btrfs: use correct header for div_u64 in misc.h
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
b0643e59 33#include "discard.h"
5b316468 34#include "zoned.h"
0b86a832 35
af902047
ZL
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 41 .devs_min = 2,
8789f4fe 42 .tolerated_failures = 1,
af902047
ZL
43 .devs_increment = 2,
44 .ncopies = 2,
b50836ed 45 .nparity = 0,
ed23467b 46 .raid_name = "raid10",
41a6e891 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
8789f4fe 55 .tolerated_failures = 1,
af902047
ZL
56 .devs_increment = 2,
57 .ncopies = 2,
b50836ed 58 .nparity = 0,
ed23467b 59 .raid_name = "raid1",
41a6e891 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 62 },
47e6f742
DS
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
cf93e15e 66 .devs_max = 3,
47e6f742
DS
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
db26a024 71 .nparity = 0,
47e6f742
DS
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
8d6fac00
DS
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
cf93e15e 79 .devs_max = 4,
8d6fac00
DS
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
db26a024 84 .nparity = 0,
8d6fac00
DS
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
af902047
ZL
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
8789f4fe 94 .tolerated_failures = 0,
af902047
ZL
95 .devs_increment = 1,
96 .ncopies = 2,
b50836ed 97 .nparity = 0,
ed23467b 98 .raid_name = "dup",
41a6e891 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 100 .mindev_error = 0,
af902047
ZL
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
b2f78e88 106 .devs_min = 1,
8789f4fe 107 .tolerated_failures = 0,
af902047
ZL
108 .devs_increment = 1,
109 .ncopies = 1,
b50836ed 110 .nparity = 0,
ed23467b 111 .raid_name = "raid0",
41a6e891 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 113 .mindev_error = 0,
af902047
ZL
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
8789f4fe 120 .tolerated_failures = 0,
af902047
ZL
121 .devs_increment = 1,
122 .ncopies = 1,
b50836ed 123 .nparity = 0,
ed23467b 124 .raid_name = "single",
41a6e891 125 .bg_flag = 0,
f9fbcaa2 126 .mindev_error = 0,
af902047
ZL
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
8789f4fe 133 .tolerated_failures = 1,
af902047 134 .devs_increment = 1,
da612e31 135 .ncopies = 1,
b50836ed 136 .nparity = 1,
ed23467b 137 .raid_name = "raid5",
41a6e891 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
8789f4fe 146 .tolerated_failures = 2,
af902047 147 .devs_increment = 1,
da612e31 148 .ncopies = 1,
b50836ed 149 .nparity = 2,
ed23467b 150 .raid_name = "raid6",
41a6e891 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
153 },
154};
155
500a44c9
DS
156/*
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
159 */
160enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161{
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
178
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180}
181
158da513 182const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 183{
158da513
DS
184 const int index = btrfs_bg_flags_to_raid_index(flags);
185
186 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
187 return NULL;
188
158da513 189 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
190}
191
f89e09cf
AJ
192/*
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
195 */
196void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197{
198 int i;
199 int ret;
200 char *bp = buf;
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
203
204 if (!flags) {
205 strcpy(bp, "NONE");
206 return;
207 }
208
209#define DESCRIBE_FLAG(flag, desc) \
210 do { \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
214 goto out_overflow; \
215 size_bp -= ret; \
216 bp += ret; \
217 flags &= ~(flag); \
218 } \
219 } while (0)
220
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
229#undef DESCRIBE_FLAG
230
231 if (flags) {
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 size_bp -= ret;
234 }
235
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239 /*
240 * The text is trimmed, it's up to the caller to provide sufficiently
241 * large buffer
242 */
243out_overflow:;
244}
245
6f8e0fc7 246static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 247static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 248static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 249static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
250static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
2b82032c 255
9c6b1c4d
DS
256/*
257 * Device locking
258 * ==============
259 *
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
262 *
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
268 *
269 * the mutex can be very coarse and can cover long-running operations
270 *
271 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 272 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
273 *
274 * global::fs_devs - add, remove, updates to the global list
275 *
18c850fd
JB
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
278 * scan ioctl
9c6b1c4d
DS
279 *
280 * btrfs_device::name - renames (write side), read is RCU
281 *
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
285 *
286 * simple list traversal with read-only actions can be done with RCU protection
287 *
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
290 *
18c850fd
JB
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
293 *
9c6b1c4d
DS
294 * balance_mutex
295 * -------------
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
298 *
299 * chunk_mutex
300 * -----------
301 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
305 *
306 * cleaner_mutex
307 * -------------
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
310 *
311 *
312 * Lock nesting
313 * ============
314 *
315 * uuid_mutex
ae3e715f
AJ
316 * device_list_mutex
317 * chunk_mutex
318 * balance_mutex
89595e80
AJ
319 *
320 *
c3e1f96c
GR
321 * Exclusive operations
322 * ====================
89595e80
AJ
323 *
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
326 *
327 * - Balance (*)
328 * - Device add
329 * - Device remove
330 * - Device replace (*)
331 * - Resize
332 *
333 * The device operations (as above) can be in one of the following states:
334 *
335 * - Running state
336 * - Paused state
337 * - Completed state
338 *
339 * Only device operations marked with (*) can go into the Paused state for the
340 * following reasons:
341 *
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
347 *
c3e1f96c
GR
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 352 * The exclusive status is cleared when the device operation is canceled or
89595e80 353 * completed.
9c6b1c4d
DS
354 */
355
67a2c45e 356DEFINE_MUTEX(uuid_mutex);
8a4b83cc 357static LIST_HEAD(fs_uuids);
4143cb8b 358struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
359{
360 return &fs_uuids;
361}
8a4b83cc 362
2dfeca9b
DS
363/*
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
367 *
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
371 */
7239ff4b
NB
372static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
2208a378
ID
374{
375 struct btrfs_fs_devices *fs_devs;
376
78f2c9e6 377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
378 if (!fs_devs)
379 return ERR_PTR(-ENOMEM);
380
381 mutex_init(&fs_devs->device_list_mutex);
382
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 385 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 386 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
387 if (fsid)
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 389
7239ff4b
NB
390 if (metadata_fsid)
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 else if (fsid)
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
2208a378
ID
395 return fs_devs;
396}
397
a425f9d4 398void btrfs_free_device(struct btrfs_device *device)
48dae9cf 399{
bbbf7243 400 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 401 rcu_string_free(device->name);
1c11b63e 402 extent_io_tree_release(&device->alloc_state);
48dae9cf 403 bio_put(device->flush_bio);
5b316468 404 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
405 kfree(device);
406}
407
e4404d6e
YZ
408static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409{
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
a425f9d4 416 btrfs_free_device(device);
e4404d6e
YZ
417 }
418 kfree(fs_devices);
419}
420
ffc5a379 421void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
422{
423 struct btrfs_fs_devices *fs_devices;
8a4b83cc 424
2b82032c
YZ
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
e4404d6e 429 free_fs_devices(fs_devices);
8a4b83cc 430 }
8a4b83cc
CM
431}
432
7239ff4b
NB
433static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 435{
8a4b83cc
CM
436 struct btrfs_fs_devices *fs_devices;
437
7239ff4b
NB
438 ASSERT(fsid);
439
7a62d0f0 440 /* Handle non-split brain cases */
c4babc5e 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
8a4b83cc
CM
451 }
452 return NULL;
453}
454
c6730a0e
SY
455static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457{
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493}
494
495
beaf8ab3
SB
496static int
497btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
8f32380d 499 struct btrfs_super_block **disk_super)
beaf8ab3
SB
500{
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
beaf8ab3
SB
507 goto error;
508 }
509
510 if (flush)
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
8f32380d
JT
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527error:
528 *bdev = NULL;
beaf8ab3
SB
529 return ret;
530}
531
70bc7088
AJ
532static bool device_path_matched(const char *path, struct btrfs_device *device)
533{
534 int found;
535
536 rcu_read_lock();
537 found = strcmp(rcu_str_deref(device->name), path);
538 rcu_read_unlock();
539
540 return found == 0;
541}
542
d8367db3
AJ
543/*
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
549 * devices.
70bc7088
AJ
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
d8367db3 553 */
70bc7088 554static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 555 struct btrfs_device *skip_device)
4fde46f0 556{
fa6d2ae5
AJ
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
559 int ret = 0;
560
561 if (path)
562 ret = -ENOENT;
4fde46f0 563
fa6d2ae5 564 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 565
70bc7088 566 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
567 list_for_each_entry_safe(device, tmp_device,
568 &fs_devices->devices, dev_list) {
fa6d2ae5 569 if (skip_device && skip_device == device)
d8367db3 570 continue;
fa6d2ae5 571 if (path && !device->name)
4fde46f0 572 continue;
70bc7088 573 if (path && !device_path_matched(path, device))
38cf665d 574 continue;
70bc7088
AJ
575 if (fs_devices->opened) {
576 /* for an already deleted device return 0 */
577 if (path && ret != 0)
578 ret = -EBUSY;
579 break;
580 }
4fde46f0 581
4fde46f0 582 /* delete the stale device */
7bcb8164
AJ
583 fs_devices->num_devices--;
584 list_del(&device->dev_list);
585 btrfs_free_device(device);
586
70bc7088 587 ret = 0;
7bcb8164
AJ
588 }
589 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 590
7bcb8164
AJ
591 if (fs_devices->num_devices == 0) {
592 btrfs_sysfs_remove_fsid(fs_devices);
593 list_del(&fs_devices->fs_list);
594 free_fs_devices(fs_devices);
4fde46f0
AJ
595 }
596 }
70bc7088
AJ
597
598 return ret;
4fde46f0
AJ
599}
600
18c850fd
JB
601/*
602 * This is only used on mount, and we are protected from competing things
603 * messing with our fs_devices by the uuid_mutex, thus we do not need the
604 * fs_devices->device_list_mutex here.
605 */
0fb08bcc
AJ
606static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 struct btrfs_device *device, fmode_t flags,
608 void *holder)
609{
610 struct request_queue *q;
611 struct block_device *bdev;
0fb08bcc
AJ
612 struct btrfs_super_block *disk_super;
613 u64 devid;
614 int ret;
615
616 if (device->bdev)
617 return -EINVAL;
618 if (!device->name)
619 return -EINVAL;
620
621 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 622 &bdev, &disk_super);
0fb08bcc
AJ
623 if (ret)
624 return ret;
625
0fb08bcc
AJ
626 devid = btrfs_stack_device_id(&disk_super->dev_item);
627 if (devid != device->devid)
8f32380d 628 goto error_free_page;
0fb08bcc
AJ
629
630 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 631 goto error_free_page;
0fb08bcc
AJ
632
633 device->generation = btrfs_super_generation(disk_super);
634
635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
636 if (btrfs_super_incompat_flags(disk_super) &
637 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 pr_err(
639 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 640 goto error_free_page;
7239ff4b
NB
641 }
642
ebbede42 643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 644 fs_devices->seeding = true;
0fb08bcc 645 } else {
ebbede42
AJ
646 if (bdev_read_only(bdev))
647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 else
649 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
650 }
651
652 q = bdev_get_queue(bdev);
0fb08bcc 653 if (!blk_queue_nonrot(q))
7f0432d0 654 fs_devices->rotating = true;
0fb08bcc
AJ
655
656 device->bdev = bdev;
e12c9621 657 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
658 device->mode = flags;
659
660 fs_devices->open_devices++;
ebbede42
AJ
661 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 663 fs_devices->rw_devices++;
b1b8e386 664 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 665 }
8f32380d 666 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
667
668 return 0;
669
8f32380d
JT
670error_free_page:
671 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
672 blkdev_put(bdev, flags);
673
674 return -EINVAL;
675}
676
7a62d0f0
NB
677/*
678 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
679 * being created with a disk that has already completed its fsid change. Such
680 * disk can belong to an fs which has its FSID changed or to one which doesn't.
681 * Handle both cases here.
7a62d0f0
NB
682 */
683static struct btrfs_fs_devices *find_fsid_inprogress(
684 struct btrfs_super_block *disk_super)
685{
686 struct btrfs_fs_devices *fs_devices;
687
688 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 BTRFS_FSID_SIZE) != 0 &&
691 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 return fs_devices;
694 }
695 }
696
c0d81c7c 697 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
698}
699
cc5de4e7
NB
700
701static struct btrfs_fs_devices *find_fsid_changed(
702 struct btrfs_super_block *disk_super)
703{
704 struct btrfs_fs_devices *fs_devices;
705
706 /*
707 * Handles the case where scanned device is part of an fs that had
1a9fd417 708 * multiple successful changes of FSID but currently device didn't
05840710
NB
709 * observe it. Meaning our fsid will be different than theirs. We need
710 * to handle two subcases :
711 * 1 - The fs still continues to have different METADATA/FSID uuids.
712 * 2 - The fs is switched back to its original FSID (METADATA/FSID
713 * are equal).
cc5de4e7
NB
714 */
715 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 716 /* Changed UUIDs */
cc5de4e7
NB
717 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 BTRFS_FSID_SIZE) != 0 &&
719 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 BTRFS_FSID_SIZE) == 0 &&
721 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
722 BTRFS_FSID_SIZE) != 0)
723 return fs_devices;
724
725 /* Unchanged UUIDs */
726 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 BTRFS_FSID_SIZE) == 0 &&
728 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 BTRFS_FSID_SIZE) == 0)
cc5de4e7 730 return fs_devices;
cc5de4e7
NB
731 }
732
733 return NULL;
734}
1362089d
NB
735
736static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 struct btrfs_super_block *disk_super)
738{
739 struct btrfs_fs_devices *fs_devices;
740
741 /*
742 * Handle the case where the scanned device is part of an fs whose last
743 * metadata UUID change reverted it to the original FSID. At the same
744 * time * fs_devices was first created by another constitutent device
745 * which didn't fully observe the operation. This results in an
746 * btrfs_fs_devices created with metadata/fsid different AND
747 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 * fs_devices equal to the FSID of the disk.
749 */
750 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 BTRFS_FSID_SIZE) != 0 &&
753 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 BTRFS_FSID_SIZE) == 0 &&
755 fs_devices->fsid_change)
756 return fs_devices;
757 }
758
759 return NULL;
760}
60999ca4
DS
761/*
762 * Add new device to list of registered devices
763 *
764 * Returns:
e124ece5
AJ
765 * device pointer which was just added or updated when successful
766 * error pointer when failed
60999ca4 767 */
e124ece5 768static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
769 struct btrfs_super_block *disk_super,
770 bool *new_device_added)
8a4b83cc
CM
771{
772 struct btrfs_device *device;
7a62d0f0 773 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 774 struct rcu_string *name;
8a4b83cc 775 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 776 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
777 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
779 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 781
cc5de4e7 782 if (fsid_change_in_progress) {
c0d81c7c 783 if (!has_metadata_uuid)
cc5de4e7 784 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 785 else
cc5de4e7 786 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 787 } else if (has_metadata_uuid) {
c6730a0e 788 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 789 } else {
1362089d
NB
790 fs_devices = find_fsid_reverted_metadata(disk_super);
791 if (!fs_devices)
792 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
793 }
794
8a4b83cc 795
8a4b83cc 796 if (!fs_devices) {
7239ff4b
NB
797 if (has_metadata_uuid)
798 fs_devices = alloc_fs_devices(disk_super->fsid,
799 disk_super->metadata_uuid);
800 else
801 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802
2208a378 803 if (IS_ERR(fs_devices))
e124ece5 804 return ERR_CAST(fs_devices);
2208a378 805
92900e51
AV
806 fs_devices->fsid_change = fsid_change_in_progress;
807
9c6d173e 808 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 809 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 810
8a4b83cc
CM
811 device = NULL;
812 } else {
9c6d173e 813 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9 814 device = btrfs_find_device(fs_devices, devid,
b2598edf 815 disk_super->dev_item.uuid, NULL);
7a62d0f0
NB
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
1362089d 822 if (fs_devices->fsid_change &&
7a62d0f0
NB
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
1362089d
NB
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
834
835 fs_devices->fsid_change = false;
836 }
8a4b83cc 837 }
443f24fe 838
8a4b83cc 839 if (!device) {
9c6d173e
AJ
840 if (fs_devices->opened) {
841 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 842 return ERR_PTR(-EBUSY);
9c6d173e 843 }
2b82032c 844
12bd2fc0
ID
845 device = btrfs_alloc_device(NULL, &devid,
846 disk_super->dev_item.uuid);
847 if (IS_ERR(device)) {
9c6d173e 848 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 849 /* we can safely leave the fs_devices entry around */
e124ece5 850 return device;
8a4b83cc 851 }
606686ee
JB
852
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
a425f9d4 855 btrfs_free_device(device);
9c6d173e 856 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 857 return ERR_PTR(-ENOMEM);
8a4b83cc 858 }
606686ee 859 rcu_assign_pointer(device->name, name);
90519d66 860
1f78160c 861 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 862 fs_devices->num_devices++;
e5e9a520 863
2b82032c 864 device->fs_devices = fs_devices;
4306a974 865 *new_device_added = true;
327f18cc
AJ
866
867 if (disk_super->label[0])
aa6c0df7
AJ
868 pr_info(
869 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 disk_super->label, devid, found_transid, path,
871 current->comm, task_pid_nr(current));
327f18cc 872 else
aa6c0df7
AJ
873 pr_info(
874 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 disk_super->fsid, devid, found_transid, path,
876 current->comm, task_pid_nr(current));
327f18cc 877
606686ee 878 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
879 /*
880 * When FS is already mounted.
881 * 1. If you are here and if the device->name is NULL that
882 * means this device was missing at time of FS mount.
883 * 2. If you are here and if the device->name is different
884 * from 'path' that means either
885 * a. The same device disappeared and reappeared with
886 * different name. or
887 * b. The missing-disk-which-was-replaced, has
888 * reappeared now.
889 *
890 * We must allow 1 and 2a above. But 2b would be a spurious
891 * and unintentional.
892 *
893 * Further in case of 1 and 2a above, the disk at 'path'
894 * would have missed some transaction when it was away and
895 * in case of 2a the stale bdev has to be updated as well.
896 * 2b must not be allowed at all time.
897 */
898
899 /*
0f23ae74
CM
900 * For now, we do allow update to btrfs_fs_device through the
901 * btrfs dev scan cli after FS has been mounted. We're still
902 * tracking a problem where systems fail mount by subvolume id
903 * when we reject replacement on a mounted FS.
b96de000 904 */
0f23ae74 905 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
906 /*
907 * That is if the FS is _not_ mounted and if you
908 * are here, that means there is more than one
909 * disk with same uuid and devid.We keep the one
910 * with larger generation number or the last-in if
911 * generation are equal.
912 */
9c6d173e 913 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 914 return ERR_PTR(-EEXIST);
77bdae4d 915 }
b96de000 916
a9261d41
AJ
917 /*
918 * We are going to replace the device path for a given devid,
919 * make sure it's the same device if the device is mounted
920 */
921 if (device->bdev) {
4e7b5671
CH
922 int error;
923 dev_t path_dev;
a9261d41 924
4e7b5671
CH
925 error = lookup_bdev(path, &path_dev);
926 if (error) {
a9261d41 927 mutex_unlock(&fs_devices->device_list_mutex);
4e7b5671 928 return ERR_PTR(error);
a9261d41
AJ
929 }
930
4e7b5671 931 if (device->bdev->bd_dev != path_dev) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6
JT
933 /*
934 * device->fs_info may not be reliable here, so
935 * pass in a NULL instead. This avoids a
936 * possible use-after-free when the fs_info and
937 * fs_info->sb are already torn down.
938 */
939 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
940 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
941 path, devid, found_transid,
942 current->comm,
943 task_pid_nr(current));
a9261d41
AJ
944 return ERR_PTR(-EEXIST);
945 }
a9261d41 946 btrfs_info_in_rcu(device->fs_info,
79dae17d
AJ
947 "devid %llu device path %s changed to %s scanned by %s (%d)",
948 devid, rcu_str_deref(device->name),
949 path, current->comm,
950 task_pid_nr(current));
a9261d41
AJ
951 }
952
606686ee 953 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
954 if (!name) {
955 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 956 return ERR_PTR(-ENOMEM);
9c6d173e 957 }
606686ee
JB
958 rcu_string_free(device->name);
959 rcu_assign_pointer(device->name, name);
e6e674bd 960 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 961 fs_devices->missing_devices--;
e6e674bd 962 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 963 }
8a4b83cc
CM
964 }
965
77bdae4d
AJ
966 /*
967 * Unmount does not free the btrfs_device struct but would zero
968 * generation along with most of the other members. So just update
969 * it back. We need it to pick the disk with largest generation
970 * (as above).
971 */
d1a63002 972 if (!fs_devices->opened) {
77bdae4d 973 device->generation = found_transid;
d1a63002
NB
974 fs_devices->latest_generation = max_t(u64, found_transid,
975 fs_devices->latest_generation);
976 }
77bdae4d 977
f2788d2f
AJ
978 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
979
9c6d173e 980 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 981 return device;
8a4b83cc
CM
982}
983
e4404d6e
YZ
984static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
985{
986 struct btrfs_fs_devices *fs_devices;
987 struct btrfs_device *device;
988 struct btrfs_device *orig_dev;
d2979aa2 989 int ret = 0;
e4404d6e 990
7239ff4b 991 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
992 if (IS_ERR(fs_devices))
993 return fs_devices;
e4404d6e 994
adbbb863 995 mutex_lock(&orig->device_list_mutex);
02db0844 996 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
997
998 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
999 struct rcu_string *name;
1000
12bd2fc0
ID
1001 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002 orig_dev->uuid);
d2979aa2
AJ
1003 if (IS_ERR(device)) {
1004 ret = PTR_ERR(device);
e4404d6e 1005 goto error;
d2979aa2 1006 }
e4404d6e 1007
606686ee
JB
1008 /*
1009 * This is ok to do without rcu read locked because we hold the
1010 * uuid mutex so nothing we touch in here is going to disappear.
1011 */
e755f780 1012 if (orig_dev->name) {
78f2c9e6
DS
1013 name = rcu_string_strdup(orig_dev->name->str,
1014 GFP_KERNEL);
e755f780 1015 if (!name) {
a425f9d4 1016 btrfs_free_device(device);
d2979aa2 1017 ret = -ENOMEM;
e755f780
AJ
1018 goto error;
1019 }
1020 rcu_assign_pointer(device->name, name);
fd2696f3 1021 }
e4404d6e 1022
e4404d6e
YZ
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
adbbb863 1027 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
1028 return fs_devices;
1029error:
adbbb863 1030 mutex_unlock(&orig->device_list_mutex);
e4404d6e 1031 free_fs_devices(fs_devices);
d2979aa2 1032 return ERR_PTR(ret);
e4404d6e
YZ
1033}
1034
3712ccb7 1035static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1036 struct btrfs_device **latest_dev)
dfe25020 1037{
c6e30871 1038 struct btrfs_device *device, *next;
a6b0d5c8 1039
46224705 1040 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1041 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1042 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1043 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1044 &device->dev_state) &&
998a0671
AJ
1045 !test_bit(BTRFS_DEV_STATE_MISSING,
1046 &device->dev_state) &&
3712ccb7
NB
1047 (!*latest_dev ||
1048 device->generation > (*latest_dev)->generation)) {
1049 *latest_dev = device;
a6b0d5c8 1050 }
2b82032c 1051 continue;
a6b0d5c8 1052 }
2b82032c 1053
cf89af14
AJ
1054 /*
1055 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1056 * in btrfs_init_dev_replace() so just continue.
1057 */
1058 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1059 continue;
1060
2b82032c 1061 if (device->bdev) {
d4d77629 1062 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1063 device->bdev = NULL;
1064 fs_devices->open_devices--;
1065 }
ebbede42 1066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1067 list_del_init(&device->dev_alloc_list);
ebbede42 1068 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1069 fs_devices->rw_devices--;
2b82032c 1070 }
e4404d6e
YZ
1071 list_del_init(&device->dev_list);
1072 fs_devices->num_devices--;
a425f9d4 1073 btrfs_free_device(device);
dfe25020 1074 }
2b82032c 1075
3712ccb7
NB
1076}
1077
1078/*
1079 * After we have read the system tree and know devids belonging to this
1080 * filesystem, remove the device which does not belong there.
1081 */
bacce86a 1082void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1083{
1084 struct btrfs_device *latest_dev = NULL;
944d3f9f 1085 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1086
1087 mutex_lock(&uuid_mutex);
bacce86a 1088 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1089
1090 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1091 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1092
443f24fe 1093 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1094
dfe25020 1095 mutex_unlock(&uuid_mutex);
dfe25020 1096}
a0af469b 1097
14238819
AJ
1098static void btrfs_close_bdev(struct btrfs_device *device)
1099{
08ffcae8
DS
1100 if (!device->bdev)
1101 return;
1102
ebbede42 1103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1104 sync_blockdev(device->bdev);
1105 invalidate_bdev(device->bdev);
1106 }
1107
08ffcae8 1108 blkdev_put(device->bdev, device->mode);
14238819
AJ
1109}
1110
959b1c04 1111static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1112{
1113 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1114
ebbede42 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1116 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1117 list_del_init(&device->dev_alloc_list);
1118 fs_devices->rw_devices--;
1119 }
1120
0d977e0e
DCZX
1121 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1122 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1123
e6e674bd 1124 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1125 fs_devices->missing_devices--;
1126
959b1c04 1127 btrfs_close_bdev(device);
321f69f8 1128 if (device->bdev) {
3fff3975 1129 fs_devices->open_devices--;
321f69f8 1130 device->bdev = NULL;
f448341a 1131 }
321f69f8 1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1133 btrfs_destroy_dev_zone_info(device);
f448341a 1134
321f69f8
JT
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
959b1c04 1138
321f69f8
JT
1139 /* Verify the device is back in a pristine state */
1140 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1141 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1142 ASSERT(list_empty(&device->dev_alloc_list));
1143 ASSERT(list_empty(&device->post_commit_list));
1144 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1145}
1146
54eed6ae 1147static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1148{
2037a093 1149 struct btrfs_device *device, *tmp;
e4404d6e 1150
425c6ed6
JB
1151 lockdep_assert_held(&uuid_mutex);
1152
2b82032c 1153 if (--fs_devices->opened > 0)
54eed6ae 1154 return;
8a4b83cc 1155
425c6ed6 1156 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1157 btrfs_close_one_device(device);
c9513edb 1158
e4404d6e
YZ
1159 WARN_ON(fs_devices->open_devices);
1160 WARN_ON(fs_devices->rw_devices);
2b82032c 1161 fs_devices->opened = 0;
0395d84f 1162 fs_devices->seeding = false;
c4989c2f 1163 fs_devices->fs_info = NULL;
8a4b83cc
CM
1164}
1165
54eed6ae 1166void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1167{
944d3f9f
NB
1168 LIST_HEAD(list);
1169 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1170
1171 mutex_lock(&uuid_mutex);
54eed6ae 1172 close_fs_devices(fs_devices);
944d3f9f
NB
1173 if (!fs_devices->opened)
1174 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1175
944d3f9f 1176 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1177 close_fs_devices(fs_devices);
944d3f9f 1178 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1179 free_fs_devices(fs_devices);
1180 }
425c6ed6 1181 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1182}
1183
897fb573 1184static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1185 fmode_t flags, void *holder)
8a4b83cc 1186{
8a4b83cc 1187 struct btrfs_device *device;
443f24fe 1188 struct btrfs_device *latest_dev = NULL;
96c2e067 1189 struct btrfs_device *tmp_device;
8a4b83cc 1190
d4d77629
TH
1191 flags |= FMODE_EXCL;
1192
96c2e067
AJ
1193 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1194 dev_list) {
1195 int ret;
a0af469b 1196
96c2e067
AJ
1197 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1198 if (ret == 0 &&
1199 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1200 latest_dev = device;
96c2e067
AJ
1201 } else if (ret == -ENODATA) {
1202 fs_devices->num_devices--;
1203 list_del(&device->dev_list);
1204 btrfs_free_device(device);
1205 }
8a4b83cc 1206 }
1ed802c9
AJ
1207 if (fs_devices->open_devices == 0)
1208 return -EINVAL;
1209
2b82032c 1210 fs_devices->opened = 1;
443f24fe 1211 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1212 fs_devices->total_rw_bytes = 0;
c4a816c6 1213 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1214 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1215
1216 return 0;
2b82032c
YZ
1217}
1218
4f0f586b
ST
1219static int devid_cmp(void *priv, const struct list_head *a,
1220 const struct list_head *b)
f8e10cd3 1221{
214cc184 1222 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1223
1224 dev1 = list_entry(a, struct btrfs_device, dev_list);
1225 dev2 = list_entry(b, struct btrfs_device, dev_list);
1226
1227 if (dev1->devid < dev2->devid)
1228 return -1;
1229 else if (dev1->devid > dev2->devid)
1230 return 1;
1231 return 0;
1232}
1233
2b82032c 1234int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1235 fmode_t flags, void *holder)
2b82032c
YZ
1236{
1237 int ret;
1238
f5194e34 1239 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1240 /*
1241 * The device_list_mutex cannot be taken here in case opening the
a8698707 1242 * underlying device takes further locks like open_mutex.
18c850fd
JB
1243 *
1244 * We also don't need the lock here as this is called during mount and
1245 * exclusion is provided by uuid_mutex
1246 */
f5194e34 1247
2b82032c 1248 if (fs_devices->opened) {
e4404d6e
YZ
1249 fs_devices->opened++;
1250 ret = 0;
2b82032c 1251 } else {
f8e10cd3 1252 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1253 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1254 }
542c5908 1255
8a4b83cc
CM
1256 return ret;
1257}
1258
8f32380d 1259void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1260{
8f32380d
JT
1261 struct page *page = virt_to_page(super);
1262
6cf86a00
AJ
1263 put_page(page);
1264}
1265
b335eab8 1266static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1267 u64 bytenr, u64 bytenr_orig)
6cf86a00 1268{
b335eab8
NB
1269 struct btrfs_super_block *disk_super;
1270 struct page *page;
6cf86a00
AJ
1271 void *p;
1272 pgoff_t index;
1273
1274 /* make sure our super fits in the device */
1275 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
b335eab8 1276 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1277
1278 /* make sure our super fits in the page */
b335eab8
NB
1279 if (sizeof(*disk_super) > PAGE_SIZE)
1280 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1281
1282 /* make sure our super doesn't straddle pages on disk */
1283 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1284 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1285 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1286
1287 /* pull in the page with our super */
b335eab8 1288 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1289
b335eab8
NB
1290 if (IS_ERR(page))
1291 return ERR_CAST(page);
6cf86a00 1292
b335eab8 1293 p = page_address(page);
6cf86a00
AJ
1294
1295 /* align our pointer to the offset of the super block */
b335eab8 1296 disk_super = p + offset_in_page(bytenr);
6cf86a00 1297
12659251 1298 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1299 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1300 btrfs_release_disk_super(p);
b335eab8 1301 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1302 }
1303
b335eab8
NB
1304 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1305 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1306
b335eab8 1307 return disk_super;
6cf86a00
AJ
1308}
1309
228a73ab
AJ
1310int btrfs_forget_devices(const char *path)
1311{
1312 int ret;
1313
1314 mutex_lock(&uuid_mutex);
1315 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1316 mutex_unlock(&uuid_mutex);
1317
1318 return ret;
1319}
1320
6f60cbd3
DS
1321/*
1322 * Look for a btrfs signature on a device. This may be called out of the mount path
1323 * and we are not allowed to call set_blocksize during the scan. The superblock
1324 * is read via pagecache
1325 */
36350e95
GJ
1326struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1327 void *holder)
8a4b83cc
CM
1328{
1329 struct btrfs_super_block *disk_super;
4306a974 1330 bool new_device_added = false;
36350e95 1331 struct btrfs_device *device = NULL;
8a4b83cc 1332 struct block_device *bdev;
12659251
NA
1333 u64 bytenr, bytenr_orig;
1334 int ret;
8a4b83cc 1335
899f9307
DS
1336 lockdep_assert_held(&uuid_mutex);
1337
6f60cbd3
DS
1338 /*
1339 * we would like to check all the supers, but that would make
1340 * a btrfs mount succeed after a mkfs from a different FS.
