Btrfs: fix leaking block group on balance
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
4b4e25f2 23#include <linux/version.h>
593060d7 24#include <asm/div64.h>
4b4e25f2 25#include "compat.h"
0b86a832
CM
26#include "ctree.h"
27#include "extent_map.h"
28#include "disk-io.h"
29#include "transaction.h"
30#include "print-tree.h"
31#include "volumes.h"
8b712842 32#include "async-thread.h"
0b86a832 33
593060d7
CM
34struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
321aecc6 41 int sub_stripes;
cea9e445 42 struct btrfs_bio_stripe stripes[];
593060d7
CM
43};
44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49
50
593060d7 51#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 52 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 53
8a4b83cc
CM
54static DEFINE_MUTEX(uuid_mutex);
55static LIST_HEAD(fs_uuids);
56
a061fc8d
CM
57void btrfs_lock_volumes(void)
58{
59 mutex_lock(&uuid_mutex);
60}
61
62void btrfs_unlock_volumes(void)
63{
64 mutex_unlock(&uuid_mutex);
65}
66
7d9eb12c
CM
67static void lock_chunks(struct btrfs_root *root)
68{
7d9eb12c
CM
69 mutex_lock(&root->fs_info->chunk_mutex);
70}
71
72static void unlock_chunks(struct btrfs_root *root)
73{
7d9eb12c
CM
74 mutex_unlock(&root->fs_info->chunk_mutex);
75}
76
8a4b83cc
CM
77int btrfs_cleanup_fs_uuids(void)
78{
79 struct btrfs_fs_devices *fs_devices;
8a4b83cc
CM
80 struct btrfs_device *dev;
81
2b82032c
YZ
82 while (!list_empty(&fs_uuids)) {
83 fs_devices = list_entry(fs_uuids.next,
84 struct btrfs_fs_devices, list);
85 list_del(&fs_devices->list);
8a4b83cc 86 while(!list_empty(&fs_devices->devices)) {
2b82032c
YZ
87 dev = list_entry(fs_devices->devices.next,
88 struct btrfs_device, dev_list);
8a4b83cc 89 if (dev->bdev) {
15916de8 90 close_bdev_exclusive(dev->bdev, dev->mode);
a0af469b 91 fs_devices->open_devices--;
8a4b83cc 92 }
2b82032c
YZ
93 fs_devices->num_devices--;
94 if (dev->writeable)
95 fs_devices->rw_devices--;
8a4b83cc 96 list_del(&dev->dev_list);
2b82032c 97 list_del(&dev->dev_alloc_list);
dfe25020 98 kfree(dev->name);
8a4b83cc
CM
99 kfree(dev);
100 }
2b82032c
YZ
101 WARN_ON(fs_devices->num_devices);
102 WARN_ON(fs_devices->open_devices);
103 WARN_ON(fs_devices->rw_devices);
104 kfree(fs_devices);
8a4b83cc
CM
105 }
106 return 0;
107}
108
a1b32a59
CM
109static noinline struct btrfs_device *__find_device(struct list_head *head,
110 u64 devid, u8 *uuid)
8a4b83cc
CM
111{
112 struct btrfs_device *dev;
113 struct list_head *cur;
114
115 list_for_each(cur, head) {
116 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 117 if (dev->devid == devid &&
8f18cf13 118 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 119 return dev;
a443755f 120 }
8a4b83cc
CM
121 }
122 return NULL;
123}
124
a1b32a59 125static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc
CM
126{
127 struct list_head *cur;
128 struct btrfs_fs_devices *fs_devices;
129
130 list_for_each(cur, &fs_uuids) {
131 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
132 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
133 return fs_devices;
134 }
135 return NULL;
136}
137
8b712842
CM
138/*
139 * we try to collect pending bios for a device so we don't get a large
140 * number of procs sending bios down to the same device. This greatly
141 * improves the schedulers ability to collect and merge the bios.
142 *
143 * But, it also turns into a long list of bios to process and that is sure
144 * to eventually make the worker thread block. The solution here is to
145 * make some progress and then put this work struct back at the end of
146 * the list if the block device is congested. This way, multiple devices
147 * can make progress from a single worker thread.
148 */
a1b32a59 149static int noinline run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
150{
151 struct bio *pending;
152 struct backing_dev_info *bdi;
b64a2851 153 struct btrfs_fs_info *fs_info;
8b712842
CM
154 struct bio *tail;
155 struct bio *cur;
156 int again = 0;
157 unsigned long num_run = 0;
b64a2851 158 unsigned long limit;
8b712842
CM
159
160 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
b64a2851
CM
161 fs_info = device->dev_root->fs_info;
162 limit = btrfs_async_submit_limit(fs_info);
163 limit = limit * 2 / 3;
164
8b712842
CM
165loop:
166 spin_lock(&device->io_lock);
167
168 /* take all the bios off the list at once and process them
169 * later on (without the lock held). But, remember the
170 * tail and other pointers so the bios can be properly reinserted
171 * into the list if we hit congestion
172 */
173 pending = device->pending_bios;
174 tail = device->pending_bio_tail;
175 WARN_ON(pending && !tail);
176 device->pending_bios = NULL;
177 device->pending_bio_tail = NULL;
178
179 /*
180 * if pending was null this time around, no bios need processing
181 * at all and we can stop. Otherwise it'll loop back up again
182 * and do an additional check so no bios are missed.
183 *
184 * device->running_pending is used to synchronize with the
185 * schedule_bio code.
186 */
187 if (pending) {
188 again = 1;
189 device->running_pending = 1;
190 } else {
191 again = 0;
192 device->running_pending = 0;
193 }
194 spin_unlock(&device->io_lock);
195
196 while(pending) {
197 cur = pending;
198 pending = pending->bi_next;
199 cur->bi_next = NULL;
b64a2851
CM
200 atomic_dec(&fs_info->nr_async_bios);
201
202 if (atomic_read(&fs_info->nr_async_bios) < limit &&
203 waitqueue_active(&fs_info->async_submit_wait))
204 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
205
206 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
207 bio_get(cur);
8b712842 208 submit_bio(cur->bi_rw, cur);
492bb6de 209 bio_put(cur);
8b712842
CM
210 num_run++;
211
212 /*
213 * we made progress, there is more work to do and the bdi
214 * is now congested. Back off and let other work structs
215 * run instead
216 */
5f2cc086
CM
217 if (pending && bdi_write_congested(bdi) &&
218 fs_info->fs_devices->open_devices > 1) {
8b712842
CM
219 struct bio *old_head;
220
221 spin_lock(&device->io_lock);
492bb6de 222
8b712842
CM
223 old_head = device->pending_bios;
224 device->pending_bios = pending;
225 if (device->pending_bio_tail)
226 tail->bi_next = old_head;
227 else
228 device->pending_bio_tail = tail;
229
230 spin_unlock(&device->io_lock);
231 btrfs_requeue_work(&device->work);
232 goto done;
233 }
234 }
235 if (again)
236 goto loop;
237done:
238 return 0;
239}
240
b2950863 241static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
242{
243 struct btrfs_device *device;
244
245 device = container_of(work, struct btrfs_device, work);
246 run_scheduled_bios(device);
247}
248
a1b32a59 249static noinline int device_list_add(const char *path,
8a4b83cc
CM
250 struct btrfs_super_block *disk_super,
251 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
252{
253 struct btrfs_device *device;
254 struct btrfs_fs_devices *fs_devices;
255 u64 found_transid = btrfs_super_generation(disk_super);
256
257 fs_devices = find_fsid(disk_super->fsid);
258 if (!fs_devices) {
515dc322 259 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
260 if (!fs_devices)
261 return -ENOMEM;
262 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 263 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
264 list_add(&fs_devices->list, &fs_uuids);
265 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
266 fs_devices->latest_devid = devid;
267 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
268 device = NULL;
269 } else {
a443755f
CM
270 device = __find_device(&fs_devices->devices, devid,
271 disk_super->dev_item.uuid);
8a4b83cc
CM
272 }
273 if (!device) {
2b82032c
YZ
274 if (fs_devices->opened)
275 return -EBUSY;
276
8a4b83cc
CM
277 device = kzalloc(sizeof(*device), GFP_NOFS);
278 if (!device) {
279 /* we can safely leave the fs_devices entry around */
280 return -ENOMEM;
281 }
282 device->devid = devid;
8b712842 283 device->work.func = pending_bios_fn;
a443755f
CM
284 memcpy(device->uuid, disk_super->dev_item.uuid,
285 BTRFS_UUID_SIZE);
f2984462 286 device->barriers = 1;
b248a415 287 spin_lock_init(&device->io_lock);
8a4b83cc
CM
288 device->name = kstrdup(path, GFP_NOFS);
289 if (!device->name) {
290 kfree(device);
291 return -ENOMEM;
292 }
2b82032c 293 INIT_LIST_HEAD(&device->dev_alloc_list);
8a4b83cc 294 list_add(&device->dev_list, &fs_devices->devices);
2b82032c 295 device->fs_devices = fs_devices;
8a4b83cc
CM
296 fs_devices->num_devices++;
297 }
298
299 if (found_transid > fs_devices->latest_trans) {
300 fs_devices->latest_devid = devid;
301 fs_devices->latest_trans = found_transid;
302 }
8a4b83cc
CM
303 *fs_devices_ret = fs_devices;
304 return 0;
305}
306
dfe25020
CM
307int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
308{
2b82032c 309 struct list_head *tmp;
dfe25020
CM
310 struct list_head *cur;
311 struct btrfs_device *device;
2b82032c 312 int seed_devices = 0;
dfe25020
CM
313
314 mutex_lock(&uuid_mutex);
315again:
2b82032c 316 list_for_each_safe(cur, tmp, &fs_devices->devices) {
dfe25020 317 device = list_entry(cur, struct btrfs_device, dev_list);
2b82032c
YZ
318 if (device->in_fs_metadata)
319 continue;
320
321 if (device->bdev) {
15916de8 322 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
323 device->bdev = NULL;
324 fs_devices->open_devices--;
325 }
326 if (device->writeable) {
327 list_del_init(&device->dev_alloc_list);
328 device->writeable = 0;
329 fs_devices->rw_devices--;
330 }
331 if (!seed_devices) {
332 list_del_init(&device->dev_list);
dfe25020
CM
333 fs_devices->num_devices--;
334 kfree(device->name);
335 kfree(device);
dfe25020
CM
336 }
337 }
2b82032c
YZ
338
339 if (fs_devices->seed) {
340 fs_devices = fs_devices->seed;
341 seed_devices = 1;
342 goto again;
343 }
344
dfe25020
CM
345 mutex_unlock(&uuid_mutex);
346 return 0;
347}
a0af469b 348
2b82032c 349static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 350{
2b82032c 351 struct btrfs_fs_devices *seed_devices;
8a4b83cc
CM
352 struct list_head *cur;
353 struct btrfs_device *device;
2b82032c
YZ
354again:
355 if (--fs_devices->opened > 0)
356 return 0;
8a4b83cc 357
2b82032c 358 list_for_each(cur, &fs_devices->devices) {
8a4b83cc
CM
359 device = list_entry(cur, struct btrfs_device, dev_list);
360 if (device->bdev) {
15916de8 361 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 362 fs_devices->open_devices--;
8a4b83cc 363 }
2b82032c
YZ
364 if (device->writeable) {
365 list_del_init(&device->dev_alloc_list);
366 fs_devices->rw_devices--;
367 }
368
8a4b83cc 369 device->bdev = NULL;
2b82032c 370 device->writeable = 0;
dfe25020 371 device->in_fs_metadata = 0;
8a4b83cc 372 }
2b82032c
YZ
373 fs_devices->opened = 0;
374 fs_devices->seeding = 0;
375 fs_devices->sprouted = 0;
376
377 seed_devices = fs_devices->seed;
378 fs_devices->seed = NULL;
379 if (seed_devices) {
380 fs_devices = seed_devices;
381 goto again;
382 }
8a4b83cc
CM
383 return 0;
384}
385
2b82032c
YZ
386int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
387{
388 int ret;
389
390 mutex_lock(&uuid_mutex);
391 ret = __btrfs_close_devices(fs_devices);
392 mutex_unlock(&uuid_mutex);
393 return ret;
394}
395
15916de8 396int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 397 fmode_t flags, void *holder)
8a4b83cc
CM
398{
399 struct block_device *bdev;
400 struct list_head *head = &fs_devices->devices;
401 struct list_head *cur;
402 struct btrfs_device *device;
a0af469b
CM
403 struct block_device *latest_bdev = NULL;
404 struct buffer_head *bh;
405 struct btrfs_super_block *disk_super;
