret;
9b3517e9
ID
1878error_undo:
1879 if (device->writeable) {
0c1daee0 1880 lock_chunks(root);
9b3517e9
ID
1881 list_add(&device->dev_alloc_list,
1882 &root->fs_info->fs_devices->alloc_list);
c3929c36 1883 device->fs_devices->rw_devices++;
0c1daee0 1884 unlock_chunks(root);
9b3517e9
ID
1885 }
1886 goto error_brelse;
a061fc8d
CM
1887}
1888
084b6e7c
QW
1889void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890 struct btrfs_device *srcdev)
e93c89c1 1891{
d51908ce
AJ
1892 struct btrfs_fs_devices *fs_devices;
1893
e93c89c1 1894 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1895
25e8e911
AJ
1896 /*
1897 * in case of fs with no seed, srcdev->fs_devices will point
1898 * to fs_devices of fs_info. However when the dev being replaced is
1899 * a seed dev it will point to the seed's local fs_devices. In short
1900 * srcdev will have its correct fs_devices in both the cases.
1901 */
1902 fs_devices = srcdev->fs_devices;
d51908ce 1903
e93c89c1
SB
1904 list_del_rcu(&srcdev->dev_list);
1905 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1906 fs_devices->num_devices--;
82372bc8 1907 if (srcdev->missing)
d51908ce 1908 fs_devices->missing_devices--;
e93c89c1 1909
82372bc8
MX
1910 if (srcdev->writeable) {
1911 fs_devices->rw_devices--;
1912 /* zero out the old super if it is writable */
1913 btrfs_scratch_superblock(srcdev);
1357272f
ID
1914 }
1915
82372bc8 1916 if (srcdev->bdev)
d51908ce 1917 fs_devices->open_devices--;
084b6e7c
QW
1918}
1919
1920void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921 struct btrfs_device *srcdev)
1922{
1923 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1924
1925 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1926
1927 /*
1928 * unless fs_devices is seed fs, num_devices shouldn't go
1929 * zero
1930 */
1931 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932
1933 /* if this is no devs we rather delete the fs_devices */
1934 if (!fs_devices->num_devices) {
1935 struct btrfs_fs_devices *tmp_fs_devices;
1936
1937 tmp_fs_devices = fs_info->fs_devices;
1938 while (tmp_fs_devices) {
1939 if (tmp_fs_devices->seed == fs_devices) {
1940 tmp_fs_devices->seed = fs_devices->seed;
1941 break;
1942 }
1943 tmp_fs_devices = tmp_fs_devices->seed;
1944 }
1945 fs_devices->seed = NULL;
8bef8401
AJ
1946 __btrfs_close_devices(fs_devices);
1947 free_fs_devices(fs_devices);
94d5f0c2 1948 }
e93c89c1
SB
1949}
1950
1951void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952 struct btrfs_device *tgtdev)
1953{
1954 struct btrfs_device *next_device;
1955
67a2c45e 1956 mutex_lock(&uuid_mutex);
e93c89c1
SB
1957 WARN_ON(!tgtdev);
1958 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20
AJ
1959
1960 btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961
e93c89c1
SB
1962 if (tgtdev->bdev) {
1963 btrfs_scratch_superblock(tgtdev);
1964 fs_info->fs_devices->open_devices--;
1965 }
1966 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1967
1968 next_device = list_entry(fs_info->fs_devices->devices.next,
1969 struct btrfs_device, dev_list);
1970 if (tgtdev->bdev == fs_info->sb->s_bdev)
1971 fs_info->sb->s_bdev = next_device->bdev;
1972 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973 fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 list_del_rcu(&tgtdev->dev_list);
1975
1976 call_rcu(&tgtdev->rcu, free_device);
1977
1978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 1979 mutex_unlock(&uuid_mutex);
e93c89c1
SB
1980}
1981
48a3b636
ES
1982static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983 struct btrfs_device **device)
7ba15b7d
SB
1984{
1985 int ret = 0;
1986 struct btrfs_super_block *disk_super;
1987 u64 devid;
1988 u8 *dev_uuid;
1989 struct block_device *bdev;
1990 struct buffer_head *bh;
1991
1992 *device = NULL;
1993 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994 root->fs_info->bdev_holder, 0, &bdev, &bh);
1995 if (ret)
1996 return ret;
1997 disk_super = (struct btrfs_super_block *)bh->b_data;
1998 devid = btrfs_stack_device_id(&disk_super->dev_item);
1999 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2000 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2001 disk_super->fsid);
2002 brelse(bh);
2003 if (!*device)
2004 ret = -ENOENT;
2005 blkdev_put(bdev, FMODE_READ);
2006 return ret;
2007}
2008
2009int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010 char *device_path,
2011 struct btrfs_device **device)
2012{
2013 *device = NULL;
2014 if (strcmp(device_path, "missing") == 0) {
2015 struct list_head *devices;
2016 struct btrfs_device *tmp;
2017
2018 devices = &root->fs_info->fs_devices->devices;
2019 /*
2020 * It is safe to read the devices since the volume_mutex
2021 * is held by the caller.
2022 */
2023 list_for_each_entry(tmp, devices, dev_list) {
2024 if (tmp->in_fs_metadata && !tmp->bdev) {
2025 *device = tmp;
2026 break;
2027 }
2028 }
2029
2030 if (!*device) {
efe120a0 2031 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
2032 return -ENOENT;
2033 }
2034
2035 return 0;
2036 } else {
2037 return btrfs_find_device_by_path(root, device_path, device);
2038 }
2039}
2040
2b82032c
YZ
2041/*
2042 * does all the dirty work required for changing file system's UUID.
2043 */
125ccb0a 2044static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2045{
2046 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047 struct btrfs_fs_devices *old_devices;
e4404d6e 2048 struct btrfs_fs_devices *seed_devices;
6c41761f 2049 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2050 struct btrfs_device *device;
2051 u64 super_flags;
2052
2053 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2054 if (!fs_devices->seeding)
2b82032c
YZ
2055 return -EINVAL;
2056
2208a378
ID
2057 seed_devices = __alloc_fs_devices();
2058 if (IS_ERR(seed_devices))
2059 return PTR_ERR(seed_devices);
2b82032c 2060
e4404d6e
YZ
2061 old_devices = clone_fs_devices(fs_devices);
2062 if (IS_ERR(old_devices)) {
2063 kfree(seed_devices);
2064 return PTR_ERR(old_devices);
2b82032c 2065 }
e4404d6e 2066
2b82032c
YZ
2067 list_add(&old_devices->list, &fs_uuids);
2068
e4404d6e
YZ
2069 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070 seed_devices->opened = 1;
2071 INIT_LIST_HEAD(&seed_devices->devices);
2072 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2073 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2074
2075 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2076 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077 synchronize_rcu);
2196d6e8
MX
2078 list_for_each_entry(device, &seed_devices->devices, dev_list)
2079 device->fs_devices = seed_devices;
c9513edb 2080
2196d6e8 2081 lock_chunks(root);
e4404d6e 2082 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2083 unlock_chunks(root);
e4404d6e 2084
2b82032c
YZ
2085 fs_devices->seeding = 0;
2086 fs_devices->num_devices = 0;
2087 fs_devices->open_devices = 0;
69611ac8 2088 fs_devices->missing_devices = 0;
69611ac8 2089 fs_devices->rotating = 0;
e4404d6e 2090 fs_devices->seed = seed_devices;
2b82032c
YZ
2091
2092 generate_random_uuid(fs_devices->fsid);
2093 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096
2b82032c
YZ
2097 super_flags = btrfs_super_flags(disk_super) &
2098 ~BTRFS_SUPER_FLAG_SEEDING;
2099 btrfs_set_super_flags(disk_super, super_flags);
2100
2101 return 0;
2102}
2103
2104/*
2105 * strore the expected generation for seed devices in device items.
2106 */
2107static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root)
2109{
2110 struct btrfs_path *path;
2111 struct extent_buffer *leaf;
2112 struct btrfs_dev_item *dev_item;
2113 struct btrfs_device *device;
2114 struct btrfs_key key;
2115 u8 fs_uuid[BTRFS_UUID_SIZE];
2116 u8 dev_uuid[BTRFS_UUID_SIZE];
2117 u64 devid;
2118 int ret;
2119
2120 path = btrfs_alloc_path();
2121 if (!path)
2122 return -ENOMEM;
2123
2124 root = root->fs_info->chunk_root;
2125 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126 key.offset = 0;
2127 key.type = BTRFS_DEV_ITEM_KEY;
2128
2129 while (1) {
2130 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131 if (ret < 0)
2132 goto error;
2133
2134 leaf = path->nodes[0];
2135next_slot:
2136 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137 ret = btrfs_next_leaf(root, path);
2138 if (ret > 0)
2139 break;
2140 if (ret < 0)
2141 goto error;
2142 leaf = path->nodes[0];
2143 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2144 btrfs_release_path(path);
2b82032c
YZ
2145 continue;
2146 }
2147
2148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150 key.type != BTRFS_DEV_ITEM_KEY)
2151 break;
2152
2153 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154 struct btrfs_dev_item);
2155 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2156 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2157 BTRFS_UUID_SIZE);
1473b24e 2158 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2159 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2160 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161 fs_uuid);
79787eaa 2162 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2163
2164 if (device->fs_devices->seeding) {
2165 btrfs_set_device_generation(leaf, dev_item,
2166 device->generation);
2167 btrfs_mark_buffer_dirty(leaf);
2168 }
2169
2170 path->slots[0]++;
2171 goto next_slot;
2172 }
2173 ret = 0;
2174error:
2175 btrfs_free_path(path);
2176 return ret;
2177}
2178
788f20eb
CM
2179int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180{
d5e2003c 2181 struct request_queue *q;
788f20eb
CM
2182 struct btrfs_trans_handle *trans;
2183 struct btrfs_device *device;
2184 struct block_device *bdev;
788f20eb 2185 struct list_head *devices;
2b82032c 2186 struct super_block *sb = root->fs_info->sb;
606686ee 2187 struct rcu_string *name;
3c1dbdf5 2188 u64 tmp;
2b82032c 2189 int seeding_dev = 0;
788f20eb
CM
2190 int ret = 0;
2191
2b82032c 2192 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2193 return -EROFS;
788f20eb 2194
a5d16333 2195 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2196 root->fs_info->bdev_holder);
7f59203a
JB
2197 if (IS_ERR(bdev))
2198 return PTR_ERR(bdev);
a2135011 2199
2b82032c
YZ
2200 if (root->fs_info->fs_devices->seeding) {
2201 seeding_dev = 1;
2202 down_write(&sb->s_umount);
2203 mutex_lock(&uuid_mutex);
2204 }
2205
8c8bee1d 2206 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2207
788f20eb 2208 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2209
2210 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2211 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2212 if (device->bdev == bdev) {
2213 ret = -EEXIST;
d25628bd
LB
2214 mutex_unlock(
2215 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2216 goto error;
788f20eb
CM
2217 }
2218 }
d25628bd 2219 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2220
12bd2fc0
ID
2221 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222 if (IS_ERR(device)) {
788f20eb 2223 /* we can safely leave the fs_devices entry around */
12bd2fc0 2224 ret = PTR_ERR(device);
2b82032c 2225 goto error;
788f20eb
CM
2226 }
2227
606686ee
JB
2228 name = rcu_string_strdup(device_path, GFP_NOFS);
2229 if (!name) {
788f20eb 2230 kfree(device);
2b82032c
YZ
2231 ret = -ENOMEM;
2232 goto error;
788f20eb 2233 }
606686ee 2234 rcu_assign_pointer(device->name, name);
2b82032c 2235
a22285a6 2236 trans = btrfs_start_transaction(root, 0);
98d5dc13 2237 if (IS_ERR(trans)) {
606686ee 2238 rcu_string_free(device->name);
98d5dc13
TI
2239 kfree(device);
2240 ret = PTR_ERR(trans);
2241 goto error;
2242 }
2243
d5e2003c
JB
2244 q = bdev_get_queue(bdev);
2245 if (blk_queue_discard(q))
2246 device->can_discard = 1;
2b82032c 2247 device->writeable = 1;
2b82032c 2248 device->generation = trans->transid;
788f20eb
CM
2249 device->io_width = root->sectorsize;
2250 device->io_align = root->sectorsize;
2251 device->sector_size = root->sectorsize;
2252 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2253 device->disk_total_bytes = device->total_bytes;
935e5cc9 2254 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2255 device->dev_root = root->fs_info->dev_root;
2256 device->bdev = bdev;
dfe25020 2257 device->in_fs_metadata = 1;
63a212ab 2258 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2259 device->mode = FMODE_EXCL;
27087f37 2260 device->dev_stats_valid = 1;
2b82032c 2261 set_blocksize(device->bdev, 4096);
788f20eb 2262
2b82032c
YZ
2263 if (seeding_dev) {
2264 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2265 ret = btrfs_prepare_sprout(root);
79787eaa 2266 BUG_ON(ret); /* -ENOMEM */
2b82032c 2267 }
788f20eb 2268
2b82032c 2269 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2270
e5e9a520 2271 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2272 lock_chunks(root);
1f78160c 2273 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2274 list_add(&device->dev_alloc_list,
2275 &root->fs_info->fs_devices->alloc_list);
2276 root->fs_info->fs_devices->num_devices++;
2277 root->fs_info->fs_devices->open_devices++;
2278 root->fs_info->fs_devices->rw_devices++;
02db0844 2279 root->fs_info->fs_devices->total_devices++;
2b82032c 2280 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2281
2bf64758
JB
2282 spin_lock(&root->fs_info->free_chunk_lock);
2283 root->fs_info->free_chunk_space += device->total_bytes;
2284 spin_unlock(&root->fs_info->free_chunk_lock);
2285
c289811c
CM
2286 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287 root->fs_info->fs_devices->rotating = 1;
2288
3c1dbdf5 2289 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2290 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2291 tmp + device->total_bytes);
788f20eb 2292
3c1dbdf5 2293 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2294 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2295 tmp + 1);
0d39376a
AJ
2296
2297 /* add sysfs device entry */
1ba43816 2298 btrfs_kobj_add_device(root->fs_info->fs_devices, device);
0d39376a 2299
2196d6e8
MX
2300 /*
2301 * we've got more storage, clear any full flags on the space
2302 * infos
2303 */
2304 btrfs_clear_space_info_full(root->fs_info);
2305
2306 unlock_chunks(root);
e5e9a520 2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2308
2b82032c 2309 if (seeding_dev) {
2196d6e8 2310 lock_chunks(root);
2b82032c 2311 ret = init_first_rw_device(trans, root, device);
2196d6e8 2312 unlock_chunks(root);
005d6427
DS
2313 if (ret) {
2314 btrfs_abort_transaction(trans, root, ret);
79787eaa 2315 goto error_trans;
005d6427 2316 }
2196d6e8
MX
2317 }
2318
2319 ret = btrfs_add_device(trans, root, device);
2320 if (ret) {
2321 btrfs_abort_transaction(trans, root, ret);
2322 goto error_trans;
2323 }
2324
2325 if (seeding_dev) {
2326 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327
2b82032c 2328 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2329 if (ret) {
2330 btrfs_abort_transaction(trans, root, ret);
79787eaa 2331 goto error_trans;
005d6427 2332 }
b2373f25
AJ
2333
2334 /* Sprouting would change fsid of the mounted root,
2335 * so rename the fsid on the sysfs
2336 */
2337 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338 root->fs_info->fsid);
2e7910d6
AJ
2339 if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340 fsid_buf))
2421a8cd 2341 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2b82032c
YZ
2342 }
2343
5af3e8cc
SB
2344 root->fs_info->num_tolerated_disk_barrier_failures =
2345 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2346 ret = btrfs_commit_transaction(trans, root);
a2135011 2347
2b82032c
YZ
2348 if (seeding_dev) {
2349 mutex_unlock(&uuid_mutex);
2350 up_write(&sb->s_umount);
788f20eb 2351
79787eaa
JM
2352 if (ret) /* transaction commit */
2353 return ret;
2354
2b82032c 2355 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2356 if (ret < 0)
2357 btrfs_error(root->fs_info, ret,
2358 "Failed to relocate sys chunks after "
2359 "device initialization. This can be fixed "
2360 "using the \"btrfs balance\" command.");
671415b7
MX
2361 trans = btrfs_attach_transaction(root);
2362 if (IS_ERR(trans)) {
2363 if (PTR_ERR(trans) == -ENOENT)
2364 return 0;
2365 return PTR_ERR(trans);
2366 }
2367 ret = btrfs_commit_transaction(trans, root);
2b82032c 2368 }
c9e9f97b 2369
5a1972bd
QW
2370 /* Update ctime/mtime for libblkid */
2371 update_dev_time(device_path);
2b82032c 2372 return ret;
79787eaa
JM
2373
2374error_trans:
79787eaa 2375 btrfs_end_transaction(trans, root);
606686ee 2376 rcu_string_free(device->name);
6c14a164 2377 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
79787eaa 2378 kfree(device);
2b82032c 2379error:
e525fd89 2380 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2381 if (seeding_dev) {
2382 mutex_unlock(&uuid_mutex);
2383 up_write(&sb->s_umount);
2384 }
c9e9f97b 2385 return ret;
788f20eb
CM
2386}
2387
e93c89c1 2388int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2389 struct btrfs_device *srcdev,
e93c89c1
SB
2390 struct btrfs_device **device_out)
2391{
2392 struct request_queue *q;
2393 struct btrfs_device *device;
2394 struct block_device *bdev;
2395 struct btrfs_fs_info *fs_info = root->fs_info;
2396 struct list_head *devices;
2397 struct rcu_string *name;
12bd2fc0 2398 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2399 int ret = 0;
2400
2401 *device_out = NULL;
1c43366d
MX
2402 if (fs_info->fs_devices->seeding) {
2403 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2404 return -EINVAL;
1c43366d 2405 }
e93c89c1
SB
2406
2407 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408 fs_info->bdev_holder);
1c43366d
MX
2409 if (IS_ERR(bdev)) {
2410 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2411 return PTR_ERR(bdev);
1c43366d 2412 }
e93c89c1
SB
2413
2414 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415
2416 devices = &fs_info->fs_devices->devices;
2417 list_for_each_entry(device, devices, dev_list) {
2418 if (device->bdev == bdev) {
1c43366d 2419 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2420 ret = -EEXIST;
2421 goto error;
2422 }
2423 }
2424
1c43366d 2425
7cc8e58d
MX
2426 if (i_size_read(bdev->bd_inode) <
2427 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2428 btrfs_err(fs_info, "target device is smaller than source device!");
2429 ret = -EINVAL;
2430 goto error;
2431 }
2432
2433
12bd2fc0
ID
2434 device = btrfs_alloc_device(NULL, &devid, NULL);
2435 if (IS_ERR(device)) {
2436 ret = PTR_ERR(device);
e93c89c1
SB
2437 goto error;
2438 }
2439
2440 name = rcu_string_strdup(device_path, GFP_NOFS);
2441 if (!name) {
2442 kfree(device);
2443 ret = -ENOMEM;
2444 goto error;
2445 }
2446 rcu_assign_pointer(device->name, name);
2447
2448 q = bdev_get_queue(bdev);
2449 if (blk_queue_discard(q))
