Btrfs: mount ro and remount support
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
593060d7 23#include <asm/div64.h>
0b86a832
CM
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
8b712842 30#include "async-thread.h"
0b86a832 31
593060d7
CM
32struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
321aecc6 39 int sub_stripes;
cea9e445 40 struct btrfs_bio_stripe stripes[];
593060d7
CM
41};
42
43#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 44 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 45
8a4b83cc
CM
46static DEFINE_MUTEX(uuid_mutex);
47static LIST_HEAD(fs_uuids);
48
a061fc8d
CM
49void btrfs_lock_volumes(void)
50{
51 mutex_lock(&uuid_mutex);
52}
53
54void btrfs_unlock_volumes(void)
55{
56 mutex_unlock(&uuid_mutex);
57}
58
7d9eb12c
CM
59static void lock_chunks(struct btrfs_root *root)
60{
7d9eb12c
CM
61 mutex_lock(&root->fs_info->chunk_mutex);
62}
63
64static void unlock_chunks(struct btrfs_root *root)
65{
7d9eb12c
CM
66 mutex_unlock(&root->fs_info->chunk_mutex);
67}
68
8a4b83cc
CM
69int btrfs_cleanup_fs_uuids(void)
70{
71 struct btrfs_fs_devices *fs_devices;
72 struct list_head *uuid_cur;
73 struct list_head *devices_cur;
74 struct btrfs_device *dev;
75
76 list_for_each(uuid_cur, &fs_uuids) {
77 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
78 list);
79 while(!list_empty(&fs_devices->devices)) {
80 devices_cur = fs_devices->devices.next;
81 dev = list_entry(devices_cur, struct btrfs_device,
82 dev_list);
8a4b83cc 83 if (dev->bdev) {
8a4b83cc 84 close_bdev_excl(dev->bdev);
a0af469b 85 fs_devices->open_devices--;
8a4b83cc
CM
86 }
87 list_del(&dev->dev_list);
dfe25020 88 kfree(dev->name);
8a4b83cc
CM
89 kfree(dev);
90 }
91 }
92 return 0;
93}
94
a1b32a59
CM
95static noinline struct btrfs_device *__find_device(struct list_head *head,
96 u64 devid, u8 *uuid)
8a4b83cc
CM
97{
98 struct btrfs_device *dev;
99 struct list_head *cur;
100
101 list_for_each(cur, head) {
102 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 103 if (dev->devid == devid &&
8f18cf13 104 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 105 return dev;
a443755f 106 }
8a4b83cc
CM
107 }
108 return NULL;
109}
110
a1b32a59 111static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc
CM
112{
113 struct list_head *cur;
114 struct btrfs_fs_devices *fs_devices;
115
116 list_for_each(cur, &fs_uuids) {
117 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
118 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
119 return fs_devices;
120 }
121 return NULL;
122}
123
8b712842
CM
124/*
125 * we try to collect pending bios for a device so we don't get a large
126 * number of procs sending bios down to the same device. This greatly
127 * improves the schedulers ability to collect and merge the bios.
128 *
129 * But, it also turns into a long list of bios to process and that is sure
130 * to eventually make the worker thread block. The solution here is to
131 * make some progress and then put this work struct back at the end of
132 * the list if the block device is congested. This way, multiple devices
133 * can make progress from a single worker thread.
134 */
a1b32a59 135static int noinline run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
136{
137 struct bio *pending;
138 struct backing_dev_info *bdi;
b64a2851 139 struct btrfs_fs_info *fs_info;
8b712842
CM
140 struct bio *tail;
141 struct bio *cur;
142 int again = 0;
143 unsigned long num_run = 0;
b64a2851 144 unsigned long limit;
8b712842
CM
145
146 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
b64a2851
CM
147 fs_info = device->dev_root->fs_info;
148 limit = btrfs_async_submit_limit(fs_info);
149 limit = limit * 2 / 3;
150
8b712842
CM
151loop:
152 spin_lock(&device->io_lock);
153
154 /* take all the bios off the list at once and process them
155 * later on (without the lock held). But, remember the
156 * tail and other pointers so the bios can be properly reinserted
157 * into the list if we hit congestion
158 */
159 pending = device->pending_bios;
160 tail = device->pending_bio_tail;
161 WARN_ON(pending && !tail);
162 device->pending_bios = NULL;
163 device->pending_bio_tail = NULL;
164
165 /*
166 * if pending was null this time around, no bios need processing
167 * at all and we can stop. Otherwise it'll loop back up again
168 * and do an additional check so no bios are missed.
169 *
170 * device->running_pending is used to synchronize with the
171 * schedule_bio code.
172 */
173 if (pending) {
174 again = 1;
175 device->running_pending = 1;
176 } else {
177 again = 0;
178 device->running_pending = 0;
179 }
180 spin_unlock(&device->io_lock);
181
182 while(pending) {
183 cur = pending;
184 pending = pending->bi_next;
185 cur->bi_next = NULL;
b64a2851
CM
186 atomic_dec(&fs_info->nr_async_bios);
187
188 if (atomic_read(&fs_info->nr_async_bios) < limit &&
189 waitqueue_active(&fs_info->async_submit_wait))
190 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
191
192 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
193 bio_get(cur);
8b712842 194 submit_bio(cur->bi_rw, cur);
492bb6de 195 bio_put(cur);
8b712842
CM
196 num_run++;
197
198 /*
199 * we made progress, there is more work to do and the bdi
200 * is now congested. Back off and let other work structs
201 * run instead
202 */
5f2cc086
CM
203 if (pending && bdi_write_congested(bdi) &&
204 fs_info->fs_devices->open_devices > 1) {
8b712842
CM
205 struct bio *old_head;
206
207 spin_lock(&device->io_lock);
492bb6de 208
8b712842
CM
209 old_head = device->pending_bios;
210 device->pending_bios = pending;
211 if (device->pending_bio_tail)
212 tail->bi_next = old_head;
213 else
214 device->pending_bio_tail = tail;
215
216 spin_unlock(&device->io_lock);
217 btrfs_requeue_work(&device->work);
218 goto done;
219 }
220 }
221 if (again)
222 goto loop;
223done:
224 return 0;
225}
226
227void pending_bios_fn(struct btrfs_work *work)
228{
229 struct btrfs_device *device;
230
231 device = container_of(work, struct btrfs_device, work);
232 run_scheduled_bios(device);
233}
234
a1b32a59 235static noinline int device_list_add(const char *path,
8a4b83cc
CM
236 struct btrfs_super_block *disk_super,
237 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
238{
239 struct btrfs_device *device;
240 struct btrfs_fs_devices *fs_devices;
241 u64 found_transid = btrfs_super_generation(disk_super);
242
243 fs_devices = find_fsid(disk_super->fsid);
244 if (!fs_devices) {
515dc322 245 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
246 if (!fs_devices)
247 return -ENOMEM;
248 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 249 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
250 list_add(&fs_devices->list, &fs_uuids);
251 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
252 fs_devices->latest_devid = devid;
253 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
254 device = NULL;
255 } else {
a443755f
CM
256 device = __find_device(&fs_devices->devices, devid,
257 disk_super->dev_item.uuid);
8a4b83cc
CM
258 }
259 if (!device) {
260 device = kzalloc(sizeof(*device), GFP_NOFS);
261 if (!device) {
262 /* we can safely leave the fs_devices entry around */
263 return -ENOMEM;
264 }
265 device->devid = devid;
8b712842 266 device->work.func = pending_bios_fn;
a443755f
CM
267 memcpy(device->uuid, disk_super->dev_item.uuid,
268 BTRFS_UUID_SIZE);
f2984462 269 device->barriers = 1;
b248a415 270 spin_lock_init(&device->io_lock);
8a4b83cc
CM
271 device->name = kstrdup(path, GFP_NOFS);
272 if (!device->name) {
273 kfree(device);
274 return -ENOMEM;
275 }
276 list_add(&device->dev_list, &fs_devices->devices);
b3075717 277 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
8a4b83cc
CM
278 fs_devices->num_devices++;
279 }
280
281 if (found_transid > fs_devices->latest_trans) {
282 fs_devices->latest_devid = devid;
283 fs_devices->latest_trans = found_transid;
284 }
8a4b83cc
CM
285 *fs_devices_ret = fs_devices;
286 return 0;
287}
288
dfe25020
CM
289int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
290{
291 struct list_head *head = &fs_devices->devices;
292 struct list_head *cur;
293 struct btrfs_device *device;
294
295 mutex_lock(&uuid_mutex);
296again:
297 list_for_each(cur, head) {
298 device = list_entry(cur, struct btrfs_device, dev_list);
299 if (!device->in_fs_metadata) {
a74a4b97 300 struct block_device *bdev;
dfe25020
CM
301 list_del(&device->dev_list);
302 list_del(&device->dev_alloc_list);
303 fs_devices->num_devices--;
a74a4b97
CM
304 if (device->bdev) {
305 bdev = device->bdev;
306 fs_devices->open_devices--;
307 mutex_unlock(&uuid_mutex);
308 close_bdev_excl(bdev);
309 mutex_lock(&uuid_mutex);
310 }
dfe25020
CM
311 kfree(device->name);
312 kfree(device);
313 goto again;
314 }
315 }
316 mutex_unlock(&uuid_mutex);
317 return 0;
318}
a0af469b 319
8a4b83cc
CM
320int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
321{
322 struct list_head *head = &fs_devices->devices;
323 struct list_head *cur;
324 struct btrfs_device *device;
325
326 mutex_lock(&uuid_mutex);
327 list_for_each(cur, head) {
328 device = list_entry(cur, struct btrfs_device, dev_list);
329 if (device->bdev) {
330 close_bdev_excl(device->bdev);
a0af469b 331 fs_devices->open_devices--;
8a4b83cc
CM
332 }
333 device->bdev = NULL;
dfe25020 334 device->in_fs_metadata = 0;
8a4b83cc 335 }
a0af469b 336 fs_devices->mounted = 0;
8a4b83cc
CM
337 mutex_unlock(&uuid_mutex);
338 return 0;
339}
340
341int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
342 int flags, void *holder)
343{
344 struct block_device *bdev;
345 struct list_head *head = &fs_devices->devices;
346 struct list_head *cur;
347 struct btrfs_device *device;
a0af469b
CM
348 struct block_device *latest_bdev = NULL;
349 struct buffer_head *bh;
350 struct btrfs_super_block *disk_super;
351 u64 latest_devid = 0;
352 u64 latest_transid = 0;
353 u64 transid;
354 u64 devid;
355 int ret = 0;
8a4b83cc
CM
356
357 mutex_lock(&uuid_mutex);
a0af469b
CM
358 if (fs_devices->mounted)
359 goto out;
360
8a4b83cc
CM
361 list_for_each(cur, head) {
362 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
363 if (device->bdev)
364 continue;
365
dfe25020
CM
366 if (!device->name)