406 u64 latest_devid = 0;
407 u64 latest_transid = 0;
a0af469b 408 u64 devid;
2b82032c 409 int seeding = 1;
a0af469b 410 int ret = 0;
8a4b83cc 411
8a4b83cc
CM
412 list_for_each(cur, head) {
413 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
414 if (device->bdev)
415 continue;
dfe25020
CM
416 if (!device->name)
417 continue;
418
15916de8 419 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc
CM
420 if (IS_ERR(bdev)) {
421 printk("open %s failed\n", device->name);
a0af469b 422 goto error;
8a4b83cc 423 }
a061fc8d 424 set_blocksize(bdev, 4096);
a0af469b 425
a512bbf8 426 bh = btrfs_read_dev_super(bdev);
a0af469b
CM
427 if (!bh)
428 goto error_close;
429
430 disk_super = (struct btrfs_super_block *)bh->b_data;
a0af469b
CM
431 devid = le64_to_cpu(disk_super->dev_item.devid);
432 if (devid != device->devid)
433 goto error_brelse;
434
2b82032c
YZ
435 if (memcmp(device->uuid, disk_super->dev_item.uuid,
436 BTRFS_UUID_SIZE))
437 goto error_brelse;
438
439 device->generation = btrfs_super_generation(disk_super);
440 if (!latest_transid || device->generation > latest_transid) {
a0af469b 441 latest_devid = devid;
2b82032c 442 latest_transid = device->generation;
a0af469b
CM
443 latest_bdev = bdev;
444 }
445
2b82032c
YZ
446 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
447 device->writeable = 0;
448 } else {
449 device->writeable = !bdev_read_only(bdev);
450 seeding = 0;
451 }
452
8a4b83cc 453 device->bdev = bdev;
dfe25020 454 device->in_fs_metadata = 0;
15916de8
CM
455 device->mode = flags;
456
a0af469b 457 fs_devices->open_devices++;
2b82032c
YZ
458 if (device->writeable) {
459 fs_devices->rw_devices++;
460 list_add(&device->dev_alloc_list,
461 &fs_devices->alloc_list);
462 }
a0af469b 463 continue;
a061fc8d 464
a0af469b
CM
465error_brelse:
466 brelse(bh);
467error_close:
97288f2c 468 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
469error:
470 continue;
8a4b83cc 471 }
a0af469b
CM
472 if (fs_devices->open_devices == 0) {
473 ret = -EIO;
474 goto out;
475 }
2b82032c
YZ
476 fs_devices->seeding = seeding;
477 fs_devices->opened = 1;
a0af469b
CM
478 fs_devices->latest_bdev = latest_bdev;
479 fs_devices->latest_devid = latest_devid;
480 fs_devices->latest_trans = latest_transid;
2b82032c 481 fs_devices->total_rw_bytes = 0;
a0af469b 482out:
2b82032c
YZ
483 return ret;
484}
485
486int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 487 fmode_t flags, void *holder)
2b82032c
YZ
488{
489 int ret;
490
491 mutex_lock(&uuid_mutex);
492 if (fs_devices->opened) {
493 if (fs_devices->sprouted) {
494 ret = -EBUSY;
495 } else {
496 fs_devices->opened++;
497 ret = 0;
498 }
499 } else {
15916de8 500 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 501 }
8a4b83cc 502 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
503 return ret;
504}
505
97288f2c 506int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
507 struct btrfs_fs_devices **fs_devices_ret)
508{
509 struct btrfs_super_block *disk_super;
510 struct block_device *bdev;
511 struct buffer_head *bh;
512 int ret;
513 u64 devid;
f2984462 514 u64 transid;
8a4b83cc
CM
515
516 mutex_lock(&uuid_mutex);
517
15916de8 518 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
519
520 if (IS_ERR(bdev)) {
8a4b83cc
CM
521 ret = PTR_ERR(bdev);
522 goto error;
523 }
524
525 ret = set_blocksize(bdev, 4096);
526 if (ret)
527 goto error_close;
a512bbf8 528 bh = btrfs_read_dev_super(bdev);
8a4b83cc
CM
529 if (!bh) {
530 ret = -EIO;
531 goto error_close;
532 }
533 disk_super = (struct btrfs_super_block *)bh->b_data;
8a4b83cc 534 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 535 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
536 if (disk_super->label[0])
537 printk("device label %s ", disk_super->label);
538 else {
539 /* FIXME, make a readl uuid parser */
540 printk("device fsid %llx-%llx ",
541 *(unsigned long long *)disk_super->fsid,
542 *(unsigned long long *)(disk_super->fsid + 8));
543 }
544 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
545 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
546
8a4b83cc
CM
547 brelse(bh);
548error_close:
15916de8 549 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
550error:
551 mutex_unlock(&uuid_mutex);
552 return ret;
553}
0b86a832
CM
554
555/*
556 * this uses a pretty simple search, the expectation is that it is
557 * called very infrequently and that a given device has a small number
558 * of extents
559 */
a1b32a59
CM
560static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
561 struct btrfs_device *device,
a1b32a59 562 u64 num_bytes, u64 *start)
0b86a832
CM
563{
564 struct btrfs_key key;
565 struct btrfs_root *root = device->dev_root;
566 struct btrfs_dev_extent *dev_extent = NULL;
2b82032c 567 struct btrfs_path *path;
0b86a832
CM
568 u64 hole_size = 0;
569 u64 last_byte = 0;
570 u64 search_start = 0;
571 u64 search_end = device->total_bytes;
572 int ret;
573 int slot = 0;
574 int start_found;
575 struct extent_buffer *l;
576
2b82032c
YZ
577 path = btrfs_alloc_path();
578 if (!path)
579 return -ENOMEM;
0b86a832 580 path->reada = 2;
2b82032c 581 start_found = 0;
0b86a832
CM
582
583 /* FIXME use last free of some kind */
584
8a4b83cc
CM
585 /* we don't want to overwrite the superblock on the drive,
586 * so we make sure to start at an offset of at least 1MB
587 */
588 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
589
590 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
591 search_start = max(root->fs_info->alloc_start, search_start);
592
0b86a832
CM
593 key.objectid = device->devid;
594 key.offset = search_start;
595 key.type = BTRFS_DEV_EXTENT_KEY;
596 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
597 if (ret < 0)
598 goto error;
599 ret = btrfs_previous_item(root, path, 0, key.type);
600 if (ret < 0)
601 goto error;
602 l = path->nodes[0];
603 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
604 while (1) {
605 l = path->nodes[0];
606 slot = path->slots[0];
607 if (slot >= btrfs_header_nritems(l)) {
608 ret = btrfs_next_leaf(root, path);
609 if (ret == 0)
610 continue;
611 if (ret < 0)
612 goto error;
613no_more_items:
614 if (!start_found) {
615 if (search_start >= search_end) {
616 ret = -ENOSPC;
617 goto error;
618 }
619 *start = search_start;
620 start_found = 1;
621 goto check_pending;
622 }
623 *start = last_byte > search_start ?
624 last_byte : search_start;
625 if (search_end <= *start) {
626 ret = -ENOSPC;
627 goto error;
628 }
629 goto check_pending;
630 }
631 btrfs_item_key_to_cpu(l, &key, slot);
632
633 if (key.objectid < device->devid)
634 goto next;
635
636 if (key.objectid > device->devid)
637 goto no_more_items;
638
639 if (key.offset >= search_start && key.offset > last_byte &&
640 start_found) {
641 if (last_byte < search_start)
642 last_byte = search_start;
643 hole_size = key.offset - last_byte;
644 if (key.offset > last_byte &&
645 hole_size >= num_bytes) {
646 *start = last_byte;
647 goto check_pending;
648 }
649 }
650 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
651 goto next;
652 }
653
654 start_found = 1;
655 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
656 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
657next:
658 path->slots[0]++;
659 cond_resched();
660 }
661check_pending:
662 /* we have to make sure we didn't find an extent that has already
663 * been allocated by the map tree or the original allocation
664 */
0b86a832
CM
665 BUG_ON(*start < search_start);
666
6324fbf3 667 if (*start + num_bytes > search_end) {
0b86a832
CM
668 ret = -ENOSPC;
669 goto error;
670 }
671 /* check for pending inserts here */
2b82032c 672 ret = 0;
0b86a832
CM
673
674error:
2b82032c 675 btrfs_free_path(path);
0b86a832
CM
676 return ret;
677}
678
b2950863 679static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
680 struct btrfs_device *device,
681 u64 start)
682{
683 int ret;
684 struct btrfs_path *path;
685 struct btrfs_root *root = device->dev_root;
686 struct btrfs_key key;
a061fc8d
CM
687 struct btrfs_key found_key;
688 struct extent_buffer *leaf = NULL;
689 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
690
691 path = btrfs_alloc_path();
692 if (!path)
693 return -ENOMEM;
694
695 key.objectid = device->devid;
696 key.offset = start;
697 key.type = BTRFS_DEV_EXTENT_KEY;
698
699 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
700 if (ret > 0) {
701 ret = btrfs_previous_item(root, path, key.objectid,
702 BTRFS_DEV_EXTENT_KEY);
703 BUG_ON(ret);
704 leaf = path->nodes[0];
705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
706 extent = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_dev_extent);
708 BUG_ON(found_key.offset > start || found_key.offset +
709 btrfs_dev_extent_length(leaf, extent) < start);
710 ret = 0;
711 } else if (ret == 0) {
712 leaf = path->nodes[0];
713 extent = btrfs_item_ptr(leaf, path->slots[0],
714 struct btrfs_dev_extent);
715 }
8f18cf13
CM
716 BUG_ON(ret);
717
dfe25020
CM
718 if (device->bytes_used > 0)
719 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
720 ret = btrfs_del_item(trans, root, path);
721 BUG_ON(ret);
722
723 btrfs_free_path(path);
724 return ret;
725}
726
2b82032c 727int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 728 struct btrfs_device *device,
e17cade2 729 u64 chunk_tree, u64 chunk_objectid,
2b82032c 730 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
731{
732 int ret;
733 struct btrfs_path *path;
734 struct btrfs_root *root = device->dev_root;
735 struct btrfs_dev_extent *extent;
736 struct extent_buffer *leaf;
737 struct btrfs_key key;
738
dfe25020 739 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
740 path = btrfs_alloc_path();
741 if (!path)
742 return -ENOMEM;
743
0b86a832 744 key.objectid = device->devid;
2b82032c 745 key.offset = start;
0b86a832
CM
746 key.type = BTRFS_DEV_EXTENT_KEY;
747 ret = btrfs_insert_empty_item(trans, root, path, &key,
748 sizeof(*extent));
749 BUG_ON(ret);
750
751 leaf = path->nodes[0];
752 extent = btrfs_item_ptr(leaf, path->slots[0],
753 struct btrfs_dev_extent);
e17cade2
CM
754 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
755 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
756 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
757
758 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
759 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
760 BTRFS_UUID_SIZE);
761
0b86a832
CM
762 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
763 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
764 btrfs_free_path(path);
765 return ret;
766}
767
a1b32a59
CM
768static noinline int find_next_chunk(struct btrfs_root *root,
769 u64 objectid, u64 *offset)
0b86a832
CM
770{
771 struct btrfs_path *path;
772 int ret;
773 struct btrfs_key key;
e17cade2 774 struct btrfs_chunk *chunk;
0b86a832
CM
775 struct btrfs_key found_key;
776
777 path = btrfs_alloc_path();
778 BUG_ON(!path);
779
e17cade2 780 key.objectid = objectid;
0b86a832
CM
781 key.offset = (u64)-1;
782 key.type = BTRFS_CHUNK_ITEM_KEY;
783
784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
785 if (ret < 0)
786 goto error;
787
788 BUG_ON(ret == 0);
789
790 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
791 if (ret) {
e17cade2 792 *offset = 0;
0b86a832
CM
793 } else {
794 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
795 path->slots[0]);
e17cade2
CM
796 if (found_key.objectid != objectid)
797 *offset = 0;
798 else {
799 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
800 struct btrfs_chunk);
