block: initial patch for on-stack per-task plugging
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
593060d7
CM
36struct map_lookup {
37 u64 type;
38 int io_align;
39 int io_width;
40 int stripe_len;
41 int sector_size;
42 int num_stripes;
321aecc6 43 int sub_stripes;
cea9e445 44 struct btrfs_bio_stripe stripes[];
593060d7
CM
45};
46
2b82032c
YZ
47static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
593060d7 52#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 53 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 54
8a4b83cc
CM
55static DEFINE_MUTEX(uuid_mutex);
56static LIST_HEAD(fs_uuids);
57
a061fc8d
CM
58void btrfs_lock_volumes(void)
59{
60 mutex_lock(&uuid_mutex);
61}
62
63void btrfs_unlock_volumes(void)
64{
65 mutex_unlock(&uuid_mutex);
66}
67
7d9eb12c
CM
68static void lock_chunks(struct btrfs_root *root)
69{
7d9eb12c
CM
70 mutex_lock(&root->fs_info->chunk_mutex);
71}
72
73static void unlock_chunks(struct btrfs_root *root)
74{
7d9eb12c
CM
75 mutex_unlock(&root->fs_info->chunk_mutex);
76}
77
e4404d6e
YZ
78static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79{
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
86 kfree(device->name);
87 kfree(device);
88 }
89 kfree(fs_devices);
90}
91
8a4b83cc
CM
92int btrfs_cleanup_fs_uuids(void)
93{
94 struct btrfs_fs_devices *fs_devices;
8a4b83cc 95
2b82032c
YZ
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
e4404d6e 100 free_fs_devices(fs_devices);
8a4b83cc
CM
101 }
102 return 0;
103}
104
a1b32a59
CM
105static noinline struct btrfs_device *__find_device(struct list_head *head,
106 u64 devid, u8 *uuid)
8a4b83cc
CM
107{
108 struct btrfs_device *dev;
8a4b83cc 109
c6e30871 110 list_for_each_entry(dev, head, dev_list) {
a443755f 111 if (dev->devid == devid &&
8f18cf13 112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 113 return dev;
a443755f 114 }
8a4b83cc
CM
115 }
116 return NULL;
117}
118
a1b32a59 119static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 120{
8a4b83cc
CM
121 struct btrfs_fs_devices *fs_devices;
122
c6e30871 123 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 return fs_devices;
126 }
127 return NULL;
128}
129
ffbd517d
CM
130static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
132{
133
134 struct bio *old_head;
135
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
140 else
141 pending_bios->tail = tail;
142}
143
8b712842
CM
144/*
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
148 *
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
154 */
d397712b 155static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
156{
157 struct bio *pending;
158 struct backing_dev_info *bdi;
b64a2851 159 struct btrfs_fs_info *fs_info;
ffbd517d 160 struct btrfs_pending_bios *pending_bios;
8b712842
CM
161 struct bio *tail;
162 struct bio *cur;
163 int again = 0;
ffbd517d
CM
164 unsigned long num_run;
165 unsigned long num_sync_run;
d644d8a1 166 unsigned long batch_run = 0;
b64a2851 167 unsigned long limit;
b765ead5 168 unsigned long last_waited = 0;
d84275c9 169 int force_reg = 0;
8b712842 170
bedf762b 171 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
175
ffbd517d
CM
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
178 */
179 num_sync_run = 0;
180
8b712842
CM
181loop:
182 spin_lock(&device->io_lock);
183
a6837051 184loop_lock:
d84275c9 185 num_run = 0;
ffbd517d 186
8b712842
CM
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
191 */
d84275c9 192 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 193 pending_bios = &device->pending_sync_bios;
d84275c9
CM
194 force_reg = 1;
195 } else {
ffbd517d 196 pending_bios = &device->pending_bios;
d84275c9
CM
197 force_reg = 0;
198 }
ffbd517d
CM
199
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
8b712842 202 WARN_ON(pending && !tail);
8b712842
CM
203
204 /*
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
208 *
209 * device->running_pending is used to synchronize with the
210 * schedule_bio code.
211 */
ffbd517d
CM
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
8b712842
CM
214 again = 0;
215 device->running_pending = 0;
ffbd517d
CM
216 } else {
217 again = 1;
218 device->running_pending = 1;
8b712842 219 }
ffbd517d
CM
220
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
223
8b712842
CM
224 spin_unlock(&device->io_lock);
225
ffbd517d
CM
226 /*
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
229 */
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 num_sync_run = 0;
232 blk_run_backing_dev(bdi, NULL);
233 }
234
d397712b 235 while (pending) {
ffbd517d
CM
236
237 rmb();
d84275c9
CM
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
240 */
241 if ((num_run > 32 &&
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
ffbd517d
CM
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
248 goto loop_lock;
249 }
250
8b712842
CM
251 cur = pending;
252 pending = pending->bi_next;
253 cur->bi_next = NULL;
b64a2851
CM
254 atomic_dec(&fs_info->nr_async_bios);
255
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
259
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 261
7b6d91da 262 if (cur->bi_rw & REQ_SYNC)
ffbd517d
CM
263 num_sync_run++;
264
5ff7ba3a
CM
265 submit_bio(cur->bi_rw, cur);
266 num_run++;
267 batch_run++;
ffbd517d
CM
268 if (need_resched()) {
269 if (num_sync_run) {
270 blk_run_backing_dev(bdi, NULL);
271 num_sync_run = 0;
272 }
273 cond_resched();
274 }
8b712842
CM
275
276 /*
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
279 * run instead
280 */
57fd5a5f 281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 282 fs_info->fs_devices->open_devices > 1) {
b765ead5 283 struct io_context *ioc;
8b712842 284
b765ead5
CM
285 ioc = current->io_context;
286
287 /*
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
291 *
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
295 */
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 (last_waited == 0 ||
299 ioc->last_waited == last_waited)) {
300 /*
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
305 */
306 last_waited = ioc->last_waited;
ffbd517d
CM
307 if (need_resched()) {
308 if (num_sync_run) {
309 blk_run_backing_dev(bdi, NULL);
310 num_sync_run = 0;
311 }
312 cond_resched();
313 }
b765ead5
CM
314 continue;
315 }
8b712842 316 spin_lock(&device->io_lock);
ffbd517d 317 requeue_list(pending_bios, pending, tail);
a6837051 318 device->running_pending = 1;
8b712842
CM
319
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
322 goto done;
323 }
324 }
ffbd517d
CM
325
326 if (num_sync_run) {
327 num_sync_run = 0;
328 blk_run_backing_dev(bdi, NULL);
329 }
bedf762b
CM
330 /*
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
335 *
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
339 */
340 blk_run_backing_dev(bdi, NULL);
51684082
CM
341
342 cond_resched();
343 if (again)
344 goto loop;
345
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
348 goto loop_lock;
349 spin_unlock(&device->io_lock);
350
8b712842
CM
351done:
352 return 0;
353}
354
b2950863 355static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
356{
357 struct btrfs_device *device;
358
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
361}
362
a1b32a59 363static noinline int device_list_add(const char *path,
8a4b83cc
CM
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366{
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 370 char *name;
8a4b83cc
CM
371
372 fs_devices = find_fsid(disk_super->fsid);
373 if (!fs_devices) {
515dc322 374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
375 if (!fs_devices)
376 return -ENOMEM;
377 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 378 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
e5e9a520 383 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
384 device = NULL;
385 } else {
a443755f
CM
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
8a4b83cc
CM
388 }
389 if (!device) {
2b82032c
YZ
390 if (fs_devices->opened)
391 return -EBUSY;
392
8a4b83cc
CM
393 device = kzalloc(sizeof(*device), GFP_NOFS);
394 if (!device) {
395 /* we can safely leave the fs_devices entry around */
396 return -ENOMEM;
397 }
398 device->devid = devid;
8b712842 399 device->work.func = pending_bios_fn;
a443755f
CM
400 memcpy(device->uuid, disk_super->dev_item.uuid,
401 BTRFS_UUID_SIZE);
b248a415 402 spin_lock_init(&device->io_lock);
8a4b83cc
CM
403 device->name = kstrdup(path, GFP_NOFS);
404 if (!device->name) {
405 kfree(device);
406 return -ENOMEM;
407 }
2b82032c 408 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
409
410 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 411 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
412 mutex_unlock(&fs_devices->device_list_mutex);
413
2b82032c 414 device->fs_devices = fs_devices;
8a4b83cc 415 fs_devices->num_devices++;
cd02dca5 416 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
417 name = kstrdup(path, GFP_NOFS);
418 if (!name)
419 return -ENOMEM;
420 kfree(device->name);
421 device->name = name;
cd02dca5
CM
422 if (device->missing) {
423 fs_devices->missing_devices--;
424 device->missing = 0;
425 }
8a4b83cc
CM
426 }
427
428 if (found_transid > fs_devices->latest_trans) {
429 fs_devices->latest_devid = devid;
430 fs_devices->latest_trans = found_transid;
431 }
8a4b83cc
CM
432 *fs_devices_ret = fs_devices;
433 return 0;
434}
435
e4404d6e
YZ
436static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437{
438 struct btrfs_fs_devices *fs_devices;
439 struct btrfs_device *device;
440 struct btrfs_device *orig_dev;
441
442 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443 if (!fs_devices)
444 return ERR_PTR(-ENOMEM);
445
446 INIT_LIST_HEAD(&fs_devices->devices);
447 INIT_LIST_HEAD(&fs_devices->alloc_list);
448 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 449 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
450 fs_devices->latest_devid = orig->latest_devid;
451 fs_devices->latest_trans = orig->latest_trans;
452 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
e5e9a520 454 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
455 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 device = kzalloc(sizeof(*device), GFP_NOFS);
457 if (!device)
458 goto error;
459
460 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
461 if (!device->name) {
462 kfree(device);
e4404d6e 463 goto error;
fd2696f3 464 }
e4404d6e
YZ
465
466 device->devid = orig_dev->devid;
467 device->work.func = pending_bios_fn;
468 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
469 spin_lock_init(&device->io_lock);
470 INIT_LIST_HEAD(&device->dev_list);
471 INIT_LIST_HEAD(&device->dev_alloc_list);
472
473 list_add(&device->dev_list, &fs_devices->devices);
474 device->fs_devices = fs_devices;
475 fs_devices->num_devices++;
476 }
e5e9a520 477 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
478 return fs_devices;
479error:
e5e9a520 480 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
481 free_fs_devices(fs_devices);
482 return ERR_PTR(-ENOMEM);
483}
484
dfe25020
CM
485int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486{
c6e30871 487 struct btrfs_device *device, *next;
dfe25020
CM
488
489 mutex_lock(&uuid_mutex);
490again:
e5e9a520 491 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 492 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
493 if (device->in_fs_metadata)
494 continue;
495
496 if (device->bdev) {
d4d77629 497 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
498 device->bdev = NULL;
499 fs_devices->open_devices--;
500 }
501 if (device->writeable) {
502 list_del_init(&device->dev_alloc_list);
503 device->writeable = 0;
504 fs_devices->rw_devices--;
505 }
e4404d6e
YZ
506 list_del_init(&device->dev_list);
507 fs_devices->num_devices--;
508 kfree(device->name);
509 kfree(device);
dfe25020 510 }
e5e9a520 511 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
512
513 if (fs_devices->seed) {
514 fs_devices = fs_devices->seed;
2b82032c
YZ
515 goto again;
516 }
517
dfe25020
CM
518 mutex_unlock(&uuid_mutex);
519 return 0;
520}
a0af469b 521
2b82032c 522static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 523{
8a4b83cc 524 struct btrfs_device *device;
e4404d6e 525
2b82032c
YZ
526 if (--fs_devices->opened > 0)
527 return 0;
8a4b83cc 528
c6e30871 529 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 530 if (device->bdev) {
d4d77629 531 blkdev_put(device->bdev, device->mode);
a0af469b 532 fs_devices->open_devices--;
8a4b83cc 533 }
2b82032c
YZ
534 if (device->writeable) {
535 list_del_init(&device->dev_alloc_list);
536 fs_devices->rw_devices--;
537 }
538
8a4b83cc 539 device->bdev = NULL;
2b82032c 540 device->writeable = 0;
dfe25020 541 device->in_fs_metadata = 0;
8a4b83cc 542 }
e4404d6e
YZ
543 WARN_ON(fs_devices->open_devices);
544 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
545 fs_devices->opened = 0;
546 fs_devices->seeding = 0;
2b82032c 547
8a4b83cc
CM
548 return 0;
549}
550
2b82032c
YZ
551int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552{
e4404d6e 553 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
554 int ret;
555
556 mutex_lock(&uuid_mutex);
557 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
558 if (!fs_devices->opened) {
559 seed_devices = fs_devices->seed;
560 fs_devices->seed = NULL;
561 }
2b82032c 562 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
563
564 while (seed_devices) {
565 fs_devices = seed_devices;
566 seed_devices = fs_devices->seed;
567 __btrfs_close_devices(fs_devices);
568 free_fs_devices(fs_devices);
569 }
2b82032c
YZ
570 return ret;
571}
572
e4404d6e
YZ
573static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574 fmode_t flags, void *holder)
8a4b83cc
CM
575{
576 struct block_device *bdev;
577 struct list_head *head = &fs_devices->devices;
8a4b83cc 578 struct btrfs_device *device;
a0af469b
CM
579 struct block_device *latest_bdev = NULL;
580 struct buffer_head *bh;
581 struct btrfs_super_block *disk_super;
582 u64 latest_devid = 0;
583 u64 latest_transid = 0;
a0af469b 584 u64 devid;
2b82032c 585 int seeding = 1;
a0af469b 586 int ret = 0;
8a4b83cc 587
d4d77629
TH
588 flags |= FMODE_EXCL;
589
c6e30871 590 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
591 if (device->bdev)
592 continue;
dfe25020
CM
593 if (!device->name)
594 continue;
595
d4d77629 596 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 597 if (IS_ERR(bdev)) {