367 continue;
368
8a4b83cc 369 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 370
8a4b83cc
CM
371 if (IS_ERR(bdev)) {
372 printk("open %s failed\n", device->name);
a0af469b 373 goto error;
8a4b83cc 374 }
a061fc8d 375 set_blocksize(bdev, 4096);
a0af469b
CM
376
377 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
378 if (!bh)
379 goto error_close;
380
381 disk_super = (struct btrfs_super_block *)bh->b_data;
382 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
383 sizeof(disk_super->magic)))
384 goto error_brelse;
385
386 devid = le64_to_cpu(disk_super->dev_item.devid);
387 if (devid != device->devid)
388 goto error_brelse;
389
390 transid = btrfs_super_generation(disk_super);
6af5ac3c 391 if (!latest_transid || transid > latest_transid) {
a0af469b
CM
392 latest_devid = devid;
393 latest_transid = transid;
394 latest_bdev = bdev;
395 }
396
8a4b83cc 397 device->bdev = bdev;
dfe25020 398 device->in_fs_metadata = 0;
a0af469b
CM
399 fs_devices->open_devices++;
400 continue;
a061fc8d 401
a0af469b
CM
402error_brelse:
403 brelse(bh);
404error_close:
405 close_bdev_excl(bdev);
406error:
407 continue;
8a4b83cc 408 }
a0af469b
CM
409 if (fs_devices->open_devices == 0) {
410 ret = -EIO;
411 goto out;
412 }
413 fs_devices->mounted = 1;
414 fs_devices->latest_bdev = latest_bdev;
415 fs_devices->latest_devid = latest_devid;
416 fs_devices->latest_trans = latest_transid;
417out:
8a4b83cc 418 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
419 return ret;
420}
421
422int btrfs_scan_one_device(const char *path, int flags, void *holder,
423 struct btrfs_fs_devices **fs_devices_ret)
424{
425 struct btrfs_super_block *disk_super;
426 struct block_device *bdev;
427 struct buffer_head *bh;
428 int ret;
429 u64 devid;
f2984462 430 u64 transid;
8a4b83cc
CM
431
432 mutex_lock(&uuid_mutex);
433
8a4b83cc
CM
434 bdev = open_bdev_excl(path, flags, holder);
435
436 if (IS_ERR(bdev)) {
8a4b83cc
CM
437 ret = PTR_ERR(bdev);
438 goto error;
439 }
440
441 ret = set_blocksize(bdev, 4096);
442 if (ret)
443 goto error_close;
444 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
445 if (!bh) {
446 ret = -EIO;
447 goto error_close;
448 }
449 disk_super = (struct btrfs_super_block *)bh->b_data;
450 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
451 sizeof(disk_super->magic))) {
e58ca020 452 ret = -EINVAL;
8a4b83cc
CM
453 goto error_brelse;
454 }
455 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 456 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
457 if (disk_super->label[0])
458 printk("device label %s ", disk_super->label);
459 else {
460 /* FIXME, make a readl uuid parser */
461 printk("device fsid %llx-%llx ",
462 *(unsigned long long *)disk_super->fsid,
463 *(unsigned long long *)(disk_super->fsid + 8));
464 }
465 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
466 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
467
468error_brelse:
469 brelse(bh);
470error_close:
471 close_bdev_excl(bdev);
8a4b83cc
CM
472error:
473 mutex_unlock(&uuid_mutex);
474 return ret;
475}
0b86a832
CM
476
477/*
478 * this uses a pretty simple search, the expectation is that it is
479 * called very infrequently and that a given device has a small number
480 * of extents
481 */
a1b32a59
CM
482static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
483 struct btrfs_device *device,
484 struct btrfs_path *path,
485 u64 num_bytes, u64 *start)
0b86a832
CM
486{
487 struct btrfs_key key;
488 struct btrfs_root *root = device->dev_root;
489 struct btrfs_dev_extent *dev_extent = NULL;
490 u64 hole_size = 0;
491 u64 last_byte = 0;
492 u64 search_start = 0;
493 u64 search_end = device->total_bytes;
494 int ret;
495 int slot = 0;
496 int start_found;
497 struct extent_buffer *l;
498
499 start_found = 0;
500 path->reada = 2;
501
502 /* FIXME use last free of some kind */
503
8a4b83cc
CM
504 /* we don't want to overwrite the superblock on the drive,
505 * so we make sure to start at an offset of at least 1MB
506 */
507 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
508
509 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
510 search_start = max(root->fs_info->alloc_start, search_start);
511
0b86a832
CM
512 key.objectid = device->devid;
513 key.offset = search_start;
514 key.type = BTRFS_DEV_EXTENT_KEY;
515 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
516 if (ret < 0)
517 goto error;
518 ret = btrfs_previous_item(root, path, 0, key.type);
519 if (ret < 0)
520 goto error;
521 l = path->nodes[0];
522 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
523 while (1) {
524 l = path->nodes[0];
525 slot = path->slots[0];
526 if (slot >= btrfs_header_nritems(l)) {
527 ret = btrfs_next_leaf(root, path);
528 if (ret == 0)
529 continue;
530 if (ret < 0)
531 goto error;
532no_more_items:
533 if (!start_found) {
534 if (search_start >= search_end) {
535 ret = -ENOSPC;
536 goto error;
537 }
538 *start = search_start;
539 start_found = 1;
540 goto check_pending;
541 }
542 *start = last_byte > search_start ?
543 last_byte : search_start;
544 if (search_end <= *start) {
545 ret = -ENOSPC;
546 goto error;
547 }
548 goto check_pending;
549 }
550 btrfs_item_key_to_cpu(l, &key, slot);
551
552 if (key.objectid < device->devid)
553 goto next;
554
555 if (key.objectid > device->devid)
556 goto no_more_items;
557
558 if (key.offset >= search_start && key.offset > last_byte &&
559 start_found) {
560 if (last_byte < search_start)
561 last_byte = search_start;
562 hole_size = key.offset - last_byte;
563 if (key.offset > last_byte &&
564 hole_size >= num_bytes) {
565 *start = last_byte;
566 goto check_pending;
567 }
568 }
569 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
570 goto next;
571 }
572
573 start_found = 1;
574 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
575 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
576next:
577 path->slots[0]++;
578 cond_resched();
579 }
580check_pending:
581 /* we have to make sure we didn't find an extent that has already
582 * been allocated by the map tree or the original allocation
583 */
584 btrfs_release_path(root, path);
585 BUG_ON(*start < search_start);
586
6324fbf3 587 if (*start + num_bytes > search_end) {
0b86a832
CM
588 ret = -ENOSPC;
589 goto error;
590 }
591 /* check for pending inserts here */
592 return 0;
593
594error:
595 btrfs_release_path(root, path);
596 return ret;
597}
598
8f18cf13
CM
599int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
600 struct btrfs_device *device,
601 u64 start)
602{
603 int ret;
604 struct btrfs_path *path;
605 struct btrfs_root *root = device->dev_root;
606 struct btrfs_key key;
a061fc8d
CM
607 struct btrfs_key found_key;
608 struct extent_buffer *leaf = NULL;
609 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
610
611 path = btrfs_alloc_path();
612 if (!path)
613 return -ENOMEM;
614
615 key.objectid = device->devid;
616 key.offset = start;
617 key.type = BTRFS_DEV_EXTENT_KEY;
618
619 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
620 if (ret > 0) {
621 ret = btrfs_previous_item(root, path, key.objectid,
622 BTRFS_DEV_EXTENT_KEY);
623 BUG_ON(ret);
624 leaf = path->nodes[0];
625 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
626 extent = btrfs_item_ptr(leaf, path->slots[0],
627 struct btrfs_dev_extent);
628 BUG_ON(found_key.offset > start || found_key.offset +
629 btrfs_dev_extent_length(leaf, extent) < start);
630 ret = 0;
631 } else if (ret == 0) {
632 leaf = path->nodes[0];
633 extent = btrfs_item_ptr(leaf, path->slots[0],
634 struct btrfs_dev_extent);
635 }
8f18cf13
CM
636 BUG_ON(ret);
637
dfe25020
CM
638 if (device->bytes_used > 0)
639 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
640 ret = btrfs_del_item(trans, root, path);
641 BUG_ON(ret);
642
643 btrfs_free_path(path);
644 return ret;
645}
646
a1b32a59 647int noinline btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 648 struct btrfs_device *device,
e17cade2
CM
649 u64 chunk_tree, u64 chunk_objectid,
650 u64 chunk_offset,
651 u64 num_bytes, u64 *start)
0b86a832
CM
652{
653 int ret;
654 struct btrfs_path *path;
655 struct btrfs_root *root = device->dev_root;
656 struct btrfs_dev_extent *extent;
657 struct extent_buffer *leaf;
658 struct btrfs_key key;
659
dfe25020 660 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
661 path = btrfs_alloc_path();
662 if (!path)
663 return -ENOMEM;
664
665 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 666 if (ret) {
0b86a832 667 goto err;
6324fbf3 668 }
0b86a832
CM
669
670 key.objectid = device->devid;
671 key.offset = *start;
672 key.type = BTRFS_DEV_EXTENT_KEY;
673 ret = btrfs_insert_empty_item(trans, root, path, &key,
674 sizeof(*extent));
675 BUG_ON(ret);
676
677 leaf = path->nodes[0];
678 extent = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_dev_extent);
e17cade2
CM
680 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
681 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
682 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
683
684 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
685 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
686 BTRFS_UUID_SIZE);
687
0b86a832
CM
688 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
689 btrfs_mark_buffer_dirty(leaf);
690err:
691 btrfs_free_path(path);
692 return ret;
693}
694
a1b32a59
CM
695static noinline int find_next_chunk(struct btrfs_root *root,
696 u64 objectid, u64 *offset)
0b86a832
CM
697{
698 struct btrfs_path *path;
699 int ret;
700 struct btrfs_key key;
e17cade2 701 struct btrfs_chunk *chunk;
0b86a832
CM
702 struct btrfs_key found_key;
703
704 path = btrfs_alloc_path();
705 BUG_ON(!path);
706
e17cade2 707 key.objectid = objectid;
0b86a832
CM
708 key.offset = (u64)-1;
709 key.type = BTRFS_CHUNK_ITEM_KEY;
710
711 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
712 if (ret < 0)
713 goto error;
714
715 BUG_ON(ret == 0);
716
717 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
718 if (ret) {
e17cade2 719 *offset = 0;
0b86a832
CM
720 } else {
721 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
722 path->slots[0]);
e17cade2
CM
723 if (found_key.objectid != objectid)
724 *offset = 0;
725 else {