801 *offset = found_key.offset +
802 btrfs_chunk_length(path->nodes[0], chunk);
803 }
0b86a832
CM
804 }
805 ret = 0;
806error:
807 btrfs_free_path(path);
808 return ret;
809}
810
2b82032c 811static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
812{
813 int ret;
814 struct btrfs_key key;
815 struct btrfs_key found_key;
2b82032c
YZ
816 struct btrfs_path *path;
817
818 root = root->fs_info->chunk_root;
819
820 path = btrfs_alloc_path();
821 if (!path)
822 return -ENOMEM;
0b86a832
CM
823
824 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
825 key.type = BTRFS_DEV_ITEM_KEY;
826 key.offset = (u64)-1;
827
828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
829 if (ret < 0)
830 goto error;
831
832 BUG_ON(ret == 0);
833
834 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
835 BTRFS_DEV_ITEM_KEY);
836 if (ret) {
837 *objectid = 1;
838 } else {
839 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
840 path->slots[0]);
841 *objectid = found_key.offset + 1;
842 }
843 ret = 0;
844error:
2b82032c 845 btrfs_free_path(path);
0b86a832
CM
846 return ret;
847}
848
849/*
850 * the device information is stored in the chunk root
851 * the btrfs_device struct should be fully filled in
852 */
853int btrfs_add_device(struct btrfs_trans_handle *trans,
854 struct btrfs_root *root,
855 struct btrfs_device *device)
856{
857 int ret;
858 struct btrfs_path *path;
859 struct btrfs_dev_item *dev_item;
860 struct extent_buffer *leaf;
861 struct btrfs_key key;
862 unsigned long ptr;
0b86a832
CM
863
864 root = root->fs_info->chunk_root;
865
866 path = btrfs_alloc_path();
867 if (!path)
868 return -ENOMEM;
869
0b86a832
CM
870 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
871 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 872 key.offset = device->devid;
0b86a832
CM
873
874 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 875 sizeof(*dev_item));
0b86a832
CM
876 if (ret)
877 goto out;
878
879 leaf = path->nodes[0];
880 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
881
882 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 883 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
884 btrfs_set_device_type(leaf, dev_item, device->type);
885 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
886 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
887 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
888 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
889 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
890 btrfs_set_device_group(leaf, dev_item, 0);
891 btrfs_set_device_seek_speed(leaf, dev_item, 0);
892 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 893 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 894
0b86a832 895 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 896 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
897 ptr = (unsigned long)btrfs_device_fsid(dev_item);
898 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 899 btrfs_mark_buffer_dirty(leaf);
0b86a832 900
2b82032c 901 ret = 0;
0b86a832
CM
902out:
903 btrfs_free_path(path);
904 return ret;
905}
8f18cf13 906
a061fc8d
CM
907static int btrfs_rm_dev_item(struct btrfs_root *root,
908 struct btrfs_device *device)
909{
910 int ret;
911 struct btrfs_path *path;
a061fc8d 912 struct btrfs_key key;
a061fc8d
CM
913 struct btrfs_trans_handle *trans;
914
915 root = root->fs_info->chunk_root;
916
917 path = btrfs_alloc_path();
918 if (!path)
919 return -ENOMEM;
920
921 trans = btrfs_start_transaction(root, 1);
922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
923 key.type = BTRFS_DEV_ITEM_KEY;
924 key.offset = device->devid;
7d9eb12c 925 lock_chunks(root);
a061fc8d
CM
926
927 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
928 if (ret < 0)
929 goto out;
930
931 if (ret > 0) {
932 ret = -ENOENT;
933 goto out;
934 }
935
936 ret = btrfs_del_item(trans, root, path);
937 if (ret)
938 goto out;
a061fc8d
CM
939out:
940 btrfs_free_path(path);
7d9eb12c 941 unlock_chunks(root);
a061fc8d
CM
942 btrfs_commit_transaction(trans, root);
943 return ret;
944}
945
946int btrfs_rm_device(struct btrfs_root *root, char *device_path)
947{
948 struct btrfs_device *device;
2b82032c 949 struct btrfs_device *next_device;
a061fc8d 950 struct block_device *bdev;
dfe25020 951 struct buffer_head *bh = NULL;
a061fc8d
CM
952 struct btrfs_super_block *disk_super;
953 u64 all_avail;
954 u64 devid;
2b82032c
YZ
955 u64 num_devices;
956 u8 *dev_uuid;
a061fc8d
CM
957 int ret = 0;
958
a061fc8d 959 mutex_lock(&uuid_mutex);
7d9eb12c 960 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
961
962 all_avail = root->fs_info->avail_data_alloc_bits |
963 root->fs_info->avail_system_alloc_bits |
964 root->fs_info->avail_metadata_alloc_bits;
965
966 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
2b82032c 967 root->fs_info->fs_devices->rw_devices <= 4) {
a061fc8d
CM
968 printk("btrfs: unable to go below four devices on raid10\n");
969 ret = -EINVAL;
970 goto out;
971 }
972
973 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
2b82032c 974 root->fs_info->fs_devices->rw_devices <= 2) {
a061fc8d
CM
975 printk("btrfs: unable to go below two devices on raid1\n");
976 ret = -EINVAL;
977 goto out;
978 }
979
dfe25020
CM
980 if (strcmp(device_path, "missing") == 0) {
981 struct list_head *cur;
982 struct list_head *devices;
983 struct btrfs_device *tmp;
a061fc8d 984
dfe25020
CM
985 device = NULL;
986 devices = &root->fs_info->fs_devices->devices;
987 list_for_each(cur, devices) {
988 tmp = list_entry(cur, struct btrfs_device, dev_list);
989 if (tmp->in_fs_metadata && !tmp->bdev) {
990 device = tmp;
991 break;
992 }
993 }
994 bdev = NULL;
995 bh = NULL;
996 disk_super = NULL;
997 if (!device) {
998 printk("btrfs: no missing devices found to remove\n");
999 goto out;
1000 }
dfe25020 1001 } else {
97288f2c 1002 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1003 root->fs_info->bdev_holder);
1004 if (IS_ERR(bdev)) {
1005 ret = PTR_ERR(bdev);
1006 goto out;
1007 }
a061fc8d 1008
2b82032c 1009 set_blocksize(bdev, 4096);
a512bbf8 1010 bh = btrfs_read_dev_super(bdev);
dfe25020
CM
1011 if (!bh) {
1012 ret = -EIO;
1013 goto error_close;
1014 }
1015 disk_super = (struct btrfs_super_block *)bh->b_data;
dfe25020 1016 devid = le64_to_cpu(disk_super->dev_item.devid);
2b82032c
YZ
1017 dev_uuid = disk_super->dev_item.uuid;
1018 device = btrfs_find_device(root, devid, dev_uuid,
1019 disk_super->fsid);
dfe25020
CM
1020 if (!device) {
1021 ret = -ENOENT;
1022 goto error_brelse;
1023 }
2b82032c 1024 }
dfe25020 1025
2b82032c
YZ
1026 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1027 printk("btrfs: unable to remove the only writeable device\n");
1028 ret = -EINVAL;
1029 goto error_brelse;
1030 }
1031
1032 if (device->writeable) {
1033 list_del_init(&device->dev_alloc_list);
1034 root->fs_info->fs_devices->rw_devices--;
dfe25020 1035 }
a061fc8d
CM
1036
1037 ret = btrfs_shrink_device(device, 0);
1038 if (ret)
1039 goto error_brelse;
1040
a061fc8d
CM
1041 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1042 if (ret)
1043 goto error_brelse;
1044
2b82032c
YZ
1045 device->in_fs_metadata = 0;
1046 if (device->fs_devices == root->fs_info->fs_devices) {
1047 list_del_init(&device->dev_list);
1048 root->fs_info->fs_devices->num_devices--;
1049 if (device->bdev)
1050 device->fs_devices->open_devices--;
1051 }
1052
1053 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1054 struct btrfs_device, dev_list);
1055 if (device->bdev == root->fs_info->sb->s_bdev)
1056 root->fs_info->sb->s_bdev = next_device->bdev;
1057 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1058 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1059
1060 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1061 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1062
1063 if (device->fs_devices != root->fs_info->fs_devices) {
1064 BUG_ON(device->writeable);
1065 brelse(bh);
1066 if (bdev)
97288f2c 1067 close_bdev_exclusive(bdev, FMODE_READ);
2b82032c
YZ
1068
1069 if (device->bdev) {
15916de8 1070 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
1071 device->bdev = NULL;
1072 device->fs_devices->open_devices--;
1073 }
1074 if (device->fs_devices->open_devices == 0) {
1075 struct btrfs_fs_devices *fs_devices;
1076 fs_devices = root->fs_info->fs_devices;
1077 while (fs_devices) {
1078 if (fs_devices->seed == device->fs_devices)
1079 break;
1080 fs_devices = fs_devices->seed;
1081 }
1082 fs_devices->seed = device->fs_devices->seed;
1083 device->fs_devices->seed = NULL;
1084 __btrfs_close_devices(device->fs_devices);
1085 }
1086 ret = 0;
1087 goto out;
1088 }
1089
1090 /*
1091 * at this point, the device is zero sized. We want to
1092 * remove it from the devices list and zero out the old super
1093 */
1094 if (device->writeable) {
dfe25020
CM
1095 /* make sure this device isn't detected as part of
1096 * the FS anymore
1097 */
1098 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1099 set_buffer_dirty(bh);
1100 sync_dirty_buffer(bh);
dfe25020 1101 }
2b82032c 1102 brelse(bh);
a061fc8d 1103
dfe25020
CM
1104 if (device->bdev) {
1105 /* one close for the device struct or super_block */
15916de8 1106 close_bdev_exclusive(device->bdev, device->mode);
dfe25020
CM
1107 }
1108 if (bdev) {
1109 /* one close for us */
97288f2c 1110 close_bdev_exclusive(bdev, FMODE_READ);
dfe25020 1111 }
a061fc8d
CM
1112 kfree(device->name);
1113 kfree(device);
1114 ret = 0;
1115 goto out;
1116
1117error_brelse:
1118 brelse(bh);
1119error_close:
dfe25020 1120 if (bdev)
97288f2c 1121 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1122out:
7d9eb12c 1123 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1124 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1125 return ret;
1126}
1127
2b82032c
YZ
1128/*
1129 * does all the dirty work required for changing file system's UUID.
1130 */
1131static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root)
1133{
1134 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1135 struct btrfs_fs_devices *old_devices;
1136 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1137 struct btrfs_device *device;
1138 u64 super_flags;
1139
1140 BUG_ON(!mutex_is_locked(&uuid_mutex));
1141 if (!fs_devices->seeding || fs_devices->opened != 1)
1142 return -EINVAL;
1143
1144 old_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1145 if (!old_devices)
1146 return -ENOMEM;
1147
1148 memcpy(old_devices, fs_devices, sizeof(*old_devices));
1149 old_devices->opened = 1;
1150 old_devices->sprouted = 1;
1151 INIT_LIST_HEAD(&old_devices->devices);
1152 INIT_LIST_HEAD(&old_devices->alloc_list);
1153 list_splice_init(&fs_devices->devices, &old_devices->devices);
1154 list_splice_init(&fs_devices->alloc_list, &old_devices->alloc_list);
1155 list_for_each_entry(device, &old_devices->devices, dev_list) {
1156 device->fs_devices = old_devices;
1157 }
1158 list_add(&old_devices->list, &fs_uuids);
1159
1160 fs_devices->seeding = 0;
1161 fs_devices->num_devices = 0;
1162 fs_devices->open_devices = 0;
1163 fs_devices->seed = old_devices;
1164
1165 generate_random_uuid(fs_devices->fsid);
1166 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1167 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1168 super_flags = btrfs_super_flags(disk_super) &
1169 ~BTRFS_SUPER_FLAG_SEEDING;
1170 btrfs_set_super_flags(disk_super, super_flags);
1171
1172 return 0;
1173}
1174
1175/*
1176 * strore the expected generation for seed devices in device items.
