Btrfs: Don't drop extent_map cache during releasepage on the btree inode
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7
CM
29struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
321aecc6 36 int sub_stripes;
cea9e445 37 struct btrfs_bio_stripe stripes[];
593060d7
CM
38};
39
40#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 41 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 42
8a4b83cc
CM
43static DEFINE_MUTEX(uuid_mutex);
44static LIST_HEAD(fs_uuids);
45
46int btrfs_cleanup_fs_uuids(void)
47{
48 struct btrfs_fs_devices *fs_devices;
49 struct list_head *uuid_cur;
50 struct list_head *devices_cur;
51 struct btrfs_device *dev;
52
53 list_for_each(uuid_cur, &fs_uuids) {
54 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
55 list);
56 while(!list_empty(&fs_devices->devices)) {
57 devices_cur = fs_devices->devices.next;
58 dev = list_entry(devices_cur, struct btrfs_device,
59 dev_list);
8a4b83cc 60 if (dev->bdev) {
8a4b83cc
CM
61 close_bdev_excl(dev->bdev);
62 }
63 list_del(&dev->dev_list);
64 kfree(dev);
65 }
66 }
67 return 0;
68}
69
a443755f
CM
70static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
71 u8 *uuid)
8a4b83cc
CM
72{
73 struct btrfs_device *dev;
74 struct list_head *cur;
75
76 list_for_each(cur, head) {
77 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f
CM
78 if (dev->devid == devid &&
79 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
8a4b83cc 80 return dev;
a443755f 81 }
8a4b83cc
CM
82 }
83 return NULL;
84}
85
86static struct btrfs_fs_devices *find_fsid(u8 *fsid)
87{
88 struct list_head *cur;
89 struct btrfs_fs_devices *fs_devices;
90
91 list_for_each(cur, &fs_uuids) {
92 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
93 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
94 return fs_devices;
95 }
96 return NULL;
97}
98
99static int device_list_add(const char *path,
100 struct btrfs_super_block *disk_super,
101 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
102{
103 struct btrfs_device *device;
104 struct btrfs_fs_devices *fs_devices;
105 u64 found_transid = btrfs_super_generation(disk_super);
106
107 fs_devices = find_fsid(disk_super->fsid);
108 if (!fs_devices) {
109 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
110 if (!fs_devices)
111 return -ENOMEM;
112 INIT_LIST_HEAD(&fs_devices->devices);
113 list_add(&fs_devices->list, &fs_uuids);
114 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
115 fs_devices->latest_devid = devid;
116 fs_devices->latest_trans = found_transid;
117 fs_devices->lowest_devid = (u64)-1;
118 fs_devices->num_devices = 0;
119 device = NULL;
120 } else {
a443755f
CM
121 device = __find_device(&fs_devices->devices, devid,
122 disk_super->dev_item.uuid);
8a4b83cc
CM
123 }
124 if (!device) {
125 device = kzalloc(sizeof(*device), GFP_NOFS);
126 if (!device) {
127 /* we can safely leave the fs_devices entry around */
128 return -ENOMEM;
129 }
130 device->devid = devid;
a443755f
CM
131 memcpy(device->uuid, disk_super->dev_item.uuid,
132 BTRFS_UUID_SIZE);
f2984462 133 device->barriers = 1;
b248a415 134 spin_lock_init(&device->io_lock);
8a4b83cc
CM
135 device->name = kstrdup(path, GFP_NOFS);
136 if (!device->name) {
137 kfree(device);
138 return -ENOMEM;
139 }
140 list_add(&device->dev_list, &fs_devices->devices);
141 fs_devices->num_devices++;
142 }
143
144 if (found_transid > fs_devices->latest_trans) {
145 fs_devices->latest_devid = devid;
146 fs_devices->latest_trans = found_transid;
147 }
148 if (fs_devices->lowest_devid > devid) {
149 fs_devices->lowest_devid = devid;
8a4b83cc
CM
150 }
151 *fs_devices_ret = fs_devices;
152 return 0;
153}
154
155int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
156{
157 struct list_head *head = &fs_devices->devices;
158 struct list_head *cur;
159 struct btrfs_device *device;
160
161 mutex_lock(&uuid_mutex);
162 list_for_each(cur, head) {
163 device = list_entry(cur, struct btrfs_device, dev_list);
164 if (device->bdev) {
165 close_bdev_excl(device->bdev);
8a4b83cc
CM
166 }
167 device->bdev = NULL;
168 }
169 mutex_unlock(&uuid_mutex);
170 return 0;
171}
172
173int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
174 int flags, void *holder)
175{