d397712b 598 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 599 goto error;
8a4b83cc 600 }
a061fc8d 601 set_blocksize(bdev, 4096);
a0af469b 602
a512bbf8 603 bh = btrfs_read_dev_super(bdev);
20b45077
DY
604 if (!bh) {
605 ret = -EINVAL;
a0af469b 606 goto error_close;
20b45077 607 }
a0af469b
CM
608
609 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 610 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
611 if (devid != device->devid)
612 goto error_brelse;
613
2b82032c
YZ
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 BTRFS_UUID_SIZE))
616 goto error_brelse;
617
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
a0af469b 620 latest_devid = devid;
2b82032c 621 latest_transid = device->generation;
a0af469b
CM
622 latest_bdev = bdev;
623 }
624
2b82032c
YZ
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
627 } else {
628 device->writeable = !bdev_read_only(bdev);
629 seeding = 0;
630 }
631
8a4b83cc 632 device->bdev = bdev;
dfe25020 633 device->in_fs_metadata = 0;
15916de8
CM
634 device->mode = flags;
635
c289811c
CM
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
638
a0af469b 639 fs_devices->open_devices++;
2b82032c
YZ
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
644 }
a0af469b 645 continue;
a061fc8d 646
a0af469b
CM
647error_brelse:
648 brelse(bh);
649error_close:
d4d77629 650 blkdev_put(bdev, flags);
a0af469b
CM
651error:
652 continue;
8a4b83cc 653 }
a0af469b
CM
654 if (fs_devices->open_devices == 0) {
655 ret = -EIO;
656 goto out;
657 }
2b82032c
YZ
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
a0af469b
CM
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
2b82032c 663 fs_devices->total_rw_bytes = 0;
a0af469b 664out:
2b82032c
YZ
665 return ret;
666}
667
668int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 669 fmode_t flags, void *holder)
2b82032c
YZ
670{
671 int ret;
672
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
e4404d6e
YZ
675 fs_devices->opened++;
676 ret = 0;
2b82032c 677 } else {
15916de8 678 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 679 }
8a4b83cc 680 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
681 return ret;
682}
683
97288f2c 684int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
685 struct btrfs_fs_devices **fs_devices_ret)
686{
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
690 int ret;
691 u64 devid;
f2984462 692 u64 transid;
8a4b83cc
CM
693
694 mutex_lock(&uuid_mutex);
695
d4d77629
TH
696 flags |= FMODE_EXCL;
697 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
698
699 if (IS_ERR(bdev)) {
8a4b83cc
CM
700 ret = PTR_ERR(bdev);
701 goto error;
702 }
703
704 ret = set_blocksize(bdev, 4096);
705 if (ret)
706 goto error_close;
a512bbf8 707 bh = btrfs_read_dev_super(bdev);
8a4b83cc 708 if (!bh) {
20b45077 709 ret = -EINVAL;
8a4b83cc
CM
710 goto error_close;
711 }
712 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 713 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 714 transid = btrfs_super_generation(disk_super);
7ae9c09d 715 if (disk_super->label[0])
d397712b 716 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
717 else {
718 /* FIXME, make a readl uuid parser */
d397712b 719 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
720 *(unsigned long long *)disk_super->fsid,
721 *(unsigned long long *)(disk_super->fsid + 8));
722 }
119e10cf 723 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 724 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
725 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726
8a4b83cc
CM
727 brelse(bh);
728error_close:
d4d77629 729 blkdev_put(bdev, flags);
8a4b83cc
CM
730error:
731 mutex_unlock(&uuid_mutex);
732 return ret;
733}
0b86a832 734
6d07bcec
MX
735/* helper to account the used device space in the range */
736int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737 u64 end, u64 *length)
738{
739 struct btrfs_key key;
740 struct btrfs_root *root = device->dev_root;
741 struct btrfs_dev_extent *dev_extent;
742 struct btrfs_path *path;
743 u64 extent_end;
744 int ret;
745 int slot;
746 struct extent_buffer *l;
747
748 *length = 0;
749
750 if (start >= device->total_bytes)
751 return 0;
752
753 path = btrfs_alloc_path();
754 if (!path)
755 return -ENOMEM;
756 path->reada = 2;
757
758 key.objectid = device->devid;
759 key.offset = start;
760 key.type = BTRFS_DEV_EXTENT_KEY;
761
762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763 if (ret < 0)
764 goto out;
765 if (ret > 0) {
766 ret = btrfs_previous_item(root, path, key.objectid, key.type);
767 if (ret < 0)
768 goto out;
769 }
770
771 while (1) {
772 l = path->nodes[0];
773 slot = path->slots[0];
774 if (slot >= btrfs_header_nritems(l)) {
775 ret = btrfs_next_leaf(root, path);
776 if (ret == 0)
777 continue;
778 if (ret < 0)
779 goto out;
780
781 break;
782 }
783 btrfs_item_key_to_cpu(l, &key, slot);
784
785 if (key.objectid < device->devid)
786 goto next;
787
788 if (key.objectid > device->devid)
789 break;
790
791 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792 goto next;
793
794 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795 extent_end = key.offset + btrfs_dev_extent_length(l,
796 dev_extent);
797 if (key.offset <= start && extent_end > end) {
798 *length = end - start + 1;
799 break;
800 } else if (key.offset <= start && extent_end > start)
801 *length += extent_end - start;
802 else if (key.offset > start && extent_end <= end)
803 *length += extent_end - key.offset;
804 else if (key.offset > start && key.offset <= end) {
805 *length += end - key.offset + 1;
806 break;
807 } else if (key.offset > end)
808 break;
809
810next:
811 path->slots[0]++;
812 }
813 ret = 0;
814out:
815 btrfs_free_path(path);
816 return ret;
817}
818
0b86a832 819/*
7bfc837d
MX
820 * find_free_dev_extent - find free space in the specified device
821 * @trans: transaction handler
822 * @device: the device which we search the free space in
823 * @num_bytes: the size of the free space that we need
824 * @start: store the start of the free space.
825 * @len: the size of the free space. that we find, or the size of the max
826 * free space if we don't find suitable free space
827 *
0b86a832
CM
828 * this uses a pretty simple search, the expectation is that it is
829 * called very infrequently and that a given device has a small number
830 * of extents
7bfc837d
MX
831 *
832 * @start is used to store the start of the free space if we find. But if we
833 * don't find suitable free space, it will be used to store the start position
834 * of the max free space.
835 *
836 * @len is used to store the size of the free space that we find.
837 * But if we don't find suitable free space, it is used to store the size of
838 * the max free space.
0b86a832 839 */
ba1bf481
JB
840int find_free_dev_extent(struct btrfs_trans_handle *trans,
841 struct btrfs_device *device, u64 num_bytes,
7bfc837d 842 u64 *start, u64 *len)
0b86a832
CM
843{
844 struct btrfs_key key;
845 struct btrfs_root *root = device->dev_root;
7bfc837d 846 struct btrfs_dev_extent *dev_extent;
2b82032c 847 struct btrfs_path *path;
7bfc837d
MX
848 u64 hole_size;
849 u64 max_hole_start;
850 u64 max_hole_size;
851 u64 extent_end;
852 u64 search_start;
0b86a832
CM
853 u64 search_end = device->total_bytes;
854 int ret;
7bfc837d 855 int slot;
0b86a832
CM
856 struct extent_buffer *l;
857
0b86a832
CM
858 /* FIXME use last free of some kind */
859
8a4b83cc
CM
860 /* we don't want to overwrite the superblock on the drive,
861 * so we make sure to start at an offset of at least 1MB
862 */
7bfc837d 863 search_start = 1024 * 1024;
8f18cf13 864
7bfc837d 865 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
866 search_start = max(root->fs_info->alloc_start, search_start);
867
7bfc837d
MX
868 max_hole_start = search_start;
869 max_hole_size = 0;
870
871 if (search_start >= search_end) {
872 ret = -ENOSPC;
873 goto error;
874 }
875
876 path = btrfs_alloc_path();
877 if (!path) {
878 ret = -ENOMEM;
879 goto error;
880 }
881 path->reada = 2;
882
0b86a832
CM
883 key.objectid = device->devid;
884 key.offset = search_start;
885 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 886
0b86a832
CM
887 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888 if (ret < 0)
7bfc837d 889 goto out;
1fcbac58
YZ
890 if (ret > 0) {
891 ret = btrfs_previous_item(root, path, key.objectid, key.type);
892 if (ret < 0)
7bfc837d 893 goto out;
1fcbac58 894 }
7bfc837d 895
0b86a832
CM
896 while (1) {
897 l = path->nodes[0];
898 slot = path->slots[0];
899 if (slot >= btrfs_header_nritems(l)) {
900 ret = btrfs_next_leaf(root, path);
901 if (ret == 0)
902 continue;
903 if (ret < 0)
7bfc837d
MX
904 goto out;
905
906 break;
0b86a832
CM
907 }
908 btrfs_item_key_to_cpu(l, &key, slot);
909
910 if (key.objectid < device->devid)
911 goto next;
912
913 if (key.objectid > device->devid)
7bfc837d 914 break;
0b86a832 915
7bfc837d
MX
916 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917 goto next;
9779b72f 918
7bfc837d
MX
919 if (key.offset > search_start) {
920 hole_size = key.offset - search_start;
9779b72f 921
7bfc837d
MX
922 if (hole_size > max_hole_size) {
923 max_hole_start = search_start;
924 max_hole_size = hole_size;
925 }
9779b72f 926
7bfc837d
MX
927 /*
928 * If this free space is greater than which we need,
929 * it must be the max free space that we have found
930 * until now, so max_hole_start must point to the start
931 * of this free space and the length of this free space
932 * is stored in max_hole_size. Thus, we return
933 * max_hole_start and max_hole_size and go back to the
934 * caller.
935 */
936 if (hole_size >= num_bytes) {
937 ret = 0;
938 goto out;
0b86a832
CM
939 }
940 }
0b86a832 941
0b86a832 942 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
943 extent_end = key.offset + btrfs_dev_extent_length(l,
944 dev_extent);
945 if (extent_end > search_start)
946 search_start = extent_end;
0b86a832
CM
947next:
948 path->slots[0]++;
949 cond_resched();
950 }
0b86a832 951
7bfc837d
MX
952 hole_size = search_end- search_start;
953 if (hole_size > max_hole_size) {
954 max_hole_start = search_start;
955 max_hole_size = hole_size;
0b86a832 956 }
0b86a832 957
7bfc837d
MX
958 /* See above. */
959 if (hole_size < num_bytes)
960 ret = -ENOSPC;
961 else
962 ret = 0;
963
964out:
2b82032c 965 btrfs_free_path(path);
7bfc837d
MX
966error:
967 *start = max_hole_start;
b2117a39 968 if (len)
7bfc837d 969 *len = max_hole_size;
0b86a832
CM
970 return ret;
971}
972
b2950863 973static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
974 struct btrfs_device *device,
975 u64 start)
976{
977 int ret;
978 struct btrfs_path *path;
979 struct btrfs_root *root = device->dev_root;
980 struct btrfs_key key;
a061fc8d
CM
981 struct btrfs_key found_key;
982 struct extent_buffer *leaf = NULL;
983 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 key.objectid = device->devid;
990 key.offset = start;
991 key.type = BTRFS_DEV_EXTENT_KEY;
992
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
994 if (ret > 0) {
995 ret = btrfs_previous_item(root, path, key.objectid,
996 BTRFS_DEV_EXTENT_KEY);
997 BUG_ON(ret);
998 leaf = path->nodes[0];
999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000 extent = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_dev_extent);
1002 BUG_ON(found_key.offset > start || found_key.offset +
1003 btrfs_dev_extent_length(leaf, extent) < start);
1004 ret = 0;
1005 } else if (ret == 0) {
1006 leaf = path->nodes[0];
1007 extent = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_dev_extent);
1009 }
8f18cf13
CM
1010 BUG_ON(ret);
1011
dfe25020
CM
1012 if (device->bytes_used > 0)
1013 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
1014 ret = btrfs_del_item(trans, root, path);
1015 BUG_ON(ret);
1016
1017 btrfs_free_path(path);
1018 return ret;
1019}
1020
2b82032c 1021int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1022 struct btrfs_device *device,
e17cade2 1023 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1024 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1025{
1026 int ret;
1027 struct btrfs_path *path;
1028 struct btrfs_root *root = device->dev_root;
1029 struct btrfs_dev_extent *extent;
1030 struct extent_buffer *leaf;
1031 struct btrfs_key key;
1032
dfe25020 1033 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1034 path = btrfs_alloc_path();
1035 if (!path)
1036 return -ENOMEM;
1037
0b86a832 1038 key.objectid = device->devid;
2b82032c 1039 key.offset = start;
0b86a832
CM
1040 key.type = BTRFS_DEV_EXTENT_KEY;
1041 ret = btrfs_insert_empty_item(trans, root, path, &key,
1042 sizeof(*extent));
1043 BUG_ON(ret);
1044
1045 leaf = path->nodes[0];
1046 extent = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_dev_extent);
e17cade2
CM
1048 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051
1052 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054 BTRFS_UUID_SIZE);
1055
0b86a832
CM
1056 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1058 btrfs_free_path(path);
1059 return ret;
1060}
1061
a1b32a59
CM
1062static noinline int find_next_chunk(struct btrfs_root *root,
1063 u64 objectid, u64 *offset)
0b86a832
CM
1064{
1065 struct btrfs_path *path;
1066 int ret;
1067 struct btrfs_key key;
e17cade2 1068 struct btrfs_chunk *chunk;
0b86a832
CM
1069 struct btrfs_key found_key;
1070
1071 path = btrfs_alloc_path();
1072 BUG_ON(!path);
1073
e17cade2 1074 key.objectid = objectid;
0b86a832
CM
1075 key.offset = (u64)-1;
1076 key.type = BTRFS_CHUNK_ITEM_KEY;
1077
1078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079 if (ret < 0)
1080 goto error;
1081
1082 BUG_ON(ret == 0);
1083
1084 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085 if (ret) {
e17cade2 1086 *offset = 0;
0b86a832
CM
1087 } else {
1088 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089 path->slots[0]);
e17cade2
CM
1090 if (found_key.objectid != objectid)
1091 *offset = 0;
1092 else {
1093 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094 struct btrfs_chunk);
1095 *offset = found_key.offset +
1096 btrfs_chunk_length(path->nodes[0], chunk);
1097 }
0b86a832
CM
1098 }
1099 ret = 0;
1100error:
1101 btrfs_free_path(path);
1102 return ret;
1103}
1104
2b82032c 1105static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1106{
1107 int ret;
1108 struct btrfs_key key;