1341 * So, we need to add a special mount option to scan for
1342 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1343 */
d4d77629 1344 flags |= FMODE_EXCL;
6f60cbd3
DS
1345
1346 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1347 if (IS_ERR(bdev))
36350e95 1348 return ERR_CAST(bdev);
6f60cbd3 1349
12659251
NA
1350 bytenr_orig = btrfs_sb_offset(0);
1351 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1352 if (ret)
1353 return ERR_PTR(ret);
1354
1355 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1356 if (IS_ERR(disk_super)) {
1357 device = ERR_CAST(disk_super);
6f60cbd3 1358 goto error_bdev_put;
05a5c55d 1359 }
6f60cbd3 1360
4306a974 1361 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1362 if (!IS_ERR(device)) {
4306a974
AJ
1363 if (new_device_added)
1364 btrfs_free_stale_devices(path, device);
1365 }
6f60cbd3 1366
8f32380d 1367 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1368
1369error_bdev_put:
d4d77629 1370 blkdev_put(bdev, flags);
b6ed73bc 1371
36350e95 1372 return device;
8a4b83cc 1373}
0b86a832 1374
1c11b63e
JM
1375/*
1376 * Try to find a chunk that intersects [start, start + len] range and when one
1377 * such is found, record the end of it in *start
1378 */
1c11b63e
JM
1379static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1380 u64 len)
6df9a95e 1381{
1c11b63e 1382 u64 physical_start, physical_end;
6df9a95e 1383
1c11b63e 1384 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1385
1c11b63e
JM
1386 if (!find_first_extent_bit(&device->alloc_state, *start,
1387 &physical_start, &physical_end,
1388 CHUNK_ALLOCATED, NULL)) {
c152b63e 1389
1c11b63e
JM
1390 if (in_range(physical_start, *start, len) ||
1391 in_range(*start, physical_start,
1392 physical_end - physical_start)) {
1393 *start = physical_end + 1;
1394 return true;
6df9a95e
JB
1395 }
1396 }
1c11b63e 1397 return false;
6df9a95e
JB
1398}
1399
3b4ffa40
NA
1400static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1401{
1402 switch (device->fs_devices->chunk_alloc_policy) {
1403 case BTRFS_CHUNK_ALLOC_REGULAR:
1404 /*
1405 * We don't want to overwrite the superblock on the drive nor
1406 * any area used by the boot loader (grub for example), so we
1407 * make sure to start at an offset of at least 1MB.
1408 */
1409 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1410 case BTRFS_CHUNK_ALLOC_ZONED:
1411 /*
1412 * We don't care about the starting region like regular
1413 * allocator, because we anyway use/reserve the first two zones
1414 * for superblock logging.
1415 */
1416 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1417 default:
1418 BUG();
1419 }
1420}
1421
1cd6121f
NA
1422static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1423 u64 *hole_start, u64 *hole_size,
1424 u64 num_bytes)
1425{
1426 u64 zone_size = device->zone_info->zone_size;
1427 u64 pos;
1428 int ret;
1429 bool changed = false;
1430
1431 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1432
1433 while (*hole_size > 0) {
1434 pos = btrfs_find_allocatable_zones(device, *hole_start,
1435 *hole_start + *hole_size,
1436 num_bytes);
1437 if (pos != *hole_start) {
1438 *hole_size = *hole_start + *hole_size - pos;
1439 *hole_start = pos;
1440 changed = true;
1441 if (*hole_size < num_bytes)
1442 break;
1443 }
1444
1445 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1446
1447 /* Range is ensured to be empty */
1448 if (!ret)
1449 return changed;
1450
1451 /* Given hole range was invalid (outside of device) */
1452 if (ret == -ERANGE) {
1453 *hole_start += *hole_size;
d6f67afb 1454 *hole_size = 0;
7000babd 1455 return true;
1cd6121f
NA
1456 }
1457
1458 *hole_start += zone_size;
1459 *hole_size -= zone_size;
1460 changed = true;
1461 }
1462
1463 return changed;
1464}
1465
3b4ffa40
NA
1466/**
1467 * dev_extent_hole_check - check if specified hole is suitable for allocation
1468 * @device: the device which we have the hole
1469 * @hole_start: starting position of the hole
1470 * @hole_size: the size of the hole
1471 * @num_bytes: the size of the free space that we need
1472 *
1cd6121f 1473 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1474 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1475 */
1476static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1477 u64 *hole_size, u64 num_bytes)
1478{
1479 bool changed = false;
1480 u64 hole_end = *hole_start + *hole_size;
1481
1cd6121f
NA
1482 for (;;) {
1483 /*
1484 * Check before we set max_hole_start, otherwise we could end up
1485 * sending back this offset anyway.
1486 */
1487 if (contains_pending_extent(device, hole_start, *hole_size)) {
1488 if (hole_end >= *hole_start)
1489 *hole_size = hole_end - *hole_start;
1490 else
1491 *hole_size = 0;
1492 changed = true;
1493 }
1494
1495 switch (device->fs_devices->chunk_alloc_policy) {
1496 case BTRFS_CHUNK_ALLOC_REGULAR:
1497 /* No extra check */
1498 break;
1499 case BTRFS_CHUNK_ALLOC_ZONED:
1500 if (dev_extent_hole_check_zoned(device, hole_start,
1501 hole_size, num_bytes)) {
1502 changed = true;
1503 /*
1504 * The changed hole can contain pending extent.
1505 * Loop again to check that.
1506 */
1507 continue;
1508 }
1509 break;
1510 default:
1511 BUG();
1512 }
3b4ffa40 1513
3b4ffa40 1514 break;
3b4ffa40
NA
1515 }
1516
1517 return changed;
1518}
6df9a95e 1519
0b86a832 1520/*
499f377f
JM
1521 * find_free_dev_extent_start - find free space in the specified device
1522 * @device: the device which we search the free space in
1523 * @num_bytes: the size of the free space that we need
1524 * @search_start: the position from which to begin the search
1525 * @start: store the start of the free space.
1526 * @len: the size of the free space. that we find, or the size
1527 * of the max free space if we don't find suitable free space
7bfc837d 1528 *
0b86a832
CM
1529 * this uses a pretty simple search, the expectation is that it is
1530 * called very infrequently and that a given device has a small number
1531 * of extents
7bfc837d
MX
1532 *
1533 * @start is used to store the start of the free space if we find. But if we
1534 * don't find suitable free space, it will be used to store the start position
1535 * of the max free space.
1536 *
1537 * @len is used to store the size of the free space that we find.
1538 * But if we don't find suitable free space, it is used to store the size of
1539 * the max free space.
135da976
QW
1540 *
1541 * NOTE: This function will search *commit* root of device tree, and does extra
1542 * check to ensure dev extents are not double allocated.
1543 * This makes the function safe to allocate dev extents but may not report
1544 * correct usable device space, as device extent freed in current transaction
1a9fd417 1545 * is not reported as available.
0b86a832 1546 */
9e3246a5
QW
1547static int find_free_dev_extent_start(struct btrfs_device *device,
1548 u64 num_bytes, u64 search_start, u64 *start,
1549 u64 *len)
0b86a832 1550{
0b246afa
JM
1551 struct btrfs_fs_info *fs_info = device->fs_info;
1552 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1553 struct btrfs_key key;
7bfc837d 1554 struct btrfs_dev_extent *dev_extent;
2b82032c 1555 struct btrfs_path *path;
7bfc837d
MX
1556 u64 hole_size;
1557 u64 max_hole_start;
1558 u64 max_hole_size;
1559 u64 extent_end;
0b86a832
CM
1560 u64 search_end = device->total_bytes;
1561 int ret;
7bfc837d 1562 int slot;
0b86a832 1563 struct extent_buffer *l;
8cdc7c5b 1564
3b4ffa40 1565 search_start = dev_extent_search_start(device, search_start);
0b86a832 1566
1cd6121f
NA
1567 WARN_ON(device->zone_info &&
1568 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1569
6df9a95e
JB
1570 path = btrfs_alloc_path();
1571 if (!path)
1572 return -ENOMEM;
f2ab7618 1573
7bfc837d
MX
1574 max_hole_start = search_start;
1575 max_hole_size = 0;
1576
f2ab7618 1577again:
401e29c1
AJ
1578 if (search_start >= search_end ||
1579 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1580 ret = -ENOSPC;
6df9a95e 1581 goto out;
7bfc837d
MX
1582 }
1583
e4058b54 1584 path->reada = READA_FORWARD;
6df9a95e
JB
1585 path->search_commit_root = 1;
1586 path->skip_locking = 1;
7bfc837d 1587
0b86a832
CM
1588 key.objectid = device->devid;
1589 key.offset = search_start;
1590 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1591
0ff40a91 1592 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1593 if (ret < 0)
7bfc837d 1594 goto out;
7bfc837d 1595
0b86a832
CM
1596 while (1) {
1597 l = path->nodes[0];
1598 slot = path->slots[0];
1599 if (slot >= btrfs_header_nritems(l)) {
1600 ret = btrfs_next_leaf(root, path);
1601 if (ret == 0)
1602 continue;
1603 if (ret < 0)
7bfc837d
MX
1604 goto out;
1605
1606 break;
0b86a832
CM
1607 }
1608 btrfs_item_key_to_cpu(l, &key, slot);
1609
1610 if (key.objectid < device->devid)
1611 goto next;
1612
1613 if (key.objectid > device->devid)
7bfc837d 1614 break;
0b86a832 1615
962a298f 1616 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1617 goto next;
9779b72f 1618
7bfc837d
MX
1619 if (key.offset > search_start) {
1620 hole_size = key.offset - search_start;
3b4ffa40
NA
1621 dev_extent_hole_check(device, &search_start, &hole_size,
1622 num_bytes);
6df9a95e 1623
7bfc837d
MX
1624 if (hole_size > max_hole_size) {
1625 max_hole_start = search_start;
1626 max_hole_size = hole_size;
1627 }
9779b72f 1628
7bfc837d
MX
1629 /*
1630 * If this free space is greater than which we need,
1631 * it must be the max free space that we have found
1632 * until now, so max_hole_start must point to the start
1633 * of this free space and the length of this free space
1634 * is stored in max_hole_size. Thus, we return
1635 * max_hole_start and max_hole_size and go back to the
1636 * caller.
1637 */
1638 if (hole_size >= num_bytes) {
1639 ret = 0;
1640 goto out;
0b86a832
CM
1641 }
1642 }
0b86a832 1643
0b86a832 1644 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1645 extent_end = key.offset + btrfs_dev_extent_length(l,
1646 dev_extent);
1647 if (extent_end > search_start)
1648 search_start = extent_end;
0b86a832
CM
1649next:
1650 path->slots[0]++;
1651 cond_resched();
1652 }
0b86a832 1653
38c01b96 1654 /*
1655 * At this point, search_start should be the end of
1656 * allocated dev extents, and when shrinking the device,
1657 * search_end may be smaller than search_start.
1658 */
f2ab7618 1659 if (search_end > search_start) {
38c01b96 1660 hole_size = search_end - search_start;
3b4ffa40
NA
1661 if (dev_extent_hole_check(device, &search_start, &hole_size,
1662 num_bytes)) {
f2ab7618
ZL
1663 btrfs_release_path(path);
1664 goto again;
1665 }
0b86a832 1666
f2ab7618
ZL
1667 if (hole_size > max_hole_size) {
1668 max_hole_start = search_start;
1669 max_hole_size = hole_size;
1670 }
6df9a95e
JB
1671 }
1672
7bfc837d 1673 /* See above. */
f2ab7618 1674 if (max_hole_size < num_bytes)
7bfc837d
MX
1675 ret = -ENOSPC;
1676 else
1677 ret = 0;
1678
1679out:
2b82032c 1680 btrfs_free_path(path);
7bfc837d 1681 *start = max_hole_start;
b2117a39 1682 if (len)
7bfc837d 1683 *len = max_hole_size;
0b86a832
CM
1684 return ret;
1685}
1686
60dfdf25 1687int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1688 u64 *start, u64 *len)
1689{
499f377f 1690 /* FIXME use last free of some kind */
60dfdf25 1691 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1692}
1693
b2950863 1694static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1695 struct btrfs_device *device,
2196d6e8 1696 u64 start, u64 *dev_extent_len)
8f18cf13 1697{
0b246afa
JM
1698 struct btrfs_fs_info *fs_info = device->fs_info;
1699 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1700 int ret;
1701 struct btrfs_path *path;
8f18cf13 1702 struct btrfs_key key;
a061fc8d
CM
1703 struct btrfs_key found_key;
1704 struct extent_buffer *leaf = NULL;
1705 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1706
1707 path = btrfs_alloc_path();
1708 if (!path)
1709 return -ENOMEM;
1710
1711 key.objectid = device->devid;
1712 key.offset = start;
1713 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1714again:
8f18cf13 1715 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1716 if (ret > 0) {
1717 ret = btrfs_previous_item(root, path, key.objectid,
1718 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1719 if (ret)
1720 goto out;
a061fc8d
CM
1721 leaf = path->nodes[0];
1722 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1723 extent = btrfs_item_ptr(leaf, path->slots[0],
1724 struct btrfs_dev_extent);
1725 BUG_ON(found_key.offset > start || found_key.offset +
1726 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1727 key = found_key;
1728 btrfs_release_path(path);
1729 goto again;
a061fc8d
CM
1730 } else if (ret == 0) {
1731 leaf = path->nodes[0];
1732 extent = btrfs_item_ptr(leaf, path->slots[0],
1733 struct btrfs_dev_extent);
79787eaa 1734 } else {
79787eaa 1735 goto out;
a061fc8d 1736 }
8f18cf13 1737
2196d6e8
MX
1738 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1739
8f18cf13 1740 ret = btrfs_del_item(trans, root, path);
79bd3712 1741 if (ret == 0)
3204d33c 1742 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1743out:
8f18cf13
CM
1744 btrfs_free_path(path);
1745 return ret;
1746}
1747
6df9a95e 1748static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1749{
6df9a95e
JB
1750 struct extent_map_tree *em_tree;
1751 struct extent_map *em;
1752 struct rb_node *n;
1753 u64 ret = 0;
0b86a832 1754
c8bf1b67 1755 em_tree = &fs_info->mapping_tree;
6df9a95e 1756 read_lock(&em_tree->lock);
07e1ce09 1757 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1758 if (n) {
1759 em = rb_entry(n, struct extent_map, rb_node);
1760 ret = em->start + em->len;
0b86a832 1761 }
6df9a95e
JB
1762 read_unlock(&em_tree->lock);
1763
0b86a832
CM
1764 return ret;
1765}
1766
53f10659
ID
1767static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1768 u64 *devid_ret)
0b86a832
CM
1769{
1770 int ret;
1771 struct btrfs_key key;
1772 struct btrfs_key found_key;
2b82032c
YZ
1773 struct btrfs_path *path;
1774
2b82032c
YZ
1775 path = btrfs_alloc_path();
1776 if (!path)
1777 return -ENOMEM;
0b86a832
CM
1778
1779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1780 key.type = BTRFS_DEV_ITEM_KEY;
1781 key.offset = (u64)-1;
1782
53f10659 1783 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1784 if (ret < 0)
1785 goto error;
1786
a06dee4d
AJ
1787 if (ret == 0) {
1788 /* Corruption */
1789 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1790 ret = -EUCLEAN;
1791 goto error;
1792 }
0b86a832 1793
53f10659
ID
1794 ret = btrfs_previous_item(fs_info->chunk_root, path,
1795 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1796 BTRFS_DEV_ITEM_KEY);
1797 if (ret) {
53f10659 1798 *devid_ret = 1;
0b86a832
CM
1799 } else {
1800 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1801 path->slots[0]);
53f10659 1802 *devid_ret = found_key.offset + 1;
0b86a832
CM
1803 }
1804 ret = 0;
1805error:
2b82032c 1806 btrfs_free_path(path);
0b86a832
CM
1807 return ret;
1808}
1809
1810/*
1811 * the device information is stored in the chunk root
1812 * the btrfs_device struct should be fully filled in
1813 */
c74a0b02 1814static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1815 struct btrfs_device *device)
0b86a832
CM
1816{
1817 int ret;
1818 struct btrfs_path *path;
1819 struct btrfs_dev_item *dev_item;
1820 struct extent_buffer *leaf;
1821 struct btrfs_key key;
1822 unsigned long ptr;
0b86a832 1823
0b86a832
CM
1824 path = btrfs_alloc_path();
1825 if (!path)
1826 return -ENOMEM;
1827
0b86a832
CM
1828 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1829 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1830 key.offset = device->devid;
0b86a832 1831
8e87e856
NB
1832 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1833 &key, sizeof(*dev_item));
0b86a832
CM
1834 if (ret)
1835 goto out;
1836
1837 leaf = path->nodes[0];
1838 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1839
1840 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1841 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1842 btrfs_set_device_type(leaf, dev_item, device->type);
1843 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1844 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1845 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1846 btrfs_set_device_total_bytes(leaf, dev_item,
1847 btrfs_device_get_disk_total_bytes(device));
1848 btrfs_set_device_bytes_used(leaf, dev_item,
1849 btrfs_device_get_bytes_used(device));
e17cade2
CM
1850 btrfs_set_device_group(leaf, dev_item, 0);
1851 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1852 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1853 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1854
410ba3a2 1855 ptr = btrfs_device_uuid(dev_item);
e17cade2 1856 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1857 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1858 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1859 ptr, BTRFS_FSID_SIZE);
0b86a832 1860 btrfs_mark_buffer_dirty(leaf);
0b86a832 1861
2b82032c 1862 ret = 0;
0b86a832
CM
1863out:
1864 btrfs_free_path(path);
1865 return ret;
1866}
8f18cf13 1867
5a1972bd
QW
1868/*
1869 * Function to update ctime/mtime for a given device path.
1870 * Mainly used for ctime/mtime based probe like libblkid.
1871 */
da353f6b 1872static void update_dev_time(const char *path_name)
5a1972bd
QW
1873{
1874 struct file *filp;
1875
1876 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1877 if (IS_ERR(filp))
5a1972bd
QW
1878 return;
1879 file_update_time(filp);
1880 filp_close(filp, NULL);
5a1972bd
QW
1881}
1882
f331a952 1883static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1884{
f331a952 1885 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1886 int ret;
1887 struct btrfs_path *path;
a061fc8d 1888 struct btrfs_key key;
a061fc8d
CM
1889 struct btrfs_trans_handle *trans;
1890
a061fc8d
CM
1891 path = btrfs_alloc_path();
1892 if (!path)
1893 return -ENOMEM;
1894
a22285a6 1895 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1896 if (IS_ERR(trans)) {
1897 btrfs_free_path(path);
1898 return PTR_ERR(trans);
1899 }
a061fc8d
CM
1900 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1901 key.type = BTRFS_DEV_ITEM_KEY;
1902 key.offset = device->devid;
1903
1904 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1905 if (ret) {
1906 if (ret > 0)
1907 ret = -ENOENT;
1908 btrfs_abort_transaction(trans, ret);
1909 btrfs_end_transaction(trans);
a061fc8d
CM
1910 goto out;
1911 }
1912
1913 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1914 if (ret) {
1915 btrfs_abort_transaction(trans, ret);
1916 btrfs_end_transaction(trans);
1917 }
1918
a061fc8d
CM
1919out:
1920 btrfs_free_path(path);
5e9f2ad5
NB
1921 if (!ret)
1922 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1923 return ret;
1924}
1925
3cc31a0d
DS
1926/*
1927 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1928 * filesystem. It's up to the caller to adjust that number regarding eg. device
1929 * replace.
1930 */
1931static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1932 u64 num_devices)
a061fc8d 1933{
a061fc8d 1934 u64 all_avail;
de98ced9 1935 unsigned seq;
418775a2 1936 int i;
a061fc8d 1937
de98ced9 1938 do {
bd45ffbc 1939 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1940
bd45ffbc
AJ
1941 all_avail = fs_info->avail_data_alloc_bits |
1942 fs_info->avail_system_alloc_bits |
1943 fs_info->avail_metadata_alloc_bits;
1944 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1945
418775a2 1946 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1947 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1948 continue;
a061fc8d 1949
efc222f8
AJ
1950 if (num_devices < btrfs_raid_array[i].devs_min)
1951 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1952 }
1953
bd45ffbc 1954 return 0;
f1fa7f26
AJ
1955}
1956
c9162bdf
OS
1957static struct btrfs_device * btrfs_find_next_active_device(
1958 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1959{
2b82032c 1960 struct btrfs_device *next_device;
88acff64
AJ
1961
1962 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1963 if (next_device != device &&
e6e674bd
AJ
1964 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1965 && next_device->bdev)
88acff64
AJ
1966 return next_device;
1967 }
1968
1969 return NULL;
1970}
1971
1972/*
1973 * Helper function to check if the given device is part of s_bdev / latest_bdev
1974 * and replace it with the provided or the next active device, in the context
1975 * where this function called, there should be always be another device (or
1976 * this_dev) which is active.
1977 */
b105e927 1978void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1979 struct btrfs_device *next_device)
88acff64 1980{
d6507cf1 1981 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1982
e493e8f9 1983 if (!next_device)
88acff64 1984 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 1985 device);
88acff64
AJ
1986 ASSERT(next_device);
1987
1988 if (fs_info->sb->s_bdev &&
1989 (fs_info->sb->s_bdev == device->bdev))
1990 fs_info->sb->s_bdev = next_device->bdev;
1991
1992 if (fs_info->fs_devices->latest_bdev == device->bdev)
1993 fs_info->fs_devices->latest_bdev = next_device->bdev;
1994}
1995
1da73967
AJ
1996/*
1997 * Return btrfs_fs_devices::num_devices excluding the device that's being
1998 * currently replaced.
1999 */
2000static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2001{
2002 u64 num_devices = fs_info->fs_devices->num_devices;
2003
cb5583dd 2004 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2005 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2006 ASSERT(num_devices > 1);
2007 num_devices--;
2008 }
cb5583dd 2009 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2010
2011 return num_devices;
2012}
2013
313b0858
JB
2014void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2015 struct block_device *bdev,
2016 const char *device_path)
6fbceb9f 2017{
6fbceb9f
JT
2018 struct btrfs_super_block *disk_super;
2019 int copy_num;
2020
2021 if (!bdev)
2022 return;
2023
2024 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2025 struct page *page;
2026 int ret;
6fbceb9f 2027
8f32380d
JT
2028 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2029 if (IS_ERR(disk_super))
2030 continue;
6fbceb9f 2031
12659251
NA
2032 if (bdev_is_zoned(bdev)) {
2033 btrfs_reset_sb_log_zones(bdev, copy_num);
2034 continue;
2035 }
2036
6fbceb9f 2037 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2038
2039 page = virt_to_page(disk_super);
2040 set_page_dirty(page);
2041 lock_page(page);
2042 /* write_on_page() unlocks the page */
2043 ret = write_one_page(page);
2044 if (ret)
2045 btrfs_warn(fs_info,
2046 "error clearing superblock number %d (%d)",
2047 copy_num, ret);
2048 btrfs_release_disk_super(disk_super);
2049
6fbceb9f
JT
2050 }
2051
2052 /* Notify udev that device has changed */
2053 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2054
2055 /* Update ctime/mtime for device path for libblkid */
2056 update_dev_time(device_path);
2057}
2058
da353f6b 2059int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
53f8a74c 2060 u64 devid)
f1fa7f26
AJ
2061{
2062 struct btrfs_device *device;
1f78160c 2063 struct btrfs_fs_devices *cur_devices;
b5185197 2064 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2065 u64 num_devices;
a061fc8d
CM
2066 int ret = 0;
2067
a061fc8d
CM
2068 mutex_lock(&uuid_mutex);
2069
1da73967 2070 num_devices = btrfs_num_devices(fs_info);
8dabb742 2071
0b246afa 2072 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2073 if (ret)
a061fc8d 2074 goto out;
a061fc8d 2075
a27a94c2
NB
2076 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2077
2078 if (IS_ERR(device)) {
2079 if (PTR_ERR(device) == -ENOENT &&
e4571b8c 2080 device_path && strcmp(device_path, "missing") == 0)
a27a94c2
NB
2081 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2082 else
2083 ret = PTR_ERR(device);
53b381b3 2084 goto out;
a27a94c2 2085 }
dfe25020 2086
eede2bf3
OS
2087 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2088 btrfs_warn_in_rcu(fs_info,
2089 "cannot remove device %s (devid %llu) due to active swapfile",
2090 rcu_str_deref(device->name), device->devid);
2091 ret = -ETXTBSY;
2092 goto out;
2093 }
2094
401e29c1 2095 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2096 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2097 goto out;
63a212ab
SB
2098 }
2099
ebbede42
AJ
2100 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2101 fs_info->fs_devices->rw_devices == 1) {
183860f6 2102 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2103 goto out;
2b82032c
YZ
2104 }
2105
ebbede42 2106 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2107 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2108 list_del_init(&device->dev_alloc_list);
c3929c36 2109 device->fs_devices->rw_devices--;
34441361 2110 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2111 }
a061fc8d 2112
d7901554 2113 mutex_unlock(&uuid_mutex);
a061fc8d 2114 ret = btrfs_shrink_device(device, 0);
66d204a1
FM
2115 if (!ret)
2116 btrfs_reada_remove_dev(device);
d7901554 2117 mutex_lock(&uuid_mutex);
a061fc8d 2118 if (ret)
9b3517e9 2119 goto error_undo;
a061fc8d 2120
63a212ab
SB
2121 /*
2122 * TODO: the superblock still includes this device in its num_devices
2123 * counter although write_all_supers() is not locked out. This
2124 * could give a filesystem state which requires a degraded mount.
2125 */
f331a952 2126 ret = btrfs_rm_dev_item(device);
a061fc8d 2127 if (ret)
9b3517e9 2128 goto error_undo;
a061fc8d 2129
e12c9621 2130 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2131 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2132
2133 /*
2134 * the device list mutex makes sure that we don't change
2135 * the device list while someone else is writing out all
d7306801
FDBM
2136 * the device supers. Whoever is writing all supers, should
2137 * lock the device list mutex before getting the number of
2138 * devices in the super block (super_copy). Conversely,
2139 * whoever updates the number of devices in the super block
2140 * (super_copy) should hold the device list mutex.
e5e9a520 2141 */
1f78160c 2142
41a52a0f
AJ
2143 /*
2144 * In normal cases the cur_devices == fs_devices. But in case
2145 * of deleting a seed device, the cur_devices should point to
2146 * its own fs_devices listed under the fs_devices->seed.
2147 */
1f78160c 2148 cur_devices = device->fs_devices;
b5185197 2149 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2150 list_del_rcu(&device->dev_list);
e5e9a520 2151
41a52a0f
AJ
2152 cur_devices->num_devices--;
2153 cur_devices->total_devices--;
b4993e64
AJ
2154 /* Update total_devices of the parent fs_devices if it's seed */
2155 if (cur_devices != fs_devices)
2156 fs_devices->total_devices--;
2b82032c 2157
e6e674bd 2158 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2159 cur_devices->missing_devices--;
cd02dca5 2160
d6507cf1 2161 btrfs_assign_next_active_device(device, NULL);
2b82032c 2162
0bfaa9c5 2163 if (device->bdev) {
41a52a0f 2164 cur_devices->open_devices--;
0bfaa9c5 2165 /* remove sysfs entry */
53f8a74c 2166 btrfs_sysfs_remove_device(device);
0bfaa9c5 2167 }
99994cde 2168
0b246afa
JM
2169 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2170 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2171 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2172
cea67ab9
JM
2173 /*
2174 * at this point, the device is zero sized and detached from
2175 * the devices list. All that's left is to zero out the old
2176 * supers and free the device.
2177 */
ebbede42 2178 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
8f32380d
JT
2179 btrfs_scratch_superblocks(fs_info, device->bdev,
2180 device->name->str);
cea67ab9
JM
2181
2182 btrfs_close_bdev(device);
8e75fd89
NB
2183 synchronize_rcu();
2184 btrfs_free_device(device);
cea67ab9 2185
1f78160c 2186 if (cur_devices->open_devices == 0) {
944d3f9f 2187 list_del_init(&cur_devices->seed_list);
0226e0eb 2188 close_fs_devices(cur_devices);
1f78160c 2189 free_fs_devices(cur_devices);
2b82032c
YZ
2190 }
2191
a061fc8d
CM
2192out:
2193 mutex_unlock(&uuid_mutex);
a061fc8d 2194 return ret;
24fc572f 2195
9b3517e9 2196error_undo:
66d204a1 2197 btrfs_reada_undo_remove_dev(device);
ebbede42 2198 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2199 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2200 list_add(&device->dev_alloc_list,
b5185197 2201 &fs_devices->alloc_list);
c3929c36 2202 device->fs_devices->rw_devices++;
34441361 2203 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2204 }
24fc572f 2205 goto out;
a061fc8d
CM
2206}
2207
68a9db5f 2208void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2209{
d51908ce
AJ
2210 struct btrfs_fs_devices *fs_devices;
2211
68a9db5f 2212 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2213
25e8e911
AJ
2214 /*
2215 * in case of fs with no seed, srcdev->fs_devices will point
2216 * to fs_devices of fs_info. However when the dev being replaced is
2217 * a seed dev it will point to the seed's local fs_devices. In short
2218 * srcdev will have its correct fs_devices in both the cases.
2219 */
2220 fs_devices = srcdev->fs_devices;
d51908ce 2221
e93c89c1 2222 list_del_rcu(&srcdev->dev_list);
619c47f3 2223 list_del(&srcdev->dev_alloc_list);
d51908ce 2224 fs_devices->num_devices--;
e6e674bd 2225 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2226 fs_devices->missing_devices--;
e93c89c1 2227
ebbede42 2228 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2229 fs_devices->rw_devices--;
1357272f 2230
82372bc8 2231 if (srcdev->bdev)
d51908ce 2232 fs_devices->open_devices--;
084b6e7c
QW
2233}
2234
65237ee3 2235void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2236{
2237 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2238
a466c85e
JB
2239 mutex_lock(&uuid_mutex);
2240
14238819 2241 btrfs_close_bdev(srcdev);
8e75fd89
NB
2242 synchronize_rcu();
2243 btrfs_free_device(srcdev);
94d5f0c2 2244
94d5f0c2
AJ
2245 /* if this is no devs we rather delete the fs_devices */
2246 if (!fs_devices->num_devices) {
6dd38f81
AJ
2247 /*
2248 * On a mounted FS, num_devices can't be zero unless it's a
2249 * seed. In case of a seed device being replaced, the replace
2250 * target added to the sprout FS, so there will be no more
2251 * device left under the seed FS.