176 struct block_device *bdev;
177 struct list_head *head = &fs_devices->devices;
178 struct list_head *cur;
179 struct btrfs_device *device;
180 int ret;
181
182 mutex_lock(&uuid_mutex);
183 list_for_each(cur, head) {
184 device = list_entry(cur, struct btrfs_device, dev_list);
185 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 186
8a4b83cc
CM
187 if (IS_ERR(bdev)) {
188 printk("open %s failed\n", device->name);
189 ret = PTR_ERR(bdev);
190 goto fail;
191 }
192 if (device->devid == fs_devices->latest_devid)
193 fs_devices->latest_bdev = bdev;
194 if (device->devid == fs_devices->lowest_devid) {
195 fs_devices->lowest_bdev = bdev;
8a4b83cc
CM
196 }
197 device->bdev = bdev;
198 }
199 mutex_unlock(&uuid_mutex);
200 return 0;
201fail:
202 mutex_unlock(&uuid_mutex);
203 btrfs_close_devices(fs_devices);
204 return ret;
205}
206
207int btrfs_scan_one_device(const char *path, int flags, void *holder,
208 struct btrfs_fs_devices **fs_devices_ret)
209{
210 struct btrfs_super_block *disk_super;
211 struct block_device *bdev;
212 struct buffer_head *bh;
213 int ret;
214 u64 devid;
f2984462 215 u64 transid;
8a4b83cc
CM
216
217 mutex_lock(&uuid_mutex);
218
8a4b83cc
CM
219 bdev = open_bdev_excl(path, flags, holder);
220
221 if (IS_ERR(bdev)) {
8a4b83cc
CM
222 ret = PTR_ERR(bdev);
223 goto error;
224 }
225
226 ret = set_blocksize(bdev, 4096);
227 if (ret)
228 goto error_close;
229 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
230 if (!bh) {
231 ret = -EIO;
232 goto error_close;
233 }
234 disk_super = (struct btrfs_super_block *)bh->b_data;
235 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
236 sizeof(disk_super->magic))) {
e58ca020 237 ret = -EINVAL;
8a4b83cc
CM
238 goto error_brelse;
239 }
240 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 241 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
242 if (disk_super->label[0])
243 printk("device label %s ", disk_super->label);
244 else {
245 /* FIXME, make a readl uuid parser */
246 printk("device fsid %llx-%llx ",
247 *(unsigned long long *)disk_super->fsid,
248 *(unsigned long long *)(disk_super->fsid + 8));
249 }
250 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
251 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
252
253error_brelse:
254 brelse(bh);
255error_close:
256 close_bdev_excl(bdev);
8a4b83cc
CM
257error:
258 mutex_unlock(&uuid_mutex);
259 return ret;
260}
0b86a832
CM
261
262/*
263 * this uses a pretty simple search, the expectation is that it is
264 * called very infrequently and that a given device has a small number
265 * of extents
266 */
267static int find_free_dev_extent(struct btrfs_trans_handle *trans,
268 struct btrfs_device *device,
269 struct btrfs_path *path,
270 u64 num_bytes, u64 *start)
271{
272 struct btrfs_key key;
273 struct btrfs_root *root = device->dev_root;
274 struct btrfs_dev_extent *dev_extent = NULL;
275 u64 hole_size = 0;
276 u64 last_byte = 0;
277 u64 search_start = 0;
278 u64 search_end = device->total_bytes;
279 int ret;
280 int slot = 0;
281 int start_found;
282 struct extent_buffer *l;
283
284 start_found = 0;
285 path->reada = 2;
286
287 /* FIXME use last free of some kind */
288
8a4b83cc
CM
289 /* we don't want to overwrite the superblock on the drive,
290 * so we make sure to start at an offset of at least 1MB
291 */
292 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
293 key.objectid = device->devid;
294 key.offset = search_start;
295 key.type = BTRFS_DEV_EXTENT_KEY;
296 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
297 if (ret < 0)
298 goto error;
299 ret = btrfs_previous_item(root, path, 0, key.type);
300 if (ret < 0)
301 goto error;
302 l = path->nodes[0];
303 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
304 while (1) {
305 l = path->nodes[0];
306 slot = path->slots[0];
307 if (slot >= btrfs_header_nritems(l)) {
308 ret = btrfs_next_leaf(root, path);
309 if (ret == 0)
310 continue;
311 if (ret < 0)
312 goto error;
313no_more_items:
314 if (!start_found) {
315 if (search_start >= search_end) {
316 ret = -ENOSPC;
317 goto error;
318 }
319 *start = search_start;
320 start_found = 1;
321 goto check_pending;
322 }
323 *start = last_byte > search_start ?
