Merge branches 'pm-cpuidle', 'pm-core' and 'pm-sleep'
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
5a0e3ad6 8#include <linux/slab.h>
442a4f63 9#include <linux/ratelimit.h>
59641015 10#include <linux/kthread.h>
803b2f54 11#include <linux/semaphore.h>
8da4b8c4 12#include <linux/uuid.h>
f8e10cd3 13#include <linux/list_sort.h>
54fde91f 14#include <linux/namei.h>
784352fe 15#include "misc.h"
0b86a832
CM
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
53b381b3 22#include "raid56.h"
606686ee 23#include "rcu-string.h"
8dabb742 24#include "dev-replace.h"
99994cde 25#include "sysfs.h"
82fc28fb 26#include "tree-checker.h"
8719aaae 27#include "space-info.h"
aac0023c 28#include "block-group.h"
b0643e59 29#include "discard.h"
5b316468 30#include "zoned.h"
c7f13d42 31#include "fs.h"
07e81dc9 32#include "accessors.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
7f0add25 37#include "super.h"
0b86a832 38
bf08387f
QW
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
af902047
ZL
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 48 .devs_min = 2,
8789f4fe 49 .tolerated_failures = 1,
af902047
ZL
50 .devs_increment = 2,
51 .ncopies = 2,
b50836ed 52 .nparity = 0,
ed23467b 53 .raid_name = "raid10",
41a6e891 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
8789f4fe 62 .tolerated_failures = 1,
af902047
ZL
63 .devs_increment = 2,
64 .ncopies = 2,
b50836ed 65 .nparity = 0,
ed23467b 66 .raid_name = "raid1",
41a6e891 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 69 },
47e6f742
DS
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
cf93e15e 73 .devs_max = 3,
47e6f742
DS
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
db26a024 78 .nparity = 0,
47e6f742
DS
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
8d6fac00
DS
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
cf93e15e 86 .devs_max = 4,
8d6fac00
DS
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
db26a024 91 .nparity = 0,
8d6fac00
DS
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
af902047
ZL
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
8789f4fe 101 .tolerated_failures = 0,
af902047
ZL
102 .devs_increment = 1,
103 .ncopies = 2,
b50836ed 104 .nparity = 0,
ed23467b 105 .raid_name = "dup",
41a6e891 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 107 .mindev_error = 0,
af902047
ZL
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
b2f78e88 113 .devs_min = 1,
8789f4fe 114 .tolerated_failures = 0,
af902047
ZL
115 .devs_increment = 1,
116 .ncopies = 1,
b50836ed 117 .nparity = 0,
ed23467b 118 .raid_name = "raid0",
41a6e891 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 120 .mindev_error = 0,
af902047
ZL
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
8789f4fe 127 .tolerated_failures = 0,
af902047
ZL
128 .devs_increment = 1,
129 .ncopies = 1,
b50836ed 130 .nparity = 0,
ed23467b 131 .raid_name = "single",
41a6e891 132 .bg_flag = 0,
f9fbcaa2 133 .mindev_error = 0,
af902047
ZL
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
8789f4fe 140 .tolerated_failures = 1,
af902047 141 .devs_increment = 1,
da612e31 142 .ncopies = 1,
b50836ed 143 .nparity = 1,
ed23467b 144 .raid_name = "raid5",
41a6e891 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
8789f4fe 153 .tolerated_failures = 2,
af902047 154 .devs_increment = 1,
da612e31 155 .ncopies = 1,
b50836ed 156 .nparity = 2,
ed23467b 157 .raid_name = "raid6",
41a6e891 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
160 },
161};
162
500a44c9
DS
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
719fae89 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
500a44c9 170
719fae89
QW
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
500a44c9
DS
175}
176
158da513 177const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 178{
158da513
DS
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
182 return NULL;
183
158da513 184 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
185}
186
0b30f719
QW
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
f89e09cf
AJ
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
6f8e0fc7 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 251
9c6b1c4d
DS
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 268 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
18c850fd
JB
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
9c6b1c4d
DS
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
18c850fd
JB
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
9c6b1c4d
DS
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
ae3e715f
AJ
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
89595e80
AJ
315 *
316 *
c3e1f96c
GR
317 * Exclusive operations
318 * ====================
89595e80
AJ
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
c3e1f96c
GR
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 348 * The exclusive status is cleared when the device operation is canceled or
89595e80 349 * completed.
9c6b1c4d
DS
350 */
351
67a2c45e 352DEFINE_MUTEX(uuid_mutex);
8a4b83cc 353static LIST_HEAD(fs_uuids);
4143cb8b 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
355{
356 return &fs_uuids;
357}
8a4b83cc 358
2dfeca9b
DS
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
7239ff4b
NB
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
2208a378
ID
370{
371 struct btrfs_fs_devices *fs_devs;
372
78f2c9e6 373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 381 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 382 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 385
7239ff4b
NB
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
2208a378
ID
391 return fs_devs;
392}
393
a425f9d4 394void btrfs_free_device(struct btrfs_device *device)
48dae9cf 395{
bbbf7243 396 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 397 rcu_string_free(device->name);
1c11b63e 398 extent_io_tree_release(&device->alloc_state);
5b316468 399 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
400 kfree(device);
401}
402
e4404d6e
YZ
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
5f58d783 406
e4404d6e
YZ
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
a425f9d4 412 btrfs_free_device(device);
e4404d6e
YZ
413 }
414 kfree(fs_devices);
415}
416
ffc5a379 417void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
418{
419 struct btrfs_fs_devices *fs_devices;
8a4b83cc 420
2b82032c
YZ
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
e4404d6e 425 free_fs_devices(fs_devices);
8a4b83cc 426 }
8a4b83cc
CM
427}
428
7239ff4b
NB
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 431{
8a4b83cc
CM
432 struct btrfs_fs_devices *fs_devices;
433
7239ff4b
NB
434 ASSERT(fsid);
435
7a62d0f0 436 /* Handle non-split brain cases */
c4babc5e 437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
8a4b83cc
CM
447 }
448 return NULL;
449}
450
c6730a0e
SY
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
beaf8ab3
SB
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
8f32380d 495 struct btrfs_super_block **disk_super)
beaf8ab3
SB
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
beaf8ab3
SB
503 goto error;
504 }
505
506 if (flush)
1226dfff 507 sync_blockdev(*bdev);
9f6d2510 508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
8f32380d
JT
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
beaf8ab3
SB
525 return ret;
526}
527
43dd529a
DS
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
16cab91a 531 *
43dd529a
DS
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
16cab91a 534 * @skip_device: Optional. Will skip this device when searching for the stale
43dd529a 535 * devices.
16cab91a
AJ
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
d8367db3 540 */
16cab91a 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 542{
fa6d2ae5
AJ
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
545 int ret = 0;
546
c1247069
AJ
547 lockdep_assert_held(&uuid_mutex);
548
16cab91a 549 if (devt)
70bc7088 550 ret = -ENOENT;
4fde46f0 551
fa6d2ae5 552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 553
70bc7088 554 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
fa6d2ae5 557 if (skip_device && skip_device == device)
d8367db3 558 continue;
330a5bf4 559 if (devt && devt != device->devt)
38cf665d 560 continue;
70bc7088
AJ
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
16cab91a 563 if (devt && ret != 0)
70bc7088
AJ
564 ret = -EBUSY;
565 break;
566 }
4fde46f0 567
4fde46f0 568 /* delete the stale device */
7bcb8164
AJ
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
70bc7088 573 ret = 0;
7bcb8164
AJ
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 576
7bcb8164
AJ
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
4fde46f0
AJ
581 }
582 }
70bc7088
AJ
583
584 return ret;
4fde46f0
AJ
585}
586
18c850fd
JB
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
0fb08bcc
AJ
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
0fb08bcc 596 struct block_device *bdev;
0fb08bcc
AJ
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 607 &bdev, &disk_super);
0fb08bcc
AJ
608 if (ret)
609 return ret;
610
0fb08bcc
AJ
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
8f32380d 613 goto error_free_page;
0fb08bcc
AJ
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 616 goto error_free_page;
0fb08bcc
AJ
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 625 goto error_free_page;
7239ff4b
NB
626 }
627
ebbede42 628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 629 fs_devices->seeding = true;
0fb08bcc 630 } else {
ebbede42
AJ
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
635 }
636
10f0d2a5 637 if (!bdev_nonrot(bdev))
7f0432d0 638 fs_devices->rotating = true;
0fb08bcc 639
63a7cb13
DS
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
0fb08bcc 643 device->bdev = bdev;
e12c9621 644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
645 device->mode = flags;
646
647 fs_devices->open_devices++;
ebbede42
AJ
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 650 fs_devices->rw_devices++;
b1b8e386 651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 652 }
8f32380d 653 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
654
655 return 0;
656
8f32380d
JT
657error_free_page:
658 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
7a62d0f0
NB
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
7a62d0f0
NB
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
c0d81c7c 684 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
685}
686
cc5de4e7
NB
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
1a9fd417 695 * multiple successful changes of FSID but currently device didn't
05840710
NB
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
cc5de4e7
NB
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 703 /* Changed UUIDs */
cc5de4e7
NB
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
cc5de4e7 717 return fs_devices;
cc5de4e7
NB
718 }
719
720 return NULL;
721}
1362089d
NB
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
60999ca4
DS
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
e124ece5
AJ
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
60999ca4 754 */
e124ece5 755static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
8a4b83cc
CM
758{
759 struct btrfs_device *device;
7a62d0f0 760 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 761 struct rcu_string *name;
8a4b83cc 762 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
764 dev_t path_devt;
765 int error;
7239ff4b
NB
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 770
4889bc05 771 error = lookup_bdev(path, &path_devt);
ed02363f
QW
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
4889bc05 775 return ERR_PTR(error);
ed02363f 776 }
4889bc05 777
cc5de4e7 778 if (fsid_change_in_progress) {
c0d81c7c 779 if (!has_metadata_uuid)
cc5de4e7 780 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 781 else
cc5de4e7 782 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 783 } else if (has_metadata_uuid) {
c6730a0e 784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 785 } else {
1362089d
NB
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
789 }
790
8a4b83cc 791
8a4b83cc 792 if (!fs_devices) {
7239ff4b
NB
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
2208a378 799 if (IS_ERR(fs_devices))
e124ece5 800 return ERR_CAST(fs_devices);
2208a378 801
92900e51
AV
802 fs_devices->fsid_change = fsid_change_in_progress;
803
9c6d173e 804 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 805 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 806
8a4b83cc
CM
807 device = NULL;
808 } else {
562d7b15
JB
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
9c6d173e 814 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 815 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
1362089d 822 if (fs_devices->fsid_change &&
7a62d0f0
NB
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
1362089d
NB
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
834
835 fs_devices->fsid_change = false;
836 }
8a4b83cc 837 }
443f24fe 838
8a4b83cc 839 if (!device) {
bb21e302
AJ
840 unsigned int nofs_flag;
841
9c6d173e 842 if (fs_devices->opened) {
ed02363f
QW
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
9c6d173e 846 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 847 return ERR_PTR(-EBUSY);
9c6d173e 848 }
2b82032c 849
bb21e302 850 nofs_flag = memalloc_nofs_save();
12bd2fc0 851 device = btrfs_alloc_device(NULL, &devid,
bb21e302
AJ
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
12bd2fc0 854 if (IS_ERR(device)) {
9c6d173e 855 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 856 /* we can safely leave the fs_devices entry around */
e124ece5 857 return device;
8a4b83cc 858 }
606686ee 859
4889bc05 860 device->devt = path_devt;
90519d66 861
1f78160c 862 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 863 fs_devices->num_devices++;
e5e9a520 864
2b82032c 865 device->fs_devices = fs_devices;
4306a974 866 *new_device_added = true;
327f18cc
AJ
867
868 if (disk_super->label[0])
aa6c0df7
AJ
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
327f18cc 873 else
aa6c0df7
AJ
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
327f18cc 878
606686ee 879 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
0f23ae74
CM
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
b96de000 905 */
0f23ae74 906 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
9c6d173e 914 mutex_unlock(&fs_devices->device_list_mutex);
ed02363f
QW
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
e124ece5 918 return ERR_PTR(-EEXIST);
77bdae4d 919 }
b96de000 920
a9261d41
AJ
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
79c9234b
DM
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
a9261d41
AJ
929 */
930 if (device->bdev) {
4889bc05 931 if (device->devt != path_devt) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 933 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
a9261d41
AJ
938 return ERR_PTR(-EEXIST);
939 }
79c9234b 940 btrfs_info_in_rcu(NULL,
79dae17d 941 "devid %llu device path %s changed to %s scanned by %s (%d)",
cb3e217b 942 devid, btrfs_dev_name(device),
79dae17d
AJ
943 path, current->comm,
944 task_pid_nr(current));
a9261d41
AJ
945 }
946
606686ee 947 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 950 return ERR_PTR(-ENOMEM);
9c6d173e 951 }
606686ee
JB
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
e6e674bd 954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 955 fs_devices->missing_devices--;
e6e674bd 956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 957 }
