Btrfs: read device stats on mount, write modified ones during commit
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
593060d7 28#include <asm/div64.h>
4b4e25f2 29#include "compat.h"
0b86a832
CM
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
8b712842 36#include "async-thread.h"
21adbd5c 37#include "check-integrity.h"
0b86a832 38
2b82032c
YZ
39static int init_first_rw_device(struct btrfs_trans_handle *trans,
40 struct btrfs_root *root,
41 struct btrfs_device *device);
42static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
43static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
44static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 45
8a4b83cc
CM
46static DEFINE_MUTEX(uuid_mutex);
47static LIST_HEAD(fs_uuids);
48
7d9eb12c
CM
49static void lock_chunks(struct btrfs_root *root)
50{
7d9eb12c
CM
51 mutex_lock(&root->fs_info->chunk_mutex);
52}
53
54static void unlock_chunks(struct btrfs_root *root)
55{
7d9eb12c
CM
56 mutex_unlock(&root->fs_info->chunk_mutex);
57}
58
e4404d6e
YZ
59static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
60{
61 struct btrfs_device *device;
62 WARN_ON(fs_devices->opened);
63 while (!list_empty(&fs_devices->devices)) {
64 device = list_entry(fs_devices->devices.next,
65 struct btrfs_device, dev_list);
66 list_del(&device->dev_list);
67 kfree(device->name);
68 kfree(device);
69 }
70 kfree(fs_devices);
71}
72
143bede5 73void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
74{
75 struct btrfs_fs_devices *fs_devices;
8a4b83cc 76
2b82032c
YZ
77 while (!list_empty(&fs_uuids)) {
78 fs_devices = list_entry(fs_uuids.next,
79 struct btrfs_fs_devices, list);
80 list_del(&fs_devices->list);
e4404d6e 81 free_fs_devices(fs_devices);
8a4b83cc 82 }
8a4b83cc
CM
83}
84
a1b32a59
CM
85static noinline struct btrfs_device *__find_device(struct list_head *head,
86 u64 devid, u8 *uuid)
8a4b83cc
CM
87{
88 struct btrfs_device *dev;
8a4b83cc 89
c6e30871 90 list_for_each_entry(dev, head, dev_list) {
a443755f 91 if (dev->devid == devid &&
8f18cf13 92 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 93 return dev;
a443755f 94 }
8a4b83cc
CM
95 }
96 return NULL;
97}
98
a1b32a59 99static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 100{
8a4b83cc
CM
101 struct btrfs_fs_devices *fs_devices;
102
c6e30871 103 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
104 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
105 return fs_devices;
106 }
107 return NULL;
108}
109
ffbd517d
CM
110static void requeue_list(struct btrfs_pending_bios *pending_bios,
111 struct bio *head, struct bio *tail)
112{
113
114 struct bio *old_head;
115
116 old_head = pending_bios->head;
117 pending_bios->head = head;
118 if (pending_bios->tail)
119 tail->bi_next = old_head;
120 else
121 pending_bios->tail = tail;
122}
123
8b712842
CM
124/*
125 * we try to collect pending bios for a device so we don't get a large
126 * number of procs sending bios down to the same device. This greatly
127 * improves the schedulers ability to collect and merge the bios.
128 *
129 * But, it also turns into a long list of bios to process and that is sure
130 * to eventually make the worker thread block. The solution here is to
131 * make some progress and then put this work struct back at the end of
132 * the list if the block device is congested. This way, multiple devices
133 * can make progress from a single worker thread.
134 */
143bede5 135static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
136{
137 struct bio *pending;
138 struct backing_dev_info *bdi;
b64a2851 139 struct btrfs_fs_info *fs_info;
ffbd517d 140 struct btrfs_pending_bios *pending_bios;
8b712842
CM
141 struct bio *tail;
142 struct bio *cur;
143 int again = 0;
ffbd517d 144 unsigned long num_run;
d644d8a1 145 unsigned long batch_run = 0;
b64a2851 146 unsigned long limit;
b765ead5 147 unsigned long last_waited = 0;
d84275c9 148 int force_reg = 0;
0e588859 149 int sync_pending = 0;
211588ad
CM
150 struct blk_plug plug;
151
152 /*
153 * this function runs all the bios we've collected for
154 * a particular device. We don't want to wander off to
155 * another device without first sending all of these down.
156 * So, setup a plug here and finish it off before we return
157 */
158 blk_start_plug(&plug);
8b712842 159
bedf762b 160 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
161 fs_info = device->dev_root->fs_info;
162 limit = btrfs_async_submit_limit(fs_info);
163 limit = limit * 2 / 3;
164
8b712842
CM
165loop:
166 spin_lock(&device->io_lock);
167
a6837051 168loop_lock:
d84275c9 169 num_run = 0;
ffbd517d 170
8b712842
CM
171 /* take all the bios off the list at once and process them
172 * later on (without the lock held). But, remember the
173 * tail and other pointers so the bios can be properly reinserted
174 * into the list if we hit congestion
175 */
d84275c9 176 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 177 pending_bios = &device->pending_sync_bios;
d84275c9
CM
178 force_reg = 1;
179 } else {
ffbd517d 180 pending_bios = &device->pending_bios;
d84275c9
CM
181 force_reg = 0;
182 }
ffbd517d
CM
183
184 pending = pending_bios->head;
185 tail = pending_bios->tail;
8b712842 186 WARN_ON(pending && !tail);
8b712842
CM
187
188 /*
189 * if pending was null this time around, no bios need processing
190 * at all and we can stop. Otherwise it'll loop back up again
191 * and do an additional check so no bios are missed.
192 *
193 * device->running_pending is used to synchronize with the
194 * schedule_bio code.
195 */
ffbd517d
CM
196 if (device->pending_sync_bios.head == NULL &&
197 device->pending_bios.head == NULL) {
8b712842
CM
198 again = 0;
199 device->running_pending = 0;
ffbd517d
CM
200 } else {
201 again = 1;
202 device->running_pending = 1;
8b712842 203 }
ffbd517d
CM
204
205 pending_bios->head = NULL;
206 pending_bios->tail = NULL;
207
8b712842
CM
208 spin_unlock(&device->io_lock);
209
d397712b 210 while (pending) {
ffbd517d
CM
211
212 rmb();
d84275c9
CM
213 /* we want to work on both lists, but do more bios on the
214 * sync list than the regular list
215 */
216 if ((num_run > 32 &&
217 pending_bios != &device->pending_sync_bios &&
218 device->pending_sync_bios.head) ||
219 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
220 device->pending_bios.head)) {
ffbd517d
CM
221 spin_lock(&device->io_lock);
222 requeue_list(pending_bios, pending, tail);
223 goto loop_lock;
224 }
225
8b712842
CM
226 cur = pending;
227 pending = pending->bi_next;
228 cur->bi_next = NULL;
b64a2851
CM
229 atomic_dec(&fs_info->nr_async_bios);
230
231 if (atomic_read(&fs_info->nr_async_bios) < limit &&
232 waitqueue_active(&fs_info->async_submit_wait))
233 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
234
235 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 236
2ab1ba68
CM
237 /*
238 * if we're doing the sync list, record that our
239 * plug has some sync requests on it
240 *
241 * If we're doing the regular list and there are
242 * sync requests sitting around, unplug before
243 * we add more
244 */
245 if (pending_bios == &device->pending_sync_bios) {
246 sync_pending = 1;
247 } else if (sync_pending) {
248 blk_finish_plug(&plug);
249 blk_start_plug(&plug);
250 sync_pending = 0;
251 }
252
21adbd5c 253 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
254 num_run++;
255 batch_run++;
7eaceacc 256 if (need_resched())
ffbd517d 257 cond_resched();
8b712842
CM
258
259 /*
260 * we made progress, there is more work to do and the bdi
261 * is now congested. Back off and let other work structs
262 * run instead
263 */
57fd5a5f 264 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 265 fs_info->fs_devices->open_devices > 1) {
b765ead5 266 struct io_context *ioc;
8b712842 267
b765ead5
CM
268 ioc = current->io_context;
269
270 /*
271 * the main goal here is that we don't want to
272 * block if we're going to be able to submit
273 * more requests without blocking.
274 *
275 * This code does two great things, it pokes into
276 * the elevator code from a filesystem _and_
277 * it makes assumptions about how batching works.
278 */
279 if (ioc && ioc->nr_batch_requests > 0 &&
280 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
281 (last_waited == 0 ||
282 ioc->last_waited == last_waited)) {
283 /*
284 * we want to go through our batch of
285 * requests and stop. So, we copy out
286 * the ioc->last_waited time and test
287 * against it before looping
288 */
289 last_waited = ioc->last_waited;
7eaceacc 290 if (need_resched())
ffbd517d 291 cond_resched();
b765ead5
CM
292 continue;
293 }
8b712842 294 spin_lock(&device->io_lock);
ffbd517d 295 requeue_list(pending_bios, pending, tail);
a6837051 296 device->running_pending = 1;
8b712842
CM
297
298 spin_unlock(&device->io_lock);
299 btrfs_requeue_work(&device->work);
300 goto done;
301 }
d85c8a6f
CM
302 /* unplug every 64 requests just for good measure */
303 if (batch_run % 64 == 0) {
304 blk_finish_plug(&plug);
305 blk_start_plug(&plug);
306 sync_pending = 0;
307 }
8b712842 308 }
ffbd517d 309
51684082
CM
310 cond_resched();
311 if (again)
312 goto loop;
313
314 spin_lock(&device->io_lock);
315 if (device->pending_bios.head || device->pending_sync_bios.head)
316 goto loop_lock;
317 spin_unlock(&device->io_lock);
318
8b712842 319done:
211588ad 320 blk_finish_plug(&plug);
8b712842
CM
321}
322
b2950863 323static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
324{
325 struct btrfs_device *device;
326
327 device = container_of(work, struct btrfs_device, work);
328 run_scheduled_bios(device);
329}
330
a1b32a59 331static noinline int device_list_add(const char *path,
8a4b83cc
CM
332 struct btrfs_super_block *disk_super,
333 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334{
335 struct btrfs_device *device;
336 struct btrfs_fs_devices *fs_devices;
337 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 338 char *name;
8a4b83cc
CM
339
340 fs_devices = find_fsid(disk_super->fsid);
341 if (!fs_devices) {
515dc322 342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
343 if (!fs_devices)
344 return -ENOMEM;
345 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 346 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
347 list_add(&fs_devices->list, &fs_uuids);
348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349 fs_devices->latest_devid = devid;
350 fs_devices->latest_trans = found_transid;
e5e9a520 351 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
352 device = NULL;
353 } else {
a443755f
CM
354 device = __find_device(&fs_devices->devices, devid,
355 disk_super->dev_item.uuid);
8a4b83cc
CM
356 }
357 if (!device) {
2b82032c
YZ
358 if (fs_devices->opened)
359 return -EBUSY;
360
8a4b83cc
CM
361 device = kzalloc(sizeof(*device), GFP_NOFS);
362 if (!device) {
363 /* we can safely leave the fs_devices entry around */
364 return -ENOMEM;
365 }
366 device->devid = devid;
733f4fbb 367 device->dev_stats_valid = 0;
8b712842 368 device->work.func = pending_bios_fn;
a443755f
CM
369 memcpy(device->uuid, disk_super->dev_item.uuid,
370 BTRFS_UUID_SIZE);
b248a415 371 spin_lock_init(&device->io_lock);
8a4b83cc
CM
372 device->name = kstrdup(path, GFP_NOFS);
373 if (!device->name) {
374 kfree(device);
375 return -ENOMEM;
376 }
2b82032c 377 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 378
90519d66
AJ
379 /* init readahead state */
380 spin_lock_init(&device->reada_lock);
381 device->reada_curr_zone = NULL;
382 atomic_set(&device->reada_in_flight, 0);
383 device->reada_next = 0;
384 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
385 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
386
e5e9a520 387 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 388 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
389 mutex_unlock(&fs_devices->device_list_mutex);
390
2b82032c 391 device->fs_devices = fs_devices;
8a4b83cc 392 fs_devices->num_devices++;
cd02dca5 393 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
394 name = kstrdup(path, GFP_NOFS);
395 if (!name)
396 return -ENOMEM;
397 kfree(device->name);
398 device->name = name;
cd02dca5
CM
399 if (device->missing) {
400 fs_devices->missing_devices--;
401 device->missing = 0;
402 }
8a4b83cc
CM
403 }
404
405 if (found_transid > fs_devices->latest_trans) {
406 fs_devices->latest_devid = devid;
407 fs_devices->latest_trans = found_transid;
408 }
8a4b83cc
CM
409 *fs_devices_ret = fs_devices;
410 return 0;
411}
412
e4404d6e
YZ
413static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
414{
415 struct btrfs_fs_devices *fs_devices;
416 struct btrfs_device *device;
417 struct btrfs_device *orig_dev;
418
419 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
420 if (!fs_devices)
421 return ERR_PTR(-ENOMEM);
422
423 INIT_LIST_HEAD(&fs_devices->devices);
424 INIT_LIST_HEAD(&fs_devices->alloc_list);
425 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 426 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
427 fs_devices->latest_devid = orig->latest_devid;
428 fs_devices->latest_trans = orig->latest_trans;
429 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
430
46224705 431 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
432 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
433 device = kzalloc(sizeof(*device), GFP_NOFS);
434 if (!device)
435 goto error;
436
437 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
438 if (!device->name) {
439 kfree(device);
e4404d6e 440 goto error;
fd2696f3 441 }
e4404d6e
YZ
442
443 device->devid = orig_dev->devid;
444 device->work.func = pending_bios_fn;
445 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
446 spin_lock_init(&device->io_lock);
447 INIT_LIST_HEAD(&device->dev_list);
448 INIT_LIST_HEAD(&device->dev_alloc_list);
449
450 list_add(&device->dev_list, &fs_devices->devices);
451 device->fs_devices = fs_devices;
452 fs_devices->num_devices++;
453 }
454 return fs_devices;
455error:
456 free_fs_devices(fs_devices);
457 return ERR_PTR(-ENOMEM);
458}
459
143bede5 460void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
dfe25020 461{
c6e30871 462 struct btrfs_device *device, *next;
dfe25020 463
a6b0d5c8
CM
464 struct block_device *latest_bdev = NULL;
465 u64 latest_devid = 0;
466 u64 latest_transid = 0;
467
dfe25020
CM
468 mutex_lock(&uuid_mutex);
469again:
46224705 470 /* This is the initialized path, it is safe to release the devices. */
c6e30871 471 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
472 if (device->in_fs_metadata) {
473 if (!latest_transid ||
474 device->generation > latest_transid) {
475 latest_devid = device->devid;
476 latest_transid = device->generation;
477 latest_bdev = device->bdev;
478 }
2b82032c 479 continue;
a6b0d5c8 480 }
2b82032c
YZ
481
482 if (device->bdev) {
d4d77629 483 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
484 device->bdev = NULL;
485 fs_devices->open_devices--;
486 }
487 if (device->writeable) {
488 list_del_init(&device->dev_alloc_list);
489 device->writeable = 0;
490 fs_devices->rw_devices--;
491 }
e4404d6e
YZ
492 list_del_init(&device->dev_list);
493 fs_devices->num_devices--;
494 kfree(device->name);
495 kfree(device);
dfe25020 496 }
2b82032c
YZ
497
498 if (fs_devices->seed) {
499 fs_devices = fs_devices->seed;
2b82032c
YZ
500 goto again;
501 }
502
a6b0d5c8
CM
503 fs_devices->latest_bdev = latest_bdev;
504 fs_devices->latest_devid = latest_devid;
505 fs_devices->latest_trans = latest_transid;
506
dfe25020 507 mutex_unlock(&uuid_mutex);
dfe25020 508}
a0af469b 509
1f78160c
XG
510static void __free_device(struct work_struct *work)
511{
512 struct btrfs_device *device;
513
514 device = container_of(work, struct btrfs_device, rcu_work);
515
516 if (device->bdev)
517 blkdev_put(device->bdev, device->mode);
518
519 kfree(device->name);
520 kfree(device);
521}
522
523static void free_device(struct rcu_head *head)
524{
525 struct btrfs_device *device;
526
527 device = container_of(head, struct btrfs_device, rcu);
528
529 INIT_WORK(&device->rcu_work, __free_device);
530 schedule_work(&device->rcu_work);
531}
532
2b82032c 533static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 534{
8a4b83cc 535 struct btrfs_device *device;
e4404d6e 536
2b82032c
YZ
537 if (--fs_devices->opened > 0)
538 return 0;
8a4b83cc 539
c9513edb 540 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 541 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
542 struct btrfs_device *new_device;
543
544 if (device->bdev)
a0af469b 545 fs_devices->open_devices--;
1f78160c 546
2b82032c
YZ
547 if (device->writeable) {
548 list_del_init(&device->dev_alloc_list);
549 fs_devices->rw_devices--;
550 }
551
d5e2003c
JB
552 if (device->can_discard)
553 fs_devices->num_can_discard--;
554
1f78160c 555 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 556 BUG_ON(!new_device); /* -ENOMEM */
1f78160c
XG
557 memcpy(new_device, device, sizeof(*new_device));
558 new_device->name = kstrdup(device->name, GFP_NOFS);
79787eaa 559 BUG_ON(device->name && !new_device->name); /* -ENOMEM */
1f78160c
XG
560 new_device->bdev = NULL;
561 new_device->writeable = 0;
562 new_device->in_fs_metadata = 0;
d5e2003c 563 new_device->can_discard = 0;
1f78160c
XG
564 list_replace_rcu(&device->dev_list, &new_device->dev_list);
565
566 call_rcu(&device->rcu, free_device);
8a4b83cc 567 }
c9513edb
XG
568 mutex_unlock(&fs_devices->device_list_mutex);
569
e4404d6e
YZ
570 WARN_ON(fs_devices->open_devices);
571 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
572 fs_devices->opened = 0;
573 fs_devices->seeding = 0;
2b82032c 574
8a4b83cc
CM
575 return 0;
576}
577
2b82032c
YZ
578int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
579{
e4404d6e 580 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
581 int ret;
582
583 mutex_lock(&uuid_mutex);
584 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
585 if (!fs_devices->opened) {
586 seed_devices = fs_devices->seed;
587 fs_devices->seed = NULL;
588 }
2b82032c 589 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
590
591 while (seed_devices) {
592 fs_devices = seed_devices;
593 seed_devices = fs_devices->seed;
594 __btrfs_close_devices(fs_devices);
595 free_fs_devices(fs_devices);
596 }
2b82032c
YZ
597 return ret;
598}
599
e4404d6e
YZ
600static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
601 fmode_t flags, void *holder)
8a4b83cc 602{
d5e2003c 603 struct request_queue *q;
8a4b83cc
CM
604 struct block_device *bdev;
605 struct list_head *head = &fs_devices->devices;
8a4b83cc 606 struct btrfs_device *device;
a0af469b
CM
607 struct block_device *latest_bdev = NULL;
608 struct buffer_head *bh;
609 struct btrfs_super_block *disk_super;
610 u64 latest_devid = 0;
611 u64 latest_transid = 0;
a0af469b 612 u64 devid;
2b82032c 613 int seeding = 1;
a0af469b 614 int ret = 0;
8a4b83cc 615
d4d77629
TH
616 flags |= FMODE_EXCL;
617
c6e30871 618 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
619 if (device->bdev)
620 continue;
dfe25020
CM
621 if (!device->name)
622 continue;
623
d4d77629 624 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 625 if (IS_ERR(bdev)) {
d397712b 626 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 627 goto error;
8a4b83cc 628 }
3c4bb26b
CM
629 filemap_write_and_wait(bdev->bd_inode->i_mapping);
630 invalidate_bdev(bdev);
a061fc8d 631 set_blocksize(bdev, 4096);
a0af469b 632
a512bbf8 633 bh = btrfs_read_dev_super(bdev);
20bcd649 634 if (!bh)
a0af469b
CM
635 goto error_close;
636
637 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 638 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
639 if (devid != device->devid)
640 goto error_brelse;
641
2b82032c
YZ
642 if (memcmp(device->uuid, disk_super->dev_item.uuid,
643 BTRFS_UUID_SIZE))
644 goto error_brelse;
645
646 device->generation = btrfs_super_generation(disk_super);
647 if (!latest_transid || device->generation > latest_transid) {
a0af469b 648 latest_devid = devid;
2b82032c 649 latest_transid = device->generation;
a0af469b
CM
650 latest_bdev = bdev;
651 }
652
2b82032c
YZ
653 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
654 device->writeable = 0;
655 } else {
656 device->writeable = !bdev_read_only(bdev);
657 seeding = 0;
658 }
659
d5e2003c
JB
660 q = bdev_get_queue(bdev);
661 if (blk_queue_discard(q)) {
662 device->can_discard = 1;
663 fs_devices->num_can_discard++;