324 last_byte : search_start;
325 if (search_end <= *start) {
326 ret = -ENOSPC;
327 goto error;
328 }
329 goto check_pending;
330 }
331 btrfs_item_key_to_cpu(l, &key, slot);
332
333 if (key.objectid < device->devid)
334 goto next;
335
336 if (key.objectid > device->devid)
337 goto no_more_items;
338
339 if (key.offset >= search_start && key.offset > last_byte &&
340 start_found) {
341 if (last_byte < search_start)
342 last_byte = search_start;
343 hole_size = key.offset - last_byte;
344 if (key.offset > last_byte &&
345 hole_size >= num_bytes) {
346 *start = last_byte;
347 goto check_pending;
348 }
349 }
350 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
351 goto next;
352 }
353
354 start_found = 1;
355 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
356 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
357next:
358 path->slots[0]++;
359 cond_resched();
360 }
361check_pending:
362 /* we have to make sure we didn't find an extent that has already
363 * been allocated by the map tree or the original allocation
364 */
365 btrfs_release_path(root, path);
366 BUG_ON(*start < search_start);
367
6324fbf3 368 if (*start + num_bytes > search_end) {
0b86a832
CM
369 ret = -ENOSPC;
370 goto error;
371 }
372 /* check for pending inserts here */
373 return 0;
374
375error:
376 btrfs_release_path(root, path);
377 return ret;
378}
379
380int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
381 struct btrfs_device *device,
e17cade2
CM
382 u64 chunk_tree, u64 chunk_objectid,
383 u64 chunk_offset,
384 u64 num_bytes, u64 *start)
0b86a832
CM
385{
386 int ret;
387 struct btrfs_path *path;
388 struct btrfs_root *root = device->dev_root;
389 struct btrfs_dev_extent *extent;
390 struct extent_buffer *leaf;
391 struct btrfs_key key;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 398 if (ret) {
0b86a832 399 goto err;
6324fbf3 400 }
0b86a832
CM
401
402 key.objectid = device->devid;
403 key.offset = *start;
404 key.type = BTRFS_DEV_EXTENT_KEY;
405 ret = btrfs_insert_empty_item(trans, root, path, &key,
406 sizeof(*extent));
407 BUG_ON(ret);
408
409 leaf = path->nodes[0];
410 extent = btrfs_item_ptr(leaf, path->slots[0],
411 struct btrfs_dev_extent);
e17cade2
CM
412 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
413 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
414 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
415
416 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
417 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
418 BTRFS_UUID_SIZE);
419
0b86a832
CM
420 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
421 btrfs_mark_buffer_dirty(leaf);
422err:
423 btrfs_free_path(path);
424 return ret;
425}
426
e17cade2 427static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
428{
429 struct btrfs_path *path;
430 int ret;
431 struct btrfs_key key;
e17cade2 432 struct btrfs_chunk *chunk;
0b86a832
CM
433 struct btrfs_key found_key;
434
435 path = btrfs_alloc_path();
436 BUG_ON(!path);
437
e17cade2 438 key.objectid = objectid;
0b86a832
CM
439 key.offset = (u64)-1;
440 key.type = BTRFS_CHUNK_ITEM_KEY;
441
442 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
443 if (ret < 0)
444 goto error;
445
446 BUG_ON(ret == 0);
447
448 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
449 if (ret) {
e17cade2 450 *offset = 0;
0b86a832
CM
451 } else {
452 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
453 path->slots[0]);
e17cade2
CM
454 if (found_key.objectid != objectid)
455 *offset = 0;
456 else {
457 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
458 struct btrfs_chunk);
459 *offset = found_key.offset +
460 btrfs_chunk_length(path->nodes[0], chunk);
461 }
0b86a832
CM
462 }
463 ret = 0;
464error:
465 btrfs_free_path(path);
466 return ret;
467}
468
0b86a832
CM
469static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
470 u64 *objectid)
471{
472 int ret;
473 struct btrfs_key key;
474 struct btrfs_key found_key;
475
476 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
477 key.type = BTRFS_DEV_ITEM_KEY;
478 key.offset = (u64)-1;
479
480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
481 if (ret < 0)
482 goto error;
483
484 BUG_ON(ret == 0);
485
486 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
487 BTRFS_DEV_ITEM_KEY);
488 if (ret) {
489 *objectid = 1;
490 } else {
491 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
492 path->slots[0]);
493 *objectid = found_key.offset + 1;
494 }
495 ret = 0;
496error:
497 btrfs_release_path(root, path);
498 return ret;
499}
500
501/*
502 * the device information is stored in the chunk root
503 * the btrfs_device struct should be fully filled in
504 */
505int btrfs_add_device(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root,
507 struct btrfs_device *device)
508{
509 int ret;
510 struct btrfs_path *path;
511 struct btrfs_dev_item *dev_item;
512 struct extent_buffer *leaf;
513 struct btrfs_key key;
514 unsigned long ptr;
515 u64 free_devid;
516
517 root = root->fs_info->chunk_root;
518
519 path = btrfs_alloc_path();
520 if (!path)
521 return -ENOMEM;
522
523 ret = find_next_devid(root, path, &free_devid);
524 if (ret)
525 goto out;
526
527 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
528 key.type = BTRFS_DEV_ITEM_KEY;
529 key.offset = free_devid;
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 532 sizeof(*dev_item));