4889bc05 958 device->devt = path_devt;
8a4b83cc
CM
959 }
960
77bdae4d
AJ
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
d1a63002 967 if (!fs_devices->opened) {
77bdae4d 968 device->generation = found_transid;
d1a63002
NB
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
77bdae4d 972
f2788d2f
AJ
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
9c6d173e 975 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 976 return device;
8a4b83cc
CM
977}
978
e4404d6e
YZ
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
d2979aa2 984 int ret = 0;
e4404d6e 985
c1247069
AJ
986 lockdep_assert_held(&uuid_mutex);
987
7239ff4b 988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
989 if (IS_ERR(fs_devices))
990 return fs_devices;
e4404d6e 991
02db0844 992 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
bb21e302
AJ
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
606686ee 1003
12bd2fc0 1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
bb21e302 1005 orig_dev->uuid, dev_path);
d2979aa2
AJ
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
e4404d6e 1008 goto error;
d2979aa2 1009 }
e4404d6e 1010
21e61ec6
JT
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
e4404d6e
YZ
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
d2979aa2 1030 return ERR_PTR(ret);
e4404d6e
YZ
1031}
1032
3712ccb7 1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1034 struct btrfs_device **latest_dev)
dfe25020 1035{
c6e30871 1036 struct btrfs_device *device, *next;
a6b0d5c8 1037
46224705 1038 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1042 &device->dev_state) &&
998a0671
AJ
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
3712ccb7
NB
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
a6b0d5c8 1048 }
2b82032c 1049 continue;
a6b0d5c8 1050 }
2b82032c 1051
cf89af14
AJ
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
2b82032c 1059 if (device->bdev) {
d4d77629 1060 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
ebbede42 1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1065 list_del_init(&device->dev_alloc_list);
ebbede42 1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1067 fs_devices->rw_devices--;
2b82032c 1068 }
e4404d6e
YZ
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
a425f9d4 1071 btrfs_free_device(device);
dfe25020 1072 }
2b82032c 1073
3712ccb7
NB
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
bacce86a 1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1081{
1082 struct btrfs_device *latest_dev = NULL;
944d3f9f 1083 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1084
1085 mutex_lock(&uuid_mutex);
bacce86a 1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1090
d24fa5c1 1091 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1092
dfe25020 1093 mutex_unlock(&uuid_mutex);
dfe25020 1094}
a0af469b 1095
14238819
AJ
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
08ffcae8
DS
1098 if (!device->bdev)
1099 return;
1100
ebbede42 1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
08ffcae8 1106 blkdev_put(device->bdev, device->mode);
14238819
AJ
1107}
1108
959b1c04 1109static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1112
ebbede42 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
0d977e0e
DCZX
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
5d03dbeb
LZ
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1124 fs_devices->missing_devices--;
5d03dbeb 1125 }
f448341a 1126
959b1c04 1127 btrfs_close_bdev(device);
321f69f8 1128 if (device->bdev) {
3fff3975 1129 fs_devices->open_devices--;
321f69f8 1130 device->bdev = NULL;
f448341a 1131 }
321f69f8 1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1133 btrfs_destroy_dev_zone_info(device);
f448341a 1134
321f69f8
JT
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
959b1c04 1138
6b225baa
FM
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
321f69f8
JT
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
f448341a
AJ
1157}
1158
54eed6ae 1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1160{
2037a093 1161 struct btrfs_device *device, *tmp;
e4404d6e 1162
425c6ed6
JB
1163 lockdep_assert_held(&uuid_mutex);
1164
2b82032c 1165 if (--fs_devices->opened > 0)
54eed6ae 1166 return;
8a4b83cc 1167
425c6ed6 1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1169 btrfs_close_one_device(device);
c9513edb 1170
e4404d6e
YZ
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
2b82032c 1173 fs_devices->opened = 0;
0395d84f 1174 fs_devices->seeding = false;
c4989c2f 1175 fs_devices->fs_info = NULL;
8a4b83cc
CM
1176}
1177
54eed6ae 1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1179{
944d3f9f
NB
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1182
1183 mutex_lock(&uuid_mutex);
54eed6ae 1184 close_fs_devices(fs_devices);
5f58d783 1185 if (!fs_devices->opened) {
944d3f9f 1186 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1187
5f58d783
AJ
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
944d3f9f 1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1202 close_fs_devices(fs_devices);
944d3f9f 1203 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1204 free_fs_devices(fs_devices);
1205 }
425c6ed6 1206 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1207}
1208
897fb573 1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1210 fmode_t flags, void *holder)
8a4b83cc 1211{
8a4b83cc 1212 struct btrfs_device *device;
443f24fe 1213 struct btrfs_device *latest_dev = NULL;
96c2e067 1214 struct btrfs_device *tmp_device;
8a4b83cc 1215
d4d77629
TH
1216 flags |= FMODE_EXCL;
1217
96c2e067
AJ
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
a0af469b 1221
96c2e067
AJ
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1225 latest_dev = device;
96c2e067
AJ
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
8a4b83cc 1231 }
1ed802c9
AJ
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
2b82032c 1235 fs_devices->opened = 1;
d24fa5c1 1236 fs_devices->latest_dev = latest_dev;
2b82032c 1237 fs_devices->total_rw_bytes = 0;
c4a816c6 1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1240
1241 return 0;
2b82032c
YZ
1242}
1243
4f0f586b
ST
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
f8e10cd3 1246{
214cc184 1247 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
2b82032c 1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1260 fmode_t flags, void *holder)
2b82032c
YZ
1261{
1262 int ret;
1263
f5194e34 1264 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
a8698707 1267 * underlying device takes further locks like open_mutex.
18c850fd
JB
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
f5194e34 1272
2b82032c 1273 if (fs_devices->opened) {
e4404d6e
YZ
1274 fs_devices->opened++;
1275 ret = 0;
2b82032c 1276 } else {
f8e10cd3 1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1278 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1279 }
542c5908 1280
8a4b83cc
CM
1281 return ret;
1282}
1283
8f32380d 1284void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1285{
8f32380d
JT
1286 struct page *page = virt_to_page(super);
1287
6cf86a00
AJ
1288 put_page(page);
1289}
1290
b335eab8 1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1292 u64 bytenr, u64 bytenr_orig)
6cf86a00 1293{
b335eab8
NB
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
6cf86a00
AJ
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
cda00eba 1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1301 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1302
1303 /* make sure our super fits in the page */
b335eab8
NB
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1311
1312 /* pull in the page with our super */
b335eab8 1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1314
b335eab8
NB
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
6cf86a00 1317
b335eab8 1318 p = page_address(page);
6cf86a00
AJ
1319
1320 /* align our pointer to the offset of the super block */
b335eab8 1321 disk_super = p + offset_in_page(bytenr);
6cf86a00 1322
12659251 1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1325 btrfs_release_disk_super(p);
b335eab8 1326 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1327 }
1328
b335eab8
NB
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1331
b335eab8 1332 return disk_super;
6cf86a00
AJ
1333}
1334
16cab91a 1335int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
16cab91a 1340 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
6f60cbd3
DS
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
36350e95
GJ
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
8a4b83cc
CM
1353{
1354 struct btrfs_super_block *disk_super;
4306a974 1355 bool new_device_added = false;
36350e95 1356 struct btrfs_device *device = NULL;
8a4b83cc 1357 struct block_device *bdev;
12659251
NA
1358 u64 bytenr, bytenr_orig;
1359 int ret;
8a4b83cc 1360
899f9307
DS
1361 lockdep_assert_held(&uuid_mutex);
1362
6f60cbd3
DS
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
d4d77629 1369 flags |= FMODE_EXCL;
6f60cbd3
DS
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1372 if (IS_ERR(bdev))
36350e95 1373 return ERR_CAST(bdev);
6f60cbd3 1374
12659251
NA
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
12659251
NA
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
6f60cbd3 1385 goto error_bdev_put;
05a5c55d 1386 }
6f60cbd3 1387
4306a974 1388 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1391
8f32380d 1392 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1393
1394error_bdev_put:
d4d77629 1395 blkdev_put(bdev, flags);
b6ed73bc 1396
36350e95 1397 return device;
8a4b83cc 1398}
0b86a832 1399
1c11b63e
JM
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1c11b63e
JM
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
6df9a95e 1406{
1c11b63e 1407 u64 physical_start, physical_end;
6df9a95e 1408
1c11b63e 1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1410
1c11b63e
JM
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
c152b63e 1414
1c11b63e
JM
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
6df9a95e
JB
1420 }
1421 }
1c11b63e 1422 return false;
6df9a95e
JB
1423}
1424
3b4ffa40
NA
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
37f85ec3 1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1cd6121f
NA
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1437 default:
1438 BUG();
1439 }
1440}
1441
1cd6121f
NA
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
d6f67afb 1474 *hole_size = 0;
7000babd 1475 return true;
1cd6121f
NA
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
43dd529a
DS
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
3b4ffa40
NA
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1cd6121f 1494 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1cd6121f
NA
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
3b4ffa40 1534
3b4ffa40 1535 break;
3b4ffa40
NA
1536 }
1537
1538 return changed;
1539}
6df9a95e 1540
0b86a832 1541/*
43dd529a
DS
1542 * Find free space in the specified device.
1543 *
499f377f
JM
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
7bfc837d 1550 *
43dd529a
DS
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
7bfc837d
MX
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
135da976
QW
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1a9fd417 1566 * is not reported as available.
0b86a832 1567 */
9e3246a5
QW
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
0b86a832 1571{
0b246afa
JM
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1574 struct btrfs_key key;
7bfc837d 1575 struct btrfs_dev_extent *dev_extent;
2b82032c 1576 struct btrfs_path *path;
7bfc837d
MX
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
0b86a832
CM
1581 u64 search_end = device->total_bytes;
1582 int ret;
7bfc837d 1583 int slot;
0b86a832 1584 struct extent_buffer *l;
8cdc7c5b 1585
3b4ffa40 1586 search_start = dev_extent_search_start(device, search_start);
0b86a832 1587
1cd6121f
NA
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
6df9a95e
JB
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
f2ab7618 1594
7bfc837d
MX
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
f2ab7618 1598again:
401e29c1
AJ
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1601 ret = -ENOSPC;
6df9a95e 1602 goto out;
7bfc837d
MX
1603 }
1604
e4058b54 1605 path->reada = READA_FORWARD;
6df9a95e
JB
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
7bfc837d 1608
0b86a832
CM
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1612
0ff40a91 1613 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1614 if (ret < 0)
7bfc837d 1615 goto out;
7bfc837d 1616
3c538de0 1617 while (search_start < search_end) {
0b86a832
CM
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
7bfc837d
MX
1625 goto out;
1626
1627 break;
0b86a832
CM
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
7bfc837d 1635 break;
0b86a832 1636
962a298f 1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1638 goto next;
9779b72f 1639
3c538de0
JB
1640 if (key.offset > search_end)
1641 break;
1642
7bfc837d
MX
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
3b4ffa40
NA
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
6df9a95e 1647
7bfc837d
MX
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
9779b72f 1652
7bfc837d
MX
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
0b86a832
CM
1665 }
1666 }
0b86a832 1667
0b86a832 1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
0b86a832
CM
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
0b86a832 1677
38c01b96 1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
f2ab7618 1683 if (search_end > search_start) {
38c01b96 1684 hole_size = search_end - search_start;
3b4ffa40
NA
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
f2ab7618
ZL
1687 btrfs_release_path(path);
1688 goto again;
1689 }
0b86a832 1690
f2ab7618
ZL
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
6df9a95e
JB
1695 }
1696
7bfc837d 1697 /* See above. */
f2ab7618 1698 if (max_hole_size < num_bytes)
7bfc837d
MX
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
3c538de0 1703 ASSERT(max_hole_start + max_hole_size <= search_end);
7bfc837d 1704out:
2b82032c 1705 btrfs_free_path(path);
7bfc837d 1706 *start = max_hole_start;
b2117a39 1707 if (len)
7bfc837d 1708 *len = max_hole_size;
0b86a832
CM
1709 return ret;
1710}
1711
60dfdf25 1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1713 u64 *start, u64 *len)
1714{
499f377f 1715 /* FIXME use last free of some kind */
60dfdf25 1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1717}
1718
b2950863 1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1720 struct btrfs_device *device,
2196d6e8 1721 u64 start, u64 *dev_extent_len)
8f18cf13 1722{
0b246afa
JM
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1725 int ret;
1726 struct btrfs_path *path;
8f18cf13 1727 struct btrfs_key key;
a061fc8d
CM
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1739again:
8f18cf13 1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1744 if (ret)
1745 goto out;
a061fc8d
CM
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
a061fc8d
CM
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
79787eaa 1759 } else {
79787eaa 1760 goto out;
a061fc8d 1761 }
8f18cf13 1762
2196d6e8
MX
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
8f18cf13 1765 ret = btrfs_del_item(trans, root, path);
79bd3712 1766 if (ret == 0)
3204d33c 1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1768out:
8f18cf13
CM
