btrfs: zoned: fix ordered extent boundary calculation
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
b0643e59 33#include "discard.h"
5b316468 34#include "zoned.h"
0b86a832 35
af902047
ZL
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 41 .devs_min = 2,
8789f4fe 42 .tolerated_failures = 1,
af902047
ZL
43 .devs_increment = 2,
44 .ncopies = 2,
b50836ed 45 .nparity = 0,
ed23467b 46 .raid_name = "raid10",
41a6e891 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
8789f4fe 55 .tolerated_failures = 1,
af902047
ZL
56 .devs_increment = 2,
57 .ncopies = 2,
b50836ed 58 .nparity = 0,
ed23467b 59 .raid_name = "raid1",
41a6e891 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 62 },
47e6f742
DS
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
cf93e15e 66 .devs_max = 3,
47e6f742
DS
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
db26a024 71 .nparity = 0,
47e6f742
DS
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
8d6fac00
DS
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
cf93e15e 79 .devs_max = 4,
8d6fac00
DS
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
db26a024 84 .nparity = 0,
8d6fac00
DS
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
af902047
ZL
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
8789f4fe 94 .tolerated_failures = 0,
af902047
ZL
95 .devs_increment = 1,
96 .ncopies = 2,
b50836ed 97 .nparity = 0,
ed23467b 98 .raid_name = "dup",
41a6e891 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 100 .mindev_error = 0,
af902047
ZL
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
b2f78e88 106 .devs_min = 1,
8789f4fe 107 .tolerated_failures = 0,
af902047
ZL
108 .devs_increment = 1,
109 .ncopies = 1,
b50836ed 110 .nparity = 0,
ed23467b 111 .raid_name = "raid0",
41a6e891 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 113 .mindev_error = 0,
af902047
ZL
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
8789f4fe 120 .tolerated_failures = 0,
af902047
ZL
121 .devs_increment = 1,
122 .ncopies = 1,
b50836ed 123 .nparity = 0,
ed23467b 124 .raid_name = "single",
41a6e891 125 .bg_flag = 0,
f9fbcaa2 126 .mindev_error = 0,
af902047
ZL
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
8789f4fe 133 .tolerated_failures = 1,
af902047 134 .devs_increment = 1,
da612e31 135 .ncopies = 1,
b50836ed 136 .nparity = 1,
ed23467b 137 .raid_name = "raid5",
41a6e891 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
8789f4fe 146 .tolerated_failures = 2,
af902047 147 .devs_increment = 1,
da612e31 148 .ncopies = 1,
b50836ed 149 .nparity = 2,
ed23467b 150 .raid_name = "raid6",
41a6e891 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
153 },
154};
155
500a44c9
DS
156/*
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
159 */
160enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161{
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
178
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180}
181
158da513 182const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 183{
158da513
DS
184 const int index = btrfs_bg_flags_to_raid_index(flags);
185
186 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
187 return NULL;
188
158da513 189 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
190}
191
f89e09cf
AJ
192/*
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
195 */
196void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197{
198 int i;
199 int ret;
200 char *bp = buf;
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
203
204 if (!flags) {
205 strcpy(bp, "NONE");
206 return;
207 }
208
209#define DESCRIBE_FLAG(flag, desc) \
210 do { \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
214 goto out_overflow; \
215 size_bp -= ret; \
216 bp += ret; \
217 flags &= ~(flag); \
218 } \
219 } while (0)
220
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
229#undef DESCRIBE_FLAG
230
231 if (flags) {
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 size_bp -= ret;
234 }
235
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239 /*
240 * The text is trimmed, it's up to the caller to provide sufficiently
241 * large buffer
242 */
243out_overflow:;
244}
245
6f8e0fc7 246static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 247static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 248static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 249static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
250static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
2b82032c 255
9c6b1c4d
DS
256/*
257 * Device locking
258 * ==============
259 *
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
262 *
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
268 *
269 * the mutex can be very coarse and can cover long-running operations
270 *
271 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 272 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
273 *
274 * global::fs_devs - add, remove, updates to the global list
275 *
18c850fd
JB
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
278 * scan ioctl
9c6b1c4d
DS
279 *
280 * btrfs_device::name - renames (write side), read is RCU
281 *
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
285 *
286 * simple list traversal with read-only actions can be done with RCU protection
287 *
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
290 *
18c850fd
JB
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
293 *
9c6b1c4d
DS
294 * balance_mutex
295 * -------------
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
298 *
299 * chunk_mutex
300 * -----------
301 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
305 *
306 * cleaner_mutex
307 * -------------
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
310 *
311 *
312 * Lock nesting
313 * ============
314 *
315 * uuid_mutex
ae3e715f
AJ
316 * device_list_mutex
317 * chunk_mutex
318 * balance_mutex
89595e80
AJ
319 *
320 *
c3e1f96c
GR
321 * Exclusive operations
322 * ====================
89595e80
AJ
323 *
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
326 *
327 * - Balance (*)
328 * - Device add
329 * - Device remove
330 * - Device replace (*)
331 * - Resize
332 *
333 * The device operations (as above) can be in one of the following states:
334 *
335 * - Running state
336 * - Paused state
337 * - Completed state
338 *
339 * Only device operations marked with (*) can go into the Paused state for the
340 * following reasons:
341 *
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
347 *
c3e1f96c
GR
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 352 * The exclusive status is cleared when the device operation is canceled or
89595e80 353 * completed.
9c6b1c4d
DS
354 */
355
67a2c45e 356DEFINE_MUTEX(uuid_mutex);
8a4b83cc 357static LIST_HEAD(fs_uuids);
4143cb8b 358struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
359{
360 return &fs_uuids;
361}
8a4b83cc 362
2dfeca9b
DS
363/*
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
367 *
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
371 */
7239ff4b
NB
372static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
2208a378
ID
374{
375 struct btrfs_fs_devices *fs_devs;
376
78f2c9e6 377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
378 if (!fs_devs)
379 return ERR_PTR(-ENOMEM);
380
381 mutex_init(&fs_devs->device_list_mutex);
382
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 385 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 386 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
387 if (fsid)
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 389
7239ff4b
NB
390 if (metadata_fsid)
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 else if (fsid)
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
2208a378
ID
395 return fs_devs;
396}
397
a425f9d4 398void btrfs_free_device(struct btrfs_device *device)
48dae9cf 399{
bbbf7243 400 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 401 rcu_string_free(device->name);
1c11b63e 402 extent_io_tree_release(&device->alloc_state);
48dae9cf 403 bio_put(device->flush_bio);
5b316468 404 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
405 kfree(device);
406}
407
e4404d6e
YZ
408static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409{
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
a425f9d4 416 btrfs_free_device(device);
e4404d6e
YZ
417 }
418 kfree(fs_devices);
419}
420
ffc5a379 421void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
422{
423 struct btrfs_fs_devices *fs_devices;
8a4b83cc 424
2b82032c
YZ
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
e4404d6e 429 free_fs_devices(fs_devices);
8a4b83cc 430 }
8a4b83cc
CM
431}
432
7239ff4b
NB
433static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 435{
8a4b83cc
CM
436 struct btrfs_fs_devices *fs_devices;
437
7239ff4b
NB
438 ASSERT(fsid);
439
7a62d0f0 440 /* Handle non-split brain cases */
c4babc5e 441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
8a4b83cc
CM
451 }
452 return NULL;
453}
454
c6730a0e
SY
455static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457{
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493}
494
495
beaf8ab3
SB
496static int
497btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
8f32380d 499 struct btrfs_super_block **disk_super)
beaf8ab3
SB
500{
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
beaf8ab3
SB
507 goto error;
508 }
509
510 if (flush)
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
8f32380d
JT
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527error:
528 *bdev = NULL;
beaf8ab3
SB
529 return ret;
530}
531
70bc7088
AJ
532static bool device_path_matched(const char *path, struct btrfs_device *device)
533{
534 int found;
535
536 rcu_read_lock();
537 found = strcmp(rcu_str_deref(device->name), path);
538 rcu_read_unlock();
539
540 return found == 0;
541}
542
d8367db3
AJ
543/*
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
549 * devices.
70bc7088
AJ
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
d8367db3 553 */
70bc7088 554static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 555 struct btrfs_device *skip_device)
4fde46f0 556{
fa6d2ae5
AJ
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
559 int ret = 0;
560
561 if (path)
562 ret = -ENOENT;
4fde46f0 563
fa6d2ae5 564 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 565
70bc7088 566 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
567 list_for_each_entry_safe(device, tmp_device,
568 &fs_devices->devices, dev_list) {
fa6d2ae5 569 if (skip_device && skip_device == device)
d8367db3 570 continue;
fa6d2ae5 571 if (path && !device->name)
4fde46f0 572 continue;
70bc7088 573 if (path && !device_path_matched(path, device))
38cf665d 574 continue;
70bc7088
AJ
575 if (fs_devices->opened) {
576 /* for an already deleted device return 0 */
577 if (path && ret != 0)
578 ret = -EBUSY;
579 break;
580 }
4fde46f0 581
4fde46f0 582 /* delete the stale device */
7bcb8164
AJ
583 fs_devices->num_devices--;
584 list_del(&device->dev_list);
585 btrfs_free_device(device);
586
70bc7088 587 ret = 0;
7bcb8164
AJ
588 }
589 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 590
7bcb8164
AJ
591 if (fs_devices->num_devices == 0) {
592 btrfs_sysfs_remove_fsid(fs_devices);
593 list_del(&fs_devices->fs_list);
594 free_fs_devices(fs_devices);
4fde46f0
AJ
595 }
596 }
70bc7088
AJ
597
598 return ret;
4fde46f0
AJ
599}
600
18c850fd
JB
601/*
602 * This is only used on mount, and we are protected from competing things
603 * messing with our fs_devices by the uuid_mutex, thus we do not need the
604 * fs_devices->device_list_mutex here.
605 */
0fb08bcc
AJ
606static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 struct btrfs_device *device, fmode_t flags,
608 void *holder)
609{
610 struct request_queue *q;
611 struct block_device *bdev;
0fb08bcc
AJ
612 struct btrfs_super_block *disk_super;
613 u64 devid;
614 int ret;
615
616 if (device->bdev)
617 return -EINVAL;
618 if (!device->name)
619 return -EINVAL;
620
621 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 622 &bdev, &disk_super);
0fb08bcc
AJ
623 if (ret)
624 return ret;
625
0fb08bcc
AJ
626 devid = btrfs_stack_device_id(&disk_super->dev_item);
627 if (devid != device->devid)
8f32380d 628 goto error_free_page;
0fb08bcc
AJ
629
630 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 631 goto error_free_page;
0fb08bcc
AJ
632
633 device->generation = btrfs_super_generation(disk_super);
634
635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
636 if (btrfs_super_incompat_flags(disk_super) &
637 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 pr_err(
639 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 640 goto error_free_page;
7239ff4b
NB
641 }
642
ebbede42 643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 644 fs_devices->seeding = true;
0fb08bcc 645 } else {
ebbede42
AJ
646 if (bdev_read_only(bdev))
647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 else
649 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
650 }
651
652 q = bdev_get_queue(bdev);
0fb08bcc 653 if (!blk_queue_nonrot(q))
7f0432d0 654 fs_devices->rotating = true;
0fb08bcc
AJ
655
656 device->bdev = bdev;
e12c9621 657 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
658 device->mode = flags;
659
660 fs_devices->open_devices++;
ebbede42
AJ
661 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 663 fs_devices->rw_devices++;
b1b8e386 664 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 665 }
8f32380d 666 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
667
668 return 0;
669
8f32380d
JT
670error_free_page:
671 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
672 blkdev_put(bdev, flags);
673
674 return -EINVAL;
675}
676
7a62d0f0
NB
677/*
678 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
679 * being created with a disk that has already completed its fsid change. Such
680 * disk can belong to an fs which has its FSID changed or to one which doesn't.
681 * Handle both cases here.
7a62d0f0
NB
682 */
683static struct btrfs_fs_devices *find_fsid_inprogress(
684 struct btrfs_super_block *disk_super)
685{
686 struct btrfs_fs_devices *fs_devices;
687
688 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 BTRFS_FSID_SIZE) != 0 &&
691 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 return fs_devices;
694 }
695 }
696
c0d81c7c 697 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
698}
699
cc5de4e7
NB
700
701static struct btrfs_fs_devices *find_fsid_changed(
702 struct btrfs_super_block *disk_super)
703{
704 struct btrfs_fs_devices *fs_devices;
705
706 /*
707 * Handles the case where scanned device is part of an fs that had
1a9fd417 708 * multiple successful changes of FSID but currently device didn't
05840710
NB
709 * observe it. Meaning our fsid will be different than theirs. We need
710 * to handle two subcases :
711 * 1 - The fs still continues to have different METADATA/FSID uuids.
712 * 2 - The fs is switched back to its original FSID (METADATA/FSID
713 * are equal).
cc5de4e7
NB
714 */
715 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 716 /* Changed UUIDs */
cc5de4e7
NB
717 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 BTRFS_FSID_SIZE) != 0 &&
719 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 BTRFS_FSID_SIZE) == 0 &&
721 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
722 BTRFS_FSID_SIZE) != 0)
723 return fs_devices;
724
725 /* Unchanged UUIDs */
726 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 BTRFS_FSID_SIZE) == 0 &&
728 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 BTRFS_FSID_SIZE) == 0)
cc5de4e7 730 return fs_devices;
cc5de4e7
NB
731 }
732
733 return NULL;
734}
1362089d
NB
735
736static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 struct btrfs_super_block *disk_super)
738{
739 struct btrfs_fs_devices *fs_devices;
740
741 /*
742 * Handle the case where the scanned device is part of an fs whose last
743 * metadata UUID change reverted it to the original FSID. At the same
744 * time * fs_devices was first created by another constitutent device
745 * which didn't fully observe the operation. This results in an
746 * btrfs_fs_devices created with metadata/fsid different AND
747 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 * fs_devices equal to the FSID of the disk.
749 */
750 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 BTRFS_FSID_SIZE) != 0 &&
753 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 BTRFS_FSID_SIZE) == 0 &&
755 fs_devices->fsid_change)
756 return fs_devices;
757 }
758
759 return NULL;
760}
60999ca4
DS
761/*
762 * Add new device to list of registered devices
763 *
764 * Returns:
e124ece5
AJ
765 * device pointer which was just added or updated when successful
766 * error pointer when failed
60999ca4 767 */
e124ece5 768static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
769 struct btrfs_super_block *disk_super,
770 bool *new_device_added)
8a4b83cc
CM
771{
772 struct btrfs_device *device;
7a62d0f0 773 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 774 struct rcu_string *name;
8a4b83cc 775 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 776 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
777 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
779 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 781
cc5de4e7 782 if (fsid_change_in_progress) {
c0d81c7c 783 if (!has_metadata_uuid)
cc5de4e7 784 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 785 else
cc5de4e7 786 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 787 } else if (has_metadata_uuid) {
c6730a0e 788 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 789 } else {
1362089d
NB
790 fs_devices = find_fsid_reverted_metadata(disk_super);
791 if (!fs_devices)
792 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
793 }
794
8a4b83cc 795
8a4b83cc 796 if (!fs_devices) {
7239ff4b
NB
797 if (has_metadata_uuid)
798 fs_devices = alloc_fs_devices(disk_super->fsid,
799 disk_super->metadata_uuid);
800 else
801 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802
2208a378 803 if (IS_ERR(fs_devices))
e124ece5 804 return ERR_CAST(fs_devices);
2208a378 805
92900e51
AV
806 fs_devices->fsid_change = fsid_change_in_progress;
807
9c6d173e 808 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 809 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 810
8a4b83cc
CM
811 device = NULL;
812 } else {
9c6d173e 813 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9 814 device = btrfs_find_device(fs_devices, devid,
b2598edf 815 disk_super->dev_item.uuid, NULL);
7a62d0f0
NB
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
1362089d 822 if (fs_devices->fsid_change &&
7a62d0f0
NB
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
1362089d
NB
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
834
835 fs_devices->fsid_change = false;
836 }
8a4b83cc 837 }
443f24fe 838
8a4b83cc 839 if (!device) {
9c6d173e
AJ
840 if (fs_devices->opened) {
841 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 842 return ERR_PTR(-EBUSY);
9c6d173e 843 }
2b82032c 844
12bd2fc0
ID
845 device = btrfs_alloc_device(NULL, &devid,
846 disk_super->dev_item.uuid);
847 if (IS_ERR(device)) {
9c6d173e 848 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 849 /* we can safely leave the fs_devices entry around */
e124ece5 850 return device;
8a4b83cc 851 }
606686ee
JB
852
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
a425f9d4 855 btrfs_free_device(device);
9c6d173e 856 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 857 return ERR_PTR(-ENOMEM);
8a4b83cc 858 }
606686ee 859 rcu_assign_pointer(device->name, name);
90519d66 860
1f78160c 861 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 862 fs_devices->num_devices++;
e5e9a520 863
2b82032c 864 device->fs_devices = fs_devices;
4306a974 865 *new_device_added = true;
327f18cc
AJ
866
867 if (disk_super->label[0])
aa6c0df7
AJ
868 pr_info(
869 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 disk_super->label, devid, found_transid, path,
871 current->comm, task_pid_nr(current));
327f18cc 872 else
aa6c0df7
AJ
873 pr_info(
874 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 disk_super->fsid, devid, found_transid, path,
876 current->comm, task_pid_nr(current));
327f18cc 877
606686ee 878 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
879 /*
880 * When FS is already mounted.
881 * 1. If you are here and if the device->name is NULL that
882 * means this device was missing at time of FS mount.
883 * 2. If you are here and if the device->name is different
884 * from 'path' that means either
885 * a. The same device disappeared and reappeared with
886 * different name. or
887 * b. The missing-disk-which-was-replaced, has
888 * reappeared now.
889 *
890 * We must allow 1 and 2a above. But 2b would be a spurious
891 * and unintentional.
892 *
893 * Further in case of 1 and 2a above, the disk at 'path'
894 * would have missed some transaction when it was away and
895 * in case of 2a the stale bdev has to be updated as well.
896 * 2b must not be allowed at all time.
897 */
898
899 /*
0f23ae74
CM
900 * For now, we do allow update to btrfs_fs_device through the
901 * btrfs dev scan cli after FS has been mounted. We're still
902 * tracking a problem where systems fail mount by subvolume id
903 * when we reject replacement on a mounted FS.
b96de000 904 */
0f23ae74 905 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
906 /*
907 * That is if the FS is _not_ mounted and if you
908 * are here, that means there is more than one
909 * disk with same uuid and devid.We keep the one
910 * with larger generation number or the last-in if
911 * generation are equal.
912 */
9c6d173e 913 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 914 return ERR_PTR(-EEXIST);
77bdae4d 915 }
b96de000 916
a9261d41
AJ
917 /*
918 * We are going to replace the device path for a given devid,
919 * make sure it's the same device if the device is mounted
920 */
921 if (device->bdev) {
4e7b5671
CH
922 int error;
923 dev_t path_dev;
a9261d41 924
4e7b5671
CH
925 error = lookup_bdev(path, &path_dev);
926 if (error) {
a9261d41 927 mutex_unlock(&fs_devices->device_list_mutex);
4e7b5671 928 return ERR_PTR(error);
a9261d41
AJ
929 }
930
4e7b5671 931 if (device->bdev->bd_dev != path_dev) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6
JT
933 /*
934 * device->fs_info may not be reliable here, so
935 * pass in a NULL instead. This avoids a
936 * possible use-after-free when the fs_info and
937 * fs_info->sb are already torn down.
938 */
939 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
940 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
941 path, devid, found_transid,
942 current->comm,
943 task_pid_nr(current));
a9261d41
AJ
944 return ERR_PTR(-EEXIST);
945 }
a9261d41 946 btrfs_info_in_rcu(device->fs_info,
79dae17d
AJ
947 "devid %llu device path %s changed to %s scanned by %s (%d)",
948 devid, rcu_str_deref(device->name),
949 path, current->comm,
950 task_pid_nr(current));
a9261d41
AJ
951 }
952
606686ee 953 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
954 if (!name) {
955 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 956 return ERR_PTR(-ENOMEM);
9c6d173e 957 }
606686ee
JB
958 rcu_string_free(device->name);
959 rcu_assign_pointer(device->name, name);
e6e674bd 960 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 961 fs_devices->missing_devices--;
e6e674bd 962 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 963 }
8a4b83cc
CM
964 }
965
77bdae4d
AJ
966 /*
967 * Unmount does not free the btrfs_device struct but would zero
968 * generation along with most of the other members. So just update
969 * it back. We need it to pick the disk with largest generation
970 * (as above).
971 */
d1a63002 972 if (!fs_devices->opened) {
77bdae4d 973 device->generation = found_transid;
d1a63002
NB
974 fs_devices->latest_generation = max_t(u64, found_transid,
975 fs_devices->latest_generation);
976 }
77bdae4d 977
f2788d2f
AJ
978 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
979
9c6d173e 980 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 981 return device;
8a4b83cc
CM
982}
983
e4404d6e
YZ
984static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
985{
986 struct btrfs_fs_devices *fs_devices;
987 struct btrfs_device *device;
988 struct btrfs_device *orig_dev;
d2979aa2 989 int ret = 0;
e4404d6e 990
7239ff4b 991 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
992 if (IS_ERR(fs_devices))
993 return fs_devices;
e4404d6e 994
adbbb863 995 mutex_lock(&orig->device_list_mutex);
02db0844 996 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
997
998 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
999 struct rcu_string *name;
1000
12bd2fc0
ID
1001 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002 orig_dev->uuid);
d2979aa2
AJ
1003 if (IS_ERR(device)) {
1004 ret = PTR_ERR(device);
e4404d6e 1005 goto error;
d2979aa2 1006 }
e4404d6e 1007
606686ee
JB
1008 /*
1009 * This is ok to do without rcu read locked because we hold the
1010 * uuid mutex so nothing we touch in here is going to disappear.
1011 */
e755f780 1012 if (orig_dev->name) {
78f2c9e6
DS
1013 name = rcu_string_strdup(orig_dev->name->str,
1014 GFP_KERNEL);
e755f780 1015 if (!name) {
a425f9d4 1016 btrfs_free_device(device);
d2979aa2 1017 ret = -ENOMEM;
e755f780
AJ
1018 goto error;
1019 }
1020 rcu_assign_pointer(device->name, name);
fd2696f3 1021 }
e4404d6e 1022
e4404d6e
YZ
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
adbbb863 1027 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
1028 return fs_devices;
1029error:
adbbb863 1030 mutex_unlock(&orig->device_list_mutex);
e4404d6e 1031 free_fs_devices(fs_devices);
d2979aa2 1032 return ERR_PTR(ret);
e4404d6e
YZ
1033}
1034
3712ccb7 1035static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1036 struct btrfs_device **latest_dev)
dfe25020 1037{
c6e30871 1038 struct btrfs_device *device, *next;
a6b0d5c8 1039
46224705 1040 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1041 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1042 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1043 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1044 &device->dev_state) &&
998a0671
AJ
1045 !test_bit(BTRFS_DEV_STATE_MISSING,
1046 &device->dev_state) &&
3712ccb7
NB
1047 (!*latest_dev ||
1048 device->generation > (*latest_dev)->generation)) {
1049 *latest_dev = device;
a6b0d5c8 1050 }
2b82032c 1051 continue;
a6b0d5c8 1052 }
2b82032c 1053
cf89af14
AJ
1054 /*
1055 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1056 * in btrfs_init_dev_replace() so just continue.
1057 */
1058 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1059 continue;
1060
2b82032c 1061 if (device->bdev) {
d4d77629 1062 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1063 device->bdev = NULL;
1064 fs_devices->open_devices--;
1065 }
ebbede42 1066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1067 list_del_init(&device->dev_alloc_list);
ebbede42 1068 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1069 fs_devices->rw_devices--;
2b82032c 1070 }
e4404d6e
YZ
1071 list_del_init(&device->dev_list);
1072 fs_devices->num_devices--;
a425f9d4 1073 btrfs_free_device(device);
dfe25020 1074 }
2b82032c 1075
3712ccb7
NB
1076}
1077
1078/*
1079 * After we have read the system tree and know devids belonging to this
1080 * filesystem, remove the device which does not belong there.
1081 */
bacce86a 1082void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1083{
1084 struct btrfs_device *latest_dev = NULL;
944d3f9f 1085 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1086
1087 mutex_lock(&uuid_mutex);
bacce86a 1088 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1089
1090 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1091 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1092
443f24fe 1093 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1094
dfe25020 1095 mutex_unlock(&uuid_mutex);
dfe25020 1096}
a0af469b 1097
14238819
AJ
1098static void btrfs_close_bdev(struct btrfs_device *device)
1099{
08ffcae8
DS
1100 if (!device->bdev)
1101 return;
1102
ebbede42 1103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1104 sync_blockdev(device->bdev);
1105 invalidate_bdev(device->bdev);
1106 }
1107
08ffcae8 1108 blkdev_put(device->bdev, device->mode);
14238819
AJ
1109}
1110
959b1c04 1111static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1112{
1113 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1114
ebbede42 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1116 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1117 list_del_init(&device->dev_alloc_list);
1118 fs_devices->rw_devices--;
1119 }
1120
e6e674bd 1121 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1122 fs_devices->missing_devices--;
1123
959b1c04 1124 btrfs_close_bdev(device);
321f69f8 1125 if (device->bdev) {
3fff3975 1126 fs_devices->open_devices--;
321f69f8 1127 device->bdev = NULL;
f448341a 1128 }
321f69f8 1129 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1130 btrfs_destroy_dev_zone_info(device);
f448341a 1131
321f69f8
JT
1132 device->fs_info = NULL;
1133 atomic_set(&device->dev_stats_ccnt, 0);
1134 extent_io_tree_release(&device->alloc_state);
959b1c04 1135
321f69f8
JT
1136 /* Verify the device is back in a pristine state */
1137 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139 ASSERT(list_empty(&device->dev_alloc_list));
1140 ASSERT(list_empty(&device->post_commit_list));
1141 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1142}
1143
54eed6ae 1144static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1145{
2037a093 1146 struct btrfs_device *device, *tmp;
e4404d6e 1147
425c6ed6
JB
1148 lockdep_assert_held(&uuid_mutex);
1149
2b82032c 1150 if (--fs_devices->opened > 0)
54eed6ae 1151 return;
8a4b83cc 1152
425c6ed6 1153 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1154 btrfs_close_one_device(device);
c9513edb 1155
e4404d6e
YZ
1156 WARN_ON(fs_devices->open_devices);
1157 WARN_ON(fs_devices->rw_devices);
2b82032c 1158 fs_devices->opened = 0;
0395d84f 1159 fs_devices->seeding = false;
c4989c2f 1160 fs_devices->fs_info = NULL;
8a4b83cc
CM
1161}
1162
54eed6ae 1163void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1164{
944d3f9f
NB
1165 LIST_HEAD(list);
1166 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1167
1168 mutex_lock(&uuid_mutex);
54eed6ae 1169 close_fs_devices(fs_devices);
944d3f9f
NB
1170 if (!fs_devices->opened)
1171 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1172
944d3f9f 1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1174 close_fs_devices(fs_devices);
944d3f9f 1175 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1176 free_fs_devices(fs_devices);
1177 }
425c6ed6 1178 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1179}
1180
897fb573 1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1182 fmode_t flags, void *holder)
8a4b83cc 1183{
8a4b83cc 1184 struct btrfs_device *device;
443f24fe 1185 struct btrfs_device *latest_dev = NULL;
96c2e067 1186 struct btrfs_device *tmp_device;
8a4b83cc 1187
d4d77629
TH
1188 flags |= FMODE_EXCL;
1189
96c2e067
AJ
1190 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1191 dev_list) {
1192 int ret;
a0af469b 1193
96c2e067
AJ
1194 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1195 if (ret == 0 &&
1196 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1197 latest_dev = device;
96c2e067
AJ
1198 } else if (ret == -ENODATA) {
1199 fs_devices->num_devices--;
1200 list_del(&device->dev_list);
1201 btrfs_free_device(device);
1202 }
8a4b83cc 1203 }
1ed802c9
AJ
1204 if (fs_devices->open_devices == 0)
1205 return -EINVAL;
1206
2b82032c 1207 fs_devices->opened = 1;
443f24fe 1208 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1209 fs_devices->total_rw_bytes = 0;
c4a816c6 1210 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1211 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1212
1213 return 0;
2b82032c
YZ
1214}
1215
4f0f586b
ST
1216static int devid_cmp(void *priv, const struct list_head *a,
1217 const struct list_head *b)
f8e10cd3 1218{
214cc184 1219 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1220
1221 dev1 = list_entry(a, struct btrfs_device, dev_list);
1222 dev2 = list_entry(b, struct btrfs_device, dev_list);
1223
1224 if (dev1->devid < dev2->devid)
1225 return -1;
1226 else if (dev1->devid > dev2->devid)
1227 return 1;
1228 return 0;
1229}
1230
2b82032c 1231int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1232 fmode_t flags, void *holder)
2b82032c
YZ
1233{
1234 int ret;
1235
f5194e34 1236 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1237 /*
1238 * The device_list_mutex cannot be taken here in case opening the
a8698707 1239 * underlying device takes further locks like open_mutex.
18c850fd
JB
1240 *
1241 * We also don't need the lock here as this is called during mount and
1242 * exclusion is provided by uuid_mutex
1243 */
f5194e34 1244
2b82032c 1245 if (fs_devices->opened) {
e4404d6e
YZ
1246 fs_devices->opened++;
1247 ret = 0;
2b82032c 1248 } else {
f8e10cd3 1249 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1250 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1251 }
542c5908 1252
8a4b83cc
CM
1253 return ret;
1254}
1255
8f32380d 1256void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1257{
8f32380d
JT
1258 struct page *page = virt_to_page(super);
1259
6cf86a00
AJ
1260 put_page(page);
1261}
1262
b335eab8 1263static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1264 u64 bytenr, u64 bytenr_orig)
6cf86a00 1265{
b335eab8
NB
1266 struct btrfs_super_block *disk_super;
1267 struct page *page;
6cf86a00
AJ
1268 void *p;
1269 pgoff_t index;
1270
1271 /* make sure our super fits in the device */
1272 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
b335eab8 1273 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1274
1275 /* make sure our super fits in the page */
b335eab8
NB
1276 if (sizeof(*disk_super) > PAGE_SIZE)
1277 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1278
1279 /* make sure our super doesn't straddle pages on disk */
1280 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1281 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1282 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1283
1284 /* pull in the page with our super */
b335eab8 1285 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1286
b335eab8
NB
1287 if (IS_ERR(page))
1288 return ERR_CAST(page);
6cf86a00 1289
b335eab8 1290 p = page_address(page);
6cf86a00
AJ
1291
1292 /* align our pointer to the offset of the super block */
b335eab8 1293 disk_super = p + offset_in_page(bytenr);
6cf86a00 1294
12659251 1295 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1296 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1297 btrfs_release_disk_super(p);
b335eab8 1298 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1299 }
1300
b335eab8
NB
1301 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1302 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1303
b335eab8 1304 return disk_super;
6cf86a00
AJ
1305}
1306
228a73ab
AJ
1307int btrfs_forget_devices(const char *path)
1308{
1309 int ret;
1310
1311 mutex_lock(&uuid_mutex);
1312 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1313 mutex_unlock(&uuid_mutex);
1314
1315 return ret;
1316}
1317
6f60cbd3
DS
1318/*
1319 * Look for a btrfs signature on a device. This may be called out of the mount path
1320 * and we are not allowed to call set_blocksize during the scan. The superblock
1321 * is read via pagecache
1322 */
36350e95
GJ
1323struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1324 void *holder)
8a4b83cc
CM
1325{
1326 struct btrfs_super_block *disk_super;
4306a974 1327 bool new_device_added = false;
36350e95 1328 struct btrfs_device *device = NULL;
8a4b83cc 1329 struct block_device *bdev;
12659251
NA
1330 u64 bytenr, bytenr_orig;
1331 int ret;
8a4b83cc 1332
899f9307
DS
1333 lockdep_assert_held(&uuid_mutex);
1334
6f60cbd3
DS
1335 /*
1336 * we would like to check all the supers, but that would make
1337 * a btrfs mount succeed after a mkfs from a different FS.