0b86a832
CM
533 if (ret)
534 goto out;
535
536 leaf = path->nodes[0];
537 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
538
8a4b83cc 539 device->devid = free_devid;
0b86a832
CM
540 btrfs_set_device_id(leaf, dev_item, device->devid);
541 btrfs_set_device_type(leaf, dev_item, device->type);
542 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
543 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
544 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
545 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
546 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
547 btrfs_set_device_group(leaf, dev_item, 0);
548 btrfs_set_device_seek_speed(leaf, dev_item, 0);
549 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 550
0b86a832 551 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 552 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
553 btrfs_mark_buffer_dirty(leaf);
554 ret = 0;
555
556out:
557 btrfs_free_path(path);
558 return ret;
559}
560int btrfs_update_device(struct btrfs_trans_handle *trans,
561 struct btrfs_device *device)
562{
563 int ret;
564 struct btrfs_path *path;
565 struct btrfs_root *root;
566 struct btrfs_dev_item *dev_item;
567 struct extent_buffer *leaf;
568 struct btrfs_key key;
569
570 root = device->dev_root->fs_info->chunk_root;
571
572 path = btrfs_alloc_path();
573 if (!path)
574 return -ENOMEM;
575
576 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
577 key.type = BTRFS_DEV_ITEM_KEY;
578 key.offset = device->devid;
579
580 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
581 if (ret < 0)
582 goto out;
583
584 if (ret > 0) {
585 ret = -ENOENT;
586 goto out;
587 }
588
589 leaf = path->nodes[0];
590 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
591
592 btrfs_set_device_id(leaf, dev_item, device->devid);
593 btrfs_set_device_type(leaf, dev_item, device->type);
594 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
595 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
596 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
597 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
598 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
599 btrfs_mark_buffer_dirty(leaf);
600
601out:
602 btrfs_free_path(path);
603 return ret;
604}
605
606int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
607 struct btrfs_root *root,
608 struct btrfs_key *key,
609 struct btrfs_chunk *chunk, int item_size)
610{
611 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
612 struct btrfs_disk_key disk_key;
613 u32 array_size;
614 u8 *ptr;
615
616 array_size = btrfs_super_sys_array_size(super_copy);
617 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
618 return -EFBIG;
619
620 ptr = super_copy->sys_chunk_array + array_size;
621 btrfs_cpu_key_to_disk(&disk_key, key);
622 memcpy(ptr, &disk_key, sizeof(disk_key));
623 ptr += sizeof(disk_key);
624 memcpy(ptr, chunk, item_size);
625 item_size += sizeof(disk_key);
626 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
627 return 0;
628}
629
630int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
631 struct btrfs_root *extent_root, u64 *start,
6324fbf3 632 u64 *num_bytes, u64 type)
0b86a832
CM
633{
634 u64 dev_offset;
593060d7 635 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
636 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
637 struct btrfs_stripe *stripes;
638 struct btrfs_device *device = NULL;
639 struct btrfs_chunk *chunk;
6324fbf3 640 struct list_head private_devs;
8a4b83cc 641 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 642 struct list_head *cur;
0b86a832
CM
643 struct extent_map_tree *em_tree;
644 struct map_lookup *map;
645 struct extent_map *em;
646 u64 physical;
647 u64 calc_size = 1024 * 1024 * 1024;
611f0e00 648 u64 min_free = calc_size;
6324fbf3
CM
649 u64 avail;
650 u64 max_avail = 0;
651 int num_stripes = 1;
321aecc6 652 int sub_stripes = 0;
6324fbf3 653 int looped = 0;
0b86a832 654 int ret;
6324fbf3 655 int index;
593060d7 656 int stripe_len = 64 * 1024;
0b86a832
CM
657 struct btrfs_key key;
658
6324fbf3
CM
659 if (list_empty(dev_list))
660 return -ENOSPC;
593060d7 661
8790d502 662 if (type & (BTRFS_BLOCK_GROUP_RAID0))
593060d7 663 num_stripes = btrfs_super_num_devices(&info->super_copy);
611f0e00
CM
664 if (type & (BTRFS_BLOCK_GROUP_DUP))
665 num_stripes = 2;
8790d502
CM
666 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
667 num_stripes = min_t(u64, 2,
668 btrfs_super_num_devices(&info->super_copy));
669 }
321aecc6
CM
670 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
671 num_stripes = btrfs_super_num_devices(&info->super_copy);
672 if (num_stripes < 4)
673 return -ENOSPC;
674 num_stripes &= ~(u32)1;
675 sub_stripes = 2;
676 }
6324fbf3
CM
677again:
678 INIT_LIST_HEAD(&private_devs);
679 cur = dev_list->next;
680 index = 0;
611f0e00
CM
681
682 if (type & BTRFS_BLOCK_GROUP_DUP)
683 min_free = calc_size * 2;
684
6324fbf3
CM
685 /* build a private list of devices we will allocate from */
686 while(index < num_stripes) {
687 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00 688
6324fbf3
CM
689 avail = device->total_bytes - device->bytes_used;
690 cur = cur->next;
691 if (avail > max_avail)
692 max_avail = avail;
611f0e00 693 if (avail >= min_free) {
6324fbf3
CM
694 list_move_tail(&device->dev_list, &private_devs);