664 }
665
8a4b83cc 666 device->bdev = bdev;
dfe25020 667 device->in_fs_metadata = 0;
15916de8
CM
668 device->mode = flags;
669
c289811c
CM
670 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
671 fs_devices->rotating = 1;
672
a0af469b 673 fs_devices->open_devices++;
2b82032c
YZ
674 if (device->writeable) {
675 fs_devices->rw_devices++;
676 list_add(&device->dev_alloc_list,
677 &fs_devices->alloc_list);
678 }
4f6c9328 679 brelse(bh);
a0af469b 680 continue;
a061fc8d 681
a0af469b
CM
682error_brelse:
683 brelse(bh);
684error_close:
d4d77629 685 blkdev_put(bdev, flags);
a0af469b
CM
686error:
687 continue;
8a4b83cc 688 }
a0af469b 689 if (fs_devices->open_devices == 0) {
20bcd649 690 ret = -EINVAL;
a0af469b
CM
691 goto out;
692 }
2b82032c
YZ
693 fs_devices->seeding = seeding;
694 fs_devices->opened = 1;
a0af469b
CM
695 fs_devices->latest_bdev = latest_bdev;
696 fs_devices->latest_devid = latest_devid;
697 fs_devices->latest_trans = latest_transid;
2b82032c 698 fs_devices->total_rw_bytes = 0;
a0af469b 699out:
2b82032c
YZ
700 return ret;
701}
702
703int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 704 fmode_t flags, void *holder)
2b82032c
YZ
705{
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 if (fs_devices->opened) {
e4404d6e
YZ
710 fs_devices->opened++;
711 ret = 0;
2b82032c 712 } else {
15916de8 713 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 714 }
8a4b83cc 715 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
716 return ret;
717}
718
97288f2c 719int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
720 struct btrfs_fs_devices **fs_devices_ret)
721{
722 struct btrfs_super_block *disk_super;
723 struct block_device *bdev;
724 struct buffer_head *bh;
725 int ret;
726 u64 devid;
f2984462 727 u64 transid;
8a4b83cc 728
d4d77629
TH
729 flags |= FMODE_EXCL;
730 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
731
732 if (IS_ERR(bdev)) {
8a4b83cc
CM
733 ret = PTR_ERR(bdev);
734 goto error;
735 }
736
10f6327b 737 mutex_lock(&uuid_mutex);
8a4b83cc
CM
738 ret = set_blocksize(bdev, 4096);
739 if (ret)
740 goto error_close;
a512bbf8 741 bh = btrfs_read_dev_super(bdev);
8a4b83cc 742 if (!bh) {
20b45077 743 ret = -EINVAL;
8a4b83cc
CM
744 goto error_close;
745 }
746 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 747 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 748 transid = btrfs_super_generation(disk_super);
7ae9c09d 749 if (disk_super->label[0])
d397712b 750 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
751 else
752 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 753 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 754 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
755 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
756
8a4b83cc
CM
757 brelse(bh);
758error_close:
10f6327b 759 mutex_unlock(&uuid_mutex);
d4d77629 760 blkdev_put(bdev, flags);
8a4b83cc 761error:
8a4b83cc
CM
762 return ret;
763}
0b86a832 764
6d07bcec
MX
765/* helper to account the used device space in the range */
766int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
767 u64 end, u64 *length)
768{
769 struct btrfs_key key;
770 struct btrfs_root *root = device->dev_root;
771 struct btrfs_dev_extent *dev_extent;
772 struct btrfs_path *path;
773 u64 extent_end;
774 int ret;
775 int slot;
776 struct extent_buffer *l;
777
778 *length = 0;
779
780 if (start >= device->total_bytes)
781 return 0;
782
783 path = btrfs_alloc_path();
784 if (!path)
785 return -ENOMEM;
786 path->reada = 2;
787
788 key.objectid = device->devid;
789 key.offset = start;
790 key.type = BTRFS_DEV_EXTENT_KEY;
791
792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
793 if (ret < 0)
794 goto out;
795 if (ret > 0) {
796 ret = btrfs_previous_item(root, path, key.objectid, key.type);
797 if (ret < 0)
798 goto out;
799 }
800
801 while (1) {
802 l = path->nodes[0];
803 slot = path->slots[0];
804 if (slot >= btrfs_header_nritems(l)) {
805 ret = btrfs_next_leaf(root, path);
806 if (ret == 0)
807 continue;
808 if (ret < 0)
809 goto out;
810
811 break;
812 }
813 btrfs_item_key_to_cpu(l, &key, slot);
814
815 if (key.objectid < device->devid)
816 goto next;
817
818 if (key.objectid > device->devid)
819 break;
820
821 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
822 goto next;
823
824 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
825 extent_end = key.offset + btrfs_dev_extent_length(l,
826 dev_extent);
827 if (key.offset <= start && extent_end > end) {
828 *length = end - start + 1;
829 break;
830 } else if (key.offset <= start && extent_end > start)
831 *length += extent_end - start;
832 else if (key.offset > start && extent_end <= end)
833 *length += extent_end - key.offset;
834 else if (key.offset > start && key.offset <= end) {
835 *length += end - key.offset + 1;
836 break;
837 } else if (key.offset > end)
838 break;
839
840next:
841 path->slots[0]++;
842 }
843 ret = 0;
844out:
845 btrfs_free_path(path);
846 return ret;
847}
848
0b86a832 849/*
7bfc837d 850 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
851 * @device: the device which we search the free space in
852 * @num_bytes: the size of the free space that we need
853 * @start: store the start of the free space.
854 * @len: the size of the free space. that we find, or the size of the max
855 * free space if we don't find suitable free space
856 *
0b86a832
CM
857 * this uses a pretty simple search, the expectation is that it is
858 * called very infrequently and that a given device has a small number
859 * of extents
7bfc837d
MX
860 *
861 * @start is used to store the start of the free space if we find. But if we
862 * don't find suitable free space, it will be used to store the start position
863 * of the max free space.
864 *
865 * @len is used to store the size of the free space that we find.
866 * But if we don't find suitable free space, it is used to store the size of
867 * the max free space.
0b86a832 868 */
125ccb0a 869int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 870 u64 *start, u64 *len)
0b86a832
CM
871{
872 struct btrfs_key key;
873 struct btrfs_root *root = device->dev_root;
7bfc837d 874 struct btrfs_dev_extent *dev_extent;
2b82032c 875 struct btrfs_path *path;
7bfc837d
MX
876 u64 hole_size;
877 u64 max_hole_start;
878 u64 max_hole_size;
879 u64 extent_end;
880 u64 search_start;
0b86a832
CM
881 u64 search_end = device->total_bytes;
882 int ret;
7bfc837d 883 int slot;
0b86a832
CM
884 struct extent_buffer *l;
885
0b86a832
CM
886 /* FIXME use last free of some kind */
887
8a4b83cc
CM
888 /* we don't want to overwrite the superblock on the drive,
889 * so we make sure to start at an offset of at least 1MB
890 */
a9c9bf68 891 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 892
7bfc837d
MX
893 max_hole_start = search_start;
894 max_hole_size = 0;
38c01b96 895 hole_size = 0;
7bfc837d
MX
896
897 if (search_start >= search_end) {
898 ret = -ENOSPC;
899 goto error;
900 }
901
902 path = btrfs_alloc_path();
903 if (!path) {
904 ret = -ENOMEM;
905 goto error;
906 }
907 path->reada = 2;
908
0b86a832
CM
909 key.objectid = device->devid;
910 key.offset = search_start;
911 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 912
125ccb0a 913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 914 if (ret < 0)
7bfc837d 915 goto out;
1fcbac58
YZ
916 if (ret > 0) {
917 ret = btrfs_previous_item(root, path, key.objectid, key.type);
918 if (ret < 0)
7bfc837d 919 goto out;
1fcbac58 920 }
7bfc837d 921
0b86a832
CM
922 while (1) {
923 l = path->nodes[0];
924 slot = path->slots[0];
925 if (slot >= btrfs_header_nritems(l)) {
926 ret = btrfs_next_leaf(root, path);
927 if (ret == 0)
928 continue;
929 if (ret < 0)
7bfc837d
MX
930 goto out;
931
932 break;
0b86a832
CM
933 }
934 btrfs_item_key_to_cpu(l, &key, slot);
935
936 if (key.objectid < device->devid)
937 goto next;
938
939 if (key.objectid > device->devid)
7bfc837d 940 break;
0b86a832 941
7bfc837d
MX
942 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
943 goto next;
9779b72f 944
7bfc837d
MX
945 if (key.offset > search_start) {
946 hole_size = key.offset - search_start;
9779b72f 947
7bfc837d
MX
948 if (hole_size > max_hole_size) {
949 max_hole_start = search_start;
950 max_hole_size = hole_size;
951 }
9779b72f 952
7bfc837d
MX
953 /*
954 * If this free space is greater than which we need,
955 * it must be the max free space that we have found
956 * until now, so max_hole_start must point to the start
957 * of this free space and the length of this free space
958 * is stored in max_hole_size. Thus, we return
959 * max_hole_start and max_hole_size and go back to the
960 * caller.
961 */
962 if (hole_size >= num_bytes) {
963 ret = 0;
964 goto out;
0b86a832
CM
965 }
966 }
0b86a832 967
0b86a832 968 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
969 extent_end = key.offset + btrfs_dev_extent_length(l,
970 dev_extent);
971 if (extent_end > search_start)
972 search_start = extent_end;
0b86a832
CM
973next:
974 path->slots[0]++;
975 cond_resched();
976 }
0b86a832 977
38c01b96 978 /*
979 * At this point, search_start should be the end of
980 * allocated dev extents, and when shrinking the device,
981 * search_end may be smaller than search_start.
982 */
983 if (search_end > search_start)
984 hole_size = search_end - search_start;
985
7bfc837d
MX
986 if (hole_size > max_hole_size) {
987 max_hole_start = search_start;
988 max_hole_size = hole_size;
0b86a832 989 }
0b86a832 990
7bfc837d
MX
991 /* See above. */
992 if (hole_size < num_bytes)
993 ret = -ENOSPC;
994 else
995 ret = 0;
996
997out:
2b82032c 998 btrfs_free_path(path);
7bfc837d
MX
999error:
1000 *start = max_hole_start;
b2117a39 1001 if (len)
7bfc837d 1002 *len = max_hole_size;
0b86a832
CM
1003 return ret;
1004}
1005
b2950863 1006static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1007 struct btrfs_device *device,
1008 u64 start)
1009{
1010 int ret;
1011 struct btrfs_path *path;
1012 struct btrfs_root *root = device->dev_root;
1013 struct btrfs_key key;
a061fc8d
CM
1014 struct btrfs_key found_key;
1015 struct extent_buffer *leaf = NULL;
1016 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1017
1018 path = btrfs_alloc_path();
1019 if (!path)
1020 return -ENOMEM;
1021
1022 key.objectid = device->devid;
1023 key.offset = start;
1024 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1025again:
8f18cf13 1026 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1027 if (ret > 0) {
1028 ret = btrfs_previous_item(root, path, key.objectid,
1029 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1030 if (ret)
1031 goto out;
a061fc8d
CM
1032 leaf = path->nodes[0];
1033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1034 extent = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_dev_extent);
1036 BUG_ON(found_key.offset > start || found_key.offset +
1037 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1038 key = found_key;
1039 btrfs_release_path(path);
1040 goto again;
a061fc8d
CM
1041 } else if (ret == 0) {
1042 leaf = path->nodes[0];
1043 extent = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_dev_extent);
79787eaa
JM
1045 } else {
1046 btrfs_error(root->fs_info, ret, "Slot search failed");
1047 goto out;
a061fc8d 1048 }
8f18cf13 1049
2bf64758
JB
1050 if (device->bytes_used > 0) {
1051 u64 len = btrfs_dev_extent_length(leaf, extent);
1052 device->bytes_used -= len;
1053 spin_lock(&root->fs_info->free_chunk_lock);
1054 root->fs_info->free_chunk_space += len;
1055 spin_unlock(&root->fs_info->free_chunk_lock);
1056 }
8f18cf13 1057 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1058 if (ret) {
1059 btrfs_error(root->fs_info, ret,
1060 "Failed to remove dev extent item");
1061 }
b0b802d7 1062out:
8f18cf13
CM
1063 btrfs_free_path(path);
1064 return ret;
1065}
1066
2b82032c 1067int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1068 struct btrfs_device *device,
e17cade2 1069 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1070 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1071{
1072 int ret;
1073 struct btrfs_path *path;
1074 struct btrfs_root *root = device->dev_root;
1075 struct btrfs_dev_extent *extent;
1076 struct extent_buffer *leaf;
1077 struct btrfs_key key;
1078
dfe25020 1079 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1080 path = btrfs_alloc_path();
1081 if (!path)
1082 return -ENOMEM;
1083
0b86a832 1084 key.objectid = device->devid;
2b82032c 1085 key.offset = start;
0b86a832
CM
1086 key.type = BTRFS_DEV_EXTENT_KEY;
1087 ret = btrfs_insert_empty_item(trans, root, path, &key,
1088 sizeof(*extent));
2cdcecbc
MF
1089 if (ret)
1090 goto out;
0b86a832
CM
1091
1092 leaf = path->nodes[0];
1093 extent = btrfs_item_ptr(leaf, path->slots[0],
1094 struct btrfs_dev_extent);
e17cade2
CM
1095 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1096 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1097 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1098
1099 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1100 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1101 BTRFS_UUID_SIZE);
1102
0b86a832
CM
1103 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1104 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1105out:
0b86a832
CM
1106 btrfs_free_path(path);
1107 return ret;
1108}
1109
a1b32a59
CM
1110static noinline int find_next_chunk(struct btrfs_root *root,
1111 u64 objectid, u64 *offset)
0b86a832
CM
1112{
1113 struct btrfs_path *path;
1114 int ret;
1115 struct btrfs_key key;
e17cade2 1116 struct btrfs_chunk *chunk;
0b86a832
CM
1117 struct btrfs_key found_key;
1118
1119 path = btrfs_alloc_path();
92b8e897
MF
1120 if (!path)
1121 return -ENOMEM;
0b86a832 1122
e17cade2 1123 key.objectid = objectid;
0b86a832
CM
1124 key.offset = (u64)-1;
1125 key.type = BTRFS_CHUNK_ITEM_KEY;
1126
1127 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1128 if (ret < 0)
1129 goto error;
1130
79787eaa 1131 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1132
1133 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1134 if (ret) {
e17cade2 1135 *offset = 0;
0b86a832
CM
1136 } else {
1137 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1138 path->slots[0]);
e17cade2
CM
1139 if (found_key.objectid != objectid)
1140 *offset = 0;
1141 else {
1142 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1143 struct btrfs_chunk);
1144 *offset = found_key.offset +
1145 btrfs_chunk_length(path->nodes[0], chunk);
1146 }
0b86a832
CM
1147 }
1148 ret = 0;
1149error:
1150 btrfs_free_path(path);
1151 return ret;
1152}
1153
2b82032c 1154static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1155{
1156 int ret;
1157 struct btrfs_key key;
1158 struct btrfs_key found_key;
2b82032c
YZ
1159 struct btrfs_path *path;
1160
1161 root = root->fs_info->chunk_root;
1162
1163 path = btrfs_alloc_path();
1164 if (!path)
1165 return -ENOMEM;
0b86a832
CM
1166
1167 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1168 key.type = BTRFS_DEV_ITEM_KEY;
1169 key.offset = (u64)-1;
1170
1171 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1172 if (ret < 0)
1173 goto error;
1174
79787eaa 1175 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1176
1177 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1178 BTRFS_DEV_ITEM_KEY);
1179 if (ret) {
1180 *objectid = 1;
1181 } else {
1182 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1183 path->slots[0]);
1184 *objectid = found_key.offset + 1;
1185 }
1186 ret = 0;
1187error:
2b82032c 1188 btrfs_free_path(path);
0b86a832
CM
1189 return ret;
1190}
1191
1192/*
1193 * the device information is stored in the chunk root
1194 * the btrfs_device struct should be fully filled in
1195 */
1196int btrfs_add_device(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_device *device)
1199{
1200 int ret;
1201 struct btrfs_path *path;
1202 struct btrfs_dev_item *dev_item;
1203 struct extent_buffer *leaf;
1204 struct btrfs_key key;
1205 unsigned long ptr;
0b86a832
CM
1206
1207 root = root->fs_info->chunk_root;
1208
1209 path = btrfs_alloc_path();
1210 if (!path)
1211 return -ENOMEM;
1212
0b86a832
CM
1213 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1214 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1215 key.offset = device->devid;
0b86a832
CM
1216
1217 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1218 sizeof(*dev_item));
0b86a832
CM
1219 if (ret)
1220 goto out;
1221
1222 leaf = path->nodes[0];
1223 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1224
1225 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1226 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1227 btrfs_set_device_type(leaf, dev_item, device->type);
1228 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1229 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1230 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1231 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1232 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1233 btrfs_set_device_group(leaf, dev_item, 0);
1234 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1235 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1236 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1237
0b86a832 1238 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1239 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1240 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1241 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1242 btrfs_mark_buffer_dirty(leaf);
0b86a832 1243
2b82032c 1244 ret = 0;
0b86a832
CM
1245out:
1246 btrfs_free_path(path);
1247 return ret;
1248}
8f18cf13 1249
a061fc8d
CM
1250static int btrfs_rm_dev_item(struct btrfs_root *root,
1251 struct btrfs_device *device)
1252{
1253 int ret;
1254 struct btrfs_path *path;
a061fc8d 1255 struct btrfs_key key;
a061fc8d
CM
1256 struct btrfs_trans_handle *trans;
1257
1258 root = root->fs_info->chunk_root;
1259
1260 path = btrfs_alloc_path();
1261 if (!path)
1262 return -ENOMEM;
1263
a22285a6 1264 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1265 if (IS_ERR(trans)) {
1266 btrfs_free_path(path);
1267 return PTR_ERR(trans);
1268 }
a061fc8d
CM
1269 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1270 key.type = BTRFS_DEV_ITEM_KEY;
1271 key.offset = device->devid;
7d9eb12c 1272 lock_chunks(root);
a061fc8d
CM
1273
1274 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1275 if (ret < 0)
1276 goto out;
1277
1278 if (ret > 0) {
1279 ret = -ENOENT;
1280 goto out;
1281 }
1282
1283 ret = btrfs_del_item(trans, root, path);
1284 if (ret)
1285 goto out;
a061fc8d
CM
1286out:
1287 btrfs_free_path(path);
7d9eb12c 1288 unlock_chunks(root);
a061fc8d
CM
1289 btrfs_commit_transaction(trans, root);
1290 return ret;
1291}
1292
1293int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1294{
1295 struct btrfs_device *device;
2b82032c 1296 struct btrfs_device *next_device;
a061fc8d 1297 struct block_device *bdev;
dfe25020 1298 struct buffer_head *bh = NULL;
a061fc8d 1299 struct btrfs_super_block *disk_super;
1f78160c 1300 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1301 u64 all_avail;
1302 u64 devid;
2b82032c
YZ
1303 u64 num_devices;
1304 u8 *dev_uuid;
a061fc8d 1305 int ret = 0;
1f78160c 1306 bool clear_super = false;
a061fc8d 1307
a061fc8d
CM
1308 mutex_lock(&uuid_mutex);
1309
1310 all_avail = root->fs_info->avail_data_alloc_bits |
1311 root->fs_info->avail_system_alloc_bits |
1312 root->fs_info->avail_metadata_alloc_bits;
1313
1314 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1315 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1316 printk(KERN_ERR "btrfs: unable to go below four devices "
1317 "on raid10\n");
a061fc8d
CM
1318 ret = -EINVAL;
1319 goto out;
1320 }
1321
1322 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1323 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1324 printk(KERN_ERR "btrfs: unable to go below two "
1325 "devices on raid1\n");
a061fc8d
CM
1326 ret = -EINVAL;
1327 goto out;
1328 }
1329
dfe25020 1330 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1331 struct list_head *devices;
1332 struct btrfs_device *tmp;
a061fc8d 1333
dfe25020
CM
1334 device = NULL;
1335 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1336 /*
1337 * It is safe to read the devices since the volume_mutex
1338 * is held.