1338 * So, we need to add a special mount option to scan for
1339 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1340 */
d4d77629 1341 flags |= FMODE_EXCL;
6f60cbd3
DS
1342
1343 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1344 if (IS_ERR(bdev))
36350e95 1345 return ERR_CAST(bdev);
6f60cbd3 1346
12659251
NA
1347 bytenr_orig = btrfs_sb_offset(0);
1348 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1349 if (ret)
1350 return ERR_PTR(ret);
1351
1352 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1353 if (IS_ERR(disk_super)) {
1354 device = ERR_CAST(disk_super);
6f60cbd3 1355 goto error_bdev_put;
05a5c55d 1356 }
6f60cbd3 1357
4306a974 1358 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1359 if (!IS_ERR(device)) {
4306a974
AJ
1360 if (new_device_added)
1361 btrfs_free_stale_devices(path, device);
1362 }
6f60cbd3 1363
8f32380d 1364 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1365
1366error_bdev_put:
d4d77629 1367 blkdev_put(bdev, flags);
b6ed73bc 1368
36350e95 1369 return device;
8a4b83cc 1370}
0b86a832 1371
1c11b63e
JM
1372/*
1373 * Try to find a chunk that intersects [start, start + len] range and when one
1374 * such is found, record the end of it in *start
1375 */
1c11b63e
JM
1376static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1377 u64 len)
6df9a95e 1378{
1c11b63e 1379 u64 physical_start, physical_end;
6df9a95e 1380
1c11b63e 1381 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1382
1c11b63e
JM
1383 if (!find_first_extent_bit(&device->alloc_state, *start,
1384 &physical_start, &physical_end,
1385 CHUNK_ALLOCATED, NULL)) {
c152b63e 1386
1c11b63e
JM
1387 if (in_range(physical_start, *start, len) ||
1388 in_range(*start, physical_start,
1389 physical_end - physical_start)) {
1390 *start = physical_end + 1;
1391 return true;
6df9a95e
JB
1392 }
1393 }
1c11b63e 1394 return false;
6df9a95e
JB
1395}
1396
3b4ffa40
NA
1397static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1398{
1399 switch (device->fs_devices->chunk_alloc_policy) {
1400 case BTRFS_CHUNK_ALLOC_REGULAR:
1401 /*
1402 * We don't want to overwrite the superblock on the drive nor
1403 * any area used by the boot loader (grub for example), so we
1404 * make sure to start at an offset of at least 1MB.
1405 */
1406 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1407 case BTRFS_CHUNK_ALLOC_ZONED:
1408 /*
1409 * We don't care about the starting region like regular
1410 * allocator, because we anyway use/reserve the first two zones
1411 * for superblock logging.
1412 */
1413 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1414 default:
1415 BUG();
1416 }
1417}
1418
1cd6121f
NA
1419static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1420 u64 *hole_start, u64 *hole_size,
1421 u64 num_bytes)
1422{
1423 u64 zone_size = device->zone_info->zone_size;
1424 u64 pos;
1425 int ret;
1426 bool changed = false;
1427
1428 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1429
1430 while (*hole_size > 0) {
1431 pos = btrfs_find_allocatable_zones(device, *hole_start,
1432 *hole_start + *hole_size,
1433 num_bytes);
1434 if (pos != *hole_start) {
1435 *hole_size = *hole_start + *hole_size - pos;
1436 *hole_start = pos;
1437 changed = true;
1438 if (*hole_size < num_bytes)
1439 break;
1440 }
1441
1442 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1443
1444 /* Range is ensured to be empty */
1445 if (!ret)
1446 return changed;
1447
1448 /* Given hole range was invalid (outside of device) */
1449 if (ret == -ERANGE) {
1450 *hole_start += *hole_size;
d6f67afb 1451 *hole_size = 0;
7000babd 1452 return true;
1cd6121f
NA
1453 }
1454
1455 *hole_start += zone_size;
1456 *hole_size -= zone_size;
1457 changed = true;
1458 }
1459
1460 return changed;
1461}
1462
3b4ffa40
NA
1463/**
1464 * dev_extent_hole_check - check if specified hole is suitable for allocation
1465 * @device: the device which we have the hole
1466 * @hole_start: starting position of the hole
1467 * @hole_size: the size of the hole
1468 * @num_bytes: the size of the free space that we need
1469 *
1cd6121f 1470 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1471 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1472 */
1473static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1474 u64 *hole_size, u64 num_bytes)
1475{
1476 bool changed = false;
1477 u64 hole_end = *hole_start + *hole_size;
1478
1cd6121f
NA
1479 for (;;) {
1480 /*
1481 * Check before we set max_hole_start, otherwise we could end up
1482 * sending back this offset anyway.
1483 */
1484 if (contains_pending_extent(device, hole_start, *hole_size)) {
1485 if (hole_end >= *hole_start)
1486 *hole_size = hole_end - *hole_start;
1487 else
1488 *hole_size = 0;
1489 changed = true;
1490 }
1491
1492 switch (device->fs_devices->chunk_alloc_policy) {
1493 case BTRFS_CHUNK_ALLOC_REGULAR:
1494 /* No extra check */
1495 break;
1496 case BTRFS_CHUNK_ALLOC_ZONED:
1497 if (dev_extent_hole_check_zoned(device, hole_start,
1498 hole_size, num_bytes)) {
1499 changed = true;
1500 /*
1501 * The changed hole can contain pending extent.
1502 * Loop again to check that.
1503 */
1504 continue;
1505 }
1506 break;
1507 default:
1508 BUG();
1509 }
3b4ffa40 1510
3b4ffa40 1511 break;
3b4ffa40
NA
1512 }
1513
1514 return changed;
1515}
6df9a95e 1516
0b86a832 1517/*
499f377f
JM
1518 * find_free_dev_extent_start - find free space in the specified device
1519 * @device: the device which we search the free space in
1520 * @num_bytes: the size of the free space that we need
1521 * @search_start: the position from which to begin the search
1522 * @start: store the start of the free space.
1523 * @len: the size of the free space. that we find, or the size
1524 * of the max free space if we don't find suitable free space
7bfc837d 1525 *
0b86a832
CM
1526 * this uses a pretty simple search, the expectation is that it is
1527 * called very infrequently and that a given device has a small number
1528 * of extents
7bfc837d
MX
1529 *
1530 * @start is used to store the start of the free space if we find. But if we
1531 * don't find suitable free space, it will be used to store the start position
1532 * of the max free space.
1533 *
1534 * @len is used to store the size of the free space that we find.
1535 * But if we don't find suitable free space, it is used to store the size of
1536 * the max free space.
135da976
QW
1537 *
1538 * NOTE: This function will search *commit* root of device tree, and does extra
1539 * check to ensure dev extents are not double allocated.
1540 * This makes the function safe to allocate dev extents but may not report
1541 * correct usable device space, as device extent freed in current transaction
1a9fd417 1542 * is not reported as available.
0b86a832 1543 */
9e3246a5
QW
1544static int find_free_dev_extent_start(struct btrfs_device *device,
1545 u64 num_bytes, u64 search_start, u64 *start,
1546 u64 *len)
0b86a832 1547{
0b246afa
JM
1548 struct btrfs_fs_info *fs_info = device->fs_info;
1549 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1550 struct btrfs_key key;
7bfc837d 1551 struct btrfs_dev_extent *dev_extent;
2b82032c 1552 struct btrfs_path *path;
7bfc837d
MX
1553 u64 hole_size;
1554 u64 max_hole_start;
1555 u64 max_hole_size;
1556 u64 extent_end;
0b86a832
CM
1557 u64 search_end = device->total_bytes;
1558 int ret;
7bfc837d 1559 int slot;
0b86a832 1560 struct extent_buffer *l;
8cdc7c5b 1561
3b4ffa40 1562 search_start = dev_extent_search_start(device, search_start);
0b86a832 1563
1cd6121f
NA
1564 WARN_ON(device->zone_info &&
1565 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1566
6df9a95e
JB
1567 path = btrfs_alloc_path();
1568 if (!path)
1569 return -ENOMEM;
f2ab7618 1570
7bfc837d
MX
1571 max_hole_start = search_start;
1572 max_hole_size = 0;
1573
f2ab7618 1574again:
401e29c1
AJ
1575 if (search_start >= search_end ||
1576 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1577 ret = -ENOSPC;
6df9a95e 1578 goto out;
7bfc837d
MX
1579 }
1580
e4058b54 1581 path->reada = READA_FORWARD;
6df9a95e
JB
1582 path->search_commit_root = 1;
1583 path->skip_locking = 1;
7bfc837d 1584
0b86a832
CM
1585 key.objectid = device->devid;
1586 key.offset = search_start;
1587 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1588
0ff40a91 1589 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1590 if (ret < 0)
7bfc837d 1591 goto out;
7bfc837d 1592
0b86a832
CM
1593 while (1) {
1594 l = path->nodes[0];
1595 slot = path->slots[0];
1596 if (slot >= btrfs_header_nritems(l)) {
1597 ret = btrfs_next_leaf(root, path);
1598 if (ret == 0)
1599 continue;
1600 if (ret < 0)
7bfc837d
MX
1601 goto out;
1602
1603 break;
0b86a832
CM
1604 }
1605 btrfs_item_key_to_cpu(l, &key, slot);
1606
1607 if (key.objectid < device->devid)
1608 goto next;
1609
1610 if (key.objectid > device->devid)
7bfc837d 1611 break;
0b86a832 1612
962a298f 1613 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1614 goto next;
9779b72f 1615
7bfc837d
MX
1616 if (key.offset > search_start) {
1617 hole_size = key.offset - search_start;
3b4ffa40
NA
1618 dev_extent_hole_check(device, &search_start, &hole_size,
1619 num_bytes);
6df9a95e 1620
7bfc837d
MX
1621 if (hole_size > max_hole_size) {
1622 max_hole_start = search_start;
1623 max_hole_size = hole_size;
1624 }
9779b72f 1625
7bfc837d
MX
1626 /*
1627 * If this free space is greater than which we need,
1628 * it must be the max free space that we have found
1629 * until now, so max_hole_start must point to the start
1630 * of this free space and the length of this free space
1631 * is stored in max_hole_size. Thus, we return
1632 * max_hole_start and max_hole_size and go back to the
1633 * caller.
1634 */
1635 if (hole_size >= num_bytes) {
1636 ret = 0;
1637 goto out;
0b86a832
CM
1638 }
1639 }
0b86a832 1640
0b86a832 1641 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1642 extent_end = key.offset + btrfs_dev_extent_length(l,
1643 dev_extent);
1644 if (extent_end > search_start)
1645 search_start = extent_end;
0b86a832
CM
1646next:
1647 path->slots[0]++;
1648 cond_resched();
1649 }
0b86a832 1650
38c01b96 1651 /*
1652 * At this point, search_start should be the end of
1653 * allocated dev extents, and when shrinking the device,
1654 * search_end may be smaller than search_start.
1655 */
f2ab7618 1656 if (search_end > search_start) {
38c01b96 1657 hole_size = search_end - search_start;
3b4ffa40
NA
1658 if (dev_extent_hole_check(device, &search_start, &hole_size,
1659 num_bytes)) {
f2ab7618
ZL
1660 btrfs_release_path(path);
1661 goto again;
1662 }
0b86a832 1663
f2ab7618
ZL
1664 if (hole_size > max_hole_size) {
1665 max_hole_start = search_start;
1666 max_hole_size = hole_size;
1667 }
6df9a95e
JB
1668 }
1669
7bfc837d 1670 /* See above. */
f2ab7618 1671 if (max_hole_size < num_bytes)
7bfc837d
MX
1672 ret = -ENOSPC;
1673 else
1674 ret = 0;
1675
1676out:
2b82032c 1677 btrfs_free_path(path);
7bfc837d 1678 *start = max_hole_start;
b2117a39 1679 if (len)
7bfc837d 1680 *len = max_hole_size;
0b86a832
CM
1681 return ret;
1682}
1683
60dfdf25 1684int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1685 u64 *start, u64 *len)
1686{
499f377f 1687 /* FIXME use last free of some kind */
60dfdf25 1688 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1689}
1690
b2950863 1691static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1692 struct btrfs_device *device,
2196d6e8 1693 u64 start, u64 *dev_extent_len)
8f18cf13 1694{
0b246afa
JM
1695 struct btrfs_fs_info *fs_info = device->fs_info;
1696 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1697 int ret;
1698 struct btrfs_path *path;
8f18cf13 1699 struct btrfs_key key;
a061fc8d
CM
1700 struct btrfs_key found_key;
1701 struct extent_buffer *leaf = NULL;
1702 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1703
1704 path = btrfs_alloc_path();
1705 if (!path)
1706 return -ENOMEM;
1707
1708 key.objectid = device->devid;
1709 key.offset = start;
1710 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1711again:
8f18cf13 1712 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1713 if (ret > 0) {
1714 ret = btrfs_previous_item(root, path, key.objectid,
1715 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1716 if (ret)
1717 goto out;
a061fc8d
CM
1718 leaf = path->nodes[0];
1719 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1720 extent = btrfs_item_ptr(leaf, path->slots[0],
1721 struct btrfs_dev_extent);
1722 BUG_ON(found_key.offset > start || found_key.offset +
1723 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1724 key = found_key;
1725 btrfs_release_path(path);
1726 goto again;
a061fc8d
CM
1727 } else if (ret == 0) {
1728 leaf = path->nodes[0];
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
79787eaa 1731 } else {
79787eaa 1732 goto out;
a061fc8d 1733 }
8f18cf13 1734
2196d6e8
MX
1735 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1736
8f18cf13 1737 ret = btrfs_del_item(trans, root, path);
79bd3712 1738 if (ret == 0)
3204d33c 1739 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1740out:
8f18cf13
CM
1741 btrfs_free_path(path);
1742 return ret;
1743}
1744
6df9a95e 1745static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1746{
6df9a95e
JB
1747 struct extent_map_tree *em_tree;
1748 struct extent_map *em;
1749 struct rb_node *n;
1750 u64 ret = 0;
0b86a832 1751
c8bf1b67 1752 em_tree = &fs_info->mapping_tree;
6df9a95e 1753 read_lock(&em_tree->lock);
07e1ce09 1754 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1755 if (n) {
1756 em = rb_entry(n, struct extent_map, rb_node);
1757 ret = em->start + em->len;
0b86a832 1758 }
6df9a95e
JB
1759 read_unlock(&em_tree->lock);
1760
0b86a832
CM
1761 return ret;
1762}
1763
53f10659
ID
1764static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1765 u64 *devid_ret)
0b86a832
CM
1766{
1767 int ret;
1768 struct btrfs_key key;
1769 struct btrfs_key found_key;
2b82032c
YZ
1770 struct btrfs_path *path;
1771
2b82032c
YZ
1772 path = btrfs_alloc_path();
1773 if (!path)
1774 return -ENOMEM;
0b86a832
CM
1775
1776 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1777 key.type = BTRFS_DEV_ITEM_KEY;
1778 key.offset = (u64)-1;
1779
53f10659 1780 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1781 if (ret < 0)
1782 goto error;
1783
a06dee4d
AJ
1784 if (ret == 0) {
1785 /* Corruption */
1786 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1787 ret = -EUCLEAN;
1788 goto error;
1789 }
0b86a832 1790
53f10659
ID
1791 ret = btrfs_previous_item(fs_info->chunk_root, path,
1792 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1793 BTRFS_DEV_ITEM_KEY);
1794 if (ret) {
53f10659 1795 *devid_ret = 1;
0b86a832
CM
1796 } else {
1797 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1798 path->slots[0]);
53f10659 1799 *devid_ret = found_key.offset + 1;
0b86a832
CM
1800 }
1801 ret = 0;
1802error:
2b82032c 1803 btrfs_free_path(path);
0b86a832
CM
1804 return ret;
1805}
1806
1807/*
1808 * the device information is stored in the chunk root
1809 * the btrfs_device struct should be fully filled in
1810 */
c74a0b02 1811static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1812 struct btrfs_device *device)
0b86a832
CM
1813{
1814 int ret;
1815 struct btrfs_path *path;
1816 struct btrfs_dev_item *dev_item;
1817 struct extent_buffer *leaf;
1818 struct btrfs_key key;
1819 unsigned long ptr;
0b86a832 1820
0b86a832
CM
1821 path = btrfs_alloc_path();
1822 if (!path)
1823 return -ENOMEM;
1824
0b86a832
CM
1825 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1826 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1827 key.offset = device->devid;
0b86a832 1828
8e87e856
NB
1829 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1830 &key, sizeof(*dev_item));
0b86a832
CM
1831 if (ret)
1832 goto out;
1833
1834 leaf = path->nodes[0];
1835 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1836
1837 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1838 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1839 btrfs_set_device_type(leaf, dev_item, device->type);
1840 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1841 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1842 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1843 btrfs_set_device_total_bytes(leaf, dev_item,
1844 btrfs_device_get_disk_total_bytes(device));
1845 btrfs_set_device_bytes_used(leaf, dev_item,
1846 btrfs_device_get_bytes_used(device));
e17cade2
CM
1847 btrfs_set_device_group(leaf, dev_item, 0);
1848 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1849 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1850 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1851
410ba3a2 1852 ptr = btrfs_device_uuid(dev_item);
e17cade2 1853 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1854 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1855 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1856 ptr, BTRFS_FSID_SIZE);
0b86a832 1857 btrfs_mark_buffer_dirty(leaf);
0b86a832 1858
2b82032c 1859 ret = 0;
0b86a832
CM
1860out:
1861 btrfs_free_path(path);
1862 return ret;
1863}
8f18cf13 1864
5a1972bd
QW
1865/*
1866 * Function to update ctime/mtime for a given device path.
1867 * Mainly used for ctime/mtime based probe like libblkid.
1868 */
da353f6b 1869static void update_dev_time(const char *path_name)
5a1972bd
QW
1870{
1871 struct file *filp;
1872
1873 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1874 if (IS_ERR(filp))
5a1972bd
QW
1875 return;
1876 file_update_time(filp);
1877 filp_close(filp, NULL);
5a1972bd
QW
1878}
1879
f331a952 1880static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1881{
f331a952 1882 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1883 int ret;
1884 struct btrfs_path *path;
a061fc8d 1885 struct btrfs_key key;
a061fc8d
CM
1886 struct btrfs_trans_handle *trans;
1887
a061fc8d
CM
1888 path = btrfs_alloc_path();
1889 if (!path)
1890 return -ENOMEM;
1891
a22285a6 1892 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1893 if (IS_ERR(trans)) {
1894 btrfs_free_path(path);
1895 return PTR_ERR(trans);
1896 }
a061fc8d
CM
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
1899 key.offset = device->devid;
1900
1901 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1902 if (ret) {
1903 if (ret > 0)
1904 ret = -ENOENT;
1905 btrfs_abort_transaction(trans, ret);
1906 btrfs_end_transaction(trans);
a061fc8d
CM
1907 goto out;
1908 }
1909
1910 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1911 if (ret) {
1912 btrfs_abort_transaction(trans, ret);
1913 btrfs_end_transaction(trans);
1914 }
1915
a061fc8d
CM
1916out:
1917 btrfs_free_path(path);
5e9f2ad5
NB
1918 if (!ret)
1919 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1920 return ret;
1921}
1922
3cc31a0d
DS
1923/*
1924 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1925 * filesystem. It's up to the caller to adjust that number regarding eg. device
1926 * replace.
1927 */
1928static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1929 u64 num_devices)
a061fc8d 1930{
a061fc8d 1931 u64 all_avail;
de98ced9 1932 unsigned seq;
418775a2 1933 int i;
a061fc8d 1934
de98ced9 1935 do {
bd45ffbc 1936 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1937
bd45ffbc
AJ
1938 all_avail = fs_info->avail_data_alloc_bits |
1939 fs_info->avail_system_alloc_bits |
1940 fs_info->avail_metadata_alloc_bits;
1941 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1942
418775a2 1943 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1944 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1945 continue;
a061fc8d 1946
efc222f8
AJ
1947 if (num_devices < btrfs_raid_array[i].devs_min)
1948 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1949 }
1950
bd45ffbc 1951 return 0;
f1fa7f26
AJ
1952}
1953
c9162bdf
OS
1954static struct btrfs_device * btrfs_find_next_active_device(
1955 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1956{
2b82032c 1957 struct btrfs_device *next_device;
88acff64
AJ
1958
1959 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1960 if (next_device != device &&
e6e674bd
AJ
1961 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1962 && next_device->bdev)
88acff64
AJ
1963 return next_device;
1964 }
1965
1966 return NULL;
1967}
1968
1969/*
1970 * Helper function to check if the given device is part of s_bdev / latest_bdev
1971 * and replace it with the provided or the next active device, in the context
1972 * where this function called, there should be always be another device (or
1973 * this_dev) which is active.
1974 */
b105e927 1975void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1976 struct btrfs_device *next_device)
88acff64 1977{
d6507cf1 1978 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1979
e493e8f9 1980 if (!next_device)
88acff64 1981 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 1982 device);
88acff64
AJ
1983 ASSERT(next_device);
1984
1985 if (fs_info->sb->s_bdev &&
1986 (fs_info->sb->s_bdev == device->bdev))
1987 fs_info->sb->s_bdev = next_device->bdev;
1988
1989 if (fs_info->fs_devices->latest_bdev == device->bdev)
1990 fs_info->fs_devices->latest_bdev = next_device->bdev;
1991}
1992
1da73967
AJ
1993/*
1994 * Return btrfs_fs_devices::num_devices excluding the device that's being
1995 * currently replaced.
1996 */
1997static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1998{
1999 u64 num_devices = fs_info->fs_devices->num_devices;
2000
cb5583dd 2001 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2002 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2003 ASSERT(num_devices > 1);
2004 num_devices--;
2005 }
cb5583dd 2006 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2007
2008 return num_devices;
2009}
2010
313b0858
JB
2011void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2012 struct block_device *bdev,
2013 const char *device_path)
6fbceb9f 2014{
6fbceb9f
JT
2015 struct btrfs_super_block *disk_super;
2016 int copy_num;
2017
2018 if (!bdev)
2019 return;
2020
2021 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2022 struct page *page;
2023 int ret;
6fbceb9f 2024
8f32380d
JT
2025 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2026 if (IS_ERR(disk_super))
2027 continue;
6fbceb9f 2028
12659251
NA
2029 if (bdev_is_zoned(bdev)) {
2030 btrfs_reset_sb_log_zones(bdev, copy_num);
2031 continue;
2032 }
2033
6fbceb9f 2034 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2035
2036 page = virt_to_page(disk_super);
2037 set_page_dirty(page);
2038 lock_page(page);
2039 /* write_on_page() unlocks the page */
2040 ret = write_one_page(page);
2041 if (ret)
2042 btrfs_warn(fs_info,
2043 "error clearing superblock number %d (%d)",
2044 copy_num, ret);
2045 btrfs_release_disk_super(disk_super);
2046
6fbceb9f
JT
2047 }
2048
2049 /* Notify udev that device has changed */
2050 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2051
2052 /* Update ctime/mtime for device path for libblkid */
2053 update_dev_time(device_path);
2054}
2055
da353f6b 2056int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
53f8a74c 2057 u64 devid)
f1fa7f26
AJ
2058{
2059 struct btrfs_device *device;
1f78160c 2060 struct btrfs_fs_devices *cur_devices;
b5185197 2061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2062 u64 num_devices;
a061fc8d
CM
2063 int ret = 0;
2064
a061fc8d
CM
2065 mutex_lock(&uuid_mutex);
2066
1da73967 2067 num_devices = btrfs_num_devices(fs_info);
8dabb742 2068
0b246afa 2069 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2070 if (ret)
a061fc8d 2071 goto out;
a061fc8d 2072
a27a94c2
NB
2073 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2074
2075 if (IS_ERR(device)) {
2076 if (PTR_ERR(device) == -ENOENT &&
e4571b8c 2077 device_path && strcmp(device_path, "missing") == 0)
a27a94c2
NB
2078 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2079 else
2080 ret = PTR_ERR(device);
53b381b3 2081 goto out;
a27a94c2 2082 }
dfe25020 2083
eede2bf3
OS
2084 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2085 btrfs_warn_in_rcu(fs_info,
2086 "cannot remove device %s (devid %llu) due to active swapfile",
2087 rcu_str_deref(device->name), device->devid);
2088 ret = -ETXTBSY;
2089 goto out;
2090 }
2091
401e29c1 2092 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2093 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2094 goto out;
63a212ab
SB
2095 }
2096
ebbede42
AJ
2097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2098 fs_info->fs_devices->rw_devices == 1) {
183860f6 2099 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2100 goto out;
2b82032c
YZ
2101 }
2102
ebbede42 2103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2104 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2105 list_del_init(&device->dev_alloc_list);
c3929c36 2106 device->fs_devices->rw_devices--;
34441361 2107 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2108 }
a061fc8d 2109
d7901554 2110 mutex_unlock(&uuid_mutex);
a061fc8d 2111 ret = btrfs_shrink_device(device, 0);
66d204a1
FM
2112 if (!ret)
2113 btrfs_reada_remove_dev(device);
d7901554 2114 mutex_lock(&uuid_mutex);
a061fc8d 2115 if (ret)
9b3517e9 2116 goto error_undo;
a061fc8d 2117
63a212ab
SB
2118 /*
2119 * TODO: the superblock still includes this device in its num_devices
2120 * counter although write_all_supers() is not locked out. This
2121 * could give a filesystem state which requires a degraded mount.
2122 */
f331a952 2123 ret = btrfs_rm_dev_item(device);
a061fc8d 2124 if (ret)
9b3517e9 2125 goto error_undo;
a061fc8d 2126
e12c9621 2127 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2128 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2129
2130 /*
2131 * the device list mutex makes sure that we don't change
2132 * the device list while someone else is writing out all
d7306801
FDBM
2133 * the device supers. Whoever is writing all supers, should
2134 * lock the device list mutex before getting the number of
2135 * devices in the super block (super_copy). Conversely,
2136 * whoever updates the number of devices in the super block
2137 * (super_copy) should hold the device list mutex.
e5e9a520 2138 */
1f78160c 2139
41a52a0f
AJ
2140 /*
2141 * In normal cases the cur_devices == fs_devices. But in case
2142 * of deleting a seed device, the cur_devices should point to
2143 * its own fs_devices listed under the fs_devices->seed.
2144 */
1f78160c 2145 cur_devices = device->fs_devices;
b5185197 2146 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2147 list_del_rcu(&device->dev_list);
e5e9a520 2148
41a52a0f
AJ
2149 cur_devices->num_devices--;
2150 cur_devices->total_devices--;
b4993e64
AJ
2151 /* Update total_devices of the parent fs_devices if it's seed */
2152 if (cur_devices != fs_devices)
2153 fs_devices->total_devices--;
2b82032c 2154
e6e674bd 2155 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2156 cur_devices->missing_devices--;
cd02dca5 2157
d6507cf1 2158 btrfs_assign_next_active_device(device, NULL);
2b82032c 2159
0bfaa9c5 2160 if (device->bdev) {
41a52a0f 2161 cur_devices->open_devices--;
0bfaa9c5 2162 /* remove sysfs entry */
53f8a74c 2163 btrfs_sysfs_remove_device(device);
0bfaa9c5 2164 }
99994cde 2165
0b246afa
JM
2166 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2167 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2168 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2169
cea67ab9
JM
2170 /*
2171 * at this point, the device is zero sized and detached from
2172 * the devices list. All that's left is to zero out the old
2173 * supers and free the device.
2174 */
ebbede42 2175 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
8f32380d
JT
2176 btrfs_scratch_superblocks(fs_info, device->bdev,
2177 device->name->str);
cea67ab9
JM
2178
2179 btrfs_close_bdev(device);
8e75fd89
NB
2180 synchronize_rcu();
2181 btrfs_free_device(device);
cea67ab9 2182
1f78160c 2183 if (cur_devices->open_devices == 0) {
944d3f9f 2184 list_del_init(&cur_devices->seed_list);
0226e0eb 2185 close_fs_devices(cur_devices);
1f78160c 2186 free_fs_devices(cur_devices);
2b82032c
YZ
2187 }
2188
a061fc8d
CM
2189out:
2190 mutex_unlock(&uuid_mutex);
a061fc8d 2191 return ret;
24fc572f 2192
9b3517e9 2193error_undo:
66d204a1 2194 btrfs_reada_undo_remove_dev(device);
ebbede42 2195 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2196 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2197 list_add(&device->dev_alloc_list,
b5185197 2198 &fs_devices->alloc_list);
c3929c36 2199 device->fs_devices->rw_devices++;
34441361 2200 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2201 }
24fc572f 2202 goto out;
a061fc8d
CM
2203}
2204
68a9db5f 2205void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2206{
d51908ce
AJ
2207 struct btrfs_fs_devices *fs_devices;
2208
68a9db5f 2209 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2210
25e8e911
AJ
2211 /*
2212 * in case of fs with no seed, srcdev->fs_devices will point
2213 * to fs_devices of fs_info. However when the dev being replaced is
2214 * a seed dev it will point to the seed's local fs_devices. In short
2215 * srcdev will have its correct fs_devices in both the cases.
2216 */
2217 fs_devices = srcdev->fs_devices;
d51908ce 2218
e93c89c1 2219 list_del_rcu(&srcdev->dev_list);
619c47f3 2220 list_del(&srcdev->dev_alloc_list);
d51908ce 2221 fs_devices->num_devices--;
e6e674bd 2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2223 fs_devices->missing_devices--;
e93c89c1 2224
ebbede42 2225 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2226 fs_devices->rw_devices--;
1357272f 2227
82372bc8 2228 if (srcdev->bdev)
d51908ce 2229 fs_devices->open_devices--;
084b6e7c
QW
2230}
2231
65237ee3 2232void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2233{
2234 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2235
a466c85e
JB
2236 mutex_lock(&uuid_mutex);
2237
14238819 2238 btrfs_close_bdev(srcdev);
8e75fd89
NB
2239 synchronize_rcu();
2240 btrfs_free_device(srcdev);
94d5f0c2 2241
94d5f0c2
AJ
2242 /* if this is no devs we rather delete the fs_devices */
2243 if (!fs_devices->num_devices) {
6dd38f81
AJ
2244 /*
2245 * On a mounted FS, num_devices can't be zero unless it's a
2246 * seed. In case of a seed device being replaced, the replace
2247 * target added to the sprout FS, so there will be no more
2248 * device left under the seed FS.