1177 */
1178static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root)
1180{
1181 struct btrfs_path *path;
1182 struct extent_buffer *leaf;
1183 struct btrfs_dev_item *dev_item;
1184 struct btrfs_device *device;
1185 struct btrfs_key key;
1186 u8 fs_uuid[BTRFS_UUID_SIZE];
1187 u8 dev_uuid[BTRFS_UUID_SIZE];
1188 u64 devid;
1189 int ret;
1190
1191 path = btrfs_alloc_path();
1192 if (!path)
1193 return -ENOMEM;
1194
1195 root = root->fs_info->chunk_root;
1196 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1197 key.offset = 0;
1198 key.type = BTRFS_DEV_ITEM_KEY;
1199
1200 while (1) {
1201 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1202 if (ret < 0)
1203 goto error;
1204
1205 leaf = path->nodes[0];
1206next_slot:
1207 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1208 ret = btrfs_next_leaf(root, path);
1209 if (ret > 0)
1210 break;
1211 if (ret < 0)
1212 goto error;
1213 leaf = path->nodes[0];
1214 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1215 btrfs_release_path(root, path);
1216 continue;
1217 }
1218
1219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1220 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1221 key.type != BTRFS_DEV_ITEM_KEY)
1222 break;
1223
1224 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_dev_item);
1226 devid = btrfs_device_id(leaf, dev_item);
1227 read_extent_buffer(leaf, dev_uuid,
1228 (unsigned long)btrfs_device_uuid(dev_item),
1229 BTRFS_UUID_SIZE);
1230 read_extent_buffer(leaf, fs_uuid,
1231 (unsigned long)btrfs_device_fsid(dev_item),
1232 BTRFS_UUID_SIZE);
1233 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1234 BUG_ON(!device);
1235
1236 if (device->fs_devices->seeding) {
1237 btrfs_set_device_generation(leaf, dev_item,
1238 device->generation);
1239 btrfs_mark_buffer_dirty(leaf);
1240 }
1241
1242 path->slots[0]++;
1243 goto next_slot;
1244 }
1245 ret = 0;
1246error:
1247 btrfs_free_path(path);
1248 return ret;
1249}
1250
788f20eb
CM
1251int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1252{
1253 struct btrfs_trans_handle *trans;
1254 struct btrfs_device *device;
1255 struct block_device *bdev;
1256 struct list_head *cur;
1257 struct list_head *devices;
2b82032c 1258 struct super_block *sb = root->fs_info->sb;
788f20eb 1259 u64 total_bytes;
2b82032c 1260 int seeding_dev = 0;
788f20eb
CM
1261 int ret = 0;
1262
2b82032c
YZ
1263 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1264 return -EINVAL;
788f20eb 1265
15916de8 1266 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
788f20eb
CM
1267 if (!bdev) {
1268 return -EIO;
1269 }
a2135011 1270
2b82032c
YZ
1271 if (root->fs_info->fs_devices->seeding) {
1272 seeding_dev = 1;
1273 down_write(&sb->s_umount);
1274 mutex_lock(&uuid_mutex);
1275 }
1276
8c8bee1d 1277 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1278 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1279
788f20eb
CM
1280 devices = &root->fs_info->fs_devices->devices;
1281 list_for_each(cur, devices) {
1282 device = list_entry(cur, struct btrfs_device, dev_list);
1283 if (device->bdev == bdev) {
1284 ret = -EEXIST;
2b82032c 1285 goto error;
788f20eb
CM
1286 }
1287 }
1288
1289 device = kzalloc(sizeof(*device), GFP_NOFS);
1290 if (!device) {
1291 /* we can safely leave the fs_devices entry around */
1292 ret = -ENOMEM;
2b82032c 1293 goto error;
788f20eb
CM
1294 }
1295
788f20eb
CM
1296 device->name = kstrdup(device_path, GFP_NOFS);
1297 if (!device->name) {
1298 kfree(device);
2b82032c
YZ
1299 ret = -ENOMEM;
1300 goto error;
788f20eb 1301 }
2b82032c
YZ
1302
1303 ret = find_next_devid(root, &device->devid);
1304 if (ret) {
1305 kfree(device);
1306 goto error;
1307 }
1308
1309 trans = btrfs_start_transaction(root, 1);
1310 lock_chunks(root);
1311
1312 device->barriers = 1;
1313 device->writeable = 1;
1314 device->work.func = pending_bios_fn;
1315 generate_random_uuid(device->uuid);
1316 spin_lock_init(&device->io_lock);
1317 device->generation = trans->transid;
788f20eb
CM
1318 device->io_width = root->sectorsize;
1319 device->io_align = root->sectorsize;
1320 device->sector_size = root->sectorsize;
1321 device->total_bytes = i_size_read(bdev->bd_inode);
1322 device->dev_root = root->fs_info->dev_root;
1323 device->bdev = bdev;
dfe25020 1324 device->in_fs_metadata = 1;
15916de8 1325 device->mode = 0;
2b82032c 1326 set_blocksize(device->bdev, 4096);
788f20eb 1327
2b82032c
YZ
1328 if (seeding_dev) {
1329 sb->s_flags &= ~MS_RDONLY;
1330 ret = btrfs_prepare_sprout(trans, root);
1331 BUG_ON(ret);
1332 }
788f20eb 1333
2b82032c
YZ
1334 device->fs_devices = root->fs_info->fs_devices;
1335 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1336 list_add(&device->dev_alloc_list,
1337 &root->fs_info->fs_devices->alloc_list);
1338 root->fs_info->fs_devices->num_devices++;
1339 root->fs_info->fs_devices->open_devices++;
1340 root->fs_info->fs_devices->rw_devices++;
1341 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1342
788f20eb
CM
1343 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1344 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1345 total_bytes + device->total_bytes);
1346
1347 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1348 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1349 total_bytes + 1);
1350
2b82032c
YZ
1351 if (seeding_dev) {
1352 ret = init_first_rw_device(trans, root, device);
1353 BUG_ON(ret);
1354 ret = btrfs_finish_sprout(trans, root);
1355 BUG_ON(ret);
1356 } else {
1357 ret = btrfs_add_device(trans, root, device);
1358 }
1359
7d9eb12c 1360 unlock_chunks(root);
2b82032c 1361 btrfs_commit_transaction(trans, root);
a2135011 1362
2b82032c
YZ
1363 if (seeding_dev) {
1364 mutex_unlock(&uuid_mutex);
1365 up_write(&sb->s_umount);
788f20eb 1366
2b82032c
YZ
1367 ret = btrfs_relocate_sys_chunks(root);
1368 BUG_ON(ret);
1369 }
1370out:
1371 mutex_unlock(&root->fs_info->volume_mutex);
1372 return ret;
1373error:
15916de8 1374 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1375 if (seeding_dev) {
1376 mutex_unlock(&uuid_mutex);
1377 up_write(&sb->s_umount);
1378 }
788f20eb
CM
1379 goto out;
1380}
1381
b2950863 1382static int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
a1b32a59 1383 struct btrfs_device *device)
0b86a832
CM
1384{
1385 int ret;
1386 struct btrfs_path *path;
1387 struct btrfs_root *root;
1388 struct btrfs_dev_item *dev_item;
1389 struct extent_buffer *leaf;
1390 struct btrfs_key key;
1391
1392 root = device->dev_root->fs_info->chunk_root;
1393
1394 path = btrfs_alloc_path();
1395 if (!path)
1396 return -ENOMEM;
1397
1398 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1399 key.type = BTRFS_DEV_ITEM_KEY;
1400 key.offset = device->devid;
1401
1402 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1403 if (ret < 0)
1404 goto out;
1405
1406 if (ret > 0) {
1407 ret = -ENOENT;
1408 goto out;
1409 }
1410
1411 leaf = path->nodes[0];
1412 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1413
1414 btrfs_set_device_id(leaf, dev_item, device->devid);
1415 btrfs_set_device_type(leaf, dev_item, device->type);
1416 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1417 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1418 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1419 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1420 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1421 btrfs_mark_buffer_dirty(leaf);
1422
1423out:
1424 btrfs_free_path(path);
1425 return ret;
1426}
1427
7d9eb12c 1428static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1429 struct btrfs_device *device, u64 new_size)
1430{
1431 struct btrfs_super_block *super_copy =
1432 &device->dev_root->fs_info->super_copy;
1433 u64 old_total = btrfs_super_total_bytes(super_copy);
1434 u64 diff = new_size - device->total_bytes;
1435
2b82032c
YZ
1436 if (!device->writeable)
1437 return -EACCES;
1438 if (new_size <= device->total_bytes)
1439 return -EINVAL;
1440
8f18cf13 1441 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1442 device->fs_devices->total_rw_bytes += diff;
1443
1444 device->total_bytes = new_size;
8f18cf13
CM
1445 return btrfs_update_device(trans, device);
1446}
1447
7d9eb12c
CM
1448int btrfs_grow_device(struct btrfs_trans_handle *trans,
1449 struct btrfs_device *device, u64 new_size)
1450{
1451 int ret;
1452 lock_chunks(device->dev_root);
1453 ret = __btrfs_grow_device(trans, device, new_size);
1454 unlock_chunks(device->dev_root);
1455 return ret;
1456}
1457
8f18cf13
CM
1458static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1459 struct btrfs_root *root,
1460 u64 chunk_tree, u64 chunk_objectid,
1461 u64 chunk_offset)
1462{
1463 int ret;
1464 struct btrfs_path *path;
1465 struct btrfs_key key;
1466
1467 root = root->fs_info->chunk_root;
1468 path = btrfs_alloc_path();
1469 if (!path)
1470 return -ENOMEM;
1471
1472 key.objectid = chunk_objectid;
1473 key.offset = chunk_offset;
1474 key.type = BTRFS_CHUNK_ITEM_KEY;
1475
1476 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1477 BUG_ON(ret);
1478
1479 ret = btrfs_del_item(trans, root, path);
1480 BUG_ON(ret);
1481
1482 btrfs_free_path(path);
1483 return 0;
1484}
1485
b2950863 1486static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1487 chunk_offset)
1488{
1489 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1490 struct btrfs_disk_key *disk_key;
1491 struct btrfs_chunk *chunk;
1492 u8 *ptr;
1493 int ret = 0;
1494 u32 num_stripes;
1495 u32 array_size;
1496 u32 len = 0;
1497 u32 cur;
1498 struct btrfs_key key;
1499
1500 array_size = btrfs_super_sys_array_size(super_copy);
1501
1502 ptr = super_copy->sys_chunk_array;
1503 cur = 0;
1504
1505 while (cur < array_size) {
1506 disk_key = (struct btrfs_disk_key *)ptr;
1507 btrfs_disk_key_to_cpu(&key, disk_key);
1508
1509 len = sizeof(*disk_key);
1510
1511 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1512 chunk = (struct btrfs_chunk *)(ptr + len);
1513 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1514 len += btrfs_chunk_item_size(num_stripes);
1515 } else {
1516 ret = -EIO;
1517 break;
1518 }
1519 if (key.objectid == chunk_objectid &&
1520 key.offset == chunk_offset) {
1521 memmove(ptr, ptr + len, array_size - (cur + len));
1522 array_size -= len;
1523 btrfs_set_super_sys_array_size(super_copy, array_size);
1524 } else {
1525 ptr += len;
1526 cur += len;
1527 }
1528 }
1529 return ret;
1530}
1531
b2950863 1532static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1533 u64 chunk_tree, u64 chunk_objectid,
1534 u64 chunk_offset)
1535{
1536 struct extent_map_tree *em_tree;
1537 struct btrfs_root *extent_root;
1538 struct btrfs_trans_handle *trans;
1539 struct extent_map *em;
1540 struct map_lookup *map;
1541 int ret;
1542 int i;
1543
323da79c
CM
1544 printk("btrfs relocating chunk %llu\n",
1545 (unsigned long long)chunk_offset);
8f18cf13
CM
1546 root = root->fs_info->chunk_root;
1547 extent_root = root->fs_info->extent_root;
1548 em_tree = &root->fs_info->mapping_tree.map_tree;
1549
1550 /* step one, relocate all the extents inside this chunk */
1a40e23b 1551 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
8f18cf13
CM
1552 BUG_ON(ret);
1553
1554 trans = btrfs_start_transaction(root, 1);
1555 BUG_ON(!trans);
1556
7d9eb12c
CM
1557 lock_chunks(root);
1558
8f18cf13
CM
1559 /*
1560 * step two, delete the device extents and the
1561 * chunk tree entries
1562 */
1563 spin_lock(&em_tree->lock);
1564 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1565 spin_unlock(&em_tree->lock);
1566
a061fc8d
CM
1567 BUG_ON(em->start > chunk_offset ||
1568 em->start + em->len < chunk_offset);
8f18cf13
CM
1569 map = (struct map_lookup *)em->bdev;
1570