1339 */
c6e30871 1340 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1341 if (tmp->in_fs_metadata && !tmp->bdev) {
1342 device = tmp;
1343 break;
1344 }
1345 }
1346 bdev = NULL;
1347 bh = NULL;
1348 disk_super = NULL;
1349 if (!device) {
d397712b
CM
1350 printk(KERN_ERR "btrfs: no missing devices found to "
1351 "remove\n");
dfe25020
CM
1352 goto out;
1353 }
dfe25020 1354 } else {
d4d77629
TH
1355 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1356 root->fs_info->bdev_holder);
dfe25020
CM
1357 if (IS_ERR(bdev)) {
1358 ret = PTR_ERR(bdev);
1359 goto out;
1360 }
a061fc8d 1361
2b82032c 1362 set_blocksize(bdev, 4096);
3c4bb26b 1363 invalidate_bdev(bdev);
a512bbf8 1364 bh = btrfs_read_dev_super(bdev);
dfe25020 1365 if (!bh) {
20b45077 1366 ret = -EINVAL;
dfe25020
CM
1367 goto error_close;
1368 }
1369 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1370 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1371 dev_uuid = disk_super->dev_item.uuid;
1372 device = btrfs_find_device(root, devid, dev_uuid,
1373 disk_super->fsid);
dfe25020
CM
1374 if (!device) {
1375 ret = -ENOENT;
1376 goto error_brelse;
1377 }
2b82032c 1378 }
dfe25020 1379
2b82032c 1380 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1381 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1382 "device\n");
2b82032c
YZ
1383 ret = -EINVAL;
1384 goto error_brelse;
1385 }
1386
1387 if (device->writeable) {
0c1daee0 1388 lock_chunks(root);
2b82032c 1389 list_del_init(&device->dev_alloc_list);
0c1daee0 1390 unlock_chunks(root);
2b82032c 1391 root->fs_info->fs_devices->rw_devices--;
1f78160c 1392 clear_super = true;
dfe25020 1393 }
a061fc8d
CM
1394
1395 ret = btrfs_shrink_device(device, 0);
1396 if (ret)
9b3517e9 1397 goto error_undo;
a061fc8d 1398
a061fc8d
CM
1399 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1400 if (ret)
9b3517e9 1401 goto error_undo;
a061fc8d 1402
2bf64758
JB
1403 spin_lock(&root->fs_info->free_chunk_lock);
1404 root->fs_info->free_chunk_space = device->total_bytes -
1405 device->bytes_used;
1406 spin_unlock(&root->fs_info->free_chunk_lock);
1407
2b82032c 1408 device->in_fs_metadata = 0;
a2de733c 1409 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1410
1411 /*
1412 * the device list mutex makes sure that we don't change
1413 * the device list while someone else is writing out all
1414 * the device supers.
1415 */
1f78160c
XG
1416
1417 cur_devices = device->fs_devices;
e5e9a520 1418 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1419 list_del_rcu(&device->dev_list);
e5e9a520 1420
e4404d6e 1421 device->fs_devices->num_devices--;
2b82032c 1422
cd02dca5
CM
1423 if (device->missing)
1424 root->fs_info->fs_devices->missing_devices--;
1425
2b82032c
YZ
1426 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1427 struct btrfs_device, dev_list);
1428 if (device->bdev == root->fs_info->sb->s_bdev)
1429 root->fs_info->sb->s_bdev = next_device->bdev;
1430 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1431 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1432
1f78160c 1433 if (device->bdev)
e4404d6e 1434 device->fs_devices->open_devices--;
1f78160c
XG
1435
1436 call_rcu(&device->rcu, free_device);
1437 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1438
6c41761f
DS
1439 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1440 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1441
1f78160c 1442 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1443 struct btrfs_fs_devices *fs_devices;
1444 fs_devices = root->fs_info->fs_devices;
1445 while (fs_devices) {
1f78160c 1446 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1447 break;
1448 fs_devices = fs_devices->seed;
2b82032c 1449 }
1f78160c
XG
1450 fs_devices->seed = cur_devices->seed;
1451 cur_devices->seed = NULL;
0c1daee0 1452 lock_chunks(root);
1f78160c 1453 __btrfs_close_devices(cur_devices);
0c1daee0 1454 unlock_chunks(root);
1f78160c 1455 free_fs_devices(cur_devices);
2b82032c
YZ
1456 }
1457
1458 /*
1459 * at this point, the device is zero sized. We want to
1460 * remove it from the devices list and zero out the old super
1461 */
1f78160c 1462 if (clear_super) {
dfe25020
CM
1463 /* make sure this device isn't detected as part of
1464 * the FS anymore
1465 */
1466 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1467 set_buffer_dirty(bh);
1468 sync_dirty_buffer(bh);
dfe25020 1469 }
a061fc8d 1470
a061fc8d 1471 ret = 0;
a061fc8d
CM
1472
1473error_brelse:
1474 brelse(bh);
1475error_close:
dfe25020 1476 if (bdev)
e525fd89 1477 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1478out:
1479 mutex_unlock(&uuid_mutex);
a061fc8d 1480 return ret;
9b3517e9
ID
1481error_undo:
1482 if (device->writeable) {
0c1daee0 1483 lock_chunks(root);
9b3517e9
ID
1484 list_add(&device->dev_alloc_list,
1485 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1486 unlock_chunks(root);
9b3517e9
ID
1487 root->fs_info->fs_devices->rw_devices++;
1488 }
1489 goto error_brelse;
a061fc8d
CM
1490}
1491
2b82032c
YZ
1492/*
1493 * does all the dirty work required for changing file system's UUID.
1494 */
125ccb0a 1495static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1496{
1497 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1498 struct btrfs_fs_devices *old_devices;
e4404d6e 1499 struct btrfs_fs_devices *seed_devices;
6c41761f 1500 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1501 struct btrfs_device *device;
1502 u64 super_flags;
1503
1504 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1505 if (!fs_devices->seeding)
2b82032c
YZ
1506 return -EINVAL;
1507
e4404d6e
YZ
1508 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1509 if (!seed_devices)
2b82032c
YZ
1510 return -ENOMEM;
1511
e4404d6e
YZ
1512 old_devices = clone_fs_devices(fs_devices);
1513 if (IS_ERR(old_devices)) {
1514 kfree(seed_devices);
1515 return PTR_ERR(old_devices);
2b82032c 1516 }
e4404d6e 1517
2b82032c
YZ
1518 list_add(&old_devices->list, &fs_uuids);
1519
e4404d6e
YZ
1520 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1521 seed_devices->opened = 1;
1522 INIT_LIST_HEAD(&seed_devices->devices);
1523 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1524 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1525
1526 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1527 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1528 synchronize_rcu);
c9513edb
XG
1529 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1530
e4404d6e
YZ
1531 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1532 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1533 device->fs_devices = seed_devices;
1534 }
1535
2b82032c
YZ
1536 fs_devices->seeding = 0;
1537 fs_devices->num_devices = 0;
1538 fs_devices->open_devices = 0;
e4404d6e 1539 fs_devices->seed = seed_devices;
2b82032c
YZ
1540
1541 generate_random_uuid(fs_devices->fsid);
1542 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1543 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1544 super_flags = btrfs_super_flags(disk_super) &
1545 ~BTRFS_SUPER_FLAG_SEEDING;
1546 btrfs_set_super_flags(disk_super, super_flags);
1547
1548 return 0;
1549}
1550
1551/*
1552 * strore the expected generation for seed devices in device items.
1553 */
1554static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1555 struct btrfs_root *root)
1556{
1557 struct btrfs_path *path;
1558 struct extent_buffer *leaf;
1559 struct btrfs_dev_item *dev_item;
1560 struct btrfs_device *device;
1561 struct btrfs_key key;
1562 u8 fs_uuid[BTRFS_UUID_SIZE];
1563 u8 dev_uuid[BTRFS_UUID_SIZE];
1564 u64 devid;
1565 int ret;
1566
1567 path = btrfs_alloc_path();
1568 if (!path)
1569 return -ENOMEM;
1570
1571 root = root->fs_info->chunk_root;
1572 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1573 key.offset = 0;
1574 key.type = BTRFS_DEV_ITEM_KEY;
1575
1576 while (1) {
1577 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1578 if (ret < 0)
1579 goto error;
1580
1581 leaf = path->nodes[0];
1582next_slot:
1583 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1584 ret = btrfs_next_leaf(root, path);
1585 if (ret > 0)
1586 break;
1587 if (ret < 0)
1588 goto error;
1589 leaf = path->nodes[0];
1590 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1591 btrfs_release_path(path);
2b82032c
YZ
1592 continue;
1593 }
1594
1595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1596 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1597 key.type != BTRFS_DEV_ITEM_KEY)
1598 break;
1599
1600 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1601 struct btrfs_dev_item);
1602 devid = btrfs_device_id(leaf, dev_item);
1603 read_extent_buffer(leaf, dev_uuid,
1604 (unsigned long)btrfs_device_uuid(dev_item),
1605 BTRFS_UUID_SIZE);
1606 read_extent_buffer(leaf, fs_uuid,
1607 (unsigned long)btrfs_device_fsid(dev_item),
1608 BTRFS_UUID_SIZE);
1609 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
79787eaa 1610 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1611
1612 if (device->fs_devices->seeding) {
1613 btrfs_set_device_generation(leaf, dev_item,
1614 device->generation);
1615 btrfs_mark_buffer_dirty(leaf);
1616 }
1617
1618 path->slots[0]++;
1619 goto next_slot;
1620 }
1621 ret = 0;
1622error:
1623 btrfs_free_path(path);
1624 return ret;
1625}
1626
788f20eb
CM
1627int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1628{
d5e2003c 1629 struct request_queue *q;
788f20eb
CM
1630 struct btrfs_trans_handle *trans;
1631 struct btrfs_device *device;
1632 struct block_device *bdev;
788f20eb 1633 struct list_head *devices;
2b82032c 1634 struct super_block *sb = root->fs_info->sb;
788f20eb 1635 u64 total_bytes;
2b82032c 1636 int seeding_dev = 0;
788f20eb
CM
1637 int ret = 0;
1638
2b82032c 1639 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1640 return -EROFS;
788f20eb 1641
a5d16333 1642 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1643 root->fs_info->bdev_holder);
7f59203a
JB
1644 if (IS_ERR(bdev))
1645 return PTR_ERR(bdev);
a2135011 1646
2b82032c
YZ
1647 if (root->fs_info->fs_devices->seeding) {
1648 seeding_dev = 1;
1649 down_write(&sb->s_umount);
1650 mutex_lock(&uuid_mutex);
1651 }
1652
8c8bee1d 1653 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1654
788f20eb 1655 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1656 /*
1657 * we have the volume lock, so we don't need the extra
1658 * device list mutex while reading the list here.
1659 */
c6e30871 1660 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1661 if (device->bdev == bdev) {
1662 ret = -EEXIST;
2b82032c 1663 goto error;
788f20eb
CM
1664 }
1665 }
1666
1667 device = kzalloc(sizeof(*device), GFP_NOFS);
1668 if (!device) {
1669 /* we can safely leave the fs_devices entry around */
1670 ret = -ENOMEM;
2b82032c 1671 goto error;
788f20eb
CM
1672 }
1673
788f20eb
CM
1674 device->name = kstrdup(device_path, GFP_NOFS);
1675 if (!device->name) {
1676 kfree(device);
2b82032c
YZ
1677 ret = -ENOMEM;
1678 goto error;
788f20eb 1679 }
2b82032c
YZ
1680
1681 ret = find_next_devid(root, &device->devid);
1682 if (ret) {
67100f25 1683 kfree(device->name);
2b82032c
YZ
1684 kfree(device);
1685 goto error;
1686 }
1687
a22285a6 1688 trans = btrfs_start_transaction(root, 0);
98d5dc13 1689 if (IS_ERR(trans)) {
67100f25 1690 kfree(device->name);
98d5dc13
TI
1691 kfree(device);
1692 ret = PTR_ERR(trans);
1693 goto error;
1694 }
1695
2b82032c
YZ
1696 lock_chunks(root);
1697
d5e2003c
JB
1698 q = bdev_get_queue(bdev);
1699 if (blk_queue_discard(q))
1700 device->can_discard = 1;
2b82032c
YZ
1701 device->writeable = 1;
1702 device->work.func = pending_bios_fn;
1703 generate_random_uuid(device->uuid);
1704 spin_lock_init(&device->io_lock);
1705 device->generation = trans->transid;
788f20eb
CM
1706 device->io_width = root->sectorsize;
1707 device->io_align = root->sectorsize;
1708 device->sector_size = root->sectorsize;
1709 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1710 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1711 device->dev_root = root->fs_info->dev_root;
1712 device->bdev = bdev;
dfe25020 1713 device->in_fs_metadata = 1;
fb01aa85 1714 device->mode = FMODE_EXCL;
2b82032c 1715 set_blocksize(device->bdev, 4096);
788f20eb 1716
2b82032c
YZ
1717 if (seeding_dev) {
1718 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1719 ret = btrfs_prepare_sprout(root);
79787eaa 1720 BUG_ON(ret); /* -ENOMEM */
2b82032c 1721 }
788f20eb 1722
2b82032c 1723 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1724
1725 /*
1726 * we don't want write_supers to jump in here with our device
1727 * half setup
1728 */
1729 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1730 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1731 list_add(&device->dev_alloc_list,
1732 &root->fs_info->fs_devices->alloc_list);
1733 root->fs_info->fs_devices->num_devices++;
1734 root->fs_info->fs_devices->open_devices++;
1735 root->fs_info->fs_devices->rw_devices++;
d5e2003c
JB
1736 if (device->can_discard)
1737 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1738 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1739
2bf64758
JB
1740 spin_lock(&root->fs_info->free_chunk_lock);
1741 root->fs_info->free_chunk_space += device->total_bytes;
1742 spin_unlock(&root->fs_info->free_chunk_lock);
1743
c289811c
CM
1744 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1745 root->fs_info->fs_devices->rotating = 1;
1746
6c41761f
DS
1747 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1748 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1749 total_bytes + device->total_bytes);
1750
6c41761f
DS
1751 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1752 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1753 total_bytes + 1);
e5e9a520 1754 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1755
2b82032c
YZ
1756 if (seeding_dev) {
1757 ret = init_first_rw_device(trans, root, device);
79787eaa
JM
1758 if (ret)
1759 goto error_trans;
2b82032c 1760 ret = btrfs_finish_sprout(trans, root);
79787eaa
JM
1761 if (ret)
1762 goto error_trans;
2b82032c
YZ
1763 } else {
1764 ret = btrfs_add_device(trans, root, device);
79787eaa
JM
1765 if (ret)
1766 goto error_trans;
2b82032c
YZ
1767 }
1768
913d952e
CM
1769 /*
1770 * we've got more storage, clear any full flags on the space
1771 * infos
1772 */
1773 btrfs_clear_space_info_full(root->fs_info);
1774
7d9eb12c 1775 unlock_chunks(root);
79787eaa 1776 ret = btrfs_commit_transaction(trans, root);
a2135011 1777
2b82032c
YZ
1778 if (seeding_dev) {
1779 mutex_unlock(&uuid_mutex);
1780 up_write(&sb->s_umount);
788f20eb 1781
79787eaa
JM
1782 if (ret) /* transaction commit */
1783 return ret;
1784
2b82032c 1785 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1786 if (ret < 0)
1787 btrfs_error(root->fs_info, ret,
1788 "Failed to relocate sys chunks after "
1789 "device initialization. This can be fixed "
1790 "using the \"btrfs balance\" command.");
2b82032c 1791 }
c9e9f97b 1792
2b82032c 1793 return ret;
79787eaa
JM
1794
1795error_trans:
1796 unlock_chunks(root);
1797 btrfs_abort_transaction(trans, root, ret);
1798 btrfs_end_transaction(trans, root);
1799 kfree(device->name);
1800 kfree(device);
2b82032c 1801error:
e525fd89 1802 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1803 if (seeding_dev) {
1804 mutex_unlock(&uuid_mutex);
1805 up_write(&sb->s_umount);
1806 }
c9e9f97b 1807 return ret;
788f20eb
CM
1808}
1809
d397712b
CM
1810static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1811 struct btrfs_device *device)
0b86a832
CM
1812{
1813 int ret;
1814 struct btrfs_path *path;
1815 struct btrfs_root *root;
1816 struct btrfs_dev_item *dev_item;
1817 struct extent_buffer *leaf;
1818 struct btrfs_key key;
1819
1820 root = device->dev_root->fs_info->chunk_root;
1821
1822 path = btrfs_alloc_path();
1823 if (!path)
1824 return -ENOMEM;
1825
1826 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1827 key.type = BTRFS_DEV_ITEM_KEY;
1828 key.offset = device->devid;
1829
1830 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1831 if (ret < 0)
1832 goto out;
1833
1834 if (ret > 0) {
1835 ret = -ENOENT;
1836 goto out;
1837 }
1838
1839 leaf = path->nodes[0];
1840 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1841
1842 btrfs_set_device_id(leaf, dev_item, device->devid);
1843 btrfs_set_device_type(leaf, dev_item, device->type);
1844 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1845 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1846 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1847 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1848 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1849 btrfs_mark_buffer_dirty(leaf);
1850
1851out:
1852 btrfs_free_path(path);
1853 return ret;
1854}
1855
7d9eb12c 1856static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1857 struct btrfs_device *device, u64 new_size)
1858{
1859 struct btrfs_super_block *super_copy =
6c41761f 1860 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1861 u64 old_total = btrfs_super_total_bytes(super_copy);
1862 u64 diff = new_size - device->total_bytes;
1863
2b82032c
YZ
1864 if (!device->writeable)
1865 return -EACCES;
1866 if (new_size <= device->total_bytes)
1867 return -EINVAL;
1868
8f18cf13 1869 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1870 device->fs_devices->total_rw_bytes += diff;
1871
1872 device->total_bytes = new_size;
9779b72f 1873 device->disk_total_bytes = new_size;
4184ea7f
CM
1874 btrfs_clear_space_info_full(device->dev_root->fs_info);
1875
8f18cf13
CM
1876 return btrfs_update_device(trans, device);
1877}
1878
7d9eb12c
CM
1879int btrfs_grow_device(struct btrfs_trans_handle *trans,
1880 struct btrfs_device *device, u64 new_size)
1881{
1882 int ret;
1883 lock_chunks(device->dev_root);
1884 ret = __btrfs_grow_device(trans, device, new_size);
1885 unlock_chunks(device->dev_root);
1886 return ret;
1887}
1888
8f18cf13
CM
1889static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 u64 chunk_tree, u64 chunk_objectid,
1892 u64 chunk_offset)
1893{
1894 int ret;
1895 struct btrfs_path *path;
1896 struct btrfs_key key;
1897
1898 root = root->fs_info->chunk_root;
1899 path = btrfs_alloc_path();
1900 if (!path)
1901 return -ENOMEM;
1902
1903 key.objectid = chunk_objectid;
1904 key.offset = chunk_offset;
1905 key.type = BTRFS_CHUNK_ITEM_KEY;
1906
1907 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
1908 if (ret < 0)
1909 goto out;
1910 else if (ret > 0) { /* Logic error or corruption */
1911 btrfs_error(root->fs_info, -ENOENT,
1912 "Failed lookup while freeing chunk.");
1913 ret = -ENOENT;
1914 goto out;
1915 }
8f18cf13
CM
1916
1917 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1918 if (ret < 0)
1919 btrfs_error(root->fs_info, ret,
1920 "Failed to delete chunk item.");
1921out:
8f18cf13 1922 btrfs_free_path(path);
65a246c5 1923 return ret;
8f18cf13
CM
1924}
1925
b2950863 1926static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1927 chunk_offset)
1928{
6c41761f 1929 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1930 struct btrfs_disk_key *disk_key;
1931 struct btrfs_chunk *chunk;
1932 u8 *ptr;
1933 int ret = 0;
1934 u32 num_stripes;
1935 u32 array_size;
1936 u32 len = 0;
1937 u32 cur;
1938 struct btrfs_key key;
1939
1940 array_size = btrfs_super_sys_array_size(super_copy);
1941
1942 ptr = super_copy->sys_chunk_array;