695 index++;
611f0e00
CM
696 if (type & BTRFS_BLOCK_GROUP_DUP)
697 index++;
6324fbf3
CM
698 }
699 if (cur == dev_list)
700 break;
701 }
702 if (index < num_stripes) {
703 list_splice(&private_devs, dev_list);
704 if (!looped && max_avail > 0) {
705 looped = 1;
706 calc_size = max_avail;
707 goto again;
708 }
709 return -ENOSPC;
710 }
0b86a832 711
e17cade2
CM
712 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
713 key.type = BTRFS_CHUNK_ITEM_KEY;
714 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
715 &key.offset);
0b86a832
CM
716 if (ret)
717 return ret;
718
0b86a832
CM
719 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
720 if (!chunk)
721 return -ENOMEM;
722
593060d7
CM
723 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
724 if (!map) {
725 kfree(chunk);
726 return -ENOMEM;
727 }
728
0b86a832
CM
729 stripes = &chunk->stripe;
730
611f0e00 731 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
8790d502 732 *num_bytes = calc_size;
321aecc6 733 else if (type & BTRFS_BLOCK_GROUP_RAID10)
7bf3b490 734 *num_bytes = calc_size * (num_stripes / sub_stripes);
8790d502
CM
735 else
736 *num_bytes = calc_size * num_stripes;
737
6324fbf3 738 index = 0;
e17cade2 739printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
0b86a832 740 while(index < num_stripes) {
e17cade2 741 struct btrfs_stripe *stripe;
6324fbf3
CM
742 BUG_ON(list_empty(&private_devs));
743 cur = private_devs.next;
744 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00
CM
745
746 /* loop over this device again if we're doing a dup group */
747 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
748 (index == num_stripes - 1))
749 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
750
751 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
752 info->chunk_root->root_key.objectid,
753 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
754 calc_size, &dev_offset);
0b86a832 755 BUG_ON(ret);
e17cade2 756printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
0b86a832
CM
757 device->bytes_used += calc_size;
758 ret = btrfs_update_device(trans, device);
759 BUG_ON(ret);
760
593060d7
CM
761 map->stripes[index].dev = device;
762 map->stripes[index].physical = dev_offset;
e17cade2
CM
763 stripe = stripes + index;
764 btrfs_set_stack_stripe_devid(stripe, device->devid);
765 btrfs_set_stack_stripe_offset(stripe, dev_offset);
766 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
767 physical = dev_offset;
768 index++;
769 }
6324fbf3 770 BUG_ON(!list_empty(&private_devs));
0b86a832 771
e17cade2
CM
772 /* key was set above */
773 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 774 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 775 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
776 btrfs_set_stack_chunk_type(chunk, type);
777 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
778 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
779 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 780 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 781 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
782 map->sector_size = extent_root->sectorsize;
783 map->stripe_len = stripe_len;
784 map->io_align = stripe_len;
785 map->io_width = stripe_len;
786 map->type = type;
787 map->num_stripes = num_stripes;
321aecc6 788 map->sub_stripes = sub_stripes;
0b86a832
CM
789
790 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
791 btrfs_chunk_item_size(num_stripes));
792 BUG_ON(ret);
e17cade2 793 *start = key.offset;;
0b86a832
CM
794
795 em = alloc_extent_map(GFP_NOFS);
796 if (!em)
797 return -ENOMEM;
0b86a832 798 em->bdev = (struct block_device *)map;
e17cade2
CM
799 em->start = key.offset;
800 em->len = *num_bytes;
0b86a832
CM
801 em->block_start = 0;
802
0b86a832
CM
803 kfree(chunk);
804
805 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
806 spin_lock(&em_tree->lock);
807 ret = add_extent_mapping(em_tree, em);
0b86a832 808 spin_unlock(&em_tree->lock);
b248a415 809 BUG_ON(ret);
0b86a832
CM
810 free_extent_map(em);
811 return ret;
812}
813
814void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
815{
816 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
817}
818
819void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
820{
821 struct extent_map *em;
822
823 while(1) {
824 spin_lock(&tree->map_tree.lock);
825 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
826 if (em)
827 remove_extent_mapping(&tree->map_tree, em);
828 spin_unlock(&tree->map_tree.lock);
829 if (!em)
830 break;
831 kfree(em->bdev);
832 /* once for us */
833 free_extent_map(em);
834 /* once for the tree */
835 free_extent_map(em);
836 }
837}
838
f188591e
CM
839int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
840{
841 struct extent_map *em;
842 struct map_lookup *map;
843 struct extent_map_tree *em_tree = &map_tree->map_tree;
844 int ret;
845
846 spin_lock(&em_tree->lock);
847 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 848 spin_unlock(&em_tree->lock);
f188591e
CM
849 BUG_ON(!em);
850
851 BUG_ON(em->start > logical || em->start + em->len < logical);
852 map = (struct map_lookup *)em->bdev;
853 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
854 ret = map->num_stripes;
321aecc6
CM
855 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
856 ret = map->sub_stripes;
f188591e
CM
857 else