2249 */
2250 ASSERT(fs_devices->seeding);
2251
944d3f9f 2252 list_del_init(&fs_devices->seed_list);
0226e0eb 2253 close_fs_devices(fs_devices);
8bef8401 2254 free_fs_devices(fs_devices);
94d5f0c2 2255 }
a466c85e 2256 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2257}
2258
4f5ad7bd 2259void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2260{
4f5ad7bd 2261 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2262
d9a071f0 2263 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2264
53f8a74c 2265 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2266
779bf3fe 2267 if (tgtdev->bdev)
d9a071f0 2268 fs_devices->open_devices--;
779bf3fe 2269
d9a071f0 2270 fs_devices->num_devices--;
e93c89c1 2271
d6507cf1 2272 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2273
e93c89c1 2274 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2275
d9a071f0 2276 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2277
2278 /*
2279 * The update_dev_time() with in btrfs_scratch_superblocks()
2280 * may lead to a call to btrfs_show_devname() which will try
2281 * to hold device_list_mutex. And here this device
2282 * is already out of device list, so we don't have to hold
2283 * the device_list_mutex lock.
2284 */
8f32380d
JT
2285 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2286 tgtdev->name->str);
14238819
AJ
2287
2288 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2289 synchronize_rcu();
2290 btrfs_free_device(tgtdev);
e93c89c1
SB
2291}
2292
b444ad46
NB
2293static struct btrfs_device *btrfs_find_device_by_path(
2294 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2295{
2296 int ret = 0;
2297 struct btrfs_super_block *disk_super;
2298 u64 devid;
2299 u8 *dev_uuid;
2300 struct block_device *bdev;
b444ad46 2301 struct btrfs_device *device;
7ba15b7d 2302
7ba15b7d 2303 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
8f32380d 2304 fs_info->bdev_holder, 0, &bdev, &disk_super);
7ba15b7d 2305 if (ret)
b444ad46 2306 return ERR_PTR(ret);
8f32380d 2307
7ba15b7d
SB
2308 devid = btrfs_stack_device_id(&disk_super->dev_item);
2309 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2310 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2311 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2312 disk_super->metadata_uuid);
7239ff4b 2313 else
e4319cd9 2314 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2315 disk_super->fsid);
7239ff4b 2316
8f32380d 2317 btrfs_release_disk_super(disk_super);
b444ad46
NB
2318 if (!device)
2319 device = ERR_PTR(-ENOENT);
7ba15b7d 2320 blkdev_put(bdev, FMODE_READ);
b444ad46 2321 return device;
7ba15b7d
SB
2322}
2323
5c5c0df0
DS
2324/*
2325 * Lookup a device given by device id, or the path if the id is 0.
2326 */
a27a94c2 2327struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2328 struct btrfs_fs_info *fs_info, u64 devid,
2329 const char *device_path)
24e0474b 2330{
a27a94c2 2331 struct btrfs_device *device;
24e0474b 2332
5c5c0df0 2333 if (devid) {
e4319cd9 2334 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
b2598edf 2335 NULL);
a27a94c2
NB
2336 if (!device)
2337 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2338 return device;
2339 }
2340
2341 if (!device_path || !device_path[0])
2342 return ERR_PTR(-EINVAL);
2343
2344 if (strcmp(device_path, "missing") == 0) {
2345 /* Find first missing device */
2346 list_for_each_entry(device, &fs_info->fs_devices->devices,
2347 dev_list) {
2348 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2349 &device->dev_state) && !device->bdev)
2350 return device;
d95a830c 2351 }
6e927ceb 2352 return ERR_PTR(-ENOENT);
24e0474b 2353 }
6e927ceb
AJ
2354
2355 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2356}
2357
2b82032c
YZ
2358/*
2359 * does all the dirty work required for changing file system's UUID.
2360 */
2ff7e61e 2361static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2362{
0b246afa 2363 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2364 struct btrfs_fs_devices *old_devices;
e4404d6e 2365 struct btrfs_fs_devices *seed_devices;
0b246afa 2366 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2367 struct btrfs_device *device;
2368 u64 super_flags;
2369
a32bf9a3 2370 lockdep_assert_held(&uuid_mutex);
e4404d6e 2371 if (!fs_devices->seeding)
2b82032c
YZ
2372 return -EINVAL;
2373
427c8fdd
NB
2374 /*
2375 * Private copy of the seed devices, anchored at
2376 * fs_info->fs_devices->seed_list
2377 */
7239ff4b 2378 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2379 if (IS_ERR(seed_devices))
2380 return PTR_ERR(seed_devices);
2b82032c 2381
427c8fdd
NB
2382 /*
2383 * It's necessary to retain a copy of the original seed fs_devices in
2384 * fs_uuids so that filesystems which have been seeded can successfully
2385 * reference the seed device from open_seed_devices. This also supports
2386 * multiple fs seed.
2387 */
e4404d6e
YZ
2388 old_devices = clone_fs_devices(fs_devices);
2389 if (IS_ERR(old_devices)) {
2390 kfree(seed_devices);
2391 return PTR_ERR(old_devices);
2b82032c 2392 }
e4404d6e 2393
c4babc5e 2394 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2395
e4404d6e
YZ
2396 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2397 seed_devices->opened = 1;
2398 INIT_LIST_HEAD(&seed_devices->devices);
2399 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2400 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2401
321a4bf7 2402 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2403 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2404 synchronize_rcu);
2196d6e8
MX
2405 list_for_each_entry(device, &seed_devices->devices, dev_list)
2406 device->fs_devices = seed_devices;
c9513edb 2407
0395d84f 2408 fs_devices->seeding = false;
2b82032c
YZ
2409 fs_devices->num_devices = 0;
2410 fs_devices->open_devices = 0;
69611ac8 2411 fs_devices->missing_devices = 0;
7f0432d0 2412 fs_devices->rotating = false;
944d3f9f 2413 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2414
2415 generate_random_uuid(fs_devices->fsid);
7239ff4b 2416 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2417 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2418 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2419
2b82032c
YZ
2420 super_flags = btrfs_super_flags(disk_super) &
2421 ~BTRFS_SUPER_FLAG_SEEDING;
2422 btrfs_set_super_flags(disk_super, super_flags);
2423
2424 return 0;
2425}
2426
2427/*
01327610 2428 * Store the expected generation for seed devices in device items.
2b82032c 2429 */
5c466629 2430static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2431{
5c466629 2432 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2433 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2434 struct btrfs_path *path;
2435 struct extent_buffer *leaf;
2436 struct btrfs_dev_item *dev_item;
2437 struct btrfs_device *device;
2438 struct btrfs_key key;
44880fdc 2439 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2440 u8 dev_uuid[BTRFS_UUID_SIZE];
2441 u64 devid;
2442 int ret;
2443
2444 path = btrfs_alloc_path();
2445 if (!path)
2446 return -ENOMEM;
2447
2b82032c
YZ
2448 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2449 key.offset = 0;
2450 key.type = BTRFS_DEV_ITEM_KEY;
2451
2452 while (1) {
2453 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2454 if (ret < 0)
2455 goto error;
2456
2457 leaf = path->nodes[0];
2458next_slot:
2459 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2460 ret = btrfs_next_leaf(root, path);
2461 if (ret > 0)
2462 break;
2463 if (ret < 0)
2464 goto error;
2465 leaf = path->nodes[0];
2466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2467 btrfs_release_path(path);
2b82032c
YZ
2468 continue;
2469 }
2470
2471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2472 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2473 key.type != BTRFS_DEV_ITEM_KEY)
2474 break;
2475
2476 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2477 struct btrfs_dev_item);
2478 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2479 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2480 BTRFS_UUID_SIZE);
1473b24e 2481 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2482 BTRFS_FSID_SIZE);
e4319cd9 2483 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 2484 fs_uuid);
79787eaa 2485 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2486
2487 if (device->fs_devices->seeding) {
2488 btrfs_set_device_generation(leaf, dev_item,
2489 device->generation);
2490 btrfs_mark_buffer_dirty(leaf);
2491 }
2492
2493 path->slots[0]++;
2494 goto next_slot;
2495 }
2496 ret = 0;
2497error:
2498 btrfs_free_path(path);
2499 return ret;
2500}
2501
da353f6b 2502int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2503{
5112febb 2504 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2505 struct request_queue *q;
788f20eb
CM
2506 struct btrfs_trans_handle *trans;
2507 struct btrfs_device *device;
2508 struct block_device *bdev;
0b246afa 2509 struct super_block *sb = fs_info->sb;
606686ee 2510 struct rcu_string *name;
5da54bc1 2511 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2512 u64 orig_super_total_bytes;
2513 u64 orig_super_num_devices;
2b82032c 2514 int seeding_dev = 0;
788f20eb 2515 int ret = 0;
44cab9ba 2516 bool locked = false;
788f20eb 2517
5da54bc1 2518 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2519 return -EROFS;
788f20eb 2520
a5d16333 2521 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2522 fs_info->bdev_holder);
7f59203a
JB
2523 if (IS_ERR(bdev))
2524 return PTR_ERR(bdev);
a2135011 2525
b70f5097
NA
2526 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2527 ret = -EINVAL;
2528 goto error;
2529 }
2530
5da54bc1 2531 if (fs_devices->seeding) {
2b82032c
YZ
2532 seeding_dev = 1;
2533 down_write(&sb->s_umount);
2534 mutex_lock(&uuid_mutex);
44cab9ba 2535 locked = true;
2b82032c
YZ
2536 }
2537
b9ba017f 2538 sync_blockdev(bdev);
a2135011 2539
f4cfa9bd
NB
2540 rcu_read_lock();
2541 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2542 if (device->bdev == bdev) {
2543 ret = -EEXIST;
f4cfa9bd 2544 rcu_read_unlock();
2b82032c 2545 goto error;
788f20eb
CM
2546 }
2547 }
f4cfa9bd 2548 rcu_read_unlock();
788f20eb 2549
0b246afa 2550 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2551 if (IS_ERR(device)) {
788f20eb 2552 /* we can safely leave the fs_devices entry around */
12bd2fc0 2553 ret = PTR_ERR(device);
2b82032c 2554 goto error;
788f20eb
CM
2555 }
2556
78f2c9e6 2557 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2558 if (!name) {
2b82032c 2559 ret = -ENOMEM;
5c4cf6c9 2560 goto error_free_device;
788f20eb 2561 }
606686ee 2562 rcu_assign_pointer(device->name, name);
2b82032c 2563
5b316468
NA
2564 device->fs_info = fs_info;
2565 device->bdev = bdev;
2566
2567 ret = btrfs_get_dev_zone_info(device);
2568 if (ret)
2569 goto error_free_device;
2570
a22285a6 2571 trans = btrfs_start_transaction(root, 0);
98d5dc13 2572 if (IS_ERR(trans)) {
98d5dc13 2573 ret = PTR_ERR(trans);
5b316468 2574 goto error_free_zone;
98d5dc13
TI
2575 }
2576
d5e2003c 2577 q = bdev_get_queue(bdev);
ebbede42 2578 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2579 device->generation = trans->transid;
0b246afa
JM
2580 device->io_width = fs_info->sectorsize;
2581 device->io_align = fs_info->sectorsize;
2582 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2583 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2584 fs_info->sectorsize);
2cc3c559 2585 device->disk_total_bytes = device->total_bytes;
935e5cc9 2586 device->commit_total_bytes = device->total_bytes;
e12c9621 2587 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2588 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2589 device->mode = FMODE_EXCL;
27087f37 2590 device->dev_stats_valid = 1;
9f6d2510 2591 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2592
2b82032c 2593 if (seeding_dev) {
a0a1db70 2594 btrfs_clear_sb_rdonly(sb);
2ff7e61e 2595 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2596 if (ret) {
2597 btrfs_abort_transaction(trans, ret);
2598 goto error_trans;
2599 }
2b82032c 2600 }
788f20eb 2601
5da54bc1 2602 device->fs_devices = fs_devices;
e5e9a520 2603
5da54bc1 2604 mutex_lock(&fs_devices->device_list_mutex);
34441361 2605 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2606 list_add_rcu(&device->dev_list, &fs_devices->devices);
2607 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2608 fs_devices->num_devices++;
2609 fs_devices->open_devices++;
2610 fs_devices->rw_devices++;
2611 fs_devices->total_devices++;
2612 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2613
a5ed45f8 2614 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2615
e884f4f0 2616 if (!blk_queue_nonrot(q))
7f0432d0 2617 fs_devices->rotating = true;
c289811c 2618
39379faa 2619 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2620 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2621 round_down(orig_super_total_bytes + device->total_bytes,
2622 fs_info->sectorsize));
788f20eb 2623
39379faa
NA
2624 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2625 btrfs_set_super_num_devices(fs_info->super_copy,
2626 orig_super_num_devices + 1);
0d39376a 2627
2196d6e8
MX
2628 /*
2629 * we've got more storage, clear any full flags on the space
2630 * infos
2631 */
0b246afa 2632 btrfs_clear_space_info_full(fs_info);
2196d6e8 2633
34441361 2634 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2635
2636 /* Add sysfs device entry */
cd36da2e 2637 btrfs_sysfs_add_device(device);
ca10845a 2638
5da54bc1 2639 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2640
2b82032c 2641 if (seeding_dev) {
34441361 2642 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2643 ret = init_first_rw_device(trans);
34441361 2644 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2645 if (ret) {
66642832 2646 btrfs_abort_transaction(trans, ret);
d31c32f6 2647 goto error_sysfs;
005d6427 2648 }
2196d6e8
MX
2649 }
2650
8e87e856 2651 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2652 if (ret) {
66642832 2653 btrfs_abort_transaction(trans, ret);
d31c32f6 2654 goto error_sysfs;
2196d6e8
MX
2655 }
2656
2657 if (seeding_dev) {
5c466629 2658 ret = btrfs_finish_sprout(trans);
005d6427 2659 if (ret) {
66642832 2660 btrfs_abort_transaction(trans, ret);
d31c32f6 2661 goto error_sysfs;
005d6427 2662 }
b2373f25 2663
8e560081
NB
2664 /*
2665 * fs_devices now represents the newly sprouted filesystem and
2666 * its fsid has been changed by btrfs_prepare_sprout
2667 */
2668 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2669 }
2670
3a45bb20 2671 ret = btrfs_commit_transaction(trans);
a2135011 2672
2b82032c
YZ
2673 if (seeding_dev) {
2674 mutex_unlock(&uuid_mutex);
2675 up_write(&sb->s_umount);
44cab9ba 2676 locked = false;
788f20eb 2677
79787eaa
JM
2678 if (ret) /* transaction commit */
2679 return ret;
2680
2ff7e61e 2681 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2682 if (ret < 0)
0b246afa 2683 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2684 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2685 trans = btrfs_attach_transaction(root);
2686 if (IS_ERR(trans)) {
2687 if (PTR_ERR(trans) == -ENOENT)
2688 return 0;
7132a262
AJ
2689 ret = PTR_ERR(trans);
2690 trans = NULL;
2691 goto error_sysfs;
671415b7 2692 }
3a45bb20 2693 ret = btrfs_commit_transaction(trans);
2b82032c 2694 }
c9e9f97b 2695
7f551d96
AJ
2696 /*
2697 * Now that we have written a new super block to this device, check all
2698 * other fs_devices list if device_path alienates any other scanned
2699 * device.
2700 * We can ignore the return value as it typically returns -EINVAL and
2701 * only succeeds if the device was an alien.
2702 */
2703 btrfs_forget_devices(device_path);
2704
2705 /* Update ctime/mtime for blkid or udev */
5a1972bd 2706 update_dev_time(device_path);
7f551d96 2707
2b82032c 2708 return ret;
79787eaa 2709
d31c32f6 2710error_sysfs:
53f8a74c 2711 btrfs_sysfs_remove_device(device);
39379faa
NA
2712 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2713 mutex_lock(&fs_info->chunk_mutex);
2714 list_del_rcu(&device->dev_list);
2715 list_del(&device->dev_alloc_list);
2716 fs_info->fs_devices->num_devices--;
2717 fs_info->fs_devices->open_devices--;
2718 fs_info->fs_devices->rw_devices--;
2719 fs_info->fs_devices->total_devices--;
2720 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2721 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2722 btrfs_set_super_total_bytes(fs_info->super_copy,
2723 orig_super_total_bytes);
2724 btrfs_set_super_num_devices(fs_info->super_copy,
2725 orig_super_num_devices);
2726 mutex_unlock(&fs_info->chunk_mutex);
2727 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2728error_trans:
0af2c4bf 2729 if (seeding_dev)
a0a1db70 2730 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2731 if (trans)
2732 btrfs_end_transaction(trans);
5b316468
NA
2733error_free_zone:
2734 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2735error_free_device:
a425f9d4 2736 btrfs_free_device(device);
2b82032c 2737error:
e525fd89 2738 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2739 if (locked) {
2b82032c
YZ
2740 mutex_unlock(&uuid_mutex);
2741 up_write(&sb->s_umount);
2742 }
c9e9f97b 2743 return ret;
788f20eb
CM
2744}
2745
d397712b
CM
2746static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2747 struct btrfs_device *device)
0b86a832
CM
2748{
2749 int ret;
2750 struct btrfs_path *path;
0b246afa 2751 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2752 struct btrfs_dev_item *dev_item;
2753 struct extent_buffer *leaf;
2754 struct btrfs_key key;
2755
0b86a832
CM
2756 path = btrfs_alloc_path();
2757 if (!path)
2758 return -ENOMEM;
2759
2760 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2761 key.type = BTRFS_DEV_ITEM_KEY;
2762 key.offset = device->devid;
2763
2764 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2765 if (ret < 0)
2766 goto out;
2767
2768 if (ret > 0) {
2769 ret = -ENOENT;
2770 goto out;
2771 }
2772
2773 leaf = path->nodes[0];
2774 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2775
2776 btrfs_set_device_id(leaf, dev_item, device->devid);
2777 btrfs_set_device_type(leaf, dev_item, device->type);
2778 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2779 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2780 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2781 btrfs_set_device_total_bytes(leaf, dev_item,
2782 btrfs_device_get_disk_total_bytes(device));
2783 btrfs_set_device_bytes_used(leaf, dev_item,
2784 btrfs_device_get_bytes_used(device));
0b86a832
CM
2785 btrfs_mark_buffer_dirty(leaf);
2786
2787out:
2788 btrfs_free_path(path);
2789 return ret;
2790}
2791
2196d6e8 2792int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2793 struct btrfs_device *device, u64 new_size)
2794{
0b246afa
JM
2795 struct btrfs_fs_info *fs_info = device->fs_info;
2796 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2797 u64 old_total;
2798 u64 diff;
8f18cf13 2799
ebbede42 2800 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2801 return -EACCES;
2196d6e8 2802
7dfb8be1
NB
2803 new_size = round_down(new_size, fs_info->sectorsize);
2804
34441361 2805 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2806 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2807 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2808
63a212ab 2809 if (new_size <= device->total_bytes ||
401e29c1 2810 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2811 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2812 return -EINVAL;
2196d6e8 2813 }
2b82032c 2814
7dfb8be1
NB
2815 btrfs_set_super_total_bytes(super_copy,
2816 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2817 device->fs_devices->total_rw_bytes += diff;
2818
7cc8e58d
MX
2819 btrfs_device_set_total_bytes(device, new_size);
2820 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2821 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2822 if (list_empty(&device->post_commit_list))
2823 list_add_tail(&device->post_commit_list,
2824 &trans->transaction->dev_update_list);
34441361 2825 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2826
8f18cf13
CM
2827 return btrfs_update_device(trans, device);
2828}
2829
f4208794 2830static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2831{
f4208794 2832 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2833 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2834 int ret;
2835 struct btrfs_path *path;
2836 struct btrfs_key key;
2837
8f18cf13
CM
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
408fbf19 2842 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2843 key.offset = chunk_offset;
2844 key.type = BTRFS_CHUNK_ITEM_KEY;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2847 if (ret < 0)
2848 goto out;
2849 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2850 btrfs_handle_fs_error(fs_info, -ENOENT,
2851 "Failed lookup while freeing chunk.");
79787eaa
JM
2852 ret = -ENOENT;
2853 goto out;
2854 }
8f18cf13
CM
2855
2856 ret = btrfs_del_item(trans, root, path);
79787eaa 2857 if (ret < 0)
0b246afa
JM
2858 btrfs_handle_fs_error(fs_info, ret,
2859 "Failed to delete chunk item.");
79787eaa 2860out:
8f18cf13 2861 btrfs_free_path(path);
65a246c5 2862 return ret;
8f18cf13
CM
2863}
2864
408fbf19 2865static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2866{
0b246afa 2867 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2868 struct btrfs_disk_key *disk_key;
2869 struct btrfs_chunk *chunk;
2870 u8 *ptr;
2871 int ret = 0;
2872 u32 num_stripes;
2873 u32 array_size;
2874 u32 len = 0;
2875 u32 cur;
2876 struct btrfs_key key;
2877
79bd3712 2878 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2879 array_size = btrfs_super_sys_array_size(super_copy);
2880
2881 ptr = super_copy->sys_chunk_array;
2882 cur = 0;
2883
2884 while (cur < array_size) {
2885 disk_key = (struct btrfs_disk_key *)ptr;
2886 btrfs_disk_key_to_cpu(&key, disk_key);
2887
2888 len = sizeof(*disk_key);
2889
2890 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2891 chunk = (struct btrfs_chunk *)(ptr + len);
2892 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2893 len += btrfs_chunk_item_size(num_stripes);
2894 } else {
2895 ret = -EIO;
2896 break;
2897 }
408fbf19 2898 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2899 key.offset == chunk_offset) {
2900 memmove(ptr, ptr + len, array_size - (cur + len));
2901 array_size -= len;
2902 btrfs_set_super_sys_array_size(super_copy, array_size);
2903 } else {
2904 ptr += len;
2905 cur += len;
2906 }
2907 }
2908 return ret;
2909}
2910
60ca842e
OS
2911/*
2912 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2913 * @logical: Logical block offset in bytes.
2914 * @length: Length of extent in bytes.
2915 *
2916 * Return: Chunk mapping or ERR_PTR.
2917 */
2918struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2919 u64 logical, u64 length)
592d92ee
LB
2920{
2921 struct extent_map_tree *em_tree;
2922 struct extent_map *em;
2923
c8bf1b67 2924 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2925 read_lock(&em_tree->lock);
2926 em = lookup_extent_mapping(em_tree, logical, length);
2927 read_unlock(&em_tree->lock);
2928
2929 if (!em) {
2930 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2931 logical, length);
2932 return ERR_PTR(-EINVAL);
2933 }
2934
2935 if (em->start > logical || em->start + em->len < logical) {
2936 btrfs_crit(fs_info,
2937 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2938 logical, length, em->start, em->start + em->len);
2939 free_extent_map(em);
2940 return ERR_PTR(-EINVAL);
2941 }
2942
2943 /* callers are responsible for dropping em's ref. */
2944 return em;
2945}
2946
79bd3712
FM
2947static int remove_chunk_item(struct btrfs_trans_handle *trans,
2948 struct map_lookup *map, u64 chunk_offset)
2949{
2950 int i;
2951
2952 /*
2953 * Removing chunk items and updating the device items in the chunks btree
2954 * requires holding the chunk_mutex.
2955 * See the comment at btrfs_chunk_alloc() for the details.
2956 */
2957 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2958
2959 for (i = 0; i < map->num_stripes; i++) {
2960 int ret;
2961
2962 ret = btrfs_update_device(trans, map->stripes[i].dev);
2963 if (ret)
2964 return ret;
2965 }
2966
2967 return btrfs_free_chunk(trans, chunk_offset);
2968}
2969
97aff912 2970int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2971{
97aff912 2972 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2973 struct extent_map *em;
2974 struct map_lookup *map;
2196d6e8 2975 u64 dev_extent_len = 0;
47ab2a6c 2976 int i, ret = 0;
0b246afa 2977 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2978
60ca842e 2979 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2980 if (IS_ERR(em)) {
47ab2a6c
JB
2981 /*
2982 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2983 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2984 * do anything we still error out.
2985 */
2986 ASSERT(0);
592d92ee 2987 return PTR_ERR(em);
47ab2a6c 2988 }
95617d69 2989 map = em->map_lookup;
8f18cf13 2990
57ba4cb8 2991 /*
79bd3712
FM
2992 * First delete the device extent items from the devices btree.
2993 * We take the device_list_mutex to avoid racing with the finishing phase
2994 * of a device replace operation. See the comment below before acquiring
2995 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
2996 * because that can result in a deadlock when deleting the device extent
2997 * items from the devices btree - COWing an extent buffer from the btree
2998 * may result in allocating a new metadata chunk, which would attempt to
2999 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3000 */
3001 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3002 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3003 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3004 ret = btrfs_free_dev_extent(trans, device,
3005 map->stripes[i].physical,
3006 &dev_extent_len);
47ab2a6c 3007 if (ret) {
57ba4cb8 3008 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3009 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3010 goto out;
3011 }
a061fc8d 3012
2196d6e8 3013 if (device->bytes_used > 0) {
34441361 3014 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3015 btrfs_device_set_bytes_used(device,
3016 device->bytes_used - dev_extent_len);
a5ed45f8 3017 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3018 btrfs_clear_space_info_full(fs_info);
34441361 3019 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3020 }
79bd3712
FM
3021 }
3022 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3023
79bd3712
FM
3024 /*
3025 * We acquire fs_info->chunk_mutex for 2 reasons:
3026 *
3027 * 1) Just like with the first phase of the chunk allocation, we must
3028 * reserve system space, do all chunk btree updates and deletions, and
3029 * update the system chunk array in the superblock while holding this
3030 * mutex. This is for similar reasons as explained on the comment at
3031 * the top of btrfs_chunk_alloc();
3032 *
3033 * 2) Prevent races with the final phase of a device replace operation
3034 * that replaces the device object associated with the map's stripes,
3035 * because the device object's id can change at any time during that
3036 * final phase of the device replace operation
3037 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3038 * replaced device and then see it with an ID of
3039 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3040 * the device item, which does not exists on the chunk btree.
3041 * The finishing phase of device replace acquires both the
3042 * device_list_mutex and the chunk_mutex, in that order, so we are
3043 * safe by just acquiring the chunk_mutex.
3044 */
3045 trans->removing_chunk = true;
3046 mutex_lock(&fs_info->chunk_mutex);
3047
3048 check_system_chunk(trans, map->type);
3049
3050 ret = remove_chunk_item(trans, map, chunk_offset);
3051 /*
3052 * Normally we should not get -ENOSPC since we reserved space before
3053 * through the call to check_system_chunk().
3054 *
3055 * Despite our system space_info having enough free space, we may not
3056 * be able to allocate extents from its block groups, because all have
3057 * an incompatible profile, which will force us to allocate a new system
3058 * block group with the right profile, or right after we called
3059 * check_system_space() above, a scrub turned the only system block group
3060 * with enough free space into RO mode.
3061 * This is explained with more detail at do_chunk_alloc().
3062 *
3063 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3064 */
3065 if (ret == -ENOSPC) {
3066 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3067 struct btrfs_block_group *sys_bg;
3068
3069 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3070 if (IS_ERR(sys_bg)) {
3071 ret = PTR_ERR(sys_bg);
3072 btrfs_abort_transaction(trans, ret);
3073 goto out;
3074 }
3075
3076 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3077 if (ret) {
64bc6c2a
NB
3078 btrfs_abort_transaction(trans, ret);
3079 goto out;
dfe25020 3080 }
57ba4cb8 3081
79bd3712
FM
3082 ret = remove_chunk_item(trans, map, chunk_offset);
3083 if (ret) {
3084 btrfs_abort_transaction(trans, ret);
3085 goto out;
3086 }
3087 } else if (ret) {
66642832 3088 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3089 goto out;
3090 }
8f18cf13 3091
6bccf3ab 3092 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3093
8f18cf13 3094 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3095 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3096 if (ret) {
66642832 3097 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3098 goto out;
3099 }
8f18cf13
CM
3100 }
3101
79bd3712
FM
3102 mutex_unlock(&fs_info->chunk_mutex);
3103 trans->removing_chunk = false;
3104
3105 /*
3106 * We are done with chunk btree updates and deletions, so release the
3107 * system space we previously reserved (with check_system_chunk()).
3108 */
3109 btrfs_trans_release_chunk_metadata(trans);
3110
5a98ec01 3111 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3112 if (ret) {
66642832 3113 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3114 goto out;
3115 }
2b82032c 3116
47ab2a6c 3117out:
79bd3712
FM
3118 if (trans->removing_chunk) {
3119 mutex_unlock(&fs_info->chunk_mutex);
3120 trans->removing_chunk = false;
3121 }
2b82032c
YZ
3122 /* once for us */
3123 free_extent_map(em);
47ab2a6c
JB
3124 return ret;
3125}
2b82032c 3126
18bb8bbf 3127int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3128{
5b4aacef 3129 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3130 struct btrfs_trans_handle *trans;
b0643e59 3131 struct btrfs_block_group *block_group;
01e86008 3132 u64 length;
47ab2a6c 3133 int ret;
2b82032c 3134
67c5e7d4
FM
3135 /*
3136 * Prevent races with automatic removal of unused block groups.
3137 * After we relocate and before we remove the chunk with offset
3138 * chunk_offset, automatic removal of the block group can kick in,
3139 * resulting in a failure when calling btrfs_remove_chunk() below.
3140 *
3141 * Make sure to acquire this mutex before doing a tree search (dev
3142 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3143 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3144 * we release the path used to search the chunk/dev tree and before
3145 * the current task acquires this mutex and calls us.
3146 */
f3372065 3147 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3148
47ab2a6c 3149 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3150 btrfs_scrub_pause(fs_info);
0b246afa 3151 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3152 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3153 if (ret)
3154 return ret;
3155
b0643e59
DZ
3156 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3157 if (!block_group)
3158 return -ENOENT;
3159 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3160 length = block_group->length;
b0643e59
DZ
3161 btrfs_put_block_group(block_group);
3162
01e86008
JT
3163 /*
3164 * On a zoned file system, discard the whole block group, this will
3165 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3166 * resetting the zone fails, don't treat it as a fatal problem from the
3167 * filesystem's point of view.