1109 struct btrfs_key found_key;
2b82032c
YZ
1110 struct btrfs_path *path;
1111
1112 root = root->fs_info->chunk_root;
1113
1114 path = btrfs_alloc_path();
1115 if (!path)
1116 return -ENOMEM;
0b86a832
CM
1117
1118 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119 key.type = BTRFS_DEV_ITEM_KEY;
1120 key.offset = (u64)-1;
1121
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 if (ret < 0)
1124 goto error;
1125
1126 BUG_ON(ret == 0);
1127
1128 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129 BTRFS_DEV_ITEM_KEY);
1130 if (ret) {
1131 *objectid = 1;
1132 } else {
1133 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134 path->slots[0]);
1135 *objectid = found_key.offset + 1;
1136 }
1137 ret = 0;
1138error:
2b82032c 1139 btrfs_free_path(path);
0b86a832
CM
1140 return ret;
1141}
1142
1143/*
1144 * the device information is stored in the chunk root
1145 * the btrfs_device struct should be fully filled in
1146 */
1147int btrfs_add_device(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_device *device)
1150{
1151 int ret;
1152 struct btrfs_path *path;
1153 struct btrfs_dev_item *dev_item;
1154 struct extent_buffer *leaf;
1155 struct btrfs_key key;
1156 unsigned long ptr;
0b86a832
CM
1157
1158 root = root->fs_info->chunk_root;
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163
0b86a832
CM
1164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1166 key.offset = device->devid;
0b86a832
CM
1167
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1169 sizeof(*dev_item));
0b86a832
CM
1170 if (ret)
1171 goto out;
1172
1173 leaf = path->nodes[0];
1174 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175
1176 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1177 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1178 btrfs_set_device_type(leaf, dev_item, device->type);
1179 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1182 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1184 btrfs_set_device_group(leaf, dev_item, 0);
1185 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1187 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1188
0b86a832 1189 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1190 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1191 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1193 btrfs_mark_buffer_dirty(leaf);
0b86a832 1194
2b82032c 1195 ret = 0;
0b86a832
CM
1196out:
1197 btrfs_free_path(path);
1198 return ret;
1199}
8f18cf13 1200
a061fc8d
CM
1201static int btrfs_rm_dev_item(struct btrfs_root *root,
1202 struct btrfs_device *device)
1203{
1204 int ret;
1205 struct btrfs_path *path;
a061fc8d 1206 struct btrfs_key key;
a061fc8d
CM
1207 struct btrfs_trans_handle *trans;
1208
1209 root = root->fs_info->chunk_root;
1210
1211 path = btrfs_alloc_path();
1212 if (!path)
1213 return -ENOMEM;
1214
a22285a6 1215 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1216 if (IS_ERR(trans)) {
1217 btrfs_free_path(path);
1218 return PTR_ERR(trans);
1219 }
a061fc8d
CM
1220 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221 key.type = BTRFS_DEV_ITEM_KEY;
1222 key.offset = device->devid;
7d9eb12c 1223 lock_chunks(root);
a061fc8d
CM
1224
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0)
1227 goto out;
1228
1229 if (ret > 0) {
1230 ret = -ENOENT;
1231 goto out;
1232 }
1233
1234 ret = btrfs_del_item(trans, root, path);
1235 if (ret)
1236 goto out;
a061fc8d
CM
1237out:
1238 btrfs_free_path(path);
7d9eb12c 1239 unlock_chunks(root);
a061fc8d
CM
1240 btrfs_commit_transaction(trans, root);
1241 return ret;
1242}
1243
1244int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1245{
1246 struct btrfs_device *device;
2b82032c 1247 struct btrfs_device *next_device;
a061fc8d 1248 struct block_device *bdev;
dfe25020 1249 struct buffer_head *bh = NULL;
a061fc8d
CM
1250 struct btrfs_super_block *disk_super;
1251 u64 all_avail;
1252 u64 devid;
2b82032c
YZ
1253 u64 num_devices;
1254 u8 *dev_uuid;
a061fc8d
CM
1255 int ret = 0;
1256
a061fc8d 1257 mutex_lock(&uuid_mutex);
7d9eb12c 1258 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1259
1260 all_avail = root->fs_info->avail_data_alloc_bits |
1261 root->fs_info->avail_system_alloc_bits |
1262 root->fs_info->avail_metadata_alloc_bits;
1263
1264 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1265 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1266 printk(KERN_ERR "btrfs: unable to go below four devices "
1267 "on raid10\n");
a061fc8d
CM
1268 ret = -EINVAL;
1269 goto out;
1270 }
1271
1272 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1273 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1274 printk(KERN_ERR "btrfs: unable to go below two "
1275 "devices on raid1\n");
a061fc8d
CM
1276 ret = -EINVAL;
1277 goto out;
1278 }
1279
dfe25020 1280 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1281 struct list_head *devices;
1282 struct btrfs_device *tmp;
a061fc8d 1283
dfe25020
CM
1284 device = NULL;
1285 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1286 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1287 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1288 if (tmp->in_fs_metadata && !tmp->bdev) {
1289 device = tmp;
1290 break;
1291 }
1292 }
e5e9a520 1293 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1294 bdev = NULL;
1295 bh = NULL;
1296 disk_super = NULL;
1297 if (!device) {
d397712b
CM
1298 printk(KERN_ERR "btrfs: no missing devices found to "
1299 "remove\n");
dfe25020
CM
1300 goto out;
1301 }
dfe25020 1302 } else {
d4d77629
TH
1303 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304 root->fs_info->bdev_holder);
dfe25020
CM
1305 if (IS_ERR(bdev)) {
1306 ret = PTR_ERR(bdev);
1307 goto out;
1308 }
a061fc8d 1309
2b82032c 1310 set_blocksize(bdev, 4096);
a512bbf8 1311 bh = btrfs_read_dev_super(bdev);
dfe25020 1312 if (!bh) {
20b45077 1313 ret = -EINVAL;
dfe25020
CM
1314 goto error_close;
1315 }
1316 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1317 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1318 dev_uuid = disk_super->dev_item.uuid;
1319 device = btrfs_find_device(root, devid, dev_uuid,
1320 disk_super->fsid);
dfe25020
CM
1321 if (!device) {
1322 ret = -ENOENT;
1323 goto error_brelse;
1324 }
2b82032c 1325 }
dfe25020 1326
2b82032c 1327 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1328 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1329 "device\n");
2b82032c
YZ
1330 ret = -EINVAL;
1331 goto error_brelse;
1332 }
1333
1334 if (device->writeable) {
1335 list_del_init(&device->dev_alloc_list);
1336 root->fs_info->fs_devices->rw_devices--;
dfe25020 1337 }
a061fc8d
CM
1338
1339 ret = btrfs_shrink_device(device, 0);
1340 if (ret)
1341 goto error_brelse;
1342
a061fc8d
CM
1343 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1344 if (ret)
1345 goto error_brelse;
1346
2b82032c 1347 device->in_fs_metadata = 0;
e5e9a520
CM
1348
1349 /*
1350 * the device list mutex makes sure that we don't change
1351 * the device list while someone else is writing out all
1352 * the device supers.
1353 */
1354 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1355 list_del_init(&device->dev_list);
e5e9a520
CM
1356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1357
e4404d6e 1358 device->fs_devices->num_devices--;
2b82032c 1359
cd02dca5
CM
1360 if (device->missing)
1361 root->fs_info->fs_devices->missing_devices--;
1362
2b82032c
YZ
1363 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364 struct btrfs_device, dev_list);
1365 if (device->bdev == root->fs_info->sb->s_bdev)
1366 root->fs_info->sb->s_bdev = next_device->bdev;
1367 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1369
e4404d6e 1370 if (device->bdev) {
d4d77629 1371 blkdev_put(device->bdev, device->mode);
e4404d6e
YZ
1372 device->bdev = NULL;
1373 device->fs_devices->open_devices--;
1374 }
1375
2b82032c
YZ
1376 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1378
e4404d6e
YZ
1379 if (device->fs_devices->open_devices == 0) {
1380 struct btrfs_fs_devices *fs_devices;
1381 fs_devices = root->fs_info->fs_devices;
1382 while (fs_devices) {
1383 if (fs_devices->seed == device->fs_devices)
1384 break;
1385 fs_devices = fs_devices->seed;
2b82032c 1386 }
e4404d6e
YZ
1387 fs_devices->seed = device->fs_devices->seed;
1388 device->fs_devices->seed = NULL;
1389 __btrfs_close_devices(device->fs_devices);
1390 free_fs_devices(device->fs_devices);
2b82032c
YZ
1391 }
1392
1393 /*
1394 * at this point, the device is zero sized. We want to
1395 * remove it from the devices list and zero out the old super
1396 */
1397 if (device->writeable) {
dfe25020
CM
1398 /* make sure this device isn't detected as part of
1399 * the FS anymore
1400 */
1401 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402 set_buffer_dirty(bh);
1403 sync_dirty_buffer(bh);
dfe25020 1404 }
a061fc8d
CM
1405
1406 kfree(device->name);
1407 kfree(device);
1408 ret = 0;
a061fc8d
CM
1409
1410error_brelse:
1411 brelse(bh);
1412error_close:
dfe25020 1413 if (bdev)
e525fd89 1414 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d 1415out:
7d9eb12c 1416 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1417 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1418 return ret;
1419}
1420
2b82032c
YZ
1421/*
1422 * does all the dirty work required for changing file system's UUID.
1423 */
1424static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root)
1426{
1427 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1428 struct btrfs_fs_devices *old_devices;
e4404d6e 1429 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1430 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1431 struct btrfs_device *device;
1432 u64 super_flags;
1433
1434 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1435 if (!fs_devices->seeding)
2b82032c
YZ
1436 return -EINVAL;
1437
e4404d6e
YZ
1438 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1439 if (!seed_devices)
2b82032c
YZ
1440 return -ENOMEM;
1441
e4404d6e
YZ
1442 old_devices = clone_fs_devices(fs_devices);
1443 if (IS_ERR(old_devices)) {
1444 kfree(seed_devices);
1445 return PTR_ERR(old_devices);
2b82032c 1446 }
e4404d6e 1447
2b82032c
YZ
1448 list_add(&old_devices->list, &fs_uuids);
1449
e4404d6e
YZ
1450 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1451 seed_devices->opened = 1;
1452 INIT_LIST_HEAD(&seed_devices->devices);
1453 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1454 mutex_init(&seed_devices->device_list_mutex);
e4404d6e
YZ
1455 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1456 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1457 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1458 device->fs_devices = seed_devices;
1459 }
1460
2b82032c
YZ
1461 fs_devices->seeding = 0;
1462 fs_devices->num_devices = 0;
1463 fs_devices->open_devices = 0;
e4404d6e 1464 fs_devices->seed = seed_devices;
2b82032c
YZ
1465
1466 generate_random_uuid(fs_devices->fsid);
1467 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1469 super_flags = btrfs_super_flags(disk_super) &
1470 ~BTRFS_SUPER_FLAG_SEEDING;
1471 btrfs_set_super_flags(disk_super, super_flags);
1472
1473 return 0;
1474}
1475
1476/*
1477 * strore the expected generation for seed devices in device items.
1478 */
1479static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root)
1481{
1482 struct btrfs_path *path;
1483 struct extent_buffer *leaf;
1484 struct btrfs_dev_item *dev_item;
1485 struct btrfs_device *device;
1486 struct btrfs_key key;
1487 u8 fs_uuid[BTRFS_UUID_SIZE];
1488 u8 dev_uuid[BTRFS_UUID_SIZE];
1489 u64 devid;
1490 int ret;
1491
1492 path = btrfs_alloc_path();
1493 if (!path)
1494 return -ENOMEM;
1495
1496 root = root->fs_info->chunk_root;
1497 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498 key.offset = 0;
1499 key.type = BTRFS_DEV_ITEM_KEY;
1500
1501 while (1) {
1502 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1503 if (ret < 0)
1504 goto error;
1505
1506 leaf = path->nodes[0];
1507next_slot:
1508 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1509 ret = btrfs_next_leaf(root, path);
1510 if (ret > 0)
1511 break;
1512 if (ret < 0)
1513 goto error;
1514 leaf = path->nodes[0];
1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 btrfs_release_path(root, path);
1517 continue;
1518 }
1519
1520 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1521 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1522 key.type != BTRFS_DEV_ITEM_KEY)
1523 break;
1524
1525 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1526 struct btrfs_dev_item);
1527 devid = btrfs_device_id(leaf, dev_item);
1528 read_extent_buffer(leaf, dev_uuid,
1529 (unsigned long)btrfs_device_uuid(dev_item),
1530 BTRFS_UUID_SIZE);
1531 read_extent_buffer(leaf, fs_uuid,
1532 (unsigned long)btrfs_device_fsid(dev_item),
1533 BTRFS_UUID_SIZE);
1534 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1535 BUG_ON(!device);
1536
1537 if (device->fs_devices->seeding) {
1538 btrfs_set_device_generation(leaf, dev_item,
1539 device->generation);
1540 btrfs_mark_buffer_dirty(leaf);
1541 }
1542
1543 path->slots[0]++;
1544 goto next_slot;
1545 }
1546 ret = 0;
1547error:
1548 btrfs_free_path(path);
1549 return ret;
1550}
1551
788f20eb
CM
1552int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1553{
1554 struct btrfs_trans_handle *trans;
1555 struct btrfs_device *device;
1556 struct block_device *bdev;
788f20eb 1557 struct list_head *devices;
2b82032c 1558 struct super_block *sb = root->fs_info->sb;
788f20eb 1559 u64 total_bytes;
2b82032c 1560 int seeding_dev = 0;
788f20eb
CM
1561 int ret = 0;
1562
2b82032c
YZ
1563 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1564 return -EINVAL;
788f20eb 1565
d4d77629
TH
1566 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1567 root->fs_info->bdev_holder);
7f59203a
JB
1568 if (IS_ERR(bdev))
1569 return PTR_ERR(bdev);
a2135011 1570
2b82032c
YZ
1571 if (root->fs_info->fs_devices->seeding) {
1572 seeding_dev = 1;
1573 down_write(&sb->s_umount);
1574 mutex_lock(&uuid_mutex);
1575 }
1576
8c8bee1d 1577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1578 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1579
788f20eb 1580 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1581 /*
1582 * we have the volume lock, so we don't need the extra
1583 * device list mutex while reading the list here.