726 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
727 struct btrfs_chunk);
728 *offset = found_key.offset +
729 btrfs_chunk_length(path->nodes[0], chunk);
730 }
0b86a832
CM
731 }
732 ret = 0;
733error:
734 btrfs_free_path(path);
735 return ret;
736}
737
a1b32a59
CM
738static noinline int find_next_devid(struct btrfs_root *root,
739 struct btrfs_path *path, u64 *objectid)
0b86a832
CM
740{
741 int ret;
742 struct btrfs_key key;
743 struct btrfs_key found_key;
744
745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
746 key.type = BTRFS_DEV_ITEM_KEY;
747 key.offset = (u64)-1;
748
749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
750 if (ret < 0)
751 goto error;
752
753 BUG_ON(ret == 0);
754
755 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
756 BTRFS_DEV_ITEM_KEY);
757 if (ret) {
758 *objectid = 1;
759 } else {
760 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
761 path->slots[0]);
762 *objectid = found_key.offset + 1;
763 }
764 ret = 0;
765error:
766 btrfs_release_path(root, path);
767 return ret;
768}
769
770/*
771 * the device information is stored in the chunk root
772 * the btrfs_device struct should be fully filled in
773 */
774int btrfs_add_device(struct btrfs_trans_handle *trans,
775 struct btrfs_root *root,
776 struct btrfs_device *device)
777{
778 int ret;
779 struct btrfs_path *path;
780 struct btrfs_dev_item *dev_item;
781 struct extent_buffer *leaf;
782 struct btrfs_key key;
783 unsigned long ptr;
006a58a2 784 u64 free_devid = 0;
0b86a832
CM
785
786 root = root->fs_info->chunk_root;
787
788 path = btrfs_alloc_path();
789 if (!path)
790 return -ENOMEM;
791
792 ret = find_next_devid(root, path, &free_devid);
793 if (ret)
794 goto out;
795
796 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
797 key.type = BTRFS_DEV_ITEM_KEY;
798 key.offset = free_devid;
799
800 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 801 sizeof(*dev_item));
0b86a832
CM
802 if (ret)
803 goto out;
804
805 leaf = path->nodes[0];
806 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
807
8a4b83cc 808 device->devid = free_devid;
0b86a832
CM
809 btrfs_set_device_id(leaf, dev_item, device->devid);
810 btrfs_set_device_type(leaf, dev_item, device->type);
811 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
812 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
813 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
814 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
815 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
816 btrfs_set_device_group(leaf, dev_item, 0);
817 btrfs_set_device_seek_speed(leaf, dev_item, 0);
818 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 819
0b86a832 820 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 821 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
822 btrfs_mark_buffer_dirty(leaf);
823 ret = 0;
824
825out:
826 btrfs_free_path(path);
827 return ret;
828}
8f18cf13 829
a061fc8d
CM
830static int btrfs_rm_dev_item(struct btrfs_root *root,
831 struct btrfs_device *device)
832{
833 int ret;
834 struct btrfs_path *path;
835 struct block_device *bdev = device->bdev;
836 struct btrfs_device *next_dev;
837 struct btrfs_key key;
838 u64 total_bytes;
839 struct btrfs_fs_devices *fs_devices;
840 struct btrfs_trans_handle *trans;
841
842 root = root->fs_info->chunk_root;
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return -ENOMEM;
847
848 trans = btrfs_start_transaction(root, 1);
849 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
850 key.type = BTRFS_DEV_ITEM_KEY;
851 key.offset = device->devid;
7d9eb12c 852 lock_chunks(root);
a061fc8d
CM
853
854 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
855 if (ret < 0)
856 goto out;
857
858 if (ret > 0) {
859 ret = -ENOENT;
860 goto out;
861 }
862
863 ret = btrfs_del_item(trans, root, path);
864 if (ret)
865 goto out;
866
867 /*
868 * at this point, the device is zero sized. We want to
869 * remove it from the devices list and zero out the old super
870 */
871 list_del_init(&device->dev_list);
872 list_del_init(&device->dev_alloc_list);
873 fs_devices = root->fs_info->fs_devices;
874
875 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
876 dev_list);
a061fc8d
CM
877 if (bdev == root->fs_info->sb->s_bdev)
878 root->fs_info->sb->s_bdev = next_dev->bdev;
879 if (bdev == fs_devices->latest_bdev)
880 fs_devices->latest_bdev = next_dev->bdev;
881
a061fc8d
CM
882 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
883 btrfs_set_super_num_devices(&root->fs_info->super_copy,
884 total_bytes - 1);
885out:
886 btrfs_free_path(path);
7d9eb12c 887 unlock_chunks(root);
a061fc8d
CM
888 btrfs_commit_transaction(trans, root);
889 return ret;
890}
891
892int btrfs_rm_device(struct btrfs_root *root, char *device_path)
893{
894 struct btrfs_device *device;
895 struct block_device *bdev;
dfe25020 896 struct buffer_head *bh = NULL;
a061fc8d
CM
897 struct btrfs_super_block *disk_super;
898 u64 all_avail;
899 u64 devid;
900 int ret = 0;
901
a061fc8d 902 mutex_lock(&uuid_mutex);
7d9eb12c 903 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
904
905 all_avail = root->fs_info->avail_data_alloc_bits |
906 root->fs_info->avail_system_alloc_bits |
907 root->fs_info->avail_metadata_alloc_bits;
908
909 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
dfe25020 910 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
a061fc8d
CM
911 printk("btrfs: unable to go below four devices on raid10\n");
912 ret = -EINVAL;
913 goto out;
914 }
915
916 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
dfe25020 917 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
a061fc8d
CM
918 printk("btrfs: unable to go below two devices on raid1\n");
919 ret = -EINVAL;
920 goto out;
921 }
922
dfe25020
CM
923 if (strcmp(device_path, "missing") == 0) {
924 struct list_head *cur;
925 struct list_head *devices;
926 struct btrfs_device *tmp;
a061fc8d 927
dfe25020
CM
928 device = NULL;
929 devices = &root->fs_info->fs_devices->devices;
930 list_for_each(cur, devices) {
931 tmp = list_entry(cur, struct btrfs_device, dev_list);
932 if (tmp->in_fs_metadata && !tmp->bdev) {
933 device = tmp;
934 break;
935 }
936 }
937 bdev = NULL;
938 bh = NULL;
939 disk_super = NULL;
940 if (!device) {
941 printk("btrfs: no missing devices found to remove\n");
942 goto out;
943 }
944
945 } else {
946 bdev = open_bdev_excl(device_path, 0,
947 root->fs_info->bdev_holder);
948 if (IS_ERR(bdev)) {
949 ret = PTR_ERR(bdev);
950 goto out;
951 }
a061fc8d 952
dfe25020
CM
953 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
954 if (!bh) {
955 ret = -EIO;
956 goto error_close;
957 }
958 disk_super = (struct btrfs_super_block *)bh->b_data;
959 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
960 sizeof(disk_super->magic))) {
961 ret = -ENOENT;
962 goto error_brelse;
963 }
964 if (memcmp(disk_super->fsid, root->fs_info->fsid,
965 BTRFS_FSID_SIZE)) {
966 ret = -ENOENT;
967 goto error_brelse;
968 }
969 devid = le64_to_cpu(disk_super->dev_item.devid);
970 device = btrfs_find_device(root, devid, NULL);
971 if (!device) {
972 ret = -ENOENT;
973 goto error_brelse;
974 }
975
976 }
a061fc8d 977 root->fs_info->fs_devices->num_devices--;
0ef3e66b 978 root->fs_info->fs_devices->open_devices--;
a061fc8d
CM
979
980 ret = btrfs_shrink_device(device, 0);
981 if (ret)
982 goto error_brelse;
983
984
985 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
986 if (ret)
987 goto error_brelse;
988
dfe25020
CM
989 if (bh) {
990 /* make sure this device isn't detected as part of
991 * the FS anymore
992 */
993 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
994 set_buffer_dirty(bh);
995 sync_dirty_buffer(bh);
a061fc8d 996
dfe25020
CM
997 brelse(bh);
998 }
a061fc8d 999
dfe25020
CM
1000 if (device->bdev) {
1001 /* one close for the device struct or super_block */
1002 close_bdev_excl(device->bdev);
1003 }
1004 if (bdev) {
1005 /* one close for us */
1006 close_bdev_excl(bdev);
1007 }
a061fc8d
CM
1008 kfree(device->name);
1009 kfree(device);
1010 ret = 0;
1011 goto out;
1012
1013error_brelse:
1014 brelse(bh);
1015error_close:
dfe25020
CM
1016 if (bdev)
1017 close_bdev_excl(bdev);
a061fc8d 1018out:
7d9eb12c 1019 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1020 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1021 return ret;
1022}
1023
788f20eb
CM
1024int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1025{
1026 struct btrfs_trans_handle *trans;
1027 struct btrfs_device *device;
1028 struct block_device *bdev;
1029 struct list_head *cur;
1030 struct list_head *devices;
1031 u64 total_bytes;
1032 int ret = 0;
1033
1034
1035 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1036 if (!bdev) {
1037 return -EIO;
1038 }
a2135011 1039
8c8bee1d 1040 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1041 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1042
788f20eb 1043 trans = btrfs_start_transaction(root, 1);
7d9eb12c 1044 lock_chunks(root);
788f20eb
CM
1045 devices = &root->fs_info->fs_devices->devices;
1046 list_for_each(cur, devices) {
1047 device = list_entry(cur, struct btrfs_device, dev_list);
1048 if (device->bdev == bdev) {
1049 ret = -EEXIST;
1050 goto out;
1051 }
1052 }
1053
1054 device = kzalloc(sizeof(*device), GFP_NOFS);
1055 if (!device) {
1056 /* we can safely leave the fs_devices entry around */
1057 ret = -ENOMEM;
1058 goto out_close_bdev;
1059 }
1060
1061 device->barriers = 1;
8b712842 1062 device->work.func = pending_bios_fn;
788f20eb
CM
1063 generate_random_uuid(device->uuid);
1064 spin_lock_init(&device->io_lock);
1065 device->name = kstrdup(device_path, GFP_NOFS);
1066 if (!device->name) {
1067 kfree(device);
1068 goto out_close_bdev;
1069 }
1070 device->io_width = root->sectorsize;
1071 device->io_align = root->sectorsize;
1072 device->sector_size = root->sectorsize;
1073 device->total_bytes = i_size_read(bdev->bd_inode);
1074 device->dev_root = root->fs_info->dev_root;
1075 device->bdev = bdev;
dfe25020 1076 device->in_fs_metadata = 1;
788f20eb
CM
1077
1078 ret = btrfs_add_device(trans, root, device);
1079 if (ret)
1080 goto out_close_bdev;
1081
325cd4ba
ZY
1082 set_blocksize(device->bdev, 4096);
1083
788f20eb
CM