1571 for (i = 0; i < map->num_stripes; i++) {
1572 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1573 map->stripes[i].physical);
1574 BUG_ON(ret);
a061fc8d 1575
dfe25020
CM
1576 if (map->stripes[i].dev) {
1577 ret = btrfs_update_device(trans, map->stripes[i].dev);
1578 BUG_ON(ret);
1579 }
8f18cf13
CM
1580 }
1581 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1582 chunk_offset);
1583
1584 BUG_ON(ret);
1585
1586 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1587 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1588 BUG_ON(ret);
8f18cf13
CM
1589 }
1590
2b82032c
YZ
1591 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1592 BUG_ON(ret);
1593
1594 spin_lock(&em_tree->lock);
1595 remove_extent_mapping(em_tree, em);
1596 spin_unlock(&em_tree->lock);
1597
1598 kfree(map);
1599 em->bdev = NULL;
1600
1601 /* once for the tree */
1602 free_extent_map(em);
1603 /* once for us */
1604 free_extent_map(em);
1605
1606 unlock_chunks(root);
1607 btrfs_end_transaction(trans, root);
1608 return 0;
1609}
1610
1611static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1612{
1613 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1614 struct btrfs_path *path;
1615 struct extent_buffer *leaf;
1616 struct btrfs_chunk *chunk;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
1619 u64 chunk_tree = chunk_root->root_key.objectid;
1620 u64 chunk_type;
1621 int ret;
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1628 key.offset = (u64)-1;
1629 key.type = BTRFS_CHUNK_ITEM_KEY;
1630
1631 while (1) {
1632 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1633 if (ret < 0)
1634 goto error;
1635 BUG_ON(ret == 0);
1636
1637 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1638 key.type);
1639 if (ret < 0)
1640 goto error;
1641 if (ret > 0)
1642 break;
1a40e23b 1643
2b82032c
YZ
1644 leaf = path->nodes[0];
1645 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1646
2b82032c
YZ
1647 chunk = btrfs_item_ptr(leaf, path->slots[0],
1648 struct btrfs_chunk);
1649 chunk_type = btrfs_chunk_type(leaf, chunk);
1650 btrfs_release_path(chunk_root, path);
8f18cf13 1651
2b82032c
YZ
1652 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1653 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1654 found_key.objectid,
1655 found_key.offset);
1656 BUG_ON(ret);
1657 }
8f18cf13 1658
2b82032c
YZ
1659 if (found_key.offset == 0)
1660 break;
1661 key.offset = found_key.offset - 1;
1662 }
1663 ret = 0;
1664error:
1665 btrfs_free_path(path);
1666 return ret;
8f18cf13
CM
1667}
1668
ec44a35c
CM
1669static u64 div_factor(u64 num, int factor)
1670{
1671 if (factor == 10)
1672 return num;
1673 num *= factor;
1674 do_div(num, 10);
1675 return num;
1676}
1677
ec44a35c
CM
1678int btrfs_balance(struct btrfs_root *dev_root)
1679{
1680 int ret;
1681 struct list_head *cur;
1682 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1683 struct btrfs_device *device;
1684 u64 old_size;
1685 u64 size_to_free;
1686 struct btrfs_path *path;
1687 struct btrfs_key key;
1688 struct btrfs_chunk *chunk;
1689 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1690 struct btrfs_trans_handle *trans;
1691 struct btrfs_key found_key;
1692
2b82032c
YZ
1693 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1694 return -EROFS;
ec44a35c 1695
7d9eb12c 1696 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1697 dev_root = dev_root->fs_info->dev_root;
1698
ec44a35c
CM
1699 /* step one make some room on all the devices */
1700 list_for_each(cur, devices) {
1701 device = list_entry(cur, struct btrfs_device, dev_list);
1702 old_size = device->total_bytes;
1703 size_to_free = div_factor(old_size, 1);
1704 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
1705 if (!device->writeable ||
1706 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
1707 continue;
1708
1709 ret = btrfs_shrink_device(device, old_size - size_to_free);
1710 BUG_ON(ret);
1711
1712 trans = btrfs_start_transaction(dev_root, 1);
1713 BUG_ON(!trans);
1714
1715 ret = btrfs_grow_device(trans, device, old_size);
1716 BUG_ON(ret);
1717
1718 btrfs_end_transaction(trans, dev_root);
1719 }
1720
1721 /* step two, relocate all the chunks */
1722 path = btrfs_alloc_path();
1723 BUG_ON(!path);
1724
1725 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1726 key.offset = (u64)-1;
1727 key.type = BTRFS_CHUNK_ITEM_KEY;
1728
1729 while(1) {
1730 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1731 if (ret < 0)
1732 goto error;
1733
1734 /*
1735 * this shouldn't happen, it means the last relocate
1736 * failed
1737 */
1738 if (ret == 0)
1739 break;
1740
1741 ret = btrfs_previous_item(chunk_root, path, 0,
1742 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1743 if (ret)
ec44a35c 1744 break;
7d9eb12c 1745
ec44a35c
CM
1746 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1747 path->slots[0]);
1748 if (found_key.objectid != key.objectid)
1749 break;
7d9eb12c 1750
ec44a35c
CM
1751 chunk = btrfs_item_ptr(path->nodes[0],
1752 path->slots[0],
1753 struct btrfs_chunk);
1754 key.offset = found_key.offset;
1755 /* chunk zero is special */
1756 if (key.offset == 0)
1757 break;
1758
7d9eb12c 1759 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1760 ret = btrfs_relocate_chunk(chunk_root,
1761 chunk_root->root_key.objectid,
1762 found_key.objectid,
1763 found_key.offset);
1764 BUG_ON(ret);
ec44a35c
CM
1765 }
1766 ret = 0;
1767error:
1768 btrfs_free_path(path);
7d9eb12c 1769 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1770 return ret;
1771}
1772
8f18cf13
CM
1773/*
1774 * shrinking a device means finding all of the device extents past
1775 * the new size, and then following the back refs to the chunks.
1776 * The chunk relocation code actually frees the device extent
1777 */
1778int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1779{
1780 struct btrfs_trans_handle *trans;
1781 struct btrfs_root *root = device->dev_root;
1782 struct btrfs_dev_extent *dev_extent = NULL;
1783 struct btrfs_path *path;
1784 u64 length;
1785 u64 chunk_tree;
1786 u64 chunk_objectid;
1787 u64 chunk_offset;
1788 int ret;
1789 int slot;
1790 struct extent_buffer *l;
1791 struct btrfs_key key;
1792 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1793 u64 old_total = btrfs_super_total_bytes(super_copy);
1794 u64 diff = device->total_bytes - new_size;
1795
2b82032c
YZ
1796 if (new_size >= device->total_bytes)
1797 return -EINVAL;
8f18cf13
CM
1798
1799 path = btrfs_alloc_path();
1800 if (!path)
1801 return -ENOMEM;
1802
1803 trans = btrfs_start_transaction(root, 1);
1804 if (!trans) {
1805 ret = -ENOMEM;
1806 goto done;
1807 }
1808
1809 path->reada = 2;
1810
7d9eb12c
CM
1811 lock_chunks(root);
1812
8f18cf13 1813 device->total_bytes = new_size;
2b82032c
YZ
1814 if (device->writeable)
1815 device->fs_devices->total_rw_bytes -= diff;
8f18cf13
CM
1816 ret = btrfs_update_device(trans, device);
1817 if (ret) {
7d9eb12c 1818 unlock_chunks(root);
8f18cf13
CM
1819 btrfs_end_transaction(trans, root);
1820 goto done;
1821 }
1822 WARN_ON(diff > old_total);
1823 btrfs_set_super_total_bytes(super_copy, old_total - diff);
7d9eb12c 1824 unlock_chunks(root);
8f18cf13
CM
1825 btrfs_end_transaction(trans, root);
1826
1827 key.objectid = device->devid;
1828 key.offset = (u64)-1;
1829 key.type = BTRFS_DEV_EXTENT_KEY;
1830
1831 while (1) {
1832 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1833 if (ret < 0)
1834 goto done;
1835
1836 ret = btrfs_previous_item(root, path, 0, key.type);
1837 if (ret < 0)
1838 goto done;
1839 if (ret) {
1840 ret = 0;
1841 goto done;
1842 }
1843
1844 l = path->nodes[0];
1845 slot = path->slots[0];
1846 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1847
1848 if (key.objectid != device->devid)
1849 goto done;
1850
1851 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1852 length = btrfs_dev_extent_length(l, dev_extent);
1853
1854 if (key.offset + length <= new_size)
1855 goto done;
1856
1857 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1858 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1859 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1860 btrfs_release_path(root, path);
1861
1862 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1863 chunk_offset);
1864 if (ret)
1865 goto done;
1866 }
1867
1868done:
1869 btrfs_free_path(path);
1870 return ret;
1871}
1872
b2950863 1873static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
1874 struct btrfs_root *root,
1875 struct btrfs_key *key,
1876 struct btrfs_chunk *chunk, int item_size)
1877{
1878 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1879 struct btrfs_disk_key disk_key;
1880 u32 array_size;
1881 u8 *ptr;
1882
1883 array_size = btrfs_super_sys_array_size(super_copy);
1884 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1885 return -EFBIG;
1886
1887 ptr = super_copy->sys_chunk_array + array_size;
1888 btrfs_cpu_key_to_disk(&disk_key, key);
1889 memcpy(ptr, &disk_key, sizeof(disk_key));
1890 ptr += sizeof(disk_key);
1891 memcpy(ptr, chunk, item_size);
1892 item_size += sizeof(disk_key);
1893 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1894 return 0;
1895}
1896
a1b32a59
CM
1897static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
1898 int num_stripes, int sub_stripes)
9b3f68b9
CM
1899{
1900 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1901 return calc_size;
1902 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1903 return calc_size * (num_stripes / sub_stripes);
1904 else
1905 return calc_size * num_stripes;
1906}
1907
2b82032c
YZ
1908static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *extent_root,
1910 struct map_lookup **map_ret,
1911 u64 *num_bytes, u64 *stripe_size,
1912 u64 start, u64 type)
0b86a832 1913{
593060d7 1914 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1915 struct btrfs_device *device = NULL;
2b82032c 1916 struct btrfs_fs_devices *fs_devices = info->fs_devices;
6324fbf3 1917 struct list_head *cur;
2b82032c 1918 struct map_lookup *map = NULL;
0b86a832 1919 struct extent_map_tree *em_tree;
0b86a832 1920 struct extent_map *em;
2b82032c 1921 struct list_head private_devs;
a40a90a0 1922 int min_stripe_size = 1 * 1024 * 1024;
0b86a832 1923 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1924 u64 max_chunk_size = calc_size;
1925 u64 min_free;
6324fbf3
CM
1926 u64 avail;
1927 u64 max_avail = 0;
2b82032c 1928 u64 dev_offset;
6324fbf3 1929 int num_stripes = 1;
a40a90a0 1930 int min_stripes = 1;
321aecc6 1931 int sub_stripes = 0;
6324fbf3 1932 int looped = 0;
0b86a832 1933 int ret;
6324fbf3 1934 int index;
593060d7 1935 int stripe_len = 64 * 1024;
0b86a832 1936
ec44a35c
CM
1937 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1938 (type & BTRFS_BLOCK_GROUP_DUP)) {
1939 WARN_ON(1);
1940 type &= ~BTRFS_BLOCK_GROUP_DUP;
1941 }
2b82032c 1942 if (list_empty(&fs_devices->alloc_list))
6324fbf3 1943 return -ENOSPC;
593060d7 1944
a40a90a0 1945 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2b82032c 1946 num_stripes = fs_devices->rw_devices;
a40a90a0
CM
1947 min_stripes = 2;
1948 }
1949 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1950 num_stripes = 2;
a40a90a0
CM
1951 min_stripes = 2;
1952 }
8790d502 1953 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2b82032c 1954 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
9b3f68b9
CM
1955 if (num_stripes < 2)
1956 return -ENOSPC;
a40a90a0 1957 min_stripes = 2;
8790d502 1958 }
321aecc6 1959 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2b82032c 1960 num_stripes = fs_devices->rw_devices;
321aecc6
CM
1961 if (num_stripes < 4)
1962 return -ENOSPC;
1963 num_stripes &= ~(u32)1;
1964 sub_stripes = 2;