1943 cur = 0;
1944
1945 while (cur < array_size) {
1946 disk_key = (struct btrfs_disk_key *)ptr;
1947 btrfs_disk_key_to_cpu(&key, disk_key);
1948
1949 len = sizeof(*disk_key);
1950
1951 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1952 chunk = (struct btrfs_chunk *)(ptr + len);
1953 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1954 len += btrfs_chunk_item_size(num_stripes);
1955 } else {
1956 ret = -EIO;
1957 break;
1958 }
1959 if (key.objectid == chunk_objectid &&
1960 key.offset == chunk_offset) {
1961 memmove(ptr, ptr + len, array_size - (cur + len));
1962 array_size -= len;
1963 btrfs_set_super_sys_array_size(super_copy, array_size);
1964 } else {
1965 ptr += len;
1966 cur += len;
1967 }
1968 }
1969 return ret;
1970}
1971
b2950863 1972static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1973 u64 chunk_tree, u64 chunk_objectid,
1974 u64 chunk_offset)
1975{
1976 struct extent_map_tree *em_tree;
1977 struct btrfs_root *extent_root;
1978 struct btrfs_trans_handle *trans;
1979 struct extent_map *em;
1980 struct map_lookup *map;
1981 int ret;
1982 int i;
1983
1984 root = root->fs_info->chunk_root;
1985 extent_root = root->fs_info->extent_root;
1986 em_tree = &root->fs_info->mapping_tree.map_tree;
1987
ba1bf481
JB
1988 ret = btrfs_can_relocate(extent_root, chunk_offset);
1989 if (ret)
1990 return -ENOSPC;
1991
8f18cf13 1992 /* step one, relocate all the extents inside this chunk */
1a40e23b 1993 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1994 if (ret)
1995 return ret;
8f18cf13 1996
a22285a6 1997 trans = btrfs_start_transaction(root, 0);
98d5dc13 1998 BUG_ON(IS_ERR(trans));
8f18cf13 1999
7d9eb12c
CM
2000 lock_chunks(root);
2001
8f18cf13
CM
2002 /*
2003 * step two, delete the device extents and the
2004 * chunk tree entries
2005 */
890871be 2006 read_lock(&em_tree->lock);
8f18cf13 2007 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2008 read_unlock(&em_tree->lock);
8f18cf13 2009
285190d9 2010 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2011 em->start + em->len < chunk_offset);
8f18cf13
CM
2012 map = (struct map_lookup *)em->bdev;
2013
2014 for (i = 0; i < map->num_stripes; i++) {
2015 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2016 map->stripes[i].physical);
2017 BUG_ON(ret);
a061fc8d 2018
dfe25020
CM
2019 if (map->stripes[i].dev) {
2020 ret = btrfs_update_device(trans, map->stripes[i].dev);
2021 BUG_ON(ret);
2022 }
8f18cf13
CM
2023 }
2024 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2025 chunk_offset);
2026
2027 BUG_ON(ret);
2028
1abe9b8a 2029 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2030
8f18cf13
CM
2031 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2032 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2033 BUG_ON(ret);
8f18cf13
CM
2034 }
2035
2b82032c
YZ
2036 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2037 BUG_ON(ret);
2038
890871be 2039 write_lock(&em_tree->lock);
2b82032c 2040 remove_extent_mapping(em_tree, em);
890871be 2041 write_unlock(&em_tree->lock);
2b82032c
YZ
2042
2043 kfree(map);
2044 em->bdev = NULL;
2045
2046 /* once for the tree */
2047 free_extent_map(em);
2048 /* once for us */
2049 free_extent_map(em);
2050
2051 unlock_chunks(root);
2052 btrfs_end_transaction(trans, root);
2053 return 0;
2054}
2055
2056static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2057{
2058 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2059 struct btrfs_path *path;
2060 struct extent_buffer *leaf;
2061 struct btrfs_chunk *chunk;
2062 struct btrfs_key key;
2063 struct btrfs_key found_key;
2064 u64 chunk_tree = chunk_root->root_key.objectid;
2065 u64 chunk_type;
ba1bf481
JB
2066 bool retried = false;
2067 int failed = 0;
2b82032c
YZ
2068 int ret;
2069
2070 path = btrfs_alloc_path();
2071 if (!path)
2072 return -ENOMEM;
2073
ba1bf481 2074again:
2b82032c
YZ
2075 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2076 key.offset = (u64)-1;
2077 key.type = BTRFS_CHUNK_ITEM_KEY;
2078
2079 while (1) {
2080 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2081 if (ret < 0)
2082 goto error;
79787eaa 2083 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2084
2085 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2086 key.type);
2087 if (ret < 0)
2088 goto error;
2089 if (ret > 0)
2090 break;
1a40e23b 2091
2b82032c
YZ
2092 leaf = path->nodes[0];
2093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2094
2b82032c
YZ
2095 chunk = btrfs_item_ptr(leaf, path->slots[0],
2096 struct btrfs_chunk);
2097 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2098 btrfs_release_path(path);
8f18cf13 2099
2b82032c
YZ
2100 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2101 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2102 found_key.objectid,
2103 found_key.offset);
ba1bf481
JB
2104 if (ret == -ENOSPC)
2105 failed++;
2106 else if (ret)
2107 BUG();
2b82032c 2108 }
8f18cf13 2109
2b82032c
YZ
2110 if (found_key.offset == 0)
2111 break;
2112 key.offset = found_key.offset - 1;
2113 }
2114 ret = 0;
ba1bf481
JB
2115 if (failed && !retried) {
2116 failed = 0;
2117 retried = true;
2118 goto again;
2119 } else if (failed && retried) {
2120 WARN_ON(1);
2121 ret = -ENOSPC;
2122 }
2b82032c
YZ
2123error:
2124 btrfs_free_path(path);
2125 return ret;
8f18cf13
CM
2126}
2127
0940ebf6
ID
2128static int insert_balance_item(struct btrfs_root *root,
2129 struct btrfs_balance_control *bctl)
2130{
2131 struct btrfs_trans_handle *trans;
2132 struct btrfs_balance_item *item;
2133 struct btrfs_disk_balance_args disk_bargs;
2134 struct btrfs_path *path;
2135 struct extent_buffer *leaf;
2136 struct btrfs_key key;
2137 int ret, err;
2138
2139 path = btrfs_alloc_path();
2140 if (!path)
2141 return -ENOMEM;
2142
2143 trans = btrfs_start_transaction(root, 0);
2144 if (IS_ERR(trans)) {
2145 btrfs_free_path(path);
2146 return PTR_ERR(trans);
2147 }
2148
2149 key.objectid = BTRFS_BALANCE_OBJECTID;
2150 key.type = BTRFS_BALANCE_ITEM_KEY;
2151 key.offset = 0;
2152
2153 ret = btrfs_insert_empty_item(trans, root, path, &key,
2154 sizeof(*item));
2155 if (ret)
2156 goto out;
2157
2158 leaf = path->nodes[0];
2159 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2160
2161 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2162
2163 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2164 btrfs_set_balance_data(leaf, item, &disk_bargs);
2165 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2166 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2167 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2168 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2169
2170 btrfs_set_balance_flags(leaf, item, bctl->flags);
2171
2172 btrfs_mark_buffer_dirty(leaf);
2173out:
2174 btrfs_free_path(path);
2175 err = btrfs_commit_transaction(trans, root);
2176 if (err && !ret)
2177 ret = err;
2178 return ret;
2179}
2180
2181static int del_balance_item(struct btrfs_root *root)
2182{
2183 struct btrfs_trans_handle *trans;
2184 struct btrfs_path *path;
2185 struct btrfs_key key;
2186 int ret, err;
2187
2188 path = btrfs_alloc_path();
2189 if (!path)
2190 return -ENOMEM;
2191
2192 trans = btrfs_start_transaction(root, 0);
2193 if (IS_ERR(trans)) {
2194 btrfs_free_path(path);
2195 return PTR_ERR(trans);
2196 }
2197
2198 key.objectid = BTRFS_BALANCE_OBJECTID;
2199 key.type = BTRFS_BALANCE_ITEM_KEY;
2200 key.offset = 0;
2201
2202 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2203 if (ret < 0)
2204 goto out;
2205 if (ret > 0) {
2206 ret = -ENOENT;
2207 goto out;
2208 }
2209
2210 ret = btrfs_del_item(trans, root, path);
2211out:
2212 btrfs_free_path(path);
2213 err = btrfs_commit_transaction(trans, root);
2214 if (err && !ret)
2215 ret = err;
2216 return ret;
2217}
2218
59641015
ID
2219/*
2220 * This is a heuristic used to reduce the number of chunks balanced on
2221 * resume after balance was interrupted.
2222 */
2223static void update_balance_args(struct btrfs_balance_control *bctl)
2224{
2225 /*
2226 * Turn on soft mode for chunk types that were being converted.
2227 */
2228 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2229 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2230 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2231 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2232 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2233 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2234
2235 /*
2236 * Turn on usage filter if is not already used. The idea is
2237 * that chunks that we have already balanced should be
2238 * reasonably full. Don't do it for chunks that are being
2239 * converted - that will keep us from relocating unconverted
2240 * (albeit full) chunks.
2241 */
2242 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2243 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2244 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2245 bctl->data.usage = 90;
2246 }
2247 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2248 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2249 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2250 bctl->sys.usage = 90;
2251 }
2252 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2253 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2254 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2255 bctl->meta.usage = 90;
2256 }
2257}
2258
c9e9f97b
ID
2259/*
2260 * Should be called with both balance and volume mutexes held to
2261 * serialize other volume operations (add_dev/rm_dev/resize) with
2262 * restriper. Same goes for unset_balance_control.
2263 */
2264static void set_balance_control(struct btrfs_balance_control *bctl)
2265{
2266 struct btrfs_fs_info *fs_info = bctl->fs_info;
2267
2268 BUG_ON(fs_info->balance_ctl);
2269
2270 spin_lock(&fs_info->balance_lock);
2271 fs_info->balance_ctl = bctl;
2272 spin_unlock(&fs_info->balance_lock);
2273}
2274
2275static void unset_balance_control(struct btrfs_fs_info *fs_info)
2276{
2277 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2278
2279 BUG_ON(!fs_info->balance_ctl);
2280
2281 spin_lock(&fs_info->balance_lock);
2282 fs_info->balance_ctl = NULL;
2283 spin_unlock(&fs_info->balance_lock);
2284
2285 kfree(bctl);
2286}
2287
ed25e9b2
ID
2288/*
2289 * Balance filters. Return 1 if chunk should be filtered out
2290 * (should not be balanced).
2291 */
899c81ea 2292static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2293 struct btrfs_balance_args *bargs)
2294{
899c81ea
ID
2295 chunk_type = chunk_to_extended(chunk_type) &
2296 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2297
899c81ea 2298 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2299 return 0;
2300
2301 return 1;
2302}
2303
5ce5b3c0
ID
2304static u64 div_factor_fine(u64 num, int factor)
2305{
2306 if (factor <= 0)
2307 return 0;
2308 if (factor >= 100)
2309 return num;
2310
2311 num *= factor;
2312 do_div(num, 100);
2313 return num;
2314}
2315
2316static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2317 struct btrfs_balance_args *bargs)
2318{
2319 struct btrfs_block_group_cache *cache;
2320 u64 chunk_used, user_thresh;
2321 int ret = 1;
2322
2323 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2324 chunk_used = btrfs_block_group_used(&cache->item);
2325
2326 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2327 if (chunk_used < user_thresh)
2328 ret = 0;
2329
2330 btrfs_put_block_group(cache);
2331 return ret;
2332}
2333
409d404b
ID
2334static int chunk_devid_filter(struct extent_buffer *leaf,
2335 struct btrfs_chunk *chunk,
2336 struct btrfs_balance_args *bargs)
2337{
2338 struct btrfs_stripe *stripe;
2339 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2340 int i;
2341
2342 for (i = 0; i < num_stripes; i++) {
2343 stripe = btrfs_stripe_nr(chunk, i);
2344 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2345 return 0;
2346 }
2347
2348 return 1;
2349}
2350
94e60d5a
ID
2351/* [pstart, pend) */
2352static int chunk_drange_filter(struct extent_buffer *leaf,
2353 struct btrfs_chunk *chunk,
2354 u64 chunk_offset,
2355 struct btrfs_balance_args *bargs)
2356{
2357 struct btrfs_stripe *stripe;
2358 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2359 u64 stripe_offset;
2360 u64 stripe_length;
2361 int factor;
2362 int i;
2363
2364 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2365 return 0;
2366
2367 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2368 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2369 factor = 2;
2370 else
2371 factor = 1;
2372 factor = num_stripes / factor;
2373
2374 for (i = 0; i < num_stripes; i++) {
2375 stripe = btrfs_stripe_nr(chunk, i);
2376 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2377 continue;
2378
2379 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2380 stripe_length = btrfs_chunk_length(leaf, chunk);
2381 do_div(stripe_length, factor);
2382
2383 if (stripe_offset < bargs->pend &&
2384 stripe_offset + stripe_length > bargs->pstart)
2385 return 0;
2386 }
2387
2388 return 1;
2389}
2390
ea67176a
ID
2391/* [vstart, vend) */
2392static int chunk_vrange_filter(struct extent_buffer *leaf,
2393 struct btrfs_chunk *chunk,
2394 u64 chunk_offset,
2395 struct btrfs_balance_args *bargs)
2396{
2397 if (chunk_offset < bargs->vend &&
2398 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2399 /* at least part of the chunk is inside this vrange */
2400 return 0;
2401
2402 return 1;
2403}
2404
899c81ea 2405static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2406 struct btrfs_balance_args *bargs)
2407{
2408 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2409 return 0;
2410
899c81ea
ID
2411 chunk_type = chunk_to_extended(chunk_type) &
2412 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2413
899c81ea 2414 if (bargs->target == chunk_type)
cfa4c961
ID
2415 return 1;
2416
2417 return 0;
2418}
2419
f43ffb60
ID
2420static int should_balance_chunk(struct btrfs_root *root,
2421 struct extent_buffer *leaf,
2422 struct btrfs_chunk *chunk, u64 chunk_offset)
2423{
2424 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2425 struct btrfs_balance_args *bargs = NULL;
2426 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2427
2428 /* type filter */
2429 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2430 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2431 return 0;
2432 }
2433
2434 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2435 bargs = &bctl->data;
2436 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2437 bargs = &bctl->sys;
2438 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2439 bargs = &bctl->meta;
2440
ed25e9b2
ID
2441 /* profiles filter */
2442 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2443 chunk_profiles_filter(chunk_type, bargs)) {
2444 return 0;
5ce5b3c0
ID
2445 }
2446
2447 /* usage filter */
2448 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2449 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2450 return 0;
409d404b
ID
2451 }
2452
2453 /* devid filter */
2454 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2455 chunk_devid_filter(leaf, chunk, bargs)) {
2456 return 0;
94e60d5a
ID
2457 }
2458
2459 /* drange filter, makes sense only with devid filter */
2460 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2461 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2462 return 0;
ea67176a
ID
2463 }
2464
2465 /* vrange filter */
2466 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2467 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2468 return 0;
ed25e9b2
ID
2469 }
2470
cfa4c961
ID
2471 /* soft profile changing mode */
2472 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2473 chunk_soft_convert_filter(chunk_type, bargs)) {
2474 return 0;
2475 }
2476
f43ffb60
ID
2477 return 1;
2478}
2479
ec44a35c
CM
2480static u64 div_factor(u64 num, int factor)
2481{
2482 if (factor == 10)
2483 return num;
2484 num *= factor;
2485 do_div(num, 10);
2486 return num;
2487}
2488
c9e9f97b 2489static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2490{
19a39dce 2491 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2492 struct btrfs_root *chunk_root = fs_info->chunk_root;
2493 struct btrfs_root *dev_root = fs_info->dev_root;
2494 struct list_head *devices;
ec44a35c
CM
2495 struct btrfs_device *device;
2496 u64 old_size;
2497 u64 size_to_free;
f43ffb60 2498 struct btrfs_chunk *chunk;
ec44a35c
CM
2499 struct btrfs_path *path;
2500 struct btrfs_key key;
ec44a35c 2501 struct btrfs_key found_key;
c9e9f97b 2502 struct btrfs_trans_handle *trans;
f43ffb60
ID
2503 struct extent_buffer *leaf;
2504 int slot;
c9e9f97b
ID
2505 int ret;
2506 int enospc_errors = 0;
19a39dce 2507 bool counting = true;
ec44a35c 2508
ec44a35c 2509 /* step one make some room on all the devices */
c9e9f97b 2510 devices = &fs_info->fs_devices->devices;
c6e30871 2511 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2512 old_size = device->total_bytes;
2513 size_to_free = div_factor(old_size, 1);
2514 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2515 if (!device->writeable ||
2516 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2517 continue;
2518
2519 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2520 if (ret == -ENOSPC)
2521 break;
ec44a35c
CM
2522 BUG_ON(ret);
2523
a22285a6 2524 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2525 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2526
2527 ret = btrfs_grow_device(trans, device, old_size);
2528 BUG_ON(ret);
2529
2530 btrfs_end_transaction(trans, dev_root);
2531 }
2532
2533 /* step two, relocate all the chunks */
2534 path = btrfs_alloc_path();
17e9f796
MF
2535 if (!path) {
2536 ret = -ENOMEM;
2537 goto error;
2538 }
19a39dce
ID
2539
2540 /* zero out stat counters */
2541 spin_lock(&fs_info->balance_lock);
2542 memset(&bctl->stat, 0, sizeof(bctl->stat));
2543 spin_unlock(&fs_info->balance_lock);
2544again:
ec44a35c
CM
2545 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2546 key.offset = (u64)-1;
2547 key.type = BTRFS_CHUNK_ITEM_KEY;
2548
d397712b 2549 while (1) {
19a39dce 2550 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2551 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2552 ret = -ECANCELED;
2553 goto error;
2554 }
2555
ec44a35c
CM
2556 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2557 if (ret < 0)
2558 goto error;
2559
2560 /*
2561 * this shouldn't happen, it means the last relocate
2562 * failed
2563 */
2564 if (ret == 0)
c9e9f97b 2565 BUG(); /* FIXME break ? */
ec44a35c
CM
2566
2567 ret = btrfs_previous_item(chunk_root, path, 0,
2568 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2569 if (ret) {
2570 ret = 0;
ec44a35c 2571 break;
c9e9f97b 2572 }
7d9eb12c 2573
f43ffb60
ID
2574 leaf = path->nodes[0];
2575 slot = path->slots[0];
2576 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2577
ec44a35c
CM
2578 if (found_key.objectid != key.objectid)
2579 break;
7d9eb12c 2580
ec44a35c 2581 /* chunk zero is special */
ba1bf481 2582 if (found_key.offset == 0)
ec44a35c
CM
2583 break;
2584
f43ffb60
ID
2585 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2586
19a39dce
ID
2587 if (!counting) {
2588 spin_lock(&fs_info->balance_lock);
2589 bctl->stat.considered++;
2590 spin_unlock(&fs_info->balance_lock);
2591 }
2592
f43ffb60
ID
2593 ret = should_balance_chunk(chunk_root, leaf, chunk,
2594 found_key.offset);