3168 */
3169 if (btrfs_is_zoned(fs_info)) {
3170 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3171 if (ret)
3172 btrfs_info(fs_info,
3173 "failed to reset zone %llu after relocation",
3174 chunk_offset);
3175 }
3176
19c4d2f9
CM
3177 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3178 chunk_offset);
3179 if (IS_ERR(trans)) {
3180 ret = PTR_ERR(trans);
3181 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3182 return ret;
3183 }
3184
47ab2a6c 3185 /*
19c4d2f9
CM
3186 * step two, delete the device extents and the
3187 * chunk tree entries
47ab2a6c 3188 */
97aff912 3189 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3190 btrfs_end_transaction(trans);
19c4d2f9 3191 return ret;
2b82032c
YZ
3192}
3193
2ff7e61e 3194static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3195{
0b246afa 3196 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3197 struct btrfs_path *path;
3198 struct extent_buffer *leaf;
3199 struct btrfs_chunk *chunk;
3200 struct btrfs_key key;
3201 struct btrfs_key found_key;
2b82032c 3202 u64 chunk_type;
ba1bf481
JB
3203 bool retried = false;
3204 int failed = 0;
2b82032c
YZ
3205 int ret;
3206
3207 path = btrfs_alloc_path();
3208 if (!path)
3209 return -ENOMEM;
3210
ba1bf481 3211again:
2b82032c
YZ
3212 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3213 key.offset = (u64)-1;
3214 key.type = BTRFS_CHUNK_ITEM_KEY;
3215
3216 while (1) {
f3372065 3217 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3218 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3219 if (ret < 0) {
f3372065 3220 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3221 goto error;
67c5e7d4 3222 }
79787eaa 3223 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3224
3225 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3226 key.type);
67c5e7d4 3227 if (ret)
f3372065 3228 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3229 if (ret < 0)
3230 goto error;
3231 if (ret > 0)
3232 break;
1a40e23b 3233
2b82032c
YZ
3234 leaf = path->nodes[0];
3235 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3236
2b82032c
YZ
3237 chunk = btrfs_item_ptr(leaf, path->slots[0],
3238 struct btrfs_chunk);
3239 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3240 btrfs_release_path(path);
8f18cf13 3241
2b82032c 3242 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3243 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3244 if (ret == -ENOSPC)
3245 failed++;
14586651
HS
3246 else
3247 BUG_ON(ret);
2b82032c 3248 }
f3372065 3249 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3250
2b82032c
YZ
3251 if (found_key.offset == 0)
3252 break;
3253 key.offset = found_key.offset - 1;
3254 }
3255 ret = 0;
ba1bf481
JB
3256 if (failed && !retried) {
3257 failed = 0;
3258 retried = true;
3259 goto again;
fae7f21c 3260 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3261 ret = -ENOSPC;
3262 }
2b82032c
YZ
3263error:
3264 btrfs_free_path(path);
3265 return ret;
8f18cf13
CM
3266}
3267
a6f93c71
LB
3268/*
3269 * return 1 : allocate a data chunk successfully,
3270 * return <0: errors during allocating a data chunk,
3271 * return 0 : no need to allocate a data chunk.
3272 */
3273static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3274 u64 chunk_offset)
3275{
32da5386 3276 struct btrfs_block_group *cache;
a6f93c71
LB
3277 u64 bytes_used;
3278 u64 chunk_type;
3279
3280 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3281 ASSERT(cache);
3282 chunk_type = cache->flags;
3283 btrfs_put_block_group(cache);
3284
5ae21692
JT
3285 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3286 return 0;
3287
3288 spin_lock(&fs_info->data_sinfo->lock);
3289 bytes_used = fs_info->data_sinfo->bytes_used;
3290 spin_unlock(&fs_info->data_sinfo->lock);
3291
3292 if (!bytes_used) {
3293 struct btrfs_trans_handle *trans;
3294 int ret;
3295
3296 trans = btrfs_join_transaction(fs_info->tree_root);
3297 if (IS_ERR(trans))
3298 return PTR_ERR(trans);
3299
3300 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3301 btrfs_end_transaction(trans);
3302 if (ret < 0)
3303 return ret;
3304 return 1;
a6f93c71 3305 }
5ae21692 3306
a6f93c71
LB
3307 return 0;
3308}
3309
6bccf3ab 3310static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3311 struct btrfs_balance_control *bctl)
3312{
6bccf3ab 3313 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3314 struct btrfs_trans_handle *trans;
3315 struct btrfs_balance_item *item;
3316 struct btrfs_disk_balance_args disk_bargs;
3317 struct btrfs_path *path;
3318 struct extent_buffer *leaf;
3319 struct btrfs_key key;
3320 int ret, err;
3321
3322 path = btrfs_alloc_path();
3323 if (!path)
3324 return -ENOMEM;
3325
3326 trans = btrfs_start_transaction(root, 0);
3327 if (IS_ERR(trans)) {
3328 btrfs_free_path(path);
3329 return PTR_ERR(trans);
3330 }
3331
3332 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3333 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3334 key.offset = 0;
3335
3336 ret = btrfs_insert_empty_item(trans, root, path, &key,
3337 sizeof(*item));
3338 if (ret)
3339 goto out;
3340
3341 leaf = path->nodes[0];
3342 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3343
b159fa28 3344 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3345
3346 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3347 btrfs_set_balance_data(leaf, item, &disk_bargs);
3348 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3349 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3350 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3351 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3352
3353 btrfs_set_balance_flags(leaf, item, bctl->flags);
3354
3355 btrfs_mark_buffer_dirty(leaf);
3356out:
3357 btrfs_free_path(path);
3a45bb20 3358 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3359 if (err && !ret)
3360 ret = err;
3361 return ret;
3362}
3363
6bccf3ab 3364static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3365{
6bccf3ab 3366 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3367 struct btrfs_trans_handle *trans;
3368 struct btrfs_path *path;
3369 struct btrfs_key key;
3370 int ret, err;
3371
3372 path = btrfs_alloc_path();
3373 if (!path)
3374 return -ENOMEM;
3375
3502a8c0 3376 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3377 if (IS_ERR(trans)) {
3378 btrfs_free_path(path);
3379 return PTR_ERR(trans);
3380 }
3381
3382 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3383 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3384 key.offset = 0;
3385
3386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3387 if (ret < 0)
3388 goto out;
3389 if (ret > 0) {
3390 ret = -ENOENT;
3391 goto out;
3392 }
3393
3394 ret = btrfs_del_item(trans, root, path);
3395out:
3396 btrfs_free_path(path);
3a45bb20 3397 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3398 if (err && !ret)
3399 ret = err;
3400 return ret;
3401}
3402
59641015
ID
3403/*
3404 * This is a heuristic used to reduce the number of chunks balanced on
3405 * resume after balance was interrupted.
3406 */
3407static void update_balance_args(struct btrfs_balance_control *bctl)
3408{
3409 /*
3410 * Turn on soft mode for chunk types that were being converted.
3411 */
3412 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3413 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3414 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3415 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3416 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3417 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3418
3419 /*
3420 * Turn on usage filter if is not already used. The idea is
3421 * that chunks that we have already balanced should be
3422 * reasonably full. Don't do it for chunks that are being
3423 * converted - that will keep us from relocating unconverted
3424 * (albeit full) chunks.
3425 */
3426 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3427 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3428 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3429 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3430 bctl->data.usage = 90;
3431 }
3432 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3433 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3434 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3435 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3436 bctl->sys.usage = 90;
3437 }
3438 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3439 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3440 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3441 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3442 bctl->meta.usage = 90;
3443 }
3444}
3445
149196a2
DS
3446/*
3447 * Clear the balance status in fs_info and delete the balance item from disk.
3448 */
3449static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3450{
3451 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3452 int ret;
c9e9f97b
ID
3453
3454 BUG_ON(!fs_info->balance_ctl);
3455
3456 spin_lock(&fs_info->balance_lock);
3457 fs_info->balance_ctl = NULL;
3458 spin_unlock(&fs_info->balance_lock);
3459
3460 kfree(bctl);
149196a2
DS
3461 ret = del_balance_item(fs_info);
3462 if (ret)
3463 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3464}
3465
ed25e9b2
ID
3466/*
3467 * Balance filters. Return 1 if chunk should be filtered out
3468 * (should not be balanced).
3469 */
899c81ea 3470static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3471 struct btrfs_balance_args *bargs)
3472{
899c81ea
ID
3473 chunk_type = chunk_to_extended(chunk_type) &
3474 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3475
899c81ea 3476 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3477 return 0;
3478
3479 return 1;
3480}
3481
dba72cb3 3482static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3483 struct btrfs_balance_args *bargs)
bc309467 3484{
32da5386 3485 struct btrfs_block_group *cache;
bc309467
DS
3486 u64 chunk_used;
3487 u64 user_thresh_min;
3488 u64 user_thresh_max;
3489 int ret = 1;
3490
3491 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3492 chunk_used = cache->used;
bc309467
DS
3493
3494 if (bargs->usage_min == 0)
3495 user_thresh_min = 0;
3496 else
b3470b5d
DS
3497 user_thresh_min = div_factor_fine(cache->length,
3498 bargs->usage_min);
bc309467
DS
3499
3500 if (bargs->usage_max == 0)
3501 user_thresh_max = 1;
3502 else if (bargs->usage_max > 100)
b3470b5d 3503 user_thresh_max = cache->length;
bc309467 3504 else
b3470b5d
DS
3505 user_thresh_max = div_factor_fine(cache->length,
3506 bargs->usage_max);
bc309467
DS
3507
3508 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3509 ret = 0;
3510
3511 btrfs_put_block_group(cache);
3512 return ret;
3513}
3514
dba72cb3 3515static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3516 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3517{
32da5386 3518 struct btrfs_block_group *cache;
5ce5b3c0
ID
3519 u64 chunk_used, user_thresh;
3520 int ret = 1;
3521
3522 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3523 chunk_used = cache->used;
5ce5b3c0 3524
bc309467 3525 if (bargs->usage_min == 0)
3e39cea6 3526 user_thresh = 1;
a105bb88 3527 else if (bargs->usage > 100)
b3470b5d 3528 user_thresh = cache->length;
a105bb88 3529 else
b3470b5d 3530 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3531
5ce5b3c0
ID
3532 if (chunk_used < user_thresh)
3533 ret = 0;
3534
3535 btrfs_put_block_group(cache);
3536 return ret;
3537}
3538
409d404b
ID
3539static int chunk_devid_filter(struct extent_buffer *leaf,
3540 struct btrfs_chunk *chunk,
3541 struct btrfs_balance_args *bargs)
3542{
3543 struct btrfs_stripe *stripe;
3544 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3545 int i;
3546
3547 for (i = 0; i < num_stripes; i++) {
3548 stripe = btrfs_stripe_nr(chunk, i);
3549 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3550 return 0;
3551 }
3552
3553 return 1;
3554}
3555
946c9256
DS
3556static u64 calc_data_stripes(u64 type, int num_stripes)
3557{
3558 const int index = btrfs_bg_flags_to_raid_index(type);
3559 const int ncopies = btrfs_raid_array[index].ncopies;
3560 const int nparity = btrfs_raid_array[index].nparity;
3561
d58ede8d 3562 return (num_stripes - nparity) / ncopies;
946c9256
DS
3563}
3564
94e60d5a
ID
3565/* [pstart, pend) */
3566static int chunk_drange_filter(struct extent_buffer *leaf,
3567 struct btrfs_chunk *chunk,
94e60d5a
ID
3568 struct btrfs_balance_args *bargs)
3569{
3570 struct btrfs_stripe *stripe;
3571 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3572 u64 stripe_offset;
3573 u64 stripe_length;
946c9256 3574 u64 type;
94e60d5a
ID
3575 int factor;
3576 int i;
3577
3578 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3579 return 0;
3580
946c9256
DS
3581 type = btrfs_chunk_type(leaf, chunk);
3582 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3583
3584 for (i = 0; i < num_stripes; i++) {
3585 stripe = btrfs_stripe_nr(chunk, i);
3586 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3587 continue;
3588
3589 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3590 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3591 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3592
3593 if (stripe_offset < bargs->pend &&
3594 stripe_offset + stripe_length > bargs->pstart)
3595 return 0;
3596 }
3597
3598 return 1;
3599}
3600
ea67176a
ID
3601/* [vstart, vend) */
3602static int chunk_vrange_filter(struct extent_buffer *leaf,
3603 struct btrfs_chunk *chunk,
3604 u64 chunk_offset,
3605 struct btrfs_balance_args *bargs)
3606{
3607 if (chunk_offset < bargs->vend &&
3608 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3609 /* at least part of the chunk is inside this vrange */
3610 return 0;
3611
3612 return 1;
3613}
3614
dee32d0a
GAP
3615static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3616 struct btrfs_chunk *chunk,
3617 struct btrfs_balance_args *bargs)
3618{
3619 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3620
3621 if (bargs->stripes_min <= num_stripes
3622 && num_stripes <= bargs->stripes_max)
3623 return 0;
3624
3625 return 1;
3626}
3627
899c81ea 3628static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3629 struct btrfs_balance_args *bargs)
3630{
3631 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3632 return 0;
3633
899c81ea
ID
3634 chunk_type = chunk_to_extended(chunk_type) &
3635 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3636
899c81ea 3637 if (bargs->target == chunk_type)
cfa4c961
ID
3638 return 1;
3639
3640 return 0;
3641}
3642
6ec0896c 3643static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3644 struct btrfs_chunk *chunk, u64 chunk_offset)
3645{
6ec0896c 3646 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3647 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3648 struct btrfs_balance_args *bargs = NULL;
3649 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3650
3651 /* type filter */
3652 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3653 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3654 return 0;
3655 }
3656
3657 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3658 bargs = &bctl->data;
3659 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3660 bargs = &bctl->sys;
3661 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3662 bargs = &bctl->meta;
3663
ed25e9b2
ID
3664 /* profiles filter */
3665 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3666 chunk_profiles_filter(chunk_type, bargs)) {
3667 return 0;
5ce5b3c0
ID
3668 }
3669
3670 /* usage filter */
3671 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3672 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3673 return 0;
bc309467 3674 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3675 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3676 return 0;
409d404b
ID
3677 }
3678
3679 /* devid filter */
3680 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3681 chunk_devid_filter(leaf, chunk, bargs)) {
3682 return 0;
94e60d5a
ID
3683 }
3684
3685 /* drange filter, makes sense only with devid filter */
3686 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3687 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3688 return 0;
ea67176a
ID
3689 }
3690
3691 /* vrange filter */
3692 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3693 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3694 return 0;
ed25e9b2
ID
3695 }
3696
dee32d0a
GAP
3697 /* stripes filter */
3698 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3699 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3700 return 0;
3701 }
3702
cfa4c961
ID
3703 /* soft profile changing mode */
3704 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3705 chunk_soft_convert_filter(chunk_type, bargs)) {
3706 return 0;
3707 }
3708
7d824b6f
DS
3709 /*
3710 * limited by count, must be the last filter
3711 */
3712 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3713 if (bargs->limit == 0)
3714 return 0;
3715 else
3716 bargs->limit--;
12907fc7
DS
3717 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3718 /*
3719 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3720 * determined here because we do not have the global information
12907fc7
DS
3721 * about the count of all chunks that satisfy the filters.
3722 */
3723 if (bargs->limit_max == 0)
3724 return 0;
3725 else
3726 bargs->limit_max--;
7d824b6f
DS
3727 }
3728
f43ffb60
ID
3729 return 1;
3730}
3731
c9e9f97b 3732static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3733{
19a39dce 3734 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3735 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3736 u64 chunk_type;
f43ffb60 3737 struct btrfs_chunk *chunk;
5a488b9d 3738 struct btrfs_path *path = NULL;
ec44a35c 3739 struct btrfs_key key;
ec44a35c 3740 struct btrfs_key found_key;
f43ffb60
ID
3741 struct extent_buffer *leaf;
3742 int slot;
c9e9f97b
ID
3743 int ret;
3744 int enospc_errors = 0;
19a39dce 3745 bool counting = true;
12907fc7 3746 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3747 u64 limit_data = bctl->data.limit;
3748 u64 limit_meta = bctl->meta.limit;
3749 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3750 u32 count_data = 0;
3751 u32 count_meta = 0;
3752 u32 count_sys = 0;
2c9fe835 3753 int chunk_reserved = 0;
ec44a35c 3754
ec44a35c 3755 path = btrfs_alloc_path();
17e9f796
MF
3756 if (!path) {
3757 ret = -ENOMEM;
3758 goto error;
3759 }
19a39dce
ID
3760
3761 /* zero out stat counters */
3762 spin_lock(&fs_info->balance_lock);
3763 memset(&bctl->stat, 0, sizeof(bctl->stat));
3764 spin_unlock(&fs_info->balance_lock);
3765again:
7d824b6f 3766 if (!counting) {
12907fc7
DS
3767 /*
3768 * The single value limit and min/max limits use the same bytes
3769 * in the
3770 */
7d824b6f
DS
3771 bctl->data.limit = limit_data;
3772 bctl->meta.limit = limit_meta;
3773 bctl->sys.limit = limit_sys;
3774 }
ec44a35c
CM
3775 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3776 key.offset = (u64)-1;
3777 key.type = BTRFS_CHUNK_ITEM_KEY;
3778
d397712b 3779 while (1) {
19a39dce 3780 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3781 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3782 ret = -ECANCELED;
3783 goto error;
3784 }
3785
f3372065 3786 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3787 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3788 if (ret < 0) {
f3372065 3789 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3790 goto error;
67c5e7d4 3791 }
ec44a35c
CM
3792
3793 /*
3794 * this shouldn't happen, it means the last relocate
3795 * failed
3796 */
3797 if (ret == 0)
c9e9f97b 3798 BUG(); /* FIXME break ? */
ec44a35c
CM
3799
3800 ret = btrfs_previous_item(chunk_root, path, 0,
3801 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3802 if (ret) {
f3372065 3803 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3804 ret = 0;
ec44a35c 3805 break;
c9e9f97b 3806 }
7d9eb12c 3807
f43ffb60
ID
3808 leaf = path->nodes[0];
3809 slot = path->slots[0];
3810 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3811
67c5e7d4 3812 if (found_key.objectid != key.objectid) {
f3372065 3813 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3814 break;
67c5e7d4 3815 }
7d9eb12c 3816
f43ffb60 3817 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3818 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3819
19a39dce
ID
3820 if (!counting) {
3821 spin_lock(&fs_info->balance_lock);
3822 bctl->stat.considered++;
3823 spin_unlock(&fs_info->balance_lock);
3824 }
3825
6ec0896c 3826 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3827
b3b4aa74 3828 btrfs_release_path(path);
67c5e7d4 3829 if (!ret) {
f3372065 3830 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3831 goto loop;
67c5e7d4 3832 }
f43ffb60 3833
19a39dce 3834 if (counting) {
f3372065 3835 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3836 spin_lock(&fs_info->balance_lock);
3837 bctl->stat.expected++;
3838 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3839
3840 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3841 count_data++;
3842 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3843 count_sys++;
3844 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3845 count_meta++;
3846
3847 goto loop;
3848 }
3849
3850 /*
3851 * Apply limit_min filter, no need to check if the LIMITS
3852 * filter is used, limit_min is 0 by default
3853 */
3854 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3855 count_data < bctl->data.limit_min)
3856 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3857 count_meta < bctl->meta.limit_min)
3858 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3859 count_sys < bctl->sys.limit_min)) {
f3372065 3860 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3861 goto loop;
3862 }
3863
a6f93c71
LB
3864 if (!chunk_reserved) {
3865 /*
3866 * We may be relocating the only data chunk we have,
3867 * which could potentially end up with losing data's
3868 * raid profile, so lets allocate an empty one in
3869 * advance.
3870 */
3871 ret = btrfs_may_alloc_data_chunk(fs_info,
3872 found_key.offset);
2c9fe835 3873 if (ret < 0) {
f3372065 3874 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3875 goto error;
a6f93c71
LB
3876 } else if (ret == 1) {
3877 chunk_reserved = 1;
2c9fe835 3878 }
2c9fe835
ZL
3879 }
3880
5b4aacef 3881 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3882 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3883 if (ret == -ENOSPC) {
c9e9f97b 3884 enospc_errors++;
eede2bf3
OS
3885 } else if (ret == -ETXTBSY) {
3886 btrfs_info(fs_info,
3887 "skipping relocation of block group %llu due to active swapfile",
3888 found_key.offset);
3889 ret = 0;
3890 } else if (ret) {
3891 goto error;
19a39dce
ID
3892 } else {
3893 spin_lock(&fs_info->balance_lock);
3894 bctl->stat.completed++;
3895 spin_unlock(&fs_info->balance_lock);
3896 }
f43ffb60 3897loop:
795a3321
ID
3898 if (found_key.offset == 0)
3899 break;
ba1bf481 3900 key.offset = found_key.offset - 1;
ec44a35c 3901 }
c9e9f97b 3902
19a39dce
ID
3903 if (counting) {
3904 btrfs_release_path(path);
3905 counting = false;
3906 goto again;
3907 }
ec44a35c
CM
3908error:
3909 btrfs_free_path(path);
c9e9f97b 3910 if (enospc_errors) {
efe120a0 3911 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3912 enospc_errors);
c9e9f97b
ID
3913 if (!ret)
3914 ret = -ENOSPC;
3915 }
3916
ec44a35c
CM
3917 return ret;
3918}
3919
0c460c0d
ID
3920/**
3921 * alloc_profile_is_valid - see if a given profile is valid and reduced
3922 * @flags: profile to validate
3923 * @extended: if true @flags is treated as an extended profile
3924 */
3925static int alloc_profile_is_valid(u64 flags, int extended)
3926{
3927 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3928 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3929
3930 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3931
3932 /* 1) check that all other bits are zeroed */
3933 if (flags & ~mask)
3934 return 0;
3935
3936 /* 2) see if profile is reduced */
3937 if (flags == 0)
3938 return !extended; /* "0" is valid for usual profiles */
3939
c1499166 3940 return has_single_bit_set(flags);
0c460c0d
ID
3941}
3942
837d5b6e
ID
3943static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3944{
a7e99c69
ID
3945 /* cancel requested || normal exit path */
3946 return atomic_read(&fs_info->balance_cancel_req) ||
3947 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3948 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3949}
3950
5ba366c3
DS
3951/*
3952 * Validate target profile against allowed profiles and return true if it's OK.
3953 * Otherwise print the error message and return false.
3954 */
3955static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3956 const struct btrfs_balance_args *bargs,
3957 u64 allowed, const char *type)
bdcd3c97 3958{
5ba366c3
DS
3959 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3960 return true;
3961
c8050b3b
QW
3962 if (fs_info->sectorsize < PAGE_SIZE &&
3963 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3964 btrfs_err(fs_info,
3965 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3966 fs_info->sectorsize, PAGE_SIZE);
3967 return false;
3968 }
5ba366c3
DS
3969 /* Profile is valid and does not have bits outside of the allowed set */
3970 if (alloc_profile_is_valid(bargs->target, 1) &&
3971 (bargs->target & ~allowed) == 0)
3972 return true;
3973
3974 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3975 type, btrfs_bg_type_to_raid_name(bargs->target));
3976 return false;
bdcd3c97
AM
3977}
3978
56fc37d9
AJ
3979/*
3980 * Fill @buf with textual description of balance filter flags @bargs, up to
3981 * @size_buf including the terminating null. The output may be trimmed if it
3982 * does not fit into the provided buffer.
3983 */
3984static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3985 u32 size_buf)
3986{
3987 int ret;
3988 u32 size_bp = size_buf;
3989 char *bp = buf;
3990 u64 flags = bargs->flags;
3991 char tmp_buf[128] = {'\0'};
3992
3993 if (!flags)
3994 return;
3995
3996#define CHECK_APPEND_NOARG(a) \
3997 do { \
3998 ret = snprintf(bp, size_bp, (a)); \
3999 if (ret < 0 || ret >= size_bp) \
4000 goto out_overflow; \
4001 size_bp -= ret; \
4002 bp += ret; \
4003 } while (0)
4004
4005#define CHECK_APPEND_1ARG(a, v1) \
4006 do { \
4007 ret = snprintf(bp, size_bp, (a), (v1)); \
4008 if (ret < 0 || ret >= size_bp) \
4009 goto out_overflow; \
4010 size_bp -= ret; \
4011 bp += ret; \
4012 } while (0)
4013
4014#define CHECK_APPEND_2ARG(a, v1, v2) \
4015 do { \
4016 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4017 if (ret < 0 || ret >= size_bp) \
4018 goto out_overflow; \
4019 size_bp -= ret; \
4020 bp += ret; \
4021 } while (0)
4022
158da513
DS
4023 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4024 CHECK_APPEND_1ARG("convert=%s,",
4025 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4026
4027 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4028 CHECK_APPEND_NOARG("soft,");
4029
4030 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4031 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4032 sizeof(tmp_buf));
4033 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4034 }
4035
4036 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4037 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4038
4039 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4040 CHECK_APPEND_2ARG("usage=%u..%u,",
4041 bargs->usage_min, bargs->usage_max);
4042
4043 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4044 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4045
4046 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4047 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4048 bargs->pstart, bargs->pend);
4049
4050 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4051 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4052 bargs->vstart, bargs->vend);
4053
4054 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4055 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4056
4057 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4058 CHECK_APPEND_2ARG("limit=%u..%u,",
4059 bargs->limit_min, bargs->limit_max);
4060
4061 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4062 CHECK_APPEND_2ARG("stripes=%u..%u,",
4063 bargs->stripes_min, bargs->stripes_max);
4064
4065#undef CHECK_APPEND_2ARG
4066#undef CHECK_APPEND_1ARG
4067#undef CHECK_APPEND_NOARG
4068
4069out_overflow:
4070
4071 if (size_bp < size_buf)
4072 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4073 else
4074 buf[0] = '\0';
4075}
4076
4077static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4078{
4079 u32 size_buf = 1024;
4080 char tmp_buf[192] = {'\0'};
4081 char *buf;
4082 char *bp;
4083 u32 size_bp = size_buf;
4084 int ret;
4085 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4086
4087 buf = kzalloc(size_buf, GFP_KERNEL);
4088 if (!buf)
4089 return;
4090
4091 bp = buf;
4092
4093#define CHECK_APPEND_1ARG(a, v1) \
4094 do { \
4095 ret = snprintf(bp, size_bp, (a), (v1)); \
4096 if (ret < 0 || ret >= size_bp) \
4097 goto out_overflow; \
4098 size_bp -= ret; \
4099 bp += ret; \
4100 } while (0)
4101
4102 if (bctl->flags & BTRFS_BALANCE_FORCE)
4103 CHECK_APPEND_1ARG("%s", "-f ");
4104
4105 if (bctl->flags & BTRFS_BALANCE_DATA) {
4106 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4107 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4108 }
4109
4110 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4111 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4112 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4113 }
4114
4115 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4116 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4117 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4118 }
4119
4120#undef CHECK_APPEND_1ARG
4121
4122out_overflow:
4123
4124 if (size_bp < size_buf)
4125 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4126 btrfs_info(fs_info, "balance: %s %s",
4127 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4128 "resume" : "start", buf);
4129
4130 kfree(buf);
4131}
4132
c9e9f97b 4133/*
dccdb07b 4134 * Should be called with balance mutexe held
c9e9f97b 4135 */
6fcf6e2b
DS
4136int btrfs_balance(struct btrfs_fs_info *fs_info,
4137 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4138 struct btrfs_ioctl_balance_args *bargs)
4139{
14506127 4140 u64 meta_target, data_target;
f43ffb60 4141 u64 allowed;
e4837f8f 4142 int mixed = 0;
c9e9f97b 4143 int ret;
8dabb742 4144 u64 num_devices;
de98ced9 4145 unsigned seq;
e62869be 4146 bool reducing_redundancy;
081db89b 4147 int i;
c9e9f97b 4148
837d5b6e 4149 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4150 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4151 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4152 ret = -EINVAL;
4153 goto out;
4154 }
4155
e4837f8f
ID
4156 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4157 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4158 mixed = 1;
4159
f43ffb60
ID
4160 /*
4161 * In case of mixed groups both data and meta should be picked,
4162 * and identical options should be given for both of them.
4163 */
e4837f8f
ID
4164 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4165 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4166 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4167 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4168 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4169 btrfs_err(fs_info,
6dac13f8 4170 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4171 ret = -EINVAL;
4172 goto out;
4173 }
4174 }
4175
b35cf1f0
JB
4176 /*
4177 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4178 * are exclusive
b35cf1f0
JB
4179 */
4180 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4181
4182 /*
4183 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4184 * special bit for it, to make it easier to distinguish. Thus we need
4185 * to set it manually, or balance would refuse the profile.
4186 */
4187 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4188 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4189 if (num_devices >= btrfs_raid_array[i].devs_min)
4190 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4191
5ba366c3
DS
4192 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4193 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4194 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4195 ret = -EINVAL;
4196 goto out;
4197 }
4198
6079e12c
DS
4199 /*
4200 * Allow to reduce metadata or system integrity only if force set for
4201 * profiles with redundancy (copies, parity)
4202 */
4203 allowed = 0;
4204 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4205 if (btrfs_raid_array[i].ncopies >= 2 ||
4206 btrfs_raid_array[i].tolerated_failures >= 1)
4207 allowed |= btrfs_raid_array[i].bg_flag;
4208 }
de98ced9
MX
4209 do {
4210 seq = read_seqbegin(&fs_info->profiles_lock);
4211
4212 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4213 (fs_info->avail_system_alloc_bits & allowed) &&
4214 !(bctl->sys.target & allowed)) ||
4215 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4216 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4217 !(bctl->meta.target & allowed)))
e62869be 4218 reducing_redundancy = true;
5a8067c0 4219 else
e62869be 4220 reducing_redundancy = false;
5a8067c0
FM
4221
4222 /* if we're not converting, the target field is uninitialized */
4223 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4224 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4225 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4226 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4227 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4228
e62869be 4229 if (reducing_redundancy) {
5a8067c0
FM
4230 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4231 btrfs_info(fs_info,
e62869be 4232 "balance: force reducing metadata redundancy");
5a8067c0
FM
4233 } else {
4234 btrfs_err(fs_info,
e62869be 4235 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4236 ret = -EINVAL;
4237 goto out;
4238 }
4239 }
4240
14506127
AB
4241 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4242 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4243 btrfs_warn(fs_info,
6dac13f8 4244 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4245 btrfs_bg_type_to_raid_name(meta_target),
4246 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4247 }
4248
6bccf3ab 4249 ret = insert_balance_item(fs_info, bctl);
59641015 4250 if (ret && ret != -EEXIST)
0940ebf6
ID
4251 goto out;
4252
59641015
ID
4253 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4254 BUG_ON(ret == -EEXIST);
833aae18
DS
4255 BUG_ON(fs_info->balance_ctl);
4256 spin_lock(&fs_info->balance_lock);
4257 fs_info->balance_ctl = bctl;
4258 spin_unlock(&fs_info->balance_lock);
59641015
ID
4259 } else {
4260 BUG_ON(ret != -EEXIST);
4261 spin_lock(&fs_info->balance_lock);
4262 update_balance_args(bctl);
4263 spin_unlock(&fs_info->balance_lock);
4264 }
c9e9f97b 4265
3009a62f
DS
4266 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4267 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4268 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4269 mutex_unlock(&fs_info->balance_mutex);
4270
4271 ret = __btrfs_balance(fs_info);
4272
4273 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4274 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4275 btrfs_info(fs_info, "balance: paused");
44d354ab
QW
4276 /*
4277 * Balance can be canceled by:
4278 *
4279 * - Regular cancel request
4280 * Then ret == -ECANCELED and balance_cancel_req > 0
4281 *
4282 * - Fatal signal to "btrfs" process
4283 * Either the signal caught by wait_reserve_ticket() and callers
4284 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4285 * got -ECANCELED.
4286 * Either way, in this case balance_cancel_req = 0, and
4287 * ret == -EINTR or ret == -ECANCELED.