1084 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1085 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1086 total_bytes + device->total_bytes);
1087
1088 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1089 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1090 total_bytes + 1);
1091
1092 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1093 list_add(&device->dev_alloc_list,
1094 &root->fs_info->fs_devices->alloc_list);
1095 root->fs_info->fs_devices->num_devices++;
a0af469b 1096 root->fs_info->fs_devices->open_devices++;
788f20eb 1097out:
7d9eb12c 1098 unlock_chunks(root);
788f20eb 1099 btrfs_end_transaction(trans, root);
7d9eb12c 1100 mutex_unlock(&root->fs_info->volume_mutex);
a2135011 1101
788f20eb
CM
1102 return ret;
1103
1104out_close_bdev:
1105 close_bdev_excl(bdev);
1106 goto out;
1107}
1108
a1b32a59
CM
1109int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
1110 struct btrfs_device *device)
0b86a832
CM
1111{
1112 int ret;
1113 struct btrfs_path *path;
1114 struct btrfs_root *root;
1115 struct btrfs_dev_item *dev_item;
1116 struct extent_buffer *leaf;
1117 struct btrfs_key key;
1118
1119 root = device->dev_root->fs_info->chunk_root;
1120
1121 path = btrfs_alloc_path();
1122 if (!path)
1123 return -ENOMEM;
1124
1125 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1126 key.type = BTRFS_DEV_ITEM_KEY;
1127 key.offset = device->devid;
1128
1129 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1130 if (ret < 0)
1131 goto out;
1132
1133 if (ret > 0) {
1134 ret = -ENOENT;
1135 goto out;
1136 }
1137
1138 leaf = path->nodes[0];
1139 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1140
1141 btrfs_set_device_id(leaf, dev_item, device->devid);
1142 btrfs_set_device_type(leaf, dev_item, device->type);
1143 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1144 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1145 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1146 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1147 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1148 btrfs_mark_buffer_dirty(leaf);
1149
1150out:
1151 btrfs_free_path(path);
1152 return ret;
1153}
1154
7d9eb12c 1155static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1156 struct btrfs_device *device, u64 new_size)
1157{
1158 struct btrfs_super_block *super_copy =
1159 &device->dev_root->fs_info->super_copy;
1160 u64 old_total = btrfs_super_total_bytes(super_copy);
1161 u64 diff = new_size - device->total_bytes;
1162
1163 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1164 return btrfs_update_device(trans, device);
1165}
1166
7d9eb12c
CM
1167int btrfs_grow_device(struct btrfs_trans_handle *trans,
1168 struct btrfs_device *device, u64 new_size)
1169{
1170 int ret;
1171 lock_chunks(device->dev_root);
1172 ret = __btrfs_grow_device(trans, device, new_size);
1173 unlock_chunks(device->dev_root);
1174 return ret;
1175}
1176
8f18cf13
CM
1177static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root,
1179 u64 chunk_tree, u64 chunk_objectid,
1180 u64 chunk_offset)
1181{
1182 int ret;
1183 struct btrfs_path *path;
1184 struct btrfs_key key;
1185
1186 root = root->fs_info->chunk_root;
1187 path = btrfs_alloc_path();
1188 if (!path)
1189 return -ENOMEM;
1190
1191 key.objectid = chunk_objectid;
1192 key.offset = chunk_offset;
1193 key.type = BTRFS_CHUNK_ITEM_KEY;
1194
1195 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1196 BUG_ON(ret);
1197
1198 ret = btrfs_del_item(trans, root, path);
1199 BUG_ON(ret);
1200
1201 btrfs_free_path(path);
1202 return 0;
1203}
1204
1205int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1206 chunk_offset)
1207{
1208 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1209 struct btrfs_disk_key *disk_key;
1210 struct btrfs_chunk *chunk;
1211 u8 *ptr;
1212 int ret = 0;
1213 u32 num_stripes;
1214 u32 array_size;
1215 u32 len = 0;
1216 u32 cur;
1217 struct btrfs_key key;
1218
1219 array_size = btrfs_super_sys_array_size(super_copy);
1220
1221 ptr = super_copy->sys_chunk_array;
1222 cur = 0;
1223
1224 while (cur < array_size) {
1225 disk_key = (struct btrfs_disk_key *)ptr;
1226 btrfs_disk_key_to_cpu(&key, disk_key);
1227
1228 len = sizeof(*disk_key);
1229
1230 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1231 chunk = (struct btrfs_chunk *)(ptr + len);
1232 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1233 len += btrfs_chunk_item_size(num_stripes);
1234 } else {
1235 ret = -EIO;
1236 break;
1237 }
1238 if (key.objectid == chunk_objectid &&
1239 key.offset == chunk_offset) {
1240 memmove(ptr, ptr + len, array_size - (cur + len));
1241 array_size -= len;
1242 btrfs_set_super_sys_array_size(super_copy, array_size);
1243 } else {
1244 ptr += len;
1245 cur += len;
1246 }
1247 }
1248 return ret;
1249}
1250
1251
1252int btrfs_relocate_chunk(struct btrfs_root *root,
1253 u64 chunk_tree, u64 chunk_objectid,
1254 u64 chunk_offset)
1255{
1256 struct extent_map_tree *em_tree;
1257 struct btrfs_root *extent_root;
1258 struct btrfs_trans_handle *trans;
1259 struct extent_map *em;
1260 struct map_lookup *map;
1261 int ret;
1262 int i;
1263
323da79c
CM
1264 printk("btrfs relocating chunk %llu\n",
1265 (unsigned long long)chunk_offset);
8f18cf13
CM
1266 root = root->fs_info->chunk_root;
1267 extent_root = root->fs_info->extent_root;
1268 em_tree = &root->fs_info->mapping_tree.map_tree;
1269
1270 /* step one, relocate all the extents inside this chunk */
1a40e23b 1271 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
8f18cf13
CM
1272 BUG_ON(ret);
1273
1274 trans = btrfs_start_transaction(root, 1);
1275 BUG_ON(!trans);
1276
7d9eb12c
CM
1277 lock_chunks(root);
1278
8f18cf13
CM
1279 /*
1280 * step two, delete the device extents and the
1281 * chunk tree entries
1282 */
1283 spin_lock(&em_tree->lock);
1284 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1285 spin_unlock(&em_tree->lock);
1286
a061fc8d
CM
1287 BUG_ON(em->start > chunk_offset ||
1288 em->start + em->len < chunk_offset);
8f18cf13
CM
1289 map = (struct map_lookup *)em->bdev;
1290
1291 for (i = 0; i < map->num_stripes; i++) {
1292 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1293 map->stripes[i].physical);
1294 BUG_ON(ret);
a061fc8d 1295
dfe25020
CM
1296 if (map->stripes[i].dev) {
1297 ret = btrfs_update_device(trans, map->stripes[i].dev);
1298 BUG_ON(ret);
1299 }
8f18cf13
CM
1300 }
1301 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1302 chunk_offset);
1303
1304 BUG_ON(ret);
1305
1306 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1307 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1308 BUG_ON(ret);
8f18cf13
CM
1309 }
1310
1a40e23b
ZY
1311 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1312 BUG_ON(ret);
1313
8f18cf13
CM
1314 spin_lock(&em_tree->lock);
1315 remove_extent_mapping(em_tree, em);
1a40e23b
ZY
1316 spin_unlock(&em_tree->lock);
1317
8f18cf13
CM
1318 kfree(map);
1319 em->bdev = NULL;
1320
1321 /* once for the tree */
1322 free_extent_map(em);
8f18cf13
CM
1323 /* once for us */
1324 free_extent_map(em);
1325
7d9eb12c 1326 unlock_chunks(root);
8f18cf13
CM
1327 btrfs_end_transaction(trans, root);
1328 return 0;
1329}
1330
ec44a35c
CM
1331static u64 div_factor(u64 num, int factor)
1332{
1333 if (factor == 10)
1334 return num;
1335 num *= factor;
1336 do_div(num, 10);
1337 return num;
1338}
1339
1340
1341int btrfs_balance(struct btrfs_root *dev_root)
1342{
1343 int ret;
1344 struct list_head *cur;
1345 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1346 struct btrfs_device *device;
1347 u64 old_size;
1348 u64 size_to_free;
1349 struct btrfs_path *path;
1350 struct btrfs_key key;
1351 struct btrfs_chunk *chunk;
1352 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1353 struct btrfs_trans_handle *trans;
1354 struct btrfs_key found_key;
1355
1356
7d9eb12c 1357 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1358 dev_root = dev_root->fs_info->dev_root;
1359
ec44a35c
CM
1360 /* step one make some room on all the devices */
1361 list_for_each(cur, devices) {
1362 device = list_entry(cur, struct btrfs_device, dev_list);
1363 old_size = device->total_bytes;
1364 size_to_free = div_factor(old_size, 1);
1365 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1366 if (device->total_bytes - device->bytes_used > size_to_free)
1367 continue;
1368
1369 ret = btrfs_shrink_device(device, old_size - size_to_free);
1370 BUG_ON(ret);
1371
1372 trans = btrfs_start_transaction(dev_root, 1);
1373 BUG_ON(!trans);
1374
1375 ret = btrfs_grow_device(trans, device, old_size);
1376 BUG_ON(ret);
1377
1378 btrfs_end_transaction(trans, dev_root);
1379 }
1380
1381 /* step two, relocate all the chunks */
1382 path = btrfs_alloc_path();
1383 BUG_ON(!path);
1384
1385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1386 key.offset = (u64)-1;
1387 key.type = BTRFS_CHUNK_ITEM_KEY;
1388
1389 while(1) {
1390 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1391 if (ret < 0)
1392 goto error;
1393
1394 /*
1395 * this shouldn't happen, it means the last relocate
1396 * failed
1397 */
1398 if (ret == 0)
1399 break;
1400
1401 ret = btrfs_previous_item(chunk_root, path, 0,
1402 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1403 if (ret)
ec44a35c 1404 break;
7d9eb12c 1405
ec44a35c
CM
1406 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1407 path->slots[0]);
1408 if (found_key.objectid != key.objectid)
1409 break;
7d9eb12c 1410
ec44a35c
CM
1411 chunk = btrfs_item_ptr(path->nodes[0],
1412 path->slots[0],
1413 struct btrfs_chunk);
1414 key.offset = found_key.offset;
1415 /* chunk zero is special */
1416 if (key.offset == 0)
1417 break;
1418
7d9eb12c 1419 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1420 ret = btrfs_relocate_chunk(chunk_root,
1421 chunk_root->root_key.objectid,
1422 found_key.objectid,
1423 found_key.offset);
1424 BUG_ON(ret);
ec44a35c
CM
1425 }
1426 ret = 0;
1427error:
1428 btrfs_free_path(path);
7d9eb12c 1429 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1430 return ret;
1431}
1432
8f18cf13
CM
1433/*
1434 * shrinking a device means finding all of the device extents past
1435 * the new size, and then following the back refs to the chunks.