b3b4aa74 2595 btrfs_release_path(path);
f43ffb60
ID
2596 if (!ret)
2597 goto loop;
2598
19a39dce
ID
2599 if (counting) {
2600 spin_lock(&fs_info->balance_lock);
2601 bctl->stat.expected++;
2602 spin_unlock(&fs_info->balance_lock);
2603 goto loop;
2604 }
2605
ec44a35c
CM
2606 ret = btrfs_relocate_chunk(chunk_root,
2607 chunk_root->root_key.objectid,
2608 found_key.objectid,
2609 found_key.offset);
508794eb
JB
2610 if (ret && ret != -ENOSPC)
2611 goto error;
19a39dce 2612 if (ret == -ENOSPC) {
c9e9f97b 2613 enospc_errors++;
19a39dce
ID
2614 } else {
2615 spin_lock(&fs_info->balance_lock);
2616 bctl->stat.completed++;
2617 spin_unlock(&fs_info->balance_lock);
2618 }
f43ffb60 2619loop:
ba1bf481 2620 key.offset = found_key.offset - 1;
ec44a35c 2621 }
c9e9f97b 2622
19a39dce
ID
2623 if (counting) {
2624 btrfs_release_path(path);
2625 counting = false;
2626 goto again;
2627 }
ec44a35c
CM
2628error:
2629 btrfs_free_path(path);
c9e9f97b
ID
2630 if (enospc_errors) {
2631 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2632 enospc_errors);
2633 if (!ret)
2634 ret = -ENOSPC;
2635 }
2636
ec44a35c
CM
2637 return ret;
2638}
2639
0c460c0d
ID
2640/**
2641 * alloc_profile_is_valid - see if a given profile is valid and reduced
2642 * @flags: profile to validate
2643 * @extended: if true @flags is treated as an extended profile
2644 */
2645static int alloc_profile_is_valid(u64 flags, int extended)
2646{
2647 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2648 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2649
2650 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2651
2652 /* 1) check that all other bits are zeroed */
2653 if (flags & ~mask)
2654 return 0;
2655
2656 /* 2) see if profile is reduced */
2657 if (flags == 0)
2658 return !extended; /* "0" is valid for usual profiles */
2659
2660 /* true if exactly one bit set */
2661 return (flags & (flags - 1)) == 0;
2662}
2663
837d5b6e
ID
2664static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2665{
a7e99c69
ID
2666 /* cancel requested || normal exit path */
2667 return atomic_read(&fs_info->balance_cancel_req) ||
2668 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2669 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2670}
2671
c9e9f97b
ID
2672static void __cancel_balance(struct btrfs_fs_info *fs_info)
2673{
0940ebf6
ID
2674 int ret;
2675
c9e9f97b 2676 unset_balance_control(fs_info);
0940ebf6
ID
2677 ret = del_balance_item(fs_info->tree_root);
2678 BUG_ON(ret);
c9e9f97b
ID
2679}
2680
19a39dce 2681void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2682 struct btrfs_ioctl_balance_args *bargs);
2683
2684/*
2685 * Should be called with both balance and volume mutexes held
2686 */
2687int btrfs_balance(struct btrfs_balance_control *bctl,
2688 struct btrfs_ioctl_balance_args *bargs)
2689{
2690 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2691 u64 allowed;
e4837f8f 2692 int mixed = 0;
c9e9f97b
ID
2693 int ret;
2694
837d5b6e 2695 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2696 atomic_read(&fs_info->balance_pause_req) ||
2697 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2698 ret = -EINVAL;
2699 goto out;
2700 }
2701
e4837f8f
ID
2702 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2703 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2704 mixed = 1;
2705
f43ffb60
ID
2706 /*
2707 * In case of mixed groups both data and meta should be picked,
2708 * and identical options should be given for both of them.
2709 */
e4837f8f
ID
2710 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2711 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2712 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2713 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2714 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2715 printk(KERN_ERR "btrfs: with mixed groups data and "
2716 "metadata balance options must be the same\n");
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720 }
2721
e4d8ec0f
ID
2722 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2723 if (fs_info->fs_devices->num_devices == 1)
2724 allowed |= BTRFS_BLOCK_GROUP_DUP;
2725 else if (fs_info->fs_devices->num_devices < 4)
2726 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2727 else
2728 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2729 BTRFS_BLOCK_GROUP_RAID10);
2730
6728b198
ID
2731 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2732 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2733 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2734 printk(KERN_ERR "btrfs: unable to start balance with target "
2735 "data profile %llu\n",
2736 (unsigned long long)bctl->data.target);
2737 ret = -EINVAL;
2738 goto out;
2739 }
6728b198
ID
2740 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2741 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2742 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2743 printk(KERN_ERR "btrfs: unable to start balance with target "
2744 "metadata profile %llu\n",
2745 (unsigned long long)bctl->meta.target);
2746 ret = -EINVAL;
2747 goto out;
2748 }
6728b198
ID
2749 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2750 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2751 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2752 printk(KERN_ERR "btrfs: unable to start balance with target "
2753 "system profile %llu\n",
2754 (unsigned long long)bctl->sys.target);
2755 ret = -EINVAL;
2756 goto out;
2757 }
2758
e4837f8f
ID
2759 /* allow dup'ed data chunks only in mixed mode */
2760 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2761 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2762 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2763 ret = -EINVAL;
2764 goto out;
2765 }
2766
2767 /* allow to reduce meta or sys integrity only if force set */
2768 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2769 BTRFS_BLOCK_GROUP_RAID10;
2770 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2771 (fs_info->avail_system_alloc_bits & allowed) &&
2772 !(bctl->sys.target & allowed)) ||
2773 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2774 (fs_info->avail_metadata_alloc_bits & allowed) &&
2775 !(bctl->meta.target & allowed))) {
2776 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2777 printk(KERN_INFO "btrfs: force reducing metadata "
2778 "integrity\n");
2779 } else {
2780 printk(KERN_ERR "btrfs: balance will reduce metadata "
2781 "integrity, use force if you want this\n");
2782 ret = -EINVAL;
2783 goto out;
2784 }
2785 }
2786
0940ebf6 2787 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2788 if (ret && ret != -EEXIST)
0940ebf6
ID
2789 goto out;
2790
59641015
ID
2791 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2792 BUG_ON(ret == -EEXIST);
2793 set_balance_control(bctl);
2794 } else {
2795 BUG_ON(ret != -EEXIST);
2796 spin_lock(&fs_info->balance_lock);
2797 update_balance_args(bctl);
2798 spin_unlock(&fs_info->balance_lock);
2799 }
c9e9f97b 2800
837d5b6e 2801 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2802 mutex_unlock(&fs_info->balance_mutex);
2803
2804 ret = __btrfs_balance(fs_info);
2805
2806 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2807 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2808
2809 if (bargs) {
2810 memset(bargs, 0, sizeof(*bargs));
19a39dce 2811 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2812 }
2813
837d5b6e
ID
2814 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2815 balance_need_close(fs_info)) {
2816 __cancel_balance(fs_info);
2817 }
2818
2819 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2820
2821 return ret;
2822out:
59641015
ID
2823 if (bctl->flags & BTRFS_BALANCE_RESUME)
2824 __cancel_balance(fs_info);
2825 else
2826 kfree(bctl);
2827 return ret;
2828}
2829
2830static int balance_kthread(void *data)
2831{
2832 struct btrfs_balance_control *bctl =
2833 (struct btrfs_balance_control *)data;
2834 struct btrfs_fs_info *fs_info = bctl->fs_info;
9555c6c1 2835 int ret = 0;
59641015
ID
2836
2837 mutex_lock(&fs_info->volume_mutex);
2838 mutex_lock(&fs_info->balance_mutex);
2839
2840 set_balance_control(bctl);
2841
9555c6c1
ID
2842 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2843 printk(KERN_INFO "btrfs: force skipping balance\n");
2844 } else {
2845 printk(KERN_INFO "btrfs: continuing balance\n");
2846 ret = btrfs_balance(bctl, NULL);
2847 }
59641015
ID
2848
2849 mutex_unlock(&fs_info->balance_mutex);
2850 mutex_unlock(&fs_info->volume_mutex);
2851 return ret;
2852}
2853
2854int btrfs_recover_balance(struct btrfs_root *tree_root)
2855{
2856 struct task_struct *tsk;
2857 struct btrfs_balance_control *bctl;
2858 struct btrfs_balance_item *item;
2859 struct btrfs_disk_balance_args disk_bargs;
2860 struct btrfs_path *path;
2861 struct extent_buffer *leaf;
2862 struct btrfs_key key;
2863 int ret;
2864
2865 path = btrfs_alloc_path();
2866 if (!path)
2867 return -ENOMEM;
2868
2869 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2870 if (!bctl) {
2871 ret = -ENOMEM;
2872 goto out;
2873 }
2874
2875 key.objectid = BTRFS_BALANCE_OBJECTID;
2876 key.type = BTRFS_BALANCE_ITEM_KEY;
2877 key.offset = 0;
2878
2879 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2880 if (ret < 0)
2881 goto out_bctl;
2882 if (ret > 0) { /* ret = -ENOENT; */
2883 ret = 0;
2884 goto out_bctl;
2885 }
2886
2887 leaf = path->nodes[0];
2888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2889
2890 bctl->fs_info = tree_root->fs_info;
2891 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2892
2893 btrfs_balance_data(leaf, item, &disk_bargs);
2894 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2895 btrfs_balance_meta(leaf, item, &disk_bargs);
2896 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2897 btrfs_balance_sys(leaf, item, &disk_bargs);
2898 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2899
2900 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2901 if (IS_ERR(tsk))
2902 ret = PTR_ERR(tsk);
2903 else
2904 goto out;
2905
2906out_bctl:
c9e9f97b 2907 kfree(bctl);
59641015
ID
2908out:
2909 btrfs_free_path(path);
ec44a35c
CM
2910 return ret;
2911}
2912
837d5b6e
ID
2913int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2914{
2915 int ret = 0;
2916
2917 mutex_lock(&fs_info->balance_mutex);
2918 if (!fs_info->balance_ctl) {
2919 mutex_unlock(&fs_info->balance_mutex);
2920 return -ENOTCONN;
2921 }
2922
2923 if (atomic_read(&fs_info->balance_running)) {
2924 atomic_inc(&fs_info->balance_pause_req);
2925 mutex_unlock(&fs_info->balance_mutex);
2926
2927 wait_event(fs_info->balance_wait_q,
2928 atomic_read(&fs_info->balance_running) == 0);
2929
2930 mutex_lock(&fs_info->balance_mutex);
2931 /* we are good with balance_ctl ripped off from under us */
2932 BUG_ON(atomic_read(&fs_info->balance_running));
2933 atomic_dec(&fs_info->balance_pause_req);
2934 } else {
2935 ret = -ENOTCONN;
2936 }
2937
2938 mutex_unlock(&fs_info->balance_mutex);
2939 return ret;
2940}
2941
a7e99c69
ID
2942int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2943{
2944 mutex_lock(&fs_info->balance_mutex);
2945 if (!fs_info->balance_ctl) {
2946 mutex_unlock(&fs_info->balance_mutex);
2947 return -ENOTCONN;
2948 }
2949
2950 atomic_inc(&fs_info->balance_cancel_req);
2951 /*
2952 * if we are running just wait and return, balance item is
2953 * deleted in btrfs_balance in this case
2954 */
2955 if (atomic_read(&fs_info->balance_running)) {
2956 mutex_unlock(&fs_info->balance_mutex);
2957 wait_event(fs_info->balance_wait_q,
2958 atomic_read(&fs_info->balance_running) == 0);
2959 mutex_lock(&fs_info->balance_mutex);
2960 } else {
2961 /* __cancel_balance needs volume_mutex */
2962 mutex_unlock(&fs_info->balance_mutex);
2963 mutex_lock(&fs_info->volume_mutex);
2964 mutex_lock(&fs_info->balance_mutex);
2965
2966 if (fs_info->balance_ctl)
2967 __cancel_balance(fs_info);
2968
2969 mutex_unlock(&fs_info->volume_mutex);
2970 }
2971
2972 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2973 atomic_dec(&fs_info->balance_cancel_req);
2974 mutex_unlock(&fs_info->balance_mutex);
2975 return 0;
2976}
2977
8f18cf13
CM
2978/*
2979 * shrinking a device means finding all of the device extents past
2980 * the new size, and then following the back refs to the chunks.
2981 * The chunk relocation code actually frees the device extent
2982 */
2983int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2984{
2985 struct btrfs_trans_handle *trans;
2986 struct btrfs_root *root = device->dev_root;
2987 struct btrfs_dev_extent *dev_extent = NULL;
2988 struct btrfs_path *path;
2989 u64 length;
2990 u64 chunk_tree;
2991 u64 chunk_objectid;
2992 u64 chunk_offset;
2993 int ret;
2994 int slot;
ba1bf481
JB
2995 int failed = 0;
2996 bool retried = false;
8f18cf13
CM
2997 struct extent_buffer *l;
2998 struct btrfs_key key;
6c41761f 2999 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3000 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3001 u64 old_size = device->total_bytes;
8f18cf13
CM
3002 u64 diff = device->total_bytes - new_size;
3003
2b82032c
YZ
3004 if (new_size >= device->total_bytes)
3005 return -EINVAL;
8f18cf13
CM
3006
3007 path = btrfs_alloc_path();
3008 if (!path)
3009 return -ENOMEM;
3010
8f18cf13
CM
3011 path->reada = 2;
3012
7d9eb12c
CM
3013 lock_chunks(root);
3014
8f18cf13 3015 device->total_bytes = new_size;
2bf64758 3016 if (device->writeable) {
2b82032c 3017 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3018 spin_lock(&root->fs_info->free_chunk_lock);
3019 root->fs_info->free_chunk_space -= diff;
3020 spin_unlock(&root->fs_info->free_chunk_lock);
3021 }
7d9eb12c 3022 unlock_chunks(root);
8f18cf13 3023
ba1bf481 3024again:
8f18cf13
CM
3025 key.objectid = device->devid;
3026 key.offset = (u64)-1;
3027 key.type = BTRFS_DEV_EXTENT_KEY;
3028
213e64da 3029 do {
8f18cf13
CM
3030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3031 if (ret < 0)
3032 goto done;
3033
3034 ret = btrfs_previous_item(root, path, 0, key.type);
3035 if (ret < 0)
3036 goto done;
3037 if (ret) {
3038 ret = 0;
b3b4aa74 3039 btrfs_release_path(path);
bf1fb512 3040 break;
8f18cf13
CM
3041 }
3042
3043 l = path->nodes[0];
3044 slot = path->slots[0];
3045 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3046
ba1bf481 3047 if (key.objectid != device->devid) {
b3b4aa74 3048 btrfs_release_path(path);
bf1fb512 3049 break;
ba1bf481 3050 }
8f18cf13
CM
3051
3052 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3053 length = btrfs_dev_extent_length(l, dev_extent);
3054
ba1bf481 3055 if (key.offset + length <= new_size) {
b3b4aa74 3056 btrfs_release_path(path);
d6397bae 3057 break;
ba1bf481 3058 }
8f18cf13
CM
3059
3060 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3061 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3062 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3063 btrfs_release_path(path);
8f18cf13
CM
3064
3065 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3066 chunk_offset);
ba1bf481 3067 if (ret && ret != -ENOSPC)
8f18cf13 3068 goto done;
ba1bf481
JB
3069 if (ret == -ENOSPC)
3070 failed++;
213e64da 3071 } while (key.offset-- > 0);
ba1bf481
JB
3072
3073 if (failed && !retried) {
3074 failed = 0;
3075 retried = true;
3076 goto again;
3077 } else if (failed && retried) {
3078 ret = -ENOSPC;
3079 lock_chunks(root);
3080
3081 device->total_bytes = old_size;
3082 if (device->writeable)
3083 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3084 spin_lock(&root->fs_info->free_chunk_lock);
3085 root->fs_info->free_chunk_space += diff;
3086 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3087 unlock_chunks(root);
3088 goto done;
8f18cf13
CM
3089 }
3090
d6397bae 3091 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3092 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3093 if (IS_ERR(trans)) {
3094 ret = PTR_ERR(trans);
3095 goto done;
3096 }
3097
d6397bae
CB
3098 lock_chunks(root);
3099
3100 device->disk_total_bytes = new_size;
3101 /* Now btrfs_update_device() will change the on-disk size. */
3102 ret = btrfs_update_device(trans, device);
3103 if (ret) {
3104 unlock_chunks(root);
3105 btrfs_end_transaction(trans, root);
3106 goto done;
3107 }
3108 WARN_ON(diff > old_total);
3109 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3110 unlock_chunks(root);
3111 btrfs_end_transaction(trans, root);
8f18cf13
CM
3112done:
3113 btrfs_free_path(path);
3114 return ret;
3115}
3116
125ccb0a 3117static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3118 struct btrfs_key *key,
3119 struct btrfs_chunk *chunk, int item_size)
3120{
6c41761f 3121 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3122 struct btrfs_disk_key disk_key;
3123 u32 array_size;
3124 u8 *ptr;
3125
3126 array_size = btrfs_super_sys_array_size(super_copy);
3127 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3128 return -EFBIG;
3129
3130 ptr = super_copy->sys_chunk_array + array_size;
3131 btrfs_cpu_key_to_disk(&disk_key, key);
3132 memcpy(ptr, &disk_key, sizeof(disk_key));
3133 ptr += sizeof(disk_key);
3134 memcpy(ptr, chunk, item_size);
3135 item_size += sizeof(disk_key);
3136 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3137 return 0;
3138}
3139
73c5de00
AJ
3140/*
3141 * sort the devices in descending order by max_avail, total_avail
3142 */
3143static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3144{
73c5de00
AJ
3145 const struct btrfs_device_info *di_a = a;
3146 const struct btrfs_device_info *di_b = b;
9b3f68b9 3147
73c5de00 3148 if (di_a->max_avail > di_b->max_avail)
b2117a39 3149 return -1;
73c5de00 3150 if (di_a->max_avail < di_b->max_avail)
b2117a39 3151 return 1;
73c5de00
AJ
3152 if (di_a->total_avail > di_b->total_avail)
3153 return -1;
3154 if (di_a->total_avail < di_b->total_avail)
3155 return 1;
3156 return 0;
b2117a39 3157}
0b86a832 3158
73c5de00
AJ
3159static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3160 struct btrfs_root *extent_root,
3161 struct map_lookup **map_ret,
3162 u64 *num_bytes_out, u64 *stripe_size_out,
3163 u64 start, u64 type)
b2117a39 3164{
73c5de00
AJ
3165 struct btrfs_fs_info *info = extent_root->fs_info;
3166 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3167 struct list_head *cur;
3168 struct map_lookup *map = NULL;
3169 struct extent_map_tree *em_tree;
3170 struct extent_map *em;
3171 struct btrfs_device_info *devices_info = NULL;
3172 u64 total_avail;
3173 int num_stripes; /* total number of stripes to allocate */
3174 int sub_stripes; /* sub_stripes info for map */
3175 int dev_stripes; /* stripes per dev */
3176 int devs_max; /* max devs to use */
3177 int devs_min; /* min devs needed */
3178 int devs_increment; /* ndevs has to be a multiple of this */
3179 int ncopies; /* how many copies to data has */
3180 int ret;
3181 u64 max_stripe_size;
3182 u64 max_chunk_size;
3183 u64 stripe_size;
3184 u64 num_bytes;
3185 int ndevs;
3186 int i;
3187 int j;
593060d7 3188
0c460c0d 3189 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3190
73c5de00
AJ
3191 if (list_empty(&fs_devices->alloc_list))
3192 return -ENOSPC;
b2117a39 3193
73c5de00
AJ
3194 sub_stripes = 1;
3195 dev_stripes = 1;
3196 devs_increment = 1;
3197 ncopies = 1;
3198 devs_max = 0; /* 0 == as many as possible */
3199 devs_min = 1;
3200
3201 /*
3202 * define the properties of each RAID type.