4288 *
4289 * So here we only check the return value to catch canceled balance.
4290 */
4291 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4292 btrfs_info(fs_info, "balance: canceled");
4293 else
4294 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4295
3009a62f 4296 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4297
4298 if (bargs) {
4299 memset(bargs, 0, sizeof(*bargs));
008ef096 4300 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4301 }
4302
3a01aa7a
ID
4303 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4304 balance_need_close(fs_info)) {
149196a2 4305 reset_balance_state(fs_info);
c3e1f96c 4306 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4307 }
4308
837d5b6e 4309 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4310
4311 return ret;
4312out:
59641015 4313 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4314 reset_balance_state(fs_info);
a17c95df 4315 else
59641015 4316 kfree(bctl);
c3e1f96c 4317 btrfs_exclop_finish(fs_info);
a17c95df 4318
59641015
ID
4319 return ret;
4320}
4321
4322static int balance_kthread(void *data)
4323{
2b6ba629 4324 struct btrfs_fs_info *fs_info = data;
9555c6c1 4325 int ret = 0;
59641015 4326
59641015 4327 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4328 if (fs_info->balance_ctl)
6fcf6e2b 4329 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4330 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4331
59641015
ID
4332 return ret;
4333}
4334
2b6ba629
ID
4335int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4336{
4337 struct task_struct *tsk;
4338
1354e1a1 4339 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4340 if (!fs_info->balance_ctl) {
1354e1a1 4341 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4342 return 0;
4343 }
1354e1a1 4344 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4345
3cdde224 4346 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4347 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4348 return 0;
4349 }
4350
02ee654d
AJ
4351 /*
4352 * A ro->rw remount sequence should continue with the paused balance
4353 * regardless of who pauses it, system or the user as of now, so set
4354 * the resume flag.
4355 */
4356 spin_lock(&fs_info->balance_lock);
4357 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4358 spin_unlock(&fs_info->balance_lock);
4359
2b6ba629 4360 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4361 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4362}
4363
68310a5e 4364int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4365{
59641015
ID
4366 struct btrfs_balance_control *bctl;
4367 struct btrfs_balance_item *item;
4368 struct btrfs_disk_balance_args disk_bargs;
4369 struct btrfs_path *path;
4370 struct extent_buffer *leaf;
4371 struct btrfs_key key;
4372 int ret;
4373
4374 path = btrfs_alloc_path();
4375 if (!path)
4376 return -ENOMEM;
4377
59641015 4378 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4379 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4380 key.offset = 0;
4381
68310a5e 4382 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4383 if (ret < 0)
68310a5e 4384 goto out;
59641015
ID
4385 if (ret > 0) { /* ret = -ENOENT; */
4386 ret = 0;
68310a5e
ID
4387 goto out;
4388 }
4389
4390 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4391 if (!bctl) {
4392 ret = -ENOMEM;
4393 goto out;
59641015
ID
4394 }
4395
4396 leaf = path->nodes[0];
4397 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4398
68310a5e
ID
4399 bctl->flags = btrfs_balance_flags(leaf, item);
4400 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4401
4402 btrfs_balance_data(leaf, item, &disk_bargs);
4403 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4404 btrfs_balance_meta(leaf, item, &disk_bargs);
4405 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4406 btrfs_balance_sys(leaf, item, &disk_bargs);
4407 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4408
eee95e3f
DS
4409 /*
4410 * This should never happen, as the paused balance state is recovered
4411 * during mount without any chance of other exclusive ops to collide.
4412 *
4413 * This gives the exclusive op status to balance and keeps in paused
4414 * state until user intervention (cancel or umount). If the ownership
4415 * cannot be assigned, show a message but do not fail. The balance
4416 * is in a paused state and must have fs_info::balance_ctl properly
4417 * set up.
4418 */
c3e1f96c 4419 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
eee95e3f 4420 btrfs_warn(fs_info,
6dac13f8 4421 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4422
fb286100
JB
4423 btrfs_release_path(path);
4424
68310a5e 4425 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4426 BUG_ON(fs_info->balance_ctl);
4427 spin_lock(&fs_info->balance_lock);
4428 fs_info->balance_ctl = bctl;
4429 spin_unlock(&fs_info->balance_lock);
68310a5e 4430 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4431out:
4432 btrfs_free_path(path);
ec44a35c
CM
4433 return ret;
4434}
4435
837d5b6e
ID
4436int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4437{
4438 int ret = 0;
4439
4440 mutex_lock(&fs_info->balance_mutex);
4441 if (!fs_info->balance_ctl) {
4442 mutex_unlock(&fs_info->balance_mutex);
4443 return -ENOTCONN;
4444 }
4445
3009a62f 4446 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4447 atomic_inc(&fs_info->balance_pause_req);
4448 mutex_unlock(&fs_info->balance_mutex);
4449
4450 wait_event(fs_info->balance_wait_q,
3009a62f 4451 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4452
4453 mutex_lock(&fs_info->balance_mutex);
4454 /* we are good with balance_ctl ripped off from under us */
3009a62f 4455 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4456 atomic_dec(&fs_info->balance_pause_req);
4457 } else {
4458 ret = -ENOTCONN;
4459 }
4460
4461 mutex_unlock(&fs_info->balance_mutex);
4462 return ret;
4463}
4464
a7e99c69
ID
4465int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4466{
4467 mutex_lock(&fs_info->balance_mutex);
4468 if (!fs_info->balance_ctl) {
4469 mutex_unlock(&fs_info->balance_mutex);
4470 return -ENOTCONN;
4471 }
4472
cf7d20f4
DS
4473 /*
4474 * A paused balance with the item stored on disk can be resumed at
4475 * mount time if the mount is read-write. Otherwise it's still paused
4476 * and we must not allow cancelling as it deletes the item.
4477 */
4478 if (sb_rdonly(fs_info->sb)) {
4479 mutex_unlock(&fs_info->balance_mutex);
4480 return -EROFS;
4481 }
4482
a7e99c69
ID
4483 atomic_inc(&fs_info->balance_cancel_req);
4484 /*
4485 * if we are running just wait and return, balance item is
4486 * deleted in btrfs_balance in this case
4487 */
3009a62f 4488 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4489 mutex_unlock(&fs_info->balance_mutex);
4490 wait_event(fs_info->balance_wait_q,
3009a62f 4491 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4492 mutex_lock(&fs_info->balance_mutex);
4493 } else {
a7e99c69 4494 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4495 /*
4496 * Lock released to allow other waiters to continue, we'll
4497 * reexamine the status again.
4498 */
a7e99c69
ID
4499 mutex_lock(&fs_info->balance_mutex);
4500
a17c95df 4501 if (fs_info->balance_ctl) {
149196a2 4502 reset_balance_state(fs_info);
c3e1f96c 4503 btrfs_exclop_finish(fs_info);
6dac13f8 4504 btrfs_info(fs_info, "balance: canceled");
a17c95df 4505 }
a7e99c69
ID
4506 }
4507
3009a62f
DS
4508 BUG_ON(fs_info->balance_ctl ||
4509 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4510 atomic_dec(&fs_info->balance_cancel_req);
4511 mutex_unlock(&fs_info->balance_mutex);
4512 return 0;
4513}
4514
97f4dd09 4515int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4516{
4517 struct btrfs_fs_info *fs_info = data;
4518 struct btrfs_root *root = fs_info->tree_root;
4519 struct btrfs_key key;
803b2f54
SB
4520 struct btrfs_path *path = NULL;
4521 int ret = 0;
4522 struct extent_buffer *eb;
4523 int slot;
4524 struct btrfs_root_item root_item;
4525 u32 item_size;
f45388f3 4526 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4527 bool closing = false;
803b2f54
SB
4528
4529 path = btrfs_alloc_path();
4530 if (!path) {
4531 ret = -ENOMEM;
4532 goto out;
4533 }
4534
4535 key.objectid = 0;
4536 key.type = BTRFS_ROOT_ITEM_KEY;
4537 key.offset = 0;
4538
803b2f54 4539 while (1) {
c94bec2c
JB
4540 if (btrfs_fs_closing(fs_info)) {
4541 closing = true;
4542 break;
4543 }
7c829b72
AJ
4544 ret = btrfs_search_forward(root, &key, path,
4545 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4546 if (ret) {
4547 if (ret > 0)
4548 ret = 0;
4549 break;
4550 }
4551
4552 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4553 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4554 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4555 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4556 goto skip;
4557
4558 eb = path->nodes[0];
4559 slot = path->slots[0];
4560 item_size = btrfs_item_size_nr(eb, slot);
4561 if (item_size < sizeof(root_item))
4562 goto skip;
4563
803b2f54
SB
4564 read_extent_buffer(eb, &root_item,
4565 btrfs_item_ptr_offset(eb, slot),
4566 (int)sizeof(root_item));
4567 if (btrfs_root_refs(&root_item) == 0)
4568 goto skip;
f45388f3
FDBM
4569
4570 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4571 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4572 if (trans)
4573 goto update_tree;
4574
4575 btrfs_release_path(path);
803b2f54
SB
4576 /*
4577 * 1 - subvol uuid item
4578 * 1 - received_subvol uuid item
4579 */
4580 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4581 if (IS_ERR(trans)) {
4582 ret = PTR_ERR(trans);
4583 break;
4584 }
f45388f3
FDBM
4585 continue;
4586 } else {
4587 goto skip;
4588 }
4589update_tree:
9771a5cf 4590 btrfs_release_path(path);
f45388f3 4591 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4592 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4593 BTRFS_UUID_KEY_SUBVOL,
4594 key.objectid);
4595 if (ret < 0) {
efe120a0 4596 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4597 ret);
803b2f54
SB
4598 break;
4599 }
4600 }
4601
4602 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4603 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4604 root_item.received_uuid,
4605 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4606 key.objectid);
4607 if (ret < 0) {
efe120a0 4608 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4609 ret);
803b2f54
SB
4610 break;
4611 }
4612 }
4613
f45388f3 4614skip:
9771a5cf 4615 btrfs_release_path(path);
803b2f54 4616 if (trans) {
3a45bb20 4617 ret = btrfs_end_transaction(trans);
f45388f3 4618 trans = NULL;
803b2f54
SB
4619 if (ret)
4620 break;
4621 }
4622
803b2f54
SB
4623 if (key.offset < (u64)-1) {
4624 key.offset++;
4625 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4626 key.offset = 0;
4627 key.type = BTRFS_ROOT_ITEM_KEY;
4628 } else if (key.objectid < (u64)-1) {
4629 key.offset = 0;
4630 key.type = BTRFS_ROOT_ITEM_KEY;
4631 key.objectid++;
4632 } else {
4633 break;
4634 }
4635 cond_resched();
4636 }
4637
4638out:
4639 btrfs_free_path(path);
f45388f3 4640 if (trans && !IS_ERR(trans))
3a45bb20 4641 btrfs_end_transaction(trans);
803b2f54 4642 if (ret)
efe120a0 4643 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4644 else if (!closing)
afcdd129 4645 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4646 up(&fs_info->uuid_tree_rescan_sem);
4647 return 0;
4648}
4649
f7a81ea4
SB
4650int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4651{
4652 struct btrfs_trans_handle *trans;
4653 struct btrfs_root *tree_root = fs_info->tree_root;
4654 struct btrfs_root *uuid_root;
803b2f54
SB
4655 struct task_struct *task;
4656 int ret;
f7a81ea4
SB
4657
4658 /*
4659 * 1 - root node
4660 * 1 - root item
4661 */
4662 trans = btrfs_start_transaction(tree_root, 2);
4663 if (IS_ERR(trans))
4664 return PTR_ERR(trans);
4665
9b7a2440 4666 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4667 if (IS_ERR(uuid_root)) {
6d13f549 4668 ret = PTR_ERR(uuid_root);
66642832 4669 btrfs_abort_transaction(trans, ret);
3a45bb20 4670 btrfs_end_transaction(trans);
6d13f549 4671 return ret;
f7a81ea4
SB
4672 }
4673
4674 fs_info->uuid_root = uuid_root;
4675
3a45bb20 4676 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4677 if (ret)
4678 return ret;
4679
4680 down(&fs_info->uuid_tree_rescan_sem);
4681 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4682 if (IS_ERR(task)) {
70f80175 4683 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4684 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4685 up(&fs_info->uuid_tree_rescan_sem);
4686 return PTR_ERR(task);
4687 }
4688
4689 return 0;
f7a81ea4 4690}
803b2f54 4691
8f18cf13
CM
4692/*
4693 * shrinking a device means finding all of the device extents past
4694 * the new size, and then following the back refs to the chunks.
4695 * The chunk relocation code actually frees the device extent
4696 */
4697int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4698{
0b246afa
JM
4699 struct btrfs_fs_info *fs_info = device->fs_info;
4700 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4701 struct btrfs_trans_handle *trans;
8f18cf13
CM
4702 struct btrfs_dev_extent *dev_extent = NULL;
4703 struct btrfs_path *path;
4704 u64 length;
8f18cf13
CM
4705 u64 chunk_offset;
4706 int ret;
4707 int slot;
ba1bf481
JB
4708 int failed = 0;
4709 bool retried = false;
8f18cf13
CM
4710 struct extent_buffer *l;
4711 struct btrfs_key key;
0b246afa 4712 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4713 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4714 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4715 u64 diff;
61d0d0d2 4716 u64 start;
7dfb8be1
NB
4717
4718 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4719 start = new_size;
0e4324a4 4720 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4721
401e29c1 4722 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4723 return -EINVAL;
4724
8f18cf13
CM
4725 path = btrfs_alloc_path();
4726 if (!path)
4727 return -ENOMEM;
4728
0338dff6 4729 path->reada = READA_BACK;
8f18cf13 4730
61d0d0d2
NB
4731 trans = btrfs_start_transaction(root, 0);
4732 if (IS_ERR(trans)) {
4733 btrfs_free_path(path);
4734 return PTR_ERR(trans);
4735 }
4736
34441361 4737 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4738
7cc8e58d 4739 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4740 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4741 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4742 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4743 }
61d0d0d2
NB
4744
4745 /*
4746 * Once the device's size has been set to the new size, ensure all
4747 * in-memory chunks are synced to disk so that the loop below sees them
4748 * and relocates them accordingly.
4749 */
1c11b63e 4750 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4751 mutex_unlock(&fs_info->chunk_mutex);
4752 ret = btrfs_commit_transaction(trans);
4753 if (ret)
4754 goto done;
4755 } else {
4756 mutex_unlock(&fs_info->chunk_mutex);
4757 btrfs_end_transaction(trans);
4758 }
8f18cf13 4759
ba1bf481 4760again:
8f18cf13
CM
4761 key.objectid = device->devid;
4762 key.offset = (u64)-1;
4763 key.type = BTRFS_DEV_EXTENT_KEY;
4764
213e64da 4765 do {
f3372065 4766 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4768 if (ret < 0) {
f3372065 4769 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4770 goto done;
67c5e7d4 4771 }
8f18cf13
CM
4772
4773 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4774 if (ret) {
f3372065 4775 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4776 if (ret < 0)
4777 goto done;
8f18cf13 4778 ret = 0;
b3b4aa74 4779 btrfs_release_path(path);
bf1fb512 4780 break;
8f18cf13
CM
4781 }
4782
4783 l = path->nodes[0];
4784 slot = path->slots[0];
4785 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4786
ba1bf481 4787 if (key.objectid != device->devid) {
f3372065 4788 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4789 btrfs_release_path(path);
bf1fb512 4790 break;
ba1bf481 4791 }
8f18cf13
CM
4792
4793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4794 length = btrfs_dev_extent_length(l, dev_extent);
4795
ba1bf481 4796 if (key.offset + length <= new_size) {
f3372065 4797 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4798 btrfs_release_path(path);
d6397bae 4799 break;
ba1bf481 4800 }
8f18cf13 4801
8f18cf13 4802 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4803 btrfs_release_path(path);
8f18cf13 4804
a6f93c71
LB
4805 /*
4806 * We may be relocating the only data chunk we have,
4807 * which could potentially end up with losing data's
4808 * raid profile, so lets allocate an empty one in
4809 * advance.
4810 */
4811 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4812 if (ret < 0) {
f3372065 4813 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4814 goto done;
4815 }
4816
0b246afa 4817 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4818 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4819 if (ret == -ENOSPC) {
ba1bf481 4820 failed++;
eede2bf3
OS
4821 } else if (ret) {
4822 if (ret == -ETXTBSY) {
4823 btrfs_warn(fs_info,
4824 "could not shrink block group %llu due to active swapfile",
4825 chunk_offset);
4826 }
4827 goto done;
4828 }
213e64da 4829 } while (key.offset-- > 0);
ba1bf481
JB
4830
4831 if (failed && !retried) {
4832 failed = 0;
4833 retried = true;
4834 goto again;
4835 } else if (failed && retried) {
4836 ret = -ENOSPC;
ba1bf481 4837 goto done;
8f18cf13
CM
4838 }
4839
d6397bae 4840 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4841 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4842 if (IS_ERR(trans)) {
4843 ret = PTR_ERR(trans);
4844 goto done;
4845 }
4846
34441361 4847 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4848 /* Clear all state bits beyond the shrunk device size */
4849 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4850 CHUNK_STATE_MASK);
4851
7cc8e58d 4852 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4853 if (list_empty(&device->post_commit_list))
4854 list_add_tail(&device->post_commit_list,
4855 &trans->transaction->dev_update_list);
d6397bae 4856
d6397bae 4857 WARN_ON(diff > old_total);
7dfb8be1
NB
4858 btrfs_set_super_total_bytes(super_copy,
4859 round_down(old_total - diff, fs_info->sectorsize));
34441361 4860 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4861
4862 /* Now btrfs_update_device() will change the on-disk size. */
4863 ret = btrfs_update_device(trans, device);
801660b0
AJ
4864 if (ret < 0) {
4865 btrfs_abort_transaction(trans, ret);
4866 btrfs_end_transaction(trans);
4867 } else {
4868 ret = btrfs_commit_transaction(trans);
4869 }
8f18cf13
CM
4870done:
4871 btrfs_free_path(path);
53e489bc 4872 if (ret) {
34441361 4873 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4874 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4875 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4876 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4877 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4878 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4879 }
8f18cf13
CM
4880 return ret;
4881}
4882
2ff7e61e 4883static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4884 struct btrfs_key *key,
4885 struct btrfs_chunk *chunk, int item_size)
4886{
0b246afa 4887 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4888 struct btrfs_disk_key disk_key;
4889 u32 array_size;
4890 u8 *ptr;
4891
79bd3712
FM
4892 lockdep_assert_held(&fs_info->chunk_mutex);
4893
0b86a832 4894 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4895 if (array_size + item_size + sizeof(disk_key)
79bd3712 4896 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4897 return -EFBIG;
4898
4899 ptr = super_copy->sys_chunk_array + array_size;
4900 btrfs_cpu_key_to_disk(&disk_key, key);
4901 memcpy(ptr, &disk_key, sizeof(disk_key));
4902 ptr += sizeof(disk_key);
4903 memcpy(ptr, chunk, item_size);
4904 item_size += sizeof(disk_key);
4905 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 4906
0b86a832
CM
4907 return 0;
4908}
4909
73c5de00
AJ
4910/*
4911 * sort the devices in descending order by max_avail, total_avail
4912 */
4913static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4914{
73c5de00
AJ
4915 const struct btrfs_device_info *di_a = a;
4916 const struct btrfs_device_info *di_b = b;
9b3f68b9 4917
73c5de00 4918 if (di_a->max_avail > di_b->max_avail)
b2117a39 4919 return -1;
73c5de00 4920 if (di_a->max_avail < di_b->max_avail)
b2117a39 4921 return 1;
73c5de00
AJ
4922 if (di_a->total_avail > di_b->total_avail)
4923 return -1;
4924 if (di_a->total_avail < di_b->total_avail)
4925 return 1;
4926 return 0;
b2117a39 4927}
0b86a832 4928
53b381b3
DW
4929static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4930{
ffe2d203 4931 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4932 return;
4933
ceda0864 4934 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4935}
4936
cfbb825c
DS
4937static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4938{
4939 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4940 return;
4941
4942 btrfs_set_fs_incompat(info, RAID1C34);
4943}
4944
4f2bafe8
NA
4945/*
4946 * Structure used internally for __btrfs_alloc_chunk() function.
4947 * Wraps needed parameters.
4948 */
4949struct alloc_chunk_ctl {
4950 u64 start;
4951 u64 type;
4952 /* Total number of stripes to allocate */
4953 int num_stripes;
4954 /* sub_stripes info for map */
4955 int sub_stripes;
4956 /* Stripes per device */
4957 int dev_stripes;
4958 /* Maximum number of devices to use */
4959 int devs_max;
4960 /* Minimum number of devices to use */
4961 int devs_min;
4962 /* ndevs has to be a multiple of this */
4963 int devs_increment;
4964 /* Number of copies */
4965 int ncopies;
4966 /* Number of stripes worth of bytes to store parity information */
4967 int nparity;
4968 u64 max_stripe_size;
4969 u64 max_chunk_size;
6aafb303 4970 u64 dev_extent_min;
4f2bafe8
NA
4971 u64 stripe_size;
4972 u64 chunk_size;
4973 int ndevs;
4974};
4975
27c314d5
NA
4976static void init_alloc_chunk_ctl_policy_regular(
4977 struct btrfs_fs_devices *fs_devices,
4978 struct alloc_chunk_ctl *ctl)
4979{
4980 u64 type = ctl->type;
4981
4982 if (type & BTRFS_BLOCK_GROUP_DATA) {
4983 ctl->max_stripe_size = SZ_1G;
4984 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4985 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4986 /* For larger filesystems, use larger metadata chunks */
4987 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4988 ctl->max_stripe_size = SZ_1G;
4989 else
4990 ctl->max_stripe_size = SZ_256M;
4991 ctl->max_chunk_size = ctl->max_stripe_size;
4992 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4993 ctl->max_stripe_size = SZ_32M;
4994 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4995 ctl->devs_max = min_t(int, ctl->devs_max,
4996 BTRFS_MAX_DEVS_SYS_CHUNK);
4997 } else {
4998 BUG();
4999 }
5000
5001 /* We don't want a chunk larger than 10% of writable space */
5002 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5003 ctl->max_chunk_size);
6aafb303 5004 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5005}
5006
1cd6121f
NA
5007static void init_alloc_chunk_ctl_policy_zoned(
5008 struct btrfs_fs_devices *fs_devices,
5009 struct alloc_chunk_ctl *ctl)
5010{
5011 u64 zone_size = fs_devices->fs_info->zone_size;
5012 u64 limit;
5013 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5014 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5015 u64 min_chunk_size = min_data_stripes * zone_size;
5016 u64 type = ctl->type;
5017
5018 ctl->max_stripe_size = zone_size;
5019 if (type & BTRFS_BLOCK_GROUP_DATA) {
5020 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5021 zone_size);
5022 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5023 ctl->max_chunk_size = ctl->max_stripe_size;
5024 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5025 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5026 ctl->devs_max = min_t(int, ctl->devs_max,
5027 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5028 } else {
5029 BUG();
1cd6121f
NA
5030 }
5031
5032 /* We don't want a chunk larger than 10% of writable space */
5033 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5034 zone_size),
5035 min_chunk_size);
5036 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5037 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5038}
5039
27c314d5
NA
5040static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5041 struct alloc_chunk_ctl *ctl)
5042{
5043 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5044
5045 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5046 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5047 ctl->devs_max = btrfs_raid_array[index].devs_max;
5048 if (!ctl->devs_max)
5049 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5050 ctl->devs_min = btrfs_raid_array[index].devs_min;
5051 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5052 ctl->ncopies = btrfs_raid_array[index].ncopies;
5053 ctl->nparity = btrfs_raid_array[index].nparity;
5054 ctl->ndevs = 0;
5055
5056 switch (fs_devices->chunk_alloc_policy) {
5057 case BTRFS_CHUNK_ALLOC_REGULAR:
5058 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5059 break;
1cd6121f
NA
5060 case BTRFS_CHUNK_ALLOC_ZONED:
5061 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5062 break;
27c314d5
NA
5063 default:
5064 BUG();
5065 }
5066}
5067
560156cb
NA
5068static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5069 struct alloc_chunk_ctl *ctl,
5070 struct btrfs_device_info *devices_info)
b2117a39 5071{
560156cb 5072 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5073 struct btrfs_device *device;
73c5de00 5074 u64 total_avail;
560156cb 5075 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5076 int ret;
560156cb
NA
5077 int ndevs = 0;
5078 u64 max_avail;
5079 u64 dev_offset;
0cad8a11 5080
9f680ce0 5081 /*
73c5de00
AJ
5082 * in the first pass through the devices list, we gather information
5083 * about the available holes on each device.
9f680ce0 5084 */
ebcc9301 5085 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5086 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5087 WARN(1, KERN_ERR
efe120a0 5088 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5089 continue;
5090 }
b2117a39 5091
e12c9621
AJ
5092 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5093 &device->dev_state) ||
401e29c1 5094 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5095 continue;
b2117a39 5096
73c5de00
AJ
5097 if (device->total_bytes > device->bytes_used)
5098 total_avail = device->total_bytes - device->bytes_used;
5099 else
5100 total_avail = 0;
38c01b96 5101
5102 /* If there is no space on this device, skip it. */
6aafb303 5103 if (total_avail < ctl->dev_extent_min)
38c01b96 5104 continue;
b2117a39 5105
560156cb
NA
5106 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5107 &max_avail);
73c5de00 5108 if (ret && ret != -ENOSPC)
560156cb 5109 return ret;
b2117a39 5110
73c5de00 5111 if (ret == 0)
560156cb 5112 max_avail = dev_extent_want;
b2117a39 5113
6aafb303 5114 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5115 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5116 btrfs_debug(info,
560156cb 5117 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5118 __func__, device->devid, max_avail,
6aafb303 5119 ctl->dev_extent_min);
73c5de00 5120 continue;
4117f207 5121 }
b2117a39 5122
063d006f
ES
5123 if (ndevs == fs_devices->rw_devices) {
5124 WARN(1, "%s: found more than %llu devices\n",
5125 __func__, fs_devices->rw_devices);
5126 break;
5127 }
73c5de00
AJ
5128 devices_info[ndevs].dev_offset = dev_offset;
5129 devices_info[ndevs].max_avail = max_avail;
5130 devices_info[ndevs].total_avail = total_avail;
5131 devices_info[ndevs].dev = device;
5132 ++ndevs;
5133 }
560156cb 5134 ctl->ndevs = ndevs;
b2117a39 5135
73c5de00
AJ
5136 /*
5137 * now sort the devices by hole size / available space
5138 */
560156cb 5139 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5140 btrfs_cmp_device_info, NULL);
b2117a39 5141
560156cb
NA
5142 return 0;
5143}
5144
5badf512
NA
5145static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5146 struct btrfs_device_info *devices_info)
5147{
5148 /* Number of stripes that count for block group size */
5149 int data_stripes;
5150
5151 /*
5152 * The primary goal is to maximize the number of stripes, so use as
5153 * many devices as possible, even if the stripes are not maximum sized.
5154 *
5155 * The DUP profile stores more than one stripe per device, the
5156 * max_avail is the total size so we have to adjust.
5157 */
5158 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5159 ctl->dev_stripes);
5160 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5161
5162 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5163 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5164
5165 /*
5166 * Use the number of data stripes to figure out how big this chunk is
5167 * really going to be in terms of logical address space, and compare
5168 * that answer with the max chunk size. If it's higher, we try to
5169 * reduce stripe_size.
5170 */
5171 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5172 /*
5173 * Reduce stripe_size, round it up to a 16MB boundary again and
5174 * then use it, unless it ends up being even bigger than the
5175 * previous value we had already.
5176 */
5177 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5178 data_stripes), SZ_16M),
5179 ctl->stripe_size);
5180 }
5181
5182 /* Align to BTRFS_STRIPE_LEN */
5183 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5184 ctl->chunk_size = ctl->stripe_size * data_stripes;
5185
5186 return 0;
5187}
5188
1cd6121f
NA
5189static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5190 struct btrfs_device_info *devices_info)
5191{
5192 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5193 /* Number of stripes that count for block group size */
5194 int data_stripes;
5195
5196 /*
5197 * It should hold because:
5198 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5199 */
5200 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5201
5202 ctl->stripe_size = zone_size;
5203 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5204 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5205
5206 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5207 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5208 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5209 ctl->stripe_size) + ctl->nparity,
5210 ctl->dev_stripes);
5211 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5212 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5213 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5214 }
5215
5216 ctl->chunk_size = ctl->stripe_size * data_stripes;
5217
5218 return 0;
5219}
5220
5badf512
NA
5221static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5222 struct alloc_chunk_ctl *ctl,
5223 struct btrfs_device_info *devices_info)
5224{
5225 struct btrfs_fs_info *info = fs_devices->fs_info;
5226
5227 /*
5228 * Round down to number of usable stripes, devs_increment can be any
5229 * number so we can't use round_down() that requires power of 2, while
5230 * rounddown is safe.