1584 */
c6e30871 1585 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1586 if (device->bdev == bdev) {
1587 ret = -EEXIST;
2b82032c 1588 goto error;
788f20eb
CM
1589 }
1590 }
1591
1592 device = kzalloc(sizeof(*device), GFP_NOFS);
1593 if (!device) {
1594 /* we can safely leave the fs_devices entry around */
1595 ret = -ENOMEM;
2b82032c 1596 goto error;
788f20eb
CM
1597 }
1598
788f20eb
CM
1599 device->name = kstrdup(device_path, GFP_NOFS);
1600 if (!device->name) {
1601 kfree(device);
2b82032c
YZ
1602 ret = -ENOMEM;
1603 goto error;
788f20eb 1604 }
2b82032c
YZ
1605
1606 ret = find_next_devid(root, &device->devid);
1607 if (ret) {
67100f25 1608 kfree(device->name);
2b82032c
YZ
1609 kfree(device);
1610 goto error;
1611 }
1612
a22285a6 1613 trans = btrfs_start_transaction(root, 0);
98d5dc13 1614 if (IS_ERR(trans)) {
67100f25 1615 kfree(device->name);
98d5dc13
TI
1616 kfree(device);
1617 ret = PTR_ERR(trans);
1618 goto error;
1619 }
1620
2b82032c
YZ
1621 lock_chunks(root);
1622
2b82032c
YZ
1623 device->writeable = 1;
1624 device->work.func = pending_bios_fn;
1625 generate_random_uuid(device->uuid);
1626 spin_lock_init(&device->io_lock);
1627 device->generation = trans->transid;
788f20eb
CM
1628 device->io_width = root->sectorsize;
1629 device->io_align = root->sectorsize;
1630 device->sector_size = root->sectorsize;
1631 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1632 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1633 device->dev_root = root->fs_info->dev_root;
1634 device->bdev = bdev;
dfe25020 1635 device->in_fs_metadata = 1;
15916de8 1636 device->mode = 0;
2b82032c 1637 set_blocksize(device->bdev, 4096);
788f20eb 1638
2b82032c
YZ
1639 if (seeding_dev) {
1640 sb->s_flags &= ~MS_RDONLY;
1641 ret = btrfs_prepare_sprout(trans, root);
1642 BUG_ON(ret);
1643 }
788f20eb 1644
2b82032c 1645 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1646
1647 /*
1648 * we don't want write_supers to jump in here with our device
1649 * half setup
1650 */
1651 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1652 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1653 list_add(&device->dev_alloc_list,
1654 &root->fs_info->fs_devices->alloc_list);
1655 root->fs_info->fs_devices->num_devices++;
1656 root->fs_info->fs_devices->open_devices++;
1657 root->fs_info->fs_devices->rw_devices++;
1658 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1659
c289811c
CM
1660 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1661 root->fs_info->fs_devices->rotating = 1;
1662
788f20eb
CM
1663 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1664 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1665 total_bytes + device->total_bytes);
1666
1667 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1668 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1669 total_bytes + 1);
e5e9a520 1670 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1671
2b82032c
YZ
1672 if (seeding_dev) {
1673 ret = init_first_rw_device(trans, root, device);
1674 BUG_ON(ret);
1675 ret = btrfs_finish_sprout(trans, root);
1676 BUG_ON(ret);
1677 } else {
1678 ret = btrfs_add_device(trans, root, device);
1679 }
1680
913d952e
CM
1681 /*
1682 * we've got more storage, clear any full flags on the space
1683 * infos
1684 */
1685 btrfs_clear_space_info_full(root->fs_info);
1686
7d9eb12c 1687 unlock_chunks(root);
2b82032c 1688 btrfs_commit_transaction(trans, root);
a2135011 1689
2b82032c
YZ
1690 if (seeding_dev) {
1691 mutex_unlock(&uuid_mutex);
1692 up_write(&sb->s_umount);
788f20eb 1693
2b82032c
YZ
1694 ret = btrfs_relocate_sys_chunks(root);
1695 BUG_ON(ret);
1696 }
1697out:
1698 mutex_unlock(&root->fs_info->volume_mutex);
1699 return ret;
1700error:
e525fd89 1701 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1702 if (seeding_dev) {
1703 mutex_unlock(&uuid_mutex);
1704 up_write(&sb->s_umount);
1705 }
788f20eb
CM
1706 goto out;
1707}
1708
d397712b
CM
1709static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1710 struct btrfs_device *device)
0b86a832
CM
1711{
1712 int ret;
1713 struct btrfs_path *path;
1714 struct btrfs_root *root;
1715 struct btrfs_dev_item *dev_item;
1716 struct extent_buffer *leaf;
1717 struct btrfs_key key;
1718
1719 root = device->dev_root->fs_info->chunk_root;
1720
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726 key.type = BTRFS_DEV_ITEM_KEY;
1727 key.offset = device->devid;
1728
1729 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1730 if (ret < 0)
1731 goto out;
1732
1733 if (ret > 0) {
1734 ret = -ENOENT;
1735 goto out;
1736 }
1737
1738 leaf = path->nodes[0];
1739 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1740
1741 btrfs_set_device_id(leaf, dev_item, device->devid);
1742 btrfs_set_device_type(leaf, dev_item, device->type);
1743 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1744 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1745 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1746 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1747 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1748 btrfs_mark_buffer_dirty(leaf);
1749
1750out:
1751 btrfs_free_path(path);
1752 return ret;
1753}
1754
7d9eb12c 1755static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1756 struct btrfs_device *device, u64 new_size)
1757{
1758 struct btrfs_super_block *super_copy =
1759 &device->dev_root->fs_info->super_copy;
1760 u64 old_total = btrfs_super_total_bytes(super_copy);
1761 u64 diff = new_size - device->total_bytes;
1762
2b82032c
YZ
1763 if (!device->writeable)
1764 return -EACCES;
1765 if (new_size <= device->total_bytes)
1766 return -EINVAL;
1767
8f18cf13 1768 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1769 device->fs_devices->total_rw_bytes += diff;
1770
1771 device->total_bytes = new_size;
9779b72f 1772 device->disk_total_bytes = new_size;
4184ea7f
CM
1773 btrfs_clear_space_info_full(device->dev_root->fs_info);
1774
8f18cf13
CM
1775 return btrfs_update_device(trans, device);
1776}
1777
7d9eb12c
CM
1778int btrfs_grow_device(struct btrfs_trans_handle *trans,
1779 struct btrfs_device *device, u64 new_size)
1780{
1781 int ret;
1782 lock_chunks(device->dev_root);
1783 ret = __btrfs_grow_device(trans, device, new_size);
1784 unlock_chunks(device->dev_root);
1785 return ret;
1786}
1787
8f18cf13
CM
1788static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 u64 chunk_tree, u64 chunk_objectid,
1791 u64 chunk_offset)
1792{
1793 int ret;
1794 struct btrfs_path *path;
1795 struct btrfs_key key;
1796
1797 root = root->fs_info->chunk_root;
1798 path = btrfs_alloc_path();
1799 if (!path)
1800 return -ENOMEM;
1801
1802 key.objectid = chunk_objectid;
1803 key.offset = chunk_offset;
1804 key.type = BTRFS_CHUNK_ITEM_KEY;
1805
1806 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1807 BUG_ON(ret);
1808
1809 ret = btrfs_del_item(trans, root, path);
1810 BUG_ON(ret);
1811
1812 btrfs_free_path(path);
1813 return 0;
1814}
1815
b2950863 1816static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1817 chunk_offset)
1818{
1819 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1820 struct btrfs_disk_key *disk_key;
1821 struct btrfs_chunk *chunk;
1822 u8 *ptr;
1823 int ret = 0;
1824 u32 num_stripes;
1825 u32 array_size;
1826 u32 len = 0;
1827 u32 cur;
1828 struct btrfs_key key;
1829
1830 array_size = btrfs_super_sys_array_size(super_copy);
1831
1832 ptr = super_copy->sys_chunk_array;
1833 cur = 0;
1834
1835 while (cur < array_size) {
1836 disk_key = (struct btrfs_disk_key *)ptr;
1837 btrfs_disk_key_to_cpu(&key, disk_key);
1838
1839 len = sizeof(*disk_key);
1840
1841 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1842 chunk = (struct btrfs_chunk *)(ptr + len);
1843 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1844 len += btrfs_chunk_item_size(num_stripes);
1845 } else {
1846 ret = -EIO;
1847 break;
1848 }
1849 if (key.objectid == chunk_objectid &&
1850 key.offset == chunk_offset) {
1851 memmove(ptr, ptr + len, array_size - (cur + len));
1852 array_size -= len;
1853 btrfs_set_super_sys_array_size(super_copy, array_size);
1854 } else {
1855 ptr += len;
1856 cur += len;
1857 }
1858 }
1859 return ret;
1860}
1861
b2950863 1862static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1863 u64 chunk_tree, u64 chunk_objectid,
1864 u64 chunk_offset)
1865{
1866 struct extent_map_tree *em_tree;
1867 struct btrfs_root *extent_root;
1868 struct btrfs_trans_handle *trans;
1869 struct extent_map *em;
1870 struct map_lookup *map;
1871 int ret;
1872 int i;
1873
1874 root = root->fs_info->chunk_root;
1875 extent_root = root->fs_info->extent_root;
1876 em_tree = &root->fs_info->mapping_tree.map_tree;
1877
ba1bf481
JB
1878 ret = btrfs_can_relocate(extent_root, chunk_offset);
1879 if (ret)
1880 return -ENOSPC;
1881
8f18cf13 1882 /* step one, relocate all the extents inside this chunk */
1a40e23b 1883 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1884 if (ret)
1885 return ret;
8f18cf13 1886
a22285a6 1887 trans = btrfs_start_transaction(root, 0);
98d5dc13 1888 BUG_ON(IS_ERR(trans));
8f18cf13 1889
7d9eb12c
CM
1890 lock_chunks(root);
1891
8f18cf13
CM
1892 /*
1893 * step two, delete the device extents and the
1894 * chunk tree entries
1895 */
890871be 1896 read_lock(&em_tree->lock);
8f18cf13 1897 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1898 read_unlock(&em_tree->lock);
8f18cf13 1899
a061fc8d
CM
1900 BUG_ON(em->start > chunk_offset ||
1901 em->start + em->len < chunk_offset);
8f18cf13
CM
1902 map = (struct map_lookup *)em->bdev;
1903
1904 for (i = 0; i < map->num_stripes; i++) {
1905 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1906 map->stripes[i].physical);
1907 BUG_ON(ret);
a061fc8d 1908
dfe25020
CM
1909 if (map->stripes[i].dev) {
1910 ret = btrfs_update_device(trans, map->stripes[i].dev);
1911 BUG_ON(ret);
1912 }
8f18cf13
CM
1913 }
1914 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1915 chunk_offset);
1916
1917 BUG_ON(ret);
1918
1919 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1920 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1921 BUG_ON(ret);
8f18cf13
CM
1922 }
1923
2b82032c
YZ
1924 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1925 BUG_ON(ret);
1926
890871be 1927 write_lock(&em_tree->lock);
2b82032c 1928 remove_extent_mapping(em_tree, em);
890871be 1929 write_unlock(&em_tree->lock);
2b82032c
YZ
1930
1931 kfree(map);
1932 em->bdev = NULL;
1933
1934 /* once for the tree */
1935 free_extent_map(em);
1936 /* once for us */
1937 free_extent_map(em);
1938
1939 unlock_chunks(root);
1940 btrfs_end_transaction(trans, root);
1941 return 0;
1942}
1943
1944static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1945{
1946 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1947 struct btrfs_path *path;
1948 struct extent_buffer *leaf;
1949 struct btrfs_chunk *chunk;
1950 struct btrfs_key key;
1951 struct btrfs_key found_key;
1952 u64 chunk_tree = chunk_root->root_key.objectid;
1953 u64 chunk_type;
ba1bf481
JB
1954 bool retried = false;
1955 int failed = 0;
2b82032c
YZ
1956 int ret;
1957
1958 path = btrfs_alloc_path();
1959 if (!path)
1960 return -ENOMEM;
1961
ba1bf481 1962again:
2b82032c
YZ
1963 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1964 key.offset = (u64)-1;
1965 key.type = BTRFS_CHUNK_ITEM_KEY;
1966
1967 while (1) {
1968 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1969 if (ret < 0)
1970 goto error;
1971 BUG_ON(ret == 0);
1972
1973 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1974 key.type);
1975 if (ret < 0)
1976 goto error;
1977 if (ret > 0)
1978 break;
1a40e23b 1979
2b82032c
YZ
1980 leaf = path->nodes[0];
1981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1982
2b82032c
YZ
1983 chunk = btrfs_item_ptr(leaf, path->slots[0],
1984 struct btrfs_chunk);
1985 chunk_type = btrfs_chunk_type(leaf, chunk);
1986 btrfs_release_path(chunk_root, path);
8f18cf13 1987
2b82032c
YZ
1988 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1989 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1990 found_key.objectid,
1991 found_key.offset);
ba1bf481
JB
1992 if (ret == -ENOSPC)
1993 failed++;
1994 else if (ret)
1995 BUG();
2b82032c 1996 }
8f18cf13 1997
2b82032c
YZ
1998 if (found_key.offset == 0)
1999 break;
2000 key.offset = found_key.offset - 1;
2001 }
2002 ret = 0;
ba1bf481
JB
2003 if (failed && !retried) {
2004 failed = 0;
2005 retried = true;
2006 goto again;
2007 } else if (failed && retried) {
2008 WARN_ON(1);
2009 ret = -ENOSPC;
2010 }
2b82032c
YZ
2011error:
2012 btrfs_free_path(path);
2013 return ret;
8f18cf13
CM
2014}
2015
ec44a35c
CM
2016static u64 div_factor(u64 num, int factor)
2017{
2018 if (factor == 10)
2019 return num;
2020 num *= factor;
2021 do_div(num, 10);
2022 return num;
2023}
2024
ec44a35c
CM
2025int btrfs_balance(struct btrfs_root *dev_root)
2026{
2027 int ret;
ec44a35c
CM
2028 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2029 struct btrfs_device *device;
2030 u64 old_size;
2031 u64 size_to_free;
2032 struct btrfs_path *path;
2033 struct btrfs_key key;
ec44a35c
CM
2034 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2035 struct btrfs_trans_handle *trans;
2036 struct btrfs_key found_key;
2037
2b82032c
YZ
2038 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2039 return -EROFS;
ec44a35c 2040
6f88a440
BH
2041 if (!capable(CAP_SYS_ADMIN))
2042 return -EPERM;
2043
7d9eb12c 2044 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2045 dev_root = dev_root->fs_info->dev_root;
2046
ec44a35c 2047 /* step one make some room on all the devices */
c6e30871 2048 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2049 old_size = device->total_bytes;
2050 size_to_free = div_factor(old_size, 1);
2051 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2052 if (!device->writeable ||
2053 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2054 continue;
2055
2056 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2057 if (ret == -ENOSPC)
2058 break;
ec44a35c
CM
2059 BUG_ON(ret);
2060
a22285a6 2061 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2062 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2063
2064 ret = btrfs_grow_device(trans, device, old_size);
2065 BUG_ON(ret);
2066
2067 btrfs_end_transaction(trans, dev_root);
2068 }
2069
2070 /* step two, relocate all the chunks */
2071 path = btrfs_alloc_path();
2072 BUG_ON(!path);
2073
2074 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2075 key.offset = (u64)-1;
2076 key.type = BTRFS_CHUNK_ITEM_KEY;
2077
d397712b 2078 while (1) {
ec44a35c
CM
2079 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2080 if (ret < 0)
2081 goto error;
2082
2083 /*
2084 * this shouldn't happen, it means the last relocate
2085 * failed
2086 */
2087 if (ret == 0)
2088 break;
2089
2090 ret = btrfs_previous_item(chunk_root, path, 0,
2091 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2092 if (ret)
ec44a35c 2093 break;
7d9eb12c 2094
ec44a35c
CM
2095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2096 path->slots[0]);
2097 if (found_key.objectid != key.objectid)
2098 break;
7d9eb12c 2099
ec44a35c 2100 /* chunk zero is special */
ba1bf481 2101 if (found_key.offset == 0)
ec44a35c
CM
2102 break;
2103
7d9eb12c 2104 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2105 ret = btrfs_relocate_chunk(chunk_root,
2106 chunk_root->root_key.objectid,
2107 found_key.objectid,
2108 found_key.offset);
ba1bf481
JB
2109 BUG_ON(ret && ret != -ENOSPC);
2110 key.offset = found_key.offset - 1;
ec44a35c
CM
2111 }
2112 ret = 0;
2113error:
2114 btrfs_free_path(path);
7d9eb12c 2115 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2116 return ret;
2117}
2118
8f18cf13
CM
2119/*
2120 * shrinking a device means finding all of the device extents past
2121 * the new size, and then following the back refs to the chunks.