3203 * FIXME: move this to a global table and use it in all RAID
3204 * calculation code
3205 */
3206 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3207 dev_stripes = 2;
b2117a39 3208 ncopies = 2;
73c5de00
AJ
3209 devs_max = 1;
3210 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3211 devs_min = 2;
3212 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3213 devs_increment = 2;
b2117a39 3214 ncopies = 2;
73c5de00
AJ
3215 devs_max = 2;
3216 devs_min = 2;
3217 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3218 sub_stripes = 2;
3219 devs_increment = 2;
3220 ncopies = 2;
3221 devs_min = 4;
3222 } else {
3223 devs_max = 1;
3224 }
b2117a39 3225
9b3f68b9 3226 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3227 max_stripe_size = 1024 * 1024 * 1024;
3228 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3229 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3230 /* for larger filesystems, use larger metadata chunks */
3231 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3232 max_stripe_size = 1024 * 1024 * 1024;
3233 else
3234 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3235 max_chunk_size = max_stripe_size;
a40a90a0 3236 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3237 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3238 max_chunk_size = 2 * max_stripe_size;
3239 } else {
3240 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3241 type);
3242 BUG_ON(1);
9b3f68b9
CM
3243 }
3244
2b82032c
YZ
3245 /* we don't want a chunk larger than 10% of writeable space */
3246 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3247 max_chunk_size);
9b3f68b9 3248
73c5de00
AJ
3249 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3250 GFP_NOFS);
3251 if (!devices_info)
3252 return -ENOMEM;
0cad8a11 3253
73c5de00 3254 cur = fs_devices->alloc_list.next;
9b3f68b9 3255
9f680ce0 3256 /*
73c5de00
AJ
3257 * in the first pass through the devices list, we gather information
3258 * about the available holes on each device.
9f680ce0 3259 */
73c5de00
AJ
3260 ndevs = 0;
3261 while (cur != &fs_devices->alloc_list) {
3262 struct btrfs_device *device;
3263 u64 max_avail;
3264 u64 dev_offset;
b2117a39 3265
73c5de00 3266 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3267
73c5de00 3268 cur = cur->next;
b2117a39 3269
73c5de00
AJ
3270 if (!device->writeable) {
3271 printk(KERN_ERR
3272 "btrfs: read-only device in alloc_list\n");
3273 WARN_ON(1);
3274 continue;
3275 }
b2117a39 3276
73c5de00
AJ
3277 if (!device->in_fs_metadata)
3278 continue;
b2117a39 3279
73c5de00
AJ
3280 if (device->total_bytes > device->bytes_used)
3281 total_avail = device->total_bytes - device->bytes_used;
3282 else
3283 total_avail = 0;
38c01b96 3284
3285 /* If there is no space on this device, skip it. */
3286 if (total_avail == 0)
3287 continue;
b2117a39 3288
125ccb0a 3289 ret = find_free_dev_extent(device,
73c5de00
AJ
3290 max_stripe_size * dev_stripes,
3291 &dev_offset, &max_avail);
3292 if (ret && ret != -ENOSPC)
3293 goto error;
b2117a39 3294
73c5de00
AJ
3295 if (ret == 0)
3296 max_avail = max_stripe_size * dev_stripes;
b2117a39 3297
73c5de00
AJ
3298 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3299 continue;
b2117a39 3300
73c5de00
AJ
3301 devices_info[ndevs].dev_offset = dev_offset;
3302 devices_info[ndevs].max_avail = max_avail;
3303 devices_info[ndevs].total_avail = total_avail;
3304 devices_info[ndevs].dev = device;
3305 ++ndevs;
3306 }
b2117a39 3307
73c5de00
AJ
3308 /*
3309 * now sort the devices by hole size / available space
3310 */
3311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3312 btrfs_cmp_device_info, NULL);
b2117a39 3313
73c5de00
AJ
3314 /* round down to number of usable stripes */
3315 ndevs -= ndevs % devs_increment;
b2117a39 3316
73c5de00
AJ
3317 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3318 ret = -ENOSPC;
3319 goto error;
b2117a39 3320 }
9f680ce0 3321
73c5de00
AJ
3322 if (devs_max && ndevs > devs_max)
3323 ndevs = devs_max;
3324 /*
3325 * the primary goal is to maximize the number of stripes, so use as many
3326 * devices as possible, even if the stripes are not maximum sized.
3327 */
3328 stripe_size = devices_info[ndevs-1].max_avail;
3329 num_stripes = ndevs * dev_stripes;
b2117a39 3330
37db63a4 3331 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3332 stripe_size = max_chunk_size * ncopies;
37db63a4 3333 do_div(stripe_size, ndevs);
b2117a39 3334 }
b2117a39 3335
73c5de00 3336 do_div(stripe_size, dev_stripes);
37db63a4
ID
3337
3338 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3339 do_div(stripe_size, BTRFS_STRIPE_LEN);
3340 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3341
3342 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3343 if (!map) {
3344 ret = -ENOMEM;
3345 goto error;
3346 }
3347 map->num_stripes = num_stripes;
9b3f68b9 3348
73c5de00
AJ
3349 for (i = 0; i < ndevs; ++i) {
3350 for (j = 0; j < dev_stripes; ++j) {
3351 int s = i * dev_stripes + j;
3352 map->stripes[s].dev = devices_info[i].dev;
3353 map->stripes[s].physical = devices_info[i].dev_offset +
3354 j * stripe_size;
6324fbf3 3355 }
6324fbf3 3356 }
2b82032c 3357 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3358 map->stripe_len = BTRFS_STRIPE_LEN;
3359 map->io_align = BTRFS_STRIPE_LEN;
3360 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3361 map->type = type;
2b82032c 3362 map->sub_stripes = sub_stripes;
0b86a832 3363
2b82032c 3364 *map_ret = map;
73c5de00 3365 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3366
73c5de00
AJ
3367 *stripe_size_out = stripe_size;
3368 *num_bytes_out = num_bytes;
0b86a832 3369
73c5de00 3370 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3371
172ddd60 3372 em = alloc_extent_map();
2b82032c 3373 if (!em) {
b2117a39
MX
3374 ret = -ENOMEM;
3375 goto error;
593060d7 3376 }
2b82032c
YZ
3377 em->bdev = (struct block_device *)map;
3378 em->start = start;
73c5de00 3379 em->len = num_bytes;
2b82032c
YZ
3380 em->block_start = 0;
3381 em->block_len = em->len;
593060d7 3382
2b82032c 3383 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3384 write_lock(&em_tree->lock);
2b82032c 3385 ret = add_extent_mapping(em_tree, em);
890871be 3386 write_unlock(&em_tree->lock);
2b82032c 3387 free_extent_map(em);
1dd4602f
MF
3388 if (ret)
3389 goto error;
0b86a832 3390
2b82032c
YZ
3391 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3392 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3393 start, num_bytes);
79787eaa
JM
3394 if (ret)
3395 goto error;
611f0e00 3396
73c5de00
AJ
3397 for (i = 0; i < map->num_stripes; ++i) {
3398 struct btrfs_device *device;
3399 u64 dev_offset;
3400
3401 device = map->stripes[i].dev;
3402 dev_offset = map->stripes[i].physical;
0b86a832
CM
3403
3404 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3405 info->chunk_root->root_key.objectid,
3406 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3407 start, dev_offset, stripe_size);
79787eaa
JM
3408 if (ret) {
3409 btrfs_abort_transaction(trans, extent_root, ret);
3410 goto error;
3411 }
2b82032c
YZ
3412 }
3413
b2117a39 3414 kfree(devices_info);
2b82032c 3415 return 0;
b2117a39
MX
3416
3417error:
3418 kfree(map);
3419 kfree(devices_info);
3420 return ret;
2b82032c
YZ
3421}
3422
3423static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3424 struct btrfs_root *extent_root,
3425 struct map_lookup *map, u64 chunk_offset,
3426 u64 chunk_size, u64 stripe_size)
3427{
3428 u64 dev_offset;
3429 struct btrfs_key key;
3430 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3431 struct btrfs_device *device;
3432 struct btrfs_chunk *chunk;
3433 struct btrfs_stripe *stripe;
3434 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3435 int index = 0;
3436 int ret;
3437
3438 chunk = kzalloc(item_size, GFP_NOFS);
3439 if (!chunk)
3440 return -ENOMEM;
3441
3442 index = 0;
3443 while (index < map->num_stripes) {
3444 device = map->stripes[index].dev;
3445 device->bytes_used += stripe_size;
0b86a832 3446 ret = btrfs_update_device(trans, device);
3acd3953
MF
3447 if (ret)
3448 goto out_free;
2b82032c
YZ
3449 index++;
3450 }
3451
2bf64758
JB
3452 spin_lock(&extent_root->fs_info->free_chunk_lock);
3453 extent_root->fs_info->free_chunk_space -= (stripe_size *
3454 map->num_stripes);
3455 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3456
2b82032c
YZ
3457 index = 0;
3458 stripe = &chunk->stripe;
3459 while (index < map->num_stripes) {
3460 device = map->stripes[index].dev;
3461 dev_offset = map->stripes[index].physical;
0b86a832 3462
e17cade2
CM
3463 btrfs_set_stack_stripe_devid(stripe, device->devid);
3464 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3465 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3466 stripe++;
0b86a832
CM
3467 index++;
3468 }
3469
2b82032c 3470 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3471 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3472 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3473 btrfs_set_stack_chunk_type(chunk, map->type);
3474 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3475 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3476 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3477 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3478 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3479
2b82032c
YZ
3480 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3481 key.type = BTRFS_CHUNK_ITEM_KEY;
3482 key.offset = chunk_offset;
0b86a832 3483
2b82032c 3484 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3485
4ed1d16e
MF
3486 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3487 /*
3488 * TODO: Cleanup of inserted chunk root in case of
3489 * failure.
3490 */
125ccb0a 3491 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3492 item_size);
8f18cf13 3493 }
1abe9b8a 3494
3acd3953 3495out_free:
0b86a832 3496 kfree(chunk);
4ed1d16e 3497 return ret;
2b82032c 3498}
0b86a832 3499
2b82032c
YZ
3500/*
3501 * Chunk allocation falls into two parts. The first part does works
3502 * that make the new allocated chunk useable, but not do any operation
3503 * that modifies the chunk tree. The second part does the works that
3504 * require modifying the chunk tree. This division is important for the
3505 * bootstrap process of adding storage to a seed btrfs.
3506 */
3507int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3508 struct btrfs_root *extent_root, u64 type)
3509{
3510 u64 chunk_offset;
3511 u64 chunk_size;
3512 u64 stripe_size;
3513 struct map_lookup *map;
3514 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3515 int ret;
3516
3517 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3518 &chunk_offset);
3519 if (ret)
3520 return ret;
3521
3522 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3523 &stripe_size, chunk_offset, type);
3524 if (ret)
3525 return ret;
3526
3527 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3528 chunk_size, stripe_size);
79787eaa
JM
3529 if (ret)
3530 return ret;
2b82032c
YZ
3531 return 0;
3532}
3533
d397712b 3534static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3535 struct btrfs_root *root,
3536 struct btrfs_device *device)
3537{
3538 u64 chunk_offset;
3539 u64 sys_chunk_offset;
3540 u64 chunk_size;
3541 u64 sys_chunk_size;
3542 u64 stripe_size;
3543 u64 sys_stripe_size;
3544 u64 alloc_profile;
3545 struct map_lookup *map;
3546 struct map_lookup *sys_map;
3547 struct btrfs_fs_info *fs_info = root->fs_info;
3548 struct btrfs_root *extent_root = fs_info->extent_root;
3549 int ret;
3550
3551 ret = find_next_chunk(fs_info->chunk_root,
3552 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3553 if (ret)
3554 return ret;
2b82032c
YZ
3555
3556 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3557 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3558 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3559
3560 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3561 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3562 if (ret)
3563 return ret;
2b82032c
YZ
3564
3565 sys_chunk_offset = chunk_offset + chunk_size;
3566
3567 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3568 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3569 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3570
3571 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3572 &sys_chunk_size, &sys_stripe_size,
3573 sys_chunk_offset, alloc_profile);
79787eaa
JM
3574 if (ret)
3575 goto abort;
2b82032c
YZ
3576
3577 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa
JM
3578 if (ret)
3579 goto abort;
2b82032c
YZ
3580
3581 /*
3582 * Modifying chunk tree needs allocating new blocks from both
3583 * system block group and metadata block group. So we only can
3584 * do operations require modifying the chunk tree after both
3585 * block groups were created.