5231 */
5232 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5233
5234 if (ctl->ndevs < ctl->devs_min) {
5235 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5236 btrfs_debug(info,
5237 "%s: not enough devices with free space: have=%d minimum required=%d",
5238 __func__, ctl->ndevs, ctl->devs_min);
5239 }
5240 return -ENOSPC;
5241 }
5242
5243 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5244
5245 switch (fs_devices->chunk_alloc_policy) {
5246 case BTRFS_CHUNK_ALLOC_REGULAR:
5247 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5248 case BTRFS_CHUNK_ALLOC_ZONED:
5249 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5250 default:
5251 BUG();
5252 }
5253}
5254
79bd3712 5255static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5256 struct alloc_chunk_ctl *ctl,
5257 struct btrfs_device_info *devices_info)
560156cb
NA
5258{
5259 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5260 struct map_lookup *map = NULL;
5261 struct extent_map_tree *em_tree;
79bd3712 5262 struct btrfs_block_group *block_group;
560156cb 5263 struct extent_map *em;
dce580ca
NA
5264 u64 start = ctl->start;
5265 u64 type = ctl->type;
560156cb
NA
5266 int ret;
5267 int i;
5268 int j;
5269
dce580ca
NA
5270 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5271 if (!map)
79bd3712 5272 return ERR_PTR(-ENOMEM);
dce580ca 5273 map->num_stripes = ctl->num_stripes;
560156cb 5274
dce580ca
NA
5275 for (i = 0; i < ctl->ndevs; ++i) {
5276 for (j = 0; j < ctl->dev_stripes; ++j) {
5277 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5278 map->stripes[s].dev = devices_info[i].dev;
5279 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5280 j * ctl->stripe_size;
6324fbf3 5281 }
6324fbf3 5282 }
500ceed8
NB
5283 map->stripe_len = BTRFS_STRIPE_LEN;
5284 map->io_align = BTRFS_STRIPE_LEN;
5285 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5286 map->type = type;
dce580ca 5287 map->sub_stripes = ctl->sub_stripes;
0b86a832 5288
dce580ca 5289 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5290
172ddd60 5291 em = alloc_extent_map();
2b82032c 5292 if (!em) {
298a8f9c 5293 kfree(map);
79bd3712 5294 return ERR_PTR(-ENOMEM);
593060d7 5295 }
298a8f9c 5296 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5297 em->map_lookup = map;
2b82032c 5298 em->start = start;
dce580ca 5299 em->len = ctl->chunk_size;
2b82032c
YZ
5300 em->block_start = 0;
5301 em->block_len = em->len;
dce580ca 5302 em->orig_block_len = ctl->stripe_size;
593060d7 5303
c8bf1b67 5304 em_tree = &info->mapping_tree;
890871be 5305 write_lock(&em_tree->lock);
09a2a8f9 5306 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5307 if (ret) {
1efb72a3 5308 write_unlock(&em_tree->lock);
0f5d42b2 5309 free_extent_map(em);
79bd3712 5310 return ERR_PTR(ret);
0f5d42b2 5311 }
1efb72a3
NB
5312 write_unlock(&em_tree->lock);
5313
79bd3712
FM
5314 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5315 if (IS_ERR(block_group))
6df9a95e 5316 goto error_del_extent;
2b82032c 5317
bbbf7243
NB
5318 for (i = 0; i < map->num_stripes; i++) {
5319 struct btrfs_device *dev = map->stripes[i].dev;
5320
4f2bafe8 5321 btrfs_device_set_bytes_used(dev,
dce580ca 5322 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5323 if (list_empty(&dev->post_commit_list))
5324 list_add_tail(&dev->post_commit_list,
5325 &trans->transaction->dev_update_list);
5326 }
43530c46 5327
dce580ca 5328 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5329 &info->free_chunk_space);
1c116187 5330
0f5d42b2 5331 free_extent_map(em);
0b246afa 5332 check_raid56_incompat_flag(info, type);
cfbb825c 5333 check_raid1c34_incompat_flag(info, type);
53b381b3 5334
79bd3712 5335 return block_group;
b2117a39 5336
6df9a95e 5337error_del_extent:
0f5d42b2
JB
5338 write_lock(&em_tree->lock);
5339 remove_extent_mapping(em_tree, em);
5340 write_unlock(&em_tree->lock);
5341
5342 /* One for our allocation */
5343 free_extent_map(em);
5344 /* One for the tree reference */
5345 free_extent_map(em);
dce580ca 5346
79bd3712 5347 return block_group;
dce580ca
NA
5348}
5349
79bd3712
FM
5350struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5351 u64 type)
dce580ca
NA
5352{
5353 struct btrfs_fs_info *info = trans->fs_info;
5354 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5355 struct btrfs_device_info *devices_info = NULL;
5356 struct alloc_chunk_ctl ctl;
79bd3712 5357 struct btrfs_block_group *block_group;
dce580ca
NA
5358 int ret;
5359
11c67b1a
NB
5360 lockdep_assert_held(&info->chunk_mutex);
5361
dce580ca
NA
5362 if (!alloc_profile_is_valid(type, 0)) {
5363 ASSERT(0);
79bd3712 5364 return ERR_PTR(-EINVAL);
dce580ca
NA
5365 }
5366
5367 if (list_empty(&fs_devices->alloc_list)) {
5368 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5369 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5370 return ERR_PTR(-ENOSPC);
dce580ca
NA
5371 }
5372
5373 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5374 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5375 ASSERT(0);
79bd3712 5376 return ERR_PTR(-EINVAL);
dce580ca
NA
5377 }
5378
11c67b1a 5379 ctl.start = find_next_chunk(info);
dce580ca
NA
5380 ctl.type = type;
5381 init_alloc_chunk_ctl(fs_devices, &ctl);
5382
5383 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5384 GFP_NOFS);
5385 if (!devices_info)
79bd3712 5386 return ERR_PTR(-ENOMEM);
dce580ca
NA
5387
5388 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5389 if (ret < 0) {
5390 block_group = ERR_PTR(ret);
dce580ca 5391 goto out;
79bd3712 5392 }
dce580ca
NA
5393
5394 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5395 if (ret < 0) {
5396 block_group = ERR_PTR(ret);
dce580ca 5397 goto out;
79bd3712 5398 }
dce580ca 5399
79bd3712 5400 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5401
5402out:
b2117a39 5403 kfree(devices_info);
79bd3712 5404 return block_group;
2b82032c
YZ
5405}
5406
79bd3712
FM
5407/*
5408 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5409 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5410 * chunks.
5411 *
5412 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5413 * phases.
5414 */
5415int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5416 struct btrfs_block_group *bg)
5417{
5418 struct btrfs_fs_info *fs_info = trans->fs_info;
5419 struct btrfs_root *extent_root = fs_info->extent_root;
5420 struct btrfs_root *chunk_root = fs_info->chunk_root;
5421 struct btrfs_key key;
5422 struct btrfs_chunk *chunk;
5423 struct btrfs_stripe *stripe;
5424 struct extent_map *em;
5425 struct map_lookup *map;
5426 size_t item_size;
5427 int i;
5428 int ret;
5429
5430 /*
5431 * We take the chunk_mutex for 2 reasons:
5432 *
5433 * 1) Updates and insertions in the chunk btree must be done while holding
5434 * the chunk_mutex, as well as updating the system chunk array in the
5435 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5436 * details;
5437 *
5438 * 2) To prevent races with the final phase of a device replace operation
5439 * that replaces the device object associated with the map's stripes,
5440 * because the device object's id can change at any time during that
5441 * final phase of the device replace operation
5442 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5443 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5444 * which would cause a failure when updating the device item, which does
5445 * not exists, or persisting a stripe of the chunk item with such ID.
5446 * Here we can't use the device_list_mutex because our caller already
5447 * has locked the chunk_mutex, and the final phase of device replace
5448 * acquires both mutexes - first the device_list_mutex and then the
5449 * chunk_mutex. Using any of those two mutexes protects us from a
5450 * concurrent device replace.
5451 */
5452 lockdep_assert_held(&fs_info->chunk_mutex);
5453
5454 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5455 if (IS_ERR(em)) {
5456 ret = PTR_ERR(em);
5457 btrfs_abort_transaction(trans, ret);
5458 return ret;
5459 }
5460
5461 map = em->map_lookup;
5462 item_size = btrfs_chunk_item_size(map->num_stripes);
5463
5464 chunk = kzalloc(item_size, GFP_NOFS);
5465 if (!chunk) {
5466 ret = -ENOMEM;
5467 btrfs_abort_transaction(trans, ret);
50460e37 5468 goto out;
2b82032c
YZ
5469 }
5470
79bd3712
FM
5471 for (i = 0; i < map->num_stripes; i++) {
5472 struct btrfs_device *device = map->stripes[i].dev;
5473
5474 ret = btrfs_update_device(trans, device);
5475 if (ret)
5476 goto out;
5477 }
5478
2b82032c 5479 stripe = &chunk->stripe;
6df9a95e 5480 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5481 struct btrfs_device *device = map->stripes[i].dev;
5482 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5483
e17cade2
CM
5484 btrfs_set_stack_stripe_devid(stripe, device->devid);
5485 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5486 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5487 stripe++;
0b86a832
CM
5488 }
5489
79bd3712 5490 btrfs_set_stack_chunk_length(chunk, bg->length);
0b86a832 5491 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5492 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5493 btrfs_set_stack_chunk_type(chunk, map->type);
5494 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5495 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5496 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5497 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5498 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5499
2b82032c
YZ
5500 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5501 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5502 key.offset = bg->start;
0b86a832 5503
2b82032c 5504 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5505 if (ret)
5506 goto out;
5507
5508 bg->chunk_item_inserted = 1;
5509
5510 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5511 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5512 if (ret)
5513 goto out;
8f18cf13 5514 }
1abe9b8a 5515
6df9a95e 5516out:
0b86a832 5517 kfree(chunk);
6df9a95e 5518 free_extent_map(em);
4ed1d16e 5519 return ret;
2b82032c 5520}
0b86a832 5521
6f8e0fc7 5522static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5523{
6f8e0fc7 5524 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5525 u64 alloc_profile;
79bd3712
FM
5526 struct btrfs_block_group *meta_bg;
5527 struct btrfs_block_group *sys_bg;
5528
5529 /*
5530 * When adding a new device for sprouting, the seed device is read-only
5531 * so we must first allocate a metadata and a system chunk. But before
5532 * adding the block group items to the extent, device and chunk btrees,
5533 * we must first:
5534 *
5535 * 1) Create both chunks without doing any changes to the btrees, as
5536 * otherwise we would get -ENOSPC since the block groups from the
5537 * seed device are read-only;
5538 *
5539 * 2) Add the device item for the new sprout device - finishing the setup
5540 * of a new block group requires updating the device item in the chunk
5541 * btree, so it must exist when we attempt to do it. The previous step
5542 * ensures this does not fail with -ENOSPC.
5543 *
5544 * After that we can add the block group items to their btrees:
5545 * update existing device item in the chunk btree, add a new block group
5546 * item to the extent btree, add a new chunk item to the chunk btree and
5547 * finally add the new device extent items to the devices btree.
5548 */
2b82032c 5549
1b86826d 5550 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
79bd3712
FM
5551 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5552 if (IS_ERR(meta_bg))
5553 return PTR_ERR(meta_bg);
2b82032c 5554
1b86826d 5555 alloc_profile = btrfs_system_alloc_profile(fs_info);
79bd3712
FM
5556 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5557 if (IS_ERR(sys_bg))
5558 return PTR_ERR(sys_bg);
5559
5560 return 0;
2b82032c
YZ
5561}
5562
d20983b4
MX
5563static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5564{
fc9a2ac7 5565 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5566
fc9a2ac7 5567 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5568}
5569
2ff7e61e 5570int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5571{
5572 struct extent_map *em;
5573 struct map_lookup *map;
2b82032c 5574 int readonly = 0;
d20983b4 5575 int miss_ndevs = 0;
2b82032c
YZ
5576 int i;
5577
60ca842e 5578 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5579 if (IS_ERR(em))
2b82032c
YZ
5580 return 1;
5581
95617d69 5582 map = em->map_lookup;
2b82032c 5583 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5584 if (test_bit(BTRFS_DEV_STATE_MISSING,
5585 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5586 miss_ndevs++;
5587 continue;
5588 }
ebbede42
AJ
5589 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5590 &map->stripes[i].dev->dev_state)) {
2b82032c 5591 readonly = 1;
d20983b4 5592 goto end;
2b82032c
YZ
5593 }
5594 }
d20983b4
MX
5595
5596 /*
5597 * If the number of missing devices is larger than max errors,
5598 * we can not write the data into that chunk successfully, so
5599 * set it readonly.
5600 */
5601 if (miss_ndevs > btrfs_chunk_max_errors(map))
5602 readonly = 1;
5603end:
0b86a832 5604 free_extent_map(em);
2b82032c 5605 return readonly;
0b86a832
CM
5606}
5607
c8bf1b67 5608void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5609{
5610 struct extent_map *em;
5611
d397712b 5612 while (1) {
c8bf1b67
DS
5613 write_lock(&tree->lock);
5614 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5615 if (em)
c8bf1b67
DS
5616 remove_extent_mapping(tree, em);
5617 write_unlock(&tree->lock);
0b86a832
CM
5618 if (!em)
5619 break;
0b86a832
CM
5620 /* once for us */
5621 free_extent_map(em);
5622 /* once for the tree */
5623 free_extent_map(em);
5624 }
5625}
5626
5d964051 5627int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5628{
5629 struct extent_map *em;
5630 struct map_lookup *map;
f188591e
CM
5631 int ret;
5632
60ca842e 5633 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5634 if (IS_ERR(em))
5635 /*
5636 * We could return errors for these cases, but that could get
5637 * ugly and we'd probably do the same thing which is just not do
5638 * anything else and exit, so return 1 so the callers don't try
5639 * to use other copies.
5640 */
fb7669b5 5641 return 1;
fb7669b5 5642
95617d69 5643 map = em->map_lookup;
c7369b3f 5644 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5645 ret = map->num_stripes;
321aecc6
CM
5646 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5647 ret = map->sub_stripes;
53b381b3
DW
5648 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5649 ret = 2;
5650 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5651 /*
5652 * There could be two corrupted data stripes, we need
5653 * to loop retry in order to rebuild the correct data.
e7e02096 5654 *
8810f751
LB
5655 * Fail a stripe at a time on every retry except the
5656 * stripe under reconstruction.
5657 */
5658 ret = map->num_stripes;
f188591e
CM
5659 else
5660 ret = 1;
5661 free_extent_map(em);
ad6d620e 5662
cb5583dd 5663 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5664 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5665 fs_info->dev_replace.tgtdev)
ad6d620e 5666 ret++;
cb5583dd 5667 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5668
f188591e
CM
5669 return ret;
5670}
5671
2ff7e61e 5672unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5673 u64 logical)
5674{
5675 struct extent_map *em;
5676 struct map_lookup *map;
0b246afa 5677 unsigned long len = fs_info->sectorsize;
53b381b3 5678
60ca842e 5679 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5680
69f03f13
NB
5681 if (!WARN_ON(IS_ERR(em))) {
5682 map = em->map_lookup;
5683 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5684 len = map->stripe_len * nr_data_stripes(map);
5685 free_extent_map(em);
5686 }
53b381b3
DW
5687 return len;
5688}
5689
e4ff5fb5 5690int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5691{
5692 struct extent_map *em;
5693 struct map_lookup *map;
53b381b3
DW
5694 int ret = 0;
5695
60ca842e 5696 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5697
69f03f13
NB
5698 if(!WARN_ON(IS_ERR(em))) {
5699 map = em->map_lookup;
5700 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5701 ret = 1;
5702 free_extent_map(em);
5703 }
53b381b3
DW
5704 return ret;
5705}
5706
30d9861f 5707static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5708 struct map_lookup *map, int first,
8ba0ae78 5709 int dev_replace_is_ongoing)
dfe25020
CM
5710{
5711 int i;
99f92a7c 5712 int num_stripes;
8ba0ae78 5713 int preferred_mirror;
30d9861f
SB
5714 int tolerance;
5715 struct btrfs_device *srcdev;
5716
99f92a7c 5717 ASSERT((map->type &
c7369b3f 5718 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5719
5720 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5721 num_stripes = map->sub_stripes;
5722 else
5723 num_stripes = map->num_stripes;
5724
33fd2f71
AJ
5725 switch (fs_info->fs_devices->read_policy) {
5726 default:
5727 /* Shouldn't happen, just warn and use pid instead of failing */
5728 btrfs_warn_rl(fs_info,
5729 "unknown read_policy type %u, reset to pid",
5730 fs_info->fs_devices->read_policy);
5731 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5732 fallthrough;
5733 case BTRFS_READ_POLICY_PID:
5734 preferred_mirror = first + (current->pid % num_stripes);
5735 break;
5736 }
8ba0ae78 5737
30d9861f
SB
5738 if (dev_replace_is_ongoing &&
5739 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5740 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5741 srcdev = fs_info->dev_replace.srcdev;
5742 else
5743 srcdev = NULL;
5744
5745 /*
5746 * try to avoid the drive that is the source drive for a
5747 * dev-replace procedure, only choose it if no other non-missing
5748 * mirror is available
5749 */
5750 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5751 if (map->stripes[preferred_mirror].dev->bdev &&
5752 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5753 return preferred_mirror;
99f92a7c 5754 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5755 if (map->stripes[i].dev->bdev &&
5756 (tolerance || map->stripes[i].dev != srcdev))
5757 return i;
5758 }
dfe25020 5759 }
30d9861f 5760
dfe25020
CM
5761 /* we couldn't find one that doesn't fail. Just return something
5762 * and the io error handling code will clean up eventually
5763 */
8ba0ae78 5764 return preferred_mirror;
dfe25020
CM
5765}
5766
53b381b3 5767/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5768static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3 5769{
53b381b3 5770 int i;
53b381b3
DW
5771 int again = 1;
5772
5773 while (again) {
5774 again = 0;
cc7539ed 5775 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172
DS
5776 /* Swap if parity is on a smaller index */
5777 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5778 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5779 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
53b381b3
DW
5780 again = 1;
5781 }
5782 }
5783 }
5784}
5785
6e9606d2
ZL
5786static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5787{
5788 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5789 /* the size of the btrfs_bio */
6e9606d2 5790 sizeof(struct btrfs_bio) +
e57cf21e 5791 /* plus the variable array for the stripes */
6e9606d2 5792 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5793 /* plus the variable array for the tgt dev */
6e9606d2 5794 sizeof(int) * (real_stripes) +
e57cf21e
CM
5795 /*
5796 * plus the raid_map, which includes both the tgt dev
5797 * and the stripes
5798 */
5799 sizeof(u64) * (total_stripes),
277fb5fc 5800 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5801
5802 atomic_set(&bbio->error, 0);
140475ae 5803 refcount_set(&bbio->refs, 1);
6e9606d2 5804
608769a4
NB
5805 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5806 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5807
6e9606d2
ZL
5808 return bbio;
5809}
5810
5811void btrfs_get_bbio(struct btrfs_bio *bbio)
5812{
140475ae
ER
5813 WARN_ON(!refcount_read(&bbio->refs));
5814 refcount_inc(&bbio->refs);
6e9606d2
ZL
5815}
5816
5817void btrfs_put_bbio(struct btrfs_bio *bbio)
5818{
5819 if (!bbio)
5820 return;
140475ae 5821 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5822 kfree(bbio);
5823}
5824
0b3d4cd3
LB
5825/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5826/*
5827 * Please note that, discard won't be sent to target device of device
5828 * replace.
5829 */
5830static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5831 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5832 struct btrfs_bio **bbio_ret)
5833{
5834 struct extent_map *em;
5835 struct map_lookup *map;
5836 struct btrfs_bio *bbio;
6b7faadd 5837 u64 length = *length_ret;
0b3d4cd3
LB
5838 u64 offset;
5839 u64 stripe_nr;
5840 u64 stripe_nr_end;
5841 u64 stripe_end_offset;
5842 u64 stripe_cnt;
5843 u64 stripe_len;
5844 u64 stripe_offset;
5845 u64 num_stripes;
5846 u32 stripe_index;
5847 u32 factor = 0;
5848 u32 sub_stripes = 0;
5849 u64 stripes_per_dev = 0;
5850 u32 remaining_stripes = 0;
5851 u32 last_stripe = 0;
5852 int ret = 0;
5853 int i;
5854
5855 /* discard always return a bbio */
5856 ASSERT(bbio_ret);
5857
60ca842e 5858 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5859 if (IS_ERR(em))
5860 return PTR_ERR(em);
5861
5862 map = em->map_lookup;
5863 /* we don't discard raid56 yet */
5864 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5865 ret = -EOPNOTSUPP;
5866 goto out;
5867 }
5868
5869 offset = logical - em->start;
2d974619 5870 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5871 *length_ret = length;
0b3d4cd3
LB
5872
5873 stripe_len = map->stripe_len;
5874 /*
5875 * stripe_nr counts the total number of stripes we have to stride
5876 * to get to this block
5877 */
5878 stripe_nr = div64_u64(offset, stripe_len);
5879
5880 /* stripe_offset is the offset of this block in its stripe */
5881 stripe_offset = offset - stripe_nr * stripe_len;
5882
5883 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5884 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5885 stripe_cnt = stripe_nr_end - stripe_nr;
5886 stripe_end_offset = stripe_nr_end * map->stripe_len -
5887 (offset + length);
5888 /*
5889 * after this, stripe_nr is the number of stripes on this
5890 * device we have to walk to find the data, and stripe_index is
5891 * the number of our device in the stripe array
5892 */
5893 num_stripes = 1;
5894 stripe_index = 0;
5895 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5896 BTRFS_BLOCK_GROUP_RAID10)) {
5897 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5898 sub_stripes = 1;
5899 else
5900 sub_stripes = map->sub_stripes;
5901
5902 factor = map->num_stripes / sub_stripes;
5903 num_stripes = min_t(u64, map->num_stripes,
5904 sub_stripes * stripe_cnt);
5905 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5906 stripe_index *= sub_stripes;
5907 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5908 &remaining_stripes);
5909 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5910 last_stripe *= sub_stripes;
c7369b3f 5911 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5912 BTRFS_BLOCK_GROUP_DUP)) {
5913 num_stripes = map->num_stripes;
5914 } else {
5915 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5916 &stripe_index);
5917 }
5918
5919 bbio = alloc_btrfs_bio(num_stripes, 0);
5920 if (!bbio) {
5921 ret = -ENOMEM;
5922 goto out;
5923 }
5924
5925 for (i = 0; i < num_stripes; i++) {
5926 bbio->stripes[i].physical =
5927 map->stripes[stripe_index].physical +
5928 stripe_offset + stripe_nr * map->stripe_len;
5929 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5930
5931 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5932 BTRFS_BLOCK_GROUP_RAID10)) {
5933 bbio->stripes[i].length = stripes_per_dev *
5934 map->stripe_len;
5935
5936 if (i / sub_stripes < remaining_stripes)
5937 bbio->stripes[i].length +=
5938 map->stripe_len;
5939
5940 /*
5941 * Special for the first stripe and
5942 * the last stripe:
5943 *
5944 * |-------|...|-------|
5945 * |----------|
5946 * off end_off
5947 */
5948 if (i < sub_stripes)
5949 bbio->stripes[i].length -=
5950 stripe_offset;
5951
5952 if (stripe_index >= last_stripe &&
5953 stripe_index <= (last_stripe +
5954 sub_stripes - 1))
5955 bbio->stripes[i].length -=
5956 stripe_end_offset;
5957
5958 if (i == sub_stripes - 1)
5959 stripe_offset = 0;
5960 } else {
5961 bbio->stripes[i].length = length;
5962 }
5963
5964 stripe_index++;
5965 if (stripe_index == map->num_stripes) {
5966 stripe_index = 0;
5967 stripe_nr++;
5968 }
5969 }
5970
5971 *bbio_ret = bbio;
5972 bbio->map_type = map->type;
5973 bbio->num_stripes = num_stripes;
5974out:
5975 free_extent_map(em);
5976 return ret;
5977}
5978
5ab56090
LB
5979/*
5980 * In dev-replace case, for repair case (that's the only case where the mirror
5981 * is selected explicitly when calling btrfs_map_block), blocks left of the
5982 * left cursor can also be read from the target drive.
5983 *
5984 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5985 * array of stripes.
5986 * For READ, it also needs to be supported using the same mirror number.
5987 *
5988 * If the requested block is not left of the left cursor, EIO is returned. This
5989 * can happen because btrfs_num_copies() returns one more in the dev-replace
5990 * case.
5991 */
5992static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5993 u64 logical, u64 length,
5994 u64 srcdev_devid, int *mirror_num,
5995 u64 *physical)
5996{
5997 struct btrfs_bio *bbio = NULL;
5998 int num_stripes;
5999 int index_srcdev = 0;
6000 int found = 0;
6001 u64 physical_of_found = 0;
6002 int i;
6003 int ret = 0;
6004
6005 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6006 logical, &length, &bbio, 0, 0);
6007 if (ret) {
6008 ASSERT(bbio == NULL);
6009 return ret;
6010 }
6011
6012 num_stripes = bbio->num_stripes;
6013 if (*mirror_num > num_stripes) {
6014 /*
6015 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6016 * that means that the requested area is not left of the left
6017 * cursor
6018 */
6019 btrfs_put_bbio(bbio);
6020 return -EIO;
6021 }
6022
6023 /*
6024 * process the rest of the function using the mirror_num of the source
6025 * drive. Therefore look it up first. At the end, patch the device
6026 * pointer to the one of the target drive.
6027 */
6028 for (i = 0; i < num_stripes; i++) {
6029 if (bbio->stripes[i].dev->devid != srcdev_devid)
6030 continue;
6031
6032 /*
6033 * In case of DUP, in order to keep it simple, only add the
6034 * mirror with the lowest physical address
6035 */
6036 if (found &&
6037 physical_of_found <= bbio->stripes[i].physical)
6038 continue;
6039
6040 index_srcdev = i;
6041 found = 1;
6042 physical_of_found = bbio->stripes[i].physical;
6043 }
6044
6045 btrfs_put_bbio(bbio);
6046
6047 ASSERT(found);
6048 if (!found)
6049 return -EIO;
6050
6051 *mirror_num = index_srcdev + 1;
6052 *physical = physical_of_found;
6053 return ret;
6054}
6055
6143c23c
NA
6056static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6057{
6058 struct btrfs_block_group *cache;
6059 bool ret;
6060
de17addc 6061 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6062 if (!btrfs_is_zoned(fs_info))
6063 return false;
6064
6065 cache = btrfs_lookup_block_group(fs_info, logical);
6066
6067 spin_lock(&cache->lock);
6068 ret = cache->to_copy;
6069 spin_unlock(&cache->lock);
6070
6071 btrfs_put_block_group(cache);
6072 return ret;
6073}
6074
73c0f228
LB
6075static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6076 struct btrfs_bio **bbio_ret,
6077 struct btrfs_dev_replace *dev_replace,
6143c23c 6078 u64 logical,
73c0f228
LB
6079 int *num_stripes_ret, int *max_errors_ret)
6080{
6081 struct btrfs_bio *bbio = *bbio_ret;
6082 u64 srcdev_devid = dev_replace->srcdev->devid;
6083 int tgtdev_indexes = 0;
6084 int num_stripes = *num_stripes_ret;
6085 int max_errors = *max_errors_ret;
6086 int i;
6087
6088 if (op == BTRFS_MAP_WRITE) {
6089 int index_where_to_add;
6090
6143c23c
NA
6091 /*
6092 * A block group which have "to_copy" set will eventually
6093 * copied by dev-replace process. We can avoid cloning IO here.
6094 */
6095 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6096 return;
6097
73c0f228
LB
6098 /*
6099 * duplicate the write operations while the dev replace
6100 * procedure is running. Since the copying of the old disk to
6101 * the new disk takes place at run time while the filesystem is
6102 * mounted writable, the regular write operations to the old
6103 * disk have to be duplicated to go to the new disk as well.
6104 *
6105 * Note that device->missing is handled by the caller, and that
6106 * the write to the old disk is already set up in the stripes
6107 * array.
6108 */
6109 index_where_to_add = num_stripes;
6110 for (i = 0; i < num_stripes; i++) {
6111 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6112 /* write to new disk, too */
6113 struct btrfs_bio_stripe *new =
6114 bbio->stripes + index_where_to_add;
6115 struct btrfs_bio_stripe *old =
6116 bbio->stripes + i;
6117
6118 new->physical = old->physical;
6119 new->length = old->length;
6120 new->dev = dev_replace->tgtdev;
6121 bbio->tgtdev_map[i] = index_where_to_add;
6122 index_where_to_add++;
6123 max_errors++;
6124 tgtdev_indexes++;
6125 }
6126 }
6127 num_stripes = index_where_to_add;
6128 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6129 int index_srcdev = 0;
6130 int found = 0;
6131 u64 physical_of_found = 0;
6132
6133 /*
6134 * During the dev-replace procedure, the target drive can also
6135 * be used to read data in case it is needed to repair a corrupt
6136 * block elsewhere. This is possible if the requested area is
6137 * left of the left cursor. In this area, the target drive is a
6138 * full copy of the source drive.
6139 */
6140 for (i = 0; i < num_stripes; i++) {
6141 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6142 /*
6143 * In case of DUP, in order to keep it simple,
6144 * only add the mirror with the lowest physical
6145 * address
6146 */
6147 if (found &&
6148 physical_of_found <=
6149 bbio->stripes[i].physical)
6150 continue;
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bbio->stripes[i].physical;
6154 }
6155 }
6156 if (found) {
6157 struct btrfs_bio_stripe *tgtdev_stripe =
6158 bbio->stripes + num_stripes;
6159
6160 tgtdev_stripe->physical = physical_of_found;
6161 tgtdev_stripe->length =
6162 bbio->stripes[index_srcdev].length;
6163 tgtdev_stripe->dev = dev_replace->tgtdev;
6164 bbio->tgtdev_map[index_srcdev] = num_stripes;
6165
6166 tgtdev_indexes++;
6167 num_stripes++;
6168 }
6169 }
6170
6171 *num_stripes_ret = num_stripes;
6172 *max_errors_ret = max_errors;
6173 bbio->num_tgtdevs = tgtdev_indexes;
6174 *bbio_ret = bbio;
6175}
6176
2b19a1fe
LB
6177static bool need_full_stripe(enum btrfs_map_op op)
6178{
6179 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6180}
6181
5f141126 6182/*
42034313
MR
6183 * Calculate the geometry of a particular (address, len) tuple. This
6184 * information is used to calculate how big a particular bio can get before it
6185 * straddles a stripe.
5f141126 6186 *
42034313
MR
6187 * @fs_info: the filesystem
6188 * @em: mapping containing the logical extent
6189 * @op: type of operation - write or read
6190 * @logical: address that we want to figure out the geometry of
42034313 6191 * @io_geom: pointer used to return values
5f141126
NB
6192 *
6193 * Returns < 0 in case a chunk for the given logical address cannot be found,
6194 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6195 */
42034313 6196int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6197 enum btrfs_map_op op, u64 logical,
42034313 6198 struct btrfs_io_geometry *io_geom)
5f141126 6199{
5f141126 6200 struct map_lookup *map;
43c0d1a5 6201 u64 len;
5f141126
NB
6202 u64 offset;
6203 u64 stripe_offset;
6204 u64 stripe_nr;
6205 u64 stripe_len;
6206 u64 raid56_full_stripe_start = (u64)-1;
6207 int data_stripes;
6208
6209 ASSERT(op != BTRFS_MAP_DISCARD);
6210
5f141126
NB
6211 map = em->map_lookup;
6212 /* Offset of this logical address in the chunk */
6213 offset = logical - em->start;
6214 /* Len of a stripe in a chunk */
6215 stripe_len = map->stripe_len;
1a9fd417 6216 /* Stripe where this block falls in */
5f141126
NB
6217 stripe_nr = div64_u64(offset, stripe_len);
6218 /* Offset of stripe in the chunk */
6219 stripe_offset = stripe_nr * stripe_len;
6220 if (offset < stripe_offset) {
6221 btrfs_crit(fs_info,
6222"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6223 stripe_offset, offset, em->start, logical, stripe_len);
42034313 6224 return -EINVAL;
5f141126
NB
6225 }
6226
6227 /* stripe_offset is the offset of this block in its stripe */
6228 stripe_offset = offset - stripe_offset;
6229 data_stripes = nr_data_stripes(map);
6230
6231 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6232 u64 max_len = stripe_len - stripe_offset;
6233
6234 /*
6235 * In case of raid56, we need to know the stripe aligned start
6236 */
6237 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6238 unsigned long full_stripe_len = stripe_len * data_stripes;
6239 raid56_full_stripe_start = offset;
6240
6241 /*
6242 * Allow a write of a full stripe, but make sure we
6243 * don't allow straddling of stripes
6244 */
6245 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6246 full_stripe_len);
6247 raid56_full_stripe_start *= full_stripe_len;
6248
6249 /*
6250 * For writes to RAID[56], allow a full stripeset across
6251 * all disks. For other RAID types and for RAID[56]
6252 * reads, just allow a single stripe (on a single disk).