2252 */
2253 ASSERT(fs_devices->seeding);
2254
944d3f9f 2255 list_del_init(&fs_devices->seed_list);
0226e0eb 2256 close_fs_devices(fs_devices);
8bef8401 2257 free_fs_devices(fs_devices);
94d5f0c2 2258 }
a466c85e 2259 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2260}
2261
4f5ad7bd 2262void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2263{
4f5ad7bd 2264 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2265
d9a071f0 2266 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2267
53f8a74c 2268 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2269
779bf3fe 2270 if (tgtdev->bdev)
d9a071f0 2271 fs_devices->open_devices--;
779bf3fe 2272
d9a071f0 2273 fs_devices->num_devices--;
e93c89c1 2274
d6507cf1 2275 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2276
e93c89c1 2277 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2278
d9a071f0 2279 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2280
2281 /*
2282 * The update_dev_time() with in btrfs_scratch_superblocks()
2283 * may lead to a call to btrfs_show_devname() which will try
2284 * to hold device_list_mutex. And here this device
2285 * is already out of device list, so we don't have to hold
2286 * the device_list_mutex lock.
2287 */
8f32380d
JT
2288 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2289 tgtdev->name->str);
14238819
AJ
2290
2291 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2292 synchronize_rcu();
2293 btrfs_free_device(tgtdev);
e93c89c1
SB
2294}
2295
b444ad46
NB
2296static struct btrfs_device *btrfs_find_device_by_path(
2297 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2298{
2299 int ret = 0;
2300 struct btrfs_super_block *disk_super;
2301 u64 devid;
2302 u8 *dev_uuid;
2303 struct block_device *bdev;
b444ad46 2304 struct btrfs_device *device;
7ba15b7d 2305
7ba15b7d 2306 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
8f32380d 2307 fs_info->bdev_holder, 0, &bdev, &disk_super);
7ba15b7d 2308 if (ret)
b444ad46 2309 return ERR_PTR(ret);
8f32380d 2310
7ba15b7d
SB
2311 devid = btrfs_stack_device_id(&disk_super->dev_item);
2312 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2313 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2314 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2315 disk_super->metadata_uuid);
7239ff4b 2316 else
e4319cd9 2317 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2318 disk_super->fsid);
7239ff4b 2319
8f32380d 2320 btrfs_release_disk_super(disk_super);
b444ad46
NB
2321 if (!device)
2322 device = ERR_PTR(-ENOENT);
7ba15b7d 2323 blkdev_put(bdev, FMODE_READ);
b444ad46 2324 return device;
7ba15b7d
SB
2325}
2326
5c5c0df0
DS
2327/*
2328 * Lookup a device given by device id, or the path if the id is 0.
2329 */
a27a94c2 2330struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2331 struct btrfs_fs_info *fs_info, u64 devid,
2332 const char *device_path)
24e0474b 2333{
a27a94c2 2334 struct btrfs_device *device;
24e0474b 2335
5c5c0df0 2336 if (devid) {
e4319cd9 2337 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
b2598edf 2338 NULL);
a27a94c2
NB
2339 if (!device)
2340 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2341 return device;
2342 }
2343
2344 if (!device_path || !device_path[0])
2345 return ERR_PTR(-EINVAL);
2346
2347 if (strcmp(device_path, "missing") == 0) {
2348 /* Find first missing device */
2349 list_for_each_entry(device, &fs_info->fs_devices->devices,
2350 dev_list) {
2351 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2352 &device->dev_state) && !device->bdev)
2353 return device;
d95a830c 2354 }
6e927ceb 2355 return ERR_PTR(-ENOENT);
24e0474b 2356 }
6e927ceb
AJ
2357
2358 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2359}
2360
2b82032c
YZ
2361/*
2362 * does all the dirty work required for changing file system's UUID.
2363 */
2ff7e61e 2364static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2365{
0b246afa 2366 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2367 struct btrfs_fs_devices *old_devices;
e4404d6e 2368 struct btrfs_fs_devices *seed_devices;
0b246afa 2369 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2370 struct btrfs_device *device;
2371 u64 super_flags;
2372
a32bf9a3 2373 lockdep_assert_held(&uuid_mutex);
e4404d6e 2374 if (!fs_devices->seeding)
2b82032c
YZ
2375 return -EINVAL;
2376
427c8fdd
NB
2377 /*
2378 * Private copy of the seed devices, anchored at
2379 * fs_info->fs_devices->seed_list
2380 */
7239ff4b 2381 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2382 if (IS_ERR(seed_devices))
2383 return PTR_ERR(seed_devices);
2b82032c 2384
427c8fdd
NB
2385 /*
2386 * It's necessary to retain a copy of the original seed fs_devices in
2387 * fs_uuids so that filesystems which have been seeded can successfully
2388 * reference the seed device from open_seed_devices. This also supports
2389 * multiple fs seed.
2390 */
e4404d6e
YZ
2391 old_devices = clone_fs_devices(fs_devices);
2392 if (IS_ERR(old_devices)) {
2393 kfree(seed_devices);
2394 return PTR_ERR(old_devices);
2b82032c 2395 }
e4404d6e 2396
c4babc5e 2397 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2398
e4404d6e
YZ
2399 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2400 seed_devices->opened = 1;
2401 INIT_LIST_HEAD(&seed_devices->devices);
2402 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2403 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2404
321a4bf7 2405 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2406 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2407 synchronize_rcu);
2196d6e8
MX
2408 list_for_each_entry(device, &seed_devices->devices, dev_list)
2409 device->fs_devices = seed_devices;
c9513edb 2410
0395d84f 2411 fs_devices->seeding = false;
2b82032c
YZ
2412 fs_devices->num_devices = 0;
2413 fs_devices->open_devices = 0;
69611ac8 2414 fs_devices->missing_devices = 0;
7f0432d0 2415 fs_devices->rotating = false;
944d3f9f 2416 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2417
2418 generate_random_uuid(fs_devices->fsid);
7239ff4b 2419 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2420 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2421 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2422
2b82032c
YZ
2423 super_flags = btrfs_super_flags(disk_super) &
2424 ~BTRFS_SUPER_FLAG_SEEDING;
2425 btrfs_set_super_flags(disk_super, super_flags);
2426
2427 return 0;
2428}
2429
2430/*
01327610 2431 * Store the expected generation for seed devices in device items.
2b82032c 2432 */
5c466629 2433static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2434{
5c466629 2435 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2436 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2437 struct btrfs_path *path;
2438 struct extent_buffer *leaf;
2439 struct btrfs_dev_item *dev_item;
2440 struct btrfs_device *device;
2441 struct btrfs_key key;
44880fdc 2442 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2443 u8 dev_uuid[BTRFS_UUID_SIZE];
2444 u64 devid;
2445 int ret;
2446
2447 path = btrfs_alloc_path();
2448 if (!path)
2449 return -ENOMEM;
2450
2b82032c
YZ
2451 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2452 key.offset = 0;
2453 key.type = BTRFS_DEV_ITEM_KEY;
2454
2455 while (1) {
2456 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2457 if (ret < 0)
2458 goto error;
2459
2460 leaf = path->nodes[0];
2461next_slot:
2462 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2463 ret = btrfs_next_leaf(root, path);
2464 if (ret > 0)
2465 break;
2466 if (ret < 0)
2467 goto error;
2468 leaf = path->nodes[0];
2469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2470 btrfs_release_path(path);
2b82032c
YZ
2471 continue;
2472 }
2473
2474 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2475 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2476 key.type != BTRFS_DEV_ITEM_KEY)
2477 break;
2478
2479 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2480 struct btrfs_dev_item);
2481 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2482 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2483 BTRFS_UUID_SIZE);
1473b24e 2484 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2485 BTRFS_FSID_SIZE);
e4319cd9 2486 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2487 fs_uuid);
79787eaa 2488 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2489
2490 if (device->fs_devices->seeding) {
2491 btrfs_set_device_generation(leaf, dev_item,
2492 device->generation);
2493 btrfs_mark_buffer_dirty(leaf);
2494 }
2495
2496 path->slots[0]++;
2497 goto next_slot;
2498 }
2499 ret = 0;
2500error:
2501 btrfs_free_path(path);
2502 return ret;
2503}
2504
da353f6b 2505int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2506{
5112febb 2507 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2508 struct request_queue *q;
788f20eb
CM
2509 struct btrfs_trans_handle *trans;
2510 struct btrfs_device *device;
2511 struct block_device *bdev;
0b246afa 2512 struct super_block *sb = fs_info->sb;
606686ee 2513 struct rcu_string *name;
5da54bc1 2514 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2515 u64 orig_super_total_bytes;
2516 u64 orig_super_num_devices;
2b82032c 2517 int seeding_dev = 0;
788f20eb 2518 int ret = 0;
44cab9ba 2519 bool locked = false;
788f20eb 2520
5da54bc1 2521 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2522 return -EROFS;
788f20eb 2523
a5d16333 2524 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2525 fs_info->bdev_holder);
7f59203a
JB
2526 if (IS_ERR(bdev))
2527 return PTR_ERR(bdev);
a2135011 2528
b70f5097
NA
2529 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2530 ret = -EINVAL;
2531 goto error;
2532 }
2533
5da54bc1 2534 if (fs_devices->seeding) {
2b82032c
YZ
2535 seeding_dev = 1;
2536 down_write(&sb->s_umount);
2537 mutex_lock(&uuid_mutex);
44cab9ba 2538 locked = true;
2b82032c
YZ
2539 }
2540
b9ba017f 2541 sync_blockdev(bdev);
a2135011 2542
f4cfa9bd
NB
2543 rcu_read_lock();
2544 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2545 if (device->bdev == bdev) {
2546 ret = -EEXIST;
f4cfa9bd 2547 rcu_read_unlock();
2b82032c 2548 goto error;
788f20eb
CM
2549 }
2550 }
f4cfa9bd 2551 rcu_read_unlock();
788f20eb 2552
0b246afa 2553 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2554 if (IS_ERR(device)) {
788f20eb 2555 /* we can safely leave the fs_devices entry around */
12bd2fc0 2556 ret = PTR_ERR(device);
2b82032c 2557 goto error;
788f20eb
CM
2558 }
2559
78f2c9e6 2560 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2561 if (!name) {
2b82032c 2562 ret = -ENOMEM;
5c4cf6c9 2563 goto error_free_device;
788f20eb 2564 }
606686ee 2565 rcu_assign_pointer(device->name, name);
2b82032c 2566
5b316468
NA
2567 device->fs_info = fs_info;
2568 device->bdev = bdev;
2569
2570 ret = btrfs_get_dev_zone_info(device);
2571 if (ret)
2572 goto error_free_device;
2573
a22285a6 2574 trans = btrfs_start_transaction(root, 0);
98d5dc13 2575 if (IS_ERR(trans)) {
98d5dc13 2576 ret = PTR_ERR(trans);
5b316468 2577 goto error_free_zone;
98d5dc13
TI
2578 }
2579
d5e2003c 2580 q = bdev_get_queue(bdev);
ebbede42 2581 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2582 device->generation = trans->transid;
0b246afa
JM
2583 device->io_width = fs_info->sectorsize;
2584 device->io_align = fs_info->sectorsize;
2585 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2586 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2587 fs_info->sectorsize);
2cc3c559 2588 device->disk_total_bytes = device->total_bytes;
935e5cc9 2589 device->commit_total_bytes = device->total_bytes;
e12c9621 2590 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2591 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2592 device->mode = FMODE_EXCL;
27087f37 2593 device->dev_stats_valid = 1;
9f6d2510 2594 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2595
2b82032c 2596 if (seeding_dev) {
a0a1db70 2597 btrfs_clear_sb_rdonly(sb);
2ff7e61e 2598 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2599 if (ret) {
2600 btrfs_abort_transaction(trans, ret);
2601 goto error_trans;
2602 }
2b82032c 2603 }
788f20eb 2604
5da54bc1 2605 device->fs_devices = fs_devices;
e5e9a520 2606
5da54bc1 2607 mutex_lock(&fs_devices->device_list_mutex);
34441361 2608 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2609 list_add_rcu(&device->dev_list, &fs_devices->devices);
2610 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2611 fs_devices->num_devices++;
2612 fs_devices->open_devices++;
2613 fs_devices->rw_devices++;
2614 fs_devices->total_devices++;
2615 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2616
a5ed45f8 2617 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2618
e884f4f0 2619 if (!blk_queue_nonrot(q))
7f0432d0 2620 fs_devices->rotating = true;
c289811c 2621
39379faa 2622 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2623 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2624 round_down(orig_super_total_bytes + device->total_bytes,
2625 fs_info->sectorsize));
788f20eb 2626
39379faa
NA
2627 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2628 btrfs_set_super_num_devices(fs_info->super_copy,
2629 orig_super_num_devices + 1);
0d39376a 2630
2196d6e8
MX
2631 /*
2632 * we've got more storage, clear any full flags on the space
2633 * infos
2634 */
0b246afa 2635 btrfs_clear_space_info_full(fs_info);
2196d6e8 2636
34441361 2637 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2638
2639 /* Add sysfs device entry */
cd36da2e 2640 btrfs_sysfs_add_device(device);
ca10845a 2641
5da54bc1 2642 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2643
2b82032c 2644 if (seeding_dev) {
34441361 2645 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2646 ret = init_first_rw_device(trans);
34441361 2647 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2648 if (ret) {
66642832 2649 btrfs_abort_transaction(trans, ret);
d31c32f6 2650 goto error_sysfs;
005d6427 2651 }
2196d6e8
MX
2652 }
2653
8e87e856 2654 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2655 if (ret) {
66642832 2656 btrfs_abort_transaction(trans, ret);
d31c32f6 2657 goto error_sysfs;
2196d6e8
MX
2658 }
2659
2660 if (seeding_dev) {
5c466629 2661 ret = btrfs_finish_sprout(trans);
005d6427 2662 if (ret) {
66642832 2663 btrfs_abort_transaction(trans, ret);
d31c32f6 2664 goto error_sysfs;
005d6427 2665 }
b2373f25 2666
8e560081
NB
2667 /*
2668 * fs_devices now represents the newly sprouted filesystem and
2669 * its fsid has been changed by btrfs_prepare_sprout
2670 */
2671 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2672 }
2673
3a45bb20 2674 ret = btrfs_commit_transaction(trans);
a2135011 2675
2b82032c
YZ
2676 if (seeding_dev) {
2677 mutex_unlock(&uuid_mutex);
2678 up_write(&sb->s_umount);
44cab9ba 2679 locked = false;
788f20eb 2680
79787eaa
JM
2681 if (ret) /* transaction commit */
2682 return ret;
2683
2ff7e61e 2684 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2685 if (ret < 0)
0b246afa 2686 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2687 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2688 trans = btrfs_attach_transaction(root);
2689 if (IS_ERR(trans)) {
2690 if (PTR_ERR(trans) == -ENOENT)
2691 return 0;
7132a262
AJ
2692 ret = PTR_ERR(trans);
2693 trans = NULL;
2694 goto error_sysfs;
671415b7 2695 }
3a45bb20 2696 ret = btrfs_commit_transaction(trans);
2b82032c 2697 }
c9e9f97b 2698
7f551d96
AJ
2699 /*
2700 * Now that we have written a new super block to this device, check all
2701 * other fs_devices list if device_path alienates any other scanned
2702 * device.
2703 * We can ignore the return value as it typically returns -EINVAL and
2704 * only succeeds if the device was an alien.
2705 */
2706 btrfs_forget_devices(device_path);
2707
2708 /* Update ctime/mtime for blkid or udev */
5a1972bd 2709 update_dev_time(device_path);
7f551d96 2710
2b82032c 2711 return ret;
79787eaa 2712
d31c32f6 2713error_sysfs:
53f8a74c 2714 btrfs_sysfs_remove_device(device);
39379faa
NA
2715 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2716 mutex_lock(&fs_info->chunk_mutex);
2717 list_del_rcu(&device->dev_list);
2718 list_del(&device->dev_alloc_list);
2719 fs_info->fs_devices->num_devices--;
2720 fs_info->fs_devices->open_devices--;
2721 fs_info->fs_devices->rw_devices--;
2722 fs_info->fs_devices->total_devices--;
2723 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2724 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 orig_super_total_bytes);
2727 btrfs_set_super_num_devices(fs_info->super_copy,
2728 orig_super_num_devices);
2729 mutex_unlock(&fs_info->chunk_mutex);
2730 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2731error_trans:
0af2c4bf 2732 if (seeding_dev)
a0a1db70 2733 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2734 if (trans)
2735 btrfs_end_transaction(trans);
5b316468
NA
2736error_free_zone:
2737 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2738error_free_device:
a425f9d4 2739 btrfs_free_device(device);
2b82032c 2740error:
e525fd89 2741 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2742 if (locked) {
2b82032c
YZ
2743 mutex_unlock(&uuid_mutex);
2744 up_write(&sb->s_umount);
2745 }
c9e9f97b 2746 return ret;
788f20eb
CM
2747}
2748
d397712b
CM
2749static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2750 struct btrfs_device *device)
0b86a832
CM
2751{
2752 int ret;
2753 struct btrfs_path *path;
0b246afa 2754 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2755 struct btrfs_dev_item *dev_item;
2756 struct extent_buffer *leaf;
2757 struct btrfs_key key;
2758
0b86a832
CM
2759 path = btrfs_alloc_path();
2760 if (!path)
2761 return -ENOMEM;
2762
2763 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2764 key.type = BTRFS_DEV_ITEM_KEY;
2765 key.offset = device->devid;
2766
2767 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2768 if (ret < 0)
2769 goto out;
2770
2771 if (ret > 0) {
2772 ret = -ENOENT;
2773 goto out;
2774 }
2775
2776 leaf = path->nodes[0];
2777 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2778
2779 btrfs_set_device_id(leaf, dev_item, device->devid);
2780 btrfs_set_device_type(leaf, dev_item, device->type);
2781 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2782 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2783 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2784 btrfs_set_device_total_bytes(leaf, dev_item,
2785 btrfs_device_get_disk_total_bytes(device));
2786 btrfs_set_device_bytes_used(leaf, dev_item,
2787 btrfs_device_get_bytes_used(device));
0b86a832
CM
2788 btrfs_mark_buffer_dirty(leaf);
2789
2790out:
2791 btrfs_free_path(path);
2792 return ret;
2793}
2794
2196d6e8 2795int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2796 struct btrfs_device *device, u64 new_size)
2797{
0b246afa
JM
2798 struct btrfs_fs_info *fs_info = device->fs_info;
2799 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2800 u64 old_total;
2801 u64 diff;
8f18cf13 2802
ebbede42 2803 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2804 return -EACCES;
2196d6e8 2805
7dfb8be1
NB
2806 new_size = round_down(new_size, fs_info->sectorsize);
2807
34441361 2808 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2809 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2810 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2811
63a212ab 2812 if (new_size <= device->total_bytes ||
401e29c1 2813 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2814 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2815 return -EINVAL;
2196d6e8 2816 }
2b82032c 2817
7dfb8be1
NB
2818 btrfs_set_super_total_bytes(super_copy,
2819 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2820 device->fs_devices->total_rw_bytes += diff;
2821
7cc8e58d
MX
2822 btrfs_device_set_total_bytes(device, new_size);
2823 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2824 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2825 if (list_empty(&device->post_commit_list))
2826 list_add_tail(&device->post_commit_list,
2827 &trans->transaction->dev_update_list);
34441361 2828 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2829
8f18cf13
CM
2830 return btrfs_update_device(trans, device);
2831}
2832
f4208794 2833static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2834{
f4208794 2835 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2836 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2837 int ret;
2838 struct btrfs_path *path;
2839 struct btrfs_key key;
2840
8f18cf13
CM
2841 path = btrfs_alloc_path();
2842 if (!path)
2843 return -ENOMEM;
2844
408fbf19 2845 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2846 key.offset = chunk_offset;
2847 key.type = BTRFS_CHUNK_ITEM_KEY;
2848
2849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2850 if (ret < 0)
2851 goto out;
2852 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2853 btrfs_handle_fs_error(fs_info, -ENOENT,
2854 "Failed lookup while freeing chunk.");
79787eaa
JM
2855 ret = -ENOENT;
2856 goto out;
2857 }
8f18cf13
CM
2858
2859 ret = btrfs_del_item(trans, root, path);
79787eaa 2860 if (ret < 0)
0b246afa
JM
2861 btrfs_handle_fs_error(fs_info, ret,
2862 "Failed to delete chunk item.");
79787eaa 2863out:
8f18cf13 2864 btrfs_free_path(path);
65a246c5 2865 return ret;
8f18cf13
CM
2866}
2867
408fbf19 2868static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2869{
0b246afa 2870 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2871 struct btrfs_disk_key *disk_key;
2872 struct btrfs_chunk *chunk;
2873 u8 *ptr;
2874 int ret = 0;
2875 u32 num_stripes;
2876 u32 array_size;
2877 u32 len = 0;
2878 u32 cur;
2879 struct btrfs_key key;
2880
79bd3712 2881 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2882 array_size = btrfs_super_sys_array_size(super_copy);
2883
2884 ptr = super_copy->sys_chunk_array;
2885 cur = 0;
2886
2887 while (cur < array_size) {
2888 disk_key = (struct btrfs_disk_key *)ptr;
2889 btrfs_disk_key_to_cpu(&key, disk_key);
2890
2891 len = sizeof(*disk_key);
2892
2893 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2894 chunk = (struct btrfs_chunk *)(ptr + len);
2895 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2896 len += btrfs_chunk_item_size(num_stripes);
2897 } else {
2898 ret = -EIO;
2899 break;
2900 }
408fbf19 2901 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2902 key.offset == chunk_offset) {
2903 memmove(ptr, ptr + len, array_size - (cur + len));
2904 array_size -= len;
2905 btrfs_set_super_sys_array_size(super_copy, array_size);
2906 } else {
2907 ptr += len;
2908 cur += len;
2909 }
2910 }
2911 return ret;
2912}
2913
60ca842e
OS
2914/*
2915 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2916 * @logical: Logical block offset in bytes.
2917 * @length: Length of extent in bytes.
2918 *
2919 * Return: Chunk mapping or ERR_PTR.
2920 */
2921struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2922 u64 logical, u64 length)
592d92ee
LB
2923{
2924 struct extent_map_tree *em_tree;
2925 struct extent_map *em;
2926
c8bf1b67 2927 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2928 read_lock(&em_tree->lock);
2929 em = lookup_extent_mapping(em_tree, logical, length);
2930 read_unlock(&em_tree->lock);
2931
2932 if (!em) {
2933 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2934 logical, length);
2935 return ERR_PTR(-EINVAL);
2936 }
2937
2938 if (em->start > logical || em->start + em->len < logical) {
2939 btrfs_crit(fs_info,
2940 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2941 logical, length, em->start, em->start + em->len);
2942 free_extent_map(em);
2943 return ERR_PTR(-EINVAL);
2944 }
2945
2946 /* callers are responsible for dropping em's ref. */
2947 return em;
2948}
2949
79bd3712
FM
2950static int remove_chunk_item(struct btrfs_trans_handle *trans,
2951 struct map_lookup *map, u64 chunk_offset)
2952{
2953 int i;
2954
2955 /*
2956 * Removing chunk items and updating the device items in the chunks btree
2957 * requires holding the chunk_mutex.
2958 * See the comment at btrfs_chunk_alloc() for the details.
2959 */
2960 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2961
2962 for (i = 0; i < map->num_stripes; i++) {
2963 int ret;
2964
2965 ret = btrfs_update_device(trans, map->stripes[i].dev);
2966 if (ret)
2967 return ret;
2968 }
2969
2970 return btrfs_free_chunk(trans, chunk_offset);
2971}
2972
97aff912 2973int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2974{
97aff912 2975 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2976 struct extent_map *em;
2977 struct map_lookup *map;
2196d6e8 2978 u64 dev_extent_len = 0;
47ab2a6c 2979 int i, ret = 0;
0b246afa 2980 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2981
60ca842e 2982 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2983 if (IS_ERR(em)) {
47ab2a6c
JB
2984 /*
2985 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2986 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2987 * do anything we still error out.
2988 */
2989 ASSERT(0);
592d92ee 2990 return PTR_ERR(em);
47ab2a6c 2991 }
95617d69 2992 map = em->map_lookup;
8f18cf13 2993
57ba4cb8 2994 /*
79bd3712
FM
2995 * First delete the device extent items from the devices btree.
2996 * We take the device_list_mutex to avoid racing with the finishing phase
2997 * of a device replace operation. See the comment below before acquiring
2998 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
2999 * because that can result in a deadlock when deleting the device extent
3000 * items from the devices btree - COWing an extent buffer from the btree
3001 * may result in allocating a new metadata chunk, which would attempt to
3002 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3003 */
3004 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3005 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3006 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3007 ret = btrfs_free_dev_extent(trans, device,
3008 map->stripes[i].physical,
3009 &dev_extent_len);
47ab2a6c 3010 if (ret) {
57ba4cb8 3011 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3012 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3013 goto out;
3014 }
a061fc8d 3015
2196d6e8 3016 if (device->bytes_used > 0) {
34441361 3017 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3018 btrfs_device_set_bytes_used(device,
3019 device->bytes_used - dev_extent_len);
a5ed45f8 3020 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3021 btrfs_clear_space_info_full(fs_info);
34441361 3022 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3023 }
79bd3712
FM
3024 }
3025 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3026
79bd3712
FM
3027 /*
3028 * We acquire fs_info->chunk_mutex for 2 reasons:
3029 *
3030 * 1) Just like with the first phase of the chunk allocation, we must
3031 * reserve system space, do all chunk btree updates and deletions, and
3032 * update the system chunk array in the superblock while holding this
3033 * mutex. This is for similar reasons as explained on the comment at
3034 * the top of btrfs_chunk_alloc();
3035 *
3036 * 2) Prevent races with the final phase of a device replace operation
3037 * that replaces the device object associated with the map's stripes,
3038 * because the device object's id can change at any time during that
3039 * final phase of the device replace operation
3040 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3041 * replaced device and then see it with an ID of
3042 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3043 * the device item, which does not exists on the chunk btree.
3044 * The finishing phase of device replace acquires both the
3045 * device_list_mutex and the chunk_mutex, in that order, so we are
3046 * safe by just acquiring the chunk_mutex.
3047 */
3048 trans->removing_chunk = true;
3049 mutex_lock(&fs_info->chunk_mutex);
3050
3051 check_system_chunk(trans, map->type);
3052
3053 ret = remove_chunk_item(trans, map, chunk_offset);
3054 /*
3055 * Normally we should not get -ENOSPC since we reserved space before
3056 * through the call to check_system_chunk().
3057 *
3058 * Despite our system space_info having enough free space, we may not
3059 * be able to allocate extents from its block groups, because all have
3060 * an incompatible profile, which will force us to allocate a new system
3061 * block group with the right profile, or right after we called
3062 * check_system_space() above, a scrub turned the only system block group
3063 * with enough free space into RO mode.
3064 * This is explained with more detail at do_chunk_alloc().
3065 *
3066 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3067 */
3068 if (ret == -ENOSPC) {
3069 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3070 struct btrfs_block_group *sys_bg;
3071
3072 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3073 if (IS_ERR(sys_bg)) {
3074 ret = PTR_ERR(sys_bg);
3075 btrfs_abort_transaction(trans, ret);
3076 goto out;
3077 }
3078
3079 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3080 if (ret) {
64bc6c2a
NB
3081 btrfs_abort_transaction(trans, ret);
3082 goto out;
dfe25020 3083 }
57ba4cb8 3084
79bd3712
FM
3085 ret = remove_chunk_item(trans, map, chunk_offset);
3086 if (ret) {
3087 btrfs_abort_transaction(trans, ret);
3088 goto out;
3089 }
3090 } else if (ret) {
66642832 3091 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3092 goto out;
3093 }
8f18cf13 3094
6bccf3ab 3095 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3096
8f18cf13 3097 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3098 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3099 if (ret) {
66642832 3100 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3101 goto out;
3102 }
8f18cf13
CM
3103 }
3104
79bd3712
FM
3105 mutex_unlock(&fs_info->chunk_mutex);
3106 trans->removing_chunk = false;
3107
3108 /*
3109 * We are done with chunk btree updates and deletions, so release the
3110 * system space we previously reserved (with check_system_chunk()).
3111 */
3112 btrfs_trans_release_chunk_metadata(trans);
3113
5a98ec01 3114 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3115 if (ret) {
66642832 3116 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3117 goto out;
3118 }
2b82032c 3119
47ab2a6c 3120out:
79bd3712
FM
3121 if (trans->removing_chunk) {
3122 mutex_unlock(&fs_info->chunk_mutex);
3123 trans->removing_chunk = false;
3124 }
2b82032c
YZ
3125 /* once for us */
3126 free_extent_map(em);
47ab2a6c
JB
3127 return ret;
3128}
2b82032c 3129
18bb8bbf 3130int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3131{
5b4aacef 3132 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3133 struct btrfs_trans_handle *trans;
b0643e59 3134 struct btrfs_block_group *block_group;
01e86008 3135 u64 length;
47ab2a6c 3136 int ret;
2b82032c 3137
67c5e7d4
FM
3138 /*
3139 * Prevent races with automatic removal of unused block groups.
3140 * After we relocate and before we remove the chunk with offset
3141 * chunk_offset, automatic removal of the block group can kick in,
3142 * resulting in a failure when calling btrfs_remove_chunk() below.
3143 *
3144 * Make sure to acquire this mutex before doing a tree search (dev
3145 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3146 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3147 * we release the path used to search the chunk/dev tree and before
3148 * the current task acquires this mutex and calls us.
3149 */
f3372065 3150 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3151
47ab2a6c 3152 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3153 btrfs_scrub_pause(fs_info);
0b246afa 3154 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3155 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3156 if (ret)
3157 return ret;
3158
b0643e59
DZ
3159 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3160 if (!block_group)
3161 return -ENOENT;
3162 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3163 length = block_group->length;
b0643e59
DZ
3164 btrfs_put_block_group(block_group);
3165
01e86008
JT
3166 /*
3167 * On a zoned file system, discard the whole block group, this will
3168 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3169 * resetting the zone fails, don't treat it as a fatal problem from the
3170 * filesystem's point of view.