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
6df9a95e 1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1774{
6df9a95e
JB
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
0b86a832 1779
c8bf1b67 1780 em_tree = &fs_info->mapping_tree;
6df9a95e 1781 read_lock(&em_tree->lock);
07e1ce09 1782 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
0b86a832 1786 }
6df9a95e
JB
1787 read_unlock(&em_tree->lock);
1788
0b86a832
CM
1789 return ret;
1790}
1791
53f10659
ID
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
0b86a832
CM
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
2b82032c
YZ
1798 struct btrfs_path *path;
1799
2b82032c
YZ
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
0b86a832
CM
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
53f10659 1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1809 if (ret < 0)
1810 goto error;
1811
a06dee4d
AJ
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
0b86a832 1818
53f10659
ID
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
53f10659 1823 *devid_ret = 1;
0b86a832
CM
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
53f10659 1827 *devid_ret = found_key.offset + 1;
0b86a832
CM
1828 }
1829 ret = 0;
1830error:
2b82032c 1831 btrfs_free_path(path);
0b86a832
CM
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
c74a0b02 1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1840 struct btrfs_device *device)
0b86a832
CM
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
0b86a832 1848
0b86a832
CM
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
0b86a832
CM
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1855 key.offset = device->devid;
0b86a832 1856
2bb2e00e 1857 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
2bb2e00e 1860 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1868 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
e17cade2
CM
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1881
410ba3a2 1882 ptr = btrfs_device_uuid(dev_item);
e17cade2 1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1884 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
0b86a832 1887 btrfs_mark_buffer_dirty(leaf);
0b86a832 1888
2b82032c 1889 ret = 0;
0b86a832
CM
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
8f18cf13 1894
5a1972bd
QW
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1900 */
54fde91f 1901static void update_dev_time(const char *device_path)
5a1972bd 1902{
54fde91f 1903 struct path path;
8f96a5bf 1904 struct timespec64 now;
54fde91f 1905 int ret;
5a1972bd 1906
54fde91f
JB
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
5a1972bd 1909 return;
8f96a5bf 1910
54fde91f
JB
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
5a1972bd
QW
1914}
1915
bbac5869
QW
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
a061fc8d 1918{
f331a952 1919 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1920 int ret;
1921 struct btrfs_path *path;
a061fc8d 1922 struct btrfs_key key;
a061fc8d 1923
a061fc8d
CM
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
a061fc8d
CM
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
2bb2e00e 1932 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1934 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
a061fc8d
CM
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1942out:
1943 btrfs_free_path(path);
a061fc8d
CM
1944 return ret;
1945}
1946
3cc31a0d
DS
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
a061fc8d 1954{
a061fc8d 1955 u64 all_avail;
de98ced9 1956 unsigned seq;
418775a2 1957 int i;
a061fc8d 1958
de98ced9 1959 do {
bd45ffbc 1960 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1961
bd45ffbc
AJ
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1966
418775a2 1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1969 continue;
a061fc8d 1970
efc222f8
AJ
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1973 }
1974
bd45ffbc 1975 return 0;
f1fa7f26
AJ
1976}
1977
c9162bdf
OS
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1980{
2b82032c 1981 struct btrfs_device *next_device;
88acff64
AJ
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
e6e674bd
AJ
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
88acff64
AJ
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
d24fa5c1 1994 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
b105e927 1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 2000 struct btrfs_device *next_device)
88acff64 2001{
d6507cf1 2002 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 2003
e493e8f9 2004 if (!next_device)
88acff64 2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2006 device);
88acff64
AJ
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
d24fa5c1
AJ
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
2015}
2016
1da73967
AJ
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
cb5583dd 2025 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
cb5583dd 2030 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2031
2032 return num_devices;
2033}
2034
0e0078f7
CH
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
26ecf243
CH
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
0e0078f7
CH
2041 int ret;
2042
26ecf243 2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
0e0078f7
CH
2044 if (IS_ERR(disk_super))
2045 return;
2046
26ecf243
CH
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
0e0078f7
CH
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
0e0078f7
CH
2055}
2056
313b0858
JB
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
6fbceb9f 2060{
6fbceb9f
JT
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
0e0078f7 2067 if (bdev_is_zoned(bdev))
12659251 2068 btrfs_reset_sb_log_zones(bdev, copy_num);
0e0078f7
CH
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
6fbceb9f
JT
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
54fde91f 2077 update_dev_time(device_path);
6fbceb9f
JT
2078}
2079
1a15eb72
JB
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
f1fa7f26 2083{
bbac5869 2084 struct btrfs_trans_handle *trans;
f1fa7f26 2085 struct btrfs_device *device;
1f78160c 2086 struct btrfs_fs_devices *cur_devices;
b5185197 2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2088 u64 num_devices;
a061fc8d
CM
2089 int ret = 0;
2090
914a519b
JB
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
8ef9dc0f
JB
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
1da73967 2101 num_devices = btrfs_num_devices(fs_info);
8dabb742 2102
0b246afa 2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2104 if (ret)
bbac5869 2105 return ret;
a061fc8d 2106
1a15eb72
JB
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
a27a94c2
NB
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
1a15eb72 2112 ret = -ENOENT;
bbac5869 2113 return ret;
a27a94c2 2114 }
dfe25020 2115
eede2bf3
OS
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
cb3e217b 2119 btrfs_dev_name(device), device->devid);
bbac5869 2120 return -ETXTBSY;
eede2bf3
OS
2121 }
2122
bbac5869
QW
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2125
ebbede42 2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2129
ebbede42 2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2131 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2132 list_del_init(&device->dev_alloc_list);
c3929c36 2133 device->fs_devices->rw_devices--;
34441361 2134 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2135 }
a061fc8d
CM
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
9b3517e9 2139 goto error_undo;
a061fc8d 2140
bbac5869
QW
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
9b3517e9 2144 goto error_undo;
bbac5869
QW
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
a061fc8d 2157
e12c9621 2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2159 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
d7306801
FDBM
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
e5e9a520 2169 */
1f78160c 2170
41a52a0f
AJ
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
9675ea8c 2174 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2175 */
1f78160c 2176 cur_devices = device->fs_devices;
b5185197 2177 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2178 list_del_rcu(&device->dev_list);
e5e9a520 2179
41a52a0f
AJ
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
b4993e64
AJ
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2b82032c 2185
e6e674bd 2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2187 cur_devices->missing_devices--;
cd02dca5 2188
d6507cf1 2189 btrfs_assign_next_active_device(device, NULL);
2b82032c 2190
0bfaa9c5 2191 if (device->bdev) {
41a52a0f 2192 cur_devices->open_devices--;
0bfaa9c5 2193 /* remove sysfs entry */
53f8a74c 2194 btrfs_sysfs_remove_device(device);
0bfaa9c5 2195 }
99994cde 2196
0b246afa
JM
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2199 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2200
cea67ab9 2201 /*
3fa421de
JB
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
cea67ab9 2210 */
3fa421de 2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
3fa421de
JB
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
cea67ab9 2219
3fa421de
JB
2220 *bdev = device->bdev;
2221 *mode = device->mode;
8e75fd89
NB
2222 synchronize_rcu();
2223 btrfs_free_device(device);
cea67ab9 2224
8b41393f
JB
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
8e906945 2232 if (cur_devices->num_devices == 0) {
944d3f9f 2233 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
1f78160c 2236 free_fs_devices(cur_devices);
2b82032c
YZ
2237 }
2238
bbac5869
QW
2239 ret = btrfs_commit_transaction(trans);
2240
a061fc8d 2241 return ret;
24fc572f 2242
9b3517e9 2243error_undo:
ebbede42 2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2245 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2246 list_add(&device->dev_alloc_list,
b5185197 2247 &fs_devices->alloc_list);
c3929c36 2248 device->fs_devices->rw_devices++;
34441361 2249 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2250 }
bbac5869 2251 return ret;
a061fc8d
CM
2252}
2253
68a9db5f 2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2255{
d51908ce
AJ
2256 struct btrfs_fs_devices *fs_devices;
2257
68a9db5f 2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2259
25e8e911
AJ
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
d51908ce 2267
e93c89c1 2268 list_del_rcu(&srcdev->dev_list);
619c47f3 2269 list_del(&srcdev->dev_alloc_list);
d51908ce 2270 fs_devices->num_devices--;
e6e674bd 2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2272 fs_devices->missing_devices--;
e93c89c1 2273
ebbede42 2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2275 fs_devices->rw_devices--;
1357272f 2276
82372bc8 2277 if (srcdev->bdev)
d51908ce 2278 fs_devices->open_devices--;
084b6e7c
QW
2279}
2280
65237ee3 2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2284
a466c85e
JB
2285 mutex_lock(&uuid_mutex);
2286
14238819 2287 btrfs_close_bdev(srcdev);
8e75fd89
NB
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
94d5f0c2 2290
94d5f0c2
AJ
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
6dd38f81
AJ
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
944d3f9f 2301 list_del_init(&fs_devices->seed_list);
0226e0eb 2302 close_fs_devices(fs_devices);
8bef8401 2303 free_fs_devices(fs_devices);
94d5f0c2 2304 }
a466c85e 2305 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2306}
2307
4f5ad7bd 2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2309{
4f5ad7bd 2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2311
d9a071f0 2312 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2313
53f8a74c 2314 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2315
779bf3fe 2316 if (tgtdev->bdev)
d9a071f0 2317 fs_devices->open_devices--;
779bf3fe 2318
d9a071f0 2319 fs_devices->num_devices--;
e93c89c1 2320
d6507cf1 2321 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2322
e93c89c1 2323 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2324
d9a071f0 2325 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2326
8f32380d
JT
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
14238819
AJ
2329
2330 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
e93c89c1
SB
2333}
2334
43dd529a
DS
2335/*
2336 * Populate args from device at path.
faa775c4
JB
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
7ba15b7d 2356{
7ba15b7d 2357 struct btrfs_super_block *disk_super;
7ba15b7d 2358 struct block_device *bdev;
faa775c4 2359 int ret;
7ba15b7d 2360
faa775c4
JB
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
8f32380d 2367
faa775c4
JB
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
8f32380d 2374
faa775c4
JB
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
9ea0106a
ZF
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
faa775c4 2379 return ret;
9ea0106a
ZF
2380 }
2381
faa775c4
JB
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2386 else
faa775c4 2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2388 btrfs_release_disk_super(disk_super);
7ba15b7d 2389 blkdev_put(bdev, FMODE_READ);
faa775c4 2390 return 0;
7ba15b7d
SB
2391}
2392
5c5c0df0 2393/*
faa775c4
JB
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
5c5c0df0 2397 */
faa775c4
JB
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
a27a94c2 2406struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
24e0474b 2409{
562d7b15 2410 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2411 struct btrfs_device *device;
faa775c4 2412 int ret;
24e0474b 2413
5c5c0df0 2414 if (devid) {
562d7b15
JB
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2419 return device;
2420 }
2421
faa775c4
JB
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
6e927ceb 2428 return ERR_PTR(-ENOENT);
faa775c4 2429 return device;
24e0474b
AJ
2430}
2431
849eae5e 2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2433{
0b246afa 2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2435 struct btrfs_fs_devices *old_devices;
e4404d6e 2436 struct btrfs_fs_devices *seed_devices;
2b82032c 2437
a32bf9a3 2438 lockdep_assert_held(&uuid_mutex);
e4404d6e 2439 if (!fs_devices->seeding)
849eae5e 2440 return ERR_PTR(-EINVAL);
2b82032c 2441
427c8fdd
NB
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
7239ff4b 2446 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378 2447 if (IS_ERR(seed_devices))
849eae5e 2448 return seed_devices;
2b82032c 2449
427c8fdd
NB
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
e4404d6e
YZ
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
849eae5e 2459 return old_devices;
2b82032c 2460 }
e4404d6e 2461
c4babc5e 2462 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2463
e4404d6e
YZ
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2468 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2469
849eae5e
AJ
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
1f78160c
XG
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2196d6e8
MX
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
c9513edb 2509
0395d84f 2510 fs_devices->seeding = false;
2b82032c
YZ
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
69611ac8 2513 fs_devices->missing_devices = 0;
7f0432d0 2514 fs_devices->rotating = false;
944d3f9f 2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2516
2517 generate_random_uuid(fs_devices->fsid);
7239ff4b 2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2520
2b82032c
YZ
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2524}
2525
2526/*
01327610 2527 * Store the expected generation for seed devices in device items.