1436 * The chunk relocation code actually frees the device extent
1437 */
1438int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1439{
1440 struct btrfs_trans_handle *trans;
1441 struct btrfs_root *root = device->dev_root;
1442 struct btrfs_dev_extent *dev_extent = NULL;
1443 struct btrfs_path *path;
1444 u64 length;
1445 u64 chunk_tree;
1446 u64 chunk_objectid;
1447 u64 chunk_offset;
1448 int ret;
1449 int slot;
1450 struct extent_buffer *l;
1451 struct btrfs_key key;
1452 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1453 u64 old_total = btrfs_super_total_bytes(super_copy);
1454 u64 diff = device->total_bytes - new_size;
1455
1456
1457 path = btrfs_alloc_path();
1458 if (!path)
1459 return -ENOMEM;
1460
1461 trans = btrfs_start_transaction(root, 1);
1462 if (!trans) {
1463 ret = -ENOMEM;
1464 goto done;
1465 }
1466
1467 path->reada = 2;
1468
7d9eb12c
CM
1469 lock_chunks(root);
1470
8f18cf13
CM
1471 device->total_bytes = new_size;
1472 ret = btrfs_update_device(trans, device);
1473 if (ret) {
7d9eb12c 1474 unlock_chunks(root);
8f18cf13
CM
1475 btrfs_end_transaction(trans, root);
1476 goto done;
1477 }
1478 WARN_ON(diff > old_total);
1479 btrfs_set_super_total_bytes(super_copy, old_total - diff);
7d9eb12c 1480 unlock_chunks(root);
8f18cf13
CM
1481 btrfs_end_transaction(trans, root);
1482
1483 key.objectid = device->devid;
1484 key.offset = (u64)-1;
1485 key.type = BTRFS_DEV_EXTENT_KEY;
1486
1487 while (1) {
1488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1489 if (ret < 0)
1490 goto done;
1491
1492 ret = btrfs_previous_item(root, path, 0, key.type);
1493 if (ret < 0)
1494 goto done;
1495 if (ret) {
1496 ret = 0;
1497 goto done;
1498 }
1499
1500 l = path->nodes[0];
1501 slot = path->slots[0];
1502 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1503
1504 if (key.objectid != device->devid)
1505 goto done;
1506
1507 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1508 length = btrfs_dev_extent_length(l, dev_extent);
1509
1510 if (key.offset + length <= new_size)
1511 goto done;
1512
1513 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1514 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1515 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1516 btrfs_release_path(root, path);
1517
1518 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1519 chunk_offset);
1520 if (ret)
1521 goto done;
1522 }
1523
1524done:
1525 btrfs_free_path(path);
1526 return ret;
1527}
1528
0b86a832
CM
1529int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root,
1531 struct btrfs_key *key,
1532 struct btrfs_chunk *chunk, int item_size)
1533{
1534 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1535 struct btrfs_disk_key disk_key;
1536 u32 array_size;
1537 u8 *ptr;
1538
1539 array_size = btrfs_super_sys_array_size(super_copy);
1540 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1541 return -EFBIG;
1542
1543 ptr = super_copy->sys_chunk_array + array_size;
1544 btrfs_cpu_key_to_disk(&disk_key, key);
1545 memcpy(ptr, &disk_key, sizeof(disk_key));
1546 ptr += sizeof(disk_key);
1547 memcpy(ptr, chunk, item_size);
1548 item_size += sizeof(disk_key);
1549 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1550 return 0;
1551}
1552
a1b32a59
CM
1553static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
1554 int num_stripes, int sub_stripes)
9b3f68b9
CM
1555{
1556 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1557 return calc_size;
1558 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1559 return calc_size * (num_stripes / sub_stripes);
1560 else
1561 return calc_size * num_stripes;
1562}
1563
1564
0b86a832
CM
1565int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1566 struct btrfs_root *extent_root, u64 *start,
6324fbf3 1567 u64 *num_bytes, u64 type)
0b86a832
CM
1568{
1569 u64 dev_offset;
593060d7 1570 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1571 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
8f18cf13 1572 struct btrfs_path *path;
0b86a832
CM
1573 struct btrfs_stripe *stripes;
1574 struct btrfs_device *device = NULL;
1575 struct btrfs_chunk *chunk;
6324fbf3 1576 struct list_head private_devs;
b3075717 1577 struct list_head *dev_list;
6324fbf3 1578 struct list_head *cur;
0b86a832
CM
1579 struct extent_map_tree *em_tree;
1580 struct map_lookup *map;
1581 struct extent_map *em;
a40a90a0 1582 int min_stripe_size = 1 * 1024 * 1024;
0b86a832
CM
1583 u64 physical;
1584 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1585 u64 max_chunk_size = calc_size;
1586 u64 min_free;
6324fbf3
CM
1587 u64 avail;
1588 u64 max_avail = 0;
9b3f68b9 1589 u64 percent_max;
6324fbf3 1590 int num_stripes = 1;
a40a90a0 1591 int min_stripes = 1;
321aecc6 1592 int sub_stripes = 0;
6324fbf3 1593 int looped = 0;
0b86a832 1594 int ret;
6324fbf3 1595 int index;
593060d7 1596 int stripe_len = 64 * 1024;
0b86a832
CM
1597 struct btrfs_key key;
1598
ec44a35c
CM
1599 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1600 (type & BTRFS_BLOCK_GROUP_DUP)) {
1601 WARN_ON(1);
1602 type &= ~BTRFS_BLOCK_GROUP_DUP;
1603 }
b3075717 1604 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
6324fbf3
CM
1605 if (list_empty(dev_list))
1606 return -ENOSPC;
593060d7 1607
a40a90a0 1608 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
0ef3e66b 1609 num_stripes = extent_root->fs_info->fs_devices->open_devices;
a40a90a0
CM
1610 min_stripes = 2;
1611 }
1612 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1613 num_stripes = 2;
a40a90a0
CM
1614 min_stripes = 2;
1615 }
8790d502
CM
1616 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1617 num_stripes = min_t(u64, 2,
0ef3e66b 1618 extent_root->fs_info->fs_devices->open_devices);
9b3f68b9
CM
1619 if (num_stripes < 2)
1620 return -ENOSPC;
a40a90a0 1621 min_stripes = 2;
8790d502 1622 }
321aecc6 1623 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
0ef3e66b 1624 num_stripes = extent_root->fs_info->fs_devices->open_devices;
321aecc6
CM
1625 if (num_stripes < 4)
1626 return -ENOSPC;
1627 num_stripes &= ~(u32)1;
1628 sub_stripes = 2;
a40a90a0 1629 min_stripes = 4;
321aecc6 1630 }
9b3f68b9
CM
1631
1632 if (type & BTRFS_BLOCK_GROUP_DATA) {
1633 max_chunk_size = 10 * calc_size;
a40a90a0 1634 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1635 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1636 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1637 min_stripe_size = 32 * 1024 * 1024;
1638 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1639 calc_size = 8 * 1024 * 1024;
1640 max_chunk_size = calc_size * 2;
1641 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1642 }
1643
8f18cf13
CM
1644 path = btrfs_alloc_path();
1645 if (!path)
1646 return -ENOMEM;
1647
9b3f68b9
CM
1648 /* we don't want a chunk larger than 10% of the FS */
1649 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1650 max_chunk_size = min(percent_max, max_chunk_size);
1651
a40a90a0 1652again:
9b3f68b9
CM
1653 if (calc_size * num_stripes > max_chunk_size) {
1654 calc_size = max_chunk_size;
1655 do_div(calc_size, num_stripes);
1656 do_div(calc_size, stripe_len);
1657 calc_size *= stripe_len;
1658 }
1659 /* we don't want tiny stripes */
a40a90a0 1660 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 1661
9b3f68b9
CM
1662 do_div(calc_size, stripe_len);
1663 calc_size *= stripe_len;
1664
6324fbf3
CM
1665 INIT_LIST_HEAD(&private_devs);
1666 cur = dev_list->next;
1667 index = 0;
611f0e00
CM
1668
1669 if (type & BTRFS_BLOCK_GROUP_DUP)
1670 min_free = calc_size * 2;
9b3f68b9
CM
1671 else
1672 min_free = calc_size;
611f0e00 1673
0f9dd46c
JB
1674 /*
1675 * we add 1MB because we never use the first 1MB of the device, unless
1676 * we've looped, then we are likely allocating the maximum amount of
1677 * space left already
1678 */
1679 if (!looped)
1680 min_free += 1024 * 1024;
ad5bd91e 1681
6324fbf3
CM
1682 /* build a private list of devices we will allocate from */
1683 while(index < num_stripes) {
b3075717 1684 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00 1685
dfe25020
CM
1686 if (device->total_bytes > device->bytes_used)
1687 avail = device->total_bytes - device->bytes_used;
1688 else
1689 avail = 0;
6324fbf3 1690 cur = cur->next;
8f18cf13 1691
dfe25020 1692 if (device->in_fs_metadata && avail >= min_free) {
8f18cf13
CM
1693 u64 ignored_start = 0;
1694 ret = find_free_dev_extent(trans, device, path,
1695 min_free,
1696 &ignored_start);
1697 if (ret == 0) {
1698 list_move_tail(&device->dev_alloc_list,
1699 &private_devs);
611f0e00 1700 index++;
8f18cf13
CM
1701 if (type & BTRFS_BLOCK_GROUP_DUP)
1702 index++;
1703 }
dfe25020 1704 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 1705 max_avail = avail;
6324fbf3
CM
1706 if (cur == dev_list)
1707 break;
1708 }
1709 if (index < num_stripes) {
1710 list_splice(&private_devs, dev_list);
a40a90a0
CM
1711 if (index >= min_stripes) {
1712 num_stripes = index;