a40a90a0 1965 min_stripes = 4;
321aecc6 1966 }
9b3f68b9
CM
1967
1968 if (type & BTRFS_BLOCK_GROUP_DATA) {
1969 max_chunk_size = 10 * calc_size;
a40a90a0 1970 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1971 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1972 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1973 min_stripe_size = 32 * 1024 * 1024;
1974 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1975 calc_size = 8 * 1024 * 1024;
1976 max_chunk_size = calc_size * 2;
1977 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1978 }
1979
2b82032c
YZ
1980 /* we don't want a chunk larger than 10% of writeable space */
1981 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
1982 max_chunk_size);
9b3f68b9 1983
a40a90a0 1984again:
2b82032c
YZ
1985 if (!map || map->num_stripes != num_stripes) {
1986 kfree(map);
1987 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1988 if (!map)
1989 return -ENOMEM;
1990 map->num_stripes = num_stripes;
1991 }
1992
9b3f68b9
CM
1993 if (calc_size * num_stripes > max_chunk_size) {
1994 calc_size = max_chunk_size;
1995 do_div(calc_size, num_stripes);
1996 do_div(calc_size, stripe_len);
1997 calc_size *= stripe_len;
1998 }
1999 /* we don't want tiny stripes */
a40a90a0 2000 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2001
9b3f68b9
CM
2002 do_div(calc_size, stripe_len);
2003 calc_size *= stripe_len;
2004
2b82032c 2005 cur = fs_devices->alloc_list.next;
6324fbf3 2006 index = 0;
611f0e00
CM
2007
2008 if (type & BTRFS_BLOCK_GROUP_DUP)
2009 min_free = calc_size * 2;
9b3f68b9
CM
2010 else
2011 min_free = calc_size;
611f0e00 2012
0f9dd46c
JB
2013 /*
2014 * we add 1MB because we never use the first 1MB of the device, unless
2015 * we've looped, then we are likely allocating the maximum amount of
2016 * space left already
2017 */
2018 if (!looped)
2019 min_free += 1024 * 1024;
ad5bd91e 2020
2b82032c 2021 INIT_LIST_HEAD(&private_devs);
6324fbf3 2022 while(index < num_stripes) {
b3075717 2023 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2024 BUG_ON(!device->writeable);
dfe25020
CM
2025 if (device->total_bytes > device->bytes_used)
2026 avail = device->total_bytes - device->bytes_used;
2027 else
2028 avail = 0;
6324fbf3 2029 cur = cur->next;
8f18cf13 2030
dfe25020 2031 if (device->in_fs_metadata && avail >= min_free) {
2b82032c
YZ
2032 ret = find_free_dev_extent(trans, device,
2033 min_free, &dev_offset);
8f18cf13
CM
2034 if (ret == 0) {
2035 list_move_tail(&device->dev_alloc_list,
2036 &private_devs);
2b82032c
YZ
2037 map->stripes[index].dev = device;
2038 map->stripes[index].physical = dev_offset;
611f0e00 2039 index++;
2b82032c
YZ
2040 if (type & BTRFS_BLOCK_GROUP_DUP) {
2041 map->stripes[index].dev = device;
2042 map->stripes[index].physical =
2043 dev_offset + calc_size;
8f18cf13 2044 index++;
2b82032c 2045 }
8f18cf13 2046 }
dfe25020 2047 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 2048 max_avail = avail;
2b82032c 2049 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2050 break;
2051 }
2b82032c 2052 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2053 if (index < num_stripes) {
a40a90a0
CM
2054 if (index >= min_stripes) {
2055 num_stripes = index;
2056 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2057 num_stripes /= sub_stripes;
2058 num_stripes *= sub_stripes;
2059 }
2060 looped = 1;
2061 goto again;
2062 }
6324fbf3
CM
2063 if (!looped && max_avail > 0) {
2064 looped = 1;
2065 calc_size = max_avail;
2066 goto again;
2067 }
2b82032c 2068 kfree(map);
6324fbf3
CM
2069 return -ENOSPC;
2070 }
2b82032c
YZ
2071 map->sector_size = extent_root->sectorsize;
2072 map->stripe_len = stripe_len;
2073 map->io_align = stripe_len;
2074 map->io_width = stripe_len;
2075 map->type = type;
2076 map->num_stripes = num_stripes;
2077 map->sub_stripes = sub_stripes;
0b86a832 2078
2b82032c
YZ
2079 *map_ret = map;
2080 *stripe_size = calc_size;
2081 *num_bytes = chunk_bytes_by_type(type, calc_size,
2082 num_stripes, sub_stripes);
0b86a832 2083
2b82032c
YZ
2084 em = alloc_extent_map(GFP_NOFS);
2085 if (!em) {
2086 kfree(map);
593060d7
CM
2087 return -ENOMEM;
2088 }
2b82032c
YZ
2089 em->bdev = (struct block_device *)map;
2090 em->start = start;
2091 em->len = *num_bytes;
2092 em->block_start = 0;
2093 em->block_len = em->len;
593060d7 2094
2b82032c
YZ
2095 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2096 spin_lock(&em_tree->lock);
2097 ret = add_extent_mapping(em_tree, em);
2098 spin_unlock(&em_tree->lock);
2099 BUG_ON(ret);
2100 free_extent_map(em);
0b86a832 2101
2b82032c
YZ
2102 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2103 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2104 start, *num_bytes);
2105 BUG_ON(ret);
611f0e00 2106
2b82032c
YZ
2107 index = 0;
2108 while (index < map->num_stripes) {
2109 device = map->stripes[index].dev;
2110 dev_offset = map->stripes[index].physical;
0b86a832
CM
2111
2112 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2113 info->chunk_root->root_key.objectid,
2114 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2115 start, dev_offset, calc_size);
0b86a832 2116 BUG_ON(ret);
2b82032c
YZ
2117 index++;
2118 }
2119
2120 return 0;
2121}
2122
2123static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2124 struct btrfs_root *extent_root,
2125 struct map_lookup *map, u64 chunk_offset,
2126 u64 chunk_size, u64 stripe_size)
2127{
2128 u64 dev_offset;
2129 struct btrfs_key key;
2130 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2131 struct btrfs_device *device;
2132 struct btrfs_chunk *chunk;
2133 struct btrfs_stripe *stripe;
2134 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2135 int index = 0;
2136 int ret;
2137
2138 chunk = kzalloc(item_size, GFP_NOFS);
2139 if (!chunk)
2140 return -ENOMEM;
2141
2142 index = 0;
2143 while (index < map->num_stripes) {
2144 device = map->stripes[index].dev;
2145 device->bytes_used += stripe_size;
0b86a832
CM
2146 ret = btrfs_update_device(trans, device);
2147 BUG_ON(ret);
2b82032c
YZ
2148 index++;
2149 }
2150
2151 index = 0;
2152 stripe = &chunk->stripe;
2153 while (index < map->num_stripes) {
2154 device = map->stripes[index].dev;
2155 dev_offset = map->stripes[index].physical;
0b86a832 2156
e17cade2
CM
2157 btrfs_set_stack_stripe_devid(stripe, device->devid);
2158 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2159 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2160 stripe++;
0b86a832
CM
2161 index++;
2162 }
2163
2b82032c 2164 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2165 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2166 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2167 btrfs_set_stack_chunk_type(chunk, map->type);
2168 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2169 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2170 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2171 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2172 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2173
2b82032c
YZ
2174 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2175 key.type = BTRFS_CHUNK_ITEM_KEY;
2176 key.offset = chunk_offset;
0b86a832 2177
2b82032c
YZ
2178 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2179 BUG_ON(ret);
0b86a832 2180
2b82032c
YZ
2181 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2182 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2183 item_size);
8f18cf13
CM
2184 BUG_ON(ret);
2185 }
0b86a832 2186 kfree(chunk);
2b82032c
YZ
2187 return 0;
2188}
0b86a832 2189
2b82032c
YZ
2190/*
2191 * Chunk allocation falls into two parts. The first part does works
2192 * that make the new allocated chunk useable, but not do any operation
2193 * that modifies the chunk tree. The second part does the works that
2194 * require modifying the chunk tree. This division is important for the
2195 * bootstrap process of adding storage to a seed btrfs.
2196 */
2197int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *extent_root, u64 type)
2199{
2200 u64 chunk_offset;
2201 u64 chunk_size;
2202 u64 stripe_size;
2203 struct map_lookup *map;
2204 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2205 int ret;
2206
2207 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2208 &chunk_offset);
2209 if (ret)
2210 return ret;
2211
2212 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2213 &stripe_size, chunk_offset, type);
2214 if (ret)
2215 return ret;
2216
2217 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2218 chunk_size, stripe_size);
2219 BUG_ON(ret);
2220 return 0;
2221}
2222
2223static int noinline init_first_rw_device(struct btrfs_trans_handle *trans,
2224 struct btrfs_root *root,
2225 struct btrfs_device *device)
2226{
2227 u64 chunk_offset;
2228 u64 sys_chunk_offset;
2229 u64 chunk_size;
2230 u64 sys_chunk_size;
2231 u64 stripe_size;
2232 u64 sys_stripe_size;
2233 u64 alloc_profile;
2234 struct map_lookup *map;
2235 struct map_lookup *sys_map;
2236 struct btrfs_fs_info *fs_info = root->fs_info;
2237 struct btrfs_root *extent_root = fs_info->extent_root;
2238 int ret;
2239
2240 ret = find_next_chunk(fs_info->chunk_root,
2241 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2242 BUG_ON(ret);
2243
2244 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2245 (fs_info->metadata_alloc_profile &
2246 fs_info->avail_metadata_alloc_bits);
2247 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2248
2249 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2250 &stripe_size, chunk_offset, alloc_profile);
2251 BUG_ON(ret);
2252
2253 sys_chunk_offset = chunk_offset + chunk_size;
2254
2255 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2256 (fs_info->system_alloc_profile &
2257 fs_info->avail_system_alloc_bits);
2258 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2259
2260 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2261 &sys_chunk_size, &sys_stripe_size,
2262 sys_chunk_offset, alloc_profile);
2263 BUG_ON(ret);
2264
2265 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2266 BUG_ON(ret);
2267
2268 /*
2269 * Modifying chunk tree needs allocating new blocks from both
2270 * system block group and metadata block group. So we only can
2271 * do operations require modifying the chunk tree after both
2272 * block groups were created.
2273 */
2274 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2275 chunk_size, stripe_size);
2276 BUG_ON(ret);
2277
2278 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2279 sys_chunk_offset, sys_chunk_size,
2280 sys_stripe_size);
b248a415 2281 BUG_ON(ret);
2b82032c
YZ
2282 return 0;
2283}
2284
2285int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2286{
2287 struct extent_map *em;
2288 struct map_lookup *map;
2289 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2290 int readonly = 0;
2291 int i;
2292
2293 spin_lock(&map_tree->map_tree.lock);
2294 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2295 spin_unlock(&map_tree->map_tree.lock);
2296 if (!em)
2297 return 1;
2298
2299 map = (struct map_lookup *)em->bdev;
2300 for (i = 0; i < map->num_stripes; i++) {
2301 if (!map->stripes[i].dev->writeable) {
2302 readonly = 1;
2303 break;
2304 }
2305 }
0b86a832 2306 free_extent_map(em);
2b82032c 2307 return readonly;
0b86a832
CM
2308}
2309
2310void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2311{
2312 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2313}
2314
2315void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2316{
2317 struct extent_map *em;
2318
2319 while(1) {
2320 spin_lock(&tree->map_tree.lock);
2321 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2322 if (em)
2323 remove_extent_mapping(&tree->map_tree, em);