2122 * The chunk relocation code actually frees the device extent
2123 */
2124int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2125{
2126 struct btrfs_trans_handle *trans;
2127 struct btrfs_root *root = device->dev_root;
2128 struct btrfs_dev_extent *dev_extent = NULL;
2129 struct btrfs_path *path;
2130 u64 length;
2131 u64 chunk_tree;
2132 u64 chunk_objectid;
2133 u64 chunk_offset;
2134 int ret;
2135 int slot;
ba1bf481
JB
2136 int failed = 0;
2137 bool retried = false;
8f18cf13
CM
2138 struct extent_buffer *l;
2139 struct btrfs_key key;
2140 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2141 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2142 u64 old_size = device->total_bytes;
8f18cf13
CM
2143 u64 diff = device->total_bytes - new_size;
2144
2b82032c
YZ
2145 if (new_size >= device->total_bytes)
2146 return -EINVAL;
8f18cf13
CM
2147
2148 path = btrfs_alloc_path();
2149 if (!path)
2150 return -ENOMEM;
2151
8f18cf13
CM
2152 path->reada = 2;
2153
7d9eb12c
CM
2154 lock_chunks(root);
2155
8f18cf13 2156 device->total_bytes = new_size;
2b82032c
YZ
2157 if (device->writeable)
2158 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2159 unlock_chunks(root);
8f18cf13 2160
ba1bf481 2161again:
8f18cf13
CM
2162 key.objectid = device->devid;
2163 key.offset = (u64)-1;
2164 key.type = BTRFS_DEV_EXTENT_KEY;
2165
2166 while (1) {
2167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2168 if (ret < 0)
2169 goto done;
2170
2171 ret = btrfs_previous_item(root, path, 0, key.type);
2172 if (ret < 0)
2173 goto done;
2174 if (ret) {
2175 ret = 0;
ba1bf481 2176 btrfs_release_path(root, path);
bf1fb512 2177 break;
8f18cf13
CM
2178 }
2179
2180 l = path->nodes[0];
2181 slot = path->slots[0];
2182 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2183
ba1bf481
JB
2184 if (key.objectid != device->devid) {
2185 btrfs_release_path(root, path);
bf1fb512 2186 break;
ba1bf481 2187 }
8f18cf13
CM
2188
2189 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2190 length = btrfs_dev_extent_length(l, dev_extent);
2191
ba1bf481
JB
2192 if (key.offset + length <= new_size) {
2193 btrfs_release_path(root, path);
d6397bae 2194 break;
ba1bf481 2195 }
8f18cf13
CM
2196
2197 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2198 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2199 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2200 btrfs_release_path(root, path);
2201
2202 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2203 chunk_offset);
ba1bf481 2204 if (ret && ret != -ENOSPC)
8f18cf13 2205 goto done;
ba1bf481
JB
2206 if (ret == -ENOSPC)
2207 failed++;
2208 key.offset -= 1;
2209 }
2210
2211 if (failed && !retried) {
2212 failed = 0;
2213 retried = true;
2214 goto again;
2215 } else if (failed && retried) {
2216 ret = -ENOSPC;
2217 lock_chunks(root);
2218
2219 device->total_bytes = old_size;
2220 if (device->writeable)
2221 device->fs_devices->total_rw_bytes += diff;
2222 unlock_chunks(root);
2223 goto done;
8f18cf13
CM
2224 }
2225
d6397bae 2226 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2227 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2228 if (IS_ERR(trans)) {
2229 ret = PTR_ERR(trans);
2230 goto done;
2231 }
2232
d6397bae
CB
2233 lock_chunks(root);
2234
2235 device->disk_total_bytes = new_size;
2236 /* Now btrfs_update_device() will change the on-disk size. */
2237 ret = btrfs_update_device(trans, device);
2238 if (ret) {
2239 unlock_chunks(root);
2240 btrfs_end_transaction(trans, root);
2241 goto done;
2242 }
2243 WARN_ON(diff > old_total);
2244 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2245 unlock_chunks(root);
2246 btrfs_end_transaction(trans, root);
8f18cf13
CM
2247done:
2248 btrfs_free_path(path);
2249 return ret;
2250}
2251
b2950863 2252static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2253 struct btrfs_root *root,
2254 struct btrfs_key *key,
2255 struct btrfs_chunk *chunk, int item_size)
2256{
2257 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2258 struct btrfs_disk_key disk_key;
2259 u32 array_size;
2260 u8 *ptr;
2261
2262 array_size = btrfs_super_sys_array_size(super_copy);
2263 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2264 return -EFBIG;
2265
2266 ptr = super_copy->sys_chunk_array + array_size;
2267 btrfs_cpu_key_to_disk(&disk_key, key);
2268 memcpy(ptr, &disk_key, sizeof(disk_key));
2269 ptr += sizeof(disk_key);
2270 memcpy(ptr, chunk, item_size);
2271 item_size += sizeof(disk_key);
2272 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2273 return 0;
2274}
2275
d397712b 2276static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2277 int num_stripes, int sub_stripes)
9b3f68b9
CM
2278{
2279 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2280 return calc_size;
2281 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2282 return calc_size * (num_stripes / sub_stripes);
2283 else
2284 return calc_size * num_stripes;
2285}
2286
b2117a39
MX
2287/* Used to sort the devices by max_avail(descending sort) */
2288int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
0b86a832 2289{
b2117a39
MX
2290 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2291 ((struct btrfs_device_info *)dev_info2)->max_avail)
2292 return -1;
2293 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2294 ((struct btrfs_device_info *)dev_info2)->max_avail)
2295 return 1;
2296 else
2297 return 0;
2298}
0b86a832 2299
b2117a39
MX
2300static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2301 int *num_stripes, int *min_stripes,
2302 int *sub_stripes)
2303{
2304 *num_stripes = 1;
2305 *min_stripes = 1;
2306 *sub_stripes = 0;
593060d7 2307
a40a90a0 2308 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
b2117a39
MX
2309 *num_stripes = fs_devices->rw_devices;
2310 *min_stripes = 2;
a40a90a0
CM
2311 }
2312 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
b2117a39
MX
2313 *num_stripes = 2;
2314 *min_stripes = 2;
a40a90a0 2315 }
8790d502 2316 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2317 if (fs_devices->rw_devices < 2)
9b3f68b9 2318 return -ENOSPC;
b2117a39
MX
2319 *num_stripes = 2;
2320 *min_stripes = 2;
8790d502 2321 }
321aecc6 2322 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
b2117a39
MX
2323 *num_stripes = fs_devices->rw_devices;
2324 if (*num_stripes < 4)
321aecc6 2325 return -ENOSPC;
b2117a39
MX
2326 *num_stripes &= ~(u32)1;
2327 *sub_stripes = 2;
2328 *min_stripes = 4;
321aecc6 2329 }
9b3f68b9 2330
b2117a39
MX
2331 return 0;
2332}
2333
2334static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2335 u64 proposed_size, u64 type,
2336 int num_stripes, int small_stripe)
2337{
2338 int min_stripe_size = 1 * 1024 * 1024;
2339 u64 calc_size = proposed_size;
2340 u64 max_chunk_size = calc_size;
2341 int ncopies = 1;
2342
2343 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2344 BTRFS_BLOCK_GROUP_DUP |
2345 BTRFS_BLOCK_GROUP_RAID10))
2346 ncopies = 2;
2347
9b3f68b9
CM
2348 if (type & BTRFS_BLOCK_GROUP_DATA) {
2349 max_chunk_size = 10 * calc_size;
a40a90a0 2350 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2351 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2352 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2353 min_stripe_size = 32 * 1024 * 1024;
2354 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2355 calc_size = 8 * 1024 * 1024;
2356 max_chunk_size = calc_size * 2;
2357 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2358 }
2359
2b82032c
YZ
2360 /* we don't want a chunk larger than 10% of writeable space */
2361 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2362 max_chunk_size);
9b3f68b9 2363
1974a3b4
MX
2364 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2365 calc_size = max_chunk_size * ncopies;
9b3f68b9 2366 do_div(calc_size, num_stripes);
b2117a39
MX
2367 do_div(calc_size, BTRFS_STRIPE_LEN);
2368 calc_size *= BTRFS_STRIPE_LEN;
9b3f68b9 2369 }
0cad8a11 2370
9b3f68b9 2371 /* we don't want tiny stripes */
b2117a39 2372 if (!small_stripe)
0cad8a11 2373 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2374
9f680ce0 2375 /*
b2117a39 2376 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
9f680ce0
CM
2377 * we end up with something bigger than a stripe
2378 */
b2117a39
MX
2379 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2380
2381 do_div(calc_size, BTRFS_STRIPE_LEN);
2382 calc_size *= BTRFS_STRIPE_LEN;
2383
2384 return calc_size;
2385}
2386
2387static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2388 int num_stripes)
2389{
2390 struct map_lookup *new;
2391 size_t len = map_lookup_size(num_stripes);
2392
2393 BUG_ON(map->num_stripes < num_stripes);
2394
2395 if (map->num_stripes == num_stripes)
2396 return map;
2397
2398 new = kmalloc(len, GFP_NOFS);
2399 if (!new) {
2400 /* just change map->num_stripes */
2401 map->num_stripes = num_stripes;
2402 return map;
2403 }
2404
2405 memcpy(new, map, len);
2406 new->num_stripes = num_stripes;
2407 kfree(map);
2408 return new;
2409}
2410
2411/*
2412 * helper to allocate device space from btrfs_device_info, in which we stored
2413 * max free space information of every device. It is used when we can not
2414 * allocate chunks by default size.
2415 *
2416 * By this helper, we can allocate a new chunk as larger as possible.
2417 */
2418static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2419 struct btrfs_fs_devices *fs_devices,
2420 struct btrfs_device_info *devices,
2421 int nr_device, u64 type,
2422 struct map_lookup **map_lookup,
2423 int min_stripes, u64 *stripe_size)
2424{
2425 int i, index, sort_again = 0;
2426 int min_devices = min_stripes;
2427 u64 max_avail, min_free;
2428 struct map_lookup *map = *map_lookup;
2429 int ret;
9f680ce0 2430
b2117a39
MX
2431 if (nr_device < min_stripes)
2432 return -ENOSPC;
2433
2434 btrfs_descending_sort_devices(devices, nr_device);
2435
2436 max_avail = devices[0].max_avail;
2437 if (!max_avail)
2438 return -ENOSPC;
2439
2440 for (i = 0; i < nr_device; i++) {
2441 /*
2442 * if dev_offset = 0, it means the free space of this device
2443 * is less than what we need, and we didn't search max avail
2444 * extent on this device, so do it now.