3171 */
3172 if (btrfs_is_zoned(fs_info)) {
3173 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3174 if (ret)
3175 btrfs_info(fs_info,
3176 "failed to reset zone %llu after relocation",
3177 chunk_offset);
3178 }
3179
19c4d2f9
CM
3180 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3181 chunk_offset);
3182 if (IS_ERR(trans)) {
3183 ret = PTR_ERR(trans);
3184 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3185 return ret;
3186 }
3187
47ab2a6c 3188 /*
19c4d2f9
CM
3189 * step two, delete the device extents and the
3190 * chunk tree entries
47ab2a6c 3191 */
97aff912 3192 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3193 btrfs_end_transaction(trans);
19c4d2f9 3194 return ret;
2b82032c
YZ
3195}
3196
2ff7e61e 3197static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3198{
0b246afa 3199 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3200 struct btrfs_path *path;
3201 struct extent_buffer *leaf;
3202 struct btrfs_chunk *chunk;
3203 struct btrfs_key key;
3204 struct btrfs_key found_key;
2b82032c 3205 u64 chunk_type;
ba1bf481
JB
3206 bool retried = false;
3207 int failed = 0;
2b82032c
YZ
3208 int ret;
3209
3210 path = btrfs_alloc_path();
3211 if (!path)
3212 return -ENOMEM;
3213
ba1bf481 3214again:
2b82032c
YZ
3215 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3216 key.offset = (u64)-1;
3217 key.type = BTRFS_CHUNK_ITEM_KEY;
3218
3219 while (1) {
f3372065 3220 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3221 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3222 if (ret < 0) {
f3372065 3223 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3224 goto error;
67c5e7d4 3225 }
79787eaa 3226 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3227
3228 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3229 key.type);
67c5e7d4 3230 if (ret)
f3372065 3231 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3232 if (ret < 0)
3233 goto error;
3234 if (ret > 0)
3235 break;
1a40e23b 3236
2b82032c
YZ
3237 leaf = path->nodes[0];
3238 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3239
2b82032c
YZ
3240 chunk = btrfs_item_ptr(leaf, path->slots[0],
3241 struct btrfs_chunk);
3242 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3243 btrfs_release_path(path);
8f18cf13 3244
2b82032c 3245 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3246 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3247 if (ret == -ENOSPC)
3248 failed++;
14586651
HS
3249 else
3250 BUG_ON(ret);
2b82032c 3251 }
f3372065 3252 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3253
2b82032c
YZ
3254 if (found_key.offset == 0)
3255 break;
3256 key.offset = found_key.offset - 1;
3257 }
3258 ret = 0;
ba1bf481
JB
3259 if (failed && !retried) {
3260 failed = 0;
3261 retried = true;
3262 goto again;
fae7f21c 3263 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3264 ret = -ENOSPC;
3265 }
2b82032c
YZ
3266error:
3267 btrfs_free_path(path);
3268 return ret;
8f18cf13
CM
3269}
3270
a6f93c71
LB
3271/*
3272 * return 1 : allocate a data chunk successfully,
3273 * return <0: errors during allocating a data chunk,
3274 * return 0 : no need to allocate a data chunk.
3275 */
3276static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3277 u64 chunk_offset)
3278{
32da5386 3279 struct btrfs_block_group *cache;
a6f93c71
LB
3280 u64 bytes_used;
3281 u64 chunk_type;
3282
3283 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3284 ASSERT(cache);
3285 chunk_type = cache->flags;
3286 btrfs_put_block_group(cache);
3287
5ae21692
JT
3288 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3289 return 0;
3290
3291 spin_lock(&fs_info->data_sinfo->lock);
3292 bytes_used = fs_info->data_sinfo->bytes_used;
3293 spin_unlock(&fs_info->data_sinfo->lock);
3294
3295 if (!bytes_used) {
3296 struct btrfs_trans_handle *trans;
3297 int ret;
3298
3299 trans = btrfs_join_transaction(fs_info->tree_root);
3300 if (IS_ERR(trans))
3301 return PTR_ERR(trans);
3302
3303 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3304 btrfs_end_transaction(trans);
3305 if (ret < 0)
3306 return ret;
3307 return 1;
a6f93c71 3308 }
5ae21692 3309
a6f93c71
LB
3310 return 0;
3311}
3312
6bccf3ab 3313static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3314 struct btrfs_balance_control *bctl)
3315{
6bccf3ab 3316 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3317 struct btrfs_trans_handle *trans;
3318 struct btrfs_balance_item *item;
3319 struct btrfs_disk_balance_args disk_bargs;
3320 struct btrfs_path *path;
3321 struct extent_buffer *leaf;
3322 struct btrfs_key key;
3323 int ret, err;
3324
3325 path = btrfs_alloc_path();
3326 if (!path)
3327 return -ENOMEM;
3328
3329 trans = btrfs_start_transaction(root, 0);
3330 if (IS_ERR(trans)) {
3331 btrfs_free_path(path);
3332 return PTR_ERR(trans);
3333 }
3334
3335 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3336 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3337 key.offset = 0;
3338
3339 ret = btrfs_insert_empty_item(trans, root, path, &key,
3340 sizeof(*item));
3341 if (ret)
3342 goto out;
3343
3344 leaf = path->nodes[0];
3345 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3346
b159fa28 3347 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3348
3349 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3350 btrfs_set_balance_data(leaf, item, &disk_bargs);
3351 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3352 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3353 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3354 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3355
3356 btrfs_set_balance_flags(leaf, item, bctl->flags);
3357
3358 btrfs_mark_buffer_dirty(leaf);
3359out:
3360 btrfs_free_path(path);
3a45bb20 3361 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3362 if (err && !ret)
3363 ret = err;
3364 return ret;
3365}
3366
6bccf3ab 3367static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3368{
6bccf3ab 3369 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3370 struct btrfs_trans_handle *trans;
3371 struct btrfs_path *path;
3372 struct btrfs_key key;
3373 int ret, err;
3374
3375 path = btrfs_alloc_path();
3376 if (!path)
3377 return -ENOMEM;
3378
3502a8c0 3379 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3380 if (IS_ERR(trans)) {
3381 btrfs_free_path(path);
3382 return PTR_ERR(trans);
3383 }
3384
3385 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3386 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3387 key.offset = 0;
3388
3389 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3390 if (ret < 0)
3391 goto out;
3392 if (ret > 0) {
3393 ret = -ENOENT;
3394 goto out;
3395 }
3396
3397 ret = btrfs_del_item(trans, root, path);
3398out:
3399 btrfs_free_path(path);
3a45bb20 3400 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3401 if (err && !ret)
3402 ret = err;
3403 return ret;
3404}
3405
59641015
ID
3406/*
3407 * This is a heuristic used to reduce the number of chunks balanced on
3408 * resume after balance was interrupted.
3409 */
3410static void update_balance_args(struct btrfs_balance_control *bctl)
3411{
3412 /*
3413 * Turn on soft mode for chunk types that were being converted.
3414 */
3415 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3416 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3417 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3418 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3419 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3420 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3421
3422 /*
3423 * Turn on usage filter if is not already used. The idea is
3424 * that chunks that we have already balanced should be
3425 * reasonably full. Don't do it for chunks that are being
3426 * converted - that will keep us from relocating unconverted
3427 * (albeit full) chunks.
3428 */
3429 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3430 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3431 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3432 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3433 bctl->data.usage = 90;
3434 }
3435 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3436 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3437 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3438 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3439 bctl->sys.usage = 90;
3440 }
3441 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3442 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3443 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3444 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3445 bctl->meta.usage = 90;
3446 }
3447}
3448
149196a2
DS
3449/*
3450 * Clear the balance status in fs_info and delete the balance item from disk.
3451 */
3452static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3453{
3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3455 int ret;
c9e9f97b
ID
3456
3457 BUG_ON(!fs_info->balance_ctl);
3458
3459 spin_lock(&fs_info->balance_lock);
3460 fs_info->balance_ctl = NULL;
3461 spin_unlock(&fs_info->balance_lock);
3462
3463 kfree(bctl);
149196a2
DS
3464 ret = del_balance_item(fs_info);
3465 if (ret)
3466 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3467}
3468
ed25e9b2
ID
3469/*
3470 * Balance filters. Return 1 if chunk should be filtered out
3471 * (should not be balanced).
3472 */
899c81ea 3473static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3474 struct btrfs_balance_args *bargs)
3475{
899c81ea
ID
3476 chunk_type = chunk_to_extended(chunk_type) &
3477 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3478
899c81ea 3479 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3480 return 0;
3481
3482 return 1;
3483}
3484
dba72cb3 3485static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3486 struct btrfs_balance_args *bargs)
bc309467 3487{
32da5386 3488 struct btrfs_block_group *cache;
bc309467
DS
3489 u64 chunk_used;
3490 u64 user_thresh_min;
3491 u64 user_thresh_max;
3492 int ret = 1;
3493
3494 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3495 chunk_used = cache->used;
bc309467
DS
3496
3497 if (bargs->usage_min == 0)
3498 user_thresh_min = 0;
3499 else
b3470b5d
DS
3500 user_thresh_min = div_factor_fine(cache->length,
3501 bargs->usage_min);
bc309467
DS
3502
3503 if (bargs->usage_max == 0)
3504 user_thresh_max = 1;
3505 else if (bargs->usage_max > 100)
b3470b5d 3506 user_thresh_max = cache->length;
bc309467 3507 else
b3470b5d
DS
3508 user_thresh_max = div_factor_fine(cache->length,
3509 bargs->usage_max);
bc309467
DS
3510
3511 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3512 ret = 0;
3513
3514 btrfs_put_block_group(cache);
3515 return ret;
3516}
3517
dba72cb3 3518static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3519 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3520{
32da5386 3521 struct btrfs_block_group *cache;
5ce5b3c0
ID
3522 u64 chunk_used, user_thresh;
3523 int ret = 1;
3524
3525 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3526 chunk_used = cache->used;
5ce5b3c0 3527
bc309467 3528 if (bargs->usage_min == 0)
3e39cea6 3529 user_thresh = 1;
a105bb88 3530 else if (bargs->usage > 100)
b3470b5d 3531 user_thresh = cache->length;
a105bb88 3532 else
b3470b5d 3533 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3534
5ce5b3c0
ID
3535 if (chunk_used < user_thresh)
3536 ret = 0;
3537
3538 btrfs_put_block_group(cache);
3539 return ret;
3540}
3541
409d404b
ID
3542static int chunk_devid_filter(struct extent_buffer *leaf,
3543 struct btrfs_chunk *chunk,
3544 struct btrfs_balance_args *bargs)
3545{
3546 struct btrfs_stripe *stripe;
3547 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3548 int i;
3549
3550 for (i = 0; i < num_stripes; i++) {
3551 stripe = btrfs_stripe_nr(chunk, i);
3552 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3553 return 0;
3554 }
3555
3556 return 1;
3557}
3558
946c9256
DS
3559static u64 calc_data_stripes(u64 type, int num_stripes)
3560{
3561 const int index = btrfs_bg_flags_to_raid_index(type);
3562 const int ncopies = btrfs_raid_array[index].ncopies;
3563 const int nparity = btrfs_raid_array[index].nparity;
3564
d58ede8d 3565 return (num_stripes - nparity) / ncopies;
946c9256
DS
3566}
3567
94e60d5a
ID
3568/* [pstart, pend) */
3569static int chunk_drange_filter(struct extent_buffer *leaf,
3570 struct btrfs_chunk *chunk,
94e60d5a
ID
3571 struct btrfs_balance_args *bargs)
3572{
3573 struct btrfs_stripe *stripe;
3574 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3575 u64 stripe_offset;
3576 u64 stripe_length;
946c9256 3577 u64 type;
94e60d5a
ID
3578 int factor;
3579 int i;
3580
3581 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3582 return 0;
3583
946c9256
DS
3584 type = btrfs_chunk_type(leaf, chunk);
3585 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3586
3587 for (i = 0; i < num_stripes; i++) {
3588 stripe = btrfs_stripe_nr(chunk, i);
3589 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3590 continue;
3591
3592 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3593 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3594 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3595
3596 if (stripe_offset < bargs->pend &&
3597 stripe_offset + stripe_length > bargs->pstart)
3598 return 0;
3599 }
3600
3601 return 1;
3602}
3603
ea67176a
ID
3604/* [vstart, vend) */
3605static int chunk_vrange_filter(struct extent_buffer *leaf,
3606 struct btrfs_chunk *chunk,
3607 u64 chunk_offset,
3608 struct btrfs_balance_args *bargs)
3609{
3610 if (chunk_offset < bargs->vend &&
3611 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3612 /* at least part of the chunk is inside this vrange */
3613 return 0;
3614
3615 return 1;
3616}
3617
dee32d0a
GAP
3618static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3619 struct btrfs_chunk *chunk,
3620 struct btrfs_balance_args *bargs)
3621{
3622 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3623
3624 if (bargs->stripes_min <= num_stripes
3625 && num_stripes <= bargs->stripes_max)
3626 return 0;
3627
3628 return 1;
3629}
3630
899c81ea 3631static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3632 struct btrfs_balance_args *bargs)
3633{
3634 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3635 return 0;
3636
899c81ea
ID
3637 chunk_type = chunk_to_extended(chunk_type) &
3638 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3639
899c81ea 3640 if (bargs->target == chunk_type)
cfa4c961
ID
3641 return 1;
3642
3643 return 0;
3644}
3645
6ec0896c 3646static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3647 struct btrfs_chunk *chunk, u64 chunk_offset)
3648{
6ec0896c 3649 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3650 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3651 struct btrfs_balance_args *bargs = NULL;
3652 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3653
3654 /* type filter */
3655 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3656 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3657 return 0;
3658 }
3659
3660 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3661 bargs = &bctl->data;
3662 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3663 bargs = &bctl->sys;
3664 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3665 bargs = &bctl->meta;
3666
ed25e9b2
ID
3667 /* profiles filter */
3668 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3669 chunk_profiles_filter(chunk_type, bargs)) {
3670 return 0;
5ce5b3c0
ID
3671 }
3672
3673 /* usage filter */
3674 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3675 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3676 return 0;
bc309467 3677 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3678 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3679 return 0;
409d404b
ID
3680 }
3681
3682 /* devid filter */
3683 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3684 chunk_devid_filter(leaf, chunk, bargs)) {
3685 return 0;
94e60d5a
ID
3686 }
3687
3688 /* drange filter, makes sense only with devid filter */
3689 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3690 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3691 return 0;
ea67176a
ID
3692 }
3693
3694 /* vrange filter */
3695 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3696 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3697 return 0;
ed25e9b2
ID
3698 }
3699
dee32d0a
GAP
3700 /* stripes filter */
3701 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3702 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3703 return 0;
3704 }
3705
cfa4c961
ID
3706 /* soft profile changing mode */
3707 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3708 chunk_soft_convert_filter(chunk_type, bargs)) {
3709 return 0;
3710 }
3711
7d824b6f
DS
3712 /*
3713 * limited by count, must be the last filter
3714 */
3715 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3716 if (bargs->limit == 0)
3717 return 0;
3718 else
3719 bargs->limit--;
12907fc7
DS
3720 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3721 /*
3722 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3723 * determined here because we do not have the global information
12907fc7
DS
3724 * about the count of all chunks that satisfy the filters.
3725 */
3726 if (bargs->limit_max == 0)
3727 return 0;
3728 else
3729 bargs->limit_max--;
7d824b6f
DS
3730 }
3731
f43ffb60
ID
3732 return 1;
3733}
3734
c9e9f97b 3735static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3736{
19a39dce 3737 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3738 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3739 u64 chunk_type;
f43ffb60 3740 struct btrfs_chunk *chunk;
5a488b9d 3741 struct btrfs_path *path = NULL;
ec44a35c 3742 struct btrfs_key key;
ec44a35c 3743 struct btrfs_key found_key;
f43ffb60
ID
3744 struct extent_buffer *leaf;
3745 int slot;
c9e9f97b
ID
3746 int ret;
3747 int enospc_errors = 0;
19a39dce 3748 bool counting = true;
12907fc7 3749 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3750 u64 limit_data = bctl->data.limit;
3751 u64 limit_meta = bctl->meta.limit;
3752 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3753 u32 count_data = 0;
3754 u32 count_meta = 0;
3755 u32 count_sys = 0;
2c9fe835 3756 int chunk_reserved = 0;
ec44a35c 3757
ec44a35c 3758 path = btrfs_alloc_path();
17e9f796
MF
3759 if (!path) {
3760 ret = -ENOMEM;
3761 goto error;
3762 }
19a39dce
ID
3763
3764 /* zero out stat counters */
3765 spin_lock(&fs_info->balance_lock);
3766 memset(&bctl->stat, 0, sizeof(bctl->stat));
3767 spin_unlock(&fs_info->balance_lock);
3768again:
7d824b6f 3769 if (!counting) {
12907fc7
DS
3770 /*
3771 * The single value limit and min/max limits use the same bytes
3772 * in the
3773 */
7d824b6f
DS
3774 bctl->data.limit = limit_data;
3775 bctl->meta.limit = limit_meta;
3776 bctl->sys.limit = limit_sys;
3777 }
ec44a35c
CM
3778 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3779 key.offset = (u64)-1;
3780 key.type = BTRFS_CHUNK_ITEM_KEY;
3781
d397712b 3782 while (1) {
19a39dce 3783 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3784 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3785 ret = -ECANCELED;
3786 goto error;
3787 }
3788
f3372065 3789 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3790 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3791 if (ret < 0) {
f3372065 3792 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3793 goto error;
67c5e7d4 3794 }
ec44a35c
CM
3795
3796 /*
3797 * this shouldn't happen, it means the last relocate
3798 * failed
3799 */
3800 if (ret == 0)
c9e9f97b 3801 BUG(); /* FIXME break ? */
ec44a35c
CM
3802
3803 ret = btrfs_previous_item(chunk_root, path, 0,
3804 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3805 if (ret) {
f3372065 3806 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3807 ret = 0;
ec44a35c 3808 break;
c9e9f97b 3809 }
7d9eb12c 3810
f43ffb60
ID
3811 leaf = path->nodes[0];
3812 slot = path->slots[0];
3813 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3814
67c5e7d4 3815 if (found_key.objectid != key.objectid) {
f3372065 3816 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3817 break;
67c5e7d4 3818 }
7d9eb12c 3819
f43ffb60 3820 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3821 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3822
19a39dce
ID
3823 if (!counting) {
3824 spin_lock(&fs_info->balance_lock);
3825 bctl->stat.considered++;
3826 spin_unlock(&fs_info->balance_lock);
3827 }
3828
6ec0896c 3829 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3830
b3b4aa74 3831 btrfs_release_path(path);
67c5e7d4 3832 if (!ret) {
f3372065 3833 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3834 goto loop;
67c5e7d4 3835 }
f43ffb60 3836
19a39dce 3837 if (counting) {
f3372065 3838 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3839 spin_lock(&fs_info->balance_lock);
3840 bctl->stat.expected++;
3841 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3842
3843 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3844 count_data++;
3845 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3846 count_sys++;
3847 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3848 count_meta++;
3849
3850 goto loop;
3851 }
3852
3853 /*
3854 * Apply limit_min filter, no need to check if the LIMITS
3855 * filter is used, limit_min is 0 by default
3856 */
3857 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3858 count_data < bctl->data.limit_min)
3859 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3860 count_meta < bctl->meta.limit_min)
3861 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3862 count_sys < bctl->sys.limit_min)) {
f3372065 3863 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3864 goto loop;
3865 }
3866
a6f93c71
LB
3867 if (!chunk_reserved) {
3868 /*
3869 * We may be relocating the only data chunk we have,
3870 * which could potentially end up with losing data's
3871 * raid profile, so lets allocate an empty one in
3872 * advance.
3873 */
3874 ret = btrfs_may_alloc_data_chunk(fs_info,
3875 found_key.offset);
2c9fe835 3876 if (ret < 0) {
f3372065 3877 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3878 goto error;
a6f93c71
LB
3879 } else if (ret == 1) {
3880 chunk_reserved = 1;
2c9fe835 3881 }
2c9fe835
ZL
3882 }
3883
5b4aacef 3884 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3885 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3886 if (ret == -ENOSPC) {
c9e9f97b 3887 enospc_errors++;
eede2bf3
OS
3888 } else if (ret == -ETXTBSY) {
3889 btrfs_info(fs_info,
3890 "skipping relocation of block group %llu due to active swapfile",
3891 found_key.offset);
3892 ret = 0;
3893 } else if (ret) {
3894 goto error;
19a39dce
ID
3895 } else {
3896 spin_lock(&fs_info->balance_lock);
3897 bctl->stat.completed++;
3898 spin_unlock(&fs_info->balance_lock);
3899 }
f43ffb60 3900loop:
795a3321
ID
3901 if (found_key.offset == 0)
3902 break;
ba1bf481 3903 key.offset = found_key.offset - 1;
ec44a35c 3904 }
c9e9f97b 3905
19a39dce
ID
3906 if (counting) {
3907 btrfs_release_path(path);
3908 counting = false;
3909 goto again;
3910 }
ec44a35c
CM
3911error:
3912 btrfs_free_path(path);
c9e9f97b 3913 if (enospc_errors) {
efe120a0 3914 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3915 enospc_errors);
c9e9f97b
ID
3916 if (!ret)
3917 ret = -ENOSPC;
3918 }
3919
ec44a35c
CM
3920 return ret;
3921}
3922
0c460c0d
ID
3923/**
3924 * alloc_profile_is_valid - see if a given profile is valid and reduced
3925 * @flags: profile to validate
3926 * @extended: if true @flags is treated as an extended profile
3927 */
3928static int alloc_profile_is_valid(u64 flags, int extended)
3929{
3930 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3931 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3932
3933 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3934
3935 /* 1) check that all other bits are zeroed */
3936 if (flags & ~mask)
3937 return 0;
3938
3939 /* 2) see if profile is reduced */
3940 if (flags == 0)
3941 return !extended; /* "0" is valid for usual profiles */
3942
c1499166 3943 return has_single_bit_set(flags);
0c460c0d
ID
3944}
3945
837d5b6e
ID
3946static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3947{
a7e99c69
ID
3948 /* cancel requested || normal exit path */
3949 return atomic_read(&fs_info->balance_cancel_req) ||
3950 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3951 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3952}
3953
5ba366c3
DS
3954/*
3955 * Validate target profile against allowed profiles and return true if it's OK.
3956 * Otherwise print the error message and return false.
3957 */
3958static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3959 const struct btrfs_balance_args *bargs,
3960 u64 allowed, const char *type)
bdcd3c97 3961{
5ba366c3
DS
3962 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3963 return true;
3964
c8050b3b
QW
3965 if (fs_info->sectorsize < PAGE_SIZE &&
3966 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3967 btrfs_err(fs_info,
3968 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3969 fs_info->sectorsize, PAGE_SIZE);
3970 return false;
3971 }
5ba366c3
DS
3972 /* Profile is valid and does not have bits outside of the allowed set */
3973 if (alloc_profile_is_valid(bargs->target, 1) &&
3974 (bargs->target & ~allowed) == 0)
3975 return true;
3976
3977 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3978 type, btrfs_bg_type_to_raid_name(bargs->target));
3979 return false;
bdcd3c97
AM
3980}
3981
56fc37d9
AJ
3982/*
3983 * Fill @buf with textual description of balance filter flags @bargs, up to
3984 * @size_buf including the terminating null. The output may be trimmed if it
3985 * does not fit into the provided buffer.
3986 */
3987static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3988 u32 size_buf)
3989{
3990 int ret;
3991 u32 size_bp = size_buf;
3992 char *bp = buf;
3993 u64 flags = bargs->flags;
3994 char tmp_buf[128] = {'\0'};
3995
3996 if (!flags)
3997 return;
3998
3999#define CHECK_APPEND_NOARG(a) \
4000 do { \
4001 ret = snprintf(bp, size_bp, (a)); \
4002 if (ret < 0 || ret >= size_bp) \
4003 goto out_overflow; \
4004 size_bp -= ret; \
4005 bp += ret; \
4006 } while (0)
4007
4008#define CHECK_APPEND_1ARG(a, v1) \
4009 do { \
4010 ret = snprintf(bp, size_bp, (a), (v1)); \
4011 if (ret < 0 || ret >= size_bp) \
4012 goto out_overflow; \
4013 size_bp -= ret; \
4014 bp += ret; \
4015 } while (0)
4016
4017#define CHECK_APPEND_2ARG(a, v1, v2) \
4018 do { \
4019 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4020 if (ret < 0 || ret >= size_bp) \
4021 goto out_overflow; \
4022 size_bp -= ret; \
4023 bp += ret; \
4024 } while (0)
4025
158da513
DS
4026 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4027 CHECK_APPEND_1ARG("convert=%s,",
4028 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4029
4030 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4031 CHECK_APPEND_NOARG("soft,");
4032
4033 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4034 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4035 sizeof(tmp_buf));
4036 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4037 }
4038
4039 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4040 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4041
4042 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4043 CHECK_APPEND_2ARG("usage=%u..%u,",
4044 bargs->usage_min, bargs->usage_max);
4045
4046 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4047 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4048
4049 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4050 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4051 bargs->pstart, bargs->pend);
4052
4053 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4054 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4055 bargs->vstart, bargs->vend);
4056
4057 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4058 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4059
4060 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4061 CHECK_APPEND_2ARG("limit=%u..%u,",
4062 bargs->limit_min, bargs->limit_max);
4063
4064 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4065 CHECK_APPEND_2ARG("stripes=%u..%u,",
4066 bargs->stripes_min, bargs->stripes_max);
4067
4068#undef CHECK_APPEND_2ARG
4069#undef CHECK_APPEND_1ARG
4070#undef CHECK_APPEND_NOARG
4071
4072out_overflow:
4073
4074 if (size_bp < size_buf)
4075 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4076 else
4077 buf[0] = '\0';
4078}
4079
4080static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4081{
4082 u32 size_buf = 1024;
4083 char tmp_buf[192] = {'\0'};
4084 char *buf;
4085 char *bp;
4086 u32 size_bp = size_buf;
4087 int ret;
4088 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4089
4090 buf = kzalloc(size_buf, GFP_KERNEL);
4091 if (!buf)
4092 return;
4093
4094 bp = buf;
4095
4096#define CHECK_APPEND_1ARG(a, v1) \
4097 do { \
4098 ret = snprintf(bp, size_bp, (a), (v1)); \
4099 if (ret < 0 || ret >= size_bp) \
4100 goto out_overflow; \
4101 size_bp -= ret; \
4102 bp += ret; \
4103 } while (0)
4104
4105 if (bctl->flags & BTRFS_BALANCE_FORCE)
4106 CHECK_APPEND_1ARG("%s", "-f ");
4107
4108 if (bctl->flags & BTRFS_BALANCE_DATA) {
4109 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4110 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4111 }
4112
4113 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4114 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4115 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4116 }
4117
4118 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4119 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4120 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4121 }
4122
4123#undef CHECK_APPEND_1ARG
4124
4125out_overflow:
4126
4127 if (size_bp < size_buf)
4128 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4129 btrfs_info(fs_info, "balance: %s %s",
4130 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4131 "resume" : "start", buf);
4132
4133 kfree(buf);
4134}
4135
c9e9f97b 4136/*
dccdb07b 4137 * Should be called with balance mutexe held
c9e9f97b 4138 */
6fcf6e2b
DS
4139int btrfs_balance(struct btrfs_fs_info *fs_info,
4140 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4141 struct btrfs_ioctl_balance_args *bargs)
4142{
14506127 4143 u64 meta_target, data_target;
f43ffb60 4144 u64 allowed;
e4837f8f 4145 int mixed = 0;
c9e9f97b 4146 int ret;
8dabb742 4147 u64 num_devices;
de98ced9 4148 unsigned seq;
e62869be 4149 bool reducing_redundancy;
081db89b 4150 int i;
c9e9f97b 4151
837d5b6e 4152 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4153 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4154 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4155 ret = -EINVAL;
4156 goto out;
4157 }
4158
e4837f8f
ID
4159 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4160 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4161 mixed = 1;
4162
f43ffb60
ID
4163 /*
4164 * In case of mixed groups both data and meta should be picked,
4165 * and identical options should be given for both of them.
4166 */
e4837f8f
ID
4167 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4168 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4169 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4170 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4171 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4172 btrfs_err(fs_info,
6dac13f8 4173 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4174 ret = -EINVAL;
4175 goto out;
4176 }
4177 }
4178
b35cf1f0
JB
4179 /*
4180 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4181 * are exclusive
b35cf1f0
JB
4182 */
4183 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4184
4185 /*
4186 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4187 * special bit for it, to make it easier to distinguish. Thus we need
4188 * to set it manually, or balance would refuse the profile.
4189 */
4190 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4191 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4192 if (num_devices >= btrfs_raid_array[i].devs_min)
4193 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4194
5ba366c3
DS
4195 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4196 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4197 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4198 ret = -EINVAL;
4199 goto out;
4200 }
4201
6079e12c
DS
4202 /*
4203 * Allow to reduce metadata or system integrity only if force set for
4204 * profiles with redundancy (copies, parity)
4205 */
4206 allowed = 0;
4207 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4208 if (btrfs_raid_array[i].ncopies >= 2 ||
4209 btrfs_raid_array[i].tolerated_failures >= 1)
4210 allowed |= btrfs_raid_array[i].bg_flag;
4211 }
de98ced9
MX
4212 do {
4213 seq = read_seqbegin(&fs_info->profiles_lock);
4214
4215 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4216 (fs_info->avail_system_alloc_bits & allowed) &&
4217 !(bctl->sys.target & allowed)) ||
4218 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4219 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4220 !(bctl->meta.target & allowed)))
e62869be 4221 reducing_redundancy = true;
5a8067c0 4222 else
e62869be 4223 reducing_redundancy = false;
5a8067c0
FM
4224
4225 /* if we're not converting, the target field is uninitialized */
4226 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4227 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4228 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4229 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4230 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4231
e62869be 4232 if (reducing_redundancy) {
5a8067c0
FM
4233 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4234 btrfs_info(fs_info,
e62869be 4235 "balance: force reducing metadata redundancy");
5a8067c0
FM
4236 } else {
4237 btrfs_err(fs_info,
e62869be 4238 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4239 ret = -EINVAL;
4240 goto out;
4241 }
4242 }
4243
14506127
AB
4244 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4245 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4246 btrfs_warn(fs_info,
6dac13f8 4247 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4248 btrfs_bg_type_to_raid_name(meta_target),
4249 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4250 }
4251
6bccf3ab 4252 ret = insert_balance_item(fs_info, bctl);
59641015 4253 if (ret && ret != -EEXIST)
0940ebf6
ID
4254 goto out;
4255
59641015
ID
4256 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4257 BUG_ON(ret == -EEXIST);
833aae18
DS
4258 BUG_ON(fs_info->balance_ctl);
4259 spin_lock(&fs_info->balance_lock);
4260 fs_info->balance_ctl = bctl;
4261 spin_unlock(&fs_info->balance_lock);
59641015
ID
4262 } else {
4263 BUG_ON(ret != -EEXIST);
4264 spin_lock(&fs_info->balance_lock);
4265 update_balance_args(bctl);
4266 spin_unlock(&fs_info->balance_lock);
4267 }
c9e9f97b 4268
3009a62f
DS
4269 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4270 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4271 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4272 mutex_unlock(&fs_info->balance_mutex);
4273
4274 ret = __btrfs_balance(fs_info);
4275
4276 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4277 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4278 btrfs_info(fs_info, "balance: paused");
44d354ab
QW
4279 /*
4280 * Balance can be canceled by:
4281 *
4282 * - Regular cancel request
4283 * Then ret == -ECANCELED and balance_cancel_req > 0
4284 *
4285 * - Fatal signal to "btrfs" process
4286 * Either the signal caught by wait_reserve_ticket() and callers
4287 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4288 * got -ECANCELED.
4289 * Either way, in this case balance_cancel_req = 0, and
4290 * ret == -EINTR or ret == -ECANCELED.
4291 *
4292 * So here we only check the return value to catch canceled balance.