2450 device->can_discard = 1;
2451 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452 device->writeable = 1;
e93c89c1
SB
2453 device->generation = 0;
2454 device->io_width = root->sectorsize;
2455 device->io_align = root->sectorsize;
2456 device->sector_size = root->sectorsize;
7cc8e58d
MX
2457 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2460 ASSERT(list_empty(&srcdev->resized_list));
2461 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2462 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2463 device->dev_root = fs_info->dev_root;
2464 device->bdev = bdev;
2465 device->in_fs_metadata = 1;
2466 device->is_tgtdev_for_dev_replace = 1;
2467 device->mode = FMODE_EXCL;
27087f37 2468 device->dev_stats_valid = 1;
e93c89c1
SB
2469 set_blocksize(device->bdev, 4096);
2470 device->fs_devices = fs_info->fs_devices;
2471 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472 fs_info->fs_devices->num_devices++;
2473 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475
2476 *device_out = device;
2477 return ret;
2478
2479error:
2480 blkdev_put(bdev, FMODE_EXCL);
2481 return ret;
2482}
2483
2484void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485 struct btrfs_device *tgtdev)
2486{
2487 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488 tgtdev->io_width = fs_info->dev_root->sectorsize;
2489 tgtdev->io_align = fs_info->dev_root->sectorsize;
2490 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491 tgtdev->dev_root = fs_info->dev_root;
2492 tgtdev->in_fs_metadata = 1;
2493}
2494
d397712b
CM
2495static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496 struct btrfs_device *device)
0b86a832
CM
2497{
2498 int ret;
2499 struct btrfs_path *path;
2500 struct btrfs_root *root;
2501 struct btrfs_dev_item *dev_item;
2502 struct extent_buffer *leaf;
2503 struct btrfs_key key;
2504
2505 root = device->dev_root->fs_info->chunk_root;
2506
2507 path = btrfs_alloc_path();
2508 if (!path)
2509 return -ENOMEM;
2510
2511 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512 key.type = BTRFS_DEV_ITEM_KEY;
2513 key.offset = device->devid;
2514
2515 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516 if (ret < 0)
2517 goto out;
2518
2519 if (ret > 0) {
2520 ret = -ENOENT;
2521 goto out;
2522 }
2523
2524 leaf = path->nodes[0];
2525 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526
2527 btrfs_set_device_id(leaf, dev_item, device->devid);
2528 btrfs_set_device_type(leaf, dev_item, device->type);
2529 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2532 btrfs_set_device_total_bytes(leaf, dev_item,
2533 btrfs_device_get_disk_total_bytes(device));
2534 btrfs_set_device_bytes_used(leaf, dev_item,
2535 btrfs_device_get_bytes_used(device));
0b86a832
CM
2536 btrfs_mark_buffer_dirty(leaf);
2537
2538out:
2539 btrfs_free_path(path);
2540 return ret;
2541}
2542
2196d6e8 2543int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2544 struct btrfs_device *device, u64 new_size)
2545{
2546 struct btrfs_super_block *super_copy =
6c41761f 2547 device->dev_root->fs_info->super_copy;
935e5cc9 2548 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2549 u64 old_total;
2550 u64 diff;
8f18cf13 2551
2b82032c
YZ
2552 if (!device->writeable)
2553 return -EACCES;
2196d6e8
MX
2554
2555 lock_chunks(device->dev_root);
2556 old_total = btrfs_super_total_bytes(super_copy);
2557 diff = new_size - device->total_bytes;
2558
63a212ab 2559 if (new_size <= device->total_bytes ||
2196d6e8
MX
2560 device->is_tgtdev_for_dev_replace) {
2561 unlock_chunks(device->dev_root);
2b82032c 2562 return -EINVAL;
2196d6e8 2563 }
2b82032c 2564
935e5cc9 2565 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2566
8f18cf13 2567 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2568 device->fs_devices->total_rw_bytes += diff;
2569
7cc8e58d
MX
2570 btrfs_device_set_total_bytes(device, new_size);
2571 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2572 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2573 if (list_empty(&device->resized_list))
2574 list_add_tail(&device->resized_list,
2575 &fs_devices->resized_devices);
2196d6e8 2576 unlock_chunks(device->dev_root);
4184ea7f 2577
8f18cf13
CM
2578 return btrfs_update_device(trans, device);
2579}
2580
2581static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2582 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2583 u64 chunk_offset)
2584{
2585 int ret;
2586 struct btrfs_path *path;
2587 struct btrfs_key key;
2588
2589 root = root->fs_info->chunk_root;
2590 path = btrfs_alloc_path();
2591 if (!path)
2592 return -ENOMEM;
2593
2594 key.objectid = chunk_objectid;
2595 key.offset = chunk_offset;
2596 key.type = BTRFS_CHUNK_ITEM_KEY;
2597
2598 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2599 if (ret < 0)
2600 goto out;
2601 else if (ret > 0) { /* Logic error or corruption */
2602 btrfs_error(root->fs_info, -ENOENT,
2603 "Failed lookup while freeing chunk.");
2604 ret = -ENOENT;
2605 goto out;
2606 }
8f18cf13
CM
2607
2608 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2609 if (ret < 0)
2610 btrfs_error(root->fs_info, ret,
2611 "Failed to delete chunk item.");
2612out:
8f18cf13 2613 btrfs_free_path(path);
65a246c5 2614 return ret;
8f18cf13
CM
2615}
2616
b2950863 2617static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2618 chunk_offset)
2619{
6c41761f 2620 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2621 struct btrfs_disk_key *disk_key;
2622 struct btrfs_chunk *chunk;
2623 u8 *ptr;
2624 int ret = 0;
2625 u32 num_stripes;
2626 u32 array_size;
2627 u32 len = 0;
2628 u32 cur;
2629 struct btrfs_key key;
2630
2196d6e8 2631 lock_chunks(root);
8f18cf13
CM
2632 array_size = btrfs_super_sys_array_size(super_copy);
2633
2634 ptr = super_copy->sys_chunk_array;
2635 cur = 0;
2636
2637 while (cur < array_size) {
2638 disk_key = (struct btrfs_disk_key *)ptr;
2639 btrfs_disk_key_to_cpu(&key, disk_key);
2640
2641 len = sizeof(*disk_key);
2642
2643 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644 chunk = (struct btrfs_chunk *)(ptr + len);
2645 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646 len += btrfs_chunk_item_size(num_stripes);
2647 } else {
2648 ret = -EIO;
2649 break;
2650 }
2651 if (key.objectid == chunk_objectid &&
2652 key.offset == chunk_offset) {
2653 memmove(ptr, ptr + len, array_size - (cur + len));
2654 array_size -= len;
2655 btrfs_set_super_sys_array_size(super_copy, array_size);
2656 } else {
2657 ptr += len;
2658 cur += len;
2659 }
2660 }
2196d6e8 2661 unlock_chunks(root);
8f18cf13
CM
2662 return ret;
2663}
2664
47ab2a6c
JB
2665int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2667{
2668 struct extent_map_tree *em_tree;
8f18cf13 2669 struct extent_map *em;
47ab2a6c 2670 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2671 struct map_lookup *map;
2196d6e8 2672 u64 dev_extent_len = 0;
47ab2a6c 2673 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2674 int i, ret = 0;
8f18cf13 2675
47ab2a6c 2676 /* Just in case */
8f18cf13 2677 root = root->fs_info->chunk_root;
8f18cf13
CM
2678 em_tree = &root->fs_info->mapping_tree.map_tree;
2679
890871be 2680 read_lock(&em_tree->lock);
8f18cf13 2681 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2682 read_unlock(&em_tree->lock);
8f18cf13 2683
47ab2a6c
JB
2684 if (!em || em->start > chunk_offset ||
2685 em->start + em->len < chunk_offset) {
2686 /*
2687 * This is a logic error, but we don't want to just rely on the
2688 * user having built with ASSERT enabled, so if ASSERT doens't
2689 * do anything we still error out.
2690 */
2691 ASSERT(0);
2692 if (em)
2693 free_extent_map(em);
2694 return -EINVAL;
2695 }
8f18cf13 2696 map = (struct map_lookup *)em->bdev;
39c2d7fa 2697 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2698 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2699 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2700
2701 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2702 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2703 ret = btrfs_free_dev_extent(trans, device,
2704 map->stripes[i].physical,
2705 &dev_extent_len);
47ab2a6c
JB
2706 if (ret) {
2707 btrfs_abort_transaction(trans, root, ret);
2708 goto out;
2709 }
a061fc8d 2710
2196d6e8
MX
2711 if (device->bytes_used > 0) {
2712 lock_chunks(root);
2713 btrfs_device_set_bytes_used(device,
2714 device->bytes_used - dev_extent_len);
2715 spin_lock(&root->fs_info->free_chunk_lock);
2716 root->fs_info->free_chunk_space += dev_extent_len;
2717 spin_unlock(&root->fs_info->free_chunk_lock);
2718 btrfs_clear_space_info_full(root->fs_info);
2719 unlock_chunks(root);
2720 }
a061fc8d 2721
dfe25020
CM
2722 if (map->stripes[i].dev) {
2723 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2724 if (ret) {
2725 btrfs_abort_transaction(trans, root, ret);
2726 goto out;
2727 }
dfe25020 2728 }
8f18cf13 2729 }
a688a04a 2730 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2731 if (ret) {
2732 btrfs_abort_transaction(trans, root, ret);
2733 goto out;
2734 }
8f18cf13 2735
1abe9b8a 2736 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737
8f18cf13
CM
2738 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2740 if (ret) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto out;
2743 }
8f18cf13
CM
2744 }
2745
04216820 2746 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2747 if (ret) {
2748 btrfs_abort_transaction(trans, extent_root, ret);
2749 goto out;
2750 }
2b82032c 2751
47ab2a6c 2752out:
2b82032c
YZ
2753 /* once for us */
2754 free_extent_map(em);
47ab2a6c
JB
2755 return ret;
2756}
2b82032c 2757
dc2ee4e2 2758static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2759{
2760 struct btrfs_root *extent_root;
2761 struct btrfs_trans_handle *trans;
2762 int ret;
2b82032c 2763
47ab2a6c
JB
2764 root = root->fs_info->chunk_root;
2765 extent_root = root->fs_info->extent_root;
2766
67c5e7d4
FM
2767 /*
2768 * Prevent races with automatic removal of unused block groups.
2769 * After we relocate and before we remove the chunk with offset
2770 * chunk_offset, automatic removal of the block group can kick in,
2771 * resulting in a failure when calling btrfs_remove_chunk() below.
2772 *
2773 * Make sure to acquire this mutex before doing a tree search (dev
2774 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2775 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2776 * we release the path used to search the chunk/dev tree and before
2777 * the current task acquires this mutex and calls us.
2778 */
2779 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2780
47ab2a6c
JB
2781 ret = btrfs_can_relocate(extent_root, chunk_offset);
2782 if (ret)
2783 return -ENOSPC;
2784
2785 /* step one, relocate all the extents inside this chunk */
55e3a601 2786 btrfs_scrub_pause(root);
47ab2a6c 2787 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2788 btrfs_scrub_continue(root);
47ab2a6c
JB
2789 if (ret)
2790 return ret;
2791
2792 trans = btrfs_start_transaction(root, 0);
2793 if (IS_ERR(trans)) {
2794 ret = PTR_ERR(trans);
2795 btrfs_std_error(root->fs_info, ret);
2796 return ret;
2797 }
2798
2799 /*
2800 * step two, delete the device extents and the
2801 * chunk tree entries
2802 */
2803 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2804 btrfs_end_transaction(trans, root);
47ab2a6c 2805 return ret;
2b82032c
YZ
2806}
2807
2808static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2809{
2810 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2811 struct btrfs_path *path;
2812 struct extent_buffer *leaf;
2813 struct btrfs_chunk *chunk;
2814 struct btrfs_key key;
2815 struct btrfs_key found_key;
2b82032c 2816 u64 chunk_type;
ba1bf481
JB
2817 bool retried = false;
2818 int failed = 0;
2b82032c
YZ
2819 int ret;
2820
2821 path = btrfs_alloc_path();
2822 if (!path)
2823 return -ENOMEM;
2824
ba1bf481 2825again:
2b82032c
YZ
2826 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827 key.offset = (u64)-1;
2828 key.type = BTRFS_CHUNK_ITEM_KEY;
2829
2830 while (1) {
67c5e7d4 2831 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2832 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2833 if (ret < 0) {
2834 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2835 goto error;
67c5e7d4 2836 }
79787eaa 2837 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2838
2839 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2840 key.type);
67c5e7d4
FM
2841 if (ret)
2842 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2843 if (ret < 0)
2844 goto error;
2845 if (ret > 0)
2846 break;
1a40e23b 2847
2b82032c
YZ
2848 leaf = path->nodes[0];
2849 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2850
2b82032c
YZ
2851 chunk = btrfs_item_ptr(leaf, path->slots[0],
2852 struct btrfs_chunk);
2853 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2854 btrfs_release_path(path);
8f18cf13 2855
2b82032c 2856 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2857 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2858 found_key.offset);
ba1bf481
JB
2859 if (ret == -ENOSPC)
2860 failed++;
14586651
HS
2861 else
2862 BUG_ON(ret);
2b82032c 2863 }
67c5e7d4 2864 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2865
2b82032c
YZ
2866 if (found_key.offset == 0)
2867 break;
2868 key.offset = found_key.offset - 1;
2869 }
2870 ret = 0;
ba1bf481
JB
2871 if (failed && !retried) {
2872 failed = 0;
2873 retried = true;
2874 goto again;
fae7f21c 2875 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2876 ret = -ENOSPC;
2877 }
2b82032c
YZ
2878error:
2879 btrfs_free_path(path);
2880 return ret;
8f18cf13
CM
2881}
2882
0940ebf6
ID
2883static int insert_balance_item(struct btrfs_root *root,
2884 struct btrfs_balance_control *bctl)
2885{
2886 struct btrfs_trans_handle *trans;
2887 struct btrfs_balance_item *item;
2888 struct btrfs_disk_balance_args disk_bargs;
2889 struct btrfs_path *path;
2890 struct extent_buffer *leaf;
2891 struct btrfs_key key;
2892 int ret, err;
2893
2894 path = btrfs_alloc_path();
2895 if (!path)
2896 return -ENOMEM;
2897
2898 trans = btrfs_start_transaction(root, 0);
2899 if (IS_ERR(trans)) {
2900 btrfs_free_path(path);
2901 return PTR_ERR(trans);
2902 }
2903
2904 key.objectid = BTRFS_BALANCE_OBJECTID;
2905 key.type = BTRFS_BALANCE_ITEM_KEY;
2906 key.offset = 0;
2907
2908 ret = btrfs_insert_empty_item(trans, root, path, &key,
2909 sizeof(*item));
2910 if (ret)
2911 goto out;
2912
2913 leaf = path->nodes[0];
2914 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2915
2916 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2917
2918 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2919 btrfs_set_balance_data(leaf, item, &disk_bargs);
2920 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2921 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2922 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2923 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2924
2925 btrfs_set_balance_flags(leaf, item, bctl->flags);
2926
2927 btrfs_mark_buffer_dirty(leaf);
2928out:
2929 btrfs_free_path(path);
2930 err = btrfs_commit_transaction(trans, root);
2931 if (err && !ret)
2932 ret = err;
2933 return ret;
2934}
2935
2936static int del_balance_item(struct btrfs_root *root)
2937{
2938 struct btrfs_trans_handle *trans;
2939 struct btrfs_path *path;
2940 struct btrfs_key key;
2941 int ret, err;
2942
2943 path = btrfs_alloc_path();
2944 if (!path)
2945 return -ENOMEM;
2946
2947 trans = btrfs_start_transaction(root, 0);
2948 if (IS_ERR(trans)) {
2949 btrfs_free_path(path);
2950 return PTR_ERR(trans);
2951 }
2952
2953 key.objectid = BTRFS_BALANCE_OBJECTID;
2954 key.type = BTRFS_BALANCE_ITEM_KEY;
2955 key.offset = 0;
2956
2957 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2958 if (ret < 0)
2959 goto out;
2960 if (ret > 0) {
2961 ret = -ENOENT;
2962 goto out;
2963 }
2964
2965 ret = btrfs_del_item(trans, root, path);
2966out:
2967 btrfs_free_path(path);
2968 err = btrfs_commit_transaction(trans, root);
2969 if (err && !ret)
2970 ret = err;
2971 return ret;
2972}
2973
59641015
ID
2974/*
2975 * This is a heuristic used to reduce the number of chunks balanced on
2976 * resume after balance was interrupted.
2977 */
2978static void update_balance_args(struct btrfs_balance_control *bctl)
2979{
2980 /*
2981 * Turn on soft mode for chunk types that were being converted.
2982 */
2983 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2984 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2985 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2986 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2987 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2988 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2989
2990 /*
2991 * Turn on usage filter if is not already used. The idea is
2992 * that chunks that we have already balanced should be
2993 * reasonably full. Don't do it for chunks that are being
2994 * converted - that will keep us from relocating unconverted
2995 * (albeit full) chunks.
2996 */
2997 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2998 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2999 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3000 bctl->data.usage = 90;
3001 }
3002 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3003 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3004 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3005 bctl->sys.usage = 90;
3006 }
3007 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3008 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3009 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3010 bctl->meta.usage = 90;
3011 }
3012}
3013
c9e9f97b
ID
3014/*
3015 * Should be called with both balance and volume mutexes held to
3016 * serialize other volume operations (add_dev/rm_dev/resize) with
3017 * restriper. Same goes for unset_balance_control.
3018 */
3019static void set_balance_control(struct btrfs_balance_control *bctl)
3020{
3021 struct btrfs_fs_info *fs_info = bctl->fs_info;
3022
3023 BUG_ON(fs_info->balance_ctl);
3024
3025 spin_lock(&fs_info->balance_lock);
3026 fs_info->balance_ctl = bctl;
3027 spin_unlock(&fs_info->balance_lock);
3028}
3029
3030static void unset_balance_control(struct btrfs_fs_info *fs_info)
3031{
3032 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3033
3034 BUG_ON(!fs_info->balance_ctl);
3035
3036 spin_lock(&fs_info->balance_lock);
3037 fs_info->balance_ctl = NULL;
3038 spin_unlock(&fs_info->balance_lock);
3039
3040 kfree(bctl);
3041}
3042
ed25e9b2
ID
3043/*
3044 * Balance filters. Return 1 if chunk should be filtered out
3045 * (should not be balanced).