2445 */
2446 if (!devices[i].dev_offset) {
2447 ret = find_free_dev_extent(trans, devices[i].dev,
2448 max_avail,
2449 &devices[i].dev_offset,
2450 &devices[i].max_avail);
2451 if (ret != 0 && ret != -ENOSPC)
2452 return ret;
2453 sort_again = 1;
2454 }
2455 }
2456
2457 /* we update the max avail free extent of each devices, sort again */
2458 if (sort_again)
2459 btrfs_descending_sort_devices(devices, nr_device);
2460
2461 if (type & BTRFS_BLOCK_GROUP_DUP)
2462 min_devices = 1;
2463
2464 if (!devices[min_devices - 1].max_avail)
2465 return -ENOSPC;
2466
2467 max_avail = devices[min_devices - 1].max_avail;
2468 if (type & BTRFS_BLOCK_GROUP_DUP)
2469 do_div(max_avail, 2);
2470
2471 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2472 min_stripes, 1);
2473 if (type & BTRFS_BLOCK_GROUP_DUP)
2474 min_free = max_avail * 2;
2475 else
2476 min_free = max_avail;
2477
2478 if (min_free > devices[min_devices - 1].max_avail)
2479 return -ENOSPC;
2480
2481 map = __shrink_map_lookup_stripes(map, min_stripes);
2482 *stripe_size = max_avail;
2483
2484 index = 0;
2485 for (i = 0; i < min_stripes; i++) {
2486 map->stripes[i].dev = devices[index].dev;
2487 map->stripes[i].physical = devices[index].dev_offset;
2488 if (type & BTRFS_BLOCK_GROUP_DUP) {
2489 i++;
2490 map->stripes[i].dev = devices[index].dev;
2491 map->stripes[i].physical = devices[index].dev_offset +
2492 max_avail;
2493 }
2494 index++;
2495 }
2496 *map_lookup = map;
9f680ce0 2497
b2117a39
MX
2498 return 0;
2499}
2500
2501static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2502 struct btrfs_root *extent_root,
2503 struct map_lookup **map_ret,
2504 u64 *num_bytes, u64 *stripe_size,
2505 u64 start, u64 type)
2506{
2507 struct btrfs_fs_info *info = extent_root->fs_info;
2508 struct btrfs_device *device = NULL;
2509 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2510 struct list_head *cur;
2511 struct map_lookup *map;
2512 struct extent_map_tree *em_tree;
2513 struct extent_map *em;
2514 struct btrfs_device_info *devices_info;
2515 struct list_head private_devs;
2516 u64 calc_size = 1024 * 1024 * 1024;
2517 u64 min_free;
2518 u64 avail;
2519 u64 dev_offset;
2520 int num_stripes;
2521 int min_stripes;
2522 int sub_stripes;
2523 int min_devices; /* the min number of devices we need */
2524 int i;
2525 int ret;
2526 int index;
2527
2528 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2529 (type & BTRFS_BLOCK_GROUP_DUP)) {
2530 WARN_ON(1);
2531 type &= ~BTRFS_BLOCK_GROUP_DUP;
2532 }
2533 if (list_empty(&fs_devices->alloc_list))
2534 return -ENOSPC;
2535
2536 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2537 &min_stripes, &sub_stripes);
2538 if (ret)
2539 return ret;
2540
2541 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2542 GFP_NOFS);
2543 if (!devices_info)
2544 return -ENOMEM;
2545
2546 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2547 if (!map) {
2548 ret = -ENOMEM;
2549 goto error;
2550 }
2551 map->num_stripes = num_stripes;
9b3f68b9 2552
2b82032c 2553 cur = fs_devices->alloc_list.next;
6324fbf3 2554 index = 0;
b2117a39 2555 i = 0;
611f0e00 2556
b2117a39
MX
2557 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2558 num_stripes, 0);
2559
2560 if (type & BTRFS_BLOCK_GROUP_DUP) {
611f0e00 2561 min_free = calc_size * 2;
b2117a39
MX
2562 min_devices = 1;
2563 } else {
9b3f68b9 2564 min_free = calc_size;
b2117a39
MX
2565 min_devices = min_stripes;
2566 }
ad5bd91e 2567
2b82032c 2568 INIT_LIST_HEAD(&private_devs);
d397712b 2569 while (index < num_stripes) {
b3075717 2570 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2571 BUG_ON(!device->writeable);
dfe25020
CM
2572 if (device->total_bytes > device->bytes_used)
2573 avail = device->total_bytes - device->bytes_used;
2574 else
2575 avail = 0;
6324fbf3 2576 cur = cur->next;
8f18cf13 2577
dfe25020 2578 if (device->in_fs_metadata && avail >= min_free) {
b2117a39
MX
2579 ret = find_free_dev_extent(trans, device, min_free,
2580 &devices_info[i].dev_offset,
2581 &devices_info[i].max_avail);
8f18cf13
CM
2582 if (ret == 0) {
2583 list_move_tail(&device->dev_alloc_list,
2584 &private_devs);
2b82032c 2585 map->stripes[index].dev = device;
b2117a39
MX
2586 map->stripes[index].physical =
2587 devices_info[i].dev_offset;
611f0e00 2588 index++;
2b82032c
YZ
2589 if (type & BTRFS_BLOCK_GROUP_DUP) {
2590 map->stripes[index].dev = device;
2591 map->stripes[index].physical =
b2117a39
MX
2592 devices_info[i].dev_offset +
2593 calc_size;
8f18cf13 2594 index++;
2b82032c 2595 }
b2117a39
MX
2596 } else if (ret != -ENOSPC)
2597 goto error;
2598
2599 devices_info[i].dev = device;
2600 i++;
2601 } else if (device->in_fs_metadata &&
2602 avail >= BTRFS_STRIPE_LEN) {
2603 devices_info[i].dev = device;
2604 devices_info[i].max_avail = avail;
2605 i++;
2606 }
2607
2b82032c 2608 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2609 break;
2610 }
b2117a39 2611
2b82032c 2612 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2613 if (index < num_stripes) {
a40a90a0
CM
2614 if (index >= min_stripes) {
2615 num_stripes = index;
2616 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2617 num_stripes /= sub_stripes;
2618 num_stripes *= sub_stripes;
2619 }
b2117a39
MX
2620
2621 map = __shrink_map_lookup_stripes(map, num_stripes);
2622 } else if (i >= min_devices) {
2623 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2624 devices_info, i, type,
2625 &map, min_stripes,
2626 &calc_size);
2627 if (ret)
2628 goto error;
2629 } else {
2630 ret = -ENOSPC;
2631 goto error;
6324fbf3 2632 }
6324fbf3 2633 }
2b82032c 2634 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2635 map->stripe_len = BTRFS_STRIPE_LEN;
2636 map->io_align = BTRFS_STRIPE_LEN;
2637 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2638 map->type = type;
2b82032c 2639 map->sub_stripes = sub_stripes;
0b86a832 2640
2b82032c
YZ
2641 *map_ret = map;
2642 *stripe_size = calc_size;
2643 *num_bytes = chunk_bytes_by_type(type, calc_size,
b2117a39 2644 map->num_stripes, sub_stripes);
0b86a832 2645
2b82032c
YZ
2646 em = alloc_extent_map(GFP_NOFS);
2647 if (!em) {
b2117a39
MX
2648 ret = -ENOMEM;
2649 goto error;
593060d7 2650 }
2b82032c
YZ
2651 em->bdev = (struct block_device *)map;
2652 em->start = start;
2653 em->len = *num_bytes;
2654 em->block_start = 0;
2655 em->block_len = em->len;
593060d7 2656
2b82032c 2657 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2658 write_lock(&em_tree->lock);
2b82032c 2659 ret = add_extent_mapping(em_tree, em);
890871be 2660 write_unlock(&em_tree->lock);
2b82032c
YZ
2661 BUG_ON(ret);
2662 free_extent_map(em);
0b86a832 2663
2b82032c
YZ
2664 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2665 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2666 start, *num_bytes);
2667 BUG_ON(ret);
611f0e00 2668
2b82032c
YZ
2669 index = 0;
2670 while (index < map->num_stripes) {
2671 device = map->stripes[index].dev;
2672 dev_offset = map->stripes[index].physical;
0b86a832
CM
2673
2674 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2675 info->chunk_root->root_key.objectid,
2676 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2677 start, dev_offset, calc_size);
0b86a832 2678 BUG_ON(ret);
2b82032c
YZ
2679 index++;
2680 }
2681
b2117a39 2682 kfree(devices_info);
2b82032c 2683 return 0;
b2117a39
MX
2684
2685error:
2686 kfree(map);
2687 kfree(devices_info);
2688 return ret;
2b82032c
YZ
2689}
2690
2691static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *extent_root,
2693 struct map_lookup *map, u64 chunk_offset,
2694 u64 chunk_size, u64 stripe_size)
2695{
2696 u64 dev_offset;
2697 struct btrfs_key key;
2698 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2699 struct btrfs_device *device;
2700 struct btrfs_chunk *chunk;
2701 struct btrfs_stripe *stripe;
2702 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2703 int index = 0;
2704 int ret;
2705
2706 chunk = kzalloc(item_size, GFP_NOFS);
2707 if (!chunk)
2708 return -ENOMEM;
2709
2710 index = 0;
2711 while (index < map->num_stripes) {
2712 device = map->stripes[index].dev;
2713 device->bytes_used += stripe_size;
0b86a832
CM
2714 ret = btrfs_update_device(trans, device);
2715 BUG_ON(ret);
2b82032c
YZ
2716 index++;
2717 }
2718
2719 index = 0;
2720 stripe = &chunk->stripe;
2721 while (index < map->num_stripes) {
2722 device = map->stripes[index].dev;
2723 dev_offset = map->stripes[index].physical;
0b86a832 2724
e17cade2
CM
2725 btrfs_set_stack_stripe_devid(stripe, device->devid);
2726 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2727 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2728 stripe++;
0b86a832
CM
2729 index++;
2730 }
2731
2b82032c 2732 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2733 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2734 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2735 btrfs_set_stack_chunk_type(chunk, map->type);
2736 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2737 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2738 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2739 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2740 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2741
2b82032c
YZ
2742 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2743 key.type = BTRFS_CHUNK_ITEM_KEY;
2744 key.offset = chunk_offset;
0b86a832 2745
2b82032c
YZ
2746 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2747 BUG_ON(ret);
0b86a832 2748
2b82032c
YZ
2749 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2750 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2751 item_size);
8f18cf13
CM
2752 BUG_ON(ret);
2753 }
0b86a832 2754 kfree(chunk);
2b82032c
YZ
2755 return 0;
2756}
0b86a832 2757
2b82032c
YZ
2758/*
2759 * Chunk allocation falls into two parts. The first part does works
2760 * that make the new allocated chunk useable, but not do any operation
2761 * that modifies the chunk tree. The second part does the works that
2762 * require modifying the chunk tree. This division is important for the
2763 * bootstrap process of adding storage to a seed btrfs.
2764 */
2765int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *extent_root, u64 type)
2767{
2768 u64 chunk_offset;
2769 u64 chunk_size;
2770 u64 stripe_size;
2771 struct map_lookup *map;
2772 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2773 int ret;
2774
2775 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2776 &chunk_offset);
2777 if (ret)
2778 return ret;
2779
2780 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2781 &stripe_size, chunk_offset, type);
2782 if (ret)
2783 return ret;
2784
2785 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2786 chunk_size, stripe_size);
2787 BUG_ON(ret);
2788 return 0;
2789}
2790
d397712b 2791static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2792 struct btrfs_root *root,
2793 struct btrfs_device *device)
2794{
2795 u64 chunk_offset;
2796 u64 sys_chunk_offset;
2797 u64 chunk_size;
2798 u64 sys_chunk_size;
2799 u64 stripe_size;
2800 u64 sys_stripe_size;
2801 u64 alloc_profile;
2802 struct map_lookup *map;
2803 struct map_lookup *sys_map;
2804 struct btrfs_fs_info *fs_info = root->fs_info;
2805 struct btrfs_root *extent_root = fs_info->extent_root;
2806 int ret;
2807
2808 ret = find_next_chunk(fs_info->chunk_root,
2809 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2810 BUG_ON(ret);
2811
2812 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2813 (fs_info->metadata_alloc_profile &
2814 fs_info->avail_metadata_alloc_bits);
2815 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2816
2817 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2818 &stripe_size, chunk_offset, alloc_profile);
2819 BUG_ON(ret);
2820
2821 sys_chunk_offset = chunk_offset + chunk_size;
2822
2823 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2824 (fs_info->system_alloc_profile &
2825 fs_info->avail_system_alloc_bits);
2826 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2827
2828 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2829 &sys_chunk_size, &sys_stripe_size,
2830 sys_chunk_offset, alloc_profile);
2831 BUG_ON(ret);
2832
2833 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2834 BUG_ON(ret);
2835
2836 /*
2837 * Modifying chunk tree needs allocating new blocks from both
2838 * system block group and metadata block group. So we only can
2839 * do operations require modifying the chunk tree after both
2840 * block groups were created.