858 ret = 1;
859 free_extent_map(em);
f188591e
CM
860 return ret;
861}
862
8790d502 863int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
cea9e445 864 u64 logical, u64 *length,
f188591e 865 struct btrfs_multi_bio **multi_ret, int mirror_num)
0b86a832
CM
866{
867 struct extent_map *em;
868 struct map_lookup *map;
869 struct extent_map_tree *em_tree = &map_tree->map_tree;
870 u64 offset;
593060d7
CM
871 u64 stripe_offset;
872 u64 stripe_nr;
cea9e445 873 int stripes_allocated = 8;
321aecc6 874 int stripes_required = 1;
593060d7 875 int stripe_index;
cea9e445
CM
876 int i;
877 struct btrfs_multi_bio *multi = NULL;
0b86a832 878
cea9e445
CM
879 if (multi_ret && !(rw & (1 << BIO_RW))) {
880 stripes_allocated = 1;
881 }
882again:
883 if (multi_ret) {
884 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
885 GFP_NOFS);
886 if (!multi)
887 return -ENOMEM;
888 }
0b86a832
CM
889
890 spin_lock(&em_tree->lock);
891 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 892 spin_unlock(&em_tree->lock);
3b951516
CM
893 if (!em) {
894 printk("unable to find logical %Lu\n", logical);
895 }
0b86a832
CM
896 BUG_ON(!em);
897
898 BUG_ON(em->start > logical || em->start + em->len < logical);
899 map = (struct map_lookup *)em->bdev;
900 offset = logical - em->start;
593060d7 901
f188591e
CM
902 if (mirror_num > map->num_stripes)
903 mirror_num = 0;
904
cea9e445 905 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
906 if (rw & (1 << BIO_RW)) {
907 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
908 BTRFS_BLOCK_GROUP_DUP)) {
909 stripes_required = map->num_stripes;
910 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
911 stripes_required = map->sub_stripes;
912 }
913 }
914 if (multi_ret && rw == WRITE &&
915 stripes_allocated < stripes_required) {
cea9e445 916 stripes_allocated = map->num_stripes;
cea9e445
CM
917 free_extent_map(em);
918 kfree(multi);
919 goto again;
920 }
593060d7
CM
921 stripe_nr = offset;
922 /*
923 * stripe_nr counts the total number of stripes we have to stride
924 * to get to this block
925 */
926 do_div(stripe_nr, map->stripe_len);
927
928 stripe_offset = stripe_nr * map->stripe_len;
929 BUG_ON(offset < stripe_offset);
930
931 /* stripe_offset is the offset of this block in its stripe*/
932 stripe_offset = offset - stripe_offset;
933
cea9e445 934 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 935 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
936 BTRFS_BLOCK_GROUP_DUP)) {
937 /* we limit the length of each bio to what fits in a stripe */
938 *length = min_t(u64, em->len - offset,
939 map->stripe_len - stripe_offset);
940 } else {
941 *length = em->len - offset;
942 }
943 if (!multi_ret)
944 goto out;
945
946 multi->num_stripes = 1;
947 stripe_index = 0;
8790d502 948 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
8790d502 949 if (rw & (1 << BIO_RW))
cea9e445 950 multi->num_stripes = map->num_stripes;
f188591e
CM
951 else if (mirror_num) {
952 stripe_index = mirror_num - 1;
953 } else {
8790d502
CM
954 int i;
955 u64 least = (u64)-1;
956 struct btrfs_device *cur;
957
958 for (i = 0; i < map->num_stripes; i++) {
959 cur = map->stripes[i].dev;
960 spin_lock(&cur->io_lock);
961 if (cur->total_ios < least) {
962 least = cur->total_ios;
963 stripe_index = i;
964 }
965 spin_unlock(&cur->io_lock);
966 }
8790d502 967 }
611f0e00 968 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445
CM
969 if (rw & (1 << BIO_RW))
970 multi->num_stripes = map->num_stripes;
f188591e
CM
971 else if (mirror_num)
972 stripe_index = mirror_num - 1;
321aecc6
CM
973 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
974 int factor = map->num_stripes / map->sub_stripes;
975 int orig_stripe_nr = stripe_nr;
976
977 stripe_index = do_div(stripe_nr, factor);
978 stripe_index *= map->sub_stripes;
979
980 if (rw & (1 << BIO_RW))
981 multi->num_stripes = map->sub_stripes;
982 else if (mirror_num)
983 stripe_index += mirror_num - 1;
984 else
985 stripe_index += orig_stripe_nr % map->sub_stripes;
8790d502
CM
986 } else {
987 /*
988 * after this do_div call, stripe_nr is the number of stripes
989 * on this device we have to walk to find the data, and
990 * stripe_index is the number of our device in the stripe array
991 */
992 stripe_index = do_div(stripe_nr, map->num_stripes);
993 }
593060d7 994 BUG_ON(stripe_index >= map->num_stripes);
cea9e445
CM
995
996 for (i = 0; i < multi->num_stripes; i++) {
997 multi->stripes[i].physical =
998 map->stripes[stripe_index].physical + stripe_offset +
999 stripe_nr * map->stripe_len;
1000 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1001 stripe_index++;
593060d7 1002 }
cea9e445
CM
1003 *multi_ret = multi;
1004out:
0b86a832 1005 free_extent_map(em);
0b86a832
CM
1006 return 0;
1007}
1008
8790d502
CM
1009#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1010static void end_bio_multi_stripe(struct bio *bio, int err)
1011#else
1012static int end_bio_multi_stripe(struct bio *bio,
1013 unsigned int bytes_done, int err)
1014#endif
1015{
cea9e445 1016 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
1017
1018#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1019 if (bio->bi_size)
1020 return 1;
1021#endif
1022 if (err)
1023 multi->error = err;
1024
cea9e445 1025 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
1026 bio->bi_private = multi->private;