2324 spin_unlock(&tree->map_tree.lock);
2325 if (!em)
2326 break;
2327 kfree(em->bdev);
2328 /* once for us */
2329 free_extent_map(em);
2330 /* once for the tree */
2331 free_extent_map(em);
2332 }
2333}
2334
f188591e
CM
2335int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2336{
2337 struct extent_map *em;
2338 struct map_lookup *map;
2339 struct extent_map_tree *em_tree = &map_tree->map_tree;
2340 int ret;
2341
2342 spin_lock(&em_tree->lock);
2343 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 2344 spin_unlock(&em_tree->lock);
f188591e
CM
2345 BUG_ON(!em);
2346
2347 BUG_ON(em->start > logical || em->start + em->len < logical);
2348 map = (struct map_lookup *)em->bdev;
2349 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2350 ret = map->num_stripes;
321aecc6
CM
2351 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2352 ret = map->sub_stripes;
f188591e
CM
2353 else
2354 ret = 1;
2355 free_extent_map(em);
f188591e
CM
2356 return ret;
2357}
2358
dfe25020
CM
2359static int find_live_mirror(struct map_lookup *map, int first, int num,
2360 int optimal)
2361{
2362 int i;
2363 if (map->stripes[optimal].dev->bdev)
2364 return optimal;
2365 for (i = first; i < first + num; i++) {
2366 if (map->stripes[i].dev->bdev)
2367 return i;
2368 }
2369 /* we couldn't find one that doesn't fail. Just return something
2370 * and the io error handling code will clean up eventually
2371 */
2372 return optimal;
2373}
2374
f2d8d74d
CM
2375static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2376 u64 logical, u64 *length,
2377 struct btrfs_multi_bio **multi_ret,
2378 int mirror_num, struct page *unplug_page)
0b86a832
CM
2379{
2380 struct extent_map *em;
2381 struct map_lookup *map;
2382 struct extent_map_tree *em_tree = &map_tree->map_tree;
2383 u64 offset;
593060d7
CM
2384 u64 stripe_offset;
2385 u64 stripe_nr;
cea9e445 2386 int stripes_allocated = 8;
321aecc6 2387 int stripes_required = 1;
593060d7 2388 int stripe_index;
cea9e445 2389 int i;
f2d8d74d 2390 int num_stripes;
a236aed1 2391 int max_errors = 0;
cea9e445 2392 struct btrfs_multi_bio *multi = NULL;
0b86a832 2393
cea9e445
CM
2394 if (multi_ret && !(rw & (1 << BIO_RW))) {
2395 stripes_allocated = 1;
2396 }
2397again:
2398 if (multi_ret) {
2399 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2400 GFP_NOFS);
2401 if (!multi)
2402 return -ENOMEM;
a236aed1
CM
2403
2404 atomic_set(&multi->error, 0);
cea9e445 2405 }
0b86a832
CM
2406
2407 spin_lock(&em_tree->lock);
2408 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 2409 spin_unlock(&em_tree->lock);
f2d8d74d
CM
2410
2411 if (!em && unplug_page)
2412 return 0;
2413
3b951516 2414 if (!em) {
a061fc8d 2415 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 2416 BUG();
3b951516 2417 }
0b86a832
CM
2418
2419 BUG_ON(em->start > logical || em->start + em->len < logical);
2420 map = (struct map_lookup *)em->bdev;
2421 offset = logical - em->start;
593060d7 2422
f188591e
CM
2423 if (mirror_num > map->num_stripes)
2424 mirror_num = 0;
2425
cea9e445 2426 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
2427 if (rw & (1 << BIO_RW)) {
2428 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2429 BTRFS_BLOCK_GROUP_DUP)) {
2430 stripes_required = map->num_stripes;
a236aed1 2431 max_errors = 1;
321aecc6
CM
2432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2433 stripes_required = map->sub_stripes;
a236aed1 2434 max_errors = 1;
321aecc6
CM
2435 }
2436 }
2437 if (multi_ret && rw == WRITE &&
2438 stripes_allocated < stripes_required) {
cea9e445 2439 stripes_allocated = map->num_stripes;
cea9e445
CM
2440 free_extent_map(em);
2441 kfree(multi);
2442 goto again;
2443 }
593060d7
CM
2444 stripe_nr = offset;
2445 /*
2446 * stripe_nr counts the total number of stripes we have to stride
2447 * to get to this block
2448 */
2449 do_div(stripe_nr, map->stripe_len);
2450
2451 stripe_offset = stripe_nr * map->stripe_len;
2452 BUG_ON(offset < stripe_offset);
2453
2454 /* stripe_offset is the offset of this block in its stripe*/
2455 stripe_offset = offset - stripe_offset;
2456
cea9e445 2457 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 2458 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
2459 BTRFS_BLOCK_GROUP_DUP)) {
2460 /* we limit the length of each bio to what fits in a stripe */
2461 *length = min_t(u64, em->len - offset,
2462 map->stripe_len - stripe_offset);
2463 } else {
2464 *length = em->len - offset;
2465 }
f2d8d74d
CM
2466
2467 if (!multi_ret && !unplug_page)
cea9e445
CM
2468 goto out;
2469
f2d8d74d 2470 num_stripes = 1;
cea9e445 2471 stripe_index = 0;
8790d502 2472 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
2473 if (unplug_page || (rw & (1 << BIO_RW)))
2474 num_stripes = map->num_stripes;
2fff734f 2475 else if (mirror_num)
f188591e 2476 stripe_index = mirror_num - 1;
dfe25020
CM
2477 else {
2478 stripe_index = find_live_mirror(map, 0,
2479 map->num_stripes,
2480 current->pid % map->num_stripes);
2481 }
2fff734f 2482
611f0e00 2483 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 2484 if (rw & (1 << BIO_RW))
f2d8d74d 2485 num_stripes = map->num_stripes;
f188591e
CM
2486 else if (mirror_num)
2487 stripe_index = mirror_num - 1;
2fff734f 2488
321aecc6
CM
2489 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2490 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2491
2492 stripe_index = do_div(stripe_nr, factor);
2493 stripe_index *= map->sub_stripes;
2494
f2d8d74d
CM
2495 if (unplug_page || (rw & (1 << BIO_RW)))
2496 num_stripes = map->sub_stripes;
321aecc6
CM
2497 else if (mirror_num)
2498 stripe_index += mirror_num - 1;
dfe25020
CM
2499 else {
2500 stripe_index = find_live_mirror(map, stripe_index,
2501 map->sub_stripes, stripe_index +
2502 current->pid % map->sub_stripes);
2503 }
8790d502
CM
2504 } else {
2505 /*
2506 * after this do_div call, stripe_nr is the number of stripes
2507 * on this device we have to walk to find the data, and
2508 * stripe_index is the number of our device in the stripe array
2509 */
2510 stripe_index = do_div(stripe_nr, map->num_stripes);
2511 }
593060d7 2512 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2513
f2d8d74d
CM
2514 for (i = 0; i < num_stripes; i++) {
2515 if (unplug_page) {
2516 struct btrfs_device *device;
2517 struct backing_dev_info *bdi;
2518
2519 device = map->stripes[stripe_index].dev;
dfe25020
CM
2520 if (device->bdev) {
2521 bdi = blk_get_backing_dev_info(device->bdev);
2522 if (bdi->unplug_io_fn) {
2523 bdi->unplug_io_fn(bdi, unplug_page);
2524 }
f2d8d74d
CM
2525 }
2526 } else {
2527 multi->stripes[i].physical =
2528 map->stripes[stripe_index].physical +
2529 stripe_offset + stripe_nr * map->stripe_len;
2530 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2531 }
cea9e445 2532 stripe_index++;
593060d7 2533 }
f2d8d74d
CM
2534 if (multi_ret) {
2535 *multi_ret = multi;
2536 multi->num_stripes = num_stripes;
a236aed1 2537 multi->max_errors = max_errors;
f2d8d74d 2538 }
cea9e445 2539out:
0b86a832 2540 free_extent_map(em);
0b86a832
CM
2541 return 0;
2542}
2543
f2d8d74d
CM
2544int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2545 u64 logical, u64 *length,
2546 struct btrfs_multi_bio **multi_ret, int mirror_num)
2547{
2548 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2549 mirror_num, NULL);
2550}
2551
a512bbf8
YZ
2552int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2553 u64 chunk_start, u64 physical, u64 devid,
2554 u64 **logical, int *naddrs, int *stripe_len)
2555{
2556 struct extent_map_tree *em_tree = &map_tree->map_tree;
2557 struct extent_map *em;
2558 struct map_lookup *map;
2559 u64 *buf;
2560 u64 bytenr;
2561 u64 length;
2562 u64 stripe_nr;
2563 int i, j, nr = 0;
2564
2565 spin_lock(&em_tree->lock);
2566 em = lookup_extent_mapping(em_tree, chunk_start, 1);
2567 spin_unlock(&em_tree->lock);
2568
2569 BUG_ON(!em || em->start != chunk_start);
2570 map = (struct map_lookup *)em->bdev;
2571
2572 length = em->len;
2573 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2574 do_div(length, map->num_stripes / map->sub_stripes);
2575 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2576 do_div(length, map->num_stripes);
2577
2578 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2579 BUG_ON(!buf);
2580
2581 for (i = 0; i < map->num_stripes; i++) {
2582 if (devid && map->stripes[i].dev->devid != devid)
2583 continue;
2584 if (map->stripes[i].physical > physical ||
2585 map->stripes[i].physical + length <= physical)
2586 continue;
2587
2588 stripe_nr = physical - map->stripes[i].physical;
2589 do_div(stripe_nr, map->stripe_len);
2590
2591 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2592 stripe_nr = stripe_nr * map->num_stripes + i;
2593 do_div(stripe_nr, map->sub_stripes);
2594 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2595 stripe_nr = stripe_nr * map->num_stripes + i;
2596 }
2597 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 2598 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
2599 for (j = 0; j < nr; j++) {
2600 if (buf[j] == bytenr)
2601 break;
2602 }
934d375b
CM
2603 if (j == nr) {
2604 WARN_ON(nr >= map->num_stripes);
a512bbf8 2605 buf[nr++] = bytenr;
934d375b 2606 }
a512bbf8
YZ
2607 }
2608
2609 for (i = 0; i > nr; i++) {
2610 struct btrfs_multi_bio *multi;
2611 struct btrfs_bio_stripe *stripe;
2612 int ret;
2613
2614 length = 1;
2615 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2616 &length, &multi, 0);
2617 BUG_ON(ret);
2618
2619 stripe = multi->stripes;
2620 for (j = 0; j < multi->num_stripes; j++) {
2621 if (stripe->physical >= physical &&
2622 physical < stripe->physical + length)
2623 break;
2624 }
2625 BUG_ON(j >= multi->num_stripes);
2626 kfree(multi);
2627 }
2628
2629 *logical = buf;
2630 *naddrs = nr;
2631 *stripe_len = map->stripe_len;
2632
2633 free_extent_map(em);
2634 return 0;
2635}
2636
f2d8d74d
CM
2637int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2638 u64 logical, struct page *page)
2639{
2640 u64 length = PAGE_CACHE_SIZE;
2641 return __btrfs_map_block(map_tree, READ, logical, &length,
2642 NULL, 0, page);
2643}
2644
2645
8790d502 2646static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 2647{
cea9e445 2648 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2649 int is_orig_bio = 0;
8790d502 2650
8790d502 2651 if (err)
a236aed1 2652 atomic_inc(&multi->error);
8790d502 2653
7d2b4daa
CM
2654 if (bio == multi->orig_bio)
2655 is_orig_bio = 1;
2656
cea9e445 2657 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2658 if (!is_orig_bio) {
2659 bio_put(bio);
2660 bio = multi->orig_bio;
2661 }
8790d502
CM
2662 bio->bi_private = multi->private;
2663 bio->bi_end_io = multi->end_io;
a236aed1
CM
2664 /* only send an error to the higher layers if it is
2665 * beyond the tolerance of the multi-bio
2666 */
1259ab75 2667 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2668 err = -EIO;
1259ab75
CM
2669 } else if (err) {
2670 /*
2671 * this bio is actually up to date, we didn't
2672 * go over the max number of errors
2673 */
2674 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2675 err = 0;
1259ab75 2676 }
8790d502
CM
2677 kfree(multi);
2678
2679 bio_endio(bio, err);
7d2b4daa 2680 } else if (!is_orig_bio) {
8790d502
CM
2681 bio_put(bio);
2682 }
8790d502
CM
2683}
2684
8b712842
CM
2685struct async_sched {
2686 struct bio *bio;
2687 int rw;
2688 struct btrfs_fs_info *info;
2689 struct btrfs_work work;
2690};
2691
2692/*
2693 * see run_scheduled_bios for a description of why bios are collected for
2694 * async submit.
2695 *
2696 * This will add one bio to the pending list for a device and make sure
2697 * the work struct is scheduled.