3046 */
899c81ea 3047static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3048 struct btrfs_balance_args *bargs)
3049{
899c81ea
ID
3050 chunk_type = chunk_to_extended(chunk_type) &
3051 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3052
899c81ea 3053 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3054 return 0;
3055
3056 return 1;
3057}
3058
5ce5b3c0
ID
3059static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3060 struct btrfs_balance_args *bargs)
3061{
3062 struct btrfs_block_group_cache *cache;
3063 u64 chunk_used, user_thresh;
3064 int ret = 1;
3065
3066 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3067 chunk_used = btrfs_block_group_used(&cache->item);
3068
a105bb88 3069 if (bargs->usage == 0)
3e39cea6 3070 user_thresh = 1;
a105bb88
ID
3071 else if (bargs->usage > 100)
3072 user_thresh = cache->key.offset;
3073 else
3074 user_thresh = div_factor_fine(cache->key.offset,
3075 bargs->usage);
3076
5ce5b3c0
ID
3077 if (chunk_used < user_thresh)
3078 ret = 0;
3079
3080 btrfs_put_block_group(cache);
3081 return ret;
3082}
3083
409d404b
ID
3084static int chunk_devid_filter(struct extent_buffer *leaf,
3085 struct btrfs_chunk *chunk,
3086 struct btrfs_balance_args *bargs)
3087{
3088 struct btrfs_stripe *stripe;
3089 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3090 int i;
3091
3092 for (i = 0; i < num_stripes; i++) {
3093 stripe = btrfs_stripe_nr(chunk, i);
3094 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3095 return 0;
3096 }
3097
3098 return 1;
3099}
3100
94e60d5a
ID
3101/* [pstart, pend) */
3102static int chunk_drange_filter(struct extent_buffer *leaf,
3103 struct btrfs_chunk *chunk,
3104 u64 chunk_offset,
3105 struct btrfs_balance_args *bargs)
3106{
3107 struct btrfs_stripe *stripe;
3108 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3109 u64 stripe_offset;
3110 u64 stripe_length;
3111 int factor;
3112 int i;
3113
3114 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3115 return 0;
3116
3117 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3118 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3119 factor = num_stripes / 2;
3120 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3121 factor = num_stripes - 1;
3122 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3123 factor = num_stripes - 2;
3124 } else {
3125 factor = num_stripes;
3126 }
94e60d5a
ID
3127
3128 for (i = 0; i < num_stripes; i++) {
3129 stripe = btrfs_stripe_nr(chunk, i);
3130 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3131 continue;
3132
3133 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3134 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3135 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3136
3137 if (stripe_offset < bargs->pend &&
3138 stripe_offset + stripe_length > bargs->pstart)
3139 return 0;
3140 }
3141
3142 return 1;
3143}
3144
ea67176a
ID
3145/* [vstart, vend) */
3146static int chunk_vrange_filter(struct extent_buffer *leaf,
3147 struct btrfs_chunk *chunk,
3148 u64 chunk_offset,
3149 struct btrfs_balance_args *bargs)
3150{
3151 if (chunk_offset < bargs->vend &&
3152 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3153 /* at least part of the chunk is inside this vrange */
3154 return 0;
3155
3156 return 1;
3157}
3158
899c81ea 3159static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3160 struct btrfs_balance_args *bargs)
3161{
3162 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3163 return 0;
3164
899c81ea
ID
3165 chunk_type = chunk_to_extended(chunk_type) &
3166 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3167
899c81ea 3168 if (bargs->target == chunk_type)
cfa4c961
ID
3169 return 1;
3170
3171 return 0;
3172}
3173
f43ffb60
ID
3174static int should_balance_chunk(struct btrfs_root *root,
3175 struct extent_buffer *leaf,
3176 struct btrfs_chunk *chunk, u64 chunk_offset)
3177{
3178 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3179 struct btrfs_balance_args *bargs = NULL;
3180 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3181
3182 /* type filter */
3183 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3184 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3185 return 0;
3186 }
3187
3188 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3189 bargs = &bctl->data;
3190 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3191 bargs = &bctl->sys;
3192 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3193 bargs = &bctl->meta;
3194
ed25e9b2
ID
3195 /* profiles filter */
3196 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3197 chunk_profiles_filter(chunk_type, bargs)) {
3198 return 0;
5ce5b3c0
ID
3199 }
3200
3201 /* usage filter */
3202 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3203 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3204 return 0;
409d404b
ID
3205 }
3206
3207 /* devid filter */
3208 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3209 chunk_devid_filter(leaf, chunk, bargs)) {
3210 return 0;
94e60d5a
ID
3211 }
3212
3213 /* drange filter, makes sense only with devid filter */
3214 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3215 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3216 return 0;
ea67176a
ID
3217 }
3218
3219 /* vrange filter */
3220 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3221 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3222 return 0;
ed25e9b2
ID
3223 }
3224
cfa4c961
ID
3225 /* soft profile changing mode */
3226 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3227 chunk_soft_convert_filter(chunk_type, bargs)) {
3228 return 0;
3229 }
3230
7d824b6f
DS
3231 /*
3232 * limited by count, must be the last filter
3233 */
3234 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3235 if (bargs->limit == 0)
3236 return 0;
3237 else
3238 bargs->limit--;
3239 }
3240
f43ffb60
ID
3241 return 1;
3242}
3243
c9e9f97b 3244static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3245{
19a39dce 3246 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3247 struct btrfs_root *chunk_root = fs_info->chunk_root;
3248 struct btrfs_root *dev_root = fs_info->dev_root;
3249 struct list_head *devices;
ec44a35c
CM
3250 struct btrfs_device *device;
3251 u64 old_size;
3252 u64 size_to_free;
f43ffb60 3253 struct btrfs_chunk *chunk;
ec44a35c
CM
3254 struct btrfs_path *path;
3255 struct btrfs_key key;
ec44a35c 3256 struct btrfs_key found_key;
c9e9f97b 3257 struct btrfs_trans_handle *trans;
f43ffb60
ID
3258 struct extent_buffer *leaf;
3259 int slot;
c9e9f97b
ID
3260 int ret;
3261 int enospc_errors = 0;
19a39dce 3262 bool counting = true;
7d824b6f
DS
3263 u64 limit_data = bctl->data.limit;
3264 u64 limit_meta = bctl->meta.limit;
3265 u64 limit_sys = bctl->sys.limit;
ec44a35c 3266
ec44a35c 3267 /* step one make some room on all the devices */
c9e9f97b 3268 devices = &fs_info->fs_devices->devices;
c6e30871 3269 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3270 old_size = btrfs_device_get_total_bytes(device);
ec44a35c
CM
3271 size_to_free = div_factor(old_size, 1);
3272 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3273 if (!device->writeable ||
7cc8e58d
MX
3274 btrfs_device_get_total_bytes(device) -
3275 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3276 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3277 continue;
3278
3279 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3280 if (ret == -ENOSPC)
3281 break;
ec44a35c
CM
3282 BUG_ON(ret);
3283
a22285a6 3284 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3285 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3286
3287 ret = btrfs_grow_device(trans, device, old_size);
3288 BUG_ON(ret);
3289
3290 btrfs_end_transaction(trans, dev_root);
3291 }
3292
3293 /* step two, relocate all the chunks */
3294 path = btrfs_alloc_path();
17e9f796
MF
3295 if (!path) {
3296 ret = -ENOMEM;
3297 goto error;
3298 }
19a39dce
ID
3299
3300 /* zero out stat counters */
3301 spin_lock(&fs_info->balance_lock);
3302 memset(&bctl->stat, 0, sizeof(bctl->stat));
3303 spin_unlock(&fs_info->balance_lock);
3304again:
7d824b6f
DS
3305 if (!counting) {
3306 bctl->data.limit = limit_data;
3307 bctl->meta.limit = limit_meta;
3308 bctl->sys.limit = limit_sys;
3309 }
ec44a35c
CM
3310 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3311 key.offset = (u64)-1;
3312 key.type = BTRFS_CHUNK_ITEM_KEY;
3313
d397712b 3314 while (1) {
19a39dce 3315 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3316 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3317 ret = -ECANCELED;
3318 goto error;
3319 }
3320
67c5e7d4 3321 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3322 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3323 if (ret < 0) {
3324 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3325 goto error;
67c5e7d4 3326 }
ec44a35c
CM
3327
3328 /*
3329 * this shouldn't happen, it means the last relocate
3330 * failed
3331 */
3332 if (ret == 0)
c9e9f97b 3333 BUG(); /* FIXME break ? */
ec44a35c
CM
3334
3335 ret = btrfs_previous_item(chunk_root, path, 0,
3336 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3337 if (ret) {
67c5e7d4 3338 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3339 ret = 0;
ec44a35c 3340 break;
c9e9f97b 3341 }
7d9eb12c 3342
f43ffb60
ID
3343 leaf = path->nodes[0];
3344 slot = path->slots[0];
3345 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3346
67c5e7d4
FM
3347 if (found_key.objectid != key.objectid) {
3348 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3349 break;
67c5e7d4 3350 }
7d9eb12c 3351
f43ffb60
ID
3352 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3353
19a39dce
ID
3354 if (!counting) {
3355 spin_lock(&fs_info->balance_lock);
3356 bctl->stat.considered++;
3357 spin_unlock(&fs_info->balance_lock);
3358 }
3359
f43ffb60
ID
3360 ret = should_balance_chunk(chunk_root, leaf, chunk,
3361 found_key.offset);
b3b4aa74 3362 btrfs_release_path(path);
67c5e7d4
FM
3363 if (!ret) {
3364 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3365 goto loop;
67c5e7d4 3366 }
f43ffb60 3367
19a39dce 3368 if (counting) {
67c5e7d4 3369 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3370 spin_lock(&fs_info->balance_lock);
3371 bctl->stat.expected++;
3372 spin_unlock(&fs_info->balance_lock);
3373 goto loop;
3374 }
3375
ec44a35c 3376 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3377 found_key.offset);
67c5e7d4 3378 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3379 if (ret && ret != -ENOSPC)
3380 goto error;
19a39dce 3381 if (ret == -ENOSPC) {
c9e9f97b 3382 enospc_errors++;
19a39dce
ID
3383 } else {
3384 spin_lock(&fs_info->balance_lock);
3385 bctl->stat.completed++;
3386 spin_unlock(&fs_info->balance_lock);
3387 }
f43ffb60 3388loop:
795a3321
ID
3389 if (found_key.offset == 0)
3390 break;
ba1bf481 3391 key.offset = found_key.offset - 1;
ec44a35c 3392 }
c9e9f97b 3393
19a39dce
ID
3394 if (counting) {
3395 btrfs_release_path(path);
3396 counting = false;
3397 goto again;
3398 }
ec44a35c
CM
3399error:
3400 btrfs_free_path(path);
c9e9f97b 3401 if (enospc_errors) {
efe120a0 3402 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3403 enospc_errors);
3404 if (!ret)
3405 ret = -ENOSPC;
3406 }
3407
ec44a35c
CM
3408 return ret;
3409}
3410
0c460c0d
ID
3411/**
3412 * alloc_profile_is_valid - see if a given profile is valid and reduced
3413 * @flags: profile to validate
3414 * @extended: if true @flags is treated as an extended profile
3415 */
3416static int alloc_profile_is_valid(u64 flags, int extended)
3417{
3418 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3419 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3420
3421 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3422
3423 /* 1) check that all other bits are zeroed */
3424 if (flags & ~mask)
3425 return 0;
3426
3427 /* 2) see if profile is reduced */
3428 if (flags == 0)
3429 return !extended; /* "0" is valid for usual profiles */
3430
3431 /* true if exactly one bit set */
3432 return (flags & (flags - 1)) == 0;
3433}
3434
837d5b6e
ID
3435static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3436{
a7e99c69
ID
3437 /* cancel requested || normal exit path */
3438 return atomic_read(&fs_info->balance_cancel_req) ||
3439 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3440 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3441}
3442
c9e9f97b
ID
3443static void __cancel_balance(struct btrfs_fs_info *fs_info)
3444{
0940ebf6
ID
3445 int ret;
3446
c9e9f97b 3447 unset_balance_control(fs_info);
0940ebf6 3448 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3449 if (ret)
3450 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3451
3452 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3453}
3454
c9e9f97b
ID
3455/*
3456 * Should be called with both balance and volume mutexes held
3457 */
3458int btrfs_balance(struct btrfs_balance_control *bctl,
3459 struct btrfs_ioctl_balance_args *bargs)
3460{
3461 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3462 u64 allowed;
e4837f8f 3463 int mixed = 0;
c9e9f97b 3464 int ret;
8dabb742 3465 u64 num_devices;
de98ced9 3466 unsigned seq;
c9e9f97b 3467
837d5b6e 3468 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3469 atomic_read(&fs_info->balance_pause_req) ||
3470 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3471 ret = -EINVAL;
3472 goto out;
3473 }
3474
e4837f8f
ID
3475 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3476 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3477 mixed = 1;
3478
f43ffb60
ID
3479 /*
3480 * In case of mixed groups both data and meta should be picked,
3481 * and identical options should be given for both of them.
3482 */
e4837f8f
ID
3483 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3484 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3485 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3486 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3487 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3488 btrfs_err(fs_info, "with mixed groups data and "
3489 "metadata balance options must be the same");
f43ffb60
ID
3490 ret = -EINVAL;
3491 goto out;
3492 }
3493 }
3494
8dabb742
SB
3495 num_devices = fs_info->fs_devices->num_devices;
3496 btrfs_dev_replace_lock(&fs_info->dev_replace);
3497 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3498 BUG_ON(num_devices < 1);
3499 num_devices--;
3500 }
3501 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3502 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3503 if (num_devices == 1)
e4d8ec0f 3504 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3505 else if (num_devices > 1)
e4d8ec0f 3506 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3507 if (num_devices > 2)
3508 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3509 if (num_devices > 3)
3510 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3511 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3512 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3513 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3514 (bctl->data.target & ~allowed))) {
efe120a0
FH
3515 btrfs_err(fs_info, "unable to start balance with target "
3516 "data profile %llu",
c1c9ff7c 3517 bctl->data.target);
e4d8ec0f
ID
3518 ret = -EINVAL;
3519 goto out;
3520 }
6728b198
ID
3521 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3522 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3523 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3524 btrfs_err(fs_info,
3525 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3526 bctl->meta.target);
e4d8ec0f
ID
3527 ret = -EINVAL;
3528 goto out;
3529 }
6728b198
ID
3530 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3531 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3532 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3533 btrfs_err(fs_info,
3534 "unable to start balance with target system profile %llu",
c1c9ff7c 3535 bctl->sys.target);
e4d8ec0f
ID
3536 ret = -EINVAL;
3537 goto out;
3538 }
3539
e4837f8f
ID
3540 /* allow dup'ed data chunks only in mixed mode */
3541 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3542 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3543 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3544 ret = -EINVAL;
3545 goto out;
3546 }
3547
3548 /* allow to reduce meta or sys integrity only if force set */
3549 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3550 BTRFS_BLOCK_GROUP_RAID10 |
3551 BTRFS_BLOCK_GROUP_RAID5 |
3552 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3553 do {
3554 seq = read_seqbegin(&fs_info->profiles_lock);
3555
3556 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3557 (fs_info->avail_system_alloc_bits & allowed) &&
3558 !(bctl->sys.target & allowed)) ||
3559 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3560 (fs_info->avail_metadata_alloc_bits & allowed) &&
3561 !(bctl->meta.target & allowed))) {
3562 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3563 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3564 } else {
efe120a0
FH
3565 btrfs_err(fs_info, "balance will reduce metadata "
3566 "integrity, use force if you want this");
de98ced9
MX
3567 ret = -EINVAL;
3568 goto out;
3569 }
e4d8ec0f 3570 }
de98ced9 3571 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3572
5af3e8cc
SB
3573 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3574 int num_tolerated_disk_barrier_failures;
3575 u64 target = bctl->sys.target;
3576
3577 num_tolerated_disk_barrier_failures =
3578 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3579 if (num_tolerated_disk_barrier_failures > 0 &&
3580 (target &
3581 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3582 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3583 num_tolerated_disk_barrier_failures = 0;
3584 else if (num_tolerated_disk_barrier_failures > 1 &&
3585 (target &
3586 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3587 num_tolerated_disk_barrier_failures = 1;
3588
3589 fs_info->num_tolerated_disk_barrier_failures =
3590 num_tolerated_disk_barrier_failures;
3591 }
3592
0940ebf6 3593 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3594 if (ret && ret != -EEXIST)
0940ebf6
ID
3595 goto out;
3596
59641015
ID
3597 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3598 BUG_ON(ret == -EEXIST);
3599 set_balance_control(bctl);
3600 } else {
3601 BUG_ON(ret != -EEXIST);
3602 spin_lock(&fs_info->balance_lock);
3603 update_balance_args(bctl);
3604 spin_unlock(&fs_info->balance_lock);
3605 }
c9e9f97b 3606
837d5b6e 3607 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3608 mutex_unlock(&fs_info->balance_mutex);
3609
3610 ret = __btrfs_balance(fs_info);
3611
3612 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3613 atomic_dec(&fs_info->balance_running);
c9e9f97b 3614
bf023ecf
ID
3615 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3616 fs_info->num_tolerated_disk_barrier_failures =
3617 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3618 }
3619
c9e9f97b
ID
3620 if (bargs) {
3621 memset(bargs, 0, sizeof(*bargs));
19a39dce 3622 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3623 }
3624
3a01aa7a
ID
3625 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3626 balance_need_close(fs_info)) {
3627 __cancel_balance(fs_info);
3628 }
3629
837d5b6e 3630 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3631
3632 return ret;
3633out:
59641015
ID
3634 if (bctl->flags & BTRFS_BALANCE_RESUME)
3635 __cancel_balance(fs_info);
ed0fb78f 3636 else {
59641015 3637 kfree(bctl);
ed0fb78f
ID
3638 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3639 }
59641015
ID
3640 return ret;
3641}
3642
3643static int balance_kthread(void *data)
3644{
2b6ba629 3645 struct btrfs_fs_info *fs_info = data;
9555c6c1 3646 int ret = 0;
59641015
ID
3647
3648 mutex_lock(&fs_info->volume_mutex);
3649 mutex_lock(&fs_info->balance_mutex);
3650
2b6ba629 3651 if (fs_info->balance_ctl) {
efe120a0 3652 btrfs_info(fs_info, "continuing balance");
2b6ba629 3653 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3654 }
59641015
ID
3655
3656 mutex_unlock(&fs_info->balance_mutex);
3657 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3658
59641015
ID
3659 return ret;
3660}
3661
2b6ba629
ID
3662int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3663{
3664 struct task_struct *tsk;
3665
3666 spin_lock(&fs_info->balance_lock);
3667 if (!fs_info->balance_ctl) {
3668 spin_unlock(&fs_info->balance_lock);
3669 return 0;
3670 }
3671 spin_unlock(&fs_info->balance_lock);
3672
3673 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3674 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3675 return 0;
3676 }
3677
3678 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3679 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3680}
3681
68310a5e 3682int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3683{
59641015
ID
3684 struct btrfs_balance_control *bctl;
3685 struct btrfs_balance_item *item;
3686 struct btrfs_disk_balance_args disk_bargs;
3687 struct btrfs_path *path;
3688 struct extent_buffer *leaf;
3689 struct btrfs_key key;
3690 int ret;
3691
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695
59641015
ID
3696 key.objectid = BTRFS_BALANCE_OBJECTID;
3697 key.type = BTRFS_BALANCE_ITEM_KEY;
3698 key.offset = 0;
3699
68310a5e 3700 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3701 if (ret < 0)
68310a5e 3702 goto out;
59641015
ID
3703 if (ret > 0) { /* ret = -ENOENT; */
3704 ret = 0;
68310a5e
ID
3705 goto out;
3706 }
3707
3708 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3709 if (!bctl) {
3710 ret = -ENOMEM;
3711 goto out;
59641015
ID
3712 }
3713
3714 leaf = path->nodes[0];
3715 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3716
68310a5e
ID
3717 bctl->fs_info = fs_info;
3718 bctl->flags = btrfs_balance_flags(leaf, item);
3719 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3720
3721 btrfs_balance_data(leaf, item, &disk_bargs);
3722 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3723 btrfs_balance_meta(leaf, item, &disk_bargs);
3724 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3725 btrfs_balance_sys(leaf, item, &disk_bargs);
3726 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3727
ed0fb78f
ID
3728 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3729
68310a5e
ID
3730 mutex_lock(&fs_info->volume_mutex);
3731 mutex_lock(&fs_info->balance_mutex);
59641015 3732
68310a5e
ID
3733 set_balance_control(bctl);
3734
3735 mutex_unlock(&fs_info->balance_mutex);
3736 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3737out:
3738 btrfs_free_path(path);
ec44a35c
CM
3739 return ret;
3740}
3741
837d5b6e
ID
3742int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3743{
3744 int ret = 0;
3745
3746 mutex_lock(&fs_info->balance_mutex);
3747 if (!fs_info->balance_ctl) {
3748 mutex_unlock(&fs_info->balance_mutex);
3749 return -ENOTCONN;
3750 }
3751
3752 if (atomic_read(&fs_info->balance_running)) {
3753 atomic_inc(&fs_info->balance_pause_req);
3754 mutex_unlock(&fs_info->balance_mutex);
3755
3756 wait_event(fs_info->balance_wait_q,
3757 atomic_read(&fs_info->balance_running) == 0);
3758
3759 mutex_lock(&fs_info->balance_mutex);
3760 /* we are good with balance_ctl ripped off from under us */
3761 BUG_ON(atomic_read(&fs_info->balance_running));
3762 atomic_dec(&fs_info->balance_pause_req);
3763 } else {
3764 ret = -ENOTCONN;
3765 }
3766
3767 mutex_unlock(&fs_info->balance_mutex);
3768 return ret;
3769}
3770
a7e99c69
ID
3771int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3772{
e649e587
ID
3773 if (fs_info->sb->s_flags & MS_RDONLY)
3774 return -EROFS;
3775
a7e99c69
ID
3776 mutex_lock(&fs_info->balance_mutex);
3777 if (!fs_info->balance_ctl) {
3778 mutex_unlock(&fs_info->balance_mutex);
3779 return -ENOTCONN;
3780 }
3781
3782 atomic_inc(&fs_info->balance_cancel_req);
3783 /*
3784 * if we are running just wait and return, balance item is
3785 * deleted in btrfs_balance in this case
3786 */
3787 if (atomic_read(&fs_info->balance_running)) {
3788 mutex_unlock(&fs_info->balance_mutex);
3789 wait_event(fs_info->balance_wait_q,
3790 atomic_read(&fs_info->balance_running) == 0);
3791 mutex_lock(&fs_info->balance_mutex);
3792 } else {
3793 /* __cancel_balance needs volume_mutex */
3794 mutex_unlock(&fs_info->balance_mutex);
3795 mutex_lock(&fs_info->volume_mutex);
3796 mutex_lock(&fs_info->balance_mutex);
3797
3798 if (fs_info->balance_ctl)
3799 __cancel_balance(fs_info);
3800
3801 mutex_unlock(&fs_info->volume_mutex);
3802 }
3803
3804 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3805 atomic_dec(&fs_info->balance_cancel_req);
3806 mutex_unlock(&fs_info->balance_mutex);
3807 return 0;
3808}
3809
803b2f54
SB
3810static int btrfs_uuid_scan_kthread(void *data)
3811{
3812 struct btrfs_fs_info *fs_info = data;
3813 struct btrfs_root *root = fs_info->tree_root;
3814 struct btrfs_key key;
3815 struct btrfs_key max_key;
3816 struct btrfs_path *path = NULL;
3817 int ret = 0;
3818 struct extent_buffer *eb;
3819 int slot;
3820 struct btrfs_root_item root_item;
3821 u32 item_size;
f45388f3 3822 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3823
3824 path = btrfs_alloc_path();
3825 if (!path) {
3826 ret = -ENOMEM;
3827 goto out;
3828 }
3829
3830 key.objectid = 0;
3831 key.type = BTRFS_ROOT_ITEM_KEY;
3832 key.offset = 0;
3833
3834 max_key.objectid = (u64)-1;
3835 max_key.type = BTRFS_ROOT_ITEM_KEY;
3836 max_key.offset = (u64)-1;
3837
803b2f54 3838 while (1) {
6174d3cb 3839 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3840 if (ret) {
3841 if (ret > 0)
3842 ret = 0;
3843 break;
3844 }
3845
3846 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3847 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3848 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3849 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3850 goto skip;
3851
3852 eb = path->nodes[0];
3853 slot = path->slots[0];
3854 item_size = btrfs_item_size_nr(eb, slot);
3855 if (item_size < sizeof(root_item))
3856 goto skip;
3857
803b2f54
SB
3858 read_extent_buffer(eb, &root_item,
3859 btrfs_item_ptr_offset(eb, slot),
3860 (int)sizeof(root_item));
3861 if (btrfs_root_refs(&root_item) == 0)
3862 goto skip;
f45388f3
FDBM
3863
3864 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3865 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3866 if (trans)
3867 goto update_tree;
3868
3869 btrfs_release_path(path);
803b2f54
SB
3870 /*
3871 * 1 - subvol uuid item
3872 * 1 - received_subvol uuid item
3873 */
3874 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3875 if (IS_ERR(trans)) {
3876 ret = PTR_ERR(trans);
3877 break;
3878 }
f45388f3
FDBM
3879 continue;
3880 } else {
3881 goto skip;
3882 }
3883update_tree:
3884 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3885 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3886 root_item.uuid,
3887 BTRFS_UUID_KEY_SUBVOL,
3888 key.objectid);
3889 if (ret < 0) {
efe120a0 3890 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3891 ret);
803b2f54
SB
3892 break;
3893 }
3894 }
3895
3896 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3897 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3898 root_item.received_uuid,
3899 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3900 key.objectid);
3901 if (ret < 0) {
efe120a0 3902 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3903 ret);
803b2f54
SB
3904 break;
3905 }
3906 }
3907
f45388f3 3908skip:
803b2f54
SB
3909 if (trans) {
3910 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3911 trans = NULL;
803b2f54
SB
3912 if (ret)
3913 break;
3914 }
3915
803b2f54
SB
3916 btrfs_release_path(path);
3917 if (key.offset < (u64)-1) {
3918 key.offset++;
3919 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3920 key.offset = 0;
3921 key.type = BTRFS_ROOT_ITEM_KEY;
3922 } else if (key.objectid < (u64)-1) {
3923 key.offset = 0;
3924 key.type = BTRFS_ROOT_ITEM_KEY;
3925 key.objectid++;
3926 } else {
3927 break;
3928 }
3929 cond_resched();
3930 }
3931
3932out:
3933 btrfs_free_path(path);
f45388f3
FDBM
3934 if (trans && !IS_ERR(trans))
3935 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3936 if (ret)
efe120a0 3937 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3938 else
3939 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3940 up(&fs_info->uuid_tree_rescan_sem);
3941 return 0;
3942}
3943
70f80175
SB
3944/*
3945 * Callback for btrfs_uuid_tree_iterate().