1713 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1714 num_stripes /= sub_stripes;
1715 num_stripes *= sub_stripes;
1716 }
1717 looped = 1;
1718 goto again;
1719 }
6324fbf3
CM
1720 if (!looped && max_avail > 0) {
1721 looped = 1;
1722 calc_size = max_avail;
1723 goto again;
1724 }
8f18cf13 1725 btrfs_free_path(path);
6324fbf3
CM
1726 return -ENOSPC;
1727 }
e17cade2
CM
1728 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1729 key.type = BTRFS_CHUNK_ITEM_KEY;
1730 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1731 &key.offset);
8f18cf13
CM
1732 if (ret) {
1733 btrfs_free_path(path);
0b86a832 1734 return ret;
8f18cf13 1735 }
0b86a832 1736
0b86a832 1737 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
8f18cf13
CM
1738 if (!chunk) {
1739 btrfs_free_path(path);
0b86a832 1740 return -ENOMEM;
8f18cf13 1741 }
0b86a832 1742
593060d7
CM
1743 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1744 if (!map) {
1745 kfree(chunk);
8f18cf13 1746 btrfs_free_path(path);
593060d7
CM
1747 return -ENOMEM;
1748 }
8f18cf13
CM
1749 btrfs_free_path(path);
1750 path = NULL;
593060d7 1751
0b86a832 1752 stripes = &chunk->stripe;
9b3f68b9
CM
1753 *num_bytes = chunk_bytes_by_type(type, calc_size,
1754 num_stripes, sub_stripes);
0b86a832 1755
6324fbf3 1756 index = 0;
0b86a832 1757 while(index < num_stripes) {
e17cade2 1758 struct btrfs_stripe *stripe;
6324fbf3
CM
1759 BUG_ON(list_empty(&private_devs));
1760 cur = private_devs.next;
b3075717 1761 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00
CM
1762
1763 /* loop over this device again if we're doing a dup group */
1764 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1765 (index == num_stripes - 1))
b3075717 1766 list_move_tail(&device->dev_alloc_list, dev_list);
0b86a832
CM
1767
1768 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
1769 info->chunk_root->root_key.objectid,
1770 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1771 calc_size, &dev_offset);
0b86a832 1772 BUG_ON(ret);
0b86a832
CM
1773 device->bytes_used += calc_size;
1774 ret = btrfs_update_device(trans, device);
1775 BUG_ON(ret);
1776
593060d7
CM
1777 map->stripes[index].dev = device;
1778 map->stripes[index].physical = dev_offset;
e17cade2
CM
1779 stripe = stripes + index;
1780 btrfs_set_stack_stripe_devid(stripe, device->devid);
1781 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1782 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
1783 physical = dev_offset;
1784 index++;
1785 }
6324fbf3 1786 BUG_ON(!list_empty(&private_devs));
0b86a832 1787
e17cade2
CM
1788 /* key was set above */
1789 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 1790 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 1791 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
1792 btrfs_set_stack_chunk_type(chunk, type);
1793 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
1794 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1795 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 1796 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 1797 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
1798 map->sector_size = extent_root->sectorsize;
1799 map->stripe_len = stripe_len;
1800 map->io_align = stripe_len;
1801 map->io_width = stripe_len;
1802 map->type = type;
1803 map->num_stripes = num_stripes;
321aecc6 1804 map->sub_stripes = sub_stripes;
0b86a832
CM
1805
1806 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1807 btrfs_chunk_item_size(num_stripes));
1808 BUG_ON(ret);
e17cade2 1809 *start = key.offset;;
0b86a832
CM
1810
1811 em = alloc_extent_map(GFP_NOFS);
1812 if (!em)
1813 return -ENOMEM;
0b86a832 1814 em->bdev = (struct block_device *)map;
e17cade2
CM
1815 em->start = key.offset;
1816 em->len = *num_bytes;
0b86a832 1817 em->block_start = 0;
c8b97818 1818 em->block_len = em->len;
0b86a832 1819
8f18cf13
CM
1820 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1821 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1822 chunk, btrfs_chunk_item_size(num_stripes));
1823 BUG_ON(ret);
1824 }
0b86a832
CM
1825 kfree(chunk);
1826
1827 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1828 spin_lock(&em_tree->lock);
1829 ret = add_extent_mapping(em_tree, em);
0b86a832 1830 spin_unlock(&em_tree->lock);
b248a415 1831 BUG_ON(ret);
0b86a832
CM
1832 free_extent_map(em);
1833 return ret;
1834}
1835
1836void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1837{
1838 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1839}
1840
1841void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1842{
1843 struct extent_map *em;
1844
1845 while(1) {
1846 spin_lock(&tree->map_tree.lock);
1847 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1848 if (em)
1849 remove_extent_mapping(&tree->map_tree, em);
1850 spin_unlock(&tree->map_tree.lock);
1851 if (!em)
1852 break;
1853 kfree(em->bdev);
1854 /* once for us */
1855 free_extent_map(em);
1856 /* once for the tree */
1857 free_extent_map(em);
1858 }
1859}
1860
f188591e
CM
1861int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1862{
1863 struct extent_map *em;
1864 struct map_lookup *map;
1865 struct extent_map_tree *em_tree = &map_tree->map_tree;
1866 int ret;
1867
1868 spin_lock(&em_tree->lock);
1869 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 1870 spin_unlock(&em_tree->lock);
f188591e
CM
1871 BUG_ON(!em);
1872
1873 BUG_ON(em->start > logical || em->start + em->len < logical);
1874 map = (struct map_lookup *)em->bdev;
1875 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1876 ret = map->num_stripes;
321aecc6
CM
1877 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1878 ret = map->sub_stripes;
f188591e
CM
1879 else
1880 ret = 1;
1881 free_extent_map(em);
f188591e
CM
1882 return ret;
1883}
1884
dfe25020
CM
1885static int find_live_mirror(struct map_lookup *map, int first, int num,
1886 int optimal)
1887{
1888 int i;
1889 if (map->stripes[optimal].dev->bdev)
1890 return optimal;
1891 for (i = first; i < first + num; i++) {
1892 if (map->stripes[i].dev->bdev)
1893 return i;
1894 }
1895 /* we couldn't find one that doesn't fail. Just return something
1896 * and the io error handling code will clean up eventually
1897 */
1898 return optimal;
1899}
1900
f2d8d74d
CM
1901static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1902 u64 logical, u64 *length,
1903 struct btrfs_multi_bio **multi_ret,
1904 int mirror_num, struct page *unplug_page)
0b86a832
CM
1905{
1906 struct extent_map *em;
1907 struct map_lookup *map;
1908 struct extent_map_tree *em_tree = &map_tree->map_tree;
1909 u64 offset;
593060d7
CM
1910 u64 stripe_offset;
1911 u64 stripe_nr;
cea9e445 1912 int stripes_allocated = 8;
321aecc6 1913 int stripes_required = 1;
593060d7 1914 int stripe_index;
cea9e445 1915 int i;
f2d8d74d 1916 int num_stripes;
a236aed1 1917 int max_errors = 0;
cea9e445 1918 struct btrfs_multi_bio *multi = NULL;
0b86a832 1919
cea9e445
CM
1920 if (multi_ret && !(rw & (1 << BIO_RW))) {
1921 stripes_allocated = 1;
1922 }
1923again:
1924 if (multi_ret) {
1925 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1926 GFP_NOFS);
1927 if (!multi)
1928 return -ENOMEM;
a236aed1
CM
1929
1930 atomic_set(&multi->error, 0);
cea9e445 1931 }
0b86a832
CM
1932
1933 spin_lock(&em_tree->lock);
1934 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 1935 spin_unlock(&em_tree->lock);
f2d8d74d
CM
1936
1937 if (!em && unplug_page)
1938 return 0;
1939
3b951516 1940 if (!em) {
a061fc8d 1941 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 1942 BUG();
3b951516 1943 }
0b86a832
CM
1944
1945 BUG_ON(em->start > logical || em->start + em->len < logical);
1946 map = (struct map_lookup *)em->bdev;
1947 offset = logical - em->start;
593060d7 1948
f188591e
CM
1949 if (mirror_num > map->num_stripes)
1950 mirror_num = 0;
1951
cea9e445 1952 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
1953 if (rw & (1 << BIO_RW)) {
1954 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1955 BTRFS_BLOCK_GROUP_DUP)) {
1956 stripes_required = map->num_stripes;
a236aed1 1957 max_errors = 1;
321aecc6
CM
1958 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1959 stripes_required = map->sub_stripes;
a236aed1 1960 max_errors = 1;
321aecc6
CM
1961 }
1962 }
1963 if (multi_ret && rw == WRITE &&
1964 stripes_allocated < stripes_required) {
cea9e445 1965 stripes_allocated = map->num_stripes;
cea9e445
CM
1966 free_extent_map(em);
1967 kfree(multi);
1968 goto again;
1969 }
593060d7
CM
1970 stripe_nr = offset;
1971 /*
1972 * stripe_nr counts the total number of stripes we have to stride
1973 * to get to this block
1974 */
1975 do_div(stripe_nr, map->stripe_len);
1976
1977 stripe_offset = stripe_nr * map->stripe_len;
1978 BUG_ON(offset < stripe_offset);
1979
1980 /* stripe_offset is the offset of this block in its stripe*/
1981 stripe_offset = offset - stripe_offset;
1982
cea9e445 1983 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 1984 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
