btrfs: open code btrfs_map_sblock
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
5a0e3ad6 8#include <linux/slab.h>
442a4f63 9#include <linux/ratelimit.h>
59641015 10#include <linux/kthread.h>
803b2f54 11#include <linux/semaphore.h>
8da4b8c4 12#include <linux/uuid.h>
f8e10cd3 13#include <linux/list_sort.h>
54fde91f 14#include <linux/namei.h>
784352fe 15#include "misc.h"
0b86a832
CM
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
53b381b3 22#include "raid56.h"
606686ee 23#include "rcu-string.h"
8dabb742 24#include "dev-replace.h"
99994cde 25#include "sysfs.h"
82fc28fb 26#include "tree-checker.h"
8719aaae 27#include "space-info.h"
aac0023c 28#include "block-group.h"
b0643e59 29#include "discard.h"
5b316468 30#include "zoned.h"
c7f13d42 31#include "fs.h"
07e81dc9 32#include "accessors.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
7f0add25 37#include "super.h"
0b86a832 38
bf08387f
QW
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
af902047
ZL
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 48 .devs_min = 2,
8789f4fe 49 .tolerated_failures = 1,
af902047
ZL
50 .devs_increment = 2,
51 .ncopies = 2,
b50836ed 52 .nparity = 0,
ed23467b 53 .raid_name = "raid10",
41a6e891 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
8789f4fe 62 .tolerated_failures = 1,
af902047
ZL
63 .devs_increment = 2,
64 .ncopies = 2,
b50836ed 65 .nparity = 0,
ed23467b 66 .raid_name = "raid1",
41a6e891 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 69 },
47e6f742
DS
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
cf93e15e 73 .devs_max = 3,
47e6f742
DS
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
db26a024 78 .nparity = 0,
47e6f742
DS
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
8d6fac00
DS
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
cf93e15e 86 .devs_max = 4,
8d6fac00
DS
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
db26a024 91 .nparity = 0,
8d6fac00
DS
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
af902047
ZL
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
8789f4fe 101 .tolerated_failures = 0,
af902047
ZL
102 .devs_increment = 1,
103 .ncopies = 2,
b50836ed 104 .nparity = 0,
ed23467b 105 .raid_name = "dup",
41a6e891 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 107 .mindev_error = 0,
af902047
ZL
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
b2f78e88 113 .devs_min = 1,
8789f4fe 114 .tolerated_failures = 0,
af902047
ZL
115 .devs_increment = 1,
116 .ncopies = 1,
b50836ed 117 .nparity = 0,
ed23467b 118 .raid_name = "raid0",
41a6e891 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 120 .mindev_error = 0,
af902047
ZL
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
8789f4fe 127 .tolerated_failures = 0,
af902047
ZL
128 .devs_increment = 1,
129 .ncopies = 1,
b50836ed 130 .nparity = 0,
ed23467b 131 .raid_name = "single",
41a6e891 132 .bg_flag = 0,
f9fbcaa2 133 .mindev_error = 0,
af902047
ZL
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
8789f4fe 140 .tolerated_failures = 1,
af902047 141 .devs_increment = 1,
da612e31 142 .ncopies = 1,
b50836ed 143 .nparity = 1,
ed23467b 144 .raid_name = "raid5",
41a6e891 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
8789f4fe 153 .tolerated_failures = 2,
af902047 154 .devs_increment = 1,
da612e31 155 .ncopies = 1,
b50836ed 156 .nparity = 2,
ed23467b 157 .raid_name = "raid6",
41a6e891 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
160 },
161};
162
500a44c9
DS
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
719fae89 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
500a44c9 170
719fae89
QW
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
500a44c9
DS
175}
176
158da513 177const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 178{
158da513
DS
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
182 return NULL;
183
158da513 184 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
185}
186
0b30f719
QW
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
f89e09cf
AJ
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
6f8e0fc7 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 251
9c6b1c4d
DS
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 268 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
18c850fd
JB
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
9c6b1c4d
DS
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
18c850fd
JB
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
9c6b1c4d
DS
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
ae3e715f
AJ
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
89595e80
AJ
315 *
316 *
c3e1f96c
GR
317 * Exclusive operations
318 * ====================
89595e80
AJ
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
c3e1f96c
GR
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 348 * The exclusive status is cleared when the device operation is canceled or
89595e80 349 * completed.