3946 * returns:
3947 * 0 check succeeded, the entry is not outdated.
3948 * < 0 if an error occured.
3949 * > 0 if the check failed, which means the caller shall remove the entry.
3950 */
3951static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3952 u8 *uuid, u8 type, u64 subid)
3953{
3954 struct btrfs_key key;
3955 int ret = 0;
3956 struct btrfs_root *subvol_root;
3957
3958 if (type != BTRFS_UUID_KEY_SUBVOL &&
3959 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3960 goto out;
3961
3962 key.objectid = subid;
3963 key.type = BTRFS_ROOT_ITEM_KEY;
3964 key.offset = (u64)-1;
3965 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3966 if (IS_ERR(subvol_root)) {
3967 ret = PTR_ERR(subvol_root);
3968 if (ret == -ENOENT)
3969 ret = 1;
3970 goto out;
3971 }
3972
3973 switch (type) {
3974 case BTRFS_UUID_KEY_SUBVOL:
3975 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3976 ret = 1;
3977 break;
3978 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3979 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3980 BTRFS_UUID_SIZE))
3981 ret = 1;
3982 break;
3983 }
3984
3985out:
3986 return ret;
3987}
3988
3989static int btrfs_uuid_rescan_kthread(void *data)
3990{
3991 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3992 int ret;
3993
3994 /*
3995 * 1st step is to iterate through the existing UUID tree and
3996 * to delete all entries that contain outdated data.
3997 * 2nd step is to add all missing entries to the UUID tree.
3998 */
3999 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4000 if (ret < 0) {
efe120a0 4001 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4002 up(&fs_info->uuid_tree_rescan_sem);
4003 return ret;
4004 }
4005 return btrfs_uuid_scan_kthread(data);
4006}
4007
f7a81ea4
SB
4008int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4009{
4010 struct btrfs_trans_handle *trans;
4011 struct btrfs_root *tree_root = fs_info->tree_root;
4012 struct btrfs_root *uuid_root;
803b2f54
SB
4013 struct task_struct *task;
4014 int ret;
f7a81ea4
SB
4015
4016 /*
4017 * 1 - root node
4018 * 1 - root item
4019 */
4020 trans = btrfs_start_transaction(tree_root, 2);
4021 if (IS_ERR(trans))
4022 return PTR_ERR(trans);
4023
4024 uuid_root = btrfs_create_tree(trans, fs_info,
4025 BTRFS_UUID_TREE_OBJECTID);
4026 if (IS_ERR(uuid_root)) {
6d13f549
DS
4027 ret = PTR_ERR(uuid_root);
4028 btrfs_abort_transaction(trans, tree_root, ret);
4029 return ret;
f7a81ea4
SB
4030 }
4031
4032 fs_info->uuid_root = uuid_root;
4033
803b2f54
SB
4034 ret = btrfs_commit_transaction(trans, tree_root);
4035 if (ret)
4036 return ret;
4037
4038 down(&fs_info->uuid_tree_rescan_sem);
4039 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4040 if (IS_ERR(task)) {
70f80175 4041 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4042 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4043 up(&fs_info->uuid_tree_rescan_sem);
4044 return PTR_ERR(task);
4045 }
4046
4047 return 0;
f7a81ea4 4048}
803b2f54 4049
70f80175
SB
4050int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4051{
4052 struct task_struct *task;
4053
4054 down(&fs_info->uuid_tree_rescan_sem);
4055 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4056 if (IS_ERR(task)) {
4057 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4058 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4059 up(&fs_info->uuid_tree_rescan_sem);
4060 return PTR_ERR(task);
4061 }
4062
4063 return 0;
4064}
4065
8f18cf13
CM
4066/*
4067 * shrinking a device means finding all of the device extents past
4068 * the new size, and then following the back refs to the chunks.
4069 * The chunk relocation code actually frees the device extent
4070 */
4071int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4072{
4073 struct btrfs_trans_handle *trans;
4074 struct btrfs_root *root = device->dev_root;
4075 struct btrfs_dev_extent *dev_extent = NULL;
4076 struct btrfs_path *path;
4077 u64 length;
8f18cf13
CM
4078 u64 chunk_offset;
4079 int ret;
4080 int slot;
ba1bf481
JB
4081 int failed = 0;
4082 bool retried = false;
53e489bc 4083 bool checked_pending_chunks = false;
8f18cf13
CM
4084 struct extent_buffer *l;
4085 struct btrfs_key key;
6c41761f 4086 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4087 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4088 u64 old_size = btrfs_device_get_total_bytes(device);
4089 u64 diff = old_size - new_size;
8f18cf13 4090
63a212ab
SB
4091 if (device->is_tgtdev_for_dev_replace)
4092 return -EINVAL;
4093
8f18cf13
CM
4094 path = btrfs_alloc_path();
4095 if (!path)
4096 return -ENOMEM;
4097
8f18cf13
CM
4098 path->reada = 2;
4099
7d9eb12c
CM
4100 lock_chunks(root);
4101
7cc8e58d 4102 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4103 if (device->writeable) {
2b82032c 4104 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4105 spin_lock(&root->fs_info->free_chunk_lock);
4106 root->fs_info->free_chunk_space -= diff;
4107 spin_unlock(&root->fs_info->free_chunk_lock);
4108 }
7d9eb12c 4109 unlock_chunks(root);
8f18cf13 4110
ba1bf481 4111again:
8f18cf13
CM
4112 key.objectid = device->devid;
4113 key.offset = (u64)-1;
4114 key.type = BTRFS_DEV_EXTENT_KEY;
4115
213e64da 4116 do {
67c5e7d4 4117 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4119 if (ret < 0) {
4120 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4121 goto done;
67c5e7d4 4122 }
8f18cf13
CM
4123
4124 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4125 if (ret)
4126 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4127 if (ret < 0)
4128 goto done;
4129 if (ret) {
4130 ret = 0;
b3b4aa74 4131 btrfs_release_path(path);
bf1fb512 4132 break;
8f18cf13
CM
4133 }
4134
4135 l = path->nodes[0];
4136 slot = path->slots[0];
4137 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4138
ba1bf481 4139 if (key.objectid != device->devid) {
67c5e7d4 4140 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4141 btrfs_release_path(path);
bf1fb512 4142 break;
ba1bf481 4143 }
8f18cf13
CM
4144
4145 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4146 length = btrfs_dev_extent_length(l, dev_extent);
4147
ba1bf481 4148 if (key.offset + length <= new_size) {
67c5e7d4 4149 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4150 btrfs_release_path(path);
d6397bae 4151 break;
ba1bf481 4152 }
8f18cf13 4153
8f18cf13 4154 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4155 btrfs_release_path(path);
8f18cf13 4156
dc2ee4e2 4157 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4158 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4159 if (ret && ret != -ENOSPC)
8f18cf13 4160 goto done;
ba1bf481
JB
4161 if (ret == -ENOSPC)
4162 failed++;
213e64da 4163 } while (key.offset-- > 0);
ba1bf481
JB
4164
4165 if (failed && !retried) {
4166 failed = 0;
4167 retried = true;
4168 goto again;
4169 } else if (failed && retried) {
4170 ret = -ENOSPC;
ba1bf481 4171 goto done;
8f18cf13
CM
4172 }
4173
d6397bae 4174 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4175 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4176 if (IS_ERR(trans)) {
4177 ret = PTR_ERR(trans);
4178 goto done;
4179 }
4180
d6397bae 4181 lock_chunks(root);
53e489bc
FM
4182
4183 /*
4184 * We checked in the above loop all device extents that were already in
4185 * the device tree. However before we have updated the device's
4186 * total_bytes to the new size, we might have had chunk allocations that
4187 * have not complete yet (new block groups attached to transaction
4188 * handles), and therefore their device extents were not yet in the
4189 * device tree and we missed them in the loop above. So if we have any
4190 * pending chunk using a device extent that overlaps the device range
4191 * that we can not use anymore, commit the current transaction and
4192 * repeat the search on the device tree - this way we guarantee we will
4193 * not have chunks using device extents that end beyond 'new_size'.
4194 */
4195 if (!checked_pending_chunks) {
4196 u64 start = new_size;
4197 u64 len = old_size - new_size;
4198
4199 if (contains_pending_extent(trans, device, &start, len)) {
4200 unlock_chunks(root);
4201 checked_pending_chunks = true;
4202 failed = 0;
4203 retried = false;
4204 ret = btrfs_commit_transaction(trans, root);
4205 if (ret)
4206 goto done;
4207 goto again;
4208 }
4209 }
4210
7cc8e58d 4211 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4212 if (list_empty(&device->resized_list))
4213 list_add_tail(&device->resized_list,
4214 &root->fs_info->fs_devices->resized_devices);
d6397bae 4215
d6397bae
CB
4216 WARN_ON(diff > old_total);
4217 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4218 unlock_chunks(root);
2196d6e8
MX
4219
4220 /* Now btrfs_update_device() will change the on-disk size. */
4221 ret = btrfs_update_device(trans, device);
d6397bae 4222 btrfs_end_transaction(trans, root);
8f18cf13
CM
4223done:
4224 btrfs_free_path(path);
53e489bc
FM
4225 if (ret) {
4226 lock_chunks(root);
4227 btrfs_device_set_total_bytes(device, old_size);
4228 if (device->writeable)
4229 device->fs_devices->total_rw_bytes += diff;
4230 spin_lock(&root->fs_info->free_chunk_lock);
4231 root->fs_info->free_chunk_space += diff;
4232 spin_unlock(&root->fs_info->free_chunk_lock);
4233 unlock_chunks(root);
4234 }
8f18cf13
CM
4235 return ret;
4236}
4237
125ccb0a 4238static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4239 struct btrfs_key *key,
4240 struct btrfs_chunk *chunk, int item_size)
4241{
6c41761f 4242 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4243 struct btrfs_disk_key disk_key;
4244 u32 array_size;
4245 u8 *ptr;
4246
fe48a5c0 4247 lock_chunks(root);
0b86a832 4248 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4249 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4250 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4251 unlock_chunks(root);
0b86a832 4252 return -EFBIG;
fe48a5c0 4253 }
0b86a832
CM
4254
4255 ptr = super_copy->sys_chunk_array + array_size;
4256 btrfs_cpu_key_to_disk(&disk_key, key);
4257 memcpy(ptr, &disk_key, sizeof(disk_key));
4258 ptr += sizeof(disk_key);
4259 memcpy(ptr, chunk, item_size);
4260 item_size += sizeof(disk_key);
4261 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4262 unlock_chunks(root);
4263
0b86a832
CM
4264 return 0;
4265}
4266
73c5de00
AJ
4267/*
4268 * sort the devices in descending order by max_avail, total_avail
4269 */
4270static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4271{
73c5de00
AJ
4272 const struct btrfs_device_info *di_a = a;
4273 const struct btrfs_device_info *di_b = b;
9b3f68b9 4274
73c5de00 4275 if (di_a->max_avail > di_b->max_avail)
b2117a39 4276 return -1;
73c5de00 4277 if (di_a->max_avail < di_b->max_avail)
b2117a39 4278 return 1;
73c5de00
AJ
4279 if (di_a->total_avail > di_b->total_avail)
4280 return -1;
4281 if (di_a->total_avail < di_b->total_avail)
4282 return 1;
4283 return 0;
b2117a39 4284}
0b86a832 4285
e8c9f186 4286static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4287 [BTRFS_RAID_RAID10] = {
4288 .sub_stripes = 2,
4289 .dev_stripes = 1,
4290 .devs_max = 0, /* 0 == as many as possible */
4291 .devs_min = 4,
4292 .devs_increment = 2,
4293 .ncopies = 2,
4294 },
4295 [BTRFS_RAID_RAID1] = {
4296 .sub_stripes = 1,
4297 .dev_stripes = 1,
4298 .devs_max = 2,
4299 .devs_min = 2,
4300 .devs_increment = 2,
4301 .ncopies = 2,
4302 },
4303 [BTRFS_RAID_DUP] = {
4304 .sub_stripes = 1,
4305 .dev_stripes = 2,
4306 .devs_max = 1,
4307 .devs_min = 1,
4308 .devs_increment = 1,
4309 .ncopies = 2,
4310 },
4311 [BTRFS_RAID_RAID0] = {
4312 .sub_stripes = 1,
4313 .dev_stripes = 1,
4314 .devs_max = 0,
4315 .devs_min = 2,
4316 .devs_increment = 1,
4317 .ncopies = 1,
4318 },
4319 [BTRFS_RAID_SINGLE] = {
4320 .sub_stripes = 1,
4321 .dev_stripes = 1,
4322 .devs_max = 1,
4323 .devs_min = 1,
4324 .devs_increment = 1,
4325 .ncopies = 1,
4326 },
e942f883
CM
4327 [BTRFS_RAID_RAID5] = {
4328 .sub_stripes = 1,
4329 .dev_stripes = 1,
4330 .devs_max = 0,
4331 .devs_min = 2,
4332 .devs_increment = 1,
4333 .ncopies = 2,
4334 },
4335 [BTRFS_RAID_RAID6] = {
4336 .sub_stripes = 1,
4337 .dev_stripes = 1,
4338 .devs_max = 0,
4339 .devs_min = 3,
4340 .devs_increment = 1,
4341 .ncopies = 3,
4342 },
31e50229
LB
4343};
4344
53b381b3
DW
4345static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4346{
4347 /* TODO allow them to set a preferred stripe size */
4348 return 64 * 1024;
4349}
4350
4351static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4352{
ffe2d203 4353 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4354 return;
4355
ceda0864 4356 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4357}
4358
23f8f9b7
GH
4359#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4360 - sizeof(struct btrfs_item) \
4361 - sizeof(struct btrfs_chunk)) \
4362 / sizeof(struct btrfs_stripe) + 1)
4363
4364#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4365 - 2 * sizeof(struct btrfs_disk_key) \
4366 - 2 * sizeof(struct btrfs_chunk)) \
4367 / sizeof(struct btrfs_stripe) + 1)
4368
73c5de00 4369static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4370 struct btrfs_root *extent_root, u64 start,
4371 u64 type)
b2117a39 4372{
73c5de00
AJ
4373 struct btrfs_fs_info *info = extent_root->fs_info;
4374 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4375 struct list_head *cur;
4376 struct map_lookup *map = NULL;
4377 struct extent_map_tree *em_tree;
4378 struct extent_map *em;
4379 struct btrfs_device_info *devices_info = NULL;
4380 u64 total_avail;
4381 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4382 int data_stripes; /* number of stripes that count for
4383 block group size */
73c5de00
AJ
4384 int sub_stripes; /* sub_stripes info for map */
4385 int dev_stripes; /* stripes per dev */
4386 int devs_max; /* max devs to use */
4387 int devs_min; /* min devs needed */
4388 int devs_increment; /* ndevs has to be a multiple of this */
4389 int ncopies; /* how many copies to data has */
4390 int ret;
4391 u64 max_stripe_size;
4392 u64 max_chunk_size;
4393 u64 stripe_size;
4394 u64 num_bytes;
53b381b3 4395 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4396 int ndevs;
4397 int i;
4398 int j;
31e50229 4399 int index;
593060d7 4400
0c460c0d 4401 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4402
73c5de00
AJ
4403 if (list_empty(&fs_devices->alloc_list))
4404 return -ENOSPC;
b2117a39 4405
31e50229 4406 index = __get_raid_index(type);
73c5de00 4407
31e50229
LB
4408 sub_stripes = btrfs_raid_array[index].sub_stripes;
4409 dev_stripes = btrfs_raid_array[index].dev_stripes;
4410 devs_max = btrfs_raid_array[index].devs_max;
4411 devs_min = btrfs_raid_array[index].devs_min;
4412 devs_increment = btrfs_raid_array[index].devs_increment;
4413 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4414
9b3f68b9 4415 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4416 max_stripe_size = 1024 * 1024 * 1024;
4417 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4418 if (!devs_max)
4419 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4420 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4421 /* for larger filesystems, use larger metadata chunks */
4422 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4423 max_stripe_size = 1024 * 1024 * 1024;
4424 else
4425 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4426 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4427 if (!devs_max)
4428 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4429 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4430 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4431 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4432 if (!devs_max)
4433 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4434 } else {
351fd353 4435 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4436 type);
4437 BUG_ON(1);
9b3f68b9
CM
4438 }
4439
2b82032c
YZ
4440 /* we don't want a chunk larger than 10% of writeable space */
4441 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4442 max_chunk_size);
9b3f68b9 4443
31e818fe 4444 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4445 GFP_NOFS);
4446 if (!devices_info)
4447 return -ENOMEM;
0cad8a11 4448
73c5de00 4449 cur = fs_devices->alloc_list.next;
9b3f68b9 4450
9f680ce0 4451 /*
73c5de00
AJ
4452 * in the first pass through the devices list, we gather information
4453 * about the available holes on each device.