4293 */
4294 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4295 btrfs_info(fs_info, "balance: canceled");
4296 else
4297 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4298
3009a62f 4299 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4300
4301 if (bargs) {
4302 memset(bargs, 0, sizeof(*bargs));
008ef096 4303 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4304 }
4305
3a01aa7a
ID
4306 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4307 balance_need_close(fs_info)) {
149196a2 4308 reset_balance_state(fs_info);
c3e1f96c 4309 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4310 }
4311
837d5b6e 4312 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4313
4314 return ret;
4315out:
59641015 4316 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4317 reset_balance_state(fs_info);
a17c95df 4318 else
59641015 4319 kfree(bctl);
c3e1f96c 4320 btrfs_exclop_finish(fs_info);
a17c95df 4321
59641015
ID
4322 return ret;
4323}
4324
4325static int balance_kthread(void *data)
4326{
2b6ba629 4327 struct btrfs_fs_info *fs_info = data;
9555c6c1 4328 int ret = 0;
59641015 4329
59641015 4330 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4331 if (fs_info->balance_ctl)
6fcf6e2b 4332 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4333 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4334
59641015
ID
4335 return ret;
4336}
4337
2b6ba629
ID
4338int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4339{
4340 struct task_struct *tsk;
4341
1354e1a1 4342 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4343 if (!fs_info->balance_ctl) {
1354e1a1 4344 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4345 return 0;
4346 }
1354e1a1 4347 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4348
3cdde224 4349 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4350 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4351 return 0;
4352 }
4353
02ee654d
AJ
4354 /*
4355 * A ro->rw remount sequence should continue with the paused balance
4356 * regardless of who pauses it, system or the user as of now, so set
4357 * the resume flag.
4358 */
4359 spin_lock(&fs_info->balance_lock);
4360 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4361 spin_unlock(&fs_info->balance_lock);
4362
2b6ba629 4363 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4364 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4365}
4366
68310a5e 4367int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4368{
59641015
ID
4369 struct btrfs_balance_control *bctl;
4370 struct btrfs_balance_item *item;
4371 struct btrfs_disk_balance_args disk_bargs;
4372 struct btrfs_path *path;
4373 struct extent_buffer *leaf;
4374 struct btrfs_key key;
4375 int ret;
4376
4377 path = btrfs_alloc_path();
4378 if (!path)
4379 return -ENOMEM;
4380
59641015 4381 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4382 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4383 key.offset = 0;
4384
68310a5e 4385 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4386 if (ret < 0)
68310a5e 4387 goto out;
59641015
ID
4388 if (ret > 0) { /* ret = -ENOENT; */
4389 ret = 0;
68310a5e
ID
4390 goto out;
4391 }
4392
4393 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4394 if (!bctl) {
4395 ret = -ENOMEM;
4396 goto out;
59641015
ID
4397 }
4398
4399 leaf = path->nodes[0];
4400 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4401
68310a5e
ID
4402 bctl->flags = btrfs_balance_flags(leaf, item);
4403 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4404
4405 btrfs_balance_data(leaf, item, &disk_bargs);
4406 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4407 btrfs_balance_meta(leaf, item, &disk_bargs);
4408 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4409 btrfs_balance_sys(leaf, item, &disk_bargs);
4410 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4411
eee95e3f
DS
4412 /*
4413 * This should never happen, as the paused balance state is recovered
4414 * during mount without any chance of other exclusive ops to collide.
4415 *
4416 * This gives the exclusive op status to balance and keeps in paused
4417 * state until user intervention (cancel or umount). If the ownership
4418 * cannot be assigned, show a message but do not fail. The balance
4419 * is in a paused state and must have fs_info::balance_ctl properly
4420 * set up.
4421 */
c3e1f96c 4422 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
eee95e3f 4423 btrfs_warn(fs_info,
6dac13f8 4424 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4425
fb286100
JB
4426 btrfs_release_path(path);
4427
68310a5e 4428 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4429 BUG_ON(fs_info->balance_ctl);
4430 spin_lock(&fs_info->balance_lock);
4431 fs_info->balance_ctl = bctl;
4432 spin_unlock(&fs_info->balance_lock);
68310a5e 4433 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4434out:
4435 btrfs_free_path(path);
ec44a35c
CM
4436 return ret;
4437}
4438
837d5b6e
ID
4439int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4440{
4441 int ret = 0;
4442
4443 mutex_lock(&fs_info->balance_mutex);
4444 if (!fs_info->balance_ctl) {
4445 mutex_unlock(&fs_info->balance_mutex);
4446 return -ENOTCONN;
4447 }
4448
3009a62f 4449 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4450 atomic_inc(&fs_info->balance_pause_req);
4451 mutex_unlock(&fs_info->balance_mutex);
4452
4453 wait_event(fs_info->balance_wait_q,
3009a62f 4454 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4455
4456 mutex_lock(&fs_info->balance_mutex);
4457 /* we are good with balance_ctl ripped off from under us */
3009a62f 4458 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4459 atomic_dec(&fs_info->balance_pause_req);
4460 } else {
4461 ret = -ENOTCONN;
4462 }
4463
4464 mutex_unlock(&fs_info->balance_mutex);
4465 return ret;
4466}
4467
a7e99c69
ID
4468int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4469{
4470 mutex_lock(&fs_info->balance_mutex);
4471 if (!fs_info->balance_ctl) {
4472 mutex_unlock(&fs_info->balance_mutex);
4473 return -ENOTCONN;
4474 }
4475
cf7d20f4
DS
4476 /*
4477 * A paused balance with the item stored on disk can be resumed at
4478 * mount time if the mount is read-write. Otherwise it's still paused
4479 * and we must not allow cancelling as it deletes the item.
4480 */
4481 if (sb_rdonly(fs_info->sb)) {
4482 mutex_unlock(&fs_info->balance_mutex);
4483 return -EROFS;
4484 }
4485
a7e99c69
ID
4486 atomic_inc(&fs_info->balance_cancel_req);
4487 /*
4488 * if we are running just wait and return, balance item is
4489 * deleted in btrfs_balance in this case
4490 */
3009a62f 4491 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4492 mutex_unlock(&fs_info->balance_mutex);
4493 wait_event(fs_info->balance_wait_q,
3009a62f 4494 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4495 mutex_lock(&fs_info->balance_mutex);
4496 } else {
a7e99c69 4497 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4498 /*
4499 * Lock released to allow other waiters to continue, we'll
4500 * reexamine the status again.
4501 */
a7e99c69
ID
4502 mutex_lock(&fs_info->balance_mutex);
4503
a17c95df 4504 if (fs_info->balance_ctl) {
149196a2 4505 reset_balance_state(fs_info);
c3e1f96c 4506 btrfs_exclop_finish(fs_info);
6dac13f8 4507 btrfs_info(fs_info, "balance: canceled");
a17c95df 4508 }
a7e99c69
ID
4509 }
4510
3009a62f
DS
4511 BUG_ON(fs_info->balance_ctl ||
4512 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4513 atomic_dec(&fs_info->balance_cancel_req);
4514 mutex_unlock(&fs_info->balance_mutex);
4515 return 0;
4516}
4517
97f4dd09 4518int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4519{
4520 struct btrfs_fs_info *fs_info = data;
4521 struct btrfs_root *root = fs_info->tree_root;
4522 struct btrfs_key key;
803b2f54
SB
4523 struct btrfs_path *path = NULL;
4524 int ret = 0;
4525 struct extent_buffer *eb;
4526 int slot;
4527 struct btrfs_root_item root_item;
4528 u32 item_size;
f45388f3 4529 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4530 bool closing = false;
803b2f54
SB
4531
4532 path = btrfs_alloc_path();
4533 if (!path) {
4534 ret = -ENOMEM;
4535 goto out;
4536 }
4537
4538 key.objectid = 0;
4539 key.type = BTRFS_ROOT_ITEM_KEY;
4540 key.offset = 0;
4541
803b2f54 4542 while (1) {
c94bec2c
JB
4543 if (btrfs_fs_closing(fs_info)) {
4544 closing = true;
4545 break;
4546 }
7c829b72
AJ
4547 ret = btrfs_search_forward(root, &key, path,
4548 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4549 if (ret) {
4550 if (ret > 0)
4551 ret = 0;
4552 break;
4553 }
4554
4555 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4556 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4557 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4558 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4559 goto skip;
4560
4561 eb = path->nodes[0];
4562 slot = path->slots[0];
4563 item_size = btrfs_item_size_nr(eb, slot);
4564 if (item_size < sizeof(root_item))
4565 goto skip;
4566
803b2f54
SB
4567 read_extent_buffer(eb, &root_item,
4568 btrfs_item_ptr_offset(eb, slot),
4569 (int)sizeof(root_item));
4570 if (btrfs_root_refs(&root_item) == 0)
4571 goto skip;
f45388f3
FDBM
4572
4573 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4574 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4575 if (trans)
4576 goto update_tree;
4577
4578 btrfs_release_path(path);
803b2f54
SB
4579 /*
4580 * 1 - subvol uuid item
4581 * 1 - received_subvol uuid item
4582 */
4583 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4584 if (IS_ERR(trans)) {
4585 ret = PTR_ERR(trans);
4586 break;
4587 }
f45388f3
FDBM
4588 continue;
4589 } else {
4590 goto skip;
4591 }
4592update_tree:
9771a5cf 4593 btrfs_release_path(path);
f45388f3 4594 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4595 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4596 BTRFS_UUID_KEY_SUBVOL,
4597 key.objectid);
4598 if (ret < 0) {
efe120a0 4599 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4600 ret);
803b2f54
SB
4601 break;
4602 }
4603 }
4604
4605 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4606 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4607 root_item.received_uuid,
4608 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4609 key.objectid);
4610 if (ret < 0) {
efe120a0 4611 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4612 ret);
803b2f54
SB
4613 break;
4614 }
4615 }
4616
f45388f3 4617skip:
9771a5cf 4618 btrfs_release_path(path);
803b2f54 4619 if (trans) {
3a45bb20 4620 ret = btrfs_end_transaction(trans);
f45388f3 4621 trans = NULL;
803b2f54
SB
4622 if (ret)
4623 break;
4624 }
4625
803b2f54
SB
4626 if (key.offset < (u64)-1) {
4627 key.offset++;
4628 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4629 key.offset = 0;
4630 key.type = BTRFS_ROOT_ITEM_KEY;
4631 } else if (key.objectid < (u64)-1) {
4632 key.offset = 0;
4633 key.type = BTRFS_ROOT_ITEM_KEY;
4634 key.objectid++;
4635 } else {
4636 break;
4637 }
4638 cond_resched();
4639 }
4640
4641out:
4642 btrfs_free_path(path);
f45388f3 4643 if (trans && !IS_ERR(trans))
3a45bb20 4644 btrfs_end_transaction(trans);
803b2f54 4645 if (ret)
efe120a0 4646 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4647 else if (!closing)
afcdd129 4648 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4649 up(&fs_info->uuid_tree_rescan_sem);
4650 return 0;
4651}
4652
f7a81ea4
SB
4653int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4654{
4655 struct btrfs_trans_handle *trans;
4656 struct btrfs_root *tree_root = fs_info->tree_root;
4657 struct btrfs_root *uuid_root;
803b2f54
SB
4658 struct task_struct *task;
4659 int ret;
f7a81ea4
SB
4660
4661 /*
4662 * 1 - root node
4663 * 1 - root item
4664 */
4665 trans = btrfs_start_transaction(tree_root, 2);
4666 if (IS_ERR(trans))
4667 return PTR_ERR(trans);
4668
9b7a2440 4669 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4670 if (IS_ERR(uuid_root)) {
6d13f549 4671 ret = PTR_ERR(uuid_root);
66642832 4672 btrfs_abort_transaction(trans, ret);
3a45bb20 4673 btrfs_end_transaction(trans);
6d13f549 4674 return ret;
f7a81ea4
SB
4675 }
4676
4677 fs_info->uuid_root = uuid_root;
4678
3a45bb20 4679 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4680 if (ret)
4681 return ret;
4682
4683 down(&fs_info->uuid_tree_rescan_sem);
4684 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4685 if (IS_ERR(task)) {
70f80175 4686 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4687 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4688 up(&fs_info->uuid_tree_rescan_sem);
4689 return PTR_ERR(task);
4690 }
4691
4692 return 0;
f7a81ea4 4693}
803b2f54 4694
8f18cf13
CM
4695/*
4696 * shrinking a device means finding all of the device extents past
4697 * the new size, and then following the back refs to the chunks.
4698 * The chunk relocation code actually frees the device extent
4699 */
4700int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4701{
0b246afa
JM
4702 struct btrfs_fs_info *fs_info = device->fs_info;
4703 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4704 struct btrfs_trans_handle *trans;
8f18cf13
CM
4705 struct btrfs_dev_extent *dev_extent = NULL;
4706 struct btrfs_path *path;
4707 u64 length;
8f18cf13
CM
4708 u64 chunk_offset;
4709 int ret;
4710 int slot;
ba1bf481
JB
4711 int failed = 0;
4712 bool retried = false;
8f18cf13
CM
4713 struct extent_buffer *l;
4714 struct btrfs_key key;
0b246afa 4715 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4716 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4717 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4718 u64 diff;
61d0d0d2 4719 u64 start;
7dfb8be1
NB
4720
4721 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4722 start = new_size;
0e4324a4 4723 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4724
401e29c1 4725 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4726 return -EINVAL;
4727
8f18cf13
CM
4728 path = btrfs_alloc_path();
4729 if (!path)
4730 return -ENOMEM;
4731
0338dff6 4732 path->reada = READA_BACK;
8f18cf13 4733
61d0d0d2
NB
4734 trans = btrfs_start_transaction(root, 0);
4735 if (IS_ERR(trans)) {
4736 btrfs_free_path(path);
4737 return PTR_ERR(trans);
4738 }
4739
34441361 4740 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4741
7cc8e58d 4742 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4743 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4744 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4745 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4746 }
61d0d0d2
NB
4747
4748 /*
4749 * Once the device's size has been set to the new size, ensure all
4750 * in-memory chunks are synced to disk so that the loop below sees them
4751 * and relocates them accordingly.
4752 */
1c11b63e 4753 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4754 mutex_unlock(&fs_info->chunk_mutex);
4755 ret = btrfs_commit_transaction(trans);
4756 if (ret)
4757 goto done;
4758 } else {
4759 mutex_unlock(&fs_info->chunk_mutex);
4760 btrfs_end_transaction(trans);
4761 }
8f18cf13 4762
ba1bf481 4763again:
8f18cf13
CM
4764 key.objectid = device->devid;
4765 key.offset = (u64)-1;
4766 key.type = BTRFS_DEV_EXTENT_KEY;
4767
213e64da 4768 do {
f3372065 4769 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4770 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4771 if (ret < 0) {
f3372065 4772 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4773 goto done;
67c5e7d4 4774 }
8f18cf13
CM
4775
4776 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4777 if (ret) {
f3372065 4778 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4779 if (ret < 0)
4780 goto done;
8f18cf13 4781 ret = 0;
b3b4aa74 4782 btrfs_release_path(path);
bf1fb512 4783 break;
8f18cf13
CM
4784 }
4785
4786 l = path->nodes[0];
4787 slot = path->slots[0];
4788 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4789
ba1bf481 4790 if (key.objectid != device->devid) {
f3372065 4791 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4792 btrfs_release_path(path);
bf1fb512 4793 break;
ba1bf481 4794 }
8f18cf13
CM
4795
4796 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4797 length = btrfs_dev_extent_length(l, dev_extent);
4798
ba1bf481 4799 if (key.offset + length <= new_size) {
f3372065 4800 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4801 btrfs_release_path(path);
d6397bae 4802 break;
ba1bf481 4803 }
8f18cf13 4804
8f18cf13 4805 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4806 btrfs_release_path(path);
8f18cf13 4807
a6f93c71
LB
4808 /*
4809 * We may be relocating the only data chunk we have,
4810 * which could potentially end up with losing data's
4811 * raid profile, so lets allocate an empty one in
4812 * advance.
4813 */
4814 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4815 if (ret < 0) {
f3372065 4816 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4817 goto done;
4818 }
4819
0b246afa 4820 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4821 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4822 if (ret == -ENOSPC) {
ba1bf481 4823 failed++;
eede2bf3
OS
4824 } else if (ret) {
4825 if (ret == -ETXTBSY) {
4826 btrfs_warn(fs_info,
4827 "could not shrink block group %llu due to active swapfile",
4828 chunk_offset);
4829 }
4830 goto done;
4831 }
213e64da 4832 } while (key.offset-- > 0);
ba1bf481
JB
4833
4834 if (failed && !retried) {
4835 failed = 0;
4836 retried = true;
4837 goto again;
4838 } else if (failed && retried) {
4839 ret = -ENOSPC;
ba1bf481 4840 goto done;
8f18cf13
CM
4841 }
4842
d6397bae 4843 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4844 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4845 if (IS_ERR(trans)) {
4846 ret = PTR_ERR(trans);
4847 goto done;
4848 }
4849
34441361 4850 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4851 /* Clear all state bits beyond the shrunk device size */
4852 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4853 CHUNK_STATE_MASK);
4854
7cc8e58d 4855 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4856 if (list_empty(&device->post_commit_list))
4857 list_add_tail(&device->post_commit_list,
4858 &trans->transaction->dev_update_list);
d6397bae 4859
d6397bae 4860 WARN_ON(diff > old_total);
7dfb8be1
NB
4861 btrfs_set_super_total_bytes(super_copy,
4862 round_down(old_total - diff, fs_info->sectorsize));
34441361 4863 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4864
4865 /* Now btrfs_update_device() will change the on-disk size. */
4866 ret = btrfs_update_device(trans, device);
801660b0
AJ
4867 if (ret < 0) {
4868 btrfs_abort_transaction(trans, ret);
4869 btrfs_end_transaction(trans);
4870 } else {
4871 ret = btrfs_commit_transaction(trans);
4872 }
8f18cf13
CM
4873done:
4874 btrfs_free_path(path);
53e489bc 4875 if (ret) {
34441361 4876 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4877 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4878 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4879 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4880 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4881 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4882 }
8f18cf13
CM
4883 return ret;
4884}
4885
2ff7e61e 4886static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4887 struct btrfs_key *key,
4888 struct btrfs_chunk *chunk, int item_size)
4889{
0b246afa 4890 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4891 struct btrfs_disk_key disk_key;
4892 u32 array_size;
4893 u8 *ptr;
4894
79bd3712
FM
4895 lockdep_assert_held(&fs_info->chunk_mutex);
4896
0b86a832 4897 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4898 if (array_size + item_size + sizeof(disk_key)
79bd3712 4899 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4900 return -EFBIG;
4901
4902 ptr = super_copy->sys_chunk_array + array_size;
4903 btrfs_cpu_key_to_disk(&disk_key, key);
4904 memcpy(ptr, &disk_key, sizeof(disk_key));
4905 ptr += sizeof(disk_key);
4906 memcpy(ptr, chunk, item_size);
4907 item_size += sizeof(disk_key);
4908 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 4909
0b86a832
CM
4910 return 0;
4911}
4912
73c5de00
AJ
4913/*
4914 * sort the devices in descending order by max_avail, total_avail
4915 */
4916static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4917{
73c5de00
AJ
4918 const struct btrfs_device_info *di_a = a;
4919 const struct btrfs_device_info *di_b = b;
9b3f68b9 4920
73c5de00 4921 if (di_a->max_avail > di_b->max_avail)
b2117a39 4922 return -1;
73c5de00 4923 if (di_a->max_avail < di_b->max_avail)
b2117a39 4924 return 1;
73c5de00
AJ
4925 if (di_a->total_avail > di_b->total_avail)
4926 return -1;
4927 if (di_a->total_avail < di_b->total_avail)
4928 return 1;
4929 return 0;
b2117a39 4930}
0b86a832 4931
53b381b3
DW
4932static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4933{
ffe2d203 4934 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4935 return;
4936
ceda0864 4937 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4938}
4939
cfbb825c
DS
4940static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4941{
4942 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4943 return;
4944
4945 btrfs_set_fs_incompat(info, RAID1C34);
4946}
4947
4f2bafe8
NA
4948/*
4949 * Structure used internally for __btrfs_alloc_chunk() function.
4950 * Wraps needed parameters.
4951 */
4952struct alloc_chunk_ctl {
4953 u64 start;
4954 u64 type;
4955 /* Total number of stripes to allocate */
4956 int num_stripes;
4957 /* sub_stripes info for map */
4958 int sub_stripes;
4959 /* Stripes per device */
4960 int dev_stripes;
4961 /* Maximum number of devices to use */
4962 int devs_max;
4963 /* Minimum number of devices to use */
4964 int devs_min;
4965 /* ndevs has to be a multiple of this */
4966 int devs_increment;
4967 /* Number of copies */
4968 int ncopies;
4969 /* Number of stripes worth of bytes to store parity information */
4970 int nparity;
4971 u64 max_stripe_size;
4972 u64 max_chunk_size;
6aafb303 4973 u64 dev_extent_min;
4f2bafe8
NA
4974 u64 stripe_size;
4975 u64 chunk_size;
4976 int ndevs;
4977};
4978
27c314d5
NA
4979static void init_alloc_chunk_ctl_policy_regular(
4980 struct btrfs_fs_devices *fs_devices,
4981 struct alloc_chunk_ctl *ctl)
4982{
4983 u64 type = ctl->type;
4984
4985 if (type & BTRFS_BLOCK_GROUP_DATA) {
4986 ctl->max_stripe_size = SZ_1G;
4987 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4988 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4989 /* For larger filesystems, use larger metadata chunks */
4990 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4991 ctl->max_stripe_size = SZ_1G;
4992 else
4993 ctl->max_stripe_size = SZ_256M;
4994 ctl->max_chunk_size = ctl->max_stripe_size;
4995 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4996 ctl->max_stripe_size = SZ_32M;
4997 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4998 ctl->devs_max = min_t(int, ctl->devs_max,
4999 BTRFS_MAX_DEVS_SYS_CHUNK);
5000 } else {
5001 BUG();
5002 }
5003
5004 /* We don't want a chunk larger than 10% of writable space */
5005 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5006 ctl->max_chunk_size);
6aafb303 5007 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5008}
5009
1cd6121f
NA
5010static void init_alloc_chunk_ctl_policy_zoned(
5011 struct btrfs_fs_devices *fs_devices,
5012 struct alloc_chunk_ctl *ctl)
5013{
5014 u64 zone_size = fs_devices->fs_info->zone_size;
5015 u64 limit;
5016 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5017 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5018 u64 min_chunk_size = min_data_stripes * zone_size;
5019 u64 type = ctl->type;
5020
5021 ctl->max_stripe_size = zone_size;
5022 if (type & BTRFS_BLOCK_GROUP_DATA) {
5023 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5024 zone_size);
5025 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5026 ctl->max_chunk_size = ctl->max_stripe_size;
5027 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5028 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5029 ctl->devs_max = min_t(int, ctl->devs_max,
5030 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5031 } else {
5032 BUG();
1cd6121f
NA
5033 }
5034
5035 /* We don't want a chunk larger than 10% of writable space */
5036 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5037 zone_size),
5038 min_chunk_size);
5039 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5040 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5041}
5042
27c314d5
NA
5043static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5044 struct alloc_chunk_ctl *ctl)
5045{
5046 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5047
5048 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5049 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5050 ctl->devs_max = btrfs_raid_array[index].devs_max;
5051 if (!ctl->devs_max)
5052 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5053 ctl->devs_min = btrfs_raid_array[index].devs_min;
5054 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5055 ctl->ncopies = btrfs_raid_array[index].ncopies;
5056 ctl->nparity = btrfs_raid_array[index].nparity;
5057 ctl->ndevs = 0;
5058
5059 switch (fs_devices->chunk_alloc_policy) {
5060 case BTRFS_CHUNK_ALLOC_REGULAR:
5061 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5062 break;
1cd6121f
NA
5063 case BTRFS_CHUNK_ALLOC_ZONED:
5064 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5065 break;
27c314d5
NA
5066 default:
5067 BUG();
5068 }
5069}
5070
560156cb
NA
5071static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5072 struct alloc_chunk_ctl *ctl,
5073 struct btrfs_device_info *devices_info)
b2117a39 5074{
560156cb 5075 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5076 struct btrfs_device *device;
73c5de00 5077 u64 total_avail;
560156cb 5078 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5079 int ret;
560156cb
NA
5080 int ndevs = 0;
5081 u64 max_avail;
5082 u64 dev_offset;
0cad8a11 5083
9f680ce0 5084 /*
73c5de00
AJ
5085 * in the first pass through the devices list, we gather information
5086 * about the available holes on each device.
9f680ce0 5087 */
ebcc9301 5088 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5089 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5090 WARN(1, KERN_ERR
efe120a0 5091 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5092 continue;
5093 }
b2117a39 5094
e12c9621
AJ
5095 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5096 &device->dev_state) ||
401e29c1 5097 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5098 continue;
b2117a39 5099
73c5de00
AJ
5100 if (device->total_bytes > device->bytes_used)
5101 total_avail = device->total_bytes - device->bytes_used;
5102 else
5103 total_avail = 0;
38c01b96 5104
5105 /* If there is no space on this device, skip it. */
6aafb303 5106 if (total_avail < ctl->dev_extent_min)
38c01b96 5107 continue;
b2117a39 5108
560156cb
NA
5109 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5110 &max_avail);
73c5de00 5111 if (ret && ret != -ENOSPC)
560156cb 5112 return ret;
b2117a39 5113
73c5de00 5114 if (ret == 0)
560156cb 5115 max_avail = dev_extent_want;
b2117a39 5116
6aafb303 5117 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5118 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5119 btrfs_debug(info,
560156cb 5120 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5121 __func__, device->devid, max_avail,
6aafb303 5122 ctl->dev_extent_min);
73c5de00 5123 continue;
4117f207 5124 }
b2117a39 5125
063d006f
ES
5126 if (ndevs == fs_devices->rw_devices) {
5127 WARN(1, "%s: found more than %llu devices\n",
5128 __func__, fs_devices->rw_devices);
5129 break;
5130 }
73c5de00
AJ
5131 devices_info[ndevs].dev_offset = dev_offset;
5132 devices_info[ndevs].max_avail = max_avail;
5133 devices_info[ndevs].total_avail = total_avail;
5134 devices_info[ndevs].dev = device;
5135 ++ndevs;
5136 }
560156cb 5137 ctl->ndevs = ndevs;
b2117a39 5138
73c5de00
AJ
5139 /*
5140 * now sort the devices by hole size / available space
5141 */
560156cb 5142 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5143 btrfs_cmp_device_info, NULL);
b2117a39 5144
560156cb
NA
5145 return 0;
5146}
5147
5badf512
NA
5148static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5149 struct btrfs_device_info *devices_info)
5150{
5151 /* Number of stripes that count for block group size */
5152 int data_stripes;
5153
5154 /*
5155 * The primary goal is to maximize the number of stripes, so use as
5156 * many devices as possible, even if the stripes are not maximum sized.
5157 *
5158 * The DUP profile stores more than one stripe per device, the
5159 * max_avail is the total size so we have to adjust.
5160 */
5161 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5162 ctl->dev_stripes);
5163 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5164
5165 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5166 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5167
5168 /*
5169 * Use the number of data stripes to figure out how big this chunk is
5170 * really going to be in terms of logical address space, and compare
5171 * that answer with the max chunk size. If it's higher, we try to
5172 * reduce stripe_size.
5173 */
5174 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5175 /*
5176 * Reduce stripe_size, round it up to a 16MB boundary again and
5177 * then use it, unless it ends up being even bigger than the
5178 * previous value we had already.
5179 */
5180 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5181 data_stripes), SZ_16M),
5182 ctl->stripe_size);
5183 }
5184
5185 /* Align to BTRFS_STRIPE_LEN */
5186 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5187 ctl->chunk_size = ctl->stripe_size * data_stripes;
5188
5189 return 0;
5190}
5191
1cd6121f
NA
5192static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5193 struct btrfs_device_info *devices_info)
5194{
5195 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5196 /* Number of stripes that count for block group size */
5197 int data_stripes;
5198
5199 /*
5200 * It should hold because:
5201 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5202 */
5203 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5204
5205 ctl->stripe_size = zone_size;
5206 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5207 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5208
5209 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5210 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5211 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5212 ctl->stripe_size) + ctl->nparity,
5213 ctl->dev_stripes);
5214 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5215 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5216 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5217 }
5218
5219 ctl->chunk_size = ctl->stripe_size * data_stripes;
5220
5221 return 0;
5222}
5223
5badf512
NA
5224static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5225 struct alloc_chunk_ctl *ctl,
5226 struct btrfs_device_info *devices_info)
5227{
5228 struct btrfs_fs_info *info = fs_devices->fs_info;
5229
5230 /*
5231 * Round down to number of usable stripes, devs_increment can be any
5232 * number so we can't use round_down() that requires power of 2, while
5233 * rounddown is safe.