6253 */
6254 if (op == BTRFS_MAP_WRITE) {
6255 max_len = stripe_len * data_stripes -
6256 (offset - raid56_full_stripe_start);
6257 }
6258 }
6259 len = min_t(u64, em->len - offset, max_len);
6260 } else {
6261 len = em->len - offset;
6262 }
6263
6264 io_geom->len = len;
6265 io_geom->offset = offset;
6266 io_geom->stripe_len = stripe_len;
6267 io_geom->stripe_nr = stripe_nr;
6268 io_geom->stripe_offset = stripe_offset;
6269 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6270
42034313 6271 return 0;
5f141126
NB
6272}
6273
cf8cddd3
CH
6274static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6275 enum btrfs_map_op op,
f2d8d74d 6276 u64 logical, u64 *length,
a1d3c478 6277 struct btrfs_bio **bbio_ret,
8e5cfb55 6278 int mirror_num, int need_raid_map)
0b86a832
CM
6279{
6280 struct extent_map *em;
6281 struct map_lookup *map;
593060d7
CM
6282 u64 stripe_offset;
6283 u64 stripe_nr;
53b381b3 6284 u64 stripe_len;
9d644a62 6285 u32 stripe_index;
cff82672 6286 int data_stripes;
cea9e445 6287 int i;
de11cc12 6288 int ret = 0;
f2d8d74d 6289 int num_stripes;
a236aed1 6290 int max_errors = 0;
2c8cdd6e 6291 int tgtdev_indexes = 0;
a1d3c478 6292 struct btrfs_bio *bbio = NULL;
472262f3
SB
6293 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6294 int dev_replace_is_ongoing = 0;
6295 int num_alloc_stripes;
ad6d620e
SB
6296 int patch_the_first_stripe_for_dev_replace = 0;
6297 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6298 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6299 struct btrfs_io_geometry geom;
6300
6301 ASSERT(bbio_ret);
75fb2e9e 6302 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6303
42034313
MR
6304 em = btrfs_get_chunk_map(fs_info, logical, *length);
6305 ASSERT(!IS_ERR(em));
6306
43c0d1a5 6307 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6308 if (ret < 0)
6309 return ret;
0b86a832 6310
95617d69 6311 map = em->map_lookup;
593060d7 6312
89b798ad 6313 *length = geom.len;
89b798ad
NB
6314 stripe_len = geom.stripe_len;
6315 stripe_nr = geom.stripe_nr;
6316 stripe_offset = geom.stripe_offset;
6317 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6318 data_stripes = nr_data_stripes(map);
593060d7 6319
cb5583dd 6320 down_read(&dev_replace->rwsem);
472262f3 6321 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6322 /*
6323 * Hold the semaphore for read during the whole operation, write is
6324 * requested at commit time but must wait.
6325 */
472262f3 6326 if (!dev_replace_is_ongoing)
cb5583dd 6327 up_read(&dev_replace->rwsem);
472262f3 6328
ad6d620e 6329 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6330 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6331 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6332 dev_replace->srcdev->devid,
6333 &mirror_num,
6334 &physical_to_patch_in_first_stripe);
6335 if (ret)
ad6d620e 6336 goto out;
5ab56090
LB
6337 else
6338 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6339 } else if (mirror_num > map->num_stripes) {
6340 mirror_num = 0;
6341 }
6342
f2d8d74d 6343 num_stripes = 1;
cea9e445 6344 stripe_index = 0;
fce3bb9a 6345 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6346 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6347 &stripe_index);
de483734 6348 if (!need_full_stripe(op))
28e1cc7d 6349 mirror_num = 1;
c7369b3f 6350 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6351 if (need_full_stripe(op))
f2d8d74d 6352 num_stripes = map->num_stripes;
2fff734f 6353 else if (mirror_num)
f188591e 6354 stripe_index = mirror_num - 1;
dfe25020 6355 else {
30d9861f 6356 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6357 dev_replace_is_ongoing);
a1d3c478 6358 mirror_num = stripe_index + 1;
dfe25020 6359 }
2fff734f 6360
611f0e00 6361 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6362 if (need_full_stripe(op)) {
f2d8d74d 6363 num_stripes = map->num_stripes;
a1d3c478 6364 } else if (mirror_num) {
f188591e 6365 stripe_index = mirror_num - 1;
a1d3c478
JS
6366 } else {
6367 mirror_num = 1;
6368 }
2fff734f 6369
321aecc6 6370 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6371 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6372
47c5713f 6373 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6374 stripe_index *= map->sub_stripes;
6375
de483734 6376 if (need_full_stripe(op))
f2d8d74d 6377 num_stripes = map->sub_stripes;
321aecc6
CM
6378 else if (mirror_num)
6379 stripe_index += mirror_num - 1;
dfe25020 6380 else {
3e74317a 6381 int old_stripe_index = stripe_index;
30d9861f
SB
6382 stripe_index = find_live_mirror(fs_info, map,
6383 stripe_index,
30d9861f 6384 dev_replace_is_ongoing);
3e74317a 6385 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6386 }
53b381b3 6387
ffe2d203 6388 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6389 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6390 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6391 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6392 stripe_len * data_stripes);
53b381b3
DW
6393
6394 /* RAID[56] write or recovery. Return all stripes */
6395 num_stripes = map->num_stripes;
6396 max_errors = nr_parity_stripes(map);
6397
53b381b3
DW
6398 *length = map->stripe_len;
6399 stripe_index = 0;
6400 stripe_offset = 0;
6401 } else {
6402 /*
6403 * Mirror #0 or #1 means the original data block.
6404 * Mirror #2 is RAID5 parity block.
6405 * Mirror #3 is RAID6 Q block.
6406 */
47c5713f 6407 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6408 data_stripes, &stripe_index);
53b381b3 6409 if (mirror_num > 1)
cff82672 6410 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6411
6412 /* We distribute the parity blocks across stripes */
47c5713f
DS
6413 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6414 &stripe_index);
de483734 6415 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6416 mirror_num = 1;
53b381b3 6417 }
8790d502
CM
6418 } else {
6419 /*
47c5713f
DS
6420 * after this, stripe_nr is the number of stripes on this
6421 * device we have to walk to find the data, and stripe_index is
6422 * the number of our device in the stripe array
8790d502 6423 */
47c5713f
DS
6424 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6425 &stripe_index);
a1d3c478 6426 mirror_num = stripe_index + 1;
8790d502 6427 }
e042d1ec 6428 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6429 btrfs_crit(fs_info,
6430 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6431 stripe_index, map->num_stripes);
6432 ret = -EINVAL;
6433 goto out;
6434 }
cea9e445 6435
472262f3 6436 num_alloc_stripes = num_stripes;
6fad823f 6437 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6438 if (op == BTRFS_MAP_WRITE)
ad6d620e 6439 num_alloc_stripes <<= 1;
cf8cddd3 6440 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6441 num_alloc_stripes++;
2c8cdd6e 6442 tgtdev_indexes = num_stripes;
ad6d620e 6443 }
2c8cdd6e 6444
6e9606d2 6445 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6446 if (!bbio) {
6447 ret = -ENOMEM;
6448 goto out;
6449 }
608769a4
NB
6450
6451 for (i = 0; i < num_stripes; i++) {
6452 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6453 stripe_offset + stripe_nr * map->stripe_len;
6454 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6455 stripe_index++;
6456 }
de11cc12 6457
8e5cfb55 6458 /* build raid_map */
2b19a1fe
LB
6459 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6460 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6461 u64 tmp;
9d644a62 6462 unsigned rot;
8e5cfb55 6463
8e5cfb55 6464 /* Work out the disk rotation on this stripe-set */
47c5713f 6465 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6466
6467 /* Fill in the logical address of each stripe */
cff82672
DS
6468 tmp = stripe_nr * data_stripes;
6469 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6470 bbio->raid_map[(i+rot) % num_stripes] =
6471 em->start + (tmp + i) * map->stripe_len;
6472
6473 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6474 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6475 bbio->raid_map[(i+rot+1) % num_stripes] =
6476 RAID6_Q_STRIPE;
8e5cfb55 6477
608769a4 6478 sort_parity_stripes(bbio, num_stripes);
593060d7 6479 }
de11cc12 6480
2b19a1fe 6481 if (need_full_stripe(op))
d20983b4 6482 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6483
73c0f228 6484 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6485 need_full_stripe(op)) {
6143c23c
NA
6486 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6487 &num_stripes, &max_errors);
472262f3
SB
6488 }
6489
de11cc12 6490 *bbio_ret = bbio;
10f11900 6491 bbio->map_type = map->type;
de11cc12
LZ
6492 bbio->num_stripes = num_stripes;
6493 bbio->max_errors = max_errors;
6494 bbio->mirror_num = mirror_num;
ad6d620e
SB
6495
6496 /*
6497 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6498 * mirror_num == num_stripes + 1 && dev_replace target drive is
6499 * available as a mirror
6500 */
6501 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6502 WARN_ON(num_stripes > 1);
6503 bbio->stripes[0].dev = dev_replace->tgtdev;
6504 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6505 bbio->mirror_num = map->num_stripes + 1;
6506 }
cea9e445 6507out:
73beece9 6508 if (dev_replace_is_ongoing) {
53176dde
DS
6509 lockdep_assert_held(&dev_replace->rwsem);
6510 /* Unlock and let waiting writers proceed */
cb5583dd 6511 up_read(&dev_replace->rwsem);
73beece9 6512 }
0b86a832 6513 free_extent_map(em);
de11cc12 6514 return ret;
0b86a832
CM
6515}
6516
cf8cddd3 6517int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6518 u64 logical, u64 *length,
a1d3c478 6519 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6520{
75fb2e9e
DS
6521 if (op == BTRFS_MAP_DISCARD)
6522 return __btrfs_map_block_for_discard(fs_info, logical,
6523 length, bbio_ret);
6524
b3d3fa51 6525 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6526 mirror_num, 0);
f2d8d74d
CM
6527}
6528
af8e2d1d 6529/* For Scrub/replace */
cf8cddd3 6530int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6531 u64 logical, u64 *length,
825ad4c9 6532 struct btrfs_bio **bbio_ret)
af8e2d1d 6533{
825ad4c9 6534 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6535}
6536
4246a0b6 6537static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6538{
326e1dbb
MS
6539 bio->bi_private = bbio->private;
6540 bio->bi_end_io = bbio->end_io;
4246a0b6 6541 bio_endio(bio);
326e1dbb 6542
6e9606d2 6543 btrfs_put_bbio(bbio);
8408c716
MX
6544}
6545
4246a0b6 6546static void btrfs_end_bio(struct bio *bio)
8790d502 6547{
9be3395b 6548 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6549 int is_orig_bio = 0;
8790d502 6550
4e4cbee9 6551 if (bio->bi_status) {
a1d3c478 6552 atomic_inc(&bbio->error);
4e4cbee9
CH
6553 if (bio->bi_status == BLK_STS_IOERR ||
6554 bio->bi_status == BLK_STS_TARGET) {
c31efbdf 6555 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
442a4f63 6556
3eee86c8 6557 ASSERT(dev->bdev);
cfe94440 6558 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6559 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6560 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6561 else if (!(bio->bi_opf & REQ_RAHEAD))
6562 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6563 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6564 if (bio->bi_opf & REQ_PREFLUSH)
6565 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6566 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6567 }
6568 }
8790d502 6569
a1d3c478 6570 if (bio == bbio->orig_bio)
7d2b4daa
CM
6571 is_orig_bio = 1;
6572
c404e0dc
MX
6573 btrfs_bio_counter_dec(bbio->fs_info);
6574
a1d3c478 6575 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6576 if (!is_orig_bio) {
6577 bio_put(bio);
a1d3c478 6578 bio = bbio->orig_bio;
7d2b4daa 6579 }
c7b22bb1 6580
9be3395b 6581 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6582 /* only send an error to the higher layers if it is
53b381b3 6583 * beyond the tolerance of the btrfs bio
a236aed1 6584 */
a1d3c478 6585 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6586 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6587 } else {
1259ab75
CM
6588 /*
6589 * this bio is actually up to date, we didn't
6590 * go over the max number of errors
6591 */
2dbe0c77 6592 bio->bi_status = BLK_STS_OK;
1259ab75 6593 }
c55f1396 6594
4246a0b6 6595 btrfs_end_bbio(bbio, bio);
7d2b4daa 6596 } else if (!is_orig_bio) {
8790d502
CM
6597 bio_put(bio);
6598 }
8790d502
CM
6599}
6600
2ff7e61e 6601static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
c31efbdf 6602 u64 physical, struct btrfs_device *dev)
de1ee92a 6603{
2ff7e61e 6604 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6605
6606 bio->bi_private = bbio;
c31efbdf 6607 btrfs_io_bio(bio)->device = dev;
de1ee92a 6608 bio->bi_end_io = btrfs_end_bio;
4f024f37 6609 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6610 /*
6611 * For zone append writing, bi_sector must point the beginning of the
6612 * zone
6613 */
6614 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6615 if (btrfs_dev_is_sequential(dev, physical)) {
6616 u64 zone_start = round_down(physical, fs_info->zone_size);
6617
6618 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6619 } else {
6620 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6621 bio->bi_opf |= REQ_OP_WRITE;
6622 }
6623 }
672d5990
MT
6624 btrfs_debug_in_rcu(fs_info,
6625 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6626 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6627 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6628 dev->devid, bio->bi_iter.bi_size);
74d46992 6629 bio_set_dev(bio, dev->bdev);
c404e0dc 6630
2ff7e61e 6631 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6632
08635bae 6633 btrfsic_submit_bio(bio);
de1ee92a
JB
6634}
6635
de1ee92a
JB
6636static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6637{
6638 atomic_inc(&bbio->error);
6639 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6640 /* Should be the original bio. */
8408c716
MX
6641 WARN_ON(bio != bbio->orig_bio);
6642
9be3395b 6643 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6644 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6645 if (atomic_read(&bbio->error) > bbio->max_errors)
6646 bio->bi_status = BLK_STS_IOERR;
6647 else
6648 bio->bi_status = BLK_STS_OK;
4246a0b6 6649 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6650 }
6651}
6652
58efbc9f 6653blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6654 int mirror_num)
0b86a832 6655{
0b86a832 6656 struct btrfs_device *dev;
8790d502 6657 struct bio *first_bio = bio;
1201b58b 6658 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6659 u64 length = 0;
6660 u64 map_length;
0b86a832 6661 int ret;
08da757d
ZL
6662 int dev_nr;
6663 int total_devs;
a1d3c478 6664 struct btrfs_bio *bbio = NULL;
0b86a832 6665
4f024f37 6666 length = bio->bi_iter.bi_size;
0b86a832 6667 map_length = length;
cea9e445 6668
0b246afa 6669 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6670 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6671 &map_length, &bbio, mirror_num, 1);
c404e0dc 6672 if (ret) {
0b246afa 6673 btrfs_bio_counter_dec(fs_info);
58efbc9f 6674 return errno_to_blk_status(ret);
c404e0dc 6675 }
cea9e445 6676
a1d3c478 6677 total_devs = bbio->num_stripes;
53b381b3
DW
6678 bbio->orig_bio = first_bio;
6679 bbio->private = first_bio->bi_private;
6680 bbio->end_io = first_bio->bi_end_io;
0b246afa 6681 bbio->fs_info = fs_info;
53b381b3
DW
6682 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6683
ad1ba2a0 6684 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6685 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6686 /* In this case, map_length has been set to the length of
6687 a single stripe; not the whole write */
cfe94440 6688 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
2ff7e61e
JM
6689 ret = raid56_parity_write(fs_info, bio, bbio,
6690 map_length);
53b381b3 6691 } else {
2ff7e61e
JM
6692 ret = raid56_parity_recover(fs_info, bio, bbio,
6693 map_length, mirror_num, 1);
53b381b3 6694 }
4245215d 6695
0b246afa 6696 btrfs_bio_counter_dec(fs_info);
58efbc9f 6697 return errno_to_blk_status(ret);
53b381b3
DW
6698 }
6699
cea9e445 6700 if (map_length < length) {
0b246afa 6701 btrfs_crit(fs_info,
5d163e0e
JM
6702 "mapping failed logical %llu bio len %llu len %llu",
6703 logical, length, map_length);
cea9e445
CM
6704 BUG();
6705 }
a1d3c478 6706
08da757d 6707 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6708 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6709 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6710 &dev->dev_state) ||
cfe94440 6711 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6712 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6713 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6714 continue;
6715 }
6716
3aa8e074 6717 if (dev_nr < total_devs - 1)
8b6c1d56 6718 bio = btrfs_bio_clone(first_bio);
3aa8e074 6719 else
a1d3c478 6720 bio = first_bio;
de1ee92a 6721
c31efbdf 6722 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
8790d502 6723 }
0b246afa 6724 btrfs_bio_counter_dec(fs_info);
58efbc9f 6725 return BLK_STS_OK;
0b86a832
CM
6726}
6727
09ba3bc9
AJ
6728/*
6729 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6730 * return NULL.
6731 *
6732 * If devid and uuid are both specified, the match must be exact, otherwise
6733 * only devid is used.
09ba3bc9 6734 */
e4319cd9 6735struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
b2598edf 6736 u64 devid, u8 *uuid, u8 *fsid)
0b86a832 6737{
2b82032c 6738 struct btrfs_device *device;
944d3f9f
NB
6739 struct btrfs_fs_devices *seed_devs;
6740
6741 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6742 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6743 if (device->devid == devid &&
6744 (!uuid || memcmp(device->uuid, uuid,
6745 BTRFS_UUID_SIZE) == 0))
6746 return device;
6747 }
6748 }
2b82032c 6749
944d3f9f 6750 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
2b82032c 6751 if (!fsid ||
944d3f9f
NB
6752 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6753 list_for_each_entry(device, &seed_devs->devices,
09ba3bc9
AJ
6754 dev_list) {
6755 if (device->devid == devid &&
6756 (!uuid || memcmp(device->uuid, uuid,
6757 BTRFS_UUID_SIZE) == 0))
6758 return device;
6759 }
2b82032c 6760 }
2b82032c 6761 }
944d3f9f 6762
2b82032c 6763 return NULL;
0b86a832
CM
6764}
6765
2ff7e61e 6766static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6767 u64 devid, u8 *dev_uuid)
6768{
6769 struct btrfs_device *device;
fccc0007 6770 unsigned int nofs_flag;
dfe25020 6771
fccc0007
JB
6772 /*
6773 * We call this under the chunk_mutex, so we want to use NOFS for this
6774 * allocation, however we don't want to change btrfs_alloc_device() to
6775 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6776 * places.
6777 */
6778 nofs_flag = memalloc_nofs_save();
12bd2fc0 6779 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6780 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6781 if (IS_ERR(device))
adfb69af 6782 return device;
12bd2fc0
ID
6783
6784 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6785 device->fs_devices = fs_devices;
dfe25020 6786 fs_devices->num_devices++;
12bd2fc0 6787
e6e674bd 6788 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6789 fs_devices->missing_devices++;
12bd2fc0 6790
dfe25020
CM
6791 return device;
6792}
6793
12bd2fc0
ID
6794/**
6795 * btrfs_alloc_device - allocate struct btrfs_device
6796 * @fs_info: used only for generating a new devid, can be NULL if
6797 * devid is provided (i.e. @devid != NULL).
6798 * @devid: a pointer to devid for this device. If NULL a new devid
6799 * is generated.
6800 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6801 * is generated.
6802 *
6803 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6804 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6805 * destroyed with btrfs_free_device.
12bd2fc0
ID
6806 */
6807struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6808 const u64 *devid,
6809 const u8 *uuid)
6810{
6811 struct btrfs_device *dev;
6812 u64 tmp;
6813
fae7f21c 6814 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6815 return ERR_PTR(-EINVAL);
12bd2fc0 6816
fe4f46d4
DS
6817 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6818 if (!dev)
6819 return ERR_PTR(-ENOMEM);
6820
6821 /*
6822 * Preallocate a bio that's always going to be used for flushing device
6823 * barriers and matches the device lifespan
6824 */
6825 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6826 if (!dev->flush_bio) {
6827 kfree(dev);
6828 return ERR_PTR(-ENOMEM);
6829 }
6830
6831 INIT_LIST_HEAD(&dev->dev_list);
6832 INIT_LIST_HEAD(&dev->dev_alloc_list);
6833 INIT_LIST_HEAD(&dev->post_commit_list);
6834
6835 atomic_set(&dev->reada_in_flight, 0);
6836 atomic_set(&dev->dev_stats_ccnt, 0);
6837 btrfs_device_data_ordered_init(dev);
6838 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6839 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6840 extent_io_tree_init(fs_info, &dev->alloc_state,
6841 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6842
6843 if (devid)
6844 tmp = *devid;
6845 else {
6846 int ret;
6847
6848 ret = find_next_devid(fs_info, &tmp);
6849 if (ret) {
a425f9d4 6850 btrfs_free_device(dev);
12bd2fc0
ID
6851 return ERR_PTR(ret);
6852 }
6853 }
6854 dev->devid = tmp;
6855
6856 if (uuid)
6857 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6858 else
6859 generate_random_uuid(dev->uuid);
6860
12bd2fc0
ID
6861 return dev;
6862}
6863
5a2b8e60 6864static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6865 u64 devid, u8 *uuid, bool error)
5a2b8e60 6866{
2b902dfc
AJ
6867 if (error)
6868 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6869 devid, uuid);
6870 else
6871 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6872 devid, uuid);
5a2b8e60
AJ
6873}
6874
39e264a4
NB
6875static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6876{
d58ede8d 6877 const int data_stripes = calc_data_stripes(type, num_stripes);
e4f6c6be 6878
39e264a4
NB
6879 return div_u64(chunk_len, data_stripes);
6880}
6881
e9306ad4
QW
6882#if BITS_PER_LONG == 32
6883/*
6884 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6885 * can't be accessed on 32bit systems.
6886 *
6887 * This function do mount time check to reject the fs if it already has
6888 * metadata chunk beyond that limit.
6889 */
6890static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6891 u64 logical, u64 length, u64 type)
6892{
6893 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6894 return 0;
6895
6896 if (logical + length < MAX_LFS_FILESIZE)
6897 return 0;
6898
6899 btrfs_err_32bit_limit(fs_info);
6900 return -EOVERFLOW;
6901}
6902
6903/*
6904 * This is to give early warning for any metadata chunk reaching
6905 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6906 * Although we can still access the metadata, it's not going to be possible
6907 * once the limit is reached.
6908 */
6909static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6910 u64 logical, u64 length, u64 type)
6911{
6912 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6913 return;
6914
6915 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6916 return;
6917
6918 btrfs_warn_32bit_limit(fs_info);
6919}
6920#endif
6921
9690ac09 6922static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6923 struct btrfs_chunk *chunk)
6924{
9690ac09 6925 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6926 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6927 struct map_lookup *map;
6928 struct extent_map *em;
6929 u64 logical;
6930 u64 length;
e06cd3dd 6931 u64 devid;
e9306ad4 6932 u64 type;
e06cd3dd
LB
6933 u8 uuid[BTRFS_UUID_SIZE];
6934 int num_stripes;
6935 int ret;
6936 int i;
6937
6938 logical = key->offset;
6939 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6940 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
6941 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6942
e9306ad4
QW
6943#if BITS_PER_LONG == 32
6944 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6945 if (ret < 0)
6946 return ret;
6947 warn_32bit_meta_chunk(fs_info, logical, length, type);
6948#endif
6949
075cb3c7
QW
6950 /*
6951 * Only need to verify chunk item if we're reading from sys chunk array,
6952 * as chunk item in tree block is already verified by tree-checker.
6953 */
6954 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6955 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6956 if (ret)
6957 return ret;
6958 }
a061fc8d 6959
c8bf1b67
DS
6960 read_lock(&map_tree->lock);
6961 em = lookup_extent_mapping(map_tree, logical, 1);
6962 read_unlock(&map_tree->lock);
0b86a832
CM
6963
6964 /* already mapped? */
6965 if (em && em->start <= logical && em->start + em->len > logical) {
6966 free_extent_map(em);
0b86a832
CM
6967 return 0;
6968 } else if (em) {
6969 free_extent_map(em);
6970 }
0b86a832 6971
172ddd60 6972 em = alloc_extent_map();
0b86a832
CM
6973 if (!em)
6974 return -ENOMEM;
593060d7 6975 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6976 if (!map) {
6977 free_extent_map(em);
6978 return -ENOMEM;
6979 }
6980
298a8f9c 6981 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6982 em->map_lookup = map;
0b86a832
CM
6983 em->start = logical;
6984 em->len = length;
70c8a91c 6985 em->orig_start = 0;
0b86a832 6986 em->block_start = 0;
c8b97818 6987 em->block_len = em->len;
0b86a832 6988
593060d7
CM
6989 map->num_stripes = num_stripes;
6990 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6991 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 6992 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 6993 map->type = type;
321aecc6 6994 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6995 map->verified_stripes = 0;
e9306ad4 6996 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 6997 map->num_stripes);
593060d7
CM
6998 for (i = 0; i < num_stripes; i++) {
6999 map->stripes[i].physical =
7000 btrfs_stripe_offset_nr(leaf, chunk, i);
7001 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
7002 read_extent_buffer(leaf, uuid, (unsigned long)
7003 btrfs_stripe_dev_uuid_nr(chunk, i),
7004 BTRFS_UUID_SIZE);
e4319cd9 7005 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
b2598edf 7006 devid, uuid, NULL);
3cdde224 7007 if (!map->stripes[i].dev &&
0b246afa 7008 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 7009 free_extent_map(em);
2b902dfc 7010 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 7011 return -ENOENT;
593060d7 7012 }
dfe25020
CM
7013 if (!map->stripes[i].dev) {
7014 map->stripes[i].dev =
2ff7e61e
JM
7015 add_missing_dev(fs_info->fs_devices, devid,
7016 uuid);
adfb69af 7017 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7018 free_extent_map(em);
adfb69af
AJ
7019 btrfs_err(fs_info,
7020 "failed to init missing dev %llu: %ld",
7021 devid, PTR_ERR(map->stripes[i].dev));
7022 return PTR_ERR(map->stripes[i].dev);
dfe25020 7023 }
2b902dfc 7024 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 7025 }
e12c9621
AJ
7026 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7027 &(map->stripes[i].dev->dev_state));
7028
0b86a832
CM
7029 }
7030
c8bf1b67
DS
7031 write_lock(&map_tree->lock);
7032 ret = add_extent_mapping(map_tree, em, 0);
7033 write_unlock(&map_tree->lock);
64f64f43
QW
7034 if (ret < 0) {
7035 btrfs_err(fs_info,
7036 "failed to add chunk map, start=%llu len=%llu: %d",
7037 em->start, em->len, ret);
7038 }
0b86a832
CM
7039 free_extent_map(em);
7040
64f64f43 7041 return ret;
0b86a832
CM
7042}
7043
143bede5 7044static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7045 struct btrfs_dev_item *dev_item,
7046 struct btrfs_device *device)
7047{
7048 unsigned long ptr;
0b86a832
CM
7049
7050 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7051 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7052 device->total_bytes = device->disk_total_bytes;
935e5cc9 7053 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7054 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7055 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7056 device->type = btrfs_device_type(leaf, dev_item);
7057 device->io_align = btrfs_device_io_align(leaf, dev_item);
7058 device->io_width = btrfs_device_io_width(leaf, dev_item);
7059 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7060 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7061 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7062
410ba3a2 7063 ptr = btrfs_device_uuid(dev_item);
e17cade2 7064 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7065}
7066
2ff7e61e 7067static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7068 u8 *fsid)
2b82032c
YZ
7069{
7070 struct btrfs_fs_devices *fs_devices;
7071 int ret;
7072
a32bf9a3 7073 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7074 ASSERT(fsid);
2b82032c 7075
427c8fdd 7076 /* This will match only for multi-device seed fs */
944d3f9f 7077 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7078 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7079 return fs_devices;
7080
2b82032c 7081
7239ff4b 7082 fs_devices = find_fsid(fsid, NULL);
2b82032c 7083 if (!fs_devices) {
0b246afa 7084 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7085 return ERR_PTR(-ENOENT);
7086
7239ff4b 7087 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7088 if (IS_ERR(fs_devices))
7089 return fs_devices;
7090
0395d84f 7091 fs_devices->seeding = true;
5f375835
MX
7092 fs_devices->opened = 1;
7093 return fs_devices;
2b82032c 7094 }
e4404d6e 7095
427c8fdd
NB
7096 /*
7097 * Upon first call for a seed fs fsid, just create a private copy of the
7098 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7099 */
e4404d6e 7100 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7101 if (IS_ERR(fs_devices))
7102 return fs_devices;
2b82032c 7103
897fb573 7104 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7105 if (ret) {
7106 free_fs_devices(fs_devices);
c83b60c0 7107 return ERR_PTR(ret);
48d28232 7108 }
2b82032c
YZ
7109
7110 if (!fs_devices->seeding) {
0226e0eb 7111 close_fs_devices(fs_devices);
e4404d6e 7112 free_fs_devices(fs_devices);
c83b60c0 7113 return ERR_PTR(-EINVAL);
2b82032c
YZ
7114 }
7115
944d3f9f 7116 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7117
5f375835 7118 return fs_devices;
2b82032c
YZ
7119}
7120
17850759 7121static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7122 struct btrfs_dev_item *dev_item)
7123{
17850759 7124 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7125 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7126 struct btrfs_device *device;
7127 u64 devid;
7128 int ret;
44880fdc 7129 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7130 u8 dev_uuid[BTRFS_UUID_SIZE];
7131
0b86a832 7132 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7133 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7134 BTRFS_UUID_SIZE);
1473b24e 7135 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7136 BTRFS_FSID_SIZE);
2b82032c 7137
de37aa51 7138 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7139 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7140 if (IS_ERR(fs_devices))
7141 return PTR_ERR(fs_devices);
2b82032c
YZ
7142 }
7143
e4319cd9 7144 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
b2598edf 7145 fs_uuid);
5f375835 7146 if (!device) {
c5502451 7147 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7148 btrfs_report_missing_device(fs_info, devid,
7149 dev_uuid, true);
45dbdbc9 7150 return -ENOENT;
c5502451 7151 }
2b82032c 7152
2ff7e61e 7153 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7154 if (IS_ERR(device)) {
7155 btrfs_err(fs_info,
7156 "failed to add missing dev %llu: %ld",
7157 devid, PTR_ERR(device));
7158 return PTR_ERR(device);
7159 }
2b902dfc 7160 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7161 } else {
c5502451 7162 if (!device->bdev) {
2b902dfc
AJ
7163 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7164 btrfs_report_missing_device(fs_info,
7165 devid, dev_uuid, true);
45dbdbc9 7166 return -ENOENT;
2b902dfc
AJ
7167 }
7168 btrfs_report_missing_device(fs_info, devid,
7169 dev_uuid, false);
c5502451 7170 }
5f375835 7171
e6e674bd
AJ
7172 if (!device->bdev &&
7173 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7174 /*
7175 * this happens when a device that was properly setup
7176 * in the device info lists suddenly goes bad.