9f680ce0 4454 */
73c5de00
AJ
4455 ndevs = 0;
4456 while (cur != &fs_devices->alloc_list) {
4457 struct btrfs_device *device;
4458 u64 max_avail;
4459 u64 dev_offset;
b2117a39 4460
73c5de00 4461 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4462
73c5de00 4463 cur = cur->next;
b2117a39 4464
73c5de00 4465 if (!device->writeable) {
31b1a2bd 4466 WARN(1, KERN_ERR
efe120a0 4467 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4468 continue;
4469 }
b2117a39 4470
63a212ab
SB
4471 if (!device->in_fs_metadata ||
4472 device->is_tgtdev_for_dev_replace)
73c5de00 4473 continue;
b2117a39 4474
73c5de00
AJ
4475 if (device->total_bytes > device->bytes_used)
4476 total_avail = device->total_bytes - device->bytes_used;
4477 else
4478 total_avail = 0;
38c01b96 4479
4480 /* If there is no space on this device, skip it. */
4481 if (total_avail == 0)
4482 continue;
b2117a39 4483
6df9a95e 4484 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4485 max_stripe_size * dev_stripes,
4486 &dev_offset, &max_avail);
4487 if (ret && ret != -ENOSPC)
4488 goto error;
b2117a39 4489
73c5de00
AJ
4490 if (ret == 0)
4491 max_avail = max_stripe_size * dev_stripes;
b2117a39 4492
73c5de00
AJ
4493 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4494 continue;
b2117a39 4495
063d006f
ES
4496 if (ndevs == fs_devices->rw_devices) {
4497 WARN(1, "%s: found more than %llu devices\n",
4498 __func__, fs_devices->rw_devices);
4499 break;
4500 }
73c5de00
AJ
4501 devices_info[ndevs].dev_offset = dev_offset;
4502 devices_info[ndevs].max_avail = max_avail;
4503 devices_info[ndevs].total_avail = total_avail;
4504 devices_info[ndevs].dev = device;
4505 ++ndevs;
4506 }
b2117a39 4507
73c5de00
AJ
4508 /*
4509 * now sort the devices by hole size / available space
4510 */
4511 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4512 btrfs_cmp_device_info, NULL);
b2117a39 4513
73c5de00
AJ
4514 /* round down to number of usable stripes */
4515 ndevs -= ndevs % devs_increment;
b2117a39 4516
73c5de00
AJ
4517 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4518 ret = -ENOSPC;
4519 goto error;
b2117a39 4520 }
9f680ce0 4521
73c5de00
AJ
4522 if (devs_max && ndevs > devs_max)
4523 ndevs = devs_max;
4524 /*
4525 * the primary goal is to maximize the number of stripes, so use as many
4526 * devices as possible, even if the stripes are not maximum sized.
4527 */
4528 stripe_size = devices_info[ndevs-1].max_avail;
4529 num_stripes = ndevs * dev_stripes;
b2117a39 4530
53b381b3
DW
4531 /*
4532 * this will have to be fixed for RAID1 and RAID10 over
4533 * more drives
4534 */
4535 data_stripes = num_stripes / ncopies;
4536
53b381b3
DW
4537 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4538 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4539 btrfs_super_stripesize(info->super_copy));
4540 data_stripes = num_stripes - 1;
4541 }
4542 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4543 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4544 btrfs_super_stripesize(info->super_copy));
4545 data_stripes = num_stripes - 2;
4546 }
86db2578
CM
4547
4548 /*
4549 * Use the number of data stripes to figure out how big this chunk
4550 * is really going to be in terms of logical address space,
4551 * and compare that answer with the max chunk size
4552 */
4553 if (stripe_size * data_stripes > max_chunk_size) {
4554 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4555
4556 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4557
4558 /* bump the answer up to a 16MB boundary */
4559 stripe_size = (stripe_size + mask) & ~mask;
4560
4561 /* but don't go higher than the limits we found
4562 * while searching for free extents
4563 */
4564 if (stripe_size > devices_info[ndevs-1].max_avail)
4565 stripe_size = devices_info[ndevs-1].max_avail;
4566 }
4567
b8b93add 4568 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4569
4570 /* align to BTRFS_STRIPE_LEN */
b8b93add 4571 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4572 stripe_size *= raid_stripe_len;
b2117a39
MX
4573
4574 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4575 if (!map) {
4576 ret = -ENOMEM;
4577 goto error;
4578 }
4579 map->num_stripes = num_stripes;
9b3f68b9 4580
73c5de00
AJ
4581 for (i = 0; i < ndevs; ++i) {
4582 for (j = 0; j < dev_stripes; ++j) {
4583 int s = i * dev_stripes + j;
4584 map->stripes[s].dev = devices_info[i].dev;
4585 map->stripes[s].physical = devices_info[i].dev_offset +
4586 j * stripe_size;
6324fbf3 4587 }
6324fbf3 4588 }
2b82032c 4589 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4590 map->stripe_len = raid_stripe_len;
4591 map->io_align = raid_stripe_len;
4592 map->io_width = raid_stripe_len;
2b82032c 4593 map->type = type;
2b82032c 4594 map->sub_stripes = sub_stripes;
0b86a832 4595
53b381b3 4596 num_bytes = stripe_size * data_stripes;
0b86a832 4597
73c5de00 4598 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4599
172ddd60 4600 em = alloc_extent_map();
2b82032c 4601 if (!em) {
298a8f9c 4602 kfree(map);
b2117a39
MX
4603 ret = -ENOMEM;
4604 goto error;
593060d7 4605 }
298a8f9c 4606 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4607 em->bdev = (struct block_device *)map;
4608 em->start = start;
73c5de00 4609 em->len = num_bytes;
2b82032c
YZ
4610 em->block_start = 0;
4611 em->block_len = em->len;
6df9a95e 4612 em->orig_block_len = stripe_size;
593060d7 4613
2b82032c 4614 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4615 write_lock(&em_tree->lock);
09a2a8f9 4616 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4617 if (!ret) {
4618 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4619 atomic_inc(&em->refs);
4620 }
890871be 4621 write_unlock(&em_tree->lock);
0f5d42b2
JB
4622 if (ret) {
4623 free_extent_map(em);
1dd4602f 4624 goto error;
0f5d42b2 4625 }
0b86a832 4626
04487488
JB
4627 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4628 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4629 start, num_bytes);
6df9a95e
JB
4630 if (ret)
4631 goto error_del_extent;
2b82032c 4632
7cc8e58d
MX
4633 for (i = 0; i < map->num_stripes; i++) {
4634 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4635 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4636 }
43530c46 4637
1c116187
MX
4638 spin_lock(&extent_root->fs_info->free_chunk_lock);
4639 extent_root->fs_info->free_chunk_space -= (stripe_size *
4640 map->num_stripes);
4641 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4642
0f5d42b2 4643 free_extent_map(em);
53b381b3
DW
4644 check_raid56_incompat_flag(extent_root->fs_info, type);
4645
b2117a39 4646 kfree(devices_info);
2b82032c 4647 return 0;
b2117a39 4648
6df9a95e 4649error_del_extent:
0f5d42b2
JB
4650 write_lock(&em_tree->lock);
4651 remove_extent_mapping(em_tree, em);
4652 write_unlock(&em_tree->lock);
4653
4654 /* One for our allocation */
4655 free_extent_map(em);
4656 /* One for the tree reference */
4657 free_extent_map(em);
495e64f4
FM
4658 /* One for the pending_chunks list reference */
4659 free_extent_map(em);
b2117a39 4660error:
b2117a39
MX
4661 kfree(devices_info);
4662 return ret;
2b82032c
YZ
4663}
4664
6df9a95e 4665int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4666 struct btrfs_root *extent_root,
6df9a95e 4667 u64 chunk_offset, u64 chunk_size)
2b82032c 4668{
2b82032c
YZ
4669 struct btrfs_key key;
4670 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4671 struct btrfs_device *device;
4672 struct btrfs_chunk *chunk;
4673 struct btrfs_stripe *stripe;
6df9a95e
JB
4674 struct extent_map_tree *em_tree;
4675 struct extent_map *em;
4676 struct map_lookup *map;
4677 size_t item_size;
4678 u64 dev_offset;
4679 u64 stripe_size;
4680 int i = 0;
2b82032c
YZ
4681 int ret;
4682
6df9a95e
JB
4683 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4684 read_lock(&em_tree->lock);
4685 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4686 read_unlock(&em_tree->lock);
4687
4688 if (!em) {
4689 btrfs_crit(extent_root->fs_info, "unable to find logical "
4690 "%Lu len %Lu", chunk_offset, chunk_size);
4691 return -EINVAL;
4692 }
4693
4694 if (em->start != chunk_offset || em->len != chunk_size) {
4695 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4696 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4697 chunk_size, em->start, em->len);
4698 free_extent_map(em);
4699 return -EINVAL;
4700 }
4701
4702 map = (struct map_lookup *)em->bdev;
4703 item_size = btrfs_chunk_item_size(map->num_stripes);
4704 stripe_size = em->orig_block_len;
4705
2b82032c 4706 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4707 if (!chunk) {
4708 ret = -ENOMEM;
4709 goto out;
4710 }
4711
4712 for (i = 0; i < map->num_stripes; i++) {
4713 device = map->stripes[i].dev;
4714 dev_offset = map->stripes[i].physical;
2b82032c 4715
0b86a832 4716 ret = btrfs_update_device(trans, device);
3acd3953 4717 if (ret)
6df9a95e
JB
4718 goto out;
4719 ret = btrfs_alloc_dev_extent(trans, device,
4720 chunk_root->root_key.objectid,
4721 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4722 chunk_offset, dev_offset,
4723 stripe_size);
4724 if (ret)
4725 goto out;
2b82032c
YZ
4726 }
4727
2b82032c 4728 stripe = &chunk->stripe;
6df9a95e
JB
4729 for (i = 0; i < map->num_stripes; i++) {
4730 device = map->stripes[i].dev;
4731 dev_offset = map->stripes[i].physical;
0b86a832 4732
e17cade2
CM
4733 btrfs_set_stack_stripe_devid(stripe, device->devid);
4734 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4735 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4736 stripe++;
0b86a832
CM
4737 }
4738
2b82032c 4739 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4740 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4741 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4742 btrfs_set_stack_chunk_type(chunk, map->type);
4743 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4744 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4745 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4746 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4747 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4748
2b82032c
YZ
4749 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4750 key.type = BTRFS_CHUNK_ITEM_KEY;
4751 key.offset = chunk_offset;
0b86a832 4752
2b82032c 4753 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4754 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4755 /*
4756 * TODO: Cleanup of inserted chunk root in case of
4757 * failure.
4758 */
125ccb0a 4759 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4760 item_size);
8f18cf13 4761 }
1abe9b8a 4762
6df9a95e 4763out:
0b86a832 4764 kfree(chunk);
6df9a95e 4765 free_extent_map(em);
4ed1d16e 4766 return ret;
2b82032c 4767}
0b86a832 4768
2b82032c
YZ
4769/*
4770 * Chunk allocation falls into two parts. The first part does works
4771 * that make the new allocated chunk useable, but not do any operation
4772 * that modifies the chunk tree. The second part does the works that
4773 * require modifying the chunk tree. This division is important for the
4774 * bootstrap process of adding storage to a seed btrfs.
4775 */
4776int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4777 struct btrfs_root *extent_root, u64 type)
4778{
4779 u64 chunk_offset;
2b82032c 4780
a9629596 4781 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4782 chunk_offset = find_next_chunk(extent_root->fs_info);
4783 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4784}
4785
d397712b 4786static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4787 struct btrfs_root *root,
4788 struct btrfs_device *device)
4789{
4790 u64 chunk_offset;
4791 u64 sys_chunk_offset;
2b82032c 4792 u64 alloc_profile;
2b82032c
YZ
4793 struct btrfs_fs_info *fs_info = root->fs_info;
4794 struct btrfs_root *extent_root = fs_info->extent_root;
4795 int ret;
4796
6df9a95e 4797 chunk_offset = find_next_chunk(fs_info);
de98ced9 4798 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4799 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4800 alloc_profile);
79787eaa
JM
4801 if (ret)
4802 return ret;
2b82032c 4803
6df9a95e 4804 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4805 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4806 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4807 alloc_profile);
79787eaa 4808 return ret;
2b82032c
YZ
4809}
4810
d20983b4
MX
4811static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4812{
4813 int max_errors;
4814
4815 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4816 BTRFS_BLOCK_GROUP_RAID10 |
4817 BTRFS_BLOCK_GROUP_RAID5 |
4818 BTRFS_BLOCK_GROUP_DUP)) {
4819 max_errors = 1;
4820 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4821 max_errors = 2;
4822 } else {
4823 max_errors = 0;
005d6427 4824 }
2b82032c 4825
d20983b4 4826 return max_errors;
2b82032c
YZ
4827}
4828
4829int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4830{
4831 struct extent_map *em;
4832 struct map_lookup *map;
4833 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4834 int readonly = 0;
d20983b4 4835 int miss_ndevs = 0;
2b82032c
YZ
4836 int i;
4837
890871be 4838 read_lock(&map_tree->map_tree.lock);
2b82032c 4839 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4840 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4841 if (!em)
4842 return 1;
4843
4844 map = (struct map_lookup *)em->bdev;
4845 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4846 if (map->stripes[i].dev->missing) {
4847 miss_ndevs++;
4848 continue;
4849 }
4850
2b82032c
YZ
4851 if (!map->stripes[i].dev->writeable) {
4852 readonly = 1;
d20983b4 4853 goto end;
2b82032c
YZ
4854 }
4855 }
d20983b4
MX
4856
4857 /*
4858 * If the number of missing devices is larger than max errors,
4859 * we can not write the data into that chunk successfully, so
4860 * set it readonly.
4861 */
4862 if (miss_ndevs > btrfs_chunk_max_errors(map))
4863 readonly = 1;
4864end:
0b86a832 4865 free_extent_map(em);
2b82032c 4866 return readonly;
0b86a832
CM
4867}
4868
4869void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4870{
a8067e02 4871 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4872}
4873
4874void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4875{
4876 struct extent_map *em;
4877
d397712b 4878 while (1) {
890871be 4879 write_lock(&tree->map_tree.lock);
0b86a832
CM
4880 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4881 if (em)
4882 remove_extent_mapping(&tree->map_tree, em);
890871be 4883 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4884 if (!em)
4885 break;
0b86a832
CM
4886 /* once for us */
4887 free_extent_map(em);
4888 /* once for the tree */
4889 free_extent_map(em);
4890 }
4891}
4892
5d964051 4893int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4894{
5d964051 4895 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4896 struct extent_map *em;
4897 struct map_lookup *map;
4898 struct extent_map_tree *em_tree = &map_tree->map_tree;
4899 int ret;
4900
890871be 4901 read_lock(&em_tree->lock);
f188591e 4902 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4903 read_unlock(&em_tree->lock);
f188591e 4904
fb7669b5
JB
4905 /*
4906 * We could return errors for these cases, but that could get ugly and
4907 * we'd probably do the same thing which is just not do anything else
4908 * and exit, so return 1 so the callers don't try to use other copies.