5234 */
5235 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5236
5237 if (ctl->ndevs < ctl->devs_min) {
5238 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5239 btrfs_debug(info,
5240 "%s: not enough devices with free space: have=%d minimum required=%d",
5241 __func__, ctl->ndevs, ctl->devs_min);
5242 }
5243 return -ENOSPC;
5244 }
5245
5246 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5247
5248 switch (fs_devices->chunk_alloc_policy) {
5249 case BTRFS_CHUNK_ALLOC_REGULAR:
5250 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5251 case BTRFS_CHUNK_ALLOC_ZONED:
5252 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5253 default:
5254 BUG();
5255 }
5256}
5257
79bd3712 5258static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5259 struct alloc_chunk_ctl *ctl,
5260 struct btrfs_device_info *devices_info)
560156cb
NA
5261{
5262 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5263 struct map_lookup *map = NULL;
5264 struct extent_map_tree *em_tree;
79bd3712 5265 struct btrfs_block_group *block_group;
560156cb 5266 struct extent_map *em;
dce580ca
NA
5267 u64 start = ctl->start;
5268 u64 type = ctl->type;
560156cb
NA
5269 int ret;
5270 int i;
5271 int j;
5272
dce580ca
NA
5273 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5274 if (!map)
79bd3712 5275 return ERR_PTR(-ENOMEM);
dce580ca 5276 map->num_stripes = ctl->num_stripes;
560156cb 5277
dce580ca
NA
5278 for (i = 0; i < ctl->ndevs; ++i) {
5279 for (j = 0; j < ctl->dev_stripes; ++j) {
5280 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5281 map->stripes[s].dev = devices_info[i].dev;
5282 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5283 j * ctl->stripe_size;
6324fbf3 5284 }
6324fbf3 5285 }
500ceed8
NB
5286 map->stripe_len = BTRFS_STRIPE_LEN;
5287 map->io_align = BTRFS_STRIPE_LEN;
5288 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5289 map->type = type;
dce580ca 5290 map->sub_stripes = ctl->sub_stripes;
0b86a832 5291
dce580ca 5292 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5293
172ddd60 5294 em = alloc_extent_map();
2b82032c 5295 if (!em) {
298a8f9c 5296 kfree(map);
79bd3712 5297 return ERR_PTR(-ENOMEM);
593060d7 5298 }
298a8f9c 5299 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5300 em->map_lookup = map;
2b82032c 5301 em->start = start;
dce580ca 5302 em->len = ctl->chunk_size;
2b82032c
YZ
5303 em->block_start = 0;
5304 em->block_len = em->len;
dce580ca 5305 em->orig_block_len = ctl->stripe_size;
593060d7 5306
c8bf1b67 5307 em_tree = &info->mapping_tree;
890871be 5308 write_lock(&em_tree->lock);
09a2a8f9 5309 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5310 if (ret) {
1efb72a3 5311 write_unlock(&em_tree->lock);
0f5d42b2 5312 free_extent_map(em);
79bd3712 5313 return ERR_PTR(ret);
0f5d42b2 5314 }
1efb72a3
NB
5315 write_unlock(&em_tree->lock);
5316
79bd3712
FM
5317 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5318 if (IS_ERR(block_group))
6df9a95e 5319 goto error_del_extent;
2b82032c 5320
bbbf7243
NB
5321 for (i = 0; i < map->num_stripes; i++) {
5322 struct btrfs_device *dev = map->stripes[i].dev;
5323
4f2bafe8 5324 btrfs_device_set_bytes_used(dev,
dce580ca 5325 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5326 if (list_empty(&dev->post_commit_list))
5327 list_add_tail(&dev->post_commit_list,
5328 &trans->transaction->dev_update_list);
5329 }
43530c46 5330
dce580ca 5331 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5332 &info->free_chunk_space);
1c116187 5333
0f5d42b2 5334 free_extent_map(em);
0b246afa 5335 check_raid56_incompat_flag(info, type);
cfbb825c 5336 check_raid1c34_incompat_flag(info, type);
53b381b3 5337
79bd3712 5338 return block_group;
b2117a39 5339
6df9a95e 5340error_del_extent:
0f5d42b2
JB
5341 write_lock(&em_tree->lock);
5342 remove_extent_mapping(em_tree, em);
5343 write_unlock(&em_tree->lock);
5344
5345 /* One for our allocation */
5346 free_extent_map(em);
5347 /* One for the tree reference */
5348 free_extent_map(em);
dce580ca 5349
79bd3712 5350 return block_group;
dce580ca
NA
5351}
5352
79bd3712
FM
5353struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5354 u64 type)
dce580ca
NA
5355{
5356 struct btrfs_fs_info *info = trans->fs_info;
5357 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5358 struct btrfs_device_info *devices_info = NULL;
5359 struct alloc_chunk_ctl ctl;
79bd3712 5360 struct btrfs_block_group *block_group;
dce580ca
NA
5361 int ret;
5362
11c67b1a
NB
5363 lockdep_assert_held(&info->chunk_mutex);
5364
dce580ca
NA
5365 if (!alloc_profile_is_valid(type, 0)) {
5366 ASSERT(0);
79bd3712 5367 return ERR_PTR(-EINVAL);
dce580ca
NA
5368 }
5369
5370 if (list_empty(&fs_devices->alloc_list)) {
5371 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5372 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5373 return ERR_PTR(-ENOSPC);
dce580ca
NA
5374 }
5375
5376 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5377 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5378 ASSERT(0);
79bd3712 5379 return ERR_PTR(-EINVAL);
dce580ca
NA
5380 }
5381
11c67b1a 5382 ctl.start = find_next_chunk(info);
dce580ca
NA
5383 ctl.type = type;
5384 init_alloc_chunk_ctl(fs_devices, &ctl);
5385
5386 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5387 GFP_NOFS);
5388 if (!devices_info)
79bd3712 5389 return ERR_PTR(-ENOMEM);
dce580ca
NA
5390
5391 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5392 if (ret < 0) {
5393 block_group = ERR_PTR(ret);
dce580ca 5394 goto out;
79bd3712 5395 }
dce580ca
NA
5396
5397 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5398 if (ret < 0) {
5399 block_group = ERR_PTR(ret);
dce580ca 5400 goto out;
79bd3712 5401 }
dce580ca 5402
79bd3712 5403 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5404
5405out:
b2117a39 5406 kfree(devices_info);
79bd3712 5407 return block_group;
2b82032c
YZ
5408}
5409
79bd3712
FM
5410/*
5411 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5412 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5413 * chunks.
5414 *
5415 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5416 * phases.
5417 */
5418int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5419 struct btrfs_block_group *bg)
5420{
5421 struct btrfs_fs_info *fs_info = trans->fs_info;
5422 struct btrfs_root *extent_root = fs_info->extent_root;
5423 struct btrfs_root *chunk_root = fs_info->chunk_root;
5424 struct btrfs_key key;
5425 struct btrfs_chunk *chunk;
5426 struct btrfs_stripe *stripe;
5427 struct extent_map *em;
5428 struct map_lookup *map;
5429 size_t item_size;
5430 int i;
5431 int ret;
5432
5433 /*
5434 * We take the chunk_mutex for 2 reasons:
5435 *
5436 * 1) Updates and insertions in the chunk btree must be done while holding
5437 * the chunk_mutex, as well as updating the system chunk array in the
5438 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5439 * details;
5440 *
5441 * 2) To prevent races with the final phase of a device replace operation
5442 * that replaces the device object associated with the map's stripes,
5443 * because the device object's id can change at any time during that
5444 * final phase of the device replace operation
5445 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5446 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5447 * which would cause a failure when updating the device item, which does
5448 * not exists, or persisting a stripe of the chunk item with such ID.
5449 * Here we can't use the device_list_mutex because our caller already
5450 * has locked the chunk_mutex, and the final phase of device replace
5451 * acquires both mutexes - first the device_list_mutex and then the
5452 * chunk_mutex. Using any of those two mutexes protects us from a
5453 * concurrent device replace.
5454 */
5455 lockdep_assert_held(&fs_info->chunk_mutex);
5456
5457 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5458 if (IS_ERR(em)) {
5459 ret = PTR_ERR(em);
5460 btrfs_abort_transaction(trans, ret);
5461 return ret;
5462 }
5463
5464 map = em->map_lookup;
5465 item_size = btrfs_chunk_item_size(map->num_stripes);
5466
5467 chunk = kzalloc(item_size, GFP_NOFS);
5468 if (!chunk) {
5469 ret = -ENOMEM;
5470 btrfs_abort_transaction(trans, ret);
50460e37 5471 goto out;
2b82032c
YZ
5472 }
5473
79bd3712
FM
5474 for (i = 0; i < map->num_stripes; i++) {
5475 struct btrfs_device *device = map->stripes[i].dev;
5476
5477 ret = btrfs_update_device(trans, device);
5478 if (ret)
5479 goto out;
5480 }
5481
2b82032c 5482 stripe = &chunk->stripe;
6df9a95e 5483 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5484 struct btrfs_device *device = map->stripes[i].dev;
5485 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5486
e17cade2
CM
5487 btrfs_set_stack_stripe_devid(stripe, device->devid);
5488 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5489 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5490 stripe++;
0b86a832
CM
5491 }
5492
79bd3712 5493 btrfs_set_stack_chunk_length(chunk, bg->length);
0b86a832 5494 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5495 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5496 btrfs_set_stack_chunk_type(chunk, map->type);
5497 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5498 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5499 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5500 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5501 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5502
2b82032c
YZ
5503 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5504 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5505 key.offset = bg->start;
0b86a832 5506
2b82032c 5507 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5508 if (ret)
5509 goto out;
5510
5511 bg->chunk_item_inserted = 1;
5512
5513 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5514 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5515 if (ret)
5516 goto out;
8f18cf13 5517 }
1abe9b8a 5518
6df9a95e 5519out:
0b86a832 5520 kfree(chunk);
6df9a95e 5521 free_extent_map(em);
4ed1d16e 5522 return ret;
2b82032c 5523}
0b86a832 5524
6f8e0fc7 5525static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5526{
6f8e0fc7 5527 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5528 u64 alloc_profile;
79bd3712
FM
5529 struct btrfs_block_group *meta_bg;
5530 struct btrfs_block_group *sys_bg;
5531
5532 /*
5533 * When adding a new device for sprouting, the seed device is read-only
5534 * so we must first allocate a metadata and a system chunk. But before
5535 * adding the block group items to the extent, device and chunk btrees,
5536 * we must first:
5537 *
5538 * 1) Create both chunks without doing any changes to the btrees, as
5539 * otherwise we would get -ENOSPC since the block groups from the
5540 * seed device are read-only;
5541 *
5542 * 2) Add the device item for the new sprout device - finishing the setup
5543 * of a new block group requires updating the device item in the chunk
5544 * btree, so it must exist when we attempt to do it. The previous step
5545 * ensures this does not fail with -ENOSPC.
5546 *
5547 * After that we can add the block group items to their btrees:
5548 * update existing device item in the chunk btree, add a new block group
5549 * item to the extent btree, add a new chunk item to the chunk btree and
5550 * finally add the new device extent items to the devices btree.
5551 */
2b82032c 5552
1b86826d 5553 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
79bd3712
FM
5554 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5555 if (IS_ERR(meta_bg))
5556 return PTR_ERR(meta_bg);
2b82032c 5557
1b86826d 5558 alloc_profile = btrfs_system_alloc_profile(fs_info);
79bd3712
FM
5559 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5560 if (IS_ERR(sys_bg))
5561 return PTR_ERR(sys_bg);
5562
5563 return 0;
2b82032c
YZ
5564}
5565
d20983b4
MX
5566static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5567{
fc9a2ac7 5568 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5569
fc9a2ac7 5570 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5571}
5572
2ff7e61e 5573int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5574{
5575 struct extent_map *em;
5576 struct map_lookup *map;
2b82032c 5577 int readonly = 0;
d20983b4 5578 int miss_ndevs = 0;
2b82032c
YZ
5579 int i;
5580
60ca842e 5581 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5582 if (IS_ERR(em))
2b82032c
YZ
5583 return 1;
5584
95617d69 5585 map = em->map_lookup;
2b82032c 5586 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5587 if (test_bit(BTRFS_DEV_STATE_MISSING,
5588 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5589 miss_ndevs++;
5590 continue;
5591 }
ebbede42
AJ
5592 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5593 &map->stripes[i].dev->dev_state)) {
2b82032c 5594 readonly = 1;
d20983b4 5595 goto end;
2b82032c
YZ
5596 }
5597 }
d20983b4
MX
5598
5599 /*
5600 * If the number of missing devices is larger than max errors,
5601 * we can not write the data into that chunk successfully, so
5602 * set it readonly.
5603 */
5604 if (miss_ndevs > btrfs_chunk_max_errors(map))
5605 readonly = 1;
5606end:
0b86a832 5607 free_extent_map(em);
2b82032c 5608 return readonly;
0b86a832
CM
5609}
5610
c8bf1b67 5611void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5612{
5613 struct extent_map *em;
5614
d397712b 5615 while (1) {
c8bf1b67
DS
5616 write_lock(&tree->lock);
5617 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5618 if (em)
c8bf1b67
DS
5619 remove_extent_mapping(tree, em);
5620 write_unlock(&tree->lock);
0b86a832
CM
5621 if (!em)
5622 break;
0b86a832
CM
5623 /* once for us */
5624 free_extent_map(em);
5625 /* once for the tree */
5626 free_extent_map(em);
5627 }
5628}
5629
5d964051 5630int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5631{
5632 struct extent_map *em;
5633 struct map_lookup *map;
f188591e
CM
5634 int ret;
5635
60ca842e 5636 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5637 if (IS_ERR(em))
5638 /*
5639 * We could return errors for these cases, but that could get
5640 * ugly and we'd probably do the same thing which is just not do
5641 * anything else and exit, so return 1 so the callers don't try
5642 * to use other copies.
5643 */
fb7669b5 5644 return 1;
fb7669b5 5645
95617d69 5646 map = em->map_lookup;
c7369b3f 5647 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5648 ret = map->num_stripes;
321aecc6
CM
5649 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5650 ret = map->sub_stripes;
53b381b3
DW
5651 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5652 ret = 2;
5653 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5654 /*
5655 * There could be two corrupted data stripes, we need
5656 * to loop retry in order to rebuild the correct data.
e7e02096 5657 *
8810f751
LB
5658 * Fail a stripe at a time on every retry except the
5659 * stripe under reconstruction.
5660 */
5661 ret = map->num_stripes;
f188591e
CM
5662 else
5663 ret = 1;
5664 free_extent_map(em);
ad6d620e 5665
cb5583dd 5666 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5667 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5668 fs_info->dev_replace.tgtdev)
ad6d620e 5669 ret++;
cb5583dd 5670 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5671
f188591e
CM
5672 return ret;
5673}
5674
2ff7e61e 5675unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5676 u64 logical)
5677{
5678 struct extent_map *em;
5679 struct map_lookup *map;
0b246afa 5680 unsigned long len = fs_info->sectorsize;
53b381b3 5681
60ca842e 5682 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5683
69f03f13
NB
5684 if (!WARN_ON(IS_ERR(em))) {
5685 map = em->map_lookup;
5686 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5687 len = map->stripe_len * nr_data_stripes(map);
5688 free_extent_map(em);
5689 }
53b381b3
DW
5690 return len;
5691}
5692
e4ff5fb5 5693int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5694{
5695 struct extent_map *em;
5696 struct map_lookup *map;
53b381b3
DW
5697 int ret = 0;
5698
60ca842e 5699 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5700
69f03f13
NB
5701 if(!WARN_ON(IS_ERR(em))) {
5702 map = em->map_lookup;
5703 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5704 ret = 1;
5705 free_extent_map(em);
5706 }
53b381b3
DW
5707 return ret;
5708}
5709
30d9861f 5710static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5711 struct map_lookup *map, int first,
8ba0ae78 5712 int dev_replace_is_ongoing)
dfe25020
CM
5713{
5714 int i;
99f92a7c 5715 int num_stripes;
8ba0ae78 5716 int preferred_mirror;
30d9861f
SB
5717 int tolerance;
5718 struct btrfs_device *srcdev;
5719
99f92a7c 5720 ASSERT((map->type &
c7369b3f 5721 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5722
5723 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5724 num_stripes = map->sub_stripes;
5725 else
5726 num_stripes = map->num_stripes;
5727
33fd2f71
AJ
5728 switch (fs_info->fs_devices->read_policy) {
5729 default:
5730 /* Shouldn't happen, just warn and use pid instead of failing */
5731 btrfs_warn_rl(fs_info,
5732 "unknown read_policy type %u, reset to pid",
5733 fs_info->fs_devices->read_policy);
5734 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5735 fallthrough;
5736 case BTRFS_READ_POLICY_PID:
5737 preferred_mirror = first + (current->pid % num_stripes);
5738 break;
5739 }
8ba0ae78 5740
30d9861f
SB
5741 if (dev_replace_is_ongoing &&
5742 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5743 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5744 srcdev = fs_info->dev_replace.srcdev;
5745 else
5746 srcdev = NULL;
5747
5748 /*
5749 * try to avoid the drive that is the source drive for a
5750 * dev-replace procedure, only choose it if no other non-missing
5751 * mirror is available
5752 */
5753 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5754 if (map->stripes[preferred_mirror].dev->bdev &&
5755 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5756 return preferred_mirror;
99f92a7c 5757 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5758 if (map->stripes[i].dev->bdev &&
5759 (tolerance || map->stripes[i].dev != srcdev))
5760 return i;
5761 }
dfe25020 5762 }
30d9861f 5763
dfe25020
CM
5764 /* we couldn't find one that doesn't fail. Just return something
5765 * and the io error handling code will clean up eventually
5766 */
8ba0ae78 5767 return preferred_mirror;
dfe25020
CM
5768}
5769
53b381b3 5770/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5771static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3 5772{
53b381b3 5773 int i;
53b381b3
DW
5774 int again = 1;
5775
5776 while (again) {
5777 again = 0;
cc7539ed 5778 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172
DS
5779 /* Swap if parity is on a smaller index */
5780 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5781 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5782 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
53b381b3
DW
5783 again = 1;
5784 }
5785 }
5786 }
5787}
5788
6e9606d2
ZL
5789static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5790{
5791 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5792 /* the size of the btrfs_bio */
6e9606d2 5793 sizeof(struct btrfs_bio) +
e57cf21e 5794 /* plus the variable array for the stripes */
6e9606d2 5795 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5796 /* plus the variable array for the tgt dev */
6e9606d2 5797 sizeof(int) * (real_stripes) +
e57cf21e
CM
5798 /*
5799 * plus the raid_map, which includes both the tgt dev
5800 * and the stripes
5801 */
5802 sizeof(u64) * (total_stripes),
277fb5fc 5803 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5804
5805 atomic_set(&bbio->error, 0);
140475ae 5806 refcount_set(&bbio->refs, 1);
6e9606d2 5807
608769a4
NB
5808 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5809 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5810
6e9606d2
ZL
5811 return bbio;
5812}
5813
5814void btrfs_get_bbio(struct btrfs_bio *bbio)
5815{
140475ae
ER
5816 WARN_ON(!refcount_read(&bbio->refs));
5817 refcount_inc(&bbio->refs);
6e9606d2
ZL
5818}
5819
5820void btrfs_put_bbio(struct btrfs_bio *bbio)
5821{
5822 if (!bbio)
5823 return;
140475ae 5824 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5825 kfree(bbio);
5826}
5827
0b3d4cd3
LB
5828/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5829/*
5830 * Please note that, discard won't be sent to target device of device
5831 * replace.
5832 */
5833static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5834 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5835 struct btrfs_bio **bbio_ret)
5836{
5837 struct extent_map *em;
5838 struct map_lookup *map;
5839 struct btrfs_bio *bbio;
6b7faadd 5840 u64 length = *length_ret;
0b3d4cd3
LB
5841 u64 offset;
5842 u64 stripe_nr;
5843 u64 stripe_nr_end;
5844 u64 stripe_end_offset;
5845 u64 stripe_cnt;
5846 u64 stripe_len;
5847 u64 stripe_offset;
5848 u64 num_stripes;
5849 u32 stripe_index;
5850 u32 factor = 0;
5851 u32 sub_stripes = 0;
5852 u64 stripes_per_dev = 0;
5853 u32 remaining_stripes = 0;
5854 u32 last_stripe = 0;
5855 int ret = 0;
5856 int i;
5857
5858 /* discard always return a bbio */
5859 ASSERT(bbio_ret);
5860
60ca842e 5861 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5862 if (IS_ERR(em))
5863 return PTR_ERR(em);
5864
5865 map = em->map_lookup;
5866 /* we don't discard raid56 yet */
5867 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5868 ret = -EOPNOTSUPP;
5869 goto out;
5870 }
5871
5872 offset = logical - em->start;
2d974619 5873 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5874 *length_ret = length;
0b3d4cd3
LB
5875
5876 stripe_len = map->stripe_len;
5877 /*
5878 * stripe_nr counts the total number of stripes we have to stride
5879 * to get to this block
5880 */
5881 stripe_nr = div64_u64(offset, stripe_len);
5882
5883 /* stripe_offset is the offset of this block in its stripe */
5884 stripe_offset = offset - stripe_nr * stripe_len;
5885
5886 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5887 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5888 stripe_cnt = stripe_nr_end - stripe_nr;
5889 stripe_end_offset = stripe_nr_end * map->stripe_len -
5890 (offset + length);
5891 /*
5892 * after this, stripe_nr is the number of stripes on this
5893 * device we have to walk to find the data, and stripe_index is
5894 * the number of our device in the stripe array
5895 */
5896 num_stripes = 1;
5897 stripe_index = 0;
5898 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5899 BTRFS_BLOCK_GROUP_RAID10)) {
5900 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5901 sub_stripes = 1;
5902 else
5903 sub_stripes = map->sub_stripes;
5904
5905 factor = map->num_stripes / sub_stripes;
5906 num_stripes = min_t(u64, map->num_stripes,
5907 sub_stripes * stripe_cnt);
5908 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5909 stripe_index *= sub_stripes;
5910 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5911 &remaining_stripes);
5912 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5913 last_stripe *= sub_stripes;
c7369b3f 5914 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5915 BTRFS_BLOCK_GROUP_DUP)) {
5916 num_stripes = map->num_stripes;
5917 } else {
5918 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5919 &stripe_index);
5920 }
5921
5922 bbio = alloc_btrfs_bio(num_stripes, 0);
5923 if (!bbio) {
5924 ret = -ENOMEM;
5925 goto out;
5926 }
5927
5928 for (i = 0; i < num_stripes; i++) {
5929 bbio->stripes[i].physical =
5930 map->stripes[stripe_index].physical +
5931 stripe_offset + stripe_nr * map->stripe_len;
5932 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5933
5934 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5935 BTRFS_BLOCK_GROUP_RAID10)) {
5936 bbio->stripes[i].length = stripes_per_dev *
5937 map->stripe_len;
5938
5939 if (i / sub_stripes < remaining_stripes)
5940 bbio->stripes[i].length +=
5941 map->stripe_len;
5942
5943 /*
5944 * Special for the first stripe and
5945 * the last stripe:
5946 *
5947 * |-------|...|-------|
5948 * |----------|
5949 * off end_off
5950 */
5951 if (i < sub_stripes)
5952 bbio->stripes[i].length -=
5953 stripe_offset;
5954
5955 if (stripe_index >= last_stripe &&
5956 stripe_index <= (last_stripe +
5957 sub_stripes - 1))
5958 bbio->stripes[i].length -=
5959 stripe_end_offset;
5960
5961 if (i == sub_stripes - 1)
5962 stripe_offset = 0;
5963 } else {
5964 bbio->stripes[i].length = length;
5965 }
5966
5967 stripe_index++;
5968 if (stripe_index == map->num_stripes) {
5969 stripe_index = 0;
5970 stripe_nr++;
5971 }
5972 }
5973
5974 *bbio_ret = bbio;
5975 bbio->map_type = map->type;
5976 bbio->num_stripes = num_stripes;
5977out:
5978 free_extent_map(em);
5979 return ret;
5980}
5981
5ab56090
LB
5982/*
5983 * In dev-replace case, for repair case (that's the only case where the mirror
5984 * is selected explicitly when calling btrfs_map_block), blocks left of the
5985 * left cursor can also be read from the target drive.
5986 *
5987 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5988 * array of stripes.
5989 * For READ, it also needs to be supported using the same mirror number.
5990 *
5991 * If the requested block is not left of the left cursor, EIO is returned. This
5992 * can happen because btrfs_num_copies() returns one more in the dev-replace
5993 * case.
5994 */
5995static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5996 u64 logical, u64 length,
5997 u64 srcdev_devid, int *mirror_num,
5998 u64 *physical)
5999{
6000 struct btrfs_bio *bbio = NULL;
6001 int num_stripes;
6002 int index_srcdev = 0;
6003 int found = 0;
6004 u64 physical_of_found = 0;
6005 int i;
6006 int ret = 0;
6007
6008 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6009 logical, &length, &bbio, 0, 0);
6010 if (ret) {
6011 ASSERT(bbio == NULL);
6012 return ret;
6013 }
6014
6015 num_stripes = bbio->num_stripes;
6016 if (*mirror_num > num_stripes) {
6017 /*
6018 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6019 * that means that the requested area is not left of the left
6020 * cursor
6021 */
6022 btrfs_put_bbio(bbio);
6023 return -EIO;
6024 }
6025
6026 /*
6027 * process the rest of the function using the mirror_num of the source
6028 * drive. Therefore look it up first. At the end, patch the device
6029 * pointer to the one of the target drive.
6030 */
6031 for (i = 0; i < num_stripes; i++) {
6032 if (bbio->stripes[i].dev->devid != srcdev_devid)
6033 continue;
6034
6035 /*
6036 * In case of DUP, in order to keep it simple, only add the
6037 * mirror with the lowest physical address
6038 */
6039 if (found &&
6040 physical_of_found <= bbio->stripes[i].physical)
6041 continue;
6042
6043 index_srcdev = i;
6044 found = 1;
6045 physical_of_found = bbio->stripes[i].physical;
6046 }
6047
6048 btrfs_put_bbio(bbio);
6049
6050 ASSERT(found);
6051 if (!found)
6052 return -EIO;
6053
6054 *mirror_num = index_srcdev + 1;
6055 *physical = physical_of_found;
6056 return ret;
6057}
6058
6143c23c
NA
6059static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6060{
6061 struct btrfs_block_group *cache;
6062 bool ret;
6063
de17addc 6064 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6065 if (!btrfs_is_zoned(fs_info))
6066 return false;
6067
6068 cache = btrfs_lookup_block_group(fs_info, logical);
6069
6070 spin_lock(&cache->lock);
6071 ret = cache->to_copy;
6072 spin_unlock(&cache->lock);
6073
6074 btrfs_put_block_group(cache);
6075 return ret;
6076}
6077
73c0f228
LB
6078static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6079 struct btrfs_bio **bbio_ret,
6080 struct btrfs_dev_replace *dev_replace,
6143c23c 6081 u64 logical,
73c0f228
LB
6082 int *num_stripes_ret, int *max_errors_ret)
6083{
6084 struct btrfs_bio *bbio = *bbio_ret;
6085 u64 srcdev_devid = dev_replace->srcdev->devid;
6086 int tgtdev_indexes = 0;
6087 int num_stripes = *num_stripes_ret;
6088 int max_errors = *max_errors_ret;
6089 int i;
6090
6091 if (op == BTRFS_MAP_WRITE) {
6092 int index_where_to_add;
6093
6143c23c
NA
6094 /*
6095 * A block group which have "to_copy" set will eventually
6096 * copied by dev-replace process. We can avoid cloning IO here.
6097 */
6098 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6099 return;
6100
73c0f228
LB
6101 /*
6102 * duplicate the write operations while the dev replace
6103 * procedure is running. Since the copying of the old disk to
6104 * the new disk takes place at run time while the filesystem is
6105 * mounted writable, the regular write operations to the old
6106 * disk have to be duplicated to go to the new disk as well.
6107 *
6108 * Note that device->missing is handled by the caller, and that
6109 * the write to the old disk is already set up in the stripes
6110 * array.
6111 */
6112 index_where_to_add = num_stripes;
6113 for (i = 0; i < num_stripes; i++) {
6114 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6115 /* write to new disk, too */
6116 struct btrfs_bio_stripe *new =
6117 bbio->stripes + index_where_to_add;
6118 struct btrfs_bio_stripe *old =
6119 bbio->stripes + i;
6120
6121 new->physical = old->physical;
6122 new->length = old->length;
6123 new->dev = dev_replace->tgtdev;
6124 bbio->tgtdev_map[i] = index_where_to_add;
6125 index_where_to_add++;
6126 max_errors++;
6127 tgtdev_indexes++;
6128 }
6129 }
6130 num_stripes = index_where_to_add;
6131 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6132 int index_srcdev = 0;
6133 int found = 0;
6134 u64 physical_of_found = 0;
6135
6136 /*
6137 * During the dev-replace procedure, the target drive can also
6138 * be used to read data in case it is needed to repair a corrupt
6139 * block elsewhere. This is possible if the requested area is
6140 * left of the left cursor. In this area, the target drive is a
6141 * full copy of the source drive.
6142 */
6143 for (i = 0; i < num_stripes; i++) {
6144 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6145 /*
6146 * In case of DUP, in order to keep it simple,
6147 * only add the mirror with the lowest physical
6148 * address
6149 */
6150 if (found &&
6151 physical_of_found <=
6152 bbio->stripes[i].physical)
6153 continue;
6154 index_srcdev = i;
6155 found = 1;
6156 physical_of_found = bbio->stripes[i].physical;
6157 }
6158 }
6159 if (found) {
6160 struct btrfs_bio_stripe *tgtdev_stripe =
6161 bbio->stripes + num_stripes;
6162
6163 tgtdev_stripe->physical = physical_of_found;
6164 tgtdev_stripe->length =
6165 bbio->stripes[index_srcdev].length;
6166 tgtdev_stripe->dev = dev_replace->tgtdev;
6167 bbio->tgtdev_map[index_srcdev] = num_stripes;
6168
6169 tgtdev_indexes++;
6170 num_stripes++;
6171 }
6172 }
6173
6174 *num_stripes_ret = num_stripes;
6175 *max_errors_ret = max_errors;
6176 bbio->num_tgtdevs = tgtdev_indexes;
6177 *bbio_ret = bbio;
6178}
6179
2b19a1fe
LB
6180static bool need_full_stripe(enum btrfs_map_op op)
6181{
6182 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6183}
6184
5f141126 6185/*
42034313
MR
6186 * Calculate the geometry of a particular (address, len) tuple. This
6187 * information is used to calculate how big a particular bio can get before it
6188 * straddles a stripe.
5f141126 6189 *
42034313
MR
6190 * @fs_info: the filesystem
6191 * @em: mapping containing the logical extent
6192 * @op: type of operation - write or read
6193 * @logical: address that we want to figure out the geometry of
42034313 6194 * @io_geom: pointer used to return values
5f141126
NB
6195 *
6196 * Returns < 0 in case a chunk for the given logical address cannot be found,
6197 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6198 */
42034313 6199int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6200 enum btrfs_map_op op, u64 logical,
42034313 6201 struct btrfs_io_geometry *io_geom)
5f141126 6202{
5f141126 6203 struct map_lookup *map;
43c0d1a5 6204 u64 len;
5f141126
NB
6205 u64 offset;
6206 u64 stripe_offset;
6207 u64 stripe_nr;
6208 u64 stripe_len;
6209 u64 raid56_full_stripe_start = (u64)-1;
6210 int data_stripes;
6211
6212 ASSERT(op != BTRFS_MAP_DISCARD);
6213
5f141126
NB
6214 map = em->map_lookup;
6215 /* Offset of this logical address in the chunk */
6216 offset = logical - em->start;
6217 /* Len of a stripe in a chunk */
6218 stripe_len = map->stripe_len;
1a9fd417 6219 /* Stripe where this block falls in */
5f141126
NB
6220 stripe_nr = div64_u64(offset, stripe_len);
6221 /* Offset of stripe in the chunk */
6222 stripe_offset = stripe_nr * stripe_len;
6223 if (offset < stripe_offset) {
6224 btrfs_crit(fs_info,
6225"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6226 stripe_offset, offset, em->start, logical, stripe_len);
42034313 6227 return -EINVAL;
5f141126
NB
6228 }
6229
6230 /* stripe_offset is the offset of this block in its stripe */
6231 stripe_offset = offset - stripe_offset;
6232 data_stripes = nr_data_stripes(map);
6233
6234 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6235 u64 max_len = stripe_len - stripe_offset;
6236
6237 /*
6238 * In case of raid56, we need to know the stripe aligned start
6239 */
6240 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6241 unsigned long full_stripe_len = stripe_len * data_stripes;
6242 raid56_full_stripe_start = offset;
6243
6244 /*
6245 * Allow a write of a full stripe, but make sure we
6246 * don't allow straddling of stripes
6247 */
6248 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6249 full_stripe_len);
6250 raid56_full_stripe_start *= full_stripe_len;
6251
6252 /*
6253 * For writes to RAID[56], allow a full stripeset across
6254 * all disks. For other RAID types and for RAID[56]
6255 * reads, just allow a single stripe (on a single disk).