2b82032c 2528 */
5c466629 2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2530{
562d7b15 2531 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2532 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2533 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
44880fdc 2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2b82032c
YZ
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2bb2e00e 2552 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2554 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2568 btrfs_release_path(path);
2b82032c
YZ
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
562d7b15 2579 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2581 BTRFS_UUID_SIZE);
1473b24e 2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2583 BTRFS_FSID_SIZE);
562d7b15
JB
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2587 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
da353f6b 2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2605{
5112febb 2606 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
0b246afa 2610 struct super_block *sb = fs_info->sb;
5da54bc1 2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
849eae5e 2612 struct btrfs_fs_devices *seed_devices;
39379faa
NA
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
788f20eb 2615 int ret = 0;
fd880809 2616 bool seeding_dev = false;
44cab9ba 2617 bool locked = false;
788f20eb 2618
5da54bc1 2619 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2620 return -EROFS;
788f20eb 2621
a5d16333 2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2623 fs_info->bdev_holder);
7f59203a
JB
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
a2135011 2626
b70f5097
NA
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
5da54bc1 2632 if (fs_devices->seeding) {
fd880809 2633 seeding_dev = true;
2b82032c
YZ
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
44cab9ba 2636 locked = true;
2b82032c
YZ
2637 }
2638
b9ba017f 2639 sync_blockdev(bdev);
a2135011 2640
f4cfa9bd
NB
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
f4cfa9bd 2645 rcu_read_unlock();
2b82032c 2646 goto error;
788f20eb
CM
2647 }
2648 }
f4cfa9bd 2649 rcu_read_unlock();
788f20eb 2650
bb21e302 2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
12bd2fc0 2652 if (IS_ERR(device)) {
788f20eb 2653 /* we can safely leave the fs_devices entry around */
12bd2fc0 2654 ret = PTR_ERR(device);
2b82032c 2655 goto error;
788f20eb
CM
2656 }
2657
5b316468
NA
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
4889bc05
AJ
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
5b316468 2663
16beac87 2664 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2665 if (ret)
2666 goto error_free_device;
2667
a22285a6 2668 trans = btrfs_start_transaction(root, 0);
98d5dc13 2669 if (IS_ERR(trans)) {
98d5dc13 2670 ret = PTR_ERR(trans);
5b316468 2671 goto error_free_zone;
98d5dc13
TI
2672 }
2673
ebbede42 2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2675 device->generation = trans->transid;
0b246afa
JM
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2681 device->disk_total_bytes = device->total_bytes;
935e5cc9 2682 device->commit_total_bytes = device->total_bytes;
e12c9621 2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2685 device->mode = FMODE_EXCL;
27087f37 2686 device->dev_stats_valid = 1;
9f6d2510 2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2688
2b82032c 2689 if (seeding_dev) {
a0a1db70 2690 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
849eae5e
AJ
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2b82032c 2706 }
788f20eb 2707
5da54bc1 2708 device->fs_devices = fs_devices;
e5e9a520 2709
34441361 2710 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2718
a5ed45f8 2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2720
10f0d2a5 2721 if (!bdev_nonrot(bdev))
7f0432d0 2722 fs_devices->rotating = true;
c289811c 2723
39379faa 2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2725 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
788f20eb 2728
39379faa
NA
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
0d39376a 2732
2196d6e8
MX
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
0b246afa 2737 btrfs_clear_space_info_full(fs_info);
2196d6e8 2738
34441361 2739 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2740
2741 /* Add sysfs device entry */
cd36da2e 2742 btrfs_sysfs_add_device(device);
ca10845a 2743
5da54bc1 2744 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2745
2b82032c 2746 if (seeding_dev) {
34441361 2747 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2748 ret = init_first_rw_device(trans);
34441361 2749 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2750 if (ret) {
66642832 2751 btrfs_abort_transaction(trans, ret);
d31c32f6 2752 goto error_sysfs;
005d6427 2753 }
2196d6e8
MX
2754 }
2755
8e87e856 2756 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2757 if (ret) {
66642832 2758 btrfs_abort_transaction(trans, ret);
d31c32f6 2759 goto error_sysfs;
2196d6e8
MX
2760 }
2761
2762 if (seeding_dev) {
5c466629 2763 ret = btrfs_finish_sprout(trans);
005d6427 2764 if (ret) {
66642832 2765 btrfs_abort_transaction(trans, ret);
d31c32f6 2766 goto error_sysfs;
005d6427 2767 }
b2373f25 2768
8e560081
NB
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2771 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2774 }
2775
3a45bb20 2776 ret = btrfs_commit_transaction(trans);
a2135011 2777
2b82032c
YZ
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
44cab9ba 2781 locked = false;
788f20eb 2782
79787eaa
JM
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2ff7e61e 2786 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2787 if (ret < 0)
0b246afa 2788 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
7132a262
AJ
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
671415b7 2797 }
3a45bb20 2798 ret = btrfs_commit_transaction(trans);
2b82032c 2799 }
c9e9f97b 2800
7f551d96
AJ
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
4889bc05 2808 btrfs_forget_devices(device->devt);
7f551d96
AJ
2809
2810 /* Update ctime/mtime for blkid or udev */
54fde91f 2811 update_dev_time(device_path);
7f551d96 2812
2b82032c 2813 return ret;
79787eaa 2814
d31c32f6 2815error_sysfs:
53f8a74c 2816 btrfs_sysfs_remove_device(device);
39379faa
NA
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2833error_trans:
0af2c4bf 2834 if (seeding_dev)
a0a1db70 2835 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2836 if (trans)
2837 btrfs_end_transaction(trans);
5b316468
NA
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2840error_free_device:
a425f9d4 2841 btrfs_free_device(device);
2b82032c 2842error:
e525fd89 2843 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2844 if (locked) {
2b82032c
YZ
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
c9e9f97b 2848 return ret;
788f20eb
CM
2849}
2850
d397712b
CM
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
0b86a832
CM
2853{
2854 int ret;
2855 struct btrfs_path *path;
0b246afa 2856 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
0b86a832
CM
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
0b86a832
CM
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2196d6e8 2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2898 struct btrfs_device *device, u64 new_size)
2899{
0b246afa
JM
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2902 u64 old_total;
2903 u64 diff;
2bb2e00e 2904 int ret;
8f18cf13 2905
ebbede42 2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2907 return -EACCES;
2196d6e8 2908
7dfb8be1
NB
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
34441361 2911 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2912 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2914
63a212ab 2915 if (new_size <= device->total_bytes ||
401e29c1 2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2917 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2918 return -EINVAL;
2196d6e8 2919 }
2b82032c 2920
7dfb8be1
NB
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2923 device->fs_devices->total_rw_bytes += diff;
2924
7cc8e58d
MX
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2927 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
34441361 2931 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2932
2bb2e00e
FM
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
8f18cf13
CM
2938}
2939
f4208794 2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2941{
f4208794 2942 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2943 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
8f18cf13
CM
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
408fbf19 2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
79787eaa
JM
2962 ret = -ENOENT;
2963 goto out;
2964 }
8f18cf13
CM
2965
2966 ret = btrfs_del_item(trans, root, path);
79787eaa 2967 if (ret < 0)
0b246afa
JM
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
79787eaa 2970out:
8f18cf13 2971 btrfs_free_path(path);
65a246c5 2972 return ret;
8f18cf13
CM
2973}
2974
408fbf19 2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2976{
0b246afa 2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
79bd3712 2988 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
408fbf19 3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
60ca842e
OS
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
592d92ee
LB
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
c8bf1b67 3034 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
79bd3712
FM
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
97aff912 3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3081{
97aff912 3082 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3083 struct extent_map *em;
3084 struct map_lookup *map;
2196d6e8 3085 u64 dev_extent_len = 0;
47ab2a6c 3086 int i, ret = 0;
0b246afa 3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3088
60ca842e 3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3090 if (IS_ERR(em)) {
47ab2a6c
JB
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3093 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
592d92ee 3097 return PTR_ERR(em);
47ab2a6c 3098 }
95617d69 3099 map = em->map_lookup;
8f18cf13 3100
57ba4cb8 3101 /*
79bd3712
FM
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3112 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3113 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
47ab2a6c 3117 if (ret) {
57ba4cb8 3118 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3119 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3120 goto out;
3121 }
a061fc8d 3122
2196d6e8 3123 if (device->bytes_used > 0) {
34441361 3124 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
a5ed45f8 3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3128 btrfs_clear_space_info_full(fs_info);
34441361 3129 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3130 }
79bd3712
FM
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3133
79bd3712
FM
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
f6f39f7a 3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3187 if (ret) {
64bc6c2a
NB
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
dfe25020 3190 }
57ba4cb8 3191
79bd3712
FM
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
66642832 3198 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3199 goto out;
3200 }
8f18cf13 3201
6bccf3ab 3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3203
8f18cf13 3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3206 if (ret) {
66642832 3207 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3208 goto out;
3209 }
8f18cf13
CM
3210 }
3211
79bd3712
FM
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
5a98ec01 3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3222 if (ret) {
66642832 3223 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3224 goto out;
3225 }
2b82032c 3226
47ab2a6c 3227out:
79bd3712
FM
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
2b82032c
YZ
3232 /* once for us */
3233 free_extent_map(em);
47ab2a6c
JB
3234 return ret;
3235}
2b82032c 3236
18bb8bbf 3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3238{
5b4aacef 3239 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3240 struct btrfs_trans_handle *trans;
b0643e59 3241 struct btrfs_block_group *block_group;
01e86008 3242 u64 length;
47ab2a6c 3243 int ret;
2b82032c 3244
4b349253
JB
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
67c5e7d4
FM
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
f3372065 3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3264
47ab2a6c 3265 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3266 btrfs_scrub_pause(fs_info);
0b246afa 3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3268 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3269 if (ret)
3270 return ret;
3271
b0643e59
DZ
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3276 length = block_group->length;
b0643e59
DZ
3277 btrfs_put_block_group(block_group);
3278
01e86008
JT
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
19c4d2f9
CM
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
47ab2a6c 3301 /*
19c4d2f9
CM
3302 * step two, delete the device extents and the
3303 * chunk tree entries
47ab2a6c 3304 */
97aff912 3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3306 btrfs_end_transaction(trans);
19c4d2f9 3307 return ret;
2b82032c
YZ
3308}
3309
2ff7e61e 3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3311{
0b246afa 3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
2b82032c 3318 u64 chunk_type;
ba1bf481
JB
3319 bool retried = false;
3320 int failed = 0;
2b82032c
YZ
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
ba1bf481 3327again:
2b82032c
YZ
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
f3372065 3333 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3335 if (ret < 0) {
f3372065 3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3337 goto error;
67c5e7d4 3338 }
79787eaa 3339 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
67c5e7d4 3343 if (ret)
f3372065 3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
1a40e23b 3349
2b82032c
YZ
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3352
2b82032c
YZ
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3356 btrfs_release_path(path);
8f18cf13 3357
2b82032c 3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3360 if (ret == -ENOSPC)
3361 failed++;
14586651
HS
3362 else
3363 BUG_ON(ret);
2b82032c 3364 }
f3372065 3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3366
2b82032c
YZ
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
ba1bf481
JB
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
fae7f21c 3376 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3377 ret = -ENOSPC;
3378 }
2b82032c
YZ
3379error:
3380 btrfs_free_path(path);
3381 return ret;
8f18cf13
CM
3382}
3383
a6f93c71
LB
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
32da5386 3392 struct btrfs_block_group *cache;
a6f93c71
LB
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
5ae21692
JT
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
a6f93c71 3421 }
5ae21692 3422
a6f93c71
LB
3423 return 0;
3424}
3425
6bccf3ab 3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3427 struct btrfs_balance_control *bctl)
3428{
6bccf3ab 3429 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
b159fa28 3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3a45bb20 3474 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
6bccf3ab 3480static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3481{
6bccf3ab 3482 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3502a8c0 3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3a45bb20 3513 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
59641015
ID
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
149196a2
DS
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3568 int ret;
c9e9f97b
ID
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
149196a2
DS
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3580}
3581
ed25e9b2
ID
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
899c81ea 3586static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3587 struct btrfs_balance_args *bargs)
3588{
899c81ea
ID
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3591
899c81ea 3592 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3593 return 0;
3594
3595 return 1;
3596}
3597
dba72cb3 3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3599 struct btrfs_balance_args *bargs)
bc309467 3600{
32da5386 3601 struct btrfs_block_group *cache;
bc309467
DS
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3608 chunk_used = cache->used;
bc309467
DS
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
428c8e03 3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
bc309467
DS
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
b3470b5d 3618 user_thresh_max = cache->length;
bc309467 3619 else