4909 */
4910 if (!em) {
351fd353 4911 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4912 logical+len);
4913 return 1;
4914 }
4915
4916 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4917 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4918 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4919 em->start + em->len);
7d3d1744 4920 free_extent_map(em);
fb7669b5
JB
4921 return 1;
4922 }
4923
f188591e
CM
4924 map = (struct map_lookup *)em->bdev;
4925 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4926 ret = map->num_stripes;
321aecc6
CM
4927 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4928 ret = map->sub_stripes;
53b381b3
DW
4929 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4930 ret = 2;
4931 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4932 ret = 3;
f188591e
CM
4933 else
4934 ret = 1;
4935 free_extent_map(em);
ad6d620e
SB
4936
4937 btrfs_dev_replace_lock(&fs_info->dev_replace);
4938 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4939 ret++;
4940 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4941
f188591e
CM
4942 return ret;
4943}
4944
53b381b3
DW
4945unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4946 struct btrfs_mapping_tree *map_tree,
4947 u64 logical)
4948{
4949 struct extent_map *em;
4950 struct map_lookup *map;
4951 struct extent_map_tree *em_tree = &map_tree->map_tree;
4952 unsigned long len = root->sectorsize;
4953
4954 read_lock(&em_tree->lock);
4955 em = lookup_extent_mapping(em_tree, logical, len);
4956 read_unlock(&em_tree->lock);
4957 BUG_ON(!em);
4958
4959 BUG_ON(em->start > logical || em->start + em->len < logical);
4960 map = (struct map_lookup *)em->bdev;
ffe2d203 4961 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 4962 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
4963 free_extent_map(em);
4964 return len;
4965}
4966
4967int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4968 u64 logical, u64 len, int mirror_num)
4969{
4970 struct extent_map *em;
4971 struct map_lookup *map;
4972 struct extent_map_tree *em_tree = &map_tree->map_tree;
4973 int ret = 0;
4974
4975 read_lock(&em_tree->lock);
4976 em = lookup_extent_mapping(em_tree, logical, len);
4977 read_unlock(&em_tree->lock);
4978 BUG_ON(!em);
4979
4980 BUG_ON(em->start > logical || em->start + em->len < logical);
4981 map = (struct map_lookup *)em->bdev;
ffe2d203 4982 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
4983 ret = 1;
4984 free_extent_map(em);
4985 return ret;
4986}
4987
30d9861f
SB
4988static int find_live_mirror(struct btrfs_fs_info *fs_info,
4989 struct map_lookup *map, int first, int num,
4990 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4991{
4992 int i;
30d9861f
SB
4993 int tolerance;
4994 struct btrfs_device *srcdev;
4995
4996 if (dev_replace_is_ongoing &&
4997 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4998 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4999 srcdev = fs_info->dev_replace.srcdev;
5000 else
5001 srcdev = NULL;
5002
5003 /*
5004 * try to avoid the drive that is the source drive for a
5005 * dev-replace procedure, only choose it if no other non-missing
5006 * mirror is available
5007 */
5008 for (tolerance = 0; tolerance < 2; tolerance++) {
5009 if (map->stripes[optimal].dev->bdev &&
5010 (tolerance || map->stripes[optimal].dev != srcdev))
5011 return optimal;
5012 for (i = first; i < first + num; i++) {
5013 if (map->stripes[i].dev->bdev &&
5014 (tolerance || map->stripes[i].dev != srcdev))
5015 return i;
5016 }
dfe25020 5017 }
30d9861f 5018
dfe25020
CM
5019 /* we couldn't find one that doesn't fail. Just return something
5020 * and the io error handling code will clean up eventually
5021 */
5022 return optimal;
5023}
5024
53b381b3
DW
5025static inline int parity_smaller(u64 a, u64 b)
5026{
5027 return a > b;
5028}
5029
5030/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5031static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5032{
5033 struct btrfs_bio_stripe s;
5034 int i;
5035 u64 l;
5036 int again = 1;
5037
5038 while (again) {
5039 again = 0;
cc7539ed 5040 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5041 if (parity_smaller(bbio->raid_map[i],
5042 bbio->raid_map[i+1])) {
53b381b3 5043 s = bbio->stripes[i];
8e5cfb55 5044 l = bbio->raid_map[i];
53b381b3 5045 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5046 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5047 bbio->stripes[i+1] = s;
8e5cfb55 5048 bbio->raid_map[i+1] = l;
2c8cdd6e 5049
53b381b3
DW
5050 again = 1;
5051 }
5052 }
5053 }
5054}
5055
6e9606d2
ZL
5056static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5057{
5058 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5059 /* the size of the btrfs_bio */
6e9606d2 5060 sizeof(struct btrfs_bio) +
e57cf21e 5061 /* plus the variable array for the stripes */
6e9606d2 5062 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5063 /* plus the variable array for the tgt dev */
6e9606d2 5064 sizeof(int) * (real_stripes) +
e57cf21e
CM
5065 /*
5066 * plus the raid_map, which includes both the tgt dev
5067 * and the stripes
5068 */
5069 sizeof(u64) * (total_stripes),
6e9606d2
ZL
5070 GFP_NOFS);
5071 if (!bbio)
5072 return NULL;
5073
5074 atomic_set(&bbio->error, 0);
5075 atomic_set(&bbio->refs, 1);
5076
5077 return bbio;
5078}
5079
5080void btrfs_get_bbio(struct btrfs_bio *bbio)
5081{
5082 WARN_ON(!atomic_read(&bbio->refs));
5083 atomic_inc(&bbio->refs);
5084}
5085
5086void btrfs_put_bbio(struct btrfs_bio *bbio)
5087{
5088 if (!bbio)
5089 return;
5090 if (atomic_dec_and_test(&bbio->refs))
5091 kfree(bbio);
5092}
5093
3ec706c8 5094static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5095 u64 logical, u64 *length,
a1d3c478 5096 struct btrfs_bio **bbio_ret,
8e5cfb55 5097 int mirror_num, int need_raid_map)
0b86a832
CM
5098{
5099 struct extent_map *em;
5100 struct map_lookup *map;
3ec706c8 5101 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5102 struct extent_map_tree *em_tree = &map_tree->map_tree;
5103 u64 offset;
593060d7 5104 u64 stripe_offset;
fce3bb9a 5105 u64 stripe_end_offset;
593060d7 5106 u64 stripe_nr;
fce3bb9a
LD
5107 u64 stripe_nr_orig;
5108 u64 stripe_nr_end;
53b381b3 5109 u64 stripe_len;
9d644a62 5110 u32 stripe_index;
cea9e445 5111 int i;
de11cc12 5112 int ret = 0;
f2d8d74d 5113 int num_stripes;
a236aed1 5114 int max_errors = 0;
2c8cdd6e 5115 int tgtdev_indexes = 0;
a1d3c478 5116 struct btrfs_bio *bbio = NULL;
472262f3
SB
5117 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5118 int dev_replace_is_ongoing = 0;
5119 int num_alloc_stripes;
ad6d620e
SB
5120 int patch_the_first_stripe_for_dev_replace = 0;
5121 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5122 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5123
890871be 5124 read_lock(&em_tree->lock);
0b86a832 5125 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5126 read_unlock(&em_tree->lock);
f2d8d74d 5127
3b951516 5128 if (!em) {
c2cf52eb 5129 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5130 logical, *length);
9bb91873
JB
5131 return -EINVAL;
5132 }
5133
5134 if (em->start > logical || em->start + em->len < logical) {
5135 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5136 "found %Lu-%Lu", logical, em->start,
9bb91873 5137 em->start + em->len);
7d3d1744 5138 free_extent_map(em);
9bb91873 5139 return -EINVAL;
3b951516 5140 }
0b86a832 5141
0b86a832
CM
5142 map = (struct map_lookup *)em->bdev;
5143 offset = logical - em->start;
593060d7 5144
53b381b3 5145 stripe_len = map->stripe_len;
593060d7
CM
5146 stripe_nr = offset;
5147 /*
5148 * stripe_nr counts the total number of stripes we have to stride
5149 * to get to this block
5150 */
47c5713f 5151 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5152
53b381b3 5153 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5154 BUG_ON(offset < stripe_offset);
5155
5156 /* stripe_offset is the offset of this block in its stripe*/
5157 stripe_offset = offset - stripe_offset;
5158
53b381b3 5159 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5161 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5162 raid56_full_stripe_start = offset;
5163
5164 /* allow a write of a full stripe, but make sure we don't
5165 * allow straddling of stripes
5166 */
47c5713f
DS
5167 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5168 full_stripe_len);
53b381b3
DW
5169 raid56_full_stripe_start *= full_stripe_len;
5170 }
5171
5172 if (rw & REQ_DISCARD) {
5173 /* we don't discard raid56 yet */
ffe2d203 5174 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5175 ret = -EOPNOTSUPP;
5176 goto out;
5177 }
fce3bb9a 5178 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5179 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5180 u64 max_len;
5181 /* For writes to RAID[56], allow a full stripeset across all disks.
5182 For other RAID types and for RAID[56] reads, just allow a single
5183 stripe (on a single disk). */
ffe2d203 5184 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5185 (rw & REQ_WRITE)) {
5186 max_len = stripe_len * nr_data_stripes(map) -
5187 (offset - raid56_full_stripe_start);
5188 } else {
5189 /* we limit the length of each bio to what fits in a stripe */
5190 max_len = stripe_len - stripe_offset;
5191 }
5192 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5193 } else {
5194 *length = em->len - offset;
5195 }
f2d8d74d 5196
53b381b3
DW
5197 /* This is for when we're called from btrfs_merge_bio_hook() and all
5198 it cares about is the length */
a1d3c478 5199 if (!bbio_ret)
cea9e445
CM
5200 goto out;
5201
472262f3
SB
5202 btrfs_dev_replace_lock(dev_replace);
5203 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5204 if (!dev_replace_is_ongoing)
5205 btrfs_dev_replace_unlock(dev_replace);
5206
ad6d620e
SB
5207 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5208 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5209 dev_replace->tgtdev != NULL) {
5210 /*
5211 * in dev-replace case, for repair case (that's the only
5212 * case where the mirror is selected explicitly when
5213 * calling btrfs_map_block), blocks left of the left cursor
5214 * can also be read from the target drive.
5215 * For REQ_GET_READ_MIRRORS, the target drive is added as
5216 * the last one to the array of stripes. For READ, it also
5217 * needs to be supported using the same mirror number.
5218 * If the requested block is not left of the left cursor,
5219 * EIO is returned. This can happen because btrfs_num_copies()
5220 * returns one more in the dev-replace case.
5221 */
5222 u64 tmp_length = *length;
5223 struct btrfs_bio *tmp_bbio = NULL;
5224 int tmp_num_stripes;
5225 u64 srcdev_devid = dev_replace->srcdev->devid;
5226 int index_srcdev = 0;
5227 int found = 0;
5228 u64 physical_of_found = 0;
5229
5230 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5231 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5232 if (ret) {
5233 WARN_ON(tmp_bbio != NULL);
5234 goto out;
5235 }
5236
5237 tmp_num_stripes = tmp_bbio->num_stripes;
5238 if (mirror_num > tmp_num_stripes) {
5239 /*
5240 * REQ_GET_READ_MIRRORS does not contain this
5241 * mirror, that means that the requested area
5242 * is not left of the left cursor
5243 */
5244 ret = -EIO;
6e9606d2 5245 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5246 goto out;
5247 }
5248
5249 /*
5250 * process the rest of the function using the mirror_num
5251 * of the source drive. Therefore look it up first.
5252 * At the end, patch the device pointer to the one of the
5253 * target drive.
5254 */
5255 for (i = 0; i < tmp_num_stripes; i++) {
5256 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5257 /*
5258 * In case of DUP, in order to keep it
5259 * simple, only add the mirror with the
5260 * lowest physical address
5261 */
5262 if (found &&
5263 physical_of_found <=
5264 tmp_bbio->stripes[i].physical)
5265 continue;
5266 index_srcdev = i;
5267 found = 1;
5268 physical_of_found =
5269 tmp_bbio->stripes[i].physical;
5270 }
5271 }
5272
5273 if (found) {
5274 mirror_num = index_srcdev + 1;
5275 patch_the_first_stripe_for_dev_replace = 1;
5276 physical_to_patch_in_first_stripe = physical_of_found;
5277 } else {
5278 WARN_ON(1);
5279 ret = -EIO;
6e9606d2 5280 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5281 goto out;
5282 }
5283
6e9606d2 5284 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5285 } else if (mirror_num > map->num_stripes) {
5286 mirror_num = 0;
5287 }
5288
f2d8d74d 5289 num_stripes = 1;
cea9e445 5290 stripe_index = 0;
fce3bb9a 5291 stripe_nr_orig = stripe_nr;
fda2832f 5292 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5293 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5294 stripe_end_offset = stripe_nr_end * map->stripe_len -
5295 (offset + *length);
53b381b3 5296
fce3bb9a
LD
5297 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5298 if (rw & REQ_DISCARD)
5299 num_stripes = min_t(u64, map->num_stripes,
5300 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5301 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5302 &stripe_index);
28e1cc7d
MX
5303 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5304 mirror_num = 1;
fce3bb9a 5305 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5306 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5307 num_stripes = map->num_stripes;
2fff734f 5308 else if (mirror_num)
f188591e 5309 stripe_index = mirror_num - 1;
dfe25020 5310 else {
30d9861f 5311 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5312 map->num_stripes,
30d9861f
SB
5313 current->pid % map->num_stripes,
5314 dev_replace_is_ongoing);
a1d3c478 5315 mirror_num = stripe_index + 1;
dfe25020 5316 }
2fff734f 5317
611f0e00 5318 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5319 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5320 num_stripes = map->num_stripes;
a1d3c478 5321 } else if (mirror_num) {
f188591e 5322 stripe_index = mirror_num - 1;
a1d3c478
JS
5323 } else {
5324 mirror_num = 1;
5325 }
2fff734f 5326
321aecc6 5327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5328 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5329
47c5713f 5330 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5331 stripe_index *= map->sub_stripes;
5332
29a8d9a0 5333 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5334 num_stripes = map->sub_stripes;
fce3bb9a
LD
5335 else if (rw & REQ_DISCARD)
5336 num_stripes = min_t(u64, map->sub_stripes *
5337 (stripe_nr_end - stripe_nr_orig),
5338 map->num_stripes);
321aecc6
CM
5339 else if (mirror_num)
5340 stripe_index += mirror_num - 1;
dfe25020 5341 else {
3e74317a 5342 int old_stripe_index = stripe_index;
30d9861f
SB
5343 stripe_index = find_live_mirror(fs_info, map,
5344 stripe_index,
dfe25020 5345 map->sub_stripes, stripe_index +
30d9861f
SB
5346 current->pid % map->sub_stripes,
5347 dev_replace_is_ongoing);
3e74317a 5348 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5349 }
53b381b3 5350
ffe2d203 5351 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5352 if (need_raid_map &&
af8e2d1d
MX
5353 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5354 mirror_num > 1)) {
53b381b3 5355 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5356 stripe_nr = div_u64(raid56_full_stripe_start,
5357 stripe_len * nr_data_stripes(map));
53b381b3
DW
5358
5359 /* RAID[56] write or recovery. Return all stripes */
5360 num_stripes = map->num_stripes;
5361 max_errors = nr_parity_stripes(map);
5362
53b381b3
DW
5363 *length = map->stripe_len;
5364 stripe_index = 0;
5365 stripe_offset = 0;
5366 } else {
5367 /*
5368 * Mirror #0 or #1 means the original data block.
5369 * Mirror #2 is RAID5 parity block.
5370 * Mirror #3 is RAID6 Q block.
5371 */
47c5713f
DS
5372 stripe_nr = div_u64_rem(stripe_nr,
5373 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5374 if (mirror_num > 1)
5375 stripe_index = nr_data_stripes(map) +
5376 mirror_num - 2;
5377
5378 /* We distribute the parity blocks across stripes */
47c5713f
DS
5379 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5380 &stripe_index);
28e1cc7d
MX
5381 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5382 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5383 mirror_num = 1;
53b381b3 5384 }
8790d502
CM
5385 } else {
5386 /*
47c5713f
DS
5387 * after this, stripe_nr is the number of stripes on this
5388 * device we have to walk to find the data, and stripe_index is
5389 * the number of our device in the stripe array
8790d502 5390 */
47c5713f
DS
5391 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5392 &stripe_index);
a1d3c478 5393 mirror_num = stripe_index + 1;
8790d502 5394 }
593060d7 5395 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5396
472262f3 5397 num_alloc_stripes = num_stripes;
ad6d620e
SB
5398 if (dev_replace_is_ongoing) {
5399 if (rw & (REQ_WRITE | REQ_DISCARD))
5400 num_alloc_stripes <<= 1;
5401 if (rw & REQ_GET_READ_MIRRORS)
5402 num_alloc_stripes++;
2c8cdd6e 5403 tgtdev_indexes = num_stripes;
ad6d620e 5404 }
2c8cdd6e 5405
6e9606d2 5406 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5407 if (!bbio) {
5408 ret = -ENOMEM;
5409 goto out;
5410 }
2c8cdd6e
MX
5411 if (dev_replace_is_ongoing)
5412 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5413
8e5cfb55 5414 /* build raid_map */
ffe2d203 5415 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5416 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5417 mirror_num > 1)) {
5418 u64 tmp;
9d644a62 5419 unsigned rot;
8e5cfb55
ZL
5420
5421 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5422 sizeof(struct btrfs_bio_stripe) *
5423 num_alloc_stripes +
5424 sizeof(int) * tgtdev_indexes);
5425
5426 /* Work out the disk rotation on this stripe-set */
47c5713f 5427 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5428
5429 /* Fill in the logical address of each stripe */
5430 tmp = stripe_nr * nr_data_stripes(map);
5431 for (i = 0; i < nr_data_stripes(map); i++)
5432 bbio->raid_map[(i+rot) % num_stripes] =
5433 em->start + (tmp + i) * map->stripe_len;
5434
5435 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5436 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5437 bbio->raid_map[(i+rot+1) % num_stripes] =
5438 RAID6_Q_STRIPE;
5439 }
5440
fce3bb9a 5441 if (rw & REQ_DISCARD) {
9d644a62
DS
5442 u32 factor = 0;
5443 u32 sub_stripes = 0;
ec9ef7a1
LZ
5444 u64 stripes_per_dev = 0;
5445 u32 remaining_stripes = 0;
b89203f7 5446 u32 last_stripe = 0;
ec9ef7a1
LZ
5447
5448 if (map->type &
5449 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5450 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5451 sub_stripes = 1;
5452 else
5453 sub_stripes = map->sub_stripes;
5454
5455 factor = map->num_stripes / sub_stripes;
5456 stripes_per_dev = div_u64_rem(stripe_nr_end -
5457 stripe_nr_orig,
5458 factor,
5459 &remaining_stripes);
b89203f7
LB
5460 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5461 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5462 }
5463
fce3bb9a 5464 for (i = 0; i < num_stripes; i++) {
a1d3c478 5465 bbio->stripes[i].physical =
f2d8d74d
CM
5466 map->stripes[stripe_index].physical +
5467 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5468 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5469
ec9ef7a1
LZ
5470 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5471 BTRFS_BLOCK_GROUP_RAID10)) {
5472 bbio->stripes[i].length = stripes_per_dev *
5473 map->stripe_len;
b89203f7 5474
ec9ef7a1
LZ
5475 if (i / sub_stripes < remaining_stripes)
5476 bbio->stripes[i].length +=
5477 map->stripe_len;
b89203f7
LB
5478
5479 /*
5480 * Special for the first stripe and
5481 * the last stripe:
5482 *
5483 * |-------|...|-------|
5484 * |----------|
5485 * off end_off
5486 */
ec9ef7a1 5487 if (i < sub_stripes)
a1d3c478 5488 bbio->stripes[i].length -=
fce3bb9a 5489 stripe_offset;
b89203f7
LB
5490
5491 if (stripe_index >= last_stripe &&
5492 stripe_index <= (last_stripe +
5493 sub_stripes - 1))
a1d3c478 5494 bbio->stripes[i].length -=
fce3bb9a 5495 stripe_end_offset;
b89203f7 5496
ec9ef7a1
LZ
5497 if (i == sub_stripes - 1)
5498 stripe_offset = 0;
fce3bb9a 5499 } else
a1d3c478 5500 bbio->stripes[i].length = *length;
fce3bb9a
LD
5501
5502 stripe_index++;
5503 if (stripe_index == map->num_stripes) {
5504 /* This could only happen for RAID0/10 */
5505 stripe_index = 0;
5506 stripe_nr++;
5507 }
5508 }
5509 } else {
5510 for (i = 0; i < num_stripes; i++) {
a1d3c478 5511 bbio->stripes[i].physical =
212a17ab
LT
5512 map->stripes[stripe_index].physical +
5513 stripe_offset +
5514 stripe_nr * map->stripe_len;
a1d3c478 5515 bbio->stripes[i].dev =
212a17ab 5516 map->stripes[stripe_index].dev;
fce3bb9a 5517 stripe_index++;
f2d8d74d 5518 }
593060d7 5519 }
de11cc12 5520
d20983b4
MX
5521 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5522 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5523
8e5cfb55
ZL
5524 if (bbio->raid_map)
5525 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5526
2c8cdd6e 5527 tgtdev_indexes = 0;
472262f3
SB
5528 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5529 dev_replace->tgtdev != NULL) {
5530 int index_where_to_add;
5531 u64 srcdev_devid = dev_replace->srcdev->devid;
5532
5533 /*
5534 * duplicate the write operations while the dev replace
5535 * procedure is running. Since the copying of the old disk
5536 * to the new disk takes place at run time while the
5537 * filesystem is mounted writable, the regular write
5538 * operations to the old disk have to be duplicated to go
5539 * to the new disk as well.
5540 * Note that device->missing is handled by the caller, and
5541 * that the write to the old disk is already set up in the
5542 * stripes array.
5543 */
5544 index_where_to_add = num_stripes;
5545 for (i = 0; i < num_stripes; i++) {
5546 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547 /* write to new disk, too */
5548 struct btrfs_bio_stripe *new =
5549 bbio->stripes + index_where_to_add;
5550 struct btrfs_bio_stripe *old =
5551 bbio->stripes + i;
5552
5553 new->physical = old->physical;
5554 new->length = old->length;
5555 new->dev = dev_replace->tgtdev;
2c8cdd6e 5556 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5557 index_where_to_add++;
5558 max_errors++;
2c8cdd6e 5559 tgtdev_indexes++;
472262f3
SB
5560 }
5561 }
5562 num_stripes = index_where_to_add;
ad6d620e
SB
5563 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5564 dev_replace->tgtdev != NULL) {
5565 u64 srcdev_devid = dev_replace->srcdev->devid;
5566 int index_srcdev = 0;
5567 int found = 0;
5568 u64 physical_of_found = 0;
5569
5570 /*
5571 * During the dev-replace procedure, the target drive can
5572 * also be used to read data in case it is needed to repair
5573 * a corrupt block elsewhere. This is possible if the
5574 * requested area is left of the left cursor. In this area,
5575 * the target drive is a full copy of the source drive.