7177 * device->bdev is NULL, and so we have to set
7178 * device->missing to one here
7179 */
5f375835 7180 device->fs_devices->missing_devices++;
e6e674bd 7181 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7182 }
5f375835
MX
7183
7184 /* Move the device to its own fs_devices */
7185 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7186 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7187 &device->dev_state));
5f375835
MX
7188
7189 list_move(&device->dev_list, &fs_devices->devices);
7190 device->fs_devices->num_devices--;
7191 fs_devices->num_devices++;
7192
7193 device->fs_devices->missing_devices--;
7194 fs_devices->missing_devices++;
7195
7196 device->fs_devices = fs_devices;
7197 }
2b82032c
YZ
7198 }
7199
0b246afa 7200 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7201 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7202 if (device->generation !=
7203 btrfs_device_generation(leaf, dev_item))
7204 return -EINVAL;
6324fbf3 7205 }
0b86a832
CM
7206
7207 fill_device_from_item(leaf, dev_item, device);
3a160a93
AJ
7208 if (device->bdev) {
7209 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7210
7211 if (device->total_bytes > max_total_bytes) {
7212 btrfs_err(fs_info,
7213 "device total_bytes should be at most %llu but found %llu",
7214 max_total_bytes, device->total_bytes);
7215 return -EINVAL;
7216 }
7217 }
e12c9621 7218 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7219 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7220 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7221 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7222 atomic64_add(device->total_bytes - device->bytes_used,
7223 &fs_info->free_chunk_space);
2bf64758 7224 }
0b86a832 7225 ret = 0;
0b86a832
CM
7226 return ret;
7227}
7228
6bccf3ab 7229int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7230{
6bccf3ab 7231 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7232 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7233 struct extent_buffer *sb;
0b86a832 7234 struct btrfs_disk_key *disk_key;
0b86a832 7235 struct btrfs_chunk *chunk;
1ffb22cf
DS
7236 u8 *array_ptr;
7237 unsigned long sb_array_offset;
84eed90f 7238 int ret = 0;
0b86a832
CM
7239 u32 num_stripes;
7240 u32 array_size;
7241 u32 len = 0;
1ffb22cf 7242 u32 cur_offset;
e06cd3dd 7243 u64 type;
84eed90f 7244 struct btrfs_key key;
0b86a832 7245
0b246afa 7246 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7247 /*
7248 * This will create extent buffer of nodesize, superblock size is
7249 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7250 * overallocate but we can keep it as-is, only the first page is used.
7251 */
3fbaf258
JB
7252 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7253 root->root_key.objectid, 0);
c871b0f2
LB
7254 if (IS_ERR(sb))
7255 return PTR_ERR(sb);
4db8c528 7256 set_extent_buffer_uptodate(sb);
8a334426 7257 /*
01327610 7258 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7259 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7260 * pages up-to-date when the page is larger: extent does not cover the
7261 * whole page and consequently check_page_uptodate does not find all
7262 * the page's extents up-to-date (the hole beyond sb),
7263 * write_extent_buffer then triggers a WARN_ON.
7264 *
7265 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7266 * but sb spans only this function. Add an explicit SetPageUptodate call
7267 * to silence the warning eg. on PowerPC 64.
7268 */
09cbfeaf 7269 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7270 SetPageUptodate(sb->pages[0]);
4008c04a 7271
a061fc8d 7272 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7273 array_size = btrfs_super_sys_array_size(super_copy);
7274
1ffb22cf
DS
7275 array_ptr = super_copy->sys_chunk_array;
7276 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7277 cur_offset = 0;
0b86a832 7278
1ffb22cf
DS
7279 while (cur_offset < array_size) {
7280 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7281 len = sizeof(*disk_key);
7282 if (cur_offset + len > array_size)
7283 goto out_short_read;
7284
0b86a832
CM
7285 btrfs_disk_key_to_cpu(&key, disk_key);
7286
1ffb22cf
DS
7287 array_ptr += len;
7288 sb_array_offset += len;
7289 cur_offset += len;
0b86a832 7290
32ab3d1b
JT
7291 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7292 btrfs_err(fs_info,
7293 "unexpected item type %u in sys_array at offset %u",
7294 (u32)key.type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
f5cdedd7 7298
32ab3d1b
JT
7299 chunk = (struct btrfs_chunk *)sb_array_offset;
7300 /*
7301 * At least one btrfs_chunk with one stripe must be present,
7302 * exact stripe count check comes afterwards
7303 */
7304 len = btrfs_chunk_item_size(1);
7305 if (cur_offset + len > array_size)
7306 goto out_short_read;
e06cd3dd 7307
32ab3d1b
JT
7308 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7309 if (!num_stripes) {
7310 btrfs_err(fs_info,
7311 "invalid number of stripes %u in sys_array at offset %u",
7312 num_stripes, cur_offset);
7313 ret = -EIO;
7314 break;
7315 }
e3540eab 7316
32ab3d1b
JT
7317 type = btrfs_chunk_type(sb, chunk);
7318 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7319 btrfs_err(fs_info,
32ab3d1b
JT
7320 "invalid chunk type %llu in sys_array at offset %u",
7321 type, cur_offset);
84eed90f
CM
7322 ret = -EIO;
7323 break;
0b86a832 7324 }
32ab3d1b
JT
7325
7326 len = btrfs_chunk_item_size(num_stripes);
7327 if (cur_offset + len > array_size)
7328 goto out_short_read;
7329
7330 ret = read_one_chunk(&key, sb, chunk);
7331 if (ret)
7332 break;
7333
1ffb22cf
DS
7334 array_ptr += len;
7335 sb_array_offset += len;
7336 cur_offset += len;
0b86a832 7337 }
d865177a 7338 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7339 free_extent_buffer_stale(sb);
84eed90f 7340 return ret;
e3540eab
DS
7341
7342out_short_read:
ab8d0fc4 7343 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7344 len, cur_offset);
d865177a 7345 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7346 free_extent_buffer_stale(sb);
e3540eab 7347 return -EIO;
0b86a832
CM
7348}
7349
21634a19
QW
7350/*
7351 * Check if all chunks in the fs are OK for read-write degraded mount
7352 *
6528b99d
AJ
7353 * If the @failing_dev is specified, it's accounted as missing.
7354 *
21634a19
QW
7355 * Return true if all chunks meet the minimal RW mount requirements.
7356 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7357 */
6528b99d
AJ
7358bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7359 struct btrfs_device *failing_dev)
21634a19 7360{
c8bf1b67 7361 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7362 struct extent_map *em;
7363 u64 next_start = 0;
7364 bool ret = true;
7365
c8bf1b67
DS
7366 read_lock(&map_tree->lock);
7367 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7368 read_unlock(&map_tree->lock);
21634a19
QW
7369 /* No chunk at all? Return false anyway */
7370 if (!em) {
7371 ret = false;
7372 goto out;
7373 }
7374 while (em) {
7375 struct map_lookup *map;
7376 int missing = 0;
7377 int max_tolerated;
7378 int i;
7379
7380 map = em->map_lookup;
7381 max_tolerated =
7382 btrfs_get_num_tolerated_disk_barrier_failures(
7383 map->type);
7384 for (i = 0; i < map->num_stripes; i++) {
7385 struct btrfs_device *dev = map->stripes[i].dev;
7386
e6e674bd
AJ
7387 if (!dev || !dev->bdev ||
7388 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7389 dev->last_flush_error)
7390 missing++;
6528b99d
AJ
7391 else if (failing_dev && failing_dev == dev)
7392 missing++;
21634a19
QW
7393 }
7394 if (missing > max_tolerated) {
6528b99d
AJ
7395 if (!failing_dev)
7396 btrfs_warn(fs_info,
52042d8e 7397 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7398 em->start, missing, max_tolerated);
7399 free_extent_map(em);
7400 ret = false;
7401 goto out;
7402 }
7403 next_start = extent_map_end(em);
7404 free_extent_map(em);
7405
c8bf1b67
DS
7406 read_lock(&map_tree->lock);
7407 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7408 (u64)(-1) - next_start);
c8bf1b67 7409 read_unlock(&map_tree->lock);
21634a19
QW
7410 }
7411out:
7412 return ret;
7413}
7414
d85327b1
DS
7415static void readahead_tree_node_children(struct extent_buffer *node)
7416{
7417 int i;
7418 const int nr_items = btrfs_header_nritems(node);
7419
bfb484d9
JB
7420 for (i = 0; i < nr_items; i++)
7421 btrfs_readahead_node_child(node, i);
d85327b1
DS
7422}
7423
5b4aacef 7424int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7425{
5b4aacef 7426 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7427 struct btrfs_path *path;
7428 struct extent_buffer *leaf;
7429 struct btrfs_key key;
7430 struct btrfs_key found_key;
7431 int ret;
7432 int slot;
99e3ecfc 7433 u64 total_dev = 0;
d85327b1 7434 u64 last_ra_node = 0;
0b86a832 7435
0b86a832
CM
7436 path = btrfs_alloc_path();
7437 if (!path)
7438 return -ENOMEM;
7439
3dd0f7a3
AJ
7440 /*
7441 * uuid_mutex is needed only if we are mounting a sprout FS
7442 * otherwise we don't need it.
7443 */
b367e47f 7444 mutex_lock(&uuid_mutex);
b367e47f 7445
48cfa61b
BB
7446 /*
7447 * It is possible for mount and umount to race in such a way that
7448 * we execute this code path, but open_fs_devices failed to clear
7449 * total_rw_bytes. We certainly want it cleared before reading the
7450 * device items, so clear it here.
7451 */
7452 fs_info->fs_devices->total_rw_bytes = 0;
7453
395927a9
FDBM
7454 /*
7455 * Read all device items, and then all the chunk items. All
7456 * device items are found before any chunk item (their object id
7457 * is smaller than the lowest possible object id for a chunk
7458 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7459 */
7460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7461 key.offset = 0;
7462 key.type = 0;
0b86a832 7463 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7464 if (ret < 0)
7465 goto error;
d397712b 7466 while (1) {
d85327b1
DS
7467 struct extent_buffer *node;
7468
0b86a832
CM
7469 leaf = path->nodes[0];
7470 slot = path->slots[0];
7471 if (slot >= btrfs_header_nritems(leaf)) {
7472 ret = btrfs_next_leaf(root, path);
7473 if (ret == 0)
7474 continue;
7475 if (ret < 0)
7476 goto error;
7477 break;
7478 }
d85327b1
DS
7479 /*
7480 * The nodes on level 1 are not locked but we don't need to do
7481 * that during mount time as nothing else can access the tree
7482 */
7483 node = path->nodes[1];
7484 if (node) {
7485 if (last_ra_node != node->start) {
7486 readahead_tree_node_children(node);
7487 last_ra_node = node->start;
7488 }
7489 }
0b86a832 7490 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7491 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7492 struct btrfs_dev_item *dev_item;
7493 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7494 struct btrfs_dev_item);
17850759 7495 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7496 if (ret)
7497 goto error;
99e3ecfc 7498 total_dev++;
0b86a832
CM
7499 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7500 struct btrfs_chunk *chunk;
79bd3712
FM
7501
7502 /*
7503 * We are only called at mount time, so no need to take
7504 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7505 * we always lock first fs_info->chunk_mutex before
7506 * acquiring any locks on the chunk tree. This is a
7507 * requirement for chunk allocation, see the comment on
7508 * top of btrfs_chunk_alloc() for details.
7509 */
7510 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
0b86a832 7511 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7512 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7513 if (ret)
7514 goto error;
0b86a832
CM
7515 }
7516 path->slots[0]++;
7517 }
99e3ecfc
LB
7518
7519 /*
7520 * After loading chunk tree, we've got all device information,
7521 * do another round of validation checks.
7522 */
0b246afa
JM
7523 if (total_dev != fs_info->fs_devices->total_devices) {
7524 btrfs_err(fs_info,
99e3ecfc 7525 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7526 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7527 total_dev);
7528 ret = -EINVAL;
7529 goto error;
7530 }
0b246afa
JM
7531 if (btrfs_super_total_bytes(fs_info->super_copy) <
7532 fs_info->fs_devices->total_rw_bytes) {
7533 btrfs_err(fs_info,
99e3ecfc 7534 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7535 btrfs_super_total_bytes(fs_info->super_copy),
7536 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7537 ret = -EINVAL;
7538 goto error;
7539 }
0b86a832
CM
7540 ret = 0;
7541error:
b367e47f
LZ
7542 mutex_unlock(&uuid_mutex);
7543
2b82032c 7544 btrfs_free_path(path);
0b86a832
CM
7545 return ret;
7546}
442a4f63 7547
cb517eab
MX
7548void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7549{
944d3f9f 7550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7551 struct btrfs_device *device;
7552
944d3f9f
NB
7553 fs_devices->fs_info = fs_info;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
944d3f9f
NB
7558
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7560 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7561 device->fs_info = fs_info;
29cc83f6 7562
944d3f9f 7563 seed_devs->fs_info = fs_info;
29cc83f6 7564 }
e17125b5 7565 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7566}
7567
1dc990df
DS
7568static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7569 const struct btrfs_dev_stats_item *ptr,
7570 int index)
7571{
7572 u64 val;
7573
7574 read_extent_buffer(eb, &val,
7575 offsetof(struct btrfs_dev_stats_item, values) +
7576 ((unsigned long)ptr) + (index * sizeof(u64)),
7577 sizeof(val));
7578 return val;
7579}
7580
7581static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7582 struct btrfs_dev_stats_item *ptr,
7583 int index, u64 val)
7584{
7585 write_extent_buffer(eb, &val,
7586 offsetof(struct btrfs_dev_stats_item, values) +
7587 ((unsigned long)ptr) + (index * sizeof(u64)),
7588 sizeof(val));
7589}
7590
92e26df4
JB
7591static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7592 struct btrfs_path *path)
733f4fbb 7593{
124604eb 7594 struct btrfs_dev_stats_item *ptr;
733f4fbb 7595 struct extent_buffer *eb;
124604eb
JB
7596 struct btrfs_key key;
7597 int item_size;
7598 int i, ret, slot;
7599
82d62d06
JB
7600 if (!device->fs_info->dev_root)
7601 return 0;
7602
124604eb
JB
7603 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7604 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7605 key.offset = device->devid;
7606 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7607 if (ret) {
7608 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7609 btrfs_dev_stat_set(device, i, 0);
7610 device->dev_stats_valid = 1;
7611 btrfs_release_path(path);
92e26df4 7612 return ret < 0 ? ret : 0;
124604eb
JB
7613 }
7614 slot = path->slots[0];
7615 eb = path->nodes[0];
7616 item_size = btrfs_item_size_nr(eb, slot);
7617
7618 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7619
7620 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7621 if (item_size >= (1 + i) * sizeof(__le64))
7622 btrfs_dev_stat_set(device, i,
7623 btrfs_dev_stats_value(eb, ptr, i));
7624 else
7625 btrfs_dev_stat_set(device, i, 0);
7626 }
7627
7628 device->dev_stats_valid = 1;
7629 btrfs_dev_stat_print_on_load(device);
7630 btrfs_release_path(path);
92e26df4
JB
7631
7632 return 0;
124604eb
JB
7633}
7634
7635int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7636{
7637 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7638 struct btrfs_device *device;
7639 struct btrfs_path *path = NULL;
92e26df4 7640 int ret = 0;
733f4fbb
SB
7641
7642 path = btrfs_alloc_path();
3b80a984
AJ
7643 if (!path)
7644 return -ENOMEM;
733f4fbb
SB
7645
7646 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7647 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7648 ret = btrfs_device_init_dev_stats(device, path);
7649 if (ret)
7650 goto out;
7651 }
124604eb 7652 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7653 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7655 if (ret)
7656 goto out;
7657 }
733f4fbb 7658 }
92e26df4 7659out:
733f4fbb
SB
7660 mutex_unlock(&fs_devices->device_list_mutex);
7661
733f4fbb 7662 btrfs_free_path(path);
92e26df4 7663 return ret;
733f4fbb
SB
7664}
7665
7666static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7667 struct btrfs_device *device)
7668{
5495f195 7669 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7670 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7671 struct btrfs_path *path;
7672 struct btrfs_key key;
7673 struct extent_buffer *eb;
7674 struct btrfs_dev_stats_item *ptr;
7675 int ret;
7676 int i;
7677
242e2956
DS
7678 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7679 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7680 key.offset = device->devid;
7681
7682 path = btrfs_alloc_path();
fa252992
DS
7683 if (!path)
7684 return -ENOMEM;
733f4fbb
SB
7685 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7686 if (ret < 0) {
0b246afa 7687 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7688 "error %d while searching for dev_stats item for device %s",
606686ee 7689 ret, rcu_str_deref(device->name));
733f4fbb
SB
7690 goto out;
7691 }
7692
7693 if (ret == 0 &&
7694 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7695 /* need to delete old one and insert a new one */
7696 ret = btrfs_del_item(trans, dev_root, path);
7697 if (ret != 0) {
0b246afa 7698 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7699 "delete too small dev_stats item for device %s failed %d",
606686ee 7700 rcu_str_deref(device->name), ret);
733f4fbb
SB
7701 goto out;
7702 }
7703 ret = 1;
7704 }
7705
7706 if (ret == 1) {
7707 /* need to insert a new item */
7708 btrfs_release_path(path);
7709 ret = btrfs_insert_empty_item(trans, dev_root, path,
7710 &key, sizeof(*ptr));
7711 if (ret < 0) {
0b246afa 7712 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7713 "insert dev_stats item for device %s failed %d",
7714 rcu_str_deref(device->name), ret);
733f4fbb
SB
7715 goto out;
7716 }
7717 }
7718
7719 eb = path->nodes[0];
7720 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7721 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7722 btrfs_set_dev_stats_value(eb, ptr, i,
7723 btrfs_dev_stat_read(device, i));
7724 btrfs_mark_buffer_dirty(eb);
7725
7726out:
7727 btrfs_free_path(path);
7728 return ret;
7729}
7730
7731/*
7732 * called from commit_transaction. Writes all changed device stats to disk.
7733 */
196c9d8d 7734int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7735{
196c9d8d 7736 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7737 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7738 struct btrfs_device *device;
addc3fa7 7739 int stats_cnt;
733f4fbb
SB
7740 int ret = 0;
7741
7742 mutex_lock(&fs_devices->device_list_mutex);
7743 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7744 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7745 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7746 continue;
7747
9deae968
NB
7748
7749 /*
7750 * There is a LOAD-LOAD control dependency between the value of
7751 * dev_stats_ccnt and updating the on-disk values which requires
7752 * reading the in-memory counters. Such control dependencies
7753 * require explicit read memory barriers.
7754 *
7755 * This memory barriers pairs with smp_mb__before_atomic in
7756 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7757 * barrier implied by atomic_xchg in
7758 * btrfs_dev_stats_read_and_reset
7759 */
7760 smp_rmb();
7761
5495f195 7762 ret = update_dev_stat_item(trans, device);
733f4fbb 7763 if (!ret)
addc3fa7 7764 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7765 }
7766 mutex_unlock(&fs_devices->device_list_mutex);
7767
7768 return ret;
7769}
7770
442a4f63
SB
7771void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7772{
7773 btrfs_dev_stat_inc(dev, index);
7774 btrfs_dev_stat_print_on_error(dev);
7775}
7776
48a3b636 7777static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7778{
733f4fbb
SB
7779 if (!dev->dev_stats_valid)
7780 return;
fb456252 7781 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7782 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7783 rcu_str_deref(dev->name),
442a4f63
SB
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7789}
c11d2c23 7790
733f4fbb
SB
7791static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7792{
a98cdb85
SB
7793 int i;
7794
7795 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7796 if (btrfs_dev_stat_read(dev, i) != 0)
7797 break;
7798 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7799 return; /* all values == 0, suppress message */
7800
fb456252 7801 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7802 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7803 rcu_str_deref(dev->name),
733f4fbb
SB
7804 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7805 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7809}
7810
2ff7e61e 7811int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7812 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7813{
7814 struct btrfs_device *dev;
0b246afa 7815 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7816 int i;
7817
7818 mutex_lock(&fs_devices->device_list_mutex);
b2598edf 7819 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
c11d2c23
SB
7820 mutex_unlock(&fs_devices->device_list_mutex);
7821
7822 if (!dev) {
0b246afa 7823 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7824 return -ENODEV;
733f4fbb 7825 } else if (!dev->dev_stats_valid) {
0b246afa 7826 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7827 return -ENODEV;
b27f7c0c 7828 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7829 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7830 if (stats->nr_items > i)
7831 stats->values[i] =
7832 btrfs_dev_stat_read_and_reset(dev, i);
7833 else
4e411a7d 7834 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7835 }
a69976bc
AJ
7836 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7837 current->comm, task_pid_nr(current));
c11d2c23
SB
7838 } else {
7839 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7840 if (stats->nr_items > i)
7841 stats->values[i] = btrfs_dev_stat_read(dev, i);
7842 }
7843 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7844 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7845 return 0;
7846}
a8a6dab7 7847
935e5cc9 7848/*
bbbf7243
NB
7849 * Update the size and bytes used for each device where it changed. This is
7850 * delayed since we would otherwise get errors while writing out the
7851 * superblocks.
7852 *
7853 * Must be invoked during transaction commit.
935e5cc9 7854 */
bbbf7243 7855void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7856{
935e5cc9
MX
7857 struct btrfs_device *curr, *next;
7858
bbbf7243 7859 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7860
bbbf7243 7861 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7862 return;
7863
bbbf7243
NB
7864 /*
7865 * We don't need the device_list_mutex here. This list is owned by the
7866 * transaction and the transaction must complete before the device is
7867 * released.
7868 */
7869 mutex_lock(&trans->fs_info->chunk_mutex);
7870 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7871 post_commit_list) {
7872 list_del_init(&curr->post_commit_list);
7873 curr->commit_total_bytes = curr->disk_total_bytes;
7874 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7875 }
bbbf7243 7876 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7877}
5a13f430 7878
46df06b8
DS
7879/*
7880 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7881 */
7882int btrfs_bg_type_to_factor(u64 flags)
7883{
44b28ada
DS
7884 const int index = btrfs_bg_flags_to_raid_index(flags);
7885
7886 return btrfs_raid_array[index].ncopies;
46df06b8 7887}
cf90d884
QW
7888
7889
cf90d884
QW
7890
7891static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7892 u64 chunk_offset, u64 devid,
7893 u64 physical_offset, u64 physical_len)
7894{
c8bf1b67 7895 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7896 struct extent_map *em;
7897 struct map_lookup *map;
05a37c48 7898 struct btrfs_device *dev;
cf90d884
QW
7899 u64 stripe_len;
7900 bool found = false;
7901 int ret = 0;
7902 int i;
7903
7904 read_lock(&em_tree->lock);
7905 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7906 read_unlock(&em_tree->lock);
7907
7908 if (!em) {
7909 btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7912 ret = -EUCLEAN;
7913 goto out;
7914 }
7915
7916 map = em->map_lookup;
7917 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7918 if (physical_len != stripe_len) {
7919 btrfs_err(fs_info,
7920"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7921 physical_offset, devid, em->start, physical_len,
7922 stripe_len);
7923 ret = -EUCLEAN;
7924 goto out;
7925 }
7926
7927 for (i = 0; i < map->num_stripes; i++) {
7928 if (map->stripes[i].dev->devid == devid &&
7929 map->stripes[i].physical == physical_offset) {
7930 found = true;
7931 if (map->verified_stripes >= map->num_stripes) {
7932 btrfs_err(fs_info,
7933 "too many dev extents for chunk %llu found",
7934 em->start);
7935 ret = -EUCLEAN;
7936 goto out;
7937 }
7938 map->verified_stripes++;
7939 break;
7940 }
7941 }
7942 if (!found) {
7943 btrfs_err(fs_info,
7944 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7945 physical_offset, devid);
7946 ret = -EUCLEAN;
7947 }
05a37c48 7948
1a9fd417 7949 /* Make sure no dev extent is beyond device boundary */
b2598edf 7950 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
05a37c48
QW
7951 if (!dev) {
7952 btrfs_err(fs_info, "failed to find devid %llu", devid);
7953 ret = -EUCLEAN;
7954 goto out;
7955 }
1b3922a8 7956
05a37c48
QW
7957 if (physical_offset + physical_len > dev->disk_total_bytes) {
7958 btrfs_err(fs_info,
7959"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7960 devid, physical_offset, physical_len,
7961 dev->disk_total_bytes);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
381a696e
NA
7965
7966 if (dev->zone_info) {
7967 u64 zone_size = dev->zone_info->zone_size;
7968
7969 if (!IS_ALIGNED(physical_offset, zone_size) ||
7970 !IS_ALIGNED(physical_len, zone_size)) {
7971 btrfs_err(fs_info,
7972"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7973 devid, physical_offset, physical_len);
7974 ret = -EUCLEAN;
7975 goto out;
7976 }
7977 }
7978
cf90d884
QW
7979out:
7980 free_extent_map(em);
7981 return ret;
7982}
7983
7984static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7985{
c8bf1b67 7986 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7987 struct extent_map *em;
7988 struct rb_node *node;
7989 int ret = 0;
7990
7991 read_lock(&em_tree->lock);
07e1ce09 7992 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7993 em = rb_entry(node, struct extent_map, rb_node);
7994 if (em->map_lookup->num_stripes !=
7995 em->map_lookup->verified_stripes) {
7996 btrfs_err(fs_info,
7997 "chunk %llu has missing dev extent, have %d expect %d",
7998 em->start, em->map_lookup->verified_stripes,
7999 em->map_lookup->num_stripes);
8000 ret = -EUCLEAN;
8001 goto out;
8002 }
8003 }
8004out:
8005 read_unlock(&em_tree->lock);
8006 return ret;
8007}
8008
8009/*
8010 * Ensure that all dev extents are mapped to correct chunk, otherwise
8011 * later chunk allocation/free would cause unexpected behavior.
8012 *
8013 * NOTE: This will iterate through the whole device tree, which should be of
8014 * the same size level as the chunk tree. This slightly increases mount time.
8015 */
8016int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8017{
8018 struct btrfs_path *path;
8019 struct btrfs_root *root = fs_info->dev_root;
8020 struct btrfs_key key;
5eb19381
QW
8021 u64 prev_devid = 0;
8022 u64 prev_dev_ext_end = 0;
cf90d884
QW
8023 int ret = 0;
8024
42437a63
JB
8025 /*
8026 * We don't have a dev_root because we mounted with ignorebadroots and
8027 * failed to load the root, so we want to skip the verification in this
8028 * case for sure.
8029 *
8030 * However if the dev root is fine, but the tree itself is corrupted
8031 * we'd still fail to mount. This verification is only to make sure
8032 * writes can happen safely, so instead just bypass this check
8033 * completely in the case of IGNOREBADROOTS.
8034 */
8035 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8036 return 0;
8037
cf90d884
QW
8038 key.objectid = 1;
8039 key.type = BTRFS_DEV_EXTENT_KEY;
8040 key.offset = 0;
8041
8042 path = btrfs_alloc_path();
8043 if (!path)
8044 return -ENOMEM;
8045
8046 path->reada = READA_FORWARD;
8047 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8048 if (ret < 0)
8049 goto out;
8050
8051 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8052 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8053 if (ret < 0)
8054 goto out;
8055 /* No dev extents at all? Not good */
8056 if (ret > 0) {
8057 ret = -EUCLEAN;
8058 goto out;
8059 }
8060 }
8061 while (1) {
8062 struct extent_buffer *leaf = path->nodes[0];
8063 struct btrfs_dev_extent *dext;
8064 int slot = path->slots[0];
8065 u64 chunk_offset;
8066 u64 physical_offset;
8067 u64 physical_len;
8068 u64 devid;
8069
8070 btrfs_item_key_to_cpu(leaf, &key, slot);
8071 if (key.type != BTRFS_DEV_EXTENT_KEY)
8072 break;
8073 devid = key.objectid;
8074 physical_offset = key.offset;
8075
8076 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8077 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8078 physical_len = btrfs_dev_extent_length(leaf, dext);
8079
5eb19381
QW
8080 /* Check if this dev extent overlaps with the previous one */
8081 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8082 btrfs_err(fs_info,
8083"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8084 devid, physical_offset, prev_dev_ext_end);
8085 ret = -EUCLEAN;
8086 goto out;
8087 }
8088
cf90d884
QW
8089 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8090 physical_offset, physical_len);
8091 if (ret < 0)
8092 goto out;
5eb19381
QW
8093 prev_devid = devid;
8094 prev_dev_ext_end = physical_offset + physical_len;
8095
cf90d884
QW
8096 ret = btrfs_next_item(root, path);
8097 if (ret < 0)
8098 goto out;
8099 if (ret > 0) {
8100 ret = 0;
8101 break;
8102 }
8103 }
8104
8105 /* Ensure all chunks have corresponding dev extents */
8106 ret = verify_chunk_dev_extent_mapping(fs_info);
8107out:
8108 btrfs_free_path(path);
8109 return ret;
8110}
eede2bf3
OS
8111
8112/*
8113 * Check whether the given block group or device is pinned by any inode being
8114 * used as a swapfile.
8115 */
8116bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8117{
8118 struct btrfs_swapfile_pin *sp;
8119 struct rb_node *node;
8120
8121 spin_lock(&fs_info->swapfile_pins_lock);
8122 node = fs_info->swapfile_pins.rb_node;
8123 while (node) {
8124 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8125 if (ptr < sp->ptr)
8126 node = node->rb_left;
8127 else if (ptr > sp->ptr)
8128 node = node->rb_right;
8129 else
8130 break;
8131 }
8132 spin_unlock(&fs_info->swapfile_pins_lock);
8133 return node != NULL;
8134}
f7ef5287
NA
8135
8136static int relocating_repair_kthread(void *data)
8137{
8138 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8139 struct btrfs_fs_info *fs_info = cache->fs_info;
8140 u64 target;
8141 int ret = 0;
8142
8143 target = cache->start;
8144 btrfs_put_block_group(cache);
8145
8146 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8147 btrfs_info(fs_info,
8148 "zoned: skip relocating block group %llu to repair: EBUSY",
8149 target);
8150 return -EBUSY;
8151 }
8152
f3372065 8153 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8154
8155 /* Ensure block group still exists */
8156 cache = btrfs_lookup_block_group(fs_info, target);
8157 if (!cache)
8158 goto out;
8159
8160 if (!cache->relocating_repair)
8161 goto out;
8162
8163 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8164 if (ret < 0)
8165 goto out;
8166
8167 btrfs_info(fs_info,
8168 "zoned: relocating block group %llu to repair IO failure",
8169 target);
8170 ret = btrfs_relocate_chunk(fs_info, target);
8171
8172out:
8173 if (cache)
8174 btrfs_put_block_group(cache);
f3372065 8175 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8176 btrfs_exclop_finish(fs_info);
8177
8178 return ret;
8179}
8180
8181int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8182{
8183 struct btrfs_block_group *cache;
8184
8185 /* Do not attempt to repair in degraded state */
8186 if (btrfs_test_opt(fs_info, DEGRADED))
8187 return 0;
8188
8189 cache = btrfs_lookup_block_group(fs_info, logical);
8190 if (!cache)
8191 return 0;
8192
8193 spin_lock(&cache->lock);
8194 if (cache->relocating_repair) {
8195 spin_unlock(&cache->lock);
8196 btrfs_put_block_group(cache);
8197 return 0;
8198 }
8199 cache->relocating_repair = 1;
8200 spin_unlock(&cache->lock);
8201
8202 kthread_run(relocating_repair_kthread, cache,
8203 "btrfs-relocating-repair");
8204
8205 return 0;
8206}