428c8e03 3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
bc309467
DS
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
dba72cb3 3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3631{
32da5386 3632 struct btrfs_block_group *cache;
5ce5b3c0
ID
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3637 chunk_used = cache->used;
5ce5b3c0 3638
bc309467 3639 if (bargs->usage_min == 0)
3e39cea6 3640 user_thresh = 1;
a105bb88 3641 else if (bargs->usage > 100)
b3470b5d 3642 user_thresh = cache->length;
a105bb88 3643 else
428c8e03 3644 user_thresh = mult_perc(cache->length, bargs->usage);
a105bb88 3645
5ce5b3c0
ID
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
409d404b
ID
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
946c9256
DS
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
d58ede8d 3676 return (num_stripes - nparity) / ncopies;
946c9256
DS
3677}
3678
94e60d5a
ID
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
94e60d5a
ID
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
946c9256 3688 u64 type;
94e60d5a
ID
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
946c9256
DS
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3705 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
ea67176a
ID
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
dee32d0a
GAP
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
899c81ea 3742static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
899c81ea
ID
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3750
899c81ea 3751 if (bargs->target == chunk_type)
cfa4c961
ID
3752 return 1;
3753
3754 return 0;
3755}
3756
6ec0896c 3757static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
6ec0896c 3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
ed25e9b2
ID
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
5ce5b3c0
ID
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3787 return 0;
bc309467 3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3790 return 0;
409d404b
ID
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
94e60d5a
ID
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3801 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3802 return 0;
ea67176a
ID
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
ed25e9b2
ID
3809 }
3810
dee32d0a
GAP
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
cfa4c961
ID
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
7d824b6f
DS
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
12907fc7
DS
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3834 * determined here because we do not have the global information
12907fc7
DS
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
7d824b6f
DS
3841 }
3842
f43ffb60
ID
3843 return 1;
3844}
3845
c9e9f97b 3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3847{
19a39dce 3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3850 u64 chunk_type;
f43ffb60 3851 struct btrfs_chunk *chunk;
5a488b9d 3852 struct btrfs_path *path = NULL;
ec44a35c 3853 struct btrfs_key key;
ec44a35c 3854 struct btrfs_key found_key;
f43ffb60
ID
3855 struct extent_buffer *leaf;
3856 int slot;
c9e9f97b
ID
3857 int ret;
3858 int enospc_errors = 0;
19a39dce 3859 bool counting = true;
12907fc7 3860 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
2c9fe835 3867 int chunk_reserved = 0;
ec44a35c 3868
ec44a35c 3869 path = btrfs_alloc_path();
17e9f796
MF
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
19a39dce
ID
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
7d824b6f 3880 if (!counting) {
12907fc7
DS
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
7d824b6f
DS
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
ec44a35c
CM
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
d397712b 3893 while (1) {
19a39dce 3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3895 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
f3372065 3900 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3902 if (ret < 0) {
f3372065 3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3904 goto error;
67c5e7d4 3905 }
ec44a35c
CM
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
c9e9f97b 3912 BUG(); /* FIXME break ? */
ec44a35c
CM
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3916 if (ret) {
f3372065 3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3918 ret = 0;
ec44a35c 3919 break;
c9e9f97b 3920 }
7d9eb12c 3921
f43ffb60
ID
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3925
67c5e7d4 3926 if (found_key.objectid != key.objectid) {
f3372065 3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3928 break;
67c5e7d4 3929 }
7d9eb12c 3930
f43ffb60 3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3932 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3933
19a39dce
ID
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
6ec0896c 3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3941
b3b4aa74 3942 btrfs_release_path(path);
67c5e7d4 3943 if (!ret) {
f3372065 3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3945 goto loop;
67c5e7d4 3946 }
f43ffb60 3947
19a39dce 3948 if (counting) {
f3372065 3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
f3372065 3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3975 goto loop;
3976 }
3977
a6f93c71
LB
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
2c9fe835 3987 if (ret < 0) {
f3372065 3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3989 goto error;
a6f93c71
LB
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
2c9fe835 3992 }
2c9fe835
ZL
3993 }
3994
5b4aacef 3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3997 if (ret == -ENOSPC) {
c9e9f97b 3998 enospc_errors++;
eede2bf3
OS
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
19a39dce
ID
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
f43ffb60 4011loop:
795a3321
ID
4012 if (found_key.offset == 0)
4013 break;
ba1bf481 4014 key.offset = found_key.offset - 1;
ec44a35c 4015 }
c9e9f97b 4016
19a39dce
ID
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
ec44a35c
CM
4022error:
4023 btrfs_free_path(path);
c9e9f97b 4024 if (enospc_errors) {
efe120a0 4025 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4026 enospc_errors);
c9e9f97b
ID
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
ec44a35c
CM
4031 return ret;
4032}
4033
43dd529a
DS
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
0c460c0d
ID
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
c1499166 4055 return has_single_bit_set(flags);
0c460c0d
ID
4056}
4057
837d5b6e
ID
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
a7e99c69
ID
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
4064}
4065
5ba366c3
DS
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
bdcd3c97 4073{
5ba366c3
DS
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
bdcd3c97
AM
4085}
4086
56fc37d9
AJ
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
158da513
DS
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
c9e9f97b 4241/*
dccdb07b 4242 * Should be called with balance mutexe held
c9e9f97b 4243 */
6fcf6e2b
DS
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
14506127 4248 u64 meta_target, data_target;
f43ffb60 4249 u64 allowed;
e4837f8f 4250 int mixed = 0;
c9e9f97b 4251 int ret;
8dabb742 4252 u64 num_devices;
de98ced9 4253 unsigned seq;
e62869be 4254 bool reducing_redundancy;
081db89b 4255 int i;
c9e9f97b 4256
837d5b6e 4257 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4258 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4259 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
e4837f8f
ID
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
f43ffb60
ID
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
e4837f8f
ID
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4277 btrfs_err(fs_info,
6dac13f8 4278 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
b35cf1f0
JB
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4286 * are exclusive
b35cf1f0
JB
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4299
5ba366c3
DS
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
6079e12c
DS
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
de98ced9
MX
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4325 !(bctl->meta.target & allowed)))
e62869be 4326 reducing_redundancy = true;
5a8067c0 4327 else
e62869be 4328 reducing_redundancy = false;
5a8067c0
FM
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4336
e62869be 4337 if (reducing_redundancy) {
5a8067c0
FM
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
e62869be 4340 "balance: force reducing metadata redundancy");
5a8067c0
FM
4341 } else {
4342 btrfs_err(fs_info,
e62869be 4343 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
14506127
AB
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4351 btrfs_warn(fs_info,
6dac13f8 4352 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4355 }
4356
6bccf3ab 4357 ret = insert_balance_item(fs_info, bctl);
59641015 4358 if (ret && ret != -EEXIST)
0940ebf6
ID
4359 goto out;
4360
59641015
ID
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
833aae18
DS
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
59641015
ID
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
c9e9f97b 4373
3009a62f
DS
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4376 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4383 btrfs_info(fs_info, "balance: paused");
efc0e69c
NB
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
44d354ab
QW
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
3009a62f 4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
008ef096 4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4411 }
4412
3a01aa7a
ID
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
149196a2 4415 reset_balance_state(fs_info);
c3e1f96c 4416 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4417 }
4418
837d5b6e 4419 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4420
4421 return ret;
4422out:
59641015 4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4424 reset_balance_state(fs_info);
a17c95df 4425 else
59641015 4426 kfree(bctl);
c3e1f96c 4427 btrfs_exclop_finish(fs_info);
a17c95df 4428
59641015
ID
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
2b6ba629 4434 struct btrfs_fs_info *fs_info = data;
9555c6c1 4435 int ret = 0;
59641015 4436
a690e5f2 4437 sb_start_write(fs_info->sb);
59641015 4438 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4439 if (fs_info->balance_ctl)
6fcf6e2b 4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4441 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4442 sb_end_write(fs_info->sb);
2b6ba629 4443
59641015
ID
4444 return ret;
4445}
4446
2b6ba629
ID
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
1354e1a1 4451 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4452 if (!fs_info->balance_ctl) {
1354e1a1 4453 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4454 return 0;
4455 }
1354e1a1 4456 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4457
3cdde224 4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4459 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4460 return 0;
4461 }
4462
efc0e69c
NB
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
2b6ba629 4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4477 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4478}
4479
68310a5e 4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4481{
59641015
ID
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
59641015 4494 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4496 key.offset = 0;
4497
68310a5e 4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4499 if (ret < 0)
68310a5e 4500 goto out;
59641015
ID
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
68310a5e
ID
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
59641015
ID
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
68310a5e
ID
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
eee95e3f
DS
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
efc0e69c 4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4536 btrfs_warn(fs_info,
6dac13f8 4537 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4538
fb286100
JB
4539 btrfs_release_path(path);
4540
68310a5e 4541 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
68310a5e 4546 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4547out:
4548 btrfs_free_path(path);
ec44a35c
CM
4549 return ret;
4550}
4551
837d5b6e
ID
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
3009a62f 4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
3009a62f 4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
3009a62f 4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
a7e99c69
ID
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
cf7d20f4
DS
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
a7e99c69
ID
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
3009a62f 4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
3009a62f 4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
a7e99c69 4610 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
a7e99c69
ID
4615 mutex_lock(&fs_info->balance_mutex);
4616
a17c95df 4617 if (fs_info->balance_ctl) {
149196a2 4618 reset_balance_state(fs_info);
c3e1f96c 4619 btrfs_exclop_finish(fs_info);
6dac13f8 4620 btrfs_info(fs_info, "balance: canceled");
a17c95df 4621 }
a7e99c69
ID
4622 }
4623
3009a62f
DS
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
97f4dd09 4631int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
803b2f54
SB
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
f45388f3 4642 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4643 bool closing = false;
803b2f54
SB
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
803b2f54 4655 while (1) {
c94bec2c
JB
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
7c829b72
AJ
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
3212fa14 4676 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
803b2f54
SB
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
f45388f3
FDBM
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
803b2f54
SB
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
f45388f3
FDBM
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
9771a5cf 4706 btrfs_release_path(path);
f45388f3 4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
efe120a0 4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4713 ret);
803b2f54
SB
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4719 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
efe120a0 4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4725 ret);
803b2f54
SB
4726 break;
4727 }
4728 }
4729
f45388f3 4730skip:
9771a5cf 4731 btrfs_release_path(path);
803b2f54 4732 if (trans) {
3a45bb20 4733 ret = btrfs_end_transaction(trans);
f45388f3 4734 trans = NULL;
803b2f54
SB
4735 if (ret)
4736 break;
4737 }
4738
803b2f54
SB
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
f45388f3 4756 if (trans && !IS_ERR(trans))
3a45bb20 4757 btrfs_end_transaction(trans);
803b2f54 4758 if (ret)
efe120a0 4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4760 else if (!closing)
afcdd129 4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
f7a81ea4
SB
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
803b2f54
SB
4771 struct task_struct *task;
4772 int ret;
f7a81ea4
SB
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
9b7a2440 4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4783 if (IS_ERR(uuid_root)) {
6d13f549 4784 ret = PTR_ERR(uuid_root);
66642832 4785 btrfs_abort_transaction(trans, ret);
3a45bb20 4786 btrfs_end_transaction(trans);
6d13f549 4787 return ret;
f7a81ea4
SB
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
3a45bb20 4792 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
70f80175 4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
f7a81ea4 4806}
803b2f54 4807
8f18cf13
CM
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
0b246afa
JM
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4817 struct btrfs_trans_handle *trans;
8f18cf13
CM
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
8f18cf13
CM
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
ba1bf481
JB
4824 int failed = 0;
4825 bool retried = false;
8f18cf13
CM
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
0b246afa 4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4829 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4830 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4831 u64 diff;
61d0d0d2 4832 u64 start;
7dfb8be1
NB
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4835 start = new_size;
0e4324a4 4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4837
401e29c1 4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4839 return -EINVAL;
4840
8f18cf13
CM
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
0338dff6 4845 path->reada = READA_BACK;
8f18cf13 4846
61d0d0d2
NB
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
34441361 4853 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4854