6256 */
6257 if (op == BTRFS_MAP_WRITE) {
6258 max_len = stripe_len * data_stripes -
6259 (offset - raid56_full_stripe_start);
6260 }
6261 }
6262 len = min_t(u64, em->len - offset, max_len);
6263 } else {
6264 len = em->len - offset;
6265 }
6266
6267 io_geom->len = len;
6268 io_geom->offset = offset;
6269 io_geom->stripe_len = stripe_len;
6270 io_geom->stripe_nr = stripe_nr;
6271 io_geom->stripe_offset = stripe_offset;
6272 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6273
42034313 6274 return 0;
5f141126
NB
6275}
6276
cf8cddd3
CH
6277static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6278 enum btrfs_map_op op,
f2d8d74d 6279 u64 logical, u64 *length,
a1d3c478 6280 struct btrfs_bio **bbio_ret,
8e5cfb55 6281 int mirror_num, int need_raid_map)
0b86a832
CM
6282{
6283 struct extent_map *em;
6284 struct map_lookup *map;
593060d7
CM
6285 u64 stripe_offset;
6286 u64 stripe_nr;
53b381b3 6287 u64 stripe_len;
9d644a62 6288 u32 stripe_index;
cff82672 6289 int data_stripes;
cea9e445 6290 int i;
de11cc12 6291 int ret = 0;
f2d8d74d 6292 int num_stripes;
a236aed1 6293 int max_errors = 0;
2c8cdd6e 6294 int tgtdev_indexes = 0;
a1d3c478 6295 struct btrfs_bio *bbio = NULL;
472262f3
SB
6296 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6297 int dev_replace_is_ongoing = 0;
6298 int num_alloc_stripes;
ad6d620e
SB
6299 int patch_the_first_stripe_for_dev_replace = 0;
6300 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6301 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6302 struct btrfs_io_geometry geom;
6303
6304 ASSERT(bbio_ret);
75fb2e9e 6305 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6306
42034313
MR
6307 em = btrfs_get_chunk_map(fs_info, logical, *length);
6308 ASSERT(!IS_ERR(em));
6309
43c0d1a5 6310 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6311 if (ret < 0)
6312 return ret;
0b86a832 6313
95617d69 6314 map = em->map_lookup;
593060d7 6315
89b798ad 6316 *length = geom.len;
89b798ad
NB
6317 stripe_len = geom.stripe_len;
6318 stripe_nr = geom.stripe_nr;
6319 stripe_offset = geom.stripe_offset;
6320 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6321 data_stripes = nr_data_stripes(map);
593060d7 6322
cb5583dd 6323 down_read(&dev_replace->rwsem);
472262f3 6324 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6325 /*
6326 * Hold the semaphore for read during the whole operation, write is
6327 * requested at commit time but must wait.
6328 */
472262f3 6329 if (!dev_replace_is_ongoing)
cb5583dd 6330 up_read(&dev_replace->rwsem);
472262f3 6331
ad6d620e 6332 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6333 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6334 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6335 dev_replace->srcdev->devid,
6336 &mirror_num,
6337 &physical_to_patch_in_first_stripe);
6338 if (ret)
ad6d620e 6339 goto out;
5ab56090
LB
6340 else
6341 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6342 } else if (mirror_num > map->num_stripes) {
6343 mirror_num = 0;
6344 }
6345
f2d8d74d 6346 num_stripes = 1;
cea9e445 6347 stripe_index = 0;
fce3bb9a 6348 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6349 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6350 &stripe_index);
de483734 6351 if (!need_full_stripe(op))
28e1cc7d 6352 mirror_num = 1;
c7369b3f 6353 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6354 if (need_full_stripe(op))
f2d8d74d 6355 num_stripes = map->num_stripes;
2fff734f 6356 else if (mirror_num)
f188591e 6357 stripe_index = mirror_num - 1;
dfe25020 6358 else {
30d9861f 6359 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6360 dev_replace_is_ongoing);
a1d3c478 6361 mirror_num = stripe_index + 1;
dfe25020 6362 }
2fff734f 6363
611f0e00 6364 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6365 if (need_full_stripe(op)) {
f2d8d74d 6366 num_stripes = map->num_stripes;
a1d3c478 6367 } else if (mirror_num) {
f188591e 6368 stripe_index = mirror_num - 1;
a1d3c478
JS
6369 } else {
6370 mirror_num = 1;
6371 }
2fff734f 6372
321aecc6 6373 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6374 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6375
47c5713f 6376 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6377 stripe_index *= map->sub_stripes;
6378
de483734 6379 if (need_full_stripe(op))
f2d8d74d 6380 num_stripes = map->sub_stripes;
321aecc6
CM
6381 else if (mirror_num)
6382 stripe_index += mirror_num - 1;
dfe25020 6383 else {
3e74317a 6384 int old_stripe_index = stripe_index;
30d9861f
SB
6385 stripe_index = find_live_mirror(fs_info, map,
6386 stripe_index,
30d9861f 6387 dev_replace_is_ongoing);
3e74317a 6388 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6389 }
53b381b3 6390
ffe2d203 6391 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6392 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6393 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6394 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6395 stripe_len * data_stripes);
53b381b3
DW
6396
6397 /* RAID[56] write or recovery. Return all stripes */
6398 num_stripes = map->num_stripes;
6399 max_errors = nr_parity_stripes(map);
6400
53b381b3
DW
6401 *length = map->stripe_len;
6402 stripe_index = 0;
6403 stripe_offset = 0;
6404 } else {
6405 /*
6406 * Mirror #0 or #1 means the original data block.
6407 * Mirror #2 is RAID5 parity block.
6408 * Mirror #3 is RAID6 Q block.
6409 */
47c5713f 6410 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6411 data_stripes, &stripe_index);
53b381b3 6412 if (mirror_num > 1)
cff82672 6413 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6414
6415 /* We distribute the parity blocks across stripes */
47c5713f
DS
6416 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6417 &stripe_index);
de483734 6418 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6419 mirror_num = 1;
53b381b3 6420 }
8790d502
CM
6421 } else {
6422 /*
47c5713f
DS
6423 * after this, stripe_nr is the number of stripes on this
6424 * device we have to walk to find the data, and stripe_index is
6425 * the number of our device in the stripe array
8790d502 6426 */
47c5713f
DS
6427 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6428 &stripe_index);
a1d3c478 6429 mirror_num = stripe_index + 1;
8790d502 6430 }
e042d1ec 6431 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6432 btrfs_crit(fs_info,
6433 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6434 stripe_index, map->num_stripes);
6435 ret = -EINVAL;
6436 goto out;
6437 }
cea9e445 6438
472262f3 6439 num_alloc_stripes = num_stripes;
6fad823f 6440 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6441 if (op == BTRFS_MAP_WRITE)
ad6d620e 6442 num_alloc_stripes <<= 1;
cf8cddd3 6443 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6444 num_alloc_stripes++;
2c8cdd6e 6445 tgtdev_indexes = num_stripes;
ad6d620e 6446 }
2c8cdd6e 6447
6e9606d2 6448 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6449 if (!bbio) {
6450 ret = -ENOMEM;
6451 goto out;
6452 }
608769a4
NB
6453
6454 for (i = 0; i < num_stripes; i++) {
6455 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6456 stripe_offset + stripe_nr * map->stripe_len;
6457 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6458 stripe_index++;
6459 }
de11cc12 6460
8e5cfb55 6461 /* build raid_map */
2b19a1fe
LB
6462 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6463 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6464 u64 tmp;
9d644a62 6465 unsigned rot;
8e5cfb55 6466
8e5cfb55 6467 /* Work out the disk rotation on this stripe-set */
47c5713f 6468 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6469
6470 /* Fill in the logical address of each stripe */
cff82672
DS
6471 tmp = stripe_nr * data_stripes;
6472 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6473 bbio->raid_map[(i+rot) % num_stripes] =
6474 em->start + (tmp + i) * map->stripe_len;
6475
6476 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6477 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6478 bbio->raid_map[(i+rot+1) % num_stripes] =
6479 RAID6_Q_STRIPE;
8e5cfb55 6480
608769a4 6481 sort_parity_stripes(bbio, num_stripes);
593060d7 6482 }
de11cc12 6483
2b19a1fe 6484 if (need_full_stripe(op))
d20983b4 6485 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6486
73c0f228 6487 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6488 need_full_stripe(op)) {
6143c23c
NA
6489 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6490 &num_stripes, &max_errors);
472262f3
SB
6491 }
6492
de11cc12 6493 *bbio_ret = bbio;
10f11900 6494 bbio->map_type = map->type;
de11cc12
LZ
6495 bbio->num_stripes = num_stripes;
6496 bbio->max_errors = max_errors;
6497 bbio->mirror_num = mirror_num;
ad6d620e
SB
6498
6499 /*
6500 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6501 * mirror_num == num_stripes + 1 && dev_replace target drive is
6502 * available as a mirror
6503 */
6504 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6505 WARN_ON(num_stripes > 1);
6506 bbio->stripes[0].dev = dev_replace->tgtdev;
6507 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6508 bbio->mirror_num = map->num_stripes + 1;
6509 }
cea9e445 6510out:
73beece9 6511 if (dev_replace_is_ongoing) {
53176dde
DS
6512 lockdep_assert_held(&dev_replace->rwsem);
6513 /* Unlock and let waiting writers proceed */
cb5583dd 6514 up_read(&dev_replace->rwsem);
73beece9 6515 }
0b86a832 6516 free_extent_map(em);
de11cc12 6517 return ret;
0b86a832
CM
6518}
6519
cf8cddd3 6520int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6521 u64 logical, u64 *length,
a1d3c478 6522 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6523{
75fb2e9e
DS
6524 if (op == BTRFS_MAP_DISCARD)
6525 return __btrfs_map_block_for_discard(fs_info, logical,
6526 length, bbio_ret);
6527
b3d3fa51 6528 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6529 mirror_num, 0);
f2d8d74d
CM
6530}
6531
af8e2d1d 6532/* For Scrub/replace */
cf8cddd3 6533int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6534 u64 logical, u64 *length,
825ad4c9 6535 struct btrfs_bio **bbio_ret)
af8e2d1d 6536{
825ad4c9 6537 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6538}
6539
4246a0b6 6540static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6541{
326e1dbb
MS
6542 bio->bi_private = bbio->private;
6543 bio->bi_end_io = bbio->end_io;
4246a0b6 6544 bio_endio(bio);
326e1dbb 6545
6e9606d2 6546 btrfs_put_bbio(bbio);
8408c716
MX
6547}
6548
4246a0b6 6549static void btrfs_end_bio(struct bio *bio)
8790d502 6550{
9be3395b 6551 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6552 int is_orig_bio = 0;
8790d502 6553
4e4cbee9 6554 if (bio->bi_status) {
a1d3c478 6555 atomic_inc(&bbio->error);
4e4cbee9
CH
6556 if (bio->bi_status == BLK_STS_IOERR ||
6557 bio->bi_status == BLK_STS_TARGET) {
c31efbdf 6558 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
442a4f63 6559
3eee86c8 6560 ASSERT(dev->bdev);
cfe94440 6561 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6562 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6563 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6564 else if (!(bio->bi_opf & REQ_RAHEAD))
6565 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6566 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6567 if (bio->bi_opf & REQ_PREFLUSH)
6568 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6569 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6570 }
6571 }
8790d502 6572
a1d3c478 6573 if (bio == bbio->orig_bio)
7d2b4daa
CM
6574 is_orig_bio = 1;
6575
c404e0dc
MX
6576 btrfs_bio_counter_dec(bbio->fs_info);
6577
a1d3c478 6578 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6579 if (!is_orig_bio) {
6580 bio_put(bio);
a1d3c478 6581 bio = bbio->orig_bio;
7d2b4daa 6582 }
c7b22bb1 6583
9be3395b 6584 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6585 /* only send an error to the higher layers if it is
53b381b3 6586 * beyond the tolerance of the btrfs bio
a236aed1 6587 */
a1d3c478 6588 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6589 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6590 } else {
1259ab75
CM
6591 /*
6592 * this bio is actually up to date, we didn't
6593 * go over the max number of errors
6594 */
2dbe0c77 6595 bio->bi_status = BLK_STS_OK;
1259ab75 6596 }
c55f1396 6597
4246a0b6 6598 btrfs_end_bbio(bbio, bio);
7d2b4daa 6599 } else if (!is_orig_bio) {
8790d502
CM
6600 bio_put(bio);
6601 }
8790d502
CM
6602}
6603
2ff7e61e 6604static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
c31efbdf 6605 u64 physical, struct btrfs_device *dev)
de1ee92a 6606{
2ff7e61e 6607 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6608
6609 bio->bi_private = bbio;
c31efbdf 6610 btrfs_io_bio(bio)->device = dev;
de1ee92a 6611 bio->bi_end_io = btrfs_end_bio;
4f024f37 6612 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6613 /*
6614 * For zone append writing, bi_sector must point the beginning of the
6615 * zone
6616 */
6617 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6618 if (btrfs_dev_is_sequential(dev, physical)) {
6619 u64 zone_start = round_down(physical, fs_info->zone_size);
6620
6621 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6622 } else {
6623 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6624 bio->bi_opf |= REQ_OP_WRITE;
6625 }
6626 }
672d5990
MT
6627 btrfs_debug_in_rcu(fs_info,
6628 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6629 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6630 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6631 dev->devid, bio->bi_iter.bi_size);
74d46992 6632 bio_set_dev(bio, dev->bdev);
c404e0dc 6633
2ff7e61e 6634 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6635
08635bae 6636 btrfsic_submit_bio(bio);
de1ee92a
JB
6637}
6638
de1ee92a
JB
6639static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6640{
6641 atomic_inc(&bbio->error);
6642 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6643 /* Should be the original bio. */
8408c716
MX
6644 WARN_ON(bio != bbio->orig_bio);
6645
9be3395b 6646 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6647 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6648 if (atomic_read(&bbio->error) > bbio->max_errors)
6649 bio->bi_status = BLK_STS_IOERR;
6650 else
6651 bio->bi_status = BLK_STS_OK;
4246a0b6 6652 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6653 }
6654}
6655
58efbc9f 6656blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6657 int mirror_num)
0b86a832 6658{
0b86a832 6659 struct btrfs_device *dev;
8790d502 6660 struct bio *first_bio = bio;
1201b58b 6661 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6662 u64 length = 0;
6663 u64 map_length;
0b86a832 6664 int ret;
08da757d
ZL
6665 int dev_nr;
6666 int total_devs;
a1d3c478 6667 struct btrfs_bio *bbio = NULL;
0b86a832 6668
4f024f37 6669 length = bio->bi_iter.bi_size;
0b86a832 6670 map_length = length;
cea9e445 6671
0b246afa 6672 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6673 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6674 &map_length, &bbio, mirror_num, 1);
c404e0dc 6675 if (ret) {
0b246afa 6676 btrfs_bio_counter_dec(fs_info);
58efbc9f 6677 return errno_to_blk_status(ret);
c404e0dc 6678 }
cea9e445 6679
a1d3c478 6680 total_devs = bbio->num_stripes;
53b381b3
DW
6681 bbio->orig_bio = first_bio;
6682 bbio->private = first_bio->bi_private;
6683 bbio->end_io = first_bio->bi_end_io;
0b246afa 6684 bbio->fs_info = fs_info;
53b381b3
DW
6685 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6686
ad1ba2a0 6687 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6688 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6689 /* In this case, map_length has been set to the length of
6690 a single stripe; not the whole write */
cfe94440 6691 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
2ff7e61e
JM
6692 ret = raid56_parity_write(fs_info, bio, bbio,
6693 map_length);
53b381b3 6694 } else {
2ff7e61e
JM
6695 ret = raid56_parity_recover(fs_info, bio, bbio,
6696 map_length, mirror_num, 1);
53b381b3 6697 }
4245215d 6698
0b246afa 6699 btrfs_bio_counter_dec(fs_info);
58efbc9f 6700 return errno_to_blk_status(ret);
53b381b3
DW
6701 }
6702
cea9e445 6703 if (map_length < length) {
0b246afa 6704 btrfs_crit(fs_info,
5d163e0e
JM
6705 "mapping failed logical %llu bio len %llu len %llu",
6706 logical, length, map_length);
cea9e445
CM
6707 BUG();
6708 }
a1d3c478 6709
08da757d 6710 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6711 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6712 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6713 &dev->dev_state) ||
cfe94440 6714 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6715 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6716 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6717 continue;
6718 }
6719
3aa8e074 6720 if (dev_nr < total_devs - 1)
8b6c1d56 6721 bio = btrfs_bio_clone(first_bio);
3aa8e074 6722 else
a1d3c478 6723 bio = first_bio;
de1ee92a 6724
c31efbdf 6725 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
8790d502 6726 }
0b246afa 6727 btrfs_bio_counter_dec(fs_info);
58efbc9f 6728 return BLK_STS_OK;
0b86a832
CM
6729}
6730
09ba3bc9
AJ
6731/*
6732 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6733 * return NULL.
6734 *
6735 * If devid and uuid are both specified, the match must be exact, otherwise
6736 * only devid is used.
09ba3bc9 6737 */
e4319cd9 6738struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
b2598edf 6739 u64 devid, u8 *uuid, u8 *fsid)
0b86a832 6740{
2b82032c 6741 struct btrfs_device *device;
944d3f9f
NB
6742 struct btrfs_fs_devices *seed_devs;
6743
6744 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6745 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6746 if (device->devid == devid &&
6747 (!uuid || memcmp(device->uuid, uuid,
6748 BTRFS_UUID_SIZE) == 0))
6749 return device;
6750 }
6751 }
2b82032c 6752
944d3f9f 6753 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
2b82032c 6754 if (!fsid ||
944d3f9f
NB
6755 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6756 list_for_each_entry(device, &seed_devs->devices,
09ba3bc9
AJ
6757 dev_list) {
6758 if (device->devid == devid &&
6759 (!uuid || memcmp(device->uuid, uuid,
6760 BTRFS_UUID_SIZE) == 0))
6761 return device;
6762 }
2b82032c 6763 }
2b82032c 6764 }
944d3f9f 6765
2b82032c 6766 return NULL;
0b86a832
CM
6767}
6768
2ff7e61e 6769static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6770 u64 devid, u8 *dev_uuid)
6771{
6772 struct btrfs_device *device;
fccc0007 6773 unsigned int nofs_flag;
dfe25020 6774
fccc0007
JB
6775 /*
6776 * We call this under the chunk_mutex, so we want to use NOFS for this
6777 * allocation, however we don't want to change btrfs_alloc_device() to
6778 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6779 * places.
6780 */
6781 nofs_flag = memalloc_nofs_save();
12bd2fc0 6782 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6783 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6784 if (IS_ERR(device))
adfb69af 6785 return device;
12bd2fc0
ID
6786
6787 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6788 device->fs_devices = fs_devices;
dfe25020 6789 fs_devices->num_devices++;
12bd2fc0 6790
e6e674bd 6791 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6792 fs_devices->missing_devices++;
12bd2fc0 6793
dfe25020
CM
6794 return device;
6795}
6796
12bd2fc0
ID
6797/**
6798 * btrfs_alloc_device - allocate struct btrfs_device
6799 * @fs_info: used only for generating a new devid, can be NULL if
6800 * devid is provided (i.e. @devid != NULL).
6801 * @devid: a pointer to devid for this device. If NULL a new devid
6802 * is generated.
6803 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6804 * is generated.
6805 *
6806 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6807 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6808 * destroyed with btrfs_free_device.
12bd2fc0
ID
6809 */
6810struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6811 const u64 *devid,
6812 const u8 *uuid)
6813{
6814 struct btrfs_device *dev;
6815 u64 tmp;
6816
fae7f21c 6817 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6818 return ERR_PTR(-EINVAL);
12bd2fc0 6819
fe4f46d4
DS
6820 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6821 if (!dev)
6822 return ERR_PTR(-ENOMEM);
6823
6824 /*
6825 * Preallocate a bio that's always going to be used for flushing device
6826 * barriers and matches the device lifespan
6827 */
6828 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6829 if (!dev->flush_bio) {
6830 kfree(dev);
6831 return ERR_PTR(-ENOMEM);
6832 }
6833
6834 INIT_LIST_HEAD(&dev->dev_list);
6835 INIT_LIST_HEAD(&dev->dev_alloc_list);
6836 INIT_LIST_HEAD(&dev->post_commit_list);
6837
6838 atomic_set(&dev->reada_in_flight, 0);
6839 atomic_set(&dev->dev_stats_ccnt, 0);
6840 btrfs_device_data_ordered_init(dev);
6841 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6842 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6843 extent_io_tree_init(fs_info, &dev->alloc_state,
6844 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6845
6846 if (devid)
6847 tmp = *devid;
6848 else {
6849 int ret;
6850
6851 ret = find_next_devid(fs_info, &tmp);
6852 if (ret) {
a425f9d4 6853 btrfs_free_device(dev);
12bd2fc0
ID
6854 return ERR_PTR(ret);
6855 }
6856 }
6857 dev->devid = tmp;
6858
6859 if (uuid)
6860 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6861 else
6862 generate_random_uuid(dev->uuid);
6863
12bd2fc0
ID
6864 return dev;
6865}
6866
5a2b8e60 6867static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6868 u64 devid, u8 *uuid, bool error)
5a2b8e60 6869{
2b902dfc
AJ
6870 if (error)
6871 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6872 devid, uuid);
6873 else
6874 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6875 devid, uuid);
5a2b8e60
AJ
6876}
6877
39e264a4
NB
6878static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6879{
d58ede8d 6880 const int data_stripes = calc_data_stripes(type, num_stripes);
e4f6c6be 6881
39e264a4
NB
6882 return div_u64(chunk_len, data_stripes);
6883}
6884
e9306ad4
QW
6885#if BITS_PER_LONG == 32
6886/*
6887 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6888 * can't be accessed on 32bit systems.
6889 *
6890 * This function do mount time check to reject the fs if it already has
6891 * metadata chunk beyond that limit.
6892 */
6893static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6894 u64 logical, u64 length, u64 type)
6895{
6896 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6897 return 0;
6898
6899 if (logical + length < MAX_LFS_FILESIZE)
6900 return 0;
6901
6902 btrfs_err_32bit_limit(fs_info);
6903 return -EOVERFLOW;
6904}
6905
6906/*
6907 * This is to give early warning for any metadata chunk reaching
6908 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6909 * Although we can still access the metadata, it's not going to be possible
6910 * once the limit is reached.
6911 */
6912static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6913 u64 logical, u64 length, u64 type)
6914{
6915 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6916 return;
6917
6918 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6919 return;
6920
6921 btrfs_warn_32bit_limit(fs_info);
6922}
6923#endif
6924
9690ac09 6925static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6926 struct btrfs_chunk *chunk)
6927{
9690ac09 6928 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6929 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6930 struct map_lookup *map;
6931 struct extent_map *em;
6932 u64 logical;
6933 u64 length;
e06cd3dd 6934 u64 devid;
e9306ad4 6935 u64 type;
e06cd3dd
LB
6936 u8 uuid[BTRFS_UUID_SIZE];
6937 int num_stripes;
6938 int ret;
6939 int i;
6940
6941 logical = key->offset;
6942 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6943 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
6944 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6945
e9306ad4
QW
6946#if BITS_PER_LONG == 32
6947 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6948 if (ret < 0)
6949 return ret;
6950 warn_32bit_meta_chunk(fs_info, logical, length, type);
6951#endif
6952
075cb3c7
QW
6953 /*
6954 * Only need to verify chunk item if we're reading from sys chunk array,
6955 * as chunk item in tree block is already verified by tree-checker.
6956 */
6957 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6958 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6959 if (ret)
6960 return ret;
6961 }
a061fc8d 6962
c8bf1b67
DS
6963 read_lock(&map_tree->lock);
6964 em = lookup_extent_mapping(map_tree, logical, 1);
6965 read_unlock(&map_tree->lock);
0b86a832
CM
6966
6967 /* already mapped? */
6968 if (em && em->start <= logical && em->start + em->len > logical) {
6969 free_extent_map(em);
0b86a832
CM
6970 return 0;
6971 } else if (em) {
6972 free_extent_map(em);
6973 }
0b86a832 6974
172ddd60 6975 em = alloc_extent_map();
0b86a832
CM
6976 if (!em)
6977 return -ENOMEM;
593060d7 6978 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6979 if (!map) {
6980 free_extent_map(em);
6981 return -ENOMEM;
6982 }
6983
298a8f9c 6984 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6985 em->map_lookup = map;
0b86a832
CM
6986 em->start = logical;
6987 em->len = length;
70c8a91c 6988 em->orig_start = 0;
0b86a832 6989 em->block_start = 0;
c8b97818 6990 em->block_len = em->len;
0b86a832 6991
593060d7
CM
6992 map->num_stripes = num_stripes;
6993 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6994 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 6995 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 6996 map->type = type;
321aecc6 6997 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6998 map->verified_stripes = 0;
e9306ad4 6999 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 7000 map->num_stripes);
593060d7
CM
7001 for (i = 0; i < num_stripes; i++) {
7002 map->stripes[i].physical =
7003 btrfs_stripe_offset_nr(leaf, chunk, i);
7004 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
7005 read_extent_buffer(leaf, uuid, (unsigned long)
7006 btrfs_stripe_dev_uuid_nr(chunk, i),
7007 BTRFS_UUID_SIZE);
e4319cd9 7008 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
b2598edf 7009 devid, uuid, NULL);
3cdde224 7010 if (!map->stripes[i].dev &&
0b246afa 7011 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 7012 free_extent_map(em);
2b902dfc 7013 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 7014 return -ENOENT;
593060d7 7015 }
dfe25020
CM
7016 if (!map->stripes[i].dev) {
7017 map->stripes[i].dev =
2ff7e61e
JM
7018 add_missing_dev(fs_info->fs_devices, devid,
7019 uuid);
adfb69af 7020 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7021 free_extent_map(em);
adfb69af
AJ
7022 btrfs_err(fs_info,
7023 "failed to init missing dev %llu: %ld",
7024 devid, PTR_ERR(map->stripes[i].dev));
7025 return PTR_ERR(map->stripes[i].dev);
dfe25020 7026 }
2b902dfc 7027 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 7028 }
e12c9621
AJ
7029 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7030 &(map->stripes[i].dev->dev_state));
7031
0b86a832
CM
7032 }
7033
c8bf1b67
DS
7034 write_lock(&map_tree->lock);
7035 ret = add_extent_mapping(map_tree, em, 0);
7036 write_unlock(&map_tree->lock);
64f64f43
QW
7037 if (ret < 0) {
7038 btrfs_err(fs_info,
7039 "failed to add chunk map, start=%llu len=%llu: %d",
7040 em->start, em->len, ret);
7041 }
0b86a832
CM
7042 free_extent_map(em);
7043
64f64f43 7044 return ret;
0b86a832
CM
7045}
7046
143bede5 7047static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7048 struct btrfs_dev_item *dev_item,
7049 struct btrfs_device *device)
7050{
7051 unsigned long ptr;
0b86a832
CM
7052
7053 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7054 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7055 device->total_bytes = device->disk_total_bytes;
935e5cc9 7056 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7057 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7058 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7059 device->type = btrfs_device_type(leaf, dev_item);
7060 device->io_align = btrfs_device_io_align(leaf, dev_item);
7061 device->io_width = btrfs_device_io_width(leaf, dev_item);
7062 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7063 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7064 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7065
410ba3a2 7066 ptr = btrfs_device_uuid(dev_item);
e17cade2 7067 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7068}
7069
2ff7e61e 7070static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7071 u8 *fsid)
2b82032c
YZ
7072{
7073 struct btrfs_fs_devices *fs_devices;
7074 int ret;
7075
a32bf9a3 7076 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7077 ASSERT(fsid);
2b82032c 7078
427c8fdd 7079 /* This will match only for multi-device seed fs */
944d3f9f 7080 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7081 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7082 return fs_devices;
7083
2b82032c 7084
7239ff4b 7085 fs_devices = find_fsid(fsid, NULL);
2b82032c 7086 if (!fs_devices) {
0b246afa 7087 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7088 return ERR_PTR(-ENOENT);
7089
7239ff4b 7090 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7091 if (IS_ERR(fs_devices))
7092 return fs_devices;
7093
0395d84f 7094 fs_devices->seeding = true;
5f375835
MX
7095 fs_devices->opened = 1;
7096 return fs_devices;
2b82032c 7097 }
e4404d6e 7098
427c8fdd
NB
7099 /*
7100 * Upon first call for a seed fs fsid, just create a private copy of the
7101 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7102 */
e4404d6e 7103 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7104 if (IS_ERR(fs_devices))
7105 return fs_devices;
2b82032c 7106
897fb573 7107 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7108 if (ret) {
7109 free_fs_devices(fs_devices);
c83b60c0 7110 return ERR_PTR(ret);
48d28232 7111 }
2b82032c
YZ
7112
7113 if (!fs_devices->seeding) {
0226e0eb 7114 close_fs_devices(fs_devices);
e4404d6e 7115 free_fs_devices(fs_devices);
c83b60c0 7116 return ERR_PTR(-EINVAL);
2b82032c
YZ
7117 }
7118
944d3f9f 7119 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7120
5f375835 7121 return fs_devices;
2b82032c
YZ
7122}
7123
17850759 7124static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7125 struct btrfs_dev_item *dev_item)
7126{
17850759 7127 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7128 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7129 struct btrfs_device *device;
7130 u64 devid;
7131 int ret;
44880fdc 7132 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7133 u8 dev_uuid[BTRFS_UUID_SIZE];
7134
0b86a832 7135 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7136 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7137 BTRFS_UUID_SIZE);
1473b24e 7138 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7139 BTRFS_FSID_SIZE);
2b82032c 7140
de37aa51 7141 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7142 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7143 if (IS_ERR(fs_devices))
7144 return PTR_ERR(fs_devices);
2b82032c
YZ
7145 }
7146
e4319cd9 7147 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 7148 fs_uuid);
5f375835 7149 if (!device) {
c5502451 7150 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7151 btrfs_report_missing_device(fs_info, devid,
7152 dev_uuid, true);
45dbdbc9 7153 return -ENOENT;
c5502451 7154 }
2b82032c 7155
2ff7e61e 7156 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7157 if (IS_ERR(device)) {
7158 btrfs_err(fs_info,
7159 "failed to add missing dev %llu: %ld",
7160 devid, PTR_ERR(device));
7161 return PTR_ERR(device);
7162 }
2b902dfc 7163 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7164 } else {
c5502451 7165 if (!device->bdev) {
2b902dfc
AJ
7166 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7167 btrfs_report_missing_device(fs_info,
7168 devid, dev_uuid, true);
45dbdbc9 7169 return -ENOENT;
2b902dfc
AJ
7170 }
7171 btrfs_report_missing_device(fs_info, devid,
7172 dev_uuid, false);
c5502451 7173 }
5f375835 7174
e6e674bd
AJ
7175 if (!device->bdev &&
7176 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7177 /*
7178 * this happens when a device that was properly setup
7179 * in the device info lists suddenly goes bad.