1027 bio->bi_end_io = multi->end_io;
1028
1029 if (!err && multi->error)
1030 err = multi->error;
1031 kfree(multi);
1032
73f61b2a
M
1033#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1034 bio_endio(bio, bio->bi_size, err);
1035#else
8790d502 1036 bio_endio(bio, err);
73f61b2a 1037#endif
8790d502
CM
1038 } else {
1039 bio_put(bio);
1040 }
1041#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1042 return 0;
1043#endif
1044}
1045
f188591e
CM
1046int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1047 int mirror_num)
0b86a832
CM
1048{
1049 struct btrfs_mapping_tree *map_tree;
1050 struct btrfs_device *dev;
8790d502 1051 struct bio *first_bio = bio;
0b86a832 1052 u64 logical = bio->bi_sector << 9;
0b86a832
CM
1053 u64 length = 0;
1054 u64 map_length;
1055 struct bio_vec *bvec;
cea9e445 1056 struct btrfs_multi_bio *multi = NULL;
0b86a832
CM
1057 int i;
1058 int ret;
8790d502
CM
1059 int dev_nr = 0;
1060 int total_devs = 1;
0b86a832
CM
1061
1062 bio_for_each_segment(bvec, bio, i) {
1063 length += bvec->bv_len;
1064 }
8790d502 1065
0b86a832
CM
1066 map_tree = &root->fs_info->mapping_tree;
1067 map_length = length;
cea9e445 1068
f188591e
CM
1069 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1070 mirror_num);
cea9e445
CM
1071 BUG_ON(ret);
1072
1073 total_devs = multi->num_stripes;
1074 if (map_length < length) {
1075 printk("mapping failed logical %Lu bio len %Lu "
1076 "len %Lu\n", logical, length, map_length);
1077 BUG();
1078 }
1079 multi->end_io = first_bio->bi_end_io;
1080 multi->private = first_bio->bi_private;
1081 atomic_set(&multi->stripes_pending, multi->num_stripes);
1082
8790d502 1083 while(dev_nr < total_devs) {
8790d502 1084 if (total_devs > 1) {
8790d502
CM
1085 if (dev_nr < total_devs - 1) {
1086 bio = bio_clone(first_bio, GFP_NOFS);
1087 BUG_ON(!bio);
1088 } else {
1089 bio = first_bio;
1090 }
1091 bio->bi_private = multi;
1092 bio->bi_end_io = end_bio_multi_stripe;
1093 }
cea9e445
CM
1094 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1095 dev = multi->stripes[dev_nr].dev;
8790d502
CM
1096 bio->bi_bdev = dev->bdev;
1097 spin_lock(&dev->io_lock);
1098 dev->total_ios++;
1099 spin_unlock(&dev->io_lock);
1100 submit_bio(rw, bio);
1101 dev_nr++;
1102 }
cea9e445
CM
1103 if (total_devs == 1)
1104 kfree(multi);
0b86a832
CM
1105 return 0;
1106}
1107
a443755f
CM
1108struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1109 u8 *uuid)
0b86a832 1110{
8a4b83cc 1111 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1112
a443755f 1113 return __find_device(head, devid, uuid);
0b86a832
CM
1114}
1115
1116static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1117 struct extent_buffer *leaf,
1118 struct btrfs_chunk *chunk)
1119{
1120 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1121 struct map_lookup *map;
1122 struct extent_map *em;
1123 u64 logical;
1124 u64 length;
1125 u64 devid;
a443755f 1126 u8 uuid[BTRFS_UUID_SIZE];
593060d7 1127 int num_stripes;
0b86a832 1128 int ret;
593060d7 1129 int i;
0b86a832 1130
e17cade2
CM
1131 logical = key->offset;
1132 length = btrfs_chunk_length(leaf, chunk);
0b86a832
CM
1133 spin_lock(&map_tree->map_tree.lock);
1134 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 1135 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
1136
1137 /* already mapped? */
1138 if (em && em->start <= logical && em->start + em->len > logical) {
1139 free_extent_map(em);
0b86a832
CM
1140 return 0;
1141 } else if (em) {
1142 free_extent_map(em);
1143 }
0b86a832
CM
1144
1145 map = kzalloc(sizeof(*map), GFP_NOFS);
1146 if (!map)
1147 return -ENOMEM;
1148
1149 em = alloc_extent_map(GFP_NOFS);
1150 if (!em)
1151 return -ENOMEM;
593060d7
CM
1152 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1153 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
1154 if (!map) {
1155 free_extent_map(em);
1156 return -ENOMEM;
1157 }
1158
1159 em->bdev = (struct block_device *)map;
1160 em->start = logical;
1161 em->len = length;
1162 em->block_start = 0;
1163
593060d7
CM
1164 map->num_stripes = num_stripes;
1165 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1166 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1167 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1168 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1169 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 1170 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
1171 for (i = 0; i < num_stripes; i++) {
1172 map->stripes[i].physical =
1173 btrfs_stripe_offset_nr(leaf, chunk, i);
1174 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
1175 read_extent_buffer(leaf, uuid, (unsigned long)
1176 btrfs_stripe_dev_uuid_nr(chunk, i),
1177 BTRFS_UUID_SIZE);
1178 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
593060d7
CM
1179 if (!map->stripes[i].dev) {
1180 kfree(map);
1181 free_extent_map(em);
1182 return -EIO;
1183 }
0b86a832
CM
1184 }
1185
1186 spin_lock(&map_tree->map_tree.lock);
1187 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 1188 spin_unlock(&map_tree->map_tree.lock);
b248a415 1189 BUG_ON(ret);
0b86a832
CM
1190 free_extent_map(em);
1191
1192 return 0;
1193}
1194
1195static int fill_device_from_item(struct extent_buffer *leaf,
1196 struct btrfs_dev_item *dev_item,
1197 struct btrfs_device *device)
1198{
1199 unsigned long ptr;
0b86a832
CM
1200