9c6b1c4d
DS
350 */
351
67a2c45e 352DEFINE_MUTEX(uuid_mutex);
8a4b83cc 353static LIST_HEAD(fs_uuids);
4143cb8b 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
355{
356 return &fs_uuids;
357}
8a4b83cc 358
2dfeca9b
DS
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
7239ff4b
NB
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
2208a378
ID
370{
371 struct btrfs_fs_devices *fs_devs;
372
19c4c49c
AJ
373 ASSERT(fsid || !metadata_fsid);
374
78f2c9e6 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
376 if (!fs_devs)
377 return ERR_PTR(-ENOMEM);
378
379 mutex_init(&fs_devs->device_list_mutex);
380
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 383 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 384 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378 385
19c4c49c
AJ
386 if (fsid) {
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 }
7239ff4b 391
2208a378
ID
392 return fs_devs;
393}
394
f2db4d5c 395static void btrfs_free_device(struct btrfs_device *device)
48dae9cf 396{
bbbf7243 397 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 398 rcu_string_free(device->name);
611ccc58 399 extent_io_tree_release(&device->alloc_state);
5b316468 400 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
401 kfree(device);
402}
403
e4404d6e
YZ
404static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405{
406 struct btrfs_device *device;
5f58d783 407
e4404d6e
YZ
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
a425f9d4 413 btrfs_free_device(device);
e4404d6e
YZ
414 }
415 kfree(fs_devices);
416}
417
ffc5a379 418void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
419{
420 struct btrfs_fs_devices *fs_devices;
8a4b83cc 421
2b82032c
YZ
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
e4404d6e 426 free_fs_devices(fs_devices);
8a4b83cc 427 }
8a4b83cc
CM
428}
429
1a898345
AJ
430static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
432{
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 return false;
435
436 if (!metadata_fsid)
437 return true;
438
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 return false;
441
442 return true;
443}
444
7239ff4b
NB
445static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 447{
8a4b83cc
CM
448 struct btrfs_fs_devices *fs_devices;
449
7239ff4b
NB
450 ASSERT(fsid);
451
7a62d0f0 452 /* Handle non-split brain cases */
c4babc5e 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1a898345
AJ
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 return fs_devices;
8a4b83cc
CM
456 }
457 return NULL;
458}
459
a3c54b0b
AJ
460/*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
465static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 const u8 *fsid)
467{
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471}
472
c6730a0e
SY
473static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
475{
476
477 struct btrfs_fs_devices *fs_devices;
478
479 /*
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
484 */
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1a898345
AJ
486 if (!fs_devices->fsid_change)
487 continue;
488
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 fs_devices->fsid))
c6730a0e 491 return fs_devices;
c6730a0e 492 }
1a898345 493
c6730a0e
SY
494 /*
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
499 */
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
501 if (!fs_devices->fsid_change)
502 continue;
503
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
c6730a0e 505 return fs_devices;
c6730a0e
SY
506 }
507
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509}
510
511
beaf8ab3
SB
512static int
513btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
514 int flush, struct block_device **bdev,
8f32380d 515 struct btrfs_super_block **disk_super)
beaf8ab3
SB
516{
517 int ret;
518
519 *bdev = blkdev_get_by_path(device_path, flags, holder);
520
521 if (IS_ERR(*bdev)) {
522 ret = PTR_ERR(*bdev);
beaf8ab3
SB
523 goto error;
524 }
525
526 if (flush)
1226dfff 527 sync_blockdev(*bdev);
9f6d2510 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
529 if (ret) {
530 blkdev_put(*bdev, flags);
531 goto error;
532 }
533 invalidate_bdev(*bdev);
8f32380d
JT
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
537 blkdev_put(*bdev, flags);
538 goto error;
539 }
540
541 return 0;
542
543error:
544 *bdev = NULL;
beaf8ab3
SB
545 return ret;
546}
547
43dd529a
DS
548/*
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
16cab91a 551 *
43dd529a
DS
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
16cab91a 554 * @skip_device: Optional. Will skip this device when searching for the stale
43dd529a 555 * devices.