5576 */
5577 for (i = 0; i < num_stripes; i++) {
5578 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5579 /*
5580 * In case of DUP, in order to keep it
5581 * simple, only add the mirror with the
5582 * lowest physical address
5583 */
5584 if (found &&
5585 physical_of_found <=
5586 bbio->stripes[i].physical)
5587 continue;
5588 index_srcdev = i;
5589 found = 1;
5590 physical_of_found = bbio->stripes[i].physical;
5591 }
5592 }
5593 if (found) {
258ece02 5594 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5595 dev_replace->cursor_left) {
5596 struct btrfs_bio_stripe *tgtdev_stripe =
5597 bbio->stripes + num_stripes;
5598
5599 tgtdev_stripe->physical = physical_of_found;
5600 tgtdev_stripe->length =
5601 bbio->stripes[index_srcdev].length;
5602 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5603 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5604
2c8cdd6e 5605 tgtdev_indexes++;
ad6d620e
SB
5606 num_stripes++;
5607 }
5608 }
472262f3
SB
5609 }
5610
de11cc12 5611 *bbio_ret = bbio;
10f11900 5612 bbio->map_type = map->type;
de11cc12
LZ
5613 bbio->num_stripes = num_stripes;
5614 bbio->max_errors = max_errors;
5615 bbio->mirror_num = mirror_num;
2c8cdd6e 5616 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5617
5618 /*
5619 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5620 * mirror_num == num_stripes + 1 && dev_replace target drive is
5621 * available as a mirror
5622 */
5623 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5624 WARN_ON(num_stripes > 1);
5625 bbio->stripes[0].dev = dev_replace->tgtdev;
5626 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5627 bbio->mirror_num = map->num_stripes + 1;
5628 }
cea9e445 5629out:
472262f3
SB
5630 if (dev_replace_is_ongoing)
5631 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5632 free_extent_map(em);
de11cc12 5633 return ret;
0b86a832
CM
5634}
5635
3ec706c8 5636int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5637 u64 logical, u64 *length,
a1d3c478 5638 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5639{
3ec706c8 5640 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5641 mirror_num, 0);
f2d8d74d
CM
5642}
5643
af8e2d1d
MX
5644/* For Scrub/replace */
5645int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5646 u64 logical, u64 *length,
5647 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5648 int need_raid_map)
af8e2d1d
MX
5649{
5650 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5651 mirror_num, need_raid_map);
af8e2d1d
MX
5652}
5653
a512bbf8
YZ
5654int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5655 u64 chunk_start, u64 physical, u64 devid,
5656 u64 **logical, int *naddrs, int *stripe_len)
5657{
5658 struct extent_map_tree *em_tree = &map_tree->map_tree;
5659 struct extent_map *em;
5660 struct map_lookup *map;
5661 u64 *buf;
5662 u64 bytenr;
5663 u64 length;
5664 u64 stripe_nr;
53b381b3 5665 u64 rmap_len;
a512bbf8
YZ
5666 int i, j, nr = 0;
5667
890871be 5668 read_lock(&em_tree->lock);
a512bbf8 5669 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5670 read_unlock(&em_tree->lock);
a512bbf8 5671
835d974f 5672 if (!em) {
efe120a0 5673 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5674 chunk_start);
5675 return -EIO;
5676 }
5677
5678 if (em->start != chunk_start) {
efe120a0 5679 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5680 em->start, chunk_start);
5681 free_extent_map(em);
5682 return -EIO;
5683 }
a512bbf8
YZ
5684 map = (struct map_lookup *)em->bdev;
5685
5686 length = em->len;
53b381b3
DW
5687 rmap_len = map->stripe_len;
5688
a512bbf8 5689 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5690 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5691 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5692 length = div_u64(length, map->num_stripes);
ffe2d203 5693 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5694 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5695 rmap_len = map->stripe_len * nr_data_stripes(map);
5696 }
a512bbf8 5697
31e818fe 5698 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5699 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5700
5701 for (i = 0; i < map->num_stripes; i++) {
5702 if (devid && map->stripes[i].dev->devid != devid)
5703 continue;
5704 if (map->stripes[i].physical > physical ||
5705 map->stripes[i].physical + length <= physical)
5706 continue;
5707
5708 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5709 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5710
5711 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5712 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5713 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5714 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5715 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5716 } /* else if RAID[56], multiply by nr_data_stripes().
5717 * Alternatively, just use rmap_len below instead of
5718 * map->stripe_len */
5719
5720 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5721 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5722 for (j = 0; j < nr; j++) {
5723 if (buf[j] == bytenr)
5724 break;
5725 }
934d375b
CM
5726 if (j == nr) {
5727 WARN_ON(nr >= map->num_stripes);
a512bbf8 5728 buf[nr++] = bytenr;
934d375b 5729 }
a512bbf8
YZ
5730 }
5731
a512bbf8
YZ
5732 *logical = buf;
5733 *naddrs = nr;
53b381b3 5734 *stripe_len = rmap_len;
a512bbf8
YZ
5735
5736 free_extent_map(em);
5737 return 0;
f2d8d74d
CM
5738}
5739
8408c716
MX
5740static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5741{
326e1dbb
MS
5742 bio->bi_private = bbio->private;
5743 bio->bi_end_io = bbio->end_io;
5744 bio_endio(bio, err);
5745
6e9606d2 5746 btrfs_put_bbio(bbio);
8408c716
MX
5747}
5748
a1d3c478 5749static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5750{
9be3395b 5751 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5752 int is_orig_bio = 0;
8790d502 5753
442a4f63 5754 if (err) {
a1d3c478 5755 atomic_inc(&bbio->error);
442a4f63
SB
5756 if (err == -EIO || err == -EREMOTEIO) {
5757 unsigned int stripe_index =
9be3395b 5758 btrfs_io_bio(bio)->stripe_index;
65f53338 5759 struct btrfs_device *dev;
442a4f63
SB
5760
5761 BUG_ON(stripe_index >= bbio->num_stripes);
5762 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5763 if (dev->bdev) {
5764 if (bio->bi_rw & WRITE)
5765 btrfs_dev_stat_inc(dev,
5766 BTRFS_DEV_STAT_WRITE_ERRS);
5767 else
5768 btrfs_dev_stat_inc(dev,
5769 BTRFS_DEV_STAT_READ_ERRS);
5770 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5771 btrfs_dev_stat_inc(dev,
5772 BTRFS_DEV_STAT_FLUSH_ERRS);
5773 btrfs_dev_stat_print_on_error(dev);
5774 }
442a4f63
SB
5775 }
5776 }
8790d502 5777
a1d3c478 5778 if (bio == bbio->orig_bio)
7d2b4daa
CM
5779 is_orig_bio = 1;
5780
c404e0dc
MX
5781 btrfs_bio_counter_dec(bbio->fs_info);
5782
a1d3c478 5783 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5784 if (!is_orig_bio) {
5785 bio_put(bio);
a1d3c478 5786 bio = bbio->orig_bio;
7d2b4daa 5787 }
c7b22bb1 5788
9be3395b 5789 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5790 /* only send an error to the higher layers if it is
53b381b3 5791 * beyond the tolerance of the btrfs bio
a236aed1 5792 */
a1d3c478 5793 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5794 err = -EIO;
5dbc8fca 5795 } else {
1259ab75
CM
5796 /*
5797 * this bio is actually up to date, we didn't
5798 * go over the max number of errors
5799 */
5800 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5801 err = 0;
1259ab75 5802 }
c55f1396 5803
8408c716 5804 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5805 } else if (!is_orig_bio) {
8790d502
CM
5806 bio_put(bio);
5807 }
8790d502
CM
5808}
5809
8b712842
CM
5810/*
5811 * see run_scheduled_bios for a description of why bios are collected for
5812 * async submit.
5813 *
5814 * This will add one bio to the pending list for a device and make sure
5815 * the work struct is scheduled.
5816 */
48a3b636
ES
5817static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5818 struct btrfs_device *device,
5819 int rw, struct bio *bio)
8b712842
CM
5820{
5821 int should_queue = 1;
ffbd517d 5822 struct btrfs_pending_bios *pending_bios;
8b712842 5823
53b381b3
DW
5824 if (device->missing || !device->bdev) {
5825 bio_endio(bio, -EIO);
5826 return;
5827 }
5828
8b712842 5829 /* don't bother with additional async steps for reads, right now */
7b6d91da 5830 if (!(rw & REQ_WRITE)) {
492bb6de 5831 bio_get(bio);
21adbd5c 5832 btrfsic_submit_bio(rw, bio);
492bb6de 5833 bio_put(bio);
143bede5 5834 return;
8b712842
CM
5835 }
5836
5837 /*
0986fe9e 5838 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5839 * higher layers. Otherwise, the async bio makes it appear we have
5840 * made progress against dirty pages when we've really just put it
5841 * on a queue for later
5842 */
0986fe9e 5843 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5844 WARN_ON(bio->bi_next);
8b712842
CM
5845 bio->bi_next = NULL;
5846 bio->bi_rw |= rw;
5847
5848 spin_lock(&device->io_lock);
7b6d91da 5849 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5850 pending_bios = &device->pending_sync_bios;
5851 else
5852 pending_bios = &device->pending_bios;
8b712842 5853
ffbd517d
CM
5854 if (pending_bios->tail)
5855 pending_bios->tail->bi_next = bio;
8b712842 5856
ffbd517d
CM
5857 pending_bios->tail = bio;
5858 if (!pending_bios->head)
5859 pending_bios->head = bio;
8b712842
CM
5860 if (device->running_pending)
5861 should_queue = 0;
5862
5863 spin_unlock(&device->io_lock);
5864
5865 if (should_queue)
a8c93d4e
QW
5866 btrfs_queue_work(root->fs_info->submit_workers,
5867 &device->work);
8b712842
CM
5868}
5869
de1ee92a
JB
5870static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5871 sector_t sector)
5872{
5873 struct bio_vec *prev;
5874 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5875 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5876 struct bvec_merge_data bvm = {
5877 .bi_bdev = bdev,
5878 .bi_sector = sector,
5879 .bi_rw = bio->bi_rw,
5880 };
5881
fae7f21c 5882 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5883 return 1;
de1ee92a
JB
5884
5885 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5886 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5887 return 0;
5888
5889 if (!q->merge_bvec_fn)
5890 return 1;
5891
4f024f37 5892 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5893 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5894 return 0;
5895 return 1;
5896}
5897
5898static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5899 struct bio *bio, u64 physical, int dev_nr,
5900 int rw, int async)
5901{
5902 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5903
5904 bio->bi_private = bbio;
9be3395b 5905 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5906 bio->bi_end_io = btrfs_end_bio;
4f024f37 5907 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5908#ifdef DEBUG
5909 {
5910 struct rcu_string *name;
5911
5912 rcu_read_lock();
5913 name = rcu_dereference(dev->name);
d1423248 5914 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5915 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5916 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5917 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5918 rcu_read_unlock();
5919 }
5920#endif
5921 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5922
5923 btrfs_bio_counter_inc_noblocked(root->fs_info);
5924
de1ee92a 5925 if (async)
53b381b3 5926 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5927 else
5928 btrfsic_submit_bio(rw, bio);
5929}
5930
5931static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5932 struct bio *first_bio, struct btrfs_device *dev,
5933 int dev_nr, int rw, int async)
5934{
5935 struct bio_vec *bvec = first_bio->bi_io_vec;
5936 struct bio *bio;
5937 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5938 u64 physical = bbio->stripes[dev_nr].physical;
5939
5940again:
5941 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5942 if (!bio)
5943 return -ENOMEM;
5944
da2f0f74
CM
5945 if (first_bio->bi_ioc) {
5946 get_io_context_active(first_bio->bi_ioc);
5947 bio->bi_ioc = first_bio->bi_ioc;
5948 }
5949 if (first_bio->bi_css) {
5950 css_get(first_bio->bi_css);
5951 bio->bi_css = first_bio->bi_css;
5952 }
de1ee92a
JB
5953 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5954 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5955 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5956 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5957
5958 atomic_inc(&bbio->stripes_pending);
5959 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5960 rw, async);
5961 physical += len;
5962 goto again;
5963 }
5964 bvec++;
5965 }
5966
5967 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5968 return 0;
5969}
5970
5971static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5972{
5973 atomic_inc(&bbio->error);
5974 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5975 /* Shoud be the original bio. */
5976 WARN_ON(bio != bbio->orig_bio);
5977
9be3395b 5978 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5979 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5980
5981 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5982 }
5983}
5984
f188591e 5985int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5986 int mirror_num, int async_submit)
0b86a832 5987{
0b86a832 5988 struct btrfs_device *dev;
8790d502 5989 struct bio *first_bio = bio;
4f024f37 5990 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5991 u64 length = 0;
5992 u64 map_length;
0b86a832 5993 int ret;
08da757d
ZL
5994 int dev_nr;
5995 int total_devs;
a1d3c478 5996 struct btrfs_bio *bbio = NULL;
0b86a832 5997
4f024f37 5998 length = bio->bi_iter.bi_size;
0b86a832 5999 map_length = length;
cea9e445 6000
c404e0dc 6001 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6002 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6003 mirror_num, 1);
c404e0dc
MX
6004 if (ret) {
6005 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6006 return ret;
c404e0dc 6007 }
cea9e445 6008
a1d3c478 6009 total_devs = bbio->num_stripes;
53b381b3
DW
6010 bbio->orig_bio = first_bio;
6011 bbio->private = first_bio->bi_private;
6012 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6013 bbio->fs_info = root->fs_info;
53b381b3
DW
6014 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6015
8e5cfb55 6016 if (bbio->raid_map) {
53b381b3
DW
6017 /* In this case, map_length has been set to the length of
6018 a single stripe; not the whole write */
6019 if (rw & WRITE) {
8e5cfb55 6020 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6021 } else {
8e5cfb55 6022 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6023 mirror_num, 1);
53b381b3 6024 }
4245215d 6025
c404e0dc
MX
6026 btrfs_bio_counter_dec(root->fs_info);
6027 return ret;
53b381b3
DW
6028 }
6029
cea9e445 6030 if (map_length < length) {
c2cf52eb 6031 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6032 logical, length, map_length);
cea9e445
CM
6033 BUG();
6034 }
a1d3c478 6035
08da757d 6036 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6037 dev = bbio->stripes[dev_nr].dev;
6038 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6039 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6040 continue;
6041 }
6042
6043 /*
6044 * Check and see if we're ok with this bio based on it's size
6045 * and offset with the given device.
6046 */
6047 if (!bio_size_ok(dev->bdev, first_bio,
6048 bbio->stripes[dev_nr].physical >> 9)) {
6049 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6050 dev_nr, rw, async_submit);
6051 BUG_ON(ret);
de1ee92a
JB
6052 continue;
6053 }
6054
a1d3c478 6055 if (dev_nr < total_devs - 1) {
9be3395b 6056 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6057 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6058 } else
a1d3c478 6059 bio = first_bio;
de1ee92a
JB
6060
6061 submit_stripe_bio(root, bbio, bio,
6062 bbio->stripes[dev_nr].physical, dev_nr, rw,
6063 async_submit);
8790d502 6064 }
c404e0dc 6065 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6066 return 0;
6067}
6068
aa1b8cd4 6069struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6070 u8 *uuid, u8 *fsid)
0b86a832 6071{
2b82032c
YZ
6072 struct btrfs_device *device;
6073 struct btrfs_fs_devices *cur_devices;
6074
aa1b8cd4 6075 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6076 while (cur_devices) {
6077 if (!fsid ||
6078 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6079 device = __find_device(&cur_devices->devices,
6080 devid, uuid);
6081 if (device)
6082 return device;
6083 }
6084 cur_devices = cur_devices->seed;
6085 }
6086 return NULL;
0b86a832
CM
6087}
6088
dfe25020 6089static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6090 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6091 u64 devid, u8 *dev_uuid)
6092{
6093 struct btrfs_device *device;
dfe25020 6094
12bd2fc0
ID
6095 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6096 if (IS_ERR(device))
7cbd8a83 6097 return NULL;
12bd2fc0
ID
6098
6099 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6100 device->fs_devices = fs_devices;
dfe25020 6101 fs_devices->num_devices++;
12bd2fc0
ID
6102
6103 device->missing = 1;
cd02dca5 6104 fs_devices->missing_devices++;
12bd2fc0 6105
dfe25020
CM
6106 return device;
6107}
6108
12bd2fc0
ID
6109/**
6110 * btrfs_alloc_device - allocate struct btrfs_device
6111 * @fs_info: used only for generating a new devid, can be NULL if
6112 * devid is provided (i.e. @devid != NULL).
6113 * @devid: a pointer to devid for this device. If NULL a new devid
6114 * is generated.
6115 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6116 * is generated.
6117 *
6118 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6119 * on error. Returned struct is not linked onto any lists and can be
6120 * destroyed with kfree() right away.
6121 */
6122struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6123 const u64 *devid,
6124 const u8 *uuid)
6125{
6126 struct btrfs_device *dev;
6127 u64 tmp;
6128
fae7f21c 6129 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6130 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6131
6132 dev = __alloc_device();
6133 if (IS_ERR(dev))
6134 return dev;
6135
6136 if (devid)
6137 tmp = *devid;
6138 else {
6139 int ret;
6140
6141 ret = find_next_devid(fs_info, &tmp);
6142 if (ret) {
6143 kfree(dev);
6144 return ERR_PTR(ret);
6145 }
6146 }
6147 dev->devid = tmp;
6148
6149 if (uuid)
6150 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6151 else
6152 generate_random_uuid(dev->uuid);
6153
9e0af237
LB
6154 btrfs_init_work(&dev->work, btrfs_submit_helper,
6155 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6156
6157 return dev;
6158}
6159
0b86a832
CM
6160static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6161 struct extent_buffer *leaf,
6162 struct btrfs_chunk *chunk)
6163{
6164 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6165 struct map_lookup *map;
6166 struct extent_map *em;
6167 u64 logical;
6168 u64 length;
6169 u64 devid;
a443755f 6170 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6171 int num_stripes;
0b86a832 6172 int ret;
593060d7 6173 int i;
0b86a832 6174
e17cade2
CM
6175 logical = key->offset;
6176 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 6177
890871be 6178 read_lock(&map_tree->map_tree.lock);
0b86a832 6179 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6180 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6181
6182 /* already mapped? */
6183 if (em && em->start <= logical && em->start + em->len > logical) {
6184 free_extent_map(em);
0b86a832
CM
6185 return 0;
6186 } else if (em) {
6187 free_extent_map(em);
6188 }
0b86a832 6189
172ddd60 6190 em = alloc_extent_map();
0b86a832
CM
6191 if (!em)
6192 return -ENOMEM;
593060d7
CM
6193 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6194 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6195 if (!map) {
6196 free_extent_map(em);
6197 return -ENOMEM;
6198 }
6199
298a8f9c 6200 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
6201 em->bdev = (struct block_device *)map;
6202 em->start = logical;
6203 em->len = length;
70c8a91c 6204 em->orig_start = 0;
0b86a832 6205 em->block_start = 0;
c8b97818 6206 em->block_len = em->len;
0b86a832 6207
593060d7
CM
6208 map->num_stripes = num_stripes;
6209 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6210 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6211 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6212 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6213 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6214 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6215 for (i = 0; i < num_stripes; i++) {
6216 map->stripes[i].physical =
6217 btrfs_stripe_offset_nr(leaf, chunk, i);
6218 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6219 read_extent_buffer(leaf, uuid, (unsigned long)
6220 btrfs_stripe_dev_uuid_nr(chunk, i),
6221 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6222 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6223 uuid, NULL);
dfe25020 6224 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6225 free_extent_map(em);
6226 return -EIO;
6227 }
dfe25020
CM
6228 if (!map->stripes[i].dev) {
6229 map->stripes[i].dev =
5f375835
MX
6230 add_missing_dev(root, root->fs_info->fs_devices,
6231 devid, uuid);
dfe25020 6232 if (!map->stripes[i].dev) {
dfe25020
CM
6233 free_extent_map(em);
6234 return -EIO;
6235 }
816fcebe
AJ
6236 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6237 devid, uuid);
dfe25020
CM
6238 }
6239 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6240 }
6241
890871be 6242 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6243 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6244 write_unlock(&map_tree->map_tree.lock);
79787eaa 6245 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6246 free_extent_map(em);
6247
6248 return 0;
6249}
6250
143bede5 6251static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6252 struct btrfs_dev_item *dev_item,
6253 struct btrfs_device *device)
6254{
6255 unsigned long ptr;
0b86a832
CM
6256
6257 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6258 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6259 device->total_bytes = device->disk_total_bytes;
935e5cc9 6260 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6261 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6262 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6263 device->type = btrfs_device_type(leaf, dev_item);
6264 device->io_align = btrfs_device_io_align(leaf, dev_item);
6265 device->io_width = btrfs_device_io_width(leaf, dev_item);
6266 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6267 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6268 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6269
410ba3a2 6270 ptr = btrfs_device_uuid(dev_item);
e17cade2 6271 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6272}
6273
5f375835
MX
6274static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6275 u8 *fsid)
2b82032c
YZ
6276{
6277 struct btrfs_fs_devices *fs_devices;
6278 int ret;
6279
b367e47f 6280 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6281
6282 fs_devices = root->fs_info->fs_devices->seed;
6283 while (fs_devices) {
5f375835
MX
6284 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6285 return fs_devices;
6286
2b82032c
YZ
6287 fs_devices = fs_devices->seed;
6288 }
6289
6290 fs_devices = find_fsid(fsid);
6291 if (!fs_devices) {
5f375835
MX
6292 if (!btrfs_test_opt(root, DEGRADED))
6293 return ERR_PTR(-ENOENT);
6294
6295 fs_devices = alloc_fs_devices(fsid);
6296 if (IS_ERR(fs_devices))
6297 return fs_devices;
6298
6299 fs_devices->seeding = 1;
6300 fs_devices->opened = 1;
6301 return fs_devices;
2b82032c 6302 }
e4404d6e
YZ
6303
6304 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6305 if (IS_ERR(fs_devices))
6306 return fs_devices;
2b82032c 6307
97288f2c 6308 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6309 root->fs_info->bdev_holder);
48d28232
JL
6310 if (ret) {
6311 free_fs_devices(fs_devices);
5f375835 6312 fs_devices = ERR_PTR(ret);
2b82032c 6313 goto out;
48d28232 6314 }
2b82032c
YZ
6315
6316 if (!fs_devices->seeding) {
6317 __btrfs_close_devices(fs_devices);
e4404d6e 6318 free_fs_devices(fs_devices);
5f375835 6319 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6320 goto out;
6321 }
6322
6323 fs_devices->seed = root->fs_info->fs_devices->seed;
6324 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6325out:
5f375835 6326 return fs_devices;
2b82032c
YZ
6327}
6328
0d81ba5d 6329static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6330 struct extent_buffer *leaf,
6331 struct btrfs_dev_item *dev_item)
6332{
5f375835 6333 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6334 struct btrfs_device *device;
6335 u64 devid;
6336 int ret;
2b82032c 6337 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6338 u8 dev_uuid[BTRFS_UUID_SIZE];
6339
0b86a832 6340 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6341 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6342 BTRFS_UUID_SIZE);
1473b24e 6343 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6344 BTRFS_UUID_SIZE);
6345
6346 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6347 fs_devices = open_seed_devices(root, fs_uuid);
6348 if (IS_ERR(fs_devices))
6349 return PTR_ERR(fs_devices);
2b82032c
YZ
6350 }
6351
aa1b8cd4 6352 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6353 if (!device) {
e4404d6e 6354 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6355 return -EIO;
6356
5f375835
MX
6357 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6358 if (!device)
6359 return -ENOMEM;
33b97e43
AJ
6360 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6361 devid, dev_uuid);
5f375835
MX
6362 } else {
6363 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6364 return -EIO;
6365
6366 if(!device->bdev && !device->missing) {
cd02dca5
CM
6367 /*
6368 * this happens when a device that was properly setup
6369 * in the device info lists suddenly goes bad.