3586 */
3587 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3588 chunk_size, stripe_size);
79787eaa
JM
3589 if (ret)
3590 goto abort;
2b82032c
YZ
3591
3592 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3593 sys_chunk_offset, sys_chunk_size,
3594 sys_stripe_size);
79787eaa
JM
3595 if (ret)
3596 goto abort;
3597
2b82032c 3598 return 0;
79787eaa
JM
3599
3600abort:
3601 btrfs_abort_transaction(trans, root, ret);
3602 return ret;
2b82032c
YZ
3603}
3604
3605int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3606{
3607 struct extent_map *em;
3608 struct map_lookup *map;
3609 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3610 int readonly = 0;
3611 int i;
3612
890871be 3613 read_lock(&map_tree->map_tree.lock);
2b82032c 3614 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3615 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3616 if (!em)
3617 return 1;
3618
f48b9075
JB
3619 if (btrfs_test_opt(root, DEGRADED)) {
3620 free_extent_map(em);
3621 return 0;
3622 }
3623
2b82032c
YZ
3624 map = (struct map_lookup *)em->bdev;
3625 for (i = 0; i < map->num_stripes; i++) {
3626 if (!map->stripes[i].dev->writeable) {
3627 readonly = 1;
3628 break;
3629 }
3630 }
0b86a832 3631 free_extent_map(em);
2b82032c 3632 return readonly;
0b86a832
CM
3633}
3634
3635void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3636{
a8067e02 3637 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3638}
3639
3640void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3641{
3642 struct extent_map *em;
3643
d397712b 3644 while (1) {
890871be 3645 write_lock(&tree->map_tree.lock);
0b86a832
CM
3646 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3647 if (em)
3648 remove_extent_mapping(&tree->map_tree, em);
890871be 3649 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3650 if (!em)
3651 break;
3652 kfree(em->bdev);
3653 /* once for us */
3654 free_extent_map(em);
3655 /* once for the tree */
3656 free_extent_map(em);
3657 }
3658}
3659
f188591e
CM
3660int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3661{
3662 struct extent_map *em;
3663 struct map_lookup *map;
3664 struct extent_map_tree *em_tree = &map_tree->map_tree;
3665 int ret;
3666
890871be 3667 read_lock(&em_tree->lock);
f188591e 3668 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3669 read_unlock(&em_tree->lock);
f188591e
CM
3670 BUG_ON(!em);
3671
3672 BUG_ON(em->start > logical || em->start + em->len < logical);
3673 map = (struct map_lookup *)em->bdev;
3674 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3675 ret = map->num_stripes;
321aecc6
CM
3676 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3677 ret = map->sub_stripes;
f188591e
CM
3678 else
3679 ret = 1;
3680 free_extent_map(em);
f188591e
CM
3681 return ret;
3682}
3683
dfe25020
CM
3684static int find_live_mirror(struct map_lookup *map, int first, int num,
3685 int optimal)
3686{
3687 int i;
3688 if (map->stripes[optimal].dev->bdev)
3689 return optimal;
3690 for (i = first; i < first + num; i++) {
3691 if (map->stripes[i].dev->bdev)
3692 return i;
3693 }
3694 /* we couldn't find one that doesn't fail. Just return something
3695 * and the io error handling code will clean up eventually
3696 */
3697 return optimal;
3698}
3699
f2d8d74d
CM
3700static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3701 u64 logical, u64 *length,
a1d3c478 3702 struct btrfs_bio **bbio_ret,
7eaceacc 3703 int mirror_num)
0b86a832
CM
3704{
3705 struct extent_map *em;
3706 struct map_lookup *map;
3707 struct extent_map_tree *em_tree = &map_tree->map_tree;
3708 u64 offset;
593060d7 3709 u64 stripe_offset;
fce3bb9a 3710 u64 stripe_end_offset;
593060d7 3711 u64 stripe_nr;
fce3bb9a
LD
3712 u64 stripe_nr_orig;
3713 u64 stripe_nr_end;
593060d7 3714 int stripe_index;
cea9e445 3715 int i;
de11cc12 3716 int ret = 0;
f2d8d74d 3717 int num_stripes;
a236aed1 3718 int max_errors = 0;
a1d3c478 3719 struct btrfs_bio *bbio = NULL;
0b86a832 3720
890871be 3721 read_lock(&em_tree->lock);
0b86a832 3722 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3723 read_unlock(&em_tree->lock);
f2d8d74d 3724
3b951516 3725 if (!em) {
d397712b
CM
3726 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3727 (unsigned long long)logical,
3728 (unsigned long long)*length);
f2d8d74d 3729 BUG();
3b951516 3730 }
0b86a832
CM
3731
3732 BUG_ON(em->start > logical || em->start + em->len < logical);
3733 map = (struct map_lookup *)em->bdev;
3734 offset = logical - em->start;
593060d7 3735
f188591e
CM
3736 if (mirror_num > map->num_stripes)
3737 mirror_num = 0;
3738
593060d7
CM
3739 stripe_nr = offset;
3740 /*
3741 * stripe_nr counts the total number of stripes we have to stride
3742 * to get to this block
3743 */
3744 do_div(stripe_nr, map->stripe_len);
3745
3746 stripe_offset = stripe_nr * map->stripe_len;
3747 BUG_ON(offset < stripe_offset);
3748
3749 /* stripe_offset is the offset of this block in its stripe*/
3750 stripe_offset = offset - stripe_offset;
3751
fce3bb9a
LD
3752 if (rw & REQ_DISCARD)
3753 *length = min_t(u64, em->len - offset, *length);
52ba6929 3754 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3755 /* we limit the length of each bio to what fits in a stripe */
3756 *length = min_t(u64, em->len - offset,
fce3bb9a 3757 map->stripe_len - stripe_offset);
cea9e445
CM
3758 } else {
3759 *length = em->len - offset;
3760 }
f2d8d74d 3761
a1d3c478 3762 if (!bbio_ret)
cea9e445
CM
3763 goto out;
3764
f2d8d74d 3765 num_stripes = 1;
cea9e445 3766 stripe_index = 0;
fce3bb9a
LD
3767 stripe_nr_orig = stripe_nr;
3768 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3769 (~(map->stripe_len - 1));
3770 do_div(stripe_nr_end, map->stripe_len);
3771 stripe_end_offset = stripe_nr_end * map->stripe_len -
3772 (offset + *length);
3773 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3774 if (rw & REQ_DISCARD)
3775 num_stripes = min_t(u64, map->num_stripes,
3776 stripe_nr_end - stripe_nr_orig);
3777 stripe_index = do_div(stripe_nr, map->num_stripes);
3778 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3779 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3780 num_stripes = map->num_stripes;
2fff734f 3781 else if (mirror_num)
f188591e 3782 stripe_index = mirror_num - 1;
dfe25020
CM
3783 else {
3784 stripe_index = find_live_mirror(map, 0,
3785 map->num_stripes,
3786 current->pid % map->num_stripes);
a1d3c478 3787 mirror_num = stripe_index + 1;
dfe25020 3788 }
2fff734f 3789
611f0e00 3790 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3791 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3792 num_stripes = map->num_stripes;
a1d3c478 3793 } else if (mirror_num) {
f188591e 3794 stripe_index = mirror_num - 1;
a1d3c478
JS
3795 } else {
3796 mirror_num = 1;
3797 }
2fff734f 3798
321aecc6
CM
3799 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3800 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3801
3802 stripe_index = do_div(stripe_nr, factor);
3803 stripe_index *= map->sub_stripes;
3804
7eaceacc 3805 if (rw & REQ_WRITE)
f2d8d74d 3806 num_stripes = map->sub_stripes;
fce3bb9a
LD
3807 else if (rw & REQ_DISCARD)
3808 num_stripes = min_t(u64, map->sub_stripes *
3809 (stripe_nr_end - stripe_nr_orig),
3810 map->num_stripes);
321aecc6
CM
3811 else if (mirror_num)
3812 stripe_index += mirror_num - 1;
dfe25020 3813 else {
3e74317a 3814 int old_stripe_index = stripe_index;
dfe25020
CM
3815 stripe_index = find_live_mirror(map, stripe_index,
3816 map->sub_stripes, stripe_index +
3817 current->pid % map->sub_stripes);
3e74317a 3818 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 3819 }
8790d502
CM
3820 } else {
3821 /*
3822 * after this do_div call, stripe_nr is the number of stripes
3823 * on this device we have to walk to find the data, and
3824 * stripe_index is the number of our device in the stripe array
3825 */
3826 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3827 mirror_num = stripe_index + 1;
8790d502 3828 }
593060d7 3829 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3830
de11cc12
LZ
3831 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3832 if (!bbio) {
3833 ret = -ENOMEM;
3834 goto out;
3835 }
3836 atomic_set(&bbio->error, 0);
3837
fce3bb9a 3838 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3839 int factor = 0;
3840 int sub_stripes = 0;
3841 u64 stripes_per_dev = 0;
3842 u32 remaining_stripes = 0;
b89203f7 3843 u32 last_stripe = 0;
ec9ef7a1
LZ
3844
3845 if (map->type &
3846 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3847 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3848 sub_stripes = 1;
3849 else
3850 sub_stripes = map->sub_stripes;
3851
3852 factor = map->num_stripes / sub_stripes;
3853 stripes_per_dev = div_u64_rem(stripe_nr_end -
3854 stripe_nr_orig,
3855 factor,
3856 &remaining_stripes);
b89203f7
LB
3857 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3858 last_stripe *= sub_stripes;
ec9ef7a1
LZ
3859 }
3860
fce3bb9a 3861 for (i = 0; i < num_stripes; i++) {
a1d3c478 3862 bbio->stripes[i].physical =
f2d8d74d
CM
3863 map->stripes[stripe_index].physical +
3864 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3865 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3866
ec9ef7a1
LZ
3867 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3868 BTRFS_BLOCK_GROUP_RAID10)) {
3869 bbio->stripes[i].length = stripes_per_dev *
3870 map->stripe_len;
b89203f7 3871
ec9ef7a1
LZ
3872 if (i / sub_stripes < remaining_stripes)
3873 bbio->stripes[i].length +=
3874 map->stripe_len;
b89203f7
LB
3875
3876 /*
3877 * Special for the first stripe and
3878 * the last stripe:
3879 *
3880 * |-------|...|-------|
3881 * |----------|
3882 * off end_off
3883 */
ec9ef7a1 3884 if (i < sub_stripes)
a1d3c478 3885 bbio->stripes[i].length -=
fce3bb9a 3886 stripe_offset;
b89203f7
LB
3887
3888 if (stripe_index >= last_stripe &&
3889 stripe_index <= (last_stripe +
3890 sub_stripes - 1))
a1d3c478 3891 bbio->stripes[i].length -=
fce3bb9a 3892 stripe_end_offset;
b89203f7 3893
ec9ef7a1
LZ
3894 if (i == sub_stripes - 1)
3895 stripe_offset = 0;
fce3bb9a 3896 } else
a1d3c478 3897 bbio->stripes[i].length = *length;
fce3bb9a
LD
3898
3899 stripe_index++;
3900 if (stripe_index == map->num_stripes) {
3901 /* This could only happen for RAID0/10 */
3902 stripe_index = 0;
3903 stripe_nr++;
3904 }
3905 }
3906 } else {
3907 for (i = 0; i < num_stripes; i++) {
a1d3c478 3908 bbio->stripes[i].physical =
212a17ab
LT
3909 map->stripes[stripe_index].physical +
3910 stripe_offset +
3911 stripe_nr * map->stripe_len;
a1d3c478 3912 bbio->stripes[i].dev =
212a17ab 3913 map->stripes[stripe_index].dev;
fce3bb9a 3914 stripe_index++;
f2d8d74d 3915 }
593060d7 3916 }
de11cc12
LZ
3917
3918 if (rw & REQ_WRITE) {
3919 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3920 BTRFS_BLOCK_GROUP_RAID10 |
3921 BTRFS_BLOCK_GROUP_DUP)) {
3922 max_errors = 1;
3923 }
f2d8d74d 3924 }
de11cc12
LZ
3925
3926 *bbio_ret = bbio;
3927 bbio->num_stripes = num_stripes;
3928 bbio->max_errors = max_errors;
3929 bbio->mirror_num = mirror_num;
cea9e445 3930out:
0b86a832 3931 free_extent_map(em);
de11cc12 3932 return ret;
0b86a832
CM
3933}
3934
f2d8d74d
CM
3935int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3936 u64 logical, u64 *length,
a1d3c478 3937 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3938{
a1d3c478 3939 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3940 mirror_num);
f2d8d74d
CM
3941}
3942
a512bbf8
YZ
3943int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3944 u64 chunk_start, u64 physical, u64 devid,
3945 u64 **logical, int *naddrs, int *stripe_len)
3946{
3947 struct extent_map_tree *em_tree = &map_tree->map_tree;
3948 struct extent_map *em;
3949 struct map_lookup *map;
3950 u64 *buf;
3951 u64 bytenr;
3952 u64 length;
3953 u64 stripe_nr;
3954 int i, j, nr = 0;
3955
890871be 3956 read_lock(&em_tree->lock);
a512bbf8 3957 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3958 read_unlock(&em_tree->lock);
a512bbf8
YZ
3959
3960 BUG_ON(!em || em->start != chunk_start);
3961 map = (struct map_lookup *)em->bdev;
3962
3963 length = em->len;
3964 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3965 do_div(length, map->num_stripes / map->sub_stripes);
3966 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3967 do_div(length, map->num_stripes);
3968
3969 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 3970 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
3971
3972 for (i = 0; i < map->num_stripes; i++) {
3973 if (devid && map->stripes[i].dev->devid != devid)
3974 continue;
3975 if (map->stripes[i].physical > physical ||
3976 map->stripes[i].physical + length <= physical)
3977 continue;
3978
3979 stripe_nr = physical - map->stripes[i].physical;
3980 do_div(stripe_nr, map->stripe_len);
3981
3982 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3983 stripe_nr = stripe_nr * map->num_stripes + i;
3984 do_div(stripe_nr, map->sub_stripes);
3985 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3986 stripe_nr = stripe_nr * map->num_stripes + i;
3987 }
3988 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3989 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3990 for (j = 0; j < nr; j++) {
3991 if (buf[j] == bytenr)
3992 break;
3993 }
934d375b
CM
3994 if (j == nr) {
3995 WARN_ON(nr >= map->num_stripes);
a512bbf8 3996 buf[nr++] = bytenr;
934d375b 3997 }
a512bbf8
YZ
3998 }
3999
a512bbf8
YZ
4000 *logical = buf;
4001 *naddrs = nr;
4002 *stripe_len = map->stripe_len;
4003
4004 free_extent_map(em);
4005 return 0;
f2d8d74d
CM
4006}
4007
442a4f63
SB
4008static void *merge_stripe_index_into_bio_private(void *bi_private,
4009 unsigned int stripe_index)
4010{
4011 /*
4012 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4013 * at most 1.
4014 * The alternative solution (instead of stealing bits from the
4015 * pointer) would be to allocate an intermediate structure
4016 * that contains the old private pointer plus the stripe_index.
4017 */
4018 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4019 BUG_ON(stripe_index > 3);
4020 return (void *)(((uintptr_t)bi_private) | stripe_index);
4021}
4022
4023static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4024{
4025 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4026}
4027
4028static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4029{
4030 return (unsigned int)((uintptr_t)bi_private) & 3;
4031}
4032
a1d3c478 4033static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4034{
442a4f63 4035 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4036 int is_orig_bio = 0;
8790d502 4037
442a4f63 4038 if (err) {
a1d3c478 4039 atomic_inc(&bbio->error);
442a4f63
SB
4040 if (err == -EIO || err == -EREMOTEIO) {
4041 unsigned int stripe_index =
4042 extract_stripe_index_from_bio_private(
4043 bio->bi_private);
4044 struct btrfs_device *dev;
4045
4046 BUG_ON(stripe_index >= bbio->num_stripes);
4047 dev = bbio->stripes[stripe_index].dev;
4048 if (bio->bi_rw & WRITE)
4049 btrfs_dev_stat_inc(dev,
4050 BTRFS_DEV_STAT_WRITE_ERRS);
4051 else
4052 btrfs_dev_stat_inc(dev,
4053 BTRFS_DEV_STAT_READ_ERRS);
4054 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4055 btrfs_dev_stat_inc(dev,
4056 BTRFS_DEV_STAT_FLUSH_ERRS);
4057 btrfs_dev_stat_print_on_error(dev);
4058 }
4059 }
8790d502 4060
a1d3c478 4061 if (bio == bbio->orig_bio)
7d2b4daa
CM
4062 is_orig_bio = 1;
4063
a1d3c478 4064 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4065 if (!is_orig_bio) {
4066 bio_put(bio);
a1d3c478 4067 bio = bbio->orig_bio;
7d2b4daa 4068 }
a1d3c478
JS
4069 bio->bi_private = bbio->private;
4070 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4071 bio->bi_bdev = (struct block_device *)
4072 (unsigned long)bbio->mirror_num;
a236aed1
CM
4073 /* only send an error to the higher layers if it is
4074 * beyond the tolerance of the multi-bio
4075 */
a1d3c478 4076 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4077 err = -EIO;
5dbc8fca 4078 } else {
1259ab75
CM
4079 /*
4080 * this bio is actually up to date, we didn't
4081 * go over the max number of errors
4082 */
4083 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4084 err = 0;
1259ab75 4085 }
a1d3c478 4086 kfree(bbio);
8790d502
CM
4087
4088 bio_endio(bio, err);
7d2b4daa 4089 } else if (!is_orig_bio) {
8790d502
CM
4090 bio_put(bio);
4091 }
8790d502
CM
4092}
4093
8b712842
CM
4094struct async_sched {
4095 struct bio *bio;
4096 int rw;
4097 struct btrfs_fs_info *info;
4098 struct btrfs_work work;
4099};
4100
4101/*
4102 * see run_scheduled_bios for a description of why bios are collected for
4103 * async submit.
4104 *
4105 * This will add one bio to the pending list for a device and make sure
4106 * the work struct is scheduled.