2841 */
2842 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2843 chunk_size, stripe_size);
2844 BUG_ON(ret);
2845
2846 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2847 sys_chunk_offset, sys_chunk_size,
2848 sys_stripe_size);
b248a415 2849 BUG_ON(ret);
2b82032c
YZ
2850 return 0;
2851}
2852
2853int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2854{
2855 struct extent_map *em;
2856 struct map_lookup *map;
2857 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2858 int readonly = 0;
2859 int i;
2860
890871be 2861 read_lock(&map_tree->map_tree.lock);
2b82032c 2862 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2863 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2864 if (!em)
2865 return 1;
2866
f48b9075
JB
2867 if (btrfs_test_opt(root, DEGRADED)) {
2868 free_extent_map(em);
2869 return 0;
2870 }
2871
2b82032c
YZ
2872 map = (struct map_lookup *)em->bdev;
2873 for (i = 0; i < map->num_stripes; i++) {
2874 if (!map->stripes[i].dev->writeable) {
2875 readonly = 1;
2876 break;
2877 }
2878 }
0b86a832 2879 free_extent_map(em);
2b82032c 2880 return readonly;
0b86a832
CM
2881}
2882
2883void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2884{
2885 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2886}
2887
2888void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2889{
2890 struct extent_map *em;
2891
d397712b 2892 while (1) {
890871be 2893 write_lock(&tree->map_tree.lock);
0b86a832
CM
2894 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2895 if (em)
2896 remove_extent_mapping(&tree->map_tree, em);
890871be 2897 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2898 if (!em)
2899 break;
2900 kfree(em->bdev);
2901 /* once for us */
2902 free_extent_map(em);
2903 /* once for the tree */
2904 free_extent_map(em);
2905 }
2906}
2907
f188591e
CM
2908int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2909{
2910 struct extent_map *em;
2911 struct map_lookup *map;
2912 struct extent_map_tree *em_tree = &map_tree->map_tree;
2913 int ret;
2914
890871be 2915 read_lock(&em_tree->lock);
f188591e 2916 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2917 read_unlock(&em_tree->lock);
f188591e
CM
2918 BUG_ON(!em);
2919
2920 BUG_ON(em->start > logical || em->start + em->len < logical);
2921 map = (struct map_lookup *)em->bdev;
2922 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2923 ret = map->num_stripes;
321aecc6
CM
2924 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2925 ret = map->sub_stripes;
f188591e
CM
2926 else
2927 ret = 1;
2928 free_extent_map(em);
f188591e
CM
2929 return ret;
2930}
2931
dfe25020
CM
2932static int find_live_mirror(struct map_lookup *map, int first, int num,
2933 int optimal)
2934{
2935 int i;
2936 if (map->stripes[optimal].dev->bdev)
2937 return optimal;
2938 for (i = first; i < first + num; i++) {
2939 if (map->stripes[i].dev->bdev)
2940 return i;
2941 }
2942 /* we couldn't find one that doesn't fail. Just return something
2943 * and the io error handling code will clean up eventually
2944 */
2945 return optimal;
2946}
2947
f2d8d74d
CM
2948static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2949 u64 logical, u64 *length,
2950 struct btrfs_multi_bio **multi_ret,
2951 int mirror_num, struct page *unplug_page)
0b86a832
CM
2952{
2953 struct extent_map *em;
2954 struct map_lookup *map;
2955 struct extent_map_tree *em_tree = &map_tree->map_tree;
2956 u64 offset;
593060d7
CM
2957 u64 stripe_offset;
2958 u64 stripe_nr;
cea9e445 2959 int stripes_allocated = 8;
321aecc6 2960 int stripes_required = 1;
593060d7 2961 int stripe_index;
cea9e445 2962 int i;
f2d8d74d 2963 int num_stripes;
a236aed1 2964 int max_errors = 0;
cea9e445 2965 struct btrfs_multi_bio *multi = NULL;
0b86a832 2966
7b6d91da 2967 if (multi_ret && !(rw & REQ_WRITE))
cea9e445 2968 stripes_allocated = 1;
cea9e445
CM
2969again:
2970 if (multi_ret) {
2971 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2972 GFP_NOFS);
2973 if (!multi)
2974 return -ENOMEM;
a236aed1
CM
2975
2976 atomic_set(&multi->error, 0);
cea9e445 2977 }
0b86a832 2978
890871be 2979 read_lock(&em_tree->lock);
0b86a832 2980 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2981 read_unlock(&em_tree->lock);
f2d8d74d 2982
2423fdfb
JS
2983 if (!em && unplug_page) {
2984 kfree(multi);
f2d8d74d 2985 return 0;
2423fdfb 2986 }
f2d8d74d 2987
3b951516 2988 if (!em) {
d397712b
CM
2989 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2990 (unsigned long long)logical,
2991 (unsigned long long)*length);
f2d8d74d 2992 BUG();
3b951516 2993 }
0b86a832
CM
2994
2995 BUG_ON(em->start > logical || em->start + em->len < logical);
2996 map = (struct map_lookup *)em->bdev;
2997 offset = logical - em->start;
593060d7 2998
f188591e
CM
2999 if (mirror_num > map->num_stripes)
3000 mirror_num = 0;
3001
cea9e445 3002 /* if our multi bio struct is too small, back off and try again */
7b6d91da 3003 if (rw & REQ_WRITE) {
321aecc6
CM
3004 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3005 BTRFS_BLOCK_GROUP_DUP)) {
3006 stripes_required = map->num_stripes;
a236aed1 3007 max_errors = 1;
321aecc6
CM
3008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3009 stripes_required = map->sub_stripes;
a236aed1 3010 max_errors = 1;
321aecc6
CM
3011 }
3012 }
7b6d91da 3013 if (multi_ret && (rw & REQ_WRITE) &&
321aecc6 3014 stripes_allocated < stripes_required) {
cea9e445 3015 stripes_allocated = map->num_stripes;
cea9e445
CM
3016 free_extent_map(em);
3017 kfree(multi);
3018 goto again;
3019 }
593060d7
CM
3020 stripe_nr = offset;
3021 /*
3022 * stripe_nr counts the total number of stripes we have to stride
3023 * to get to this block
3024 */
3025 do_div(stripe_nr, map->stripe_len);
3026
3027 stripe_offset = stripe_nr * map->stripe_len;
3028 BUG_ON(offset < stripe_offset);
3029
3030 /* stripe_offset is the offset of this block in its stripe*/
3031 stripe_offset = offset - stripe_offset;
3032
cea9e445 3033 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 3034 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
3035 BTRFS_BLOCK_GROUP_DUP)) {
3036 /* we limit the length of each bio to what fits in a stripe */
3037 *length = min_t(u64, em->len - offset,
3038 map->stripe_len - stripe_offset);
3039 } else {
3040 *length = em->len - offset;
3041 }
f2d8d74d
CM
3042
3043 if (!multi_ret && !unplug_page)
cea9e445
CM
3044 goto out;
3045
f2d8d74d 3046 num_stripes = 1;
cea9e445 3047 stripe_index = 0;
8790d502 3048 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
7b6d91da 3049 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3050 num_stripes = map->num_stripes;
2fff734f 3051 else if (mirror_num)
f188591e 3052 stripe_index = mirror_num - 1;
dfe25020
CM
3053 else {
3054 stripe_index = find_live_mirror(map, 0,
3055 map->num_stripes,
3056 current->pid % map->num_stripes);
3057 }
2fff734f 3058
611f0e00 3059 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
7b6d91da 3060 if (rw & REQ_WRITE)
f2d8d74d 3061 num_stripes = map->num_stripes;
f188591e
CM
3062 else if (mirror_num)
3063 stripe_index = mirror_num - 1;
2fff734f 3064
321aecc6
CM
3065 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3066 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3067
3068 stripe_index = do_div(stripe_nr, factor);
3069 stripe_index *= map->sub_stripes;
3070
7b6d91da 3071 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3072 num_stripes = map->sub_stripes;
321aecc6
CM
3073 else if (mirror_num)
3074 stripe_index += mirror_num - 1;
dfe25020
CM
3075 else {
3076 stripe_index = find_live_mirror(map, stripe_index,
3077 map->sub_stripes, stripe_index +
3078 current->pid % map->sub_stripes);
3079 }
8790d502
CM
3080 } else {
3081 /*
3082 * after this do_div call, stripe_nr is the number of stripes
3083 * on this device we have to walk to find the data, and
3084 * stripe_index is the number of our device in the stripe array
3085 */
3086 stripe_index = do_div(stripe_nr, map->num_stripes);
3087 }
593060d7 3088 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3089
f2d8d74d
CM
3090 for (i = 0; i < num_stripes; i++) {
3091 if (unplug_page) {
3092 struct btrfs_device *device;
3093 struct backing_dev_info *bdi;
3094
3095 device = map->stripes[stripe_index].dev;
dfe25020
CM
3096 if (device->bdev) {
3097 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 3098 if (bdi->unplug_io_fn)
dfe25020 3099 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
3100 }
3101 } else {
3102 multi->stripes[i].physical =
3103 map->stripes[stripe_index].physical +
3104 stripe_offset + stripe_nr * map->stripe_len;
3105 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3106 }
cea9e445 3107 stripe_index++;
593060d7 3108 }
f2d8d74d
CM
3109 if (multi_ret) {
3110 *multi_ret = multi;
3111 multi->num_stripes = num_stripes;
a236aed1 3112 multi->max_errors = max_errors;
f2d8d74d 3113 }
cea9e445 3114out:
0b86a832 3115 free_extent_map(em);
0b86a832
CM
3116 return 0;
3117}
3118
f2d8d74d
CM
3119int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3120 u64 logical, u64 *length,
3121 struct btrfs_multi_bio **multi_ret, int mirror_num)
3122{
3123 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3124 mirror_num, NULL);
3125}
3126
a512bbf8
YZ
3127int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3128 u64 chunk_start, u64 physical, u64 devid,
3129 u64 **logical, int *naddrs, int *stripe_len)
3130{
3131 struct extent_map_tree *em_tree = &map_tree->map_tree;
3132 struct extent_map *em;
3133 struct map_lookup *map;
3134 u64 *buf;
3135 u64 bytenr;
3136 u64 length;
3137 u64 stripe_nr;
3138 int i, j, nr = 0;
3139
890871be 3140 read_lock(&em_tree->lock);
a512bbf8 3141 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3142 read_unlock(&em_tree->lock);
a512bbf8
YZ
3143
3144 BUG_ON(!em || em->start != chunk_start);
3145 map = (struct map_lookup *)em->bdev;
3146
3147 length = em->len;
3148 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3149 do_div(length, map->num_stripes / map->sub_stripes);
3150 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3151 do_div(length, map->num_stripes);
3152
3153 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3154 BUG_ON(!buf);
3155
3156 for (i = 0; i < map->num_stripes; i++) {
3157 if (devid && map->stripes[i].dev->devid != devid)
3158 continue;
3159 if (map->stripes[i].physical > physical ||
3160 map->stripes[i].physical + length <= physical)
3161 continue;
3162
3163 stripe_nr = physical - map->stripes[i].physical;
3164 do_div(stripe_nr, map->stripe_len);
3165
3166 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3167 stripe_nr = stripe_nr * map->num_stripes + i;
3168 do_div(stripe_nr, map->sub_stripes);
3169 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3170 stripe_nr = stripe_nr * map->num_stripes + i;
3171 }
3172 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3173 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3174 for (j = 0; j < nr; j++) {
3175 if (buf[j] == bytenr)
3176 break;
3177 }
934d375b
CM
3178 if (j == nr) {
3179 WARN_ON(nr >= map->num_stripes);
a512bbf8 3180 buf[nr++] = bytenr;
934d375b 3181 }
a512bbf8
YZ
3182 }
3183
a512bbf8
YZ
3184 *logical = buf;
3185 *naddrs = nr;
3186 *stripe_len = map->stripe_len;
3187
3188 free_extent_map(em);
3189 return 0;
3190}
3191
f2d8d74d
CM
3192int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3193 u64 logical, struct page *page)
3194{
3195 u64 length = PAGE_CACHE_SIZE;
3196 return __btrfs_map_block(map_tree, READ, logical, &length,
3197 NULL, 0, page);
3198}
3199
8790d502 3200static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3201{
cea9e445 3202 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3203 int is_orig_bio = 0;
8790d502 3204
8790d502 3205 if (err)
a236aed1 3206 atomic_inc(&multi->error);
8790d502 3207
7d2b4daa
CM
3208 if (bio == multi->orig_bio)
3209 is_orig_bio = 1;
3210
cea9e445 3211 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3212 if (!is_orig_bio) {
3213 bio_put(bio);
3214 bio = multi->orig_bio;
3215 }
8790d502
CM
3216 bio->bi_private = multi->private;
3217 bio->bi_end_io = multi->end_io;
a236aed1
CM
3218 /* only send an error to the higher layers if it is
3219 * beyond the tolerance of the multi-bio
3220 */
1259ab75 3221 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3222 err = -EIO;
1259ab75
CM
3223 } else if (err) {
3224 /*
3225 * this bio is actually up to date, we didn't
3226 * go over the max number of errors
3227 */
3228 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3229 err = 0;
1259ab75 3230 }
8790d502
CM
3231 kfree(multi);
3232
3233 bio_endio(bio, err);
7d2b4daa 3234 } else if (!is_orig_bio) {
8790d502
CM
3235 bio_put(bio);
3236 }
8790d502
CM
3237}
3238
8b712842
CM
3239struct async_sched {
3240 struct bio *bio;
3241 int rw;
3242 struct btrfs_fs_info *info;
3243 struct btrfs_work work;
3244};
3245
3246/*
3247 * see run_scheduled_bios for a description of why bios are collected for
3248 * async submit.
3249 *
3250 * This will add one bio to the pending list for a device and make sure
3251 * the work struct is scheduled.