1985 BTRFS_BLOCK_GROUP_DUP)) {
1986 /* we limit the length of each bio to what fits in a stripe */
1987 *length = min_t(u64, em->len - offset,
1988 map->stripe_len - stripe_offset);
1989 } else {
1990 *length = em->len - offset;
1991 }
f2d8d74d
CM
1992
1993 if (!multi_ret && !unplug_page)
cea9e445
CM
1994 goto out;
1995
f2d8d74d 1996 num_stripes = 1;
cea9e445 1997 stripe_index = 0;
8790d502 1998 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
1999 if (unplug_page || (rw & (1 << BIO_RW)))
2000 num_stripes = map->num_stripes;
2fff734f 2001 else if (mirror_num)
f188591e 2002 stripe_index = mirror_num - 1;
dfe25020
CM
2003 else {
2004 stripe_index = find_live_mirror(map, 0,
2005 map->num_stripes,
2006 current->pid % map->num_stripes);
2007 }
2fff734f 2008
611f0e00 2009 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 2010 if (rw & (1 << BIO_RW))
f2d8d74d 2011 num_stripes = map->num_stripes;
f188591e
CM
2012 else if (mirror_num)
2013 stripe_index = mirror_num - 1;
2fff734f 2014
321aecc6
CM
2015 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2016 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2017
2018 stripe_index = do_div(stripe_nr, factor);
2019 stripe_index *= map->sub_stripes;
2020
f2d8d74d
CM
2021 if (unplug_page || (rw & (1 << BIO_RW)))
2022 num_stripes = map->sub_stripes;
321aecc6
CM
2023 else if (mirror_num)
2024 stripe_index += mirror_num - 1;
dfe25020
CM
2025 else {
2026 stripe_index = find_live_mirror(map, stripe_index,
2027 map->sub_stripes, stripe_index +
2028 current->pid % map->sub_stripes);
2029 }
8790d502
CM
2030 } else {
2031 /*
2032 * after this do_div call, stripe_nr is the number of stripes
2033 * on this device we have to walk to find the data, and
2034 * stripe_index is the number of our device in the stripe array
2035 */
2036 stripe_index = do_div(stripe_nr, map->num_stripes);
2037 }
593060d7 2038 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2039
f2d8d74d
CM
2040 for (i = 0; i < num_stripes; i++) {
2041 if (unplug_page) {
2042 struct btrfs_device *device;
2043 struct backing_dev_info *bdi;
2044
2045 device = map->stripes[stripe_index].dev;
dfe25020
CM
2046 if (device->bdev) {
2047 bdi = blk_get_backing_dev_info(device->bdev);
2048 if (bdi->unplug_io_fn) {
2049 bdi->unplug_io_fn(bdi, unplug_page);
2050 }
f2d8d74d
CM
2051 }
2052 } else {
2053 multi->stripes[i].physical =
2054 map->stripes[stripe_index].physical +
2055 stripe_offset + stripe_nr * map->stripe_len;
2056 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2057 }
cea9e445 2058 stripe_index++;
593060d7 2059 }
f2d8d74d
CM
2060 if (multi_ret) {
2061 *multi_ret = multi;
2062 multi->num_stripes = num_stripes;
a236aed1 2063 multi->max_errors = max_errors;
f2d8d74d 2064 }
cea9e445 2065out:
0b86a832 2066 free_extent_map(em);
0b86a832
CM
2067 return 0;
2068}
2069
f2d8d74d
CM
2070int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2071 u64 logical, u64 *length,
2072 struct btrfs_multi_bio **multi_ret, int mirror_num)
2073{
2074 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2075 mirror_num, NULL);
2076}
2077
2078int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2079 u64 logical, struct page *page)
2080{
2081 u64 length = PAGE_CACHE_SIZE;
2082 return __btrfs_map_block(map_tree, READ, logical, &length,
2083 NULL, 0, page);
2084}
2085
2086
8790d502 2087static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 2088{
cea9e445 2089 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2090 int is_orig_bio = 0;
8790d502 2091
8790d502 2092 if (err)
a236aed1 2093 atomic_inc(&multi->error);
8790d502 2094
7d2b4daa
CM
2095 if (bio == multi->orig_bio)
2096 is_orig_bio = 1;
2097
cea9e445 2098 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2099 if (!is_orig_bio) {
2100 bio_put(bio);
2101 bio = multi->orig_bio;
2102 }
8790d502
CM
2103 bio->bi_private = multi->private;
2104 bio->bi_end_io = multi->end_io;
a236aed1
CM
2105 /* only send an error to the higher layers if it is
2106 * beyond the tolerance of the multi-bio
2107 */
1259ab75 2108 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2109 err = -EIO;
1259ab75
CM
2110 } else if (err) {
2111 /*
2112 * this bio is actually up to date, we didn't
2113 * go over the max number of errors
2114 */
2115 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2116 err = 0;
1259ab75 2117 }
8790d502
CM
2118 kfree(multi);
2119
2120 bio_endio(bio, err);
7d2b4daa 2121 } else if (!is_orig_bio) {
8790d502
CM
2122 bio_put(bio);
2123 }
8790d502
CM
2124}
2125
8b712842
CM
2126struct async_sched {
2127 struct bio *bio;
2128 int rw;
2129 struct btrfs_fs_info *info;
2130 struct btrfs_work work;
2131};
2132
2133/*
2134 * see run_scheduled_bios for a description of why bios are collected for
2135 * async submit.
2136 *
2137 * This will add one bio to the pending list for a device and make sure
2138 * the work struct is scheduled.
2139 */
a1b32a59
CM
2140static int noinline schedule_bio(struct btrfs_root *root,
2141 struct btrfs_device *device,
2142 int rw, struct bio *bio)
8b712842
CM
2143{
2144 int should_queue = 1;
2145
2146 /* don't bother with additional async steps for reads, right now */
2147 if (!(rw & (1 << BIO_RW))) {
492bb6de 2148 bio_get(bio);
8b712842 2149 submit_bio(rw, bio);
492bb6de 2150 bio_put(bio);
8b712842
CM
2151 return 0;
2152 }
2153
2154 /*
0986fe9e 2155 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2156 * higher layers. Otherwise, the async bio makes it appear we have
2157 * made progress against dirty pages when we've really just put it
2158 * on a queue for later
2159 */
0986fe9e 2160 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2161 WARN_ON(bio->bi_next);
8b712842
CM
2162 bio->bi_next = NULL;
2163 bio->bi_rw |= rw;
2164
2165 spin_lock(&device->io_lock);
2166
2167 if (device->pending_bio_tail)
2168 device->pending_bio_tail->bi_next = bio;
2169
2170 device->pending_bio_tail = bio;
2171 if (!device->pending_bios)
2172 device->pending_bios = bio;
2173 if (device->running_pending)
2174 should_queue = 0;
2175
2176 spin_unlock(&device->io_lock);
2177
2178 if (should_queue)
1cc127b5
CM
2179 btrfs_queue_worker(&root->fs_info->submit_workers,
2180 &device->work);
8b712842
CM
2181 return 0;
2182}
2183
f188591e 2184int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2185 int mirror_num, int async_submit)
0b86a832
CM
2186{
2187 struct btrfs_mapping_tree *map_tree;
2188 struct btrfs_device *dev;
8790d502 2189 struct bio *first_bio = bio;
a62b9401 2190 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
2191 u64 length = 0;
2192 u64 map_length;
cea9e445 2193 struct btrfs_multi_bio *multi = NULL;
0b86a832 2194 int ret;
8790d502
CM
2195 int dev_nr = 0;
2196 int total_devs = 1;
0b86a832 2197
f2d8d74d 2198 length = bio->bi_size;
0b86a832
CM
2199 map_tree = &root->fs_info->mapping_tree;
2200 map_length = length;
cea9e445 2201
f188591e
CM
2202 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2203 mirror_num);
cea9e445
CM
2204 BUG_ON(ret);
2205
2206 total_devs = multi->num_stripes;
2207 if (map_length < length) {
2208 printk("mapping failed logical %Lu bio len %Lu "
2209 "len %Lu\n", logical, length, map_length);
2210 BUG();
2211 }
2212 multi->end_io = first_bio->bi_end_io;
2213 multi->private = first_bio->bi_private;
7d2b4daa 2214 multi->orig_bio = first_bio;
cea9e445
CM
2215 atomic_set(&multi->stripes_pending, multi->num_stripes);
2216
8790d502 2217 while(dev_nr < total_devs) {
8790d502 2218 if (total_devs > 1) {
8790d502
CM
2219 if (dev_nr < total_devs - 1) {
2220 bio = bio_clone(first_bio, GFP_NOFS);
2221 BUG_ON(!bio);
2222 } else {
2223 bio = first_bio;
2224 }
2225 bio->bi_private = multi;
2226 bio->bi_end_io = end_bio_multi_stripe;
2227 }
cea9e445
CM
2228 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2229 dev = multi->stripes[dev_nr].dev;
dfe25020
CM
2230 if (dev && dev->bdev) {
2231 bio->bi_bdev = dev->bdev;
8b712842
CM
2232 if (async_submit)
2233 schedule_bio(root, dev, rw, bio);
2234 else
2235 submit_bio(rw, bio);
dfe25020
CM
2236 } else {
2237 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2238 bio->bi_sector = logical >> 9;
dfe25020 2239 bio_endio(bio, -EIO);
dfe25020 2240 }
8790d502
CM
2241 dev_nr++;
2242 }
cea9e445
CM
2243 if (total_devs == 1)
2244 kfree(multi);
0b86a832
CM
2245 return 0;
2246}
2247
a443755f
CM
2248struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2249 u8 *uuid)
0b86a832 2250{
8a4b83cc 2251 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 2252
a443755f 2253 return __find_device(head, devid, uuid);
0b86a832
CM
2254}
2255
dfe25020
CM
2256static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2257 u64 devid, u8 *dev_uuid)
2258{
2259 struct btrfs_device *device;
2260 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2261
2262 device = kzalloc(sizeof(*device), GFP_NOFS);
2263 list_add(&device->dev_list,
2264 &fs_devices->devices);
2265 list_add(&device->dev_alloc_list,