7cc8e58d 4855 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4857 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4858 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4859 }
61d0d0d2
NB
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
1c11b63e 4866 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
8f18cf13 4875
ba1bf481 4876again:
8f18cf13
CM
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
213e64da 4881 do {
f3372065 4882 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4884 if (ret < 0) {
f3372065 4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4886 goto done;
67c5e7d4 4887 }
8f18cf13
CM
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4890 if (ret) {
f3372065 4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4892 if (ret < 0)
4893 goto done;
8f18cf13 4894 ret = 0;
b3b4aa74 4895 btrfs_release_path(path);
bf1fb512 4896 break;
8f18cf13
CM
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
ba1bf481 4903 if (key.objectid != device->devid) {
f3372065 4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4905 btrfs_release_path(path);
bf1fb512 4906 break;
ba1bf481 4907 }
8f18cf13
CM
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
ba1bf481 4912 if (key.offset + length <= new_size) {
f3372065 4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4914 btrfs_release_path(path);
d6397bae 4915 break;
ba1bf481 4916 }
8f18cf13 4917
8f18cf13 4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4919 btrfs_release_path(path);
8f18cf13 4920
a6f93c71
LB
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
f3372065 4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4930 goto done;
4931 }
4932
0b246afa 4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4935 if (ret == -ENOSPC) {
ba1bf481 4936 failed++;
eede2bf3
OS
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
213e64da 4945 } while (key.offset-- > 0);
ba1bf481
JB
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
ba1bf481 4953 goto done;
8f18cf13
CM
4954 }
4955
d6397bae 4956 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4957 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
34441361 4963 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
7cc8e58d 4968 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
d6397bae 4972
d6397bae 4973 WARN_ON(diff > old_total);
7dfb8be1
NB
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
34441361 4976 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 4977
2bb2e00e 4978 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
2bb2e00e 4981 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
8f18cf13
CM
4988done:
4989 btrfs_free_path(path);
53e489bc 4990 if (ret) {
34441361 4991 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4992 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4994 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4995 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4996 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4997 }
8f18cf13
CM
4998 return ret;
4999}
5000
2ff7e61e 5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
0b246afa 5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
79bd3712
FM
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
0b86a832 5012 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5013 if (array_size + item_size + sizeof(disk_key)
79bd3712 5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5024
0b86a832
CM
5025 return 0;
5026}
5027
73c5de00
AJ
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5032{
73c5de00
AJ
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
9b3f68b9 5035
73c5de00 5036 if (di_a->max_avail > di_b->max_avail)
b2117a39 5037 return -1;
73c5de00 5038 if (di_a->max_avail < di_b->max_avail)
b2117a39 5039 return 1;
73c5de00
AJ
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
b2117a39 5045}
0b86a832 5046
53b381b3
DW
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
ffe2d203 5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5050 return;
5051
ceda0864 5052 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5053}
5054
cfbb825c
DS
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
4f2bafe8 5063/*
f6f39f7a 5064 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
6aafb303 5088 u64 dev_extent_min;
4f2bafe8
NA
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
27c314d5
NA
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
f6fca391 5098 struct btrfs_space_info *space_info;
27c314d5 5099
f6fca391
SR
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
27c314d5
NA
5108
5109 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
27c314d5 5111 ctl->max_chunk_size);
6aafb303 5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5113}
5114
1cd6121f
NA
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5136 } else {
5137 BUG();
1cd6121f
NA
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
1cd6121f
NA
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
27c314d5
NA
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
1cd6121f
NA
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
27c314d5
NA
5171 default:
5172 BUG();
5173 }
5174}
5175
560156cb
NA
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
b2117a39 5179{
560156cb 5180 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5181 struct btrfs_device *device;
73c5de00 5182 u64 total_avail;
560156cb 5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5184 int ret;
560156cb
NA
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
0cad8a11 5188
9f680ce0 5189 /*
73c5de00
AJ
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
9f680ce0 5192 */
ebcc9301 5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5195 WARN(1, KERN_ERR
efe120a0 5196 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5197 continue;
5198 }
b2117a39 5199
e12c9621
AJ
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
401e29c1 5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5203 continue;
b2117a39 5204
73c5de00
AJ
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
38c01b96 5209
5210 /* If there is no space on this device, skip it. */
6aafb303 5211 if (total_avail < ctl->dev_extent_min)
38c01b96 5212 continue;
b2117a39 5213
560156cb
NA
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
73c5de00 5216 if (ret && ret != -ENOSPC)
560156cb 5217 return ret;
b2117a39 5218
73c5de00 5219 if (ret == 0)
560156cb 5220 max_avail = dev_extent_want;
b2117a39 5221
6aafb303 5222 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
560156cb 5225 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5226 __func__, device->devid, max_avail,
6aafb303 5227 ctl->dev_extent_min);
73c5de00 5228 continue;
4117f207 5229 }
b2117a39 5230
063d006f
ES
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
73c5de00
AJ
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
560156cb 5242 ctl->ndevs = ndevs;
b2117a39 5243
73c5de00
AJ
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
560156cb 5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5248 btrfs_cmp_device_info, NULL);
b2117a39 5249
560156cb
NA
5250 return 0;
5251}
5252
5badf512
NA
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5da431b7
QW
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5badf512
NA
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
1cd6121f
NA
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5badf512
NA
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5361 default:
5362 BUG();
5363 }
5364}
5365
79bd3712 5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
560156cb
NA
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
79bd3712 5373 struct btrfs_block_group *block_group;
560156cb 5374 struct extent_map *em;
dce580ca
NA
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
560156cb
NA
5377 int ret;
5378 int i;
5379 int j;
5380
dce580ca
NA
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
79bd3712 5383 return ERR_PTR(-ENOMEM);
dce580ca 5384 map->num_stripes = ctl->num_stripes;
560156cb 5385
dce580ca
NA
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5391 j * ctl->stripe_size;
6324fbf3 5392 }
6324fbf3 5393 }
500ceed8
NB
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5397 map->type = type;
dce580ca 5398 map->sub_stripes = ctl->sub_stripes;
0b86a832 5399
dce580ca 5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5401
172ddd60 5402 em = alloc_extent_map();
2b82032c 5403 if (!em) {
298a8f9c 5404 kfree(map);
79bd3712 5405 return ERR_PTR(-ENOMEM);
593060d7 5406 }
298a8f9c 5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5408 em->map_lookup = map;
2b82032c 5409 em->start = start;
dce580ca 5410 em->len = ctl->chunk_size;
2b82032c
YZ
5411 em->block_start = 0;
5412 em->block_len = em->len;
dce580ca 5413 em->orig_block_len = ctl->stripe_size;
593060d7 5414
c8bf1b67 5415 em_tree = &info->mapping_tree;
890871be 5416 write_lock(&em_tree->lock);
09a2a8f9 5417 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5418 if (ret) {
1efb72a3 5419 write_unlock(&em_tree->lock);
0f5d42b2 5420 free_extent_map(em);
79bd3712 5421 return ERR_PTR(ret);
0f5d42b2 5422 }
1efb72a3
NB
5423 write_unlock(&em_tree->lock);
5424
79bd3712
FM
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
6df9a95e 5427 goto error_del_extent;
2b82032c 5428
bbbf7243
NB
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
4f2bafe8 5432 btrfs_device_set_bytes_used(dev,
dce580ca 5433 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
43530c46 5438
dce580ca 5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5440 &info->free_chunk_space);
1c116187 5441
0f5d42b2 5442 free_extent_map(em);
0b246afa 5443 check_raid56_incompat_flag(info, type);
cfbb825c 5444 check_raid1c34_incompat_flag(info, type);
53b381b3 5445
79bd3712 5446 return block_group;
b2117a39 5447
6df9a95e 5448error_del_extent:
0f5d42b2
JB
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
dce580ca 5457
79bd3712 5458 return block_group;
dce580ca
NA
5459}
5460
f6f39f7a 5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5462 u64 type)
dce580ca
NA
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
79bd3712 5468 struct btrfs_block_group *block_group;
dce580ca
NA
5469 int ret;
5470
11c67b1a
NB
5471 lockdep_assert_held(&info->chunk_mutex);
5472
dce580ca
NA
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
79bd3712 5475 return ERR_PTR(-EINVAL);
dce580ca
NA
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5481 return ERR_PTR(-ENOSPC);
dce580ca
NA
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
79bd3712 5487 return ERR_PTR(-EINVAL);
dce580ca
NA
5488 }
5489
11c67b1a 5490 ctl.start = find_next_chunk(info);
dce580ca
NA
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
79bd3712 5497 return ERR_PTR(-ENOMEM);
dce580ca
NA
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
dce580ca 5502 goto out;
79bd3712 5503 }
dce580ca
NA
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
dce580ca 5508 goto out;
79bd3712 5509 }
dce580ca 5510
79bd3712 5511 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5512
5513out:
b2117a39 5514 kfree(devices_info);
79bd3712 5515 return block_group;
2b82032c
YZ
5516}
5517
79bd3712
FM
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
50460e37 5578 goto out;
2b82032c
YZ
5579 }
5580
79bd3712
FM
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
2b82032c 5589 stripe = &chunk->stripe;
6df9a95e 5590 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5593
e17cade2
CM
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5597 stripe++;
0b86a832
CM
5598 }
5599
79bd3712 5600 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
2b82032c
YZ
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5609
2b82032c
YZ
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5612 key.offset = bg->start;
0b86a832 5613
2b82032c 5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5615 if (ret)
5616 goto out;
5617
3349b57f 5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
79bd3712
FM
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5622 if (ret)
5623 goto out;
8f18cf13 5624 }
1abe9b8a 5625
6df9a95e 5626out:
0b86a832 5627 kfree(chunk);
6df9a95e 5628 free_extent_map(em);
4ed1d16e 5629 return ret;
2b82032c 5630}
0b86a832 5631
6f8e0fc7 5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5633{
6f8e0fc7 5634 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5635 u64 alloc_profile;
79bd3712
FM
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
2b82032c 5659
1b86826d 5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
2b82032c 5664
1b86826d 5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
2b82032c
YZ
5671}
5672
d20983b4
MX
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
fc9a2ac7 5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5676
fc9a2ac7 5677 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5678}
5679
a09f23c3 5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
d20983b4 5684 int miss_ndevs = 0;
2b82032c 5685 int i;
a09f23c3 5686 bool ret = true;
2b82032c 5687
60ca842e 5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5689 if (IS_ERR(em))
a09f23c3 5690 return false;
2b82032c 5691
95617d69 5692 map = em->map_lookup;
2b82032c 5693 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5696 miss_ndevs++;
5697 continue;
5698 }
ebbede42
AJ
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
a09f23c3 5701 ret = false;
d20983b4 5702 goto end;
2b82032c
YZ
5703 }
5704 }
d20983b4
MX
5705
5706 /*
a09f23c3
AJ
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
d20983b4
MX
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5711 ret = false;
d20983b4 5712end:
0b86a832 5713 free_extent_map(em);
a09f23c3 5714 return ret;
0b86a832
CM
5715}
5716
c8bf1b67 5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5718{
5719 struct extent_map *em;
5720
d397712b 5721 while (1) {
c8bf1b67
DS
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5724 if (em)
c8bf1b67
DS
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
0b86a832
CM
5727 if (!em)
5728 break;
0b86a832
CM
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5d964051 5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
6d322b48
QW
5740 enum btrfs_raid_types index;
5741 int ret = 1;
f188591e 5742
60ca842e 5743 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
fb7669b5 5751 return 1;
fb7669b5 5752
95617d69 5753 map = em->map_lookup;
6d322b48
QW
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
53b381b3
DW
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
e7e02096 5765 *
8810f751
LB
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
f188591e 5770 free_extent_map(em);
ad6d620e 5771
cb5583dd 5772 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
ad6d620e 5775 ret++;
cb5583dd 5776 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5777
f188591e
CM
5778 return ret;
5779}
5780
2ff7e61e 5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
0b246afa 5786 unsigned long len = fs_info->sectorsize;
53b381b3 5787
b036f479
QW
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
60ca842e 5791 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5792
69f03f13
NB
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
53b381b3
DW
5799 return len;
5800}
5801
e4ff5fb5 5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
53b381b3
DW
5806 int ret = 0;
5807
b036f479
QW
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
60ca842e 5811 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5812
69f03f13
NB
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
53b381b3
DW
5819 return ret;
5820}
5821
30d9861f 5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5823 struct map_lookup *map, int first,
8ba0ae78 5824 int dev_replace_is_ongoing)
dfe25020
CM
5825{
5826 int i;
99f92a7c 5827 int num_stripes;
8ba0ae78 5828 int preferred_mirror;
30d9861f
SB
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
99f92a7c 5832 ASSERT((map->type &
c7369b3f 5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
33fd2f71
AJ
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
8ba0ae78 5852
30d9861f
SB
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
99f92a7c 5869 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
dfe25020 5874 }
30d9861f 5875
dfe25020
CM
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
8ba0ae78 5879 return preferred_mirror;
dfe25020
CM
5880}
5881
53b381b3 5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4c664611 5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
53b381b3 5884{
53b381b3 5885 int i;
53b381b3
DW
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
cc7539ed 5890 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172 5891 /* Swap if parity is on a smaller index */
4c664611
QW
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
53b381b3
DW
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
731ccf15
QW
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
4c664611 5903 int real_stripes)
6e9606d2 5904{
4c664611
QW
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