1201 device->devid = btrfs_device_id(leaf, dev_item);
1202 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1203 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1204 device->type = btrfs_device_type(leaf, dev_item);
1205 device->io_align = btrfs_device_io_align(leaf, dev_item);
1206 device->io_width = btrfs_device_io_width(leaf, dev_item);
1207 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
1208
1209 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1210 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 1211
0b86a832
CM
1212 return 0;
1213}
1214
0d81ba5d 1215static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
1216 struct extent_buffer *leaf,
1217 struct btrfs_dev_item *dev_item)
1218{
1219 struct btrfs_device *device;
1220 u64 devid;
1221 int ret;
a443755f
CM
1222 u8 dev_uuid[BTRFS_UUID_SIZE];
1223
0b86a832 1224 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
1225 read_extent_buffer(leaf, dev_uuid,
1226 (unsigned long)btrfs_device_uuid(dev_item),
1227 BTRFS_UUID_SIZE);
1228 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 1229 if (!device) {
8a4b83cc 1230 printk("warning devid %Lu not found already\n", devid);
f2984462 1231 device = kzalloc(sizeof(*device), GFP_NOFS);
6324fbf3
CM
1232 if (!device)
1233 return -ENOMEM;
8a4b83cc
CM
1234 list_add(&device->dev_list,
1235 &root->fs_info->fs_devices->devices);
b248a415 1236 device->barriers = 1;
8790d502 1237 spin_lock_init(&device->io_lock);
6324fbf3 1238 }
0b86a832
CM
1239
1240 fill_device_from_item(leaf, dev_item, device);
1241 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
1242 ret = 0;
1243#if 0
1244 ret = btrfs_open_device(device);
1245 if (ret) {
1246 kfree(device);
1247 }
1248#endif
1249 return ret;
1250}
1251
0d81ba5d
CM
1252int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1253{
1254 struct btrfs_dev_item *dev_item;
1255
1256 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1257 dev_item);
1258 return read_one_dev(root, buf, dev_item);
1259}
1260
0b86a832
CM
1261int btrfs_read_sys_array(struct btrfs_root *root)
1262{
1263 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1264 struct extent_buffer *sb = root->fs_info->sb_buffer;
1265 struct btrfs_disk_key *disk_key;
0b86a832
CM
1266 struct btrfs_chunk *chunk;
1267 struct btrfs_key key;
1268 u32 num_stripes;
1269 u32 array_size;
1270 u32 len = 0;
1271 u8 *ptr;
1272 unsigned long sb_ptr;
1273 u32 cur;
1274 int ret;
0b86a832
CM
1275
1276 array_size = btrfs_super_sys_array_size(super_copy);
1277
1278 /*
1279 * we do this loop twice, once for the device items and
1280 * once for all of the chunks. This way there are device
1281 * structs filled in for every chunk
1282 */
0b86a832
CM
1283 ptr = super_copy->sys_chunk_array;
1284 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1285 cur = 0;
1286
1287 while (cur < array_size) {
1288 disk_key = (struct btrfs_disk_key *)ptr;
1289 btrfs_disk_key_to_cpu(&key, disk_key);
1290
1291 len = sizeof(*disk_key);
1292 ptr += len;
1293 sb_ptr += len;
1294 cur += len;
1295
0d81ba5d 1296 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1297 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1298 ret = read_one_chunk(root, &key, sb, chunk);
1299 BUG_ON(ret);
0b86a832
CM
1300 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1301 len = btrfs_chunk_item_size(num_stripes);
1302 } else {
1303 BUG();
1304 }
1305 ptr += len;
1306 sb_ptr += len;
1307 cur += len;
1308 }
0b86a832
CM
1309 return 0;
1310}
1311
1312int btrfs_read_chunk_tree(struct btrfs_root *root)
1313{
1314 struct btrfs_path *path;
1315 struct extent_buffer *leaf;
1316 struct btrfs_key key;
1317 struct btrfs_key found_key;
1318 int ret;
1319 int slot;
1320
1321 root = root->fs_info->chunk_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 return -ENOMEM;
1326
1327 /* first we search for all of the device items, and then we
1328 * read in all of the chunk items. This way we can create chunk
1329 * mappings that reference all of the devices that are afound
1330 */
1331 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1332 key.offset = 0;
1333 key.type = 0;
1334again:
1335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1336 while(1) {
1337 leaf = path->nodes[0];
1338 slot = path->slots[0];
1339 if (slot >= btrfs_header_nritems(leaf)) {
1340 ret = btrfs_next_leaf(root, path);
1341 if (ret == 0)
1342 continue;
1343 if (ret < 0)
1344 goto error;
1345 break;
1346 }
1347 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1348 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1349 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1350 break;
1351 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1352 struct btrfs_dev_item *dev_item;
1353 dev_item = btrfs_item_ptr(leaf, slot,
1354 struct btrfs_dev_item);
0d81ba5d 1355 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1356 BUG_ON(ret);
1357 }
1358 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1359 struct btrfs_chunk *chunk;
1360 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1361 ret = read_one_chunk(root, &found_key, leaf, chunk);
1362 }
1363 path->slots[0]++;
1364 }
1365 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1366 key.objectid = 0;
1367 btrfs_release_path(root, path);
1368 goto again;
1369 }
1370
1371 btrfs_free_path(path);
1372 ret = 0;
1373error:
1374 return ret;
1375}
1376