16cab91a
AJ
556 *
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
d8367db3 560 */
16cab91a 561static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 562{
fa6d2ae5
AJ
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
565 int ret = 0;
566
c1247069
AJ
567 lockdep_assert_held(&uuid_mutex);
568
16cab91a 569 if (devt)
70bc7088 570 ret = -ENOENT;
4fde46f0 571
fa6d2ae5 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 573
70bc7088 574 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
fa6d2ae5 577 if (skip_device && skip_device == device)
d8367db3 578 continue;
330a5bf4 579 if (devt && devt != device->devt)
38cf665d 580 continue;
70bc7088
AJ
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
16cab91a 583 if (devt && ret != 0)
70bc7088
AJ
584 ret = -EBUSY;
585 break;
586 }
4fde46f0 587
4fde46f0 588 /* delete the stale device */
7bcb8164
AJ
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
592
70bc7088 593 ret = 0;
7bcb8164
AJ
594 }
595 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 596
7bcb8164
AJ
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
4fde46f0
AJ
601 }
602 }
70bc7088
AJ
603
604 return ret;
4fde46f0
AJ
605}
606
18c850fd
JB
607/*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
0fb08bcc
AJ
612static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, fmode_t flags,
614 void *holder)
615{
0fb08bcc 616 struct block_device *bdev;
0fb08bcc
AJ
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 627 &bdev, &disk_super);
0fb08bcc
AJ
628 if (ret)
629 return ret;
630
0fb08bcc
AJ
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
8f32380d 633 goto error_free_page;
0fb08bcc
AJ
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 636 goto error_free_page;
0fb08bcc
AJ
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 645 goto error_free_page;
7239ff4b
NB
646 }
647
ebbede42 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 649 fs_devices->seeding = true;
0fb08bcc 650 } else {
ebbede42
AJ
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
655 }
656
10f0d2a5 657 if (!bdev_nonrot(bdev))
7f0432d0 658 fs_devices->rotating = true;
0fb08bcc 659
63a7cb13
DS
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
0fb08bcc 663 device->bdev = bdev;
e12c9621 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
665 device->mode = flags;
666
667 fs_devices->open_devices++;
ebbede42
AJ
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 670 fs_devices->rw_devices++;
b1b8e386 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 672 }
8f32380d 673 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
674
675 return 0;
676
8f32380d
JT
677error_free_page:
678 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
679 blkdev_put(bdev, flags);
680
681 return -EINVAL;
682}
683
7a62d0f0
NB
684/*
685 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
686 * being created with a disk that has already completed its fsid change. Such
687 * disk can belong to an fs which has its FSID changed or to one which doesn't.
688 * Handle both cases here.
7a62d0f0
NB
689 */
690static struct btrfs_fs_devices *find_fsid_inprogress(
691 struct btrfs_super_block *disk_super)
692{
693 struct btrfs_fs_devices *fs_devices;
694
695 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
696 if (fs_devices->fsid_change)
697 continue;
698
699 if (check_fsid_changed(fs_devices, disk_super->fsid))
7a62d0f0 700 return fs_devices;
7a62d0f0
NB
701 }
702
c0d81c7c 703 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
704}
705
cc5de4e7
NB
706static struct btrfs_fs_devices *find_fsid_changed(
707 struct btrfs_super_block *disk_super)
708{
709 struct btrfs_fs_devices *fs_devices;
710
711 /*
712 * Handles the case where scanned device is part of an fs that had
1a9fd417 713 * multiple successful changes of FSID but currently device didn't
05840710
NB
714 * observe it. Meaning our fsid will be different than theirs. We need
715 * to handle two subcases :
716 * 1 - The fs still continues to have different METADATA/FSID uuids.