2266 &fs_devices->alloc_list);
2267 device->barriers = 1;
2268 device->dev_root = root->fs_info->dev_root;
2269 device->devid = devid;
8b712842 2270 device->work.func = pending_bios_fn;
dfe25020
CM
2271 fs_devices->num_devices++;
2272 spin_lock_init(&device->io_lock);
2273 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2274 return device;
2275}
2276
2277
0b86a832
CM
2278static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2279 struct extent_buffer *leaf,
2280 struct btrfs_chunk *chunk)
2281{
2282 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2283 struct map_lookup *map;
2284 struct extent_map *em;
2285 u64 logical;
2286 u64 length;
2287 u64 devid;
a443755f 2288 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2289 int num_stripes;
0b86a832 2290 int ret;
593060d7 2291 int i;
0b86a832 2292
e17cade2
CM
2293 logical = key->offset;
2294 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2295
0b86a832
CM
2296 spin_lock(&map_tree->map_tree.lock);
2297 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2298 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2299
2300 /* already mapped? */
2301 if (em && em->start <= logical && em->start + em->len > logical) {
2302 free_extent_map(em);
0b86a832
CM
2303 return 0;
2304 } else if (em) {
2305 free_extent_map(em);
2306 }
0b86a832
CM
2307
2308 map = kzalloc(sizeof(*map), GFP_NOFS);
2309 if (!map)
2310 return -ENOMEM;
2311
2312 em = alloc_extent_map(GFP_NOFS);
2313 if (!em)
2314 return -ENOMEM;
593060d7
CM
2315 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2316 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2317 if (!map) {
2318 free_extent_map(em);
2319 return -ENOMEM;
2320 }
2321
2322 em->bdev = (struct block_device *)map;
2323 em->start = logical;
2324 em->len = length;
2325 em->block_start = 0;
c8b97818 2326 em->block_len = em->len;
0b86a832 2327
593060d7
CM
2328 map->num_stripes = num_stripes;
2329 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2330 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2331 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2332 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2333 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2334 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2335 for (i = 0; i < num_stripes; i++) {
2336 map->stripes[i].physical =
2337 btrfs_stripe_offset_nr(leaf, chunk, i);
2338 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2339 read_extent_buffer(leaf, uuid, (unsigned long)
2340 btrfs_stripe_dev_uuid_nr(chunk, i),
2341 BTRFS_UUID_SIZE);
2342 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
dfe25020
CM
2343
2344 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2345 kfree(map);
2346 free_extent_map(em);
2347 return -EIO;
2348 }
dfe25020
CM
2349 if (!map->stripes[i].dev) {
2350 map->stripes[i].dev =
2351 add_missing_dev(root, devid, uuid);
2352 if (!map->stripes[i].dev) {
2353 kfree(map);
2354 free_extent_map(em);
2355 return -EIO;
2356 }
2357 }
2358 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2359 }
2360
2361 spin_lock(&map_tree->map_tree.lock);
2362 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2363 spin_unlock(&map_tree->map_tree.lock);
b248a415 2364 BUG_ON(ret);
0b86a832
CM
2365 free_extent_map(em);
2366
2367 return 0;
2368}
2369
2370static int fill_device_from_item(struct extent_buffer *leaf,
2371 struct btrfs_dev_item *dev_item,
2372 struct btrfs_device *device)
2373{
2374 unsigned long ptr;
0b86a832
CM
2375
2376 device->devid = btrfs_device_id(leaf, dev_item);
2377 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2378 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2379 device->type = btrfs_device_type(leaf, dev_item);
2380 device->io_align = btrfs_device_io_align(leaf, dev_item);
2381 device->io_width = btrfs_device_io_width(leaf, dev_item);
2382 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2383
2384 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2385 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2386
0b86a832
CM
2387 return 0;
2388}
2389
0d81ba5d 2390static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
2391 struct extent_buffer *leaf,
2392 struct btrfs_dev_item *dev_item)
2393{
2394 struct btrfs_device *device;
2395 u64 devid;
2396 int ret;
a443755f
CM
2397 u8 dev_uuid[BTRFS_UUID_SIZE];
2398
0b86a832 2399 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
2400 read_extent_buffer(leaf, dev_uuid,
2401 (unsigned long)btrfs_device_uuid(dev_item),
2402 BTRFS_UUID_SIZE);
2403 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 2404 if (!device) {
dfe25020
CM
2405 printk("warning devid %Lu missing\n", devid);
2406 device = add_missing_dev(root, devid, dev_uuid);
6324fbf3
CM
2407 if (!device)
2408 return -ENOMEM;
6324fbf3 2409 }
0b86a832
CM
2410
2411 fill_device_from_item(leaf, dev_item, device);
2412 device->dev_root = root->fs_info->dev_root;
dfe25020 2413 device->in_fs_metadata = 1;
0b86a832
CM
2414 ret = 0;
2415#if 0
2416 ret = btrfs_open_device(device);
2417 if (ret) {
2418 kfree(device);
2419 }
2420#endif
2421 return ret;
2422}
2423
0d81ba5d
CM
2424int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2425{
2426 struct btrfs_dev_item *dev_item;
2427
2428 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2429 dev_item);
2430 return read_one_dev(root, buf, dev_item);
2431}
2432
0b86a832
CM
2433int btrfs_read_sys_array(struct btrfs_root *root)
2434{
2435 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 2436 struct extent_buffer *sb;
0b86a832 2437 struct btrfs_disk_key *disk_key;
0b86a832 2438 struct btrfs_chunk *chunk;
84eed90f
CM
2439 u8 *ptr;
2440 unsigned long sb_ptr;
2441 int ret = 0;
0b86a832
CM
2442 u32 num_stripes;
2443 u32 array_size;
2444 u32 len = 0;
0b86a832 2445 u32 cur;
84eed90f 2446 struct btrfs_key key;
0b86a832 2447
a061fc8d
CM
2448 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2449 BTRFS_SUPER_INFO_SIZE);
2450 if (!sb)
2451 return -ENOMEM;
2452 btrfs_set_buffer_uptodate(sb);
2453 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
2454 array_size = btrfs_super_sys_array_size(super_copy);
2455
0b86a832
CM
2456 ptr = super_copy->sys_chunk_array;
2457 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2458 cur = 0;
2459
2460 while (cur < array_size) {
2461 disk_key = (struct btrfs_disk_key *)ptr;
2462 btrfs_disk_key_to_cpu(&key, disk_key);
2463
a061fc8d 2464 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
2465 sb_ptr += len;
2466 cur += len;
2467
0d81ba5d 2468 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 2469 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 2470 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
2471 if (ret)
2472 break;
0b86a832
CM
2473 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2474 len = btrfs_chunk_item_size(num_stripes);
2475 } else {
84eed90f
CM
2476 ret = -EIO;
2477 break;
0b86a832
CM
2478 }
2479 ptr += len;
2480 sb_ptr += len;
2481 cur += len;
2482 }
a061fc8d 2483 free_extent_buffer(sb);
84eed90f 2484 return ret;
0b86a832
CM
2485}
2486
2487int btrfs_read_chunk_tree(struct btrfs_root *root)
2488{
2489 struct btrfs_path *path;
2490 struct extent_buffer *leaf;
2491 struct btrfs_key key;
2492 struct btrfs_key found_key;
2493 int ret;
2494 int slot;
2495
2496 root = root->fs_info->chunk_root;
2497
2498 path = btrfs_alloc_path();
2499 if (!path)
2500 return -ENOMEM;
2501
2502 /* first we search for all of the device items, and then we
2503 * read in all of the chunk items. This way we can create chunk
2504 * mappings that reference all of the devices that are afound
2505 */
2506 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2507 key.offset = 0;
2508 key.type = 0;
2509again:
2510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2511 while(1) {
2512 leaf = path->nodes[0];
2513 slot = path->slots[0];
2514 if (slot >= btrfs_header_nritems(leaf)) {
2515 ret = btrfs_next_leaf(root, path);
2516 if (ret == 0)
2517 continue;
2518 if (ret < 0)
2519 goto error;
2520 break;
2521 }
2522 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2523 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2524 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2525 break;
2526 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2527 struct btrfs_dev_item *dev_item;
2528 dev_item = btrfs_item_ptr(leaf, slot,
2529 struct btrfs_dev_item);
0d81ba5d 2530 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
2531 BUG_ON(ret);
2532 }
2533 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2534 struct btrfs_chunk *chunk;
2535 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2536 ret = read_one_chunk(root, &found_key, leaf, chunk);
2537 }
2538 path->slots[0]++;
2539 }
2540 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2541 key.objectid = 0;
2542 btrfs_release_path(root, path);
2543 goto again;
2544 }
2545
2546 btrfs_free_path(path);
2547 ret = 0;
2548error:
2549 return ret;
2550}