6e9606d2 5911 sizeof(int) * (real_stripes) +
e57cf21e 5912 /*
4c664611
QW
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
e57cf21e
CM
5915 */
5916 sizeof(u64) * (total_stripes),
9f0eac07
L
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
6e9606d2 5921
4c664611 5922 refcount_set(&bioc->refs, 1);
6e9606d2 5923
731ccf15 5924 bioc->fs_info = fs_info;
4c664611
QW
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
608769a4 5927
4c664611 5928 return bioc;
6e9606d2
ZL
5929}
5930
4c664611 5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5932{
4c664611
QW
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
6e9606d2
ZL
5935}
5936
4c664611 5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5938{
4c664611 5939 if (!bioc)
6e9606d2 5940 return;
4c664611
QW
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
6e9606d2
ZL
5943}
5944
0b3d4cd3
LB
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
a4012f06
CH
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
0b3d4cd3
LB
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
a4012f06 5955 struct btrfs_discard_stripe *stripes;
6b7faadd 5956 u64 length = *length_ret;
0b3d4cd3
LB
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
0b3d4cd3
LB
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
a4012f06 5970 int ret;
0b3d4cd3
LB
5971 int i;
5972
60ca842e 5973 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3 5974 if (IS_ERR(em))
a4012f06 5975 return ERR_CAST(em);
0b3d4cd3
LB
5976
5977 map = em->map_lookup;
a4012f06 5978
0b3d4cd3
LB
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
a4012f06
CH
5982 goto out_free_map;
5983}
0b3d4cd3
LB
5984
5985 offset = logical - em->start;
2d974619 5986 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5987 *length_ret = length;
0b3d4cd3
LB
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
a4012f06 6009 *num_stripes = 1;
0b3d4cd3
LB
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
a4012f06 6019 *num_stripes = min_t(u64, map->num_stripes,
0b3d4cd3
LB
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
c7369b3f 6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3 6028 BTRFS_BLOCK_GROUP_DUP)) {
a4012f06 6029 *num_stripes = map->num_stripes;
0b3d4cd3
LB
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
a4012f06
CH
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
0b3d4cd3 6037 ret = -ENOMEM;
a4012f06 6038 goto out_free_map;
0b3d4cd3
LB
6039 }
6040
a4012f06
CH
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
0b3d4cd3
LB
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
a4012f06 6045 stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
a4012f06 6049 stripes[i].length = stripes_per_dev * map->stripe_len;
0b3d4cd3
LB
6050
6051 if (i / sub_stripes < remaining_stripes)
a4012f06 6052 stripes[i].length += map->stripe_len;
0b3d4cd3
LB
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
a4012f06 6063 stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
a4012f06 6068 stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
a4012f06 6073 stripes[i].length = length;
0b3d4cd3
LB
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
0b3d4cd3 6083 free_extent_map(em);
a4012f06
CH
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
0b3d4cd3
LB
6088}
6089
5ab56090
LB
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
4c664611 6108 struct btrfs_io_context *bioc = NULL;
5ab56090
LB
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
03793cbb 6117 logical, &length, &bioc, NULL, NULL, 0);
5ab56090 6118 if (ret) {
4c664611 6119 ASSERT(bioc == NULL);
5ab56090
LB
6120 return ret;
6121 }
6122
4c664611 6123 num_stripes = bioc->num_stripes;
5ab56090
LB
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
4c664611 6130 btrfs_put_bioc(bioc);
5ab56090
LB
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
4c664611 6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
5ab56090
LB
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
4c664611 6148 physical_of_found <= bioc->stripes[i].physical)
5ab56090
LB
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
4c664611 6153 physical_of_found = bioc->stripes[i].physical;
5ab56090
LB
6154 }
6155
4c664611 6156 btrfs_put_bioc(bioc);
5ab56090
LB
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6143c23c
NA
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
de17addc 6172 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
3349b57f 6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6143c23c
NA
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
73c0f228 6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
4c664611 6185 struct btrfs_io_context **bioc_ret,
73c0f228 6186 struct btrfs_dev_replace *dev_replace,
6143c23c 6187 u64 logical,
73c0f228
LB
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
4c664611 6190 struct btrfs_io_context *bioc = *bioc_ret;
73c0f228
LB
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6143c23c
NA
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
73c0f228
LB
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
4c664611 6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228 6221 /* write to new disk, too */
4c664611
QW
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
73c0f228
LB
6226
6227 new->physical = old->physical;
73c0f228 6228 new->dev = dev_replace->tgtdev;
4c664611 6229 bioc->tgtdev_map[i] = index_where_to_add;
73c0f228
LB
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
4c664611 6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228
LB
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
4c664611 6256 physical_of_found <= bioc->stripes[i].physical)
73c0f228
LB
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
4c664611 6260 physical_of_found = bioc->stripes[i].physical;
73c0f228
LB
6261 }
6262 }
6263 if (found) {
4c664611
QW
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
73c0f228
LB
6266
6267 tgtdev_stripe->physical = physical_of_found;
73c0f228 6268 tgtdev_stripe->dev = dev_replace->tgtdev;
4c664611 6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
73c0f228
LB
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
4c664611
QW
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
73c0f228
LB
6280}
6281
2b19a1fe
LB
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
5f141126 6287/*
42034313
MR
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
5f141126 6291 *
42034313
MR
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
42034313 6296 * @io_geom: pointer used to return values
5f141126
NB
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
42034313 6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6302 enum btrfs_map_op op, u64 logical,
42034313 6303 struct btrfs_io_geometry *io_geom)
5f141126 6304{
5f141126 6305 struct map_lookup *map;
43c0d1a5 6306 u64 len;
5f141126
NB
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
cc353a8b 6310 u32 stripe_len;
5f141126
NB
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
5f141126
NB
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
cc353a8b
QW
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
5f141126 6327
5f141126
NB
6328 data_stripes = nr_data_stripes(map);
6329
bf08387f
QW
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
5f141126
NB
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
42034313 6371 return 0;
5f141126
NB
6372}
6373
03793cbb
CH
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
103c1972
CH
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
0b86a832
CM
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
593060d7
CM
6390 u64 stripe_offset;
6391 u64 stripe_nr;
53b381b3 6392 u64 stripe_len;
9d644a62 6393 u32 stripe_index;
cff82672 6394 int data_stripes;
cea9e445 6395 int i;
de11cc12 6396 int ret = 0;
03793cbb 6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
f2d8d74d 6398 int num_stripes;
a236aed1 6399 int max_errors = 0;
2c8cdd6e 6400 int tgtdev_indexes = 0;
4c664611 6401 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
ad6d620e
SB
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6407 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6408 struct btrfs_io_geometry geom;
6409
4c664611 6410 ASSERT(bioc_ret);
75fb2e9e 6411 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6412
42034313
MR
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
43c0d1a5 6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6417 if (ret < 0)
6418 return ret;
0b86a832 6419
95617d69 6420 map = em->map_lookup;
593060d7 6421
89b798ad 6422 *length = geom.len;
89b798ad
NB
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6427 data_stripes = nr_data_stripes(map);
593060d7 6428
cb5583dd 6429 down_read(&dev_replace->rwsem);
472262f3 6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
472262f3 6435 if (!dev_replace_is_ongoing)
cb5583dd 6436 up_read(&dev_replace->rwsem);
472262f3 6437
ad6d620e 6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
ad6d620e 6445 goto out;
5ab56090
LB
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
f2d8d74d 6452 num_stripes = 1;
cea9e445 6453 stripe_index = 0;
fce3bb9a 6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
de483734 6457 if (!need_full_stripe(op))
28e1cc7d 6458 mirror_num = 1;
c7369b3f 6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6460 if (need_full_stripe(op))
f2d8d74d 6461 num_stripes = map->num_stripes;
2fff734f 6462 else if (mirror_num)
f188591e 6463 stripe_index = mirror_num - 1;
dfe25020 6464 else {
30d9861f 6465 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6466 dev_replace_is_ongoing);
a1d3c478 6467 mirror_num = stripe_index + 1;
dfe25020 6468 }
2fff734f 6469
611f0e00 6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6471 if (need_full_stripe(op)) {
f2d8d74d 6472 num_stripes = map->num_stripes;
a1d3c478 6473 } else if (mirror_num) {
f188591e 6474 stripe_index = mirror_num - 1;
a1d3c478
JS
6475 } else {
6476 mirror_num = 1;
6477 }
2fff734f 6478
321aecc6 6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6480 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6481
47c5713f 6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6483 stripe_index *= map->sub_stripes;
6484
de483734 6485 if (need_full_stripe(op))
f2d8d74d 6486 num_stripes = map->sub_stripes;
321aecc6
CM
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
dfe25020 6489 else {
3e74317a 6490 int old_stripe_index = stripe_index;
30d9861f
SB
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
30d9861f 6493 dev_replace_is_ongoing);
3e74317a 6494 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6495 }
53b381b3 6496
ffe2d203 6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
ff18a4af 6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
de483734 6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6500 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6501 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6502 stripe_len * data_stripes);
53b381b3
DW
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6dead96c 6506 max_errors = btrfs_chunk_max_errors(map);
53b381b3 6507
462b0b2a
QW
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
53b381b3
DW
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
47c5713f 6520 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6521 data_stripes, &stripe_index);
53b381b3 6522 if (mirror_num > 1)
cff82672 6523 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6524
6525 /* We distribute the parity blocks across stripes */
47c5713f
DS
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
de483734 6528 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6529 mirror_num = 1;
53b381b3 6530 }
8790d502
CM
6531 } else {
6532 /*
47c5713f
DS
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
8790d502 6536 */
47c5713f
DS
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
a1d3c478 6539 mirror_num = stripe_index + 1;
8790d502 6540 }
e042d1ec 6541 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
cea9e445 6548
472262f3 6549 num_alloc_stripes = num_stripes;
6fad823f 6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6551 if (op == BTRFS_MAP_WRITE)
ad6d620e 6552 num_alloc_stripes <<= 1;
cf8cddd3 6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6554 num_alloc_stripes++;
2c8cdd6e 6555 tgtdev_indexes = num_stripes;
ad6d620e 6556 }
2c8cdd6e 6557
03793cbb
CH
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
731ccf15 6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
4c664611 6582 if (!bioc) {
de11cc12
LZ
6583 ret = -ENOMEM;
6584 goto out;
6585 }
608769a4
NB
6586
6587 for (i = 0; i < num_stripes; i++) {
03793cbb
CH
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
608769a4
NB
6590 stripe_index++;
6591 }
de11cc12 6592
4c664611 6593 /* Build raid_map */
2b19a1fe
LB
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6596 u64 tmp;
9d644a62 6597 unsigned rot;
8e5cfb55 6598
8e5cfb55 6599 /* Work out the disk rotation on this stripe-set */
47c5713f 6600 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6601
6602 /* Fill in the logical address of each stripe */
cff82672
DS
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
4c664611 6605 bioc->raid_map[(i + rot) % num_stripes] =
8e5cfb55
ZL
6606 em->start + (tmp + i) * map->stripe_len;
6607
4c664611 6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
8e5cfb55 6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4c664611 6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
8e5cfb55 6611 RAID6_Q_STRIPE;
8e5cfb55 6612
4c664611 6613 sort_parity_stripes(bioc, num_stripes);
593060d7 6614 }
de11cc12 6615
2b19a1fe 6616 if (need_full_stripe(op))
d20983b4 6617 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6618
73c0f228 6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6620 need_full_stripe(op)) {
4c664611 6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6143c23c 6622 &num_stripes, &max_errors);
472262f3
SB
6623 }
6624
4c664611
QW
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
ad6d620e
SB
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
4c664611
QW
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
ad6d620e 6641 }
cea9e445 6642out:
73beece9 6643 if (dev_replace_is_ongoing) {
53176dde
DS
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
cb5583dd 6646 up_read(&dev_replace->rwsem);
73beece9 6647 }
0b86a832 6648 free_extent_map(em);
de11cc12 6649 return ret;
0b86a832
CM
6650}
6651
cf8cddd3 6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6653 u64 logical, u64 *length,
4c664611 6654 struct btrfs_io_context **bioc_ret, int mirror_num)
f2d8d74d 6655{
4c664611 6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
03793cbb 6657 NULL, &mirror_num, 0);
f2d8d74d
CM
6658}
6659
af8e2d1d 6660/* For Scrub/replace */
cf8cddd3 6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6662 u64 logical, u64 *length,
4c664611 6663 struct btrfs_io_context **bioc_ret)
af8e2d1d 6664{
03793cbb
CH
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
af8e2d1d
MX
6667}
6668
562d7b15
JB
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
0fca385d
LS
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
562d7b15 6688
0fca385d 6689 if (device->devid != args->devid)
562d7b15
JB
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
0fca385d 6693 return true;
562d7b15
JB
6694}
6695
09ba3bc9
AJ
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
09ba3bc9 6702 */
562d7b15
JB
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
0b86a832 6705{
2b82032c 6706 struct btrfs_device *device;
944d3f9f
NB
6707 struct btrfs_fs_devices *seed_devs;
6708
562d7b15 6709 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6711 if (dev_args_match_device(args, device))
944d3f9f
NB
6712 return device;
6713 }
6714 }
2b82032c 6715
944d3f9f 6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
2b82032c 6722 }
2b82032c 6723 }
944d3f9f 6724
2b82032c 6725 return NULL;
0b86a832
CM
6726}
6727
2ff7e61e 6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
fccc0007 6732 unsigned int nofs_flag;
dfe25020 6733
fccc0007
JB
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
bb21e302 6740
fccc0007 6741 nofs_flag = memalloc_nofs_save();
bb21e302 6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
fccc0007 6743 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6744 if (IS_ERR(device))
adfb69af 6745 return device;
12bd2fc0
ID
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6748 device->fs_devices = fs_devices;
dfe25020 6749 fs_devices->num_devices++;
12bd2fc0 6750
e6e674bd 6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6752 fs_devices->missing_devices++;
12bd2fc0 6753
dfe25020
CM
6754 return device;
6755}
6756
43dd529a
DS
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
12bd2fc0
ID
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
bb21e302 6766 * @path: a pointer to device path if available, NULL otherwise.
12bd2fc0
ID
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6769 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6770 * destroyed with btrfs_free_device.