717 * 2 - The fs is switched back to its original FSID (METADATA/FSID
718 * are equal).
cc5de4e7
NB
719 */
720 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 721 /* Changed UUIDs */
a3c54b0b 722 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
cc5de4e7 723 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
724 BTRFS_FSID_SIZE) != 0)
725 return fs_devices;
726
727 /* Unchanged UUIDs */
728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 BTRFS_FSID_SIZE) == 0 &&
730 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 BTRFS_FSID_SIZE) == 0)
cc5de4e7 732 return fs_devices;
cc5de4e7
NB
733 }
734
735 return NULL;
736}
1362089d
NB
737
738static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 struct btrfs_super_block *disk_super)
740{
741 struct btrfs_fs_devices *fs_devices;
742
743 /*
744 * Handle the case where the scanned device is part of an fs whose last
745 * metadata UUID change reverted it to the original FSID. At the same
67da05b3 746 * time fs_devices was first created by another constituent device
1362089d
NB
747 * which didn't fully observe the operation. This results in an
748 * btrfs_fs_devices created with metadata/fsid different AND
749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 * fs_devices equal to the FSID of the disk.
751 */
752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
753 if (!fs_devices->fsid_change)
754 continue;
755
756 if (check_fsid_changed(fs_devices, disk_super->fsid))
1362089d
NB
757 return fs_devices;
758 }
759
760 return NULL;
761}
60999ca4
DS
762/*
763 * Add new device to list of registered devices
764 *
765 * Returns:
e124ece5
AJ
766 * device pointer which was just added or updated when successful
767 * error pointer when failed
60999ca4 768 */
e124ece5 769static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
770 struct btrfs_super_block *disk_super,
771 bool *new_device_added)
8a4b83cc
CM
772{
773 struct btrfs_device *device;
7a62d0f0 774 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 775 struct rcu_string *name;
8a4b83cc 776 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 777 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
778 dev_t path_devt;
779 int error;
7239ff4b
NB
780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 784
4889bc05 785 error = lookup_bdev(path, &path_devt);
ed02363f
QW
786 if (error) {
787 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
788 path, error);
4889bc05 789 return ERR_PTR(error);
ed02363f 790 }
4889bc05 791
cc5de4e7 792 if (fsid_change_in_progress) {
c0d81c7c 793 if (!has_metadata_uuid)
cc5de4e7 794 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 795 else
cc5de4e7 796 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 797 } else if (has_metadata_uuid) {
c6730a0e 798 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 799 } else {
1362089d
NB
800 fs_devices = find_fsid_reverted_metadata(disk_super);
801 if (!fs_devices)
802 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
803 }
804
8a4b83cc 805
8a4b83cc 806 if (!fs_devices) {
c6930d7d
AJ
807 fs_devices = alloc_fs_devices(disk_super->fsid,
808 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
2208a378 809 if (IS_ERR(fs_devices))
e124ece5 810 return ERR_CAST(fs_devices);
2208a378 811
92900e51
AV
812 fs_devices->fsid_change = fsid_change_in_progress;
813
9c6d173e 814 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 815 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 816
8a4b83cc
CM
817 device = NULL;
818 } else {
562d7b15
JB
819 struct btrfs_dev_lookup_args args = {
820 .devid = devid,
821 .uuid = disk_super->dev_item.uuid,
822 };
823
9c6d173e 824 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 825 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
826
827 /*
828 * If this disk has been pulled into an fs devices created by
829 * a device which had the CHANGING_FSID_V2 flag then replace the
830 * metadata_uuid/fsid values of the fs_devices.