4107 */
143bede5 4108static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4109 struct btrfs_device *device,
4110 int rw, struct bio *bio)
8b712842
CM
4111{
4112 int should_queue = 1;
ffbd517d 4113 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4114
4115 /* don't bother with additional async steps for reads, right now */
7b6d91da 4116 if (!(rw & REQ_WRITE)) {
492bb6de 4117 bio_get(bio);
21adbd5c 4118 btrfsic_submit_bio(rw, bio);
492bb6de 4119 bio_put(bio);
143bede5 4120 return;
8b712842
CM
4121 }
4122
4123 /*
0986fe9e 4124 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4125 * higher layers. Otherwise, the async bio makes it appear we have
4126 * made progress against dirty pages when we've really just put it
4127 * on a queue for later
4128 */
0986fe9e 4129 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4130 WARN_ON(bio->bi_next);
8b712842
CM
4131 bio->bi_next = NULL;
4132 bio->bi_rw |= rw;
4133
4134 spin_lock(&device->io_lock);
7b6d91da 4135 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4136 pending_bios = &device->pending_sync_bios;
4137 else
4138 pending_bios = &device->pending_bios;
8b712842 4139
ffbd517d
CM
4140 if (pending_bios->tail)
4141 pending_bios->tail->bi_next = bio;
8b712842 4142
ffbd517d
CM
4143 pending_bios->tail = bio;
4144 if (!pending_bios->head)
4145 pending_bios->head = bio;
8b712842
CM
4146 if (device->running_pending)
4147 should_queue = 0;
4148
4149 spin_unlock(&device->io_lock);
4150
4151 if (should_queue)
1cc127b5
CM
4152 btrfs_queue_worker(&root->fs_info->submit_workers,
4153 &device->work);
8b712842
CM
4154}
4155
f188591e 4156int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4157 int mirror_num, int async_submit)
0b86a832
CM
4158{
4159 struct btrfs_mapping_tree *map_tree;
4160 struct btrfs_device *dev;
8790d502 4161 struct bio *first_bio = bio;
a62b9401 4162 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4163 u64 length = 0;
4164 u64 map_length;
0b86a832 4165 int ret;
8790d502
CM
4166 int dev_nr = 0;
4167 int total_devs = 1;
a1d3c478 4168 struct btrfs_bio *bbio = NULL;
0b86a832 4169
f2d8d74d 4170 length = bio->bi_size;
0b86a832
CM
4171 map_tree = &root->fs_info->mapping_tree;
4172 map_length = length;
cea9e445 4173
a1d3c478 4174 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4175 mirror_num);
79787eaa
JM
4176 if (ret) /* -ENOMEM */
4177 return ret;
cea9e445 4178
a1d3c478 4179 total_devs = bbio->num_stripes;
cea9e445 4180 if (map_length < length) {
d397712b
CM
4181 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4182 "len %llu\n", (unsigned long long)logical,
4183 (unsigned long long)length,
4184 (unsigned long long)map_length);
cea9e445
CM
4185 BUG();
4186 }
a1d3c478
JS
4187
4188 bbio->orig_bio = first_bio;
4189 bbio->private = first_bio->bi_private;
4190 bbio->end_io = first_bio->bi_end_io;
4191 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4192
d397712b 4193 while (dev_nr < total_devs) {
a1d3c478
JS
4194 if (dev_nr < total_devs - 1) {
4195 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4196 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4197 } else {
4198 bio = first_bio;
8790d502 4199 }
a1d3c478 4200 bio->bi_private = bbio;
442a4f63
SB
4201 bio->bi_private = merge_stripe_index_into_bio_private(
4202 bio->bi_private, (unsigned int)dev_nr);
a1d3c478
JS
4203 bio->bi_end_io = btrfs_end_bio;
4204 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4205 dev = bbio->stripes[dev_nr].dev;
18e503d6 4206 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
a1d3c478
JS
4207 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4208 "(%s id %llu), size=%u\n", rw,
4209 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4210 dev->name, dev->devid, bio->bi_size);
dfe25020 4211 bio->bi_bdev = dev->bdev;
8b712842
CM
4212 if (async_submit)
4213 schedule_bio(root, dev, rw, bio);
4214 else
21adbd5c 4215 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4216 } else {
4217 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4218 bio->bi_sector = logical >> 9;
dfe25020 4219 bio_endio(bio, -EIO);
dfe25020 4220 }
8790d502
CM
4221 dev_nr++;
4222 }
0b86a832
CM
4223 return 0;
4224}
4225
a443755f 4226struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4227 u8 *uuid, u8 *fsid)
0b86a832 4228{
2b82032c
YZ
4229 struct btrfs_device *device;
4230 struct btrfs_fs_devices *cur_devices;
4231
4232 cur_devices = root->fs_info->fs_devices;
4233 while (cur_devices) {
4234 if (!fsid ||
4235 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4236 device = __find_device(&cur_devices->devices,
4237 devid, uuid);
4238 if (device)
4239 return device;
4240 }
4241 cur_devices = cur_devices->seed;
4242 }
4243 return NULL;
0b86a832
CM
4244}
4245
dfe25020
CM
4246static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4247 u64 devid, u8 *dev_uuid)
4248{
4249 struct btrfs_device *device;
4250 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4251
4252 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4253 if (!device)
4254 return NULL;
dfe25020
CM
4255 list_add(&device->dev_list,
4256 &fs_devices->devices);
dfe25020
CM
4257 device->dev_root = root->fs_info->dev_root;
4258 device->devid = devid;
8b712842 4259 device->work.func = pending_bios_fn;
e4404d6e 4260 device->fs_devices = fs_devices;
cd02dca5 4261 device->missing = 1;
dfe25020 4262 fs_devices->num_devices++;
cd02dca5 4263 fs_devices->missing_devices++;
dfe25020 4264 spin_lock_init(&device->io_lock);
d20f7043 4265 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4266 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4267 return device;
4268}
4269
0b86a832
CM
4270static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4271 struct extent_buffer *leaf,
4272 struct btrfs_chunk *chunk)
4273{
4274 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4275 struct map_lookup *map;
4276 struct extent_map *em;
4277 u64 logical;
4278 u64 length;
4279 u64 devid;
a443755f 4280 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4281 int num_stripes;
0b86a832 4282 int ret;
593060d7 4283 int i;
0b86a832 4284
e17cade2
CM
4285 logical = key->offset;
4286 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4287
890871be 4288 read_lock(&map_tree->map_tree.lock);
0b86a832 4289 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4290 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4291
4292 /* already mapped? */
4293 if (em && em->start <= logical && em->start + em->len > logical) {
4294 free_extent_map(em);
0b86a832
CM
4295 return 0;
4296 } else if (em) {
4297 free_extent_map(em);
4298 }
0b86a832 4299
172ddd60 4300 em = alloc_extent_map();
0b86a832
CM
4301 if (!em)
4302 return -ENOMEM;
593060d7
CM
4303 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4304 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4305 if (!map) {
4306 free_extent_map(em);
4307 return -ENOMEM;
4308 }
4309
4310 em->bdev = (struct block_device *)map;
4311 em->start = logical;
4312 em->len = length;
4313 em->block_start = 0;
c8b97818 4314 em->block_len = em->len;
0b86a832 4315
593060d7
CM
4316 map->num_stripes = num_stripes;
4317 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4318 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4319 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4320 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4321 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4322 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4323 for (i = 0; i < num_stripes; i++) {
4324 map->stripes[i].physical =
4325 btrfs_stripe_offset_nr(leaf, chunk, i);
4326 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4327 read_extent_buffer(leaf, uuid, (unsigned long)
4328 btrfs_stripe_dev_uuid_nr(chunk, i),
4329 BTRFS_UUID_SIZE);
2b82032c
YZ
4330 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4331 NULL);
dfe25020 4332 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4333 kfree(map);
4334 free_extent_map(em);
4335 return -EIO;
4336 }
dfe25020
CM
4337 if (!map->stripes[i].dev) {
4338 map->stripes[i].dev =
4339 add_missing_dev(root, devid, uuid);
4340 if (!map->stripes[i].dev) {
4341 kfree(map);
4342 free_extent_map(em);
4343 return -EIO;
4344 }
4345 }
4346 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4347 }
4348
890871be 4349 write_lock(&map_tree->map_tree.lock);
0b86a832 4350 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4351 write_unlock(&map_tree->map_tree.lock);
79787eaa 4352 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
4353 free_extent_map(em);
4354
4355 return 0;
4356}
4357
143bede5 4358static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
4359 struct btrfs_dev_item *dev_item,
4360 struct btrfs_device *device)
4361{
4362 unsigned long ptr;
0b86a832
CM
4363
4364 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4365 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4366 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4367 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4368 device->type = btrfs_device_type(leaf, dev_item);
4369 device->io_align = btrfs_device_io_align(leaf, dev_item);
4370 device->io_width = btrfs_device_io_width(leaf, dev_item);
4371 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4372
4373 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4374 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
4375}
4376
2b82032c
YZ
4377static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4378{
4379 struct btrfs_fs_devices *fs_devices;
4380 int ret;
4381
b367e47f 4382 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4383
4384 fs_devices = root->fs_info->fs_devices->seed;
4385 while (fs_devices) {
4386 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4387 ret = 0;
4388 goto out;
4389 }
4390 fs_devices = fs_devices->seed;
4391 }
4392
4393 fs_devices = find_fsid(fsid);
4394 if (!fs_devices) {
4395 ret = -ENOENT;
4396 goto out;
4397 }
e4404d6e
YZ
4398
4399 fs_devices = clone_fs_devices(fs_devices);
4400 if (IS_ERR(fs_devices)) {
4401 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4402 goto out;
4403 }
4404
97288f2c 4405 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4406 root->fs_info->bdev_holder);
48d28232
JL
4407 if (ret) {
4408 free_fs_devices(fs_devices);
2b82032c 4409 goto out;
48d28232 4410 }
2b82032c
YZ
4411
4412 if (!fs_devices->seeding) {
4413 __btrfs_close_devices(fs_devices);
e4404d6e 4414 free_fs_devices(fs_devices);
2b82032c
YZ
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 fs_devices->seed = root->fs_info->fs_devices->seed;
4420 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4421out:
2b82032c
YZ
4422 return ret;
4423}
4424
0d81ba5d 4425static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4426 struct extent_buffer *leaf,
4427 struct btrfs_dev_item *dev_item)
4428{
4429 struct btrfs_device *device;
4430 u64 devid;
4431 int ret;
2b82032c 4432 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4433 u8 dev_uuid[BTRFS_UUID_SIZE];
4434
0b86a832 4435 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4436 read_extent_buffer(leaf, dev_uuid,
4437 (unsigned long)btrfs_device_uuid(dev_item),
4438 BTRFS_UUID_SIZE);
2b82032c
YZ
4439 read_extent_buffer(leaf, fs_uuid,
4440 (unsigned long)btrfs_device_fsid(dev_item),
4441 BTRFS_UUID_SIZE);
4442
4443 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4444 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4445 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4446 return ret;
2b82032c
YZ
4447 }
4448
4449 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4450 if (!device || !device->bdev) {
e4404d6e 4451 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4452 return -EIO;
4453
4454 if (!device) {
d397712b
CM
4455 printk(KERN_WARNING "warning devid %llu missing\n",
4456 (unsigned long long)devid);
2b82032c
YZ
4457 device = add_missing_dev(root, devid, dev_uuid);
4458 if (!device)
4459 return -ENOMEM;
cd02dca5
CM
4460 } else if (!device->missing) {
4461 /*
4462 * this happens when a device that was properly setup
4463 * in the device info lists suddenly goes bad.
4464 * device->bdev is NULL, and so we have to set
4465 * device->missing to one here
4466 */
4467 root->fs_info->fs_devices->missing_devices++;
4468 device->missing = 1;
2b82032c
YZ
4469 }
4470 }
4471
4472 if (device->fs_devices != root->fs_info->fs_devices) {
4473 BUG_ON(device->writeable);
4474 if (device->generation !=
4475 btrfs_device_generation(leaf, dev_item))
4476 return -EINVAL;
6324fbf3 4477 }
0b86a832
CM
4478
4479 fill_device_from_item(leaf, dev_item, device);
4480 device->dev_root = root->fs_info->dev_root;
dfe25020 4481 device->in_fs_metadata = 1;
2bf64758 4482 if (device->writeable) {
2b82032c 4483 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4484 spin_lock(&root->fs_info->free_chunk_lock);
4485 root->fs_info->free_chunk_space += device->total_bytes -
4486 device->bytes_used;
4487 spin_unlock(&root->fs_info->free_chunk_lock);
4488 }
0b86a832 4489 ret = 0;
0b86a832
CM
4490 return ret;
4491}
4492
e4404d6e 4493int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4494{
6c41761f 4495 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4496 struct extent_buffer *sb;
0b86a832 4497 struct btrfs_disk_key *disk_key;
0b86a832 4498 struct btrfs_chunk *chunk;
84eed90f
CM
4499 u8 *ptr;
4500 unsigned long sb_ptr;
4501 int ret = 0;
0b86a832
CM
4502 u32 num_stripes;
4503 u32 array_size;
4504 u32 len = 0;
0b86a832 4505 u32 cur;
84eed90f 4506 struct btrfs_key key;
0b86a832 4507
e4404d6e 4508 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4509 BTRFS_SUPER_INFO_SIZE);
4510 if (!sb)
4511 return -ENOMEM;
4512 btrfs_set_buffer_uptodate(sb);
85d4e461 4513 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4514 /*
4515 * The sb extent buffer is artifical and just used to read the system array.
4516 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4517 * pages up-to-date when the page is larger: extent does not cover the
4518 * whole page and consequently check_page_uptodate does not find all
4519 * the page's extents up-to-date (the hole beyond sb),
4520 * write_extent_buffer then triggers a WARN_ON.
4521 *
4522 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4523 * but sb spans only this function. Add an explicit SetPageUptodate call
4524 * to silence the warning eg. on PowerPC 64.
4525 */
4526 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4527 SetPageUptodate(sb->pages[0]);
4008c04a 4528
a061fc8d 4529 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4530 array_size = btrfs_super_sys_array_size(super_copy);
4531
0b86a832
CM
4532 ptr = super_copy->sys_chunk_array;
4533 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4534 cur = 0;
4535
4536 while (cur < array_size) {
4537 disk_key = (struct btrfs_disk_key *)ptr;
4538 btrfs_disk_key_to_cpu(&key, disk_key);
4539
a061fc8d 4540 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4541 sb_ptr += len;
4542 cur += len;
4543
0d81ba5d 4544 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4545 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4546 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4547 if (ret)
4548 break;
0b86a832
CM
4549 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4550 len = btrfs_chunk_item_size(num_stripes);
4551 } else {
84eed90f
CM
4552 ret = -EIO;
4553 break;
0b86a832
CM
4554 }
4555 ptr += len;
4556 sb_ptr += len;
4557 cur += len;
4558 }
a061fc8d 4559 free_extent_buffer(sb);
84eed90f 4560 return ret;
0b86a832
CM
4561}
4562
442a4f63
SB
4563struct btrfs_device *btrfs_find_device_for_logical(struct btrfs_root *root,
4564 u64 logical, int mirror_num)
4565{
4566 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4567 int ret;
4568 u64 map_length = 0;
4569 struct btrfs_bio *bbio = NULL;
4570 struct btrfs_device *device;
4571
4572 BUG_ON(mirror_num == 0);
4573 ret = btrfs_map_block(map_tree, WRITE, logical, &map_length, &bbio,
4574 mirror_num);
4575 if (ret) {
4576 BUG_ON(bbio != NULL);
4577 return NULL;
4578 }
4579 BUG_ON(mirror_num != bbio->mirror_num);
4580 device = bbio->stripes[mirror_num - 1].dev;
4581 kfree(bbio);
4582 return device;
4583}
4584
0b86a832
CM
4585int btrfs_read_chunk_tree(struct btrfs_root *root)
4586{
4587 struct btrfs_path *path;
4588 struct extent_buffer *leaf;
4589 struct btrfs_key key;
4590 struct btrfs_key found_key;
4591 int ret;
4592 int slot;
4593
4594 root = root->fs_info->chunk_root;
4595
4596 path = btrfs_alloc_path();
4597 if (!path)
4598 return -ENOMEM;
4599
b367e47f
LZ
4600 mutex_lock(&uuid_mutex);
4601 lock_chunks(root);
4602
0b86a832
CM
4603 /* first we search for all of the device items, and then we
4604 * read in all of the chunk items. This way we can create chunk
4605 * mappings that reference all of the devices that are afound
4606 */
4607 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4608 key.offset = 0;
4609 key.type = 0;
4610again:
4611 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4612 if (ret < 0)
4613 goto error;
d397712b 4614 while (1) {
0b86a832
CM
4615 leaf = path->nodes[0];
4616 slot = path->slots[0];
4617 if (slot >= btrfs_header_nritems(leaf)) {
4618 ret = btrfs_next_leaf(root, path);
4619 if (ret == 0)
4620 continue;
4621 if (ret < 0)
4622 goto error;
4623 break;
4624 }
4625 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4626 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4627 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4628 break;
4629 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4630 struct btrfs_dev_item *dev_item;
4631 dev_item = btrfs_item_ptr(leaf, slot,
4632 struct btrfs_dev_item);
0d81ba5d 4633 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4634 if (ret)
4635 goto error;
0b86a832
CM
4636 }
4637 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4638 struct btrfs_chunk *chunk;
4639 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4640 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4641 if (ret)
4642 goto error;
0b86a832
CM
4643 }
4644 path->slots[0]++;
4645 }
4646 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4647 key.objectid = 0;
b3b4aa74 4648 btrfs_release_path(path);
0b86a832
CM
4649 goto again;
4650 }
0b86a832
CM
4651 ret = 0;
4652error:
b367e47f
LZ
4653 unlock_chunks(root);
4654 mutex_unlock(&uuid_mutex);
4655
2b82032c 4656 btrfs_free_path(path);
0b86a832
CM
4657 return ret;
4658}
442a4f63 4659
733f4fbb
SB
4660static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4661{
4662 int i;
4663
4664 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4665 btrfs_dev_stat_reset(dev, i);
4666}
4667
4668int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4669{
4670 struct btrfs_key key;
4671 struct btrfs_key found_key;
4672 struct btrfs_root *dev_root = fs_info->dev_root;
4673 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4674 struct extent_buffer *eb;
4675 int slot;
4676 int ret = 0;
4677 struct btrfs_device *device;
4678 struct btrfs_path *path = NULL;
4679 int i;
4680
4681 path = btrfs_alloc_path();
4682 if (!path) {
4683 ret = -ENOMEM;
4684 goto out;
4685 }
4686
4687 mutex_lock(&fs_devices->device_list_mutex);
4688 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4689 int item_size;
4690 struct btrfs_dev_stats_item *ptr;
4691
4692 key.objectid = 0;
4693 key.type = BTRFS_DEV_STATS_KEY;
4694 key.offset = device->devid;
4695 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4696 if (ret) {
4697 printk(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n",
4698 device->name, (unsigned long long)device->devid);
4699 __btrfs_reset_dev_stats(device);
4700 device->dev_stats_valid = 1;
4701 btrfs_release_path(path);
4702 continue;
4703 }
4704 slot = path->slots[0];
4705 eb = path->nodes[0];
4706 btrfs_item_key_to_cpu(eb, &found_key, slot);
4707 item_size = btrfs_item_size_nr(eb, slot);
4708
4709 ptr = btrfs_item_ptr(eb, slot,
4710 struct btrfs_dev_stats_item);
4711
4712 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4713 if (item_size >= (1 + i) * sizeof(__le64))
4714 btrfs_dev_stat_set(device, i,
4715 btrfs_dev_stats_value(eb, ptr, i));
4716 else
4717 btrfs_dev_stat_reset(device, i);
4718 }
4719
4720 device->dev_stats_valid = 1;
4721 btrfs_dev_stat_print_on_load(device);
4722 btrfs_release_path(path);
4723 }
4724 mutex_unlock(&fs_devices->device_list_mutex);
4725
4726out:
4727 btrfs_free_path(path);
4728 return ret < 0 ? ret : 0;
4729}
4730
4731static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4732 struct btrfs_root *dev_root,
4733 struct btrfs_device *device)
4734{
4735 struct btrfs_path *path;
4736 struct btrfs_key key;
4737 struct extent_buffer *eb;
4738 struct btrfs_dev_stats_item *ptr;
4739 int ret;
4740 int i;
4741
4742 key.objectid = 0;
4743 key.type = BTRFS_DEV_STATS_KEY;
4744 key.offset = device->devid;
4745
4746 path = btrfs_alloc_path();
4747 BUG_ON(!path);
4748 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4749 if (ret < 0) {
4750 printk(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4751 ret, device->name);
4752 goto out;
4753 }
4754
4755 if (ret == 0 &&
4756 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4757 /* need to delete old one and insert a new one */
4758 ret = btrfs_del_item(trans, dev_root, path);
4759 if (ret != 0) {
4760 printk(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4761 device->name, ret);
4762 goto out;
4763 }
4764 ret = 1;
4765 }
4766
4767 if (ret == 1) {
4768 /* need to insert a new item */
4769 btrfs_release_path(path);
4770 ret = btrfs_insert_empty_item(trans, dev_root, path,
4771 &key, sizeof(*ptr));
4772 if (ret < 0) {
4773 printk(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4774 device->name, ret);
4775 goto out;
4776 }
4777 }
4778
4779 eb = path->nodes[0];
4780 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4781 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4782 btrfs_set_dev_stats_value(eb, ptr, i,
4783 btrfs_dev_stat_read(device, i));
4784 btrfs_mark_buffer_dirty(eb);
4785
4786out:
4787 btrfs_free_path(path);
4788 return ret;
4789}
4790
4791/*
4792 * called from commit_transaction. Writes all changed device stats to disk.
4793 */
4794int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4795 struct btrfs_fs_info *fs_info)
4796{
4797 struct btrfs_root *dev_root = fs_info->dev_root;
4798 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4799 struct btrfs_device *device;
4800 int ret = 0;
4801
4802 mutex_lock(&fs_devices->device_list_mutex);
4803 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4804 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4805 continue;
4806
4807 ret = update_dev_stat_item(trans, dev_root, device);
4808 if (!ret)
4809 device->dev_stats_dirty = 0;
4810 }
4811 mutex_unlock(&fs_devices->device_list_mutex);
4812
4813 return ret;
4814}
4815
442a4f63
SB
4816void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4817{
4818 btrfs_dev_stat_inc(dev, index);
4819 btrfs_dev_stat_print_on_error(dev);
4820}
4821
4822void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4823{
733f4fbb
SB
4824 if (!dev->dev_stats_valid)
4825 return;
442a4f63
SB
4826 printk_ratelimited(KERN_ERR
4827 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4828 dev->name,
4829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4832 btrfs_dev_stat_read(dev,
4833 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4834 btrfs_dev_stat_read(dev,
4835 BTRFS_DEV_STAT_GENERATION_ERRS));
4836}
c11d2c23 4837
733f4fbb
SB
4838static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4839{
4840 printk(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4841 dev->name,
4842 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4843 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4844 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4845 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4846 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4847}
4848
c11d2c23
SB
4849int btrfs_get_dev_stats(struct btrfs_root *root,
4850 struct btrfs_ioctl_get_dev_stats *stats,
4851 int reset_after_read)
4852{
4853 struct btrfs_device *dev;
4854 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4855 int i;
4856
4857 mutex_lock(&fs_devices->device_list_mutex);
4858 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4859 mutex_unlock(&fs_devices->device_list_mutex);
4860
4861 if (!dev) {
4862 printk(KERN_WARNING
4863 "btrfs: get dev_stats failed, device not found\n");
4864 return -ENODEV;
733f4fbb
SB
4865 } else if (!dev->dev_stats_valid) {
4866 printk(KERN_WARNING
4867 "btrfs: get dev_stats failed, not yet valid\n");
4868 return -ENODEV;
c11d2c23
SB
4869 } else if (reset_after_read) {
4870 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4871 if (stats->nr_items > i)
4872 stats->values[i] =
4873 btrfs_dev_stat_read_and_reset(dev, i);
4874 else
4875 btrfs_dev_stat_reset(dev, i);
4876 }
4877 } else {
4878 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4879 if (stats->nr_items > i)
4880 stats->values[i] = btrfs_dev_stat_read(dev, i);
4881 }
4882 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4883 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4884 return 0;
4885}