2698 */
a1b32a59
CM
2699static int noinline schedule_bio(struct btrfs_root *root,
2700 struct btrfs_device *device,
2701 int rw, struct bio *bio)
8b712842
CM
2702{
2703 int should_queue = 1;
2704
2705 /* don't bother with additional async steps for reads, right now */
2706 if (!(rw & (1 << BIO_RW))) {
492bb6de 2707 bio_get(bio);
8b712842 2708 submit_bio(rw, bio);
492bb6de 2709 bio_put(bio);
8b712842
CM
2710 return 0;
2711 }
2712
2713 /*
0986fe9e 2714 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2715 * higher layers. Otherwise, the async bio makes it appear we have
2716 * made progress against dirty pages when we've really just put it
2717 * on a queue for later
2718 */
0986fe9e 2719 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2720 WARN_ON(bio->bi_next);
8b712842
CM
2721 bio->bi_next = NULL;
2722 bio->bi_rw |= rw;
2723
2724 spin_lock(&device->io_lock);
2725
2726 if (device->pending_bio_tail)
2727 device->pending_bio_tail->bi_next = bio;
2728
2729 device->pending_bio_tail = bio;
2730 if (!device->pending_bios)
2731 device->pending_bios = bio;
2732 if (device->running_pending)
2733 should_queue = 0;
2734
2735 spin_unlock(&device->io_lock);
2736
2737 if (should_queue)
1cc127b5
CM
2738 btrfs_queue_worker(&root->fs_info->submit_workers,
2739 &device->work);
8b712842
CM
2740 return 0;
2741}
2742
f188591e 2743int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2744 int mirror_num, int async_submit)
0b86a832
CM
2745{
2746 struct btrfs_mapping_tree *map_tree;
2747 struct btrfs_device *dev;
8790d502 2748 struct bio *first_bio = bio;
a62b9401 2749 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
2750 u64 length = 0;
2751 u64 map_length;
cea9e445 2752 struct btrfs_multi_bio *multi = NULL;
0b86a832 2753 int ret;
8790d502
CM
2754 int dev_nr = 0;
2755 int total_devs = 1;
0b86a832 2756
f2d8d74d 2757 length = bio->bi_size;
0b86a832
CM
2758 map_tree = &root->fs_info->mapping_tree;
2759 map_length = length;
cea9e445 2760
f188591e
CM
2761 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2762 mirror_num);
cea9e445
CM
2763 BUG_ON(ret);
2764
2765 total_devs = multi->num_stripes;
2766 if (map_length < length) {
2767 printk("mapping failed logical %Lu bio len %Lu "
2768 "len %Lu\n", logical, length, map_length);
2769 BUG();
2770 }
2771 multi->end_io = first_bio->bi_end_io;
2772 multi->private = first_bio->bi_private;
7d2b4daa 2773 multi->orig_bio = first_bio;
cea9e445
CM
2774 atomic_set(&multi->stripes_pending, multi->num_stripes);
2775
8790d502 2776 while(dev_nr < total_devs) {
8790d502 2777 if (total_devs > 1) {
8790d502
CM
2778 if (dev_nr < total_devs - 1) {
2779 bio = bio_clone(first_bio, GFP_NOFS);
2780 BUG_ON(!bio);
2781 } else {
2782 bio = first_bio;
2783 }
2784 bio->bi_private = multi;
2785 bio->bi_end_io = end_bio_multi_stripe;
2786 }
cea9e445
CM
2787 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2788 dev = multi->stripes[dev_nr].dev;
2b82032c 2789 BUG_ON(rw == WRITE && !dev->writeable);
dfe25020
CM
2790 if (dev && dev->bdev) {
2791 bio->bi_bdev = dev->bdev;
8b712842
CM
2792 if (async_submit)
2793 schedule_bio(root, dev, rw, bio);
2794 else
2795 submit_bio(rw, bio);
dfe25020
CM
2796 } else {
2797 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2798 bio->bi_sector = logical >> 9;
dfe25020 2799 bio_endio(bio, -EIO);
dfe25020 2800 }
8790d502
CM
2801 dev_nr++;
2802 }
cea9e445
CM
2803 if (total_devs == 1)
2804 kfree(multi);
0b86a832
CM
2805 return 0;
2806}
2807
a443755f 2808struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 2809 u8 *uuid, u8 *fsid)
0b86a832 2810{
2b82032c
YZ
2811 struct btrfs_device *device;
2812 struct btrfs_fs_devices *cur_devices;
2813
2814 cur_devices = root->fs_info->fs_devices;
2815 while (cur_devices) {
2816 if (!fsid ||
2817 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2818 device = __find_device(&cur_devices->devices,
2819 devid, uuid);
2820 if (device)
2821 return device;
2822 }
2823 cur_devices = cur_devices->seed;
2824 }
2825 return NULL;
0b86a832
CM
2826}
2827
dfe25020
CM
2828static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2829 u64 devid, u8 *dev_uuid)
2830{
2831 struct btrfs_device *device;
2832 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2833
2834 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 2835 if (!device)
2836 return NULL;
dfe25020
CM
2837 list_add(&device->dev_list,
2838 &fs_devices->devices);
dfe25020
CM
2839 device->barriers = 1;
2840 device->dev_root = root->fs_info->dev_root;
2841 device->devid = devid;
8b712842 2842 device->work.func = pending_bios_fn;
dfe25020
CM
2843 fs_devices->num_devices++;
2844 spin_lock_init(&device->io_lock);
d20f7043 2845 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
2846 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2847 return device;
2848}
2849
0b86a832
CM
2850static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2851 struct extent_buffer *leaf,
2852 struct btrfs_chunk *chunk)
2853{
2854 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2855 struct map_lookup *map;
2856 struct extent_map *em;
2857 u64 logical;
2858 u64 length;
2859 u64 devid;
a443755f 2860 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2861 int num_stripes;
0b86a832 2862 int ret;
593060d7 2863 int i;
0b86a832 2864
e17cade2
CM
2865 logical = key->offset;
2866 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2867
0b86a832
CM
2868 spin_lock(&map_tree->map_tree.lock);
2869 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2870 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2871
2872 /* already mapped? */
2873 if (em && em->start <= logical && em->start + em->len > logical) {
2874 free_extent_map(em);
0b86a832
CM
2875 return 0;
2876 } else if (em) {
2877 free_extent_map(em);
2878 }
0b86a832
CM
2879
2880 map = kzalloc(sizeof(*map), GFP_NOFS);
2881 if (!map)
2882 return -ENOMEM;
2883
2884 em = alloc_extent_map(GFP_NOFS);
2885 if (!em)
2886 return -ENOMEM;
593060d7
CM
2887 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2888 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2889 if (!map) {
2890 free_extent_map(em);
2891 return -ENOMEM;
2892 }
2893
2894 em->bdev = (struct block_device *)map;
2895 em->start = logical;
2896 em->len = length;
2897 em->block_start = 0;
c8b97818 2898 em->block_len = em->len;
0b86a832 2899
593060d7
CM
2900 map->num_stripes = num_stripes;
2901 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2902 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2903 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2904 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2905 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2906 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2907 for (i = 0; i < num_stripes; i++) {
2908 map->stripes[i].physical =
2909 btrfs_stripe_offset_nr(leaf, chunk, i);
2910 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2911 read_extent_buffer(leaf, uuid, (unsigned long)
2912 btrfs_stripe_dev_uuid_nr(chunk, i),
2913 BTRFS_UUID_SIZE);
2b82032c
YZ
2914 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
2915 NULL);
dfe25020 2916 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2917 kfree(map);
2918 free_extent_map(em);
2919 return -EIO;
2920 }
dfe25020
CM
2921 if (!map->stripes[i].dev) {
2922 map->stripes[i].dev =
2923 add_missing_dev(root, devid, uuid);
2924 if (!map->stripes[i].dev) {
2925 kfree(map);
2926 free_extent_map(em);
2927 return -EIO;
2928 }
2929 }
2930 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2931 }
2932
2933 spin_lock(&map_tree->map_tree.lock);
2934 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2935 spin_unlock(&map_tree->map_tree.lock);
b248a415 2936 BUG_ON(ret);
0b86a832
CM
2937 free_extent_map(em);
2938
2939 return 0;
2940}
2941
2942static int fill_device_from_item(struct extent_buffer *leaf,
2943 struct btrfs_dev_item *dev_item,
2944 struct btrfs_device *device)
2945{
2946 unsigned long ptr;
0b86a832
CM
2947
2948 device->devid = btrfs_device_id(leaf, dev_item);
2949 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2950 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2951 device->type = btrfs_device_type(leaf, dev_item);
2952 device->io_align = btrfs_device_io_align(leaf, dev_item);
2953 device->io_width = btrfs_device_io_width(leaf, dev_item);
2954 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2955
2956 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2957 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2958
0b86a832
CM
2959 return 0;
2960}
2961
2b82032c
YZ
2962static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
2963{
2964 struct btrfs_fs_devices *fs_devices;
2965 int ret;
2966
2967 mutex_lock(&uuid_mutex);
2968
2969 fs_devices = root->fs_info->fs_devices->seed;
2970 while (fs_devices) {
2971 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2972 ret = 0;
2973 goto out;
2974 }
2975 fs_devices = fs_devices->seed;
2976 }
2977
2978 fs_devices = find_fsid(fsid);
2979 if (!fs_devices) {
2980 ret = -ENOENT;
2981 goto out;
2982 }
2983 if (fs_devices->opened) {
2984 ret = -EBUSY;
2985 goto out;
2986 }
2987
97288f2c 2988 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 2989 root->fs_info->bdev_holder);
2b82032c
YZ
2990 if (ret)
2991 goto out;
2992
2993 if (!fs_devices->seeding) {
2994 __btrfs_close_devices(fs_devices);
2995 ret = -EINVAL;
2996 goto out;
2997 }
2998
2999 fs_devices->seed = root->fs_info->fs_devices->seed;
3000 root->fs_info->fs_devices->seed = fs_devices;
3001 fs_devices->sprouted = 1;
3002out:
3003 mutex_unlock(&uuid_mutex);
3004 return ret;
3005}
3006
0d81ba5d 3007static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3008 struct extent_buffer *leaf,
3009 struct btrfs_dev_item *dev_item)
3010{
3011 struct btrfs_device *device;
3012 u64 devid;
3013 int ret;
2b82032c
YZ
3014 int seed_devices = 0;
3015 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3016 u8 dev_uuid[BTRFS_UUID_SIZE];
3017
0b86a832 3018 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3019 read_extent_buffer(leaf, dev_uuid,
3020 (unsigned long)btrfs_device_uuid(dev_item),
3021 BTRFS_UUID_SIZE);
2b82032c
YZ
3022 read_extent_buffer(leaf, fs_uuid,
3023 (unsigned long)btrfs_device_fsid(dev_item),
3024 BTRFS_UUID_SIZE);
3025
3026 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3027 ret = open_seed_devices(root, fs_uuid);
3028 if (ret)
3029 return ret;
3030 seed_devices = 1;
3031 }
3032
3033 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3034 if (!device || !device->bdev) {
3035 if (!btrfs_test_opt(root, DEGRADED) || seed_devices)
3036 return -EIO;
3037
3038 if (!device) {
3039 printk("warning devid %Lu missing\n", devid);
3040 device = add_missing_dev(root, devid, dev_uuid);
3041 if (!device)
3042 return -ENOMEM;
3043 }
3044 }
3045
3046 if (device->fs_devices != root->fs_info->fs_devices) {
3047 BUG_ON(device->writeable);
3048 if (device->generation !=
3049 btrfs_device_generation(leaf, dev_item))
3050 return -EINVAL;
6324fbf3 3051 }
0b86a832
CM
3052
3053 fill_device_from_item(leaf, dev_item, device);
3054 device->dev_root = root->fs_info->dev_root;
dfe25020 3055 device->in_fs_metadata = 1;
2b82032c
YZ
3056 if (device->writeable)
3057 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832
CM
3058 ret = 0;
3059#if 0
3060 ret = btrfs_open_device(device);
3061 if (ret) {
3062 kfree(device);
3063 }
3064#endif
3065 return ret;
3066}
3067
0d81ba5d
CM
3068int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3069{
3070 struct btrfs_dev_item *dev_item;
3071
3072 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3073 dev_item);
3074 return read_one_dev(root, buf, dev_item);
3075}
3076
a512bbf8 3077int btrfs_read_sys_array(struct btrfs_root *root, u64 sb_bytenr)
0b86a832
CM
3078{
3079 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3080 struct extent_buffer *sb;
0b86a832 3081 struct btrfs_disk_key *disk_key;
0b86a832 3082 struct btrfs_chunk *chunk;
84eed90f
CM
3083 u8 *ptr;
3084 unsigned long sb_ptr;
3085 int ret = 0;
0b86a832
CM
3086 u32 num_stripes;
3087 u32 array_size;
3088 u32 len = 0;
0b86a832 3089 u32 cur;
84eed90f 3090 struct btrfs_key key;
0b86a832 3091
a512bbf8 3092 sb = btrfs_find_create_tree_block(root, sb_bytenr,
a061fc8d
CM
3093 BTRFS_SUPER_INFO_SIZE);
3094 if (!sb)
3095 return -ENOMEM;
3096 btrfs_set_buffer_uptodate(sb);
3097 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3098 array_size = btrfs_super_sys_array_size(super_copy);
3099
0b86a832
CM
3100 ptr = super_copy->sys_chunk_array;
3101 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3102 cur = 0;
3103
3104 while (cur < array_size) {
3105 disk_key = (struct btrfs_disk_key *)ptr;
3106 btrfs_disk_key_to_cpu(&key, disk_key);
3107
a061fc8d 3108 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3109 sb_ptr += len;
3110 cur += len;
3111
0d81ba5d 3112 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3113 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3114 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3115 if (ret)
3116 break;
0b86a832
CM
3117 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3118 len = btrfs_chunk_item_size(num_stripes);
3119 } else {
84eed90f
CM
3120 ret = -EIO;
3121 break;
0b86a832
CM
3122 }
3123 ptr += len;
3124 sb_ptr += len;
3125 cur += len;
3126 }
a061fc8d 3127 free_extent_buffer(sb);
84eed90f 3128 return ret;
0b86a832
CM
3129}
3130
3131int btrfs_read_chunk_tree(struct btrfs_root *root)
3132{
3133 struct btrfs_path *path;
3134 struct extent_buffer *leaf;
3135 struct btrfs_key key;
3136 struct btrfs_key found_key;
3137 int ret;
3138 int slot;
3139
3140 root = root->fs_info->chunk_root;
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
3146 /* first we search for all of the device items, and then we
3147 * read in all of the chunk items. This way we can create chunk
3148 * mappings that reference all of the devices that are afound
3149 */
3150 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3151 key.offset = 0;
3152 key.type = 0;
3153again:
3154 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3155 while(1) {
3156 leaf = path->nodes[0];
3157 slot = path->slots[0];
3158 if (slot >= btrfs_header_nritems(leaf)) {
3159 ret = btrfs_next_leaf(root, path);
3160 if (ret == 0)
3161 continue;
3162 if (ret < 0)
3163 goto error;
3164 break;
3165 }
3166 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3167 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3168 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3169 break;
3170 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3171 struct btrfs_dev_item *dev_item;
3172 dev_item = btrfs_item_ptr(leaf, slot,
3173 struct btrfs_dev_item);
0d81ba5d 3174 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3175 if (ret)
3176 goto error;
0b86a832
CM
3177 }
3178 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3179 struct btrfs_chunk *chunk;
3180 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3181 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3182 if (ret)
3183 goto error;
0b86a832
CM
3184 }
3185 path->slots[0]++;
3186 }
3187 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3188 key.objectid = 0;
3189 btrfs_release_path(root, path);
3190 goto again;
3191 }
0b86a832
CM
3192 ret = 0;
3193error:
2b82032c 3194 btrfs_free_path(path);
0b86a832
CM
3195 return ret;
3196}