7180 * device->bdev is NULL, and so we have to set
7181 * device->missing to one here
7182 */
5f375835 7183 device->fs_devices->missing_devices++;
e6e674bd 7184 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7185 }
5f375835
MX
7186
7187 /* Move the device to its own fs_devices */
7188 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7189 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7190 &device->dev_state));
5f375835
MX
7191
7192 list_move(&device->dev_list, &fs_devices->devices);
7193 device->fs_devices->num_devices--;
7194 fs_devices->num_devices++;
7195
7196 device->fs_devices->missing_devices--;
7197 fs_devices->missing_devices++;
7198
7199 device->fs_devices = fs_devices;
7200 }
2b82032c
YZ
7201 }
7202
0b246afa 7203 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7204 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7205 if (device->generation !=
7206 btrfs_device_generation(leaf, dev_item))
7207 return -EINVAL;
6324fbf3 7208 }
0b86a832
CM
7209
7210 fill_device_from_item(leaf, dev_item, device);
3a160a93
AJ
7211 if (device->bdev) {
7212 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7213
7214 if (device->total_bytes > max_total_bytes) {
7215 btrfs_err(fs_info,
7216 "device total_bytes should be at most %llu but found %llu",
7217 max_total_bytes, device->total_bytes);
7218 return -EINVAL;
7219 }
7220 }
e12c9621 7221 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7222 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7223 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7224 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7225 atomic64_add(device->total_bytes - device->bytes_used,
7226 &fs_info->free_chunk_space);
2bf64758 7227 }
0b86a832 7228 ret = 0;
0b86a832
CM
7229 return ret;
7230}
7231
6bccf3ab 7232int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7233{
6bccf3ab 7234 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7235 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7236 struct extent_buffer *sb;
0b86a832 7237 struct btrfs_disk_key *disk_key;
0b86a832 7238 struct btrfs_chunk *chunk;
1ffb22cf
DS
7239 u8 *array_ptr;
7240 unsigned long sb_array_offset;
84eed90f 7241 int ret = 0;
0b86a832
CM
7242 u32 num_stripes;
7243 u32 array_size;
7244 u32 len = 0;
1ffb22cf 7245 u32 cur_offset;
e06cd3dd 7246 u64 type;
84eed90f 7247 struct btrfs_key key;
0b86a832 7248
0b246afa 7249 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7250 /*
7251 * This will create extent buffer of nodesize, superblock size is
7252 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7253 * overallocate but we can keep it as-is, only the first page is used.
7254 */
3fbaf258
JB
7255 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7256 root->root_key.objectid, 0);
c871b0f2
LB
7257 if (IS_ERR(sb))
7258 return PTR_ERR(sb);
4db8c528 7259 set_extent_buffer_uptodate(sb);
8a334426 7260 /*
01327610 7261 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7262 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7263 * pages up-to-date when the page is larger: extent does not cover the
7264 * whole page and consequently check_page_uptodate does not find all
7265 * the page's extents up-to-date (the hole beyond sb),
7266 * write_extent_buffer then triggers a WARN_ON.
7267 *
7268 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7269 * but sb spans only this function. Add an explicit SetPageUptodate call
7270 * to silence the warning eg. on PowerPC 64.
7271 */
09cbfeaf 7272 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7273 SetPageUptodate(sb->pages[0]);
4008c04a 7274
a061fc8d 7275 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7276 array_size = btrfs_super_sys_array_size(super_copy);
7277
1ffb22cf
DS
7278 array_ptr = super_copy->sys_chunk_array;
7279 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7280 cur_offset = 0;
0b86a832 7281
1ffb22cf
DS
7282 while (cur_offset < array_size) {
7283 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7284 len = sizeof(*disk_key);
7285 if (cur_offset + len > array_size)
7286 goto out_short_read;
7287
0b86a832
CM
7288 btrfs_disk_key_to_cpu(&key, disk_key);
7289
1ffb22cf
DS
7290 array_ptr += len;
7291 sb_array_offset += len;
7292 cur_offset += len;
0b86a832 7293
32ab3d1b
JT
7294 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7295 btrfs_err(fs_info,
7296 "unexpected item type %u in sys_array at offset %u",
7297 (u32)key.type, cur_offset);
7298 ret = -EIO;
7299 break;
7300 }
f5cdedd7 7301
32ab3d1b
JT
7302 chunk = (struct btrfs_chunk *)sb_array_offset;
7303 /*
7304 * At least one btrfs_chunk with one stripe must be present,
7305 * exact stripe count check comes afterwards
7306 */
7307 len = btrfs_chunk_item_size(1);
7308 if (cur_offset + len > array_size)
7309 goto out_short_read;
e06cd3dd 7310
32ab3d1b
JT
7311 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7312 if (!num_stripes) {
7313 btrfs_err(fs_info,
7314 "invalid number of stripes %u in sys_array at offset %u",
7315 num_stripes, cur_offset);
7316 ret = -EIO;
7317 break;
7318 }
e3540eab 7319
32ab3d1b
JT
7320 type = btrfs_chunk_type(sb, chunk);
7321 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7322 btrfs_err(fs_info,
32ab3d1b
JT
7323 "invalid chunk type %llu in sys_array at offset %u",
7324 type, cur_offset);
84eed90f
CM
7325 ret = -EIO;
7326 break;
0b86a832 7327 }
32ab3d1b
JT
7328
7329 len = btrfs_chunk_item_size(num_stripes);
7330 if (cur_offset + len > array_size)
7331 goto out_short_read;
7332
7333 ret = read_one_chunk(&key, sb, chunk);
7334 if (ret)
7335 break;
7336
1ffb22cf
DS
7337 array_ptr += len;
7338 sb_array_offset += len;
7339 cur_offset += len;
0b86a832 7340 }
d865177a 7341 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7342 free_extent_buffer_stale(sb);
84eed90f 7343 return ret;
e3540eab
DS
7344
7345out_short_read:
ab8d0fc4 7346 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7347 len, cur_offset);
d865177a 7348 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7349 free_extent_buffer_stale(sb);
e3540eab 7350 return -EIO;
0b86a832
CM
7351}
7352
21634a19
QW
7353/*
7354 * Check if all chunks in the fs are OK for read-write degraded mount
7355 *
6528b99d
AJ
7356 * If the @failing_dev is specified, it's accounted as missing.
7357 *
21634a19
QW
7358 * Return true if all chunks meet the minimal RW mount requirements.
7359 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7360 */
6528b99d
AJ
7361bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7362 struct btrfs_device *failing_dev)
21634a19 7363{
c8bf1b67 7364 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7365 struct extent_map *em;
7366 u64 next_start = 0;
7367 bool ret = true;
7368
c8bf1b67
DS
7369 read_lock(&map_tree->lock);
7370 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7371 read_unlock(&map_tree->lock);
21634a19
QW
7372 /* No chunk at all? Return false anyway */
7373 if (!em) {
7374 ret = false;
7375 goto out;
7376 }
7377 while (em) {
7378 struct map_lookup *map;
7379 int missing = 0;
7380 int max_tolerated;
7381 int i;
7382
7383 map = em->map_lookup;
7384 max_tolerated =
7385 btrfs_get_num_tolerated_disk_barrier_failures(
7386 map->type);
7387 for (i = 0; i < map->num_stripes; i++) {
7388 struct btrfs_device *dev = map->stripes[i].dev;
7389
e6e674bd
AJ
7390 if (!dev || !dev->bdev ||
7391 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7392 dev->last_flush_error)
7393 missing++;
6528b99d
AJ
7394 else if (failing_dev && failing_dev == dev)
7395 missing++;
21634a19
QW
7396 }
7397 if (missing > max_tolerated) {
6528b99d
AJ
7398 if (!failing_dev)
7399 btrfs_warn(fs_info,
52042d8e 7400 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7401 em->start, missing, max_tolerated);
7402 free_extent_map(em);
7403 ret = false;
7404 goto out;
7405 }
7406 next_start = extent_map_end(em);
7407 free_extent_map(em);
7408
c8bf1b67
DS
7409 read_lock(&map_tree->lock);
7410 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7411 (u64)(-1) - next_start);
c8bf1b67 7412 read_unlock(&map_tree->lock);
21634a19
QW
7413 }
7414out:
7415 return ret;
7416}
7417
d85327b1
DS
7418static void readahead_tree_node_children(struct extent_buffer *node)
7419{
7420 int i;
7421 const int nr_items = btrfs_header_nritems(node);
7422
bfb484d9
JB
7423 for (i = 0; i < nr_items; i++)
7424 btrfs_readahead_node_child(node, i);
d85327b1
DS
7425}
7426
5b4aacef 7427int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7428{
5b4aacef 7429 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7430 struct btrfs_path *path;
7431 struct extent_buffer *leaf;
7432 struct btrfs_key key;
7433 struct btrfs_key found_key;
7434 int ret;
7435 int slot;
99e3ecfc 7436 u64 total_dev = 0;
d85327b1 7437 u64 last_ra_node = 0;
0b86a832 7438
0b86a832
CM
7439 path = btrfs_alloc_path();
7440 if (!path)
7441 return -ENOMEM;
7442
3dd0f7a3
AJ
7443 /*
7444 * uuid_mutex is needed only if we are mounting a sprout FS
7445 * otherwise we don't need it.
7446 */
b367e47f 7447 mutex_lock(&uuid_mutex);
b367e47f 7448
48cfa61b
BB
7449 /*
7450 * It is possible for mount and umount to race in such a way that
7451 * we execute this code path, but open_fs_devices failed to clear
7452 * total_rw_bytes. We certainly want it cleared before reading the
7453 * device items, so clear it here.
7454 */
7455 fs_info->fs_devices->total_rw_bytes = 0;
7456
395927a9
FDBM
7457 /*
7458 * Read all device items, and then all the chunk items. All
7459 * device items are found before any chunk item (their object id
7460 * is smaller than the lowest possible object id for a chunk
7461 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7462 */
7463 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7464 key.offset = 0;
7465 key.type = 0;
0b86a832 7466 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7467 if (ret < 0)
7468 goto error;
d397712b 7469 while (1) {
d85327b1
DS
7470 struct extent_buffer *node;
7471
0b86a832
CM
7472 leaf = path->nodes[0];
7473 slot = path->slots[0];
7474 if (slot >= btrfs_header_nritems(leaf)) {
7475 ret = btrfs_next_leaf(root, path);
7476 if (ret == 0)
7477 continue;
7478 if (ret < 0)
7479 goto error;
7480 break;
7481 }
d85327b1
DS
7482 /*
7483 * The nodes on level 1 are not locked but we don't need to do
7484 * that during mount time as nothing else can access the tree
7485 */
7486 node = path->nodes[1];
7487 if (node) {
7488 if (last_ra_node != node->start) {
7489 readahead_tree_node_children(node);
7490 last_ra_node = node->start;
7491 }
7492 }
0b86a832 7493 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7494 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7495 struct btrfs_dev_item *dev_item;
7496 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7497 struct btrfs_dev_item);
17850759 7498 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7499 if (ret)
7500 goto error;
99e3ecfc 7501 total_dev++;
0b86a832
CM
7502 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7503 struct btrfs_chunk *chunk;
79bd3712
FM
7504
7505 /*
7506 * We are only called at mount time, so no need to take
7507 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7508 * we always lock first fs_info->chunk_mutex before
7509 * acquiring any locks on the chunk tree. This is a
7510 * requirement for chunk allocation, see the comment on
7511 * top of btrfs_chunk_alloc() for details.
7512 */
7513 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
0b86a832 7514 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7515 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7516 if (ret)
7517 goto error;
0b86a832
CM
7518 }
7519 path->slots[0]++;
7520 }
99e3ecfc
LB
7521
7522 /*
7523 * After loading chunk tree, we've got all device information,
7524 * do another round of validation checks.
7525 */
0b246afa
JM
7526 if (total_dev != fs_info->fs_devices->total_devices) {
7527 btrfs_err(fs_info,
99e3ecfc 7528 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7529 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7530 total_dev);
7531 ret = -EINVAL;
7532 goto error;
7533 }
0b246afa
JM
7534 if (btrfs_super_total_bytes(fs_info->super_copy) <
7535 fs_info->fs_devices->total_rw_bytes) {
7536 btrfs_err(fs_info,
99e3ecfc 7537 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7538 btrfs_super_total_bytes(fs_info->super_copy),
7539 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7540 ret = -EINVAL;
7541 goto error;
7542 }
0b86a832
CM
7543 ret = 0;
7544error:
b367e47f
LZ
7545 mutex_unlock(&uuid_mutex);
7546
2b82032c 7547 btrfs_free_path(path);
0b86a832
CM
7548 return ret;
7549}
442a4f63 7550
cb517eab
MX
7551void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7552{
944d3f9f 7553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7554 struct btrfs_device *device;
7555
944d3f9f
NB
7556 fs_devices->fs_info = fs_info;
7557
7558 mutex_lock(&fs_devices->device_list_mutex);
7559 list_for_each_entry(device, &fs_devices->devices, dev_list)
7560 device->fs_info = fs_info;
944d3f9f
NB
7561
7562 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7563 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7564 device->fs_info = fs_info;
29cc83f6 7565
944d3f9f 7566 seed_devs->fs_info = fs_info;
29cc83f6 7567 }
e17125b5 7568 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7569}
7570
1dc990df
DS
7571static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7572 const struct btrfs_dev_stats_item *ptr,
7573 int index)
7574{
7575 u64 val;
7576
7577 read_extent_buffer(eb, &val,
7578 offsetof(struct btrfs_dev_stats_item, values) +
7579 ((unsigned long)ptr) + (index * sizeof(u64)),
7580 sizeof(val));
7581 return val;
7582}
7583
7584static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7585 struct btrfs_dev_stats_item *ptr,
7586 int index, u64 val)
7587{
7588 write_extent_buffer(eb, &val,
7589 offsetof(struct btrfs_dev_stats_item, values) +
7590 ((unsigned long)ptr) + (index * sizeof(u64)),
7591 sizeof(val));
7592}
7593
92e26df4
JB
7594static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7595 struct btrfs_path *path)
733f4fbb 7596{
124604eb 7597 struct btrfs_dev_stats_item *ptr;
733f4fbb 7598 struct extent_buffer *eb;
124604eb
JB
7599 struct btrfs_key key;
7600 int item_size;
7601 int i, ret, slot;
7602
82d62d06
JB
7603 if (!device->fs_info->dev_root)
7604 return 0;
7605
124604eb
JB
7606 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7607 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7608 key.offset = device->devid;
7609 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7610 if (ret) {
7611 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7612 btrfs_dev_stat_set(device, i, 0);
7613 device->dev_stats_valid = 1;
7614 btrfs_release_path(path);
92e26df4 7615 return ret < 0 ? ret : 0;
124604eb
JB
7616 }
7617 slot = path->slots[0];
7618 eb = path->nodes[0];
7619 item_size = btrfs_item_size_nr(eb, slot);
7620
7621 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7622
7623 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7624 if (item_size >= (1 + i) * sizeof(__le64))
7625 btrfs_dev_stat_set(device, i,
7626 btrfs_dev_stats_value(eb, ptr, i));
7627 else
7628 btrfs_dev_stat_set(device, i, 0);
7629 }
7630
7631 device->dev_stats_valid = 1;
7632 btrfs_dev_stat_print_on_load(device);
7633 btrfs_release_path(path);
92e26df4
JB
7634
7635 return 0;
124604eb
JB
7636}
7637
7638int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7639{
7640 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7641 struct btrfs_device *device;
7642 struct btrfs_path *path = NULL;
92e26df4 7643 int ret = 0;
733f4fbb
SB
7644
7645 path = btrfs_alloc_path();
3b80a984
AJ
7646 if (!path)
7647 return -ENOMEM;
733f4fbb
SB
7648
7649 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7650 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7651 ret = btrfs_device_init_dev_stats(device, path);
7652 if (ret)
7653 goto out;
7654 }
124604eb 7655 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7656 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7657 ret = btrfs_device_init_dev_stats(device, path);
7658 if (ret)
7659 goto out;
7660 }
733f4fbb 7661 }
92e26df4 7662out:
733f4fbb
SB
7663 mutex_unlock(&fs_devices->device_list_mutex);
7664
733f4fbb 7665 btrfs_free_path(path);
92e26df4 7666 return ret;
733f4fbb
SB
7667}
7668
7669static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7670 struct btrfs_device *device)
7671{
5495f195 7672 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7673 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7674 struct btrfs_path *path;
7675 struct btrfs_key key;
7676 struct extent_buffer *eb;
7677 struct btrfs_dev_stats_item *ptr;
7678 int ret;
7679 int i;
7680
242e2956
DS
7681 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7682 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7683 key.offset = device->devid;
7684
7685 path = btrfs_alloc_path();
fa252992
DS
7686 if (!path)
7687 return -ENOMEM;
733f4fbb
SB
7688 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7689 if (ret < 0) {
0b246afa 7690 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7691 "error %d while searching for dev_stats item for device %s",
606686ee 7692 ret, rcu_str_deref(device->name));
733f4fbb
SB
7693 goto out;
7694 }
7695
7696 if (ret == 0 &&
7697 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7698 /* need to delete old one and insert a new one */
7699 ret = btrfs_del_item(trans, dev_root, path);
7700 if (ret != 0) {
0b246afa 7701 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7702 "delete too small dev_stats item for device %s failed %d",
606686ee 7703 rcu_str_deref(device->name), ret);
733f4fbb
SB
7704 goto out;
7705 }
7706 ret = 1;
7707 }
7708
7709 if (ret == 1) {
7710 /* need to insert a new item */
7711 btrfs_release_path(path);
7712 ret = btrfs_insert_empty_item(trans, dev_root, path,
7713 &key, sizeof(*ptr));
7714 if (ret < 0) {
0b246afa 7715 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7716 "insert dev_stats item for device %s failed %d",
7717 rcu_str_deref(device->name), ret);
733f4fbb
SB
7718 goto out;
7719 }
7720 }
7721
7722 eb = path->nodes[0];
7723 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7724 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7725 btrfs_set_dev_stats_value(eb, ptr, i,
7726 btrfs_dev_stat_read(device, i));
7727 btrfs_mark_buffer_dirty(eb);
7728
7729out:
7730 btrfs_free_path(path);
7731 return ret;
7732}
7733
7734/*
7735 * called from commit_transaction. Writes all changed device stats to disk.
7736 */
196c9d8d 7737int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7738{
196c9d8d 7739 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7740 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7741 struct btrfs_device *device;
addc3fa7 7742 int stats_cnt;
733f4fbb
SB
7743 int ret = 0;
7744
7745 mutex_lock(&fs_devices->device_list_mutex);
7746 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7747 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7748 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7749 continue;
7750
9deae968
NB
7751
7752 /*
7753 * There is a LOAD-LOAD control dependency between the value of
7754 * dev_stats_ccnt and updating the on-disk values which requires
7755 * reading the in-memory counters. Such control dependencies
7756 * require explicit read memory barriers.
7757 *
7758 * This memory barriers pairs with smp_mb__before_atomic in
7759 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7760 * barrier implied by atomic_xchg in
7761 * btrfs_dev_stats_read_and_reset
7762 */
7763 smp_rmb();
7764
5495f195 7765 ret = update_dev_stat_item(trans, device);
733f4fbb 7766 if (!ret)
addc3fa7 7767 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7768 }
7769 mutex_unlock(&fs_devices->device_list_mutex);
7770
7771 return ret;
7772}
7773
442a4f63
SB
7774void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7775{
7776 btrfs_dev_stat_inc(dev, index);
7777 btrfs_dev_stat_print_on_error(dev);
7778}
7779
48a3b636 7780static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7781{
733f4fbb
SB
7782 if (!dev->dev_stats_valid)
7783 return;
fb456252 7784 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7785 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7786 rcu_str_deref(dev->name),
442a4f63
SB
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7791 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7792}
c11d2c23 7793
733f4fbb
SB
7794static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7795{
a98cdb85
SB
7796 int i;
7797
7798 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7799 if (btrfs_dev_stat_read(dev, i) != 0)
7800 break;
7801 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7802 return; /* all values == 0, suppress message */
7803
fb456252 7804 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7805 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7806 rcu_str_deref(dev->name),
733f4fbb
SB
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7812}
7813
2ff7e61e 7814int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7815 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7816{
7817 struct btrfs_device *dev;
0b246afa 7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7819 int i;
7820
7821 mutex_lock(&fs_devices->device_list_mutex);
b2598edf 7822 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
c11d2c23
SB
7823 mutex_unlock(&fs_devices->device_list_mutex);
7824
7825 if (!dev) {
0b246afa 7826 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7827 return -ENODEV;
733f4fbb 7828 } else if (!dev->dev_stats_valid) {
0b246afa 7829 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7830 return -ENODEV;
b27f7c0c 7831 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7832 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7833 if (stats->nr_items > i)
7834 stats->values[i] =
7835 btrfs_dev_stat_read_and_reset(dev, i);
7836 else
4e411a7d 7837 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7838 }
a69976bc
AJ
7839 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7840 current->comm, task_pid_nr(current));
c11d2c23
SB
7841 } else {
7842 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7843 if (stats->nr_items > i)
7844 stats->values[i] = btrfs_dev_stat_read(dev, i);
7845 }
7846 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7847 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7848 return 0;
7849}
a8a6dab7 7850
935e5cc9 7851/*
bbbf7243
NB
7852 * Update the size and bytes used for each device where it changed. This is
7853 * delayed since we would otherwise get errors while writing out the
7854 * superblocks.
7855 *
7856 * Must be invoked during transaction commit.
935e5cc9 7857 */
bbbf7243 7858void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7859{
935e5cc9
MX
7860 struct btrfs_device *curr, *next;
7861
bbbf7243 7862 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7863
bbbf7243 7864 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7865 return;
7866
bbbf7243
NB
7867 /*
7868 * We don't need the device_list_mutex here. This list is owned by the
7869 * transaction and the transaction must complete before the device is
7870 * released.
7871 */
7872 mutex_lock(&trans->fs_info->chunk_mutex);
7873 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7874 post_commit_list) {
7875 list_del_init(&curr->post_commit_list);
7876 curr->commit_total_bytes = curr->disk_total_bytes;
7877 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7878 }
bbbf7243 7879 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7880}
5a13f430 7881
46df06b8
DS
7882/*
7883 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7884 */
7885int btrfs_bg_type_to_factor(u64 flags)
7886{
44b28ada
DS
7887 const int index = btrfs_bg_flags_to_raid_index(flags);
7888
7889 return btrfs_raid_array[index].ncopies;
46df06b8 7890}
cf90d884
QW
7891
7892
cf90d884
QW
7893
7894static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7895 u64 chunk_offset, u64 devid,
7896 u64 physical_offset, u64 physical_len)
7897{
c8bf1b67 7898 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7899 struct extent_map *em;
7900 struct map_lookup *map;
05a37c48 7901 struct btrfs_device *dev;
cf90d884
QW
7902 u64 stripe_len;
7903 bool found = false;
7904 int ret = 0;
7905 int i;
7906
7907 read_lock(&em_tree->lock);
7908 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7909 read_unlock(&em_tree->lock);
7910
7911 if (!em) {
7912 btrfs_err(fs_info,
7913"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7914 physical_offset, devid);
7915 ret = -EUCLEAN;
7916 goto out;
7917 }
7918
7919 map = em->map_lookup;
7920 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7921 if (physical_len != stripe_len) {
7922 btrfs_err(fs_info,
7923"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7924 physical_offset, devid, em->start, physical_len,
7925 stripe_len);
7926 ret = -EUCLEAN;
7927 goto out;
7928 }
7929
7930 for (i = 0; i < map->num_stripes; i++) {
7931 if (map->stripes[i].dev->devid == devid &&
7932 map->stripes[i].physical == physical_offset) {
7933 found = true;
7934 if (map->verified_stripes >= map->num_stripes) {
7935 btrfs_err(fs_info,
7936 "too many dev extents for chunk %llu found",
7937 em->start);
7938 ret = -EUCLEAN;
7939 goto out;
7940 }
7941 map->verified_stripes++;
7942 break;
7943 }
7944 }
7945 if (!found) {
7946 btrfs_err(fs_info,
7947 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7948 physical_offset, devid);
7949 ret = -EUCLEAN;
7950 }
05a37c48 7951
1a9fd417 7952 /* Make sure no dev extent is beyond device boundary */
b2598edf 7953 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
05a37c48
QW
7954 if (!dev) {
7955 btrfs_err(fs_info, "failed to find devid %llu", devid);
7956 ret = -EUCLEAN;
7957 goto out;
7958 }
1b3922a8 7959
05a37c48
QW
7960 if (physical_offset + physical_len > dev->disk_total_bytes) {
7961 btrfs_err(fs_info,
7962"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7963 devid, physical_offset, physical_len,
7964 dev->disk_total_bytes);
7965 ret = -EUCLEAN;
7966 goto out;
7967 }
381a696e
NA
7968
7969 if (dev->zone_info) {
7970 u64 zone_size = dev->zone_info->zone_size;
7971
7972 if (!IS_ALIGNED(physical_offset, zone_size) ||
7973 !IS_ALIGNED(physical_len, zone_size)) {
7974 btrfs_err(fs_info,
7975"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7976 devid, physical_offset, physical_len);
7977 ret = -EUCLEAN;
7978 goto out;
7979 }
7980 }
7981
cf90d884
QW
7982out:
7983 free_extent_map(em);
7984 return ret;
7985}
7986
7987static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7988{
c8bf1b67 7989 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7990 struct extent_map *em;
7991 struct rb_node *node;
7992 int ret = 0;
7993
7994 read_lock(&em_tree->lock);
07e1ce09 7995 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7996 em = rb_entry(node, struct extent_map, rb_node);
7997 if (em->map_lookup->num_stripes !=
7998 em->map_lookup->verified_stripes) {
7999 btrfs_err(fs_info,
8000 "chunk %llu has missing dev extent, have %d expect %d",
8001 em->start, em->map_lookup->verified_stripes,
8002 em->map_lookup->num_stripes);
8003 ret = -EUCLEAN;
8004 goto out;
8005 }
8006 }
8007out:
8008 read_unlock(&em_tree->lock);
8009 return ret;
8010}
8011
8012/*
8013 * Ensure that all dev extents are mapped to correct chunk, otherwise
8014 * later chunk allocation/free would cause unexpected behavior.
8015 *
8016 * NOTE: This will iterate through the whole device tree, which should be of
8017 * the same size level as the chunk tree. This slightly increases mount time.
8018 */
8019int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8020{
8021 struct btrfs_path *path;
8022 struct btrfs_root *root = fs_info->dev_root;
8023 struct btrfs_key key;
5eb19381
QW
8024 u64 prev_devid = 0;
8025 u64 prev_dev_ext_end = 0;
cf90d884
QW
8026 int ret = 0;
8027
42437a63
JB
8028 /*
8029 * We don't have a dev_root because we mounted with ignorebadroots and
8030 * failed to load the root, so we want to skip the verification in this
8031 * case for sure.
8032 *
8033 * However if the dev root is fine, but the tree itself is corrupted
8034 * we'd still fail to mount. This verification is only to make sure
8035 * writes can happen safely, so instead just bypass this check
8036 * completely in the case of IGNOREBADROOTS.
8037 */
8038 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8039 return 0;
8040
cf90d884
QW
8041 key.objectid = 1;
8042 key.type = BTRFS_DEV_EXTENT_KEY;
8043 key.offset = 0;
8044
8045 path = btrfs_alloc_path();
8046 if (!path)
8047 return -ENOMEM;
8048
8049 path->reada = READA_FORWARD;
8050 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8051 if (ret < 0)
8052 goto out;
8053
8054 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8055 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8056 if (ret < 0)
8057 goto out;
8058 /* No dev extents at all? Not good */
8059 if (ret > 0) {
8060 ret = -EUCLEAN;
8061 goto out;
8062 }
8063 }
8064 while (1) {
8065 struct extent_buffer *leaf = path->nodes[0];
8066 struct btrfs_dev_extent *dext;
8067 int slot = path->slots[0];
8068 u64 chunk_offset;
8069 u64 physical_offset;
8070 u64 physical_len;
8071 u64 devid;
8072
8073 btrfs_item_key_to_cpu(leaf, &key, slot);
8074 if (key.type != BTRFS_DEV_EXTENT_KEY)
8075 break;
8076 devid = key.objectid;
8077 physical_offset = key.offset;
8078
8079 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8080 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8081 physical_len = btrfs_dev_extent_length(leaf, dext);
8082
5eb19381
QW
8083 /* Check if this dev extent overlaps with the previous one */
8084 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8085 btrfs_err(fs_info,
8086"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8087 devid, physical_offset, prev_dev_ext_end);
8088 ret = -EUCLEAN;
8089 goto out;
8090 }
8091
cf90d884
QW
8092 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8093 physical_offset, physical_len);
8094 if (ret < 0)
8095 goto out;
5eb19381
QW
8096 prev_devid = devid;
8097 prev_dev_ext_end = physical_offset + physical_len;
8098
cf90d884
QW
8099 ret = btrfs_next_item(root, path);
8100 if (ret < 0)
8101 goto out;
8102 if (ret > 0) {
8103 ret = 0;
8104 break;
8105 }
8106 }
8107
8108 /* Ensure all chunks have corresponding dev extents */
8109 ret = verify_chunk_dev_extent_mapping(fs_info);
8110out:
8111 btrfs_free_path(path);
8112 return ret;
8113}
eede2bf3
OS
8114
8115/*
8116 * Check whether the given block group or device is pinned by any inode being
8117 * used as a swapfile.
8118 */
8119bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8120{
8121 struct btrfs_swapfile_pin *sp;
8122 struct rb_node *node;
8123
8124 spin_lock(&fs_info->swapfile_pins_lock);
8125 node = fs_info->swapfile_pins.rb_node;
8126 while (node) {
8127 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8128 if (ptr < sp->ptr)
8129 node = node->rb_left;
8130 else if (ptr > sp->ptr)
8131 node = node->rb_right;
8132 else
8133 break;
8134 }
8135 spin_unlock(&fs_info->swapfile_pins_lock);
8136 return node != NULL;
8137}
f7ef5287
NA
8138
8139static int relocating_repair_kthread(void *data)
8140{
8141 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8142 struct btrfs_fs_info *fs_info = cache->fs_info;
8143 u64 target;
8144 int ret = 0;
8145
8146 target = cache->start;
8147 btrfs_put_block_group(cache);
8148
8149 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8150 btrfs_info(fs_info,
8151 "zoned: skip relocating block group %llu to repair: EBUSY",
8152 target);
8153 return -EBUSY;
8154 }
8155
f3372065 8156 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8157
8158 /* Ensure block group still exists */
8159 cache = btrfs_lookup_block_group(fs_info, target);
8160 if (!cache)
8161 goto out;
8162
8163 if (!cache->relocating_repair)
8164 goto out;
8165
8166 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8167 if (ret < 0)
8168 goto out;
8169
8170 btrfs_info(fs_info,
8171 "zoned: relocating block group %llu to repair IO failure",
8172 target);
8173 ret = btrfs_relocate_chunk(fs_info, target);
8174
8175out:
8176 if (cache)
8177 btrfs_put_block_group(cache);
f3372065 8178 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8179 btrfs_exclop_finish(fs_info);
8180
8181 return ret;
8182}
8183
8184int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8185{
8186 struct btrfs_block_group *cache;
8187
8188 /* Do not attempt to repair in degraded state */
8189 if (btrfs_test_opt(fs_info, DEGRADED))
8190 return 0;
8191
8192 cache = btrfs_lookup_block_group(fs_info, logical);
8193 if (!cache)
8194 return 0;
8195
8196 spin_lock(&cache->lock);
8197 if (cache->relocating_repair) {
8198 spin_unlock(&cache->lock);
8199 btrfs_put_block_group(cache);
8200 return 0;
8201 }
8202 cache->relocating_repair = 1;
8203 spin_unlock(&cache->lock);
8204
8205 kthread_run(relocating_repair_kthread, cache,
8206 "btrfs-relocating-repair");
8207
8208 return 0;
8209}