6370 * device->bdev is NULL, and so we have to set
6371 * device->missing to one here
6372 */
5f375835 6373 device->fs_devices->missing_devices++;
cd02dca5 6374 device->missing = 1;
2b82032c 6375 }
5f375835
MX
6376
6377 /* Move the device to its own fs_devices */
6378 if (device->fs_devices != fs_devices) {
6379 ASSERT(device->missing);
6380
6381 list_move(&device->dev_list, &fs_devices->devices);
6382 device->fs_devices->num_devices--;
6383 fs_devices->num_devices++;
6384
6385 device->fs_devices->missing_devices--;
6386 fs_devices->missing_devices++;
6387
6388 device->fs_devices = fs_devices;
6389 }
2b82032c
YZ
6390 }
6391
6392 if (device->fs_devices != root->fs_info->fs_devices) {
6393 BUG_ON(device->writeable);
6394 if (device->generation !=
6395 btrfs_device_generation(leaf, dev_item))
6396 return -EINVAL;
6324fbf3 6397 }
0b86a832
CM
6398
6399 fill_device_from_item(leaf, dev_item, device);
dfe25020 6400 device->in_fs_metadata = 1;
63a212ab 6401 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6402 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6403 spin_lock(&root->fs_info->free_chunk_lock);
6404 root->fs_info->free_chunk_space += device->total_bytes -
6405 device->bytes_used;
6406 spin_unlock(&root->fs_info->free_chunk_lock);
6407 }
0b86a832 6408 ret = 0;
0b86a832
CM
6409 return ret;
6410}
6411
e4404d6e 6412int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6413{
6c41761f 6414 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6415 struct extent_buffer *sb;
0b86a832 6416 struct btrfs_disk_key *disk_key;
0b86a832 6417 struct btrfs_chunk *chunk;
1ffb22cf
DS
6418 u8 *array_ptr;
6419 unsigned long sb_array_offset;
84eed90f 6420 int ret = 0;
0b86a832
CM
6421 u32 num_stripes;
6422 u32 array_size;
6423 u32 len = 0;
1ffb22cf 6424 u32 cur_offset;
84eed90f 6425 struct btrfs_key key;
0b86a832 6426
a83fffb7
DS
6427 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6428 /*
6429 * This will create extent buffer of nodesize, superblock size is
6430 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6431 * overallocate but we can keep it as-is, only the first page is used.
6432 */
6433 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6434 if (!sb)
6435 return -ENOMEM;
6436 btrfs_set_buffer_uptodate(sb);
85d4e461 6437 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6438 /*
6439 * The sb extent buffer is artifical and just used to read the system array.
6440 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6441 * pages up-to-date when the page is larger: extent does not cover the
6442 * whole page and consequently check_page_uptodate does not find all
6443 * the page's extents up-to-date (the hole beyond sb),
6444 * write_extent_buffer then triggers a WARN_ON.
6445 *
6446 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6447 * but sb spans only this function. Add an explicit SetPageUptodate call
6448 * to silence the warning eg. on PowerPC 64.
6449 */
6450 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6451 SetPageUptodate(sb->pages[0]);
4008c04a 6452
a061fc8d 6453 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6454 array_size = btrfs_super_sys_array_size(super_copy);
6455
1ffb22cf
DS
6456 array_ptr = super_copy->sys_chunk_array;
6457 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6458 cur_offset = 0;
0b86a832 6459
1ffb22cf
DS
6460 while (cur_offset < array_size) {
6461 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6462 len = sizeof(*disk_key);
6463 if (cur_offset + len > array_size)
6464 goto out_short_read;
6465
0b86a832
CM
6466 btrfs_disk_key_to_cpu(&key, disk_key);
6467
1ffb22cf
DS
6468 array_ptr += len;
6469 sb_array_offset += len;
6470 cur_offset += len;
0b86a832 6471
0d81ba5d 6472 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6473 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6474 /*
6475 * At least one btrfs_chunk with one stripe must be
6476 * present, exact stripe count check comes afterwards
6477 */
6478 len = btrfs_chunk_item_size(1);
6479 if (cur_offset + len > array_size)
6480 goto out_short_read;
6481
6482 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6483 len = btrfs_chunk_item_size(num_stripes);
6484 if (cur_offset + len > array_size)
6485 goto out_short_read;
6486
0d81ba5d 6487 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6488 if (ret)
6489 break;
0b86a832 6490 } else {
84eed90f
CM
6491 ret = -EIO;
6492 break;
0b86a832 6493 }
1ffb22cf
DS
6494 array_ptr += len;
6495 sb_array_offset += len;
6496 cur_offset += len;
0b86a832 6497 }
a061fc8d 6498 free_extent_buffer(sb);
84eed90f 6499 return ret;
e3540eab
DS
6500
6501out_short_read:
6502 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6503 len, cur_offset);
6504 free_extent_buffer(sb);
6505 return -EIO;
0b86a832
CM
6506}
6507
6508int btrfs_read_chunk_tree(struct btrfs_root *root)
6509{
6510 struct btrfs_path *path;
6511 struct extent_buffer *leaf;
6512 struct btrfs_key key;
6513 struct btrfs_key found_key;
6514 int ret;
6515 int slot;
6516
6517 root = root->fs_info->chunk_root;
6518
6519 path = btrfs_alloc_path();
6520 if (!path)
6521 return -ENOMEM;
6522
b367e47f
LZ
6523 mutex_lock(&uuid_mutex);
6524 lock_chunks(root);
6525
395927a9
FDBM
6526 /*
6527 * Read all device items, and then all the chunk items. All
6528 * device items are found before any chunk item (their object id
6529 * is smaller than the lowest possible object id for a chunk
6530 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6531 */
6532 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6533 key.offset = 0;
6534 key.type = 0;
0b86a832 6535 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6536 if (ret < 0)
6537 goto error;
d397712b 6538 while (1) {
0b86a832
CM
6539 leaf = path->nodes[0];
6540 slot = path->slots[0];
6541 if (slot >= btrfs_header_nritems(leaf)) {
6542 ret = btrfs_next_leaf(root, path);
6543 if (ret == 0)
6544 continue;
6545 if (ret < 0)
6546 goto error;
6547 break;
6548 }
6549 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6550 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6551 struct btrfs_dev_item *dev_item;
6552 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6553 struct btrfs_dev_item);
395927a9
FDBM
6554 ret = read_one_dev(root, leaf, dev_item);
6555 if (ret)
6556 goto error;
0b86a832
CM
6557 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6558 struct btrfs_chunk *chunk;
6559 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6560 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6561 if (ret)
6562 goto error;
0b86a832
CM
6563 }
6564 path->slots[0]++;
6565 }
0b86a832
CM
6566 ret = 0;
6567error:
b367e47f
LZ
6568 unlock_chunks(root);
6569 mutex_unlock(&uuid_mutex);
6570
2b82032c 6571 btrfs_free_path(path);
0b86a832
CM
6572 return ret;
6573}
442a4f63 6574
cb517eab
MX
6575void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6576{
6577 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6578 struct btrfs_device *device;
6579
29cc83f6
LB
6580 while (fs_devices) {
6581 mutex_lock(&fs_devices->device_list_mutex);
6582 list_for_each_entry(device, &fs_devices->devices, dev_list)
6583 device->dev_root = fs_info->dev_root;
6584 mutex_unlock(&fs_devices->device_list_mutex);
6585
6586 fs_devices = fs_devices->seed;
6587 }
cb517eab
MX
6588}
6589
733f4fbb
SB
6590static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6591{
6592 int i;
6593
6594 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6595 btrfs_dev_stat_reset(dev, i);
6596}
6597
6598int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6599{
6600 struct btrfs_key key;
6601 struct btrfs_key found_key;
6602 struct btrfs_root *dev_root = fs_info->dev_root;
6603 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6604 struct extent_buffer *eb;
6605 int slot;
6606 int ret = 0;
6607 struct btrfs_device *device;
6608 struct btrfs_path *path = NULL;
6609 int i;
6610
6611 path = btrfs_alloc_path();
6612 if (!path) {
6613 ret = -ENOMEM;
6614 goto out;
6615 }
6616
6617 mutex_lock(&fs_devices->device_list_mutex);
6618 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6619 int item_size;
6620 struct btrfs_dev_stats_item *ptr;
6621
6622 key.objectid = 0;
6623 key.type = BTRFS_DEV_STATS_KEY;
6624 key.offset = device->devid;
6625 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6626 if (ret) {
733f4fbb
SB
6627 __btrfs_reset_dev_stats(device);
6628 device->dev_stats_valid = 1;
6629 btrfs_release_path(path);
6630 continue;
6631 }
6632 slot = path->slots[0];
6633 eb = path->nodes[0];
6634 btrfs_item_key_to_cpu(eb, &found_key, slot);
6635 item_size = btrfs_item_size_nr(eb, slot);
6636
6637 ptr = btrfs_item_ptr(eb, slot,
6638 struct btrfs_dev_stats_item);
6639
6640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6641 if (item_size >= (1 + i) * sizeof(__le64))
6642 btrfs_dev_stat_set(device, i,
6643 btrfs_dev_stats_value(eb, ptr, i));
6644 else
6645 btrfs_dev_stat_reset(device, i);
6646 }
6647
6648 device->dev_stats_valid = 1;
6649 btrfs_dev_stat_print_on_load(device);
6650 btrfs_release_path(path);
6651 }
6652 mutex_unlock(&fs_devices->device_list_mutex);
6653
6654out:
6655 btrfs_free_path(path);
6656 return ret < 0 ? ret : 0;
6657}
6658
6659static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6660 struct btrfs_root *dev_root,
6661 struct btrfs_device *device)
6662{
6663 struct btrfs_path *path;
6664 struct btrfs_key key;
6665 struct extent_buffer *eb;
6666 struct btrfs_dev_stats_item *ptr;
6667 int ret;
6668 int i;
6669
6670 key.objectid = 0;
6671 key.type = BTRFS_DEV_STATS_KEY;
6672 key.offset = device->devid;
6673
6674 path = btrfs_alloc_path();
6675 BUG_ON(!path);
6676 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6677 if (ret < 0) {
efe120a0
FH
6678 printk_in_rcu(KERN_WARNING "BTRFS: "
6679 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6680 ret, rcu_str_deref(device->name));
733f4fbb
SB
6681 goto out;
6682 }
6683
6684 if (ret == 0 &&
6685 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6686 /* need to delete old one and insert a new one */
6687 ret = btrfs_del_item(trans, dev_root, path);
6688 if (ret != 0) {
efe120a0
FH
6689 printk_in_rcu(KERN_WARNING "BTRFS: "
6690 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6691 rcu_str_deref(device->name), ret);
733f4fbb
SB
6692 goto out;
6693 }
6694 ret = 1;
6695 }
6696
6697 if (ret == 1) {
6698 /* need to insert a new item */
6699 btrfs_release_path(path);
6700 ret = btrfs_insert_empty_item(trans, dev_root, path,
6701 &key, sizeof(*ptr));
6702 if (ret < 0) {
efe120a0
FH
6703 printk_in_rcu(KERN_WARNING "BTRFS: "
6704 "insert dev_stats item for device %s failed %d!\n",
606686ee 6705 rcu_str_deref(device->name), ret);
733f4fbb
SB
6706 goto out;
6707 }
6708 }
6709
6710 eb = path->nodes[0];
6711 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6712 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6713 btrfs_set_dev_stats_value(eb, ptr, i,
6714 btrfs_dev_stat_read(device, i));
6715 btrfs_mark_buffer_dirty(eb);
6716
6717out:
6718 btrfs_free_path(path);
6719 return ret;
6720}
6721
6722/*
6723 * called from commit_transaction. Writes all changed device stats to disk.
6724 */
6725int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6726 struct btrfs_fs_info *fs_info)
6727{
6728 struct btrfs_root *dev_root = fs_info->dev_root;
6729 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6730 struct btrfs_device *device;
addc3fa7 6731 int stats_cnt;
733f4fbb
SB
6732 int ret = 0;
6733
6734 mutex_lock(&fs_devices->device_list_mutex);
6735 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6736 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6737 continue;
6738
addc3fa7 6739 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6740 ret = update_dev_stat_item(trans, dev_root, device);
6741 if (!ret)
addc3fa7 6742 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6743 }
6744 mutex_unlock(&fs_devices->device_list_mutex);
6745
6746 return ret;
6747}
6748
442a4f63
SB
6749void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6750{
6751 btrfs_dev_stat_inc(dev, index);
6752 btrfs_dev_stat_print_on_error(dev);
6753}
6754
48a3b636 6755static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6756{
733f4fbb
SB
6757 if (!dev->dev_stats_valid)
6758 return;
efe120a0
FH
6759 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6760 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6761 rcu_str_deref(dev->name),
442a4f63
SB
6762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6766 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6767}
c11d2c23 6768
733f4fbb
SB
6769static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6770{
a98cdb85
SB
6771 int i;
6772
6773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6774 if (btrfs_dev_stat_read(dev, i) != 0)
6775 break;
6776 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6777 return; /* all values == 0, suppress message */
6778
efe120a0
FH
6779 printk_in_rcu(KERN_INFO "BTRFS: "
6780 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6781 rcu_str_deref(dev->name),
733f4fbb
SB
6782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6787}
6788
c11d2c23 6789int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6790 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6791{
6792 struct btrfs_device *dev;
6793 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6794 int i;
6795
6796 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6797 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6798 mutex_unlock(&fs_devices->device_list_mutex);
6799
6800 if (!dev) {
efe120a0 6801 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6802 return -ENODEV;
733f4fbb 6803 } else if (!dev->dev_stats_valid) {
efe120a0 6804 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6805 return -ENODEV;
b27f7c0c 6806 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6807 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6808 if (stats->nr_items > i)
6809 stats->values[i] =
6810 btrfs_dev_stat_read_and_reset(dev, i);
6811 else
6812 btrfs_dev_stat_reset(dev, i);
6813 }
6814 } else {
6815 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6816 if (stats->nr_items > i)
6817 stats->values[i] = btrfs_dev_stat_read(dev, i);
6818 }
6819 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6820 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6821 return 0;
6822}
a8a6dab7
SB
6823
6824int btrfs_scratch_superblock(struct btrfs_device *device)
6825{
6826 struct buffer_head *bh;
6827 struct btrfs_super_block *disk_super;
6828
6829 bh = btrfs_read_dev_super(device->bdev);
6830 if (!bh)
6831 return -EINVAL;
6832 disk_super = (struct btrfs_super_block *)bh->b_data;
6833
6834 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6835 set_buffer_dirty(bh);
6836 sync_dirty_buffer(bh);
6837 brelse(bh);
6838
6839 return 0;
6840}
935e5cc9
MX
6841
6842/*
6843 * Update the size of all devices, which is used for writing out the
6844 * super blocks.
6845 */
6846void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6847{
6848 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6849 struct btrfs_device *curr, *next;
6850
6851 if (list_empty(&fs_devices->resized_devices))
6852 return;
6853
6854 mutex_lock(&fs_devices->device_list_mutex);
6855 lock_chunks(fs_info->dev_root);
6856 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6857 resized_list) {
6858 list_del_init(&curr->resized_list);
6859 curr->commit_total_bytes = curr->disk_total_bytes;
6860 }
6861 unlock_chunks(fs_info->dev_root);
6862 mutex_unlock(&fs_devices->device_list_mutex);
6863}
ce7213c7
MX
6864
6865/* Must be invoked during the transaction commit */
6866void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6867 struct btrfs_transaction *transaction)
6868{
6869 struct extent_map *em;
6870 struct map_lookup *map;
6871 struct btrfs_device *dev;
6872 int i;
6873
6874 if (list_empty(&transaction->pending_chunks))
6875 return;
6876
6877 /* In order to kick the device replace finish process */
6878 lock_chunks(root);
6879 list_for_each_entry(em, &transaction->pending_chunks, list) {
6880 map = (struct map_lookup *)em->bdev;
6881
6882 for (i = 0; i < map->num_stripes; i++) {
6883 dev = map->stripes[i].dev;
6884 dev->commit_bytes_used = dev->bytes_used;
6885 }
6886 }
6887 unlock_chunks(root);
6888}
5a13f430
AJ
6889
6890void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6891{
6892 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6893 while (fs_devices) {
6894 fs_devices->fs_info = fs_info;
6895 fs_devices = fs_devices->seed;
6896 }
6897}
6898
6899void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6900{
6901 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6902 while (fs_devices) {
6903 fs_devices->fs_info = NULL;
6904 fs_devices = fs_devices->seed;
6905 }
6906}