3252 */
d397712b 3253static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3254 struct btrfs_device *device,
3255 int rw, struct bio *bio)
8b712842
CM
3256{
3257 int should_queue = 1;
ffbd517d 3258 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3259
3260 /* don't bother with additional async steps for reads, right now */
7b6d91da 3261 if (!(rw & REQ_WRITE)) {
492bb6de 3262 bio_get(bio);
8b712842 3263 submit_bio(rw, bio);
492bb6de 3264 bio_put(bio);
8b712842
CM
3265 return 0;
3266 }
3267
3268 /*
0986fe9e 3269 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3270 * higher layers. Otherwise, the async bio makes it appear we have
3271 * made progress against dirty pages when we've really just put it
3272 * on a queue for later
3273 */
0986fe9e 3274 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3275 WARN_ON(bio->bi_next);
8b712842
CM
3276 bio->bi_next = NULL;
3277 bio->bi_rw |= rw;
3278
3279 spin_lock(&device->io_lock);
7b6d91da 3280 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3281 pending_bios = &device->pending_sync_bios;
3282 else
3283 pending_bios = &device->pending_bios;
8b712842 3284
ffbd517d
CM
3285 if (pending_bios->tail)
3286 pending_bios->tail->bi_next = bio;
8b712842 3287
ffbd517d
CM
3288 pending_bios->tail = bio;
3289 if (!pending_bios->head)
3290 pending_bios->head = bio;
8b712842
CM
3291 if (device->running_pending)
3292 should_queue = 0;
3293
3294 spin_unlock(&device->io_lock);
3295
3296 if (should_queue)
1cc127b5
CM
3297 btrfs_queue_worker(&root->fs_info->submit_workers,
3298 &device->work);
8b712842
CM
3299 return 0;
3300}
3301
f188591e 3302int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3303 int mirror_num, int async_submit)
0b86a832
CM
3304{
3305 struct btrfs_mapping_tree *map_tree;
3306 struct btrfs_device *dev;
8790d502 3307 struct bio *first_bio = bio;
a62b9401 3308 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3309 u64 length = 0;
3310 u64 map_length;
cea9e445 3311 struct btrfs_multi_bio *multi = NULL;
0b86a832 3312 int ret;
8790d502
CM
3313 int dev_nr = 0;
3314 int total_devs = 1;
0b86a832 3315
f2d8d74d 3316 length = bio->bi_size;
0b86a832
CM
3317 map_tree = &root->fs_info->mapping_tree;
3318 map_length = length;
cea9e445 3319
f188591e
CM
3320 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3321 mirror_num);
cea9e445
CM
3322 BUG_ON(ret);
3323
3324 total_devs = multi->num_stripes;
3325 if (map_length < length) {
d397712b
CM
3326 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3327 "len %llu\n", (unsigned long long)logical,
3328 (unsigned long long)length,
3329 (unsigned long long)map_length);
cea9e445
CM
3330 BUG();
3331 }
3332 multi->end_io = first_bio->bi_end_io;
3333 multi->private = first_bio->bi_private;
7d2b4daa 3334 multi->orig_bio = first_bio;
cea9e445
CM
3335 atomic_set(&multi->stripes_pending, multi->num_stripes);
3336
d397712b 3337 while (dev_nr < total_devs) {
8790d502 3338 if (total_devs > 1) {
8790d502
CM
3339 if (dev_nr < total_devs - 1) {
3340 bio = bio_clone(first_bio, GFP_NOFS);
3341 BUG_ON(!bio);
3342 } else {
3343 bio = first_bio;
3344 }
3345 bio->bi_private = multi;
3346 bio->bi_end_io = end_bio_multi_stripe;
3347 }
cea9e445
CM
3348 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3349 dev = multi->stripes[dev_nr].dev;
18e503d6 3350 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3351 bio->bi_bdev = dev->bdev;
8b712842
CM
3352 if (async_submit)
3353 schedule_bio(root, dev, rw, bio);
3354 else
3355 submit_bio(rw, bio);
dfe25020
CM
3356 } else {
3357 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3358 bio->bi_sector = logical >> 9;
dfe25020 3359 bio_endio(bio, -EIO);
dfe25020 3360 }
8790d502
CM
3361 dev_nr++;
3362 }
cea9e445
CM
3363 if (total_devs == 1)
3364 kfree(multi);
0b86a832
CM
3365 return 0;
3366}
3367
a443755f 3368struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3369 u8 *uuid, u8 *fsid)
0b86a832 3370{
2b82032c
YZ
3371 struct btrfs_device *device;
3372 struct btrfs_fs_devices *cur_devices;
3373
3374 cur_devices = root->fs_info->fs_devices;
3375 while (cur_devices) {
3376 if (!fsid ||
3377 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3378 device = __find_device(&cur_devices->devices,
3379 devid, uuid);
3380 if (device)
3381 return device;
3382 }
3383 cur_devices = cur_devices->seed;
3384 }
3385 return NULL;
0b86a832
CM
3386}
3387
dfe25020
CM
3388static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3389 u64 devid, u8 *dev_uuid)
3390{
3391 struct btrfs_device *device;
3392 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3393
3394 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3395 if (!device)
3396 return NULL;
dfe25020
CM
3397 list_add(&device->dev_list,
3398 &fs_devices->devices);
dfe25020
CM
3399 device->dev_root = root->fs_info->dev_root;
3400 device->devid = devid;
8b712842 3401 device->work.func = pending_bios_fn;
e4404d6e 3402 device->fs_devices = fs_devices;
cd02dca5 3403 device->missing = 1;
dfe25020 3404 fs_devices->num_devices++;
cd02dca5 3405 fs_devices->missing_devices++;
dfe25020 3406 spin_lock_init(&device->io_lock);
d20f7043 3407 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3408 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3409 return device;
3410}
3411
0b86a832
CM
3412static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3413 struct extent_buffer *leaf,
3414 struct btrfs_chunk *chunk)
3415{
3416 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3417 struct map_lookup *map;
3418 struct extent_map *em;
3419 u64 logical;
3420 u64 length;
3421 u64 devid;
a443755f 3422 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3423 int num_stripes;
0b86a832 3424 int ret;
593060d7 3425 int i;
0b86a832 3426
e17cade2
CM
3427 logical = key->offset;
3428 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3429
890871be 3430 read_lock(&map_tree->map_tree.lock);
0b86a832 3431 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3432 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3433
3434 /* already mapped? */
3435 if (em && em->start <= logical && em->start + em->len > logical) {
3436 free_extent_map(em);
0b86a832
CM
3437 return 0;
3438 } else if (em) {
3439 free_extent_map(em);
3440 }
0b86a832 3441
0b86a832
CM
3442 em = alloc_extent_map(GFP_NOFS);
3443 if (!em)
3444 return -ENOMEM;
593060d7
CM
3445 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3447 if (!map) {
3448 free_extent_map(em);
3449 return -ENOMEM;
3450 }
3451
3452 em->bdev = (struct block_device *)map;
3453 em->start = logical;
3454 em->len = length;
3455 em->block_start = 0;
c8b97818 3456 em->block_len = em->len;
0b86a832 3457
593060d7
CM
3458 map->num_stripes = num_stripes;
3459 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3460 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3461 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3462 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3463 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3464 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3465 for (i = 0; i < num_stripes; i++) {
3466 map->stripes[i].physical =
3467 btrfs_stripe_offset_nr(leaf, chunk, i);
3468 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3469 read_extent_buffer(leaf, uuid, (unsigned long)
3470 btrfs_stripe_dev_uuid_nr(chunk, i),
3471 BTRFS_UUID_SIZE);
2b82032c
YZ
3472 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3473 NULL);
dfe25020 3474 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3475 kfree(map);
3476 free_extent_map(em);
3477 return -EIO;
3478 }
dfe25020
CM
3479 if (!map->stripes[i].dev) {
3480 map->stripes[i].dev =
3481 add_missing_dev(root, devid, uuid);
3482 if (!map->stripes[i].dev) {
3483 kfree(map);
3484 free_extent_map(em);
3485 return -EIO;
3486 }
3487 }
3488 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3489 }
3490
890871be 3491 write_lock(&map_tree->map_tree.lock);
0b86a832 3492 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3493 write_unlock(&map_tree->map_tree.lock);
b248a415 3494 BUG_ON(ret);
0b86a832
CM
3495 free_extent_map(em);
3496
3497 return 0;
3498}
3499
3500static int fill_device_from_item(struct extent_buffer *leaf,
3501 struct btrfs_dev_item *dev_item,
3502 struct btrfs_device *device)
3503{
3504 unsigned long ptr;
0b86a832
CM
3505
3506 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3507 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3508 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3509 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3510 device->type = btrfs_device_type(leaf, dev_item);
3511 device->io_align = btrfs_device_io_align(leaf, dev_item);
3512 device->io_width = btrfs_device_io_width(leaf, dev_item);
3513 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3514
3515 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3516 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3517
0b86a832
CM
3518 return 0;
3519}
3520
2b82032c
YZ
3521static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3522{
3523 struct btrfs_fs_devices *fs_devices;
3524 int ret;
3525
3526 mutex_lock(&uuid_mutex);
3527
3528 fs_devices = root->fs_info->fs_devices->seed;
3529 while (fs_devices) {
3530 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3531 ret = 0;
3532 goto out;
3533 }
3534 fs_devices = fs_devices->seed;
3535 }
3536
3537 fs_devices = find_fsid(fsid);
3538 if (!fs_devices) {
3539 ret = -ENOENT;
3540 goto out;
3541 }
e4404d6e
YZ
3542
3543 fs_devices = clone_fs_devices(fs_devices);
3544 if (IS_ERR(fs_devices)) {
3545 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3546 goto out;
3547 }
3548
97288f2c 3549 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3550 root->fs_info->bdev_holder);
2b82032c
YZ
3551 if (ret)
3552 goto out;
3553
3554 if (!fs_devices->seeding) {
3555 __btrfs_close_devices(fs_devices);
e4404d6e 3556 free_fs_devices(fs_devices);
2b82032c
YZ
3557 ret = -EINVAL;
3558 goto out;
3559 }
3560
3561 fs_devices->seed = root->fs_info->fs_devices->seed;
3562 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3563out:
3564 mutex_unlock(&uuid_mutex);
3565 return ret;
3566}
3567
0d81ba5d 3568static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3569 struct extent_buffer *leaf,
3570 struct btrfs_dev_item *dev_item)
3571{
3572 struct btrfs_device *device;
3573 u64 devid;
3574 int ret;
2b82032c 3575 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3576 u8 dev_uuid[BTRFS_UUID_SIZE];
3577
0b86a832 3578 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3579 read_extent_buffer(leaf, dev_uuid,
3580 (unsigned long)btrfs_device_uuid(dev_item),
3581 BTRFS_UUID_SIZE);
2b82032c
YZ
3582 read_extent_buffer(leaf, fs_uuid,
3583 (unsigned long)btrfs_device_fsid(dev_item),
3584 BTRFS_UUID_SIZE);
3585
3586 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3587 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3588 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3589 return ret;
2b82032c
YZ
3590 }
3591
3592 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3593 if (!device || !device->bdev) {
e4404d6e 3594 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3595 return -EIO;
3596
3597 if (!device) {
d397712b
CM
3598 printk(KERN_WARNING "warning devid %llu missing\n",
3599 (unsigned long long)devid);
2b82032c
YZ
3600 device = add_missing_dev(root, devid, dev_uuid);
3601 if (!device)
3602 return -ENOMEM;
cd02dca5
CM
3603 } else if (!device->missing) {
3604 /*
3605 * this happens when a device that was properly setup
3606 * in the device info lists suddenly goes bad.
3607 * device->bdev is NULL, and so we have to set
3608 * device->missing to one here
3609 */
3610 root->fs_info->fs_devices->missing_devices++;
3611 device->missing = 1;
2b82032c
YZ
3612 }
3613 }
3614
3615 if (device->fs_devices != root->fs_info->fs_devices) {
3616 BUG_ON(device->writeable);
3617 if (device->generation !=
3618 btrfs_device_generation(leaf, dev_item))
3619 return -EINVAL;
6324fbf3 3620 }
0b86a832
CM
3621
3622 fill_device_from_item(leaf, dev_item, device);
3623 device->dev_root = root->fs_info->dev_root;
dfe25020 3624 device->in_fs_metadata = 1;
2b82032c
YZ
3625 if (device->writeable)
3626 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3627 ret = 0;
0b86a832
CM
3628 return ret;
3629}
3630
0d81ba5d
CM
3631int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3632{
3633 struct btrfs_dev_item *dev_item;
3634
3635 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3636 dev_item);
3637 return read_one_dev(root, buf, dev_item);
3638}
3639
e4404d6e 3640int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3641{
3642 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3643 struct extent_buffer *sb;
0b86a832 3644 struct btrfs_disk_key *disk_key;
0b86a832 3645 struct btrfs_chunk *chunk;
84eed90f
CM
3646 u8 *ptr;
3647 unsigned long sb_ptr;
3648 int ret = 0;
0b86a832
CM
3649 u32 num_stripes;
3650 u32 array_size;
3651 u32 len = 0;
0b86a832 3652 u32 cur;
84eed90f 3653 struct btrfs_key key;
0b86a832 3654
e4404d6e 3655 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3656 BTRFS_SUPER_INFO_SIZE);
3657 if (!sb)
3658 return -ENOMEM;
3659 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3660 btrfs_set_buffer_lockdep_class(sb, 0);
3661
a061fc8d 3662 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3663 array_size = btrfs_super_sys_array_size(super_copy);
3664
0b86a832
CM
3665 ptr = super_copy->sys_chunk_array;
3666 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3667 cur = 0;
3668
3669 while (cur < array_size) {
3670 disk_key = (struct btrfs_disk_key *)ptr;
3671 btrfs_disk_key_to_cpu(&key, disk_key);
3672
a061fc8d 3673 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3674 sb_ptr += len;
3675 cur += len;
3676
0d81ba5d 3677 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3678 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3679 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3680 if (ret)
3681 break;
0b86a832
CM
3682 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3683 len = btrfs_chunk_item_size(num_stripes);
3684 } else {
84eed90f
CM
3685 ret = -EIO;
3686 break;
0b86a832
CM
3687 }
3688 ptr += len;
3689 sb_ptr += len;
3690 cur += len;
3691 }
a061fc8d 3692 free_extent_buffer(sb);
84eed90f 3693 return ret;
0b86a832
CM
3694}
3695
3696int btrfs_read_chunk_tree(struct btrfs_root *root)
3697{
3698 struct btrfs_path *path;
3699 struct extent_buffer *leaf;
3700 struct btrfs_key key;
3701 struct btrfs_key found_key;
3702 int ret;
3703 int slot;
3704
3705 root = root->fs_info->chunk_root;
3706
3707 path = btrfs_alloc_path();
3708 if (!path)
3709 return -ENOMEM;
3710
3711 /* first we search for all of the device items, and then we
3712 * read in all of the chunk items. This way we can create chunk
3713 * mappings that reference all of the devices that are afound
3714 */
3715 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3716 key.offset = 0;
3717 key.type = 0;
3718again:
3719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3720 if (ret < 0)
3721 goto error;
d397712b 3722 while (1) {
0b86a832
CM
3723 leaf = path->nodes[0];
3724 slot = path->slots[0];
3725 if (slot >= btrfs_header_nritems(leaf)) {
3726 ret = btrfs_next_leaf(root, path);
3727 if (ret == 0)
3728 continue;
3729 if (ret < 0)
3730 goto error;
3731 break;
3732 }
3733 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3734 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3735 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3736 break;
3737 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3738 struct btrfs_dev_item *dev_item;
3739 dev_item = btrfs_item_ptr(leaf, slot,
3740 struct btrfs_dev_item);
0d81ba5d 3741 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3742 if (ret)
3743 goto error;
0b86a832
CM
3744 }
3745 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3746 struct btrfs_chunk *chunk;
3747 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3748 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3749 if (ret)
3750 goto error;
0b86a832
CM
3751 }
3752 path->slots[0]++;
3753 }
3754 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3755 key.objectid = 0;
3756 btrfs_release_path(root, path);
3757 goto again;
3758 }
0b86a832
CM
3759 ret = 0;
3760error:
2b82032c 3761 btrfs_free_path(path);
0b86a832
CM
3762 return ret;
3763}