12bd2fc0
ID
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
bb21e302
AJ
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
12bd2fc0
ID
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
fae7f21c 6779 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6780 return ERR_PTR(-EINVAL);
12bd2fc0 6781
fe4f46d4
DS
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
fe4f46d4
DS
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
fe4f46d4
DS
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
35da5a7e 6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
12bd2fc0
ID
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
a425f9d4 6801 btrfs_free_device(dev);
12bd2fc0
ID
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
bb21e302
AJ
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
12bd2fc0
ID
6823 return dev;
6824}
6825
5a2b8e60 6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6827 u64 devid, u8 *uuid, bool error)
5a2b8e60 6828{
2b902dfc
AJ
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
5a2b8e60
AJ
6835}
6836
bc88b486 6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
39e264a4 6838{
bc88b486
QW
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
e4f6c6be 6841
bc88b486 6842 return div_u64(em->len, data_stripes);
39e264a4
NB
6843}
6844
e9306ad4
QW
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
ff37c89f
NB
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
9690ac09 6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6907 struct btrfs_chunk *chunk)
6908{
562d7b15 6909 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
e06cd3dd 6916 u64 devid;
e9306ad4 6917 u64 type;
e06cd3dd 6918 u8 uuid[BTRFS_UUID_SIZE];
76a66ba1 6919 int index;
e06cd3dd
LB
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6926 type = btrfs_chunk_type(leaf, chunk);
76a66ba1 6927 index = btrfs_bg_flags_to_raid_index(type);
e06cd3dd
LB
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
e9306ad4
QW
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
075cb3c7
QW
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6943 if (ret)
6944 return ret;
6945 }
a061fc8d 6946
c8bf1b67
DS
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
0b86a832
CM
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
0b86a832
CM
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
0b86a832 6958
172ddd60 6959 em = alloc_extent_map();
0b86a832
CM
6960 if (!em)
6961 return -ENOMEM;
593060d7 6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
298a8f9c 6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6969 em->map_lookup = map;
0b86a832
CM
6970 em->start = logical;
6971 em->len = length;
70c8a91c 6972 em->orig_start = 0;
0b86a832 6973 em->block_start = 0;
c8b97818 6974 em->block_len = em->len;
0b86a832 6975
593060d7
CM
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 6980 map->type = type;
76a66ba1
QW
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
cf90d884 6990 map->verified_stripes = 0;
bc88b486 6991 em->orig_block_len = btrfs_calc_stripe_length(em);
593060d7
CM
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 6996 args.devid = devid;
a443755f
CM
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
562d7b15
JB
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 7002 if (!map->stripes[i].dev) {
ff37c89f
NB
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
adfb69af 7005 if (IS_ERR(map->stripes[i].dev)) {
1742e1c9 7006 ret = PTR_ERR(map->stripes[i].dev);
dfe25020 7007 free_extent_map(em);
1742e1c9 7008 return ret;
dfe25020
CM
7009 }
7010 }
ff37c89f 7011
e12c9621
AJ
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
0b86a832
CM
7014 }
7015
c8bf1b67
DS
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
64f64f43
QW
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
0b86a832
CM
7024 free_extent_map(em);
7025
64f64f43 7026 return ret;
0b86a832
CM
7027}
7028
143bede5 7029static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
0b86a832
CM
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
935e5cc9 7038 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7040 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7047
410ba3a2 7048 ptr = btrfs_device_uuid(dev_item);
e17cade2 7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7050}
7051
2ff7e61e 7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7053 u8 *fsid)
2b82032c
YZ
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
a32bf9a3 7058 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7059 ASSERT(fsid);
2b82032c 7060
427c8fdd 7061 /* This will match only for multi-device seed fs */
944d3f9f 7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7064 return fs_devices;
7065
2b82032c 7066
7239ff4b 7067 fs_devices = find_fsid(fsid, NULL);
2b82032c 7068 if (!fs_devices) {
0b246afa 7069 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7070 return ERR_PTR(-ENOENT);
7071
7239ff4b 7072 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
0395d84f 7076 fs_devices->seeding = true;
5f375835
MX
7077 fs_devices->opened = 1;
7078 return fs_devices;
2b82032c 7079 }
e4404d6e 7080
427c8fdd
NB
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
e4404d6e 7085 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
2b82032c 7088
897fb573 7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7090 if (ret) {
7091 free_fs_devices(fs_devices);
c83b60c0 7092 return ERR_PTR(ret);
48d28232 7093 }
2b82032c
YZ
7094
7095 if (!fs_devices->seeding) {
0226e0eb 7096 close_fs_devices(fs_devices);
e4404d6e 7097 free_fs_devices(fs_devices);
c83b60c0 7098 return ERR_PTR(-EINVAL);
2b82032c
YZ
7099 }
7100
944d3f9f 7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7102
5f375835 7103 return fs_devices;
2b82032c
YZ
7104}
7105
17850759 7106static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7107 struct btrfs_dev_item *dev_item)
7108{
562d7b15 7109 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
44880fdc 7115 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
c1867eb3
DS
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
410ba3a2 7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7121 BTRFS_UUID_SIZE);
1473b24e 7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7123 BTRFS_FSID_SIZE);
562d7b15
JB
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
2b82032c 7126
de37aa51 7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
2b82032c
YZ
7131 }
7132
562d7b15 7133 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 7134 if (!device) {
c5502451 7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
45dbdbc9 7138 return -ENOENT;
c5502451 7139 }
2b82032c 7140
2ff7e61e 7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
2b902dfc 7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7149 } else {
c5502451 7150 if (!device->bdev) {
2b902dfc
AJ
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
45dbdbc9 7154 return -ENOENT;
2b902dfc
AJ
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
c5502451 7158 }
5f375835 7159
e6e674bd
AJ
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
5f375835 7168 device->fs_devices->missing_devices++;
e6e674bd 7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7170 }
5f375835
MX
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
5f375835
MX
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
2b82032c
YZ
7186 }
7187
0b246afa 7188 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
6324fbf3 7193 }
0b86a832
CM
7194
7195 fill_device_from_item(leaf, dev_item, device);
3a160a93 7196 if (device->bdev) {
cda00eba 7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
e12c9621 7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7209 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
2bf64758 7212 }
0b86a832 7213 ret = 0;
0b86a832
CM
7214 return ret;
7215}
7216
6bccf3ab 7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7218{
ab8d0fc4 7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7220 struct extent_buffer *sb;
0b86a832 7221 struct btrfs_disk_key *disk_key;
0b86a832 7222 struct btrfs_chunk *chunk;
1ffb22cf
DS
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
84eed90f 7225 int ret = 0;
0b86a832
CM
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
1ffb22cf 7229 u32 cur_offset;
e06cd3dd 7230 u64 type;
84eed90f 7231 struct btrfs_key key;
0b86a832 7232
0b246afa 7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7234
a83fffb7 7235 /*
e959d3c1
QW
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7239 */
e959d3c1
QW
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
4db8c528 7243 set_extent_buffer_uptodate(sb);
4008c04a 7244
a061fc8d 7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
1ffb22cf
DS
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
0b86a832 7251
1ffb22cf
DS
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
0b86a832
CM
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
1ffb22cf
DS
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
0b86a832 7263
32ab3d1b
JT
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
f5cdedd7 7271
32ab3d1b
JT
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
e06cd3dd 7280
32ab3d1b
JT
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
e3540eab 7289
32ab3d1b
JT
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7292 btrfs_err(fs_info,
32ab3d1b
JT
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
84eed90f
CM
7295 ret = -EIO;
7296 break;
0b86a832 7297 }
32ab3d1b
JT
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
1ffb22cf
DS
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
0b86a832 7310 }
d865177a 7311 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7312 free_extent_buffer_stale(sb);
84eed90f 7313 return ret;
e3540eab
DS
7314
7315out_short_read:
ab8d0fc4 7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7317 len, cur_offset);
d865177a 7318 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7319 free_extent_buffer_stale(sb);
e3540eab 7320 return -EIO;
0b86a832
CM
7321}
7322
21634a19
QW
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
6528b99d
AJ
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
21634a19
QW
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
6528b99d
AJ
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
21634a19 7333{
c8bf1b67 7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
c8bf1b67
DS
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
21634a19
QW
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
e6e674bd
AJ
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7362 dev->last_flush_error)
7363 missing++;
6528b99d
AJ
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
21634a19
QW
7366 }
7367 if (missing > max_tolerated) {
6528b99d
AJ
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
52042d8e 7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
c8bf1b67
DS
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7381 (u64)(-1) - next_start);
c8bf1b67 7382 read_unlock(&map_tree->lock);
21634a19
QW
7383 }
7384out:
7385 return ret;
7386}
7387
d85327b1
DS
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
bfb484d9
JB
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
d85327b1
DS
7395}
7396
5b4aacef 7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7398{
5b4aacef 7399 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
43cb1478 7406 int iter_ret = 0;
99e3ecfc 7407 u64 total_dev = 0;
d85327b1 7408 u64 last_ra_node = 0;
0b86a832 7409
0b86a832
CM
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
3dd0f7a3
AJ
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
b367e47f 7418 mutex_lock(&uuid_mutex);
b367e47f 7419
48cfa61b
BB
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
4d9380e0
FM
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
395927a9
FDBM
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
43cb1478
GN
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
d85327b1 7452
0b86a832
CM
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
43cb1478 7455
d85327b1
DS
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
395927a9
FDBM
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7465 struct btrfs_dev_item);
17850759 7466 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7467 if (ret)
7468 goto error;
99e3ecfc 7469 total_dev++;
0b86a832
CM
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
79bd3712
FM
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
0b86a832 7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7482 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7483 if (ret)
7484 goto error;
0b86a832 7485 }
43cb1478
GN
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
0b86a832 7491 }
99e3ecfc
LB
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
0b246afa 7497 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7500 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7501 total_dev);
d201238c
QW
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7504 }
0b246afa
JM
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
99e3ecfc 7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7511 ret = -EINVAL;
7512 goto error;
7513 }
0b86a832
CM
7514 ret = 0;
7515error:
b367e47f
LZ
7516 mutex_unlock(&uuid_mutex);
7517
2b82032c 7518 btrfs_free_path(path);
0b86a832
CM
7519 return ret;
7520}
442a4f63 7521
a8d1b164 7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
cb517eab 7523{
944d3f9f 7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab 7525 struct btrfs_device *device;
a8d1b164 7526 int ret = 0;
cb517eab 7527
944d3f9f
NB
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
944d3f9f
NB
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
a8d1b164 7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
fb456252 7536 device->fs_info = fs_info;
a8d1b164
JT
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
29cc83f6 7541
944d3f9f 7542 seed_devs->fs_info = fs_info;
29cc83f6 7543 }
e17125b5 7544 mutex_unlock(&fs_devices->device_list_mutex);
a8d1b164
JT
7545
7546 return ret;
cb517eab
MX
7547}
7548
1dc990df
DS
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
92e26df4
JB
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
733f4fbb 7574{
124604eb 7575 struct btrfs_dev_stats_item *ptr;
733f4fbb 7576 struct extent_buffer *eb;
124604eb
JB
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
82d62d06
JB
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
124604eb
JB
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
92e26df4 7593 return ret < 0 ? ret : 0;
124604eb
JB
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
3212fa14 7597 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
92e26df4
JB
7612
7613 return 0;
124604eb
JB
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
92e26df4 7621 int ret = 0;
733f4fbb
SB
7622
7623 path = btrfs_alloc_path();
3b80a984
AJ
7624 if (!path)
7625 return -ENOMEM;
733f4fbb
SB
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
124604eb 7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
733f4fbb 7639 }
92e26df4 7640out:
733f4fbb
SB
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
733f4fbb 7643 btrfs_free_path(path);
92e26df4 7644 return ret;
733f4fbb
SB
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7648 struct btrfs_device *device)
7649{
5495f195 7650 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7651 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
242e2956
DS
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
fa252992
DS
7664 if (!path)
7665 return -ENOMEM;
733f4fbb
SB
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
0b246afa 7668 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7669 "error %d while searching for dev_stats item for device %s",
cb3e217b 7670 ret, btrfs_dev_name(device));
733f4fbb
SB
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
3212fa14 7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
0b246afa 7679 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7680 "delete too small dev_stats item for device %s failed %d",
cb3e217b 7681 btrfs_dev_name(device), ret);
733f4fbb
SB
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
0b246afa 7693 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7694 "insert dev_stats item for device %s failed %d",
cb3e217b 7695 btrfs_dev_name(device), ret);
733f4fbb
SB
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
196c9d8d 7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7716{
196c9d8d 7717 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
addc3fa7 7720 int stats_cnt;
733f4fbb
SB
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7727 continue;
7728
9deae968
NB
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
5495f195 7743 ret = update_dev_stat_item(trans, device);
733f4fbb 7744 if (!ret)
addc3fa7 7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
442a4f63
SB
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
442a4f63 7755
733f4fbb
SB
7756 if (!dev->dev_stats_valid)
7757 return;
fb456252 7758 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7760 btrfs_dev_name(dev),
442a4f63
SB
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7766}
c11d2c23 7767
733f4fbb
SB
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
a98cdb85
SB
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
fb456252 7778 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7780 btrfs_dev_name(dev),
733f4fbb
SB
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
2ff7e61e 7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7789 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7790{
562d7b15 7791 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7792 struct btrfs_device *dev;
0b246afa 7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
0b246afa 7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7803 return -ENODEV;
733f4fbb 7804 } else if (!dev->dev_stats_valid) {
0b246afa 7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7806 return -ENODEV;
b27f7c0c 7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
4e411a7d 7813 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7814 }
a69976bc
AJ
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
c11d2c23
SB
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
a8a6dab7 7826
935e5cc9 7827/*
bbbf7243
NB
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
935e5cc9 7833 */
bbbf7243 7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7835{
935e5cc9
MX
7836 struct btrfs_device *curr, *next;
7837
bbbf7243 7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7839
bbbf7243 7840 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7841 return;
7842
bbbf7243
NB
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7854 }
bbbf7243 7855 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7856}
5a13f430 7857
46df06b8
DS
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
44b28ada
DS
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
46df06b8 7866}
cf90d884
QW
7867
7868
cf90d884
QW
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
562d7b15 7874 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7876 struct extent_map *em;
7877 struct map_lookup *map;
05a37c48 7878 struct btrfs_device *dev;
cf90d884
QW
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
bc88b486 7897 stripe_len = btrfs_calc_stripe_length(em);
cf90d884
QW
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
3613249a
QW
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
cf90d884
QW
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
05a37c48 7938
1a9fd417 7939 /* Make sure no dev extent is beyond device boundary */
562d7b15 7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
1b3922a8 7946
05a37c48
QW
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
381a696e
NA
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
cf90d884
QW
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
c8bf1b67 7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
07e1ce09 7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
5eb19381
QW
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
cf90d884
QW
8013 int ret = 0;
8014
42437a63
JB
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
cf90d884
QW
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8042 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
5eb19381
QW
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
cf90d884
QW
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
5eb19381
QW
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
cf90d884
QW
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
eede2bf3
OS
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
f7ef5287
NA
8125
8126static int relocating_repair_kthread(void *data)
8127{
0d031dc4 8128 struct btrfs_block_group *cache = data;
f7ef5287
NA
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
ca5e4ea0 8136 sb_start_write(fs_info->sb);
f7ef5287
NA
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
ca5e4ea0 8141 sb_end_write(fs_info->sb);
f7ef5287
NA
8142 return -EBUSY;
8143 }
8144
f3372065 8145 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
3349b57f 8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
f7ef5287
NA
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
f3372065 8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 8168 btrfs_exclop_finish(fs_info);
ca5e4ea0 8169 sb_end_write(fs_info->sb);
f7ef5287
NA
8170
8171 return ret;
8172}
8173
554aed7d 8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
8175{
8176 struct btrfs_block_group *cache;
8177
554aed7d
JT
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
f7ef5287
NA
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 8183 return true;
f7ef5287
NA
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
554aed7d 8187 return true;
f7ef5287 8188
3349b57f 8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
f7ef5287 8190 btrfs_put_block_group(cache);
554aed7d 8191 return true;
f7ef5287 8192 }
f7ef5287
NA
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
554aed7d 8197 return true;
f7ef5287 8198}