831 */
1362089d 832 if (fs_devices->fsid_change &&
7a62d0f0
NB
833 found_transid > fs_devices->latest_generation) {
834 memcpy(fs_devices->fsid, disk_super->fsid,
835 BTRFS_FSID_SIZE);
1362089d
NB
836
837 if (has_metadata_uuid)
838 memcpy(fs_devices->metadata_uuid,
839 disk_super->metadata_uuid,
840 BTRFS_FSID_SIZE);
841 else
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
844
845 fs_devices->fsid_change = false;
846 }
8a4b83cc 847 }
443f24fe 848
8a4b83cc 849 if (!device) {
bb21e302
AJ
850 unsigned int nofs_flag;
851
9c6d173e 852 if (fs_devices->opened) {
ed02363f
QW
853 btrfs_err(NULL,
854 "device %s belongs to fsid %pU, and the fs is already mounted",
855 path, fs_devices->fsid);
9c6d173e 856 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 857 return ERR_PTR(-EBUSY);
9c6d173e 858 }
2b82032c 859
bb21e302 860 nofs_flag = memalloc_nofs_save();
12bd2fc0 861 device = btrfs_alloc_device(NULL, &devid,
bb21e302
AJ
862 disk_super->dev_item.uuid, path);
863 memalloc_nofs_restore(nofs_flag);
12bd2fc0 864 if (IS_ERR(device)) {
9c6d173e 865 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 866 /* we can safely leave the fs_devices entry around */
e124ece5 867 return device;
8a4b83cc 868 }
606686ee 869
4889bc05 870 device->devt = path_devt;
90519d66 871
1f78160c 872 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 873 fs_devices->num_devices++;
e5e9a520 874
2b82032c 875 device->fs_devices = fs_devices;
4306a974 876 *new_device_added = true;
327f18cc
AJ
877
878 if (disk_super->label[0])
aa6c0df7
AJ
879 pr_info(
880 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
881 disk_super->label, devid, found_transid, path,
882 current->comm, task_pid_nr(current));
327f18cc 883 else
aa6c0df7
AJ
884 pr_info(
885 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super->fsid, devid, found_transid, path,
887 current->comm, task_pid_nr(current));
327f18cc 888
606686ee 889 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
890 /*
891 * When FS is already mounted.
892 * 1. If you are here and if the device->name is NULL that
893 * means this device was missing at time of FS mount.
894 * 2. If you are here and if the device->name is different
895 * from 'path' that means either
896 * a. The same device disappeared and reappeared with
897 * different name. or
898 * b. The missing-disk-which-was-replaced, has
899 * reappeared now.
900 *
901 * We must allow 1 and 2a above. But 2b would be a spurious
902 * and unintentional.
903 *
904 * Further in case of 1 and 2a above, the disk at 'path'
905 * would have missed some transaction when it was away and
906 * in case of 2a the stale bdev has to be updated as well.
907 * 2b must not be allowed at all time.
908 */
909
910 /*
0f23ae74
CM
911 * For now, we do allow update to btrfs_fs_device through the
912 * btrfs dev scan cli after FS has been mounted. We're still
913 * tracking a problem where systems fail mount by subvolume id
914 * when we reject replacement on a mounted FS.
b96de000 915 */
0f23ae74 916 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
917 /*
918 * That is if the FS is _not_ mounted and if you
919 * are here, that means there is more than one
920 * disk with same uuid and devid.We keep the one
921 * with larger generation number or the last-in if
922 * generation are equal.
923 */
9c6d173e 924 mutex_unlock(&fs_devices->device_list_mutex);
ed02363f
QW
925 btrfs_err(NULL,
926"device %s already registered with a higher generation, found %llu expect %llu",
927 path, found_transid, device->generation);
e124ece5 928 return ERR_PTR(-EEXIST);
77bdae4d 929 }
b96de000 930
a9261d41
AJ
931 /*
932 * We are going to replace the device path for a given devid,
933 * make sure it's the same device if the device is mounted
79c9234b
DM
934 *
935 * NOTE: the device->fs_info may not be reliable here so pass
936 * in a NULL to message helpers instead. This avoids a possible
937 * use-after-free when the fs_info and fs_info->sb are already
938 * torn down.
a9261d41
AJ
939 */
940 if (device->bdev) {
4889bc05 941 if (device->devt != path_devt) {
a9261d41 942 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 943 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 path, devid, found_transid,
946 current->comm,
947 task_pid_nr(current));
a9261d41
AJ
948 return ERR_PTR(-EEXIST);
949 }
79c9234b 950 btrfs_info_in_rcu(NULL,
79dae17d 951 "devid %llu device path %s changed to %s scanned by %s (%d)",
cb3e217b 952 devid, btrfs_dev_name(device),
79dae17d
AJ
953 path, current->comm,
954 task_pid_nr(current));
a9261d41
AJ
955 }
956
606686ee 957 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
958 if (!name) {
959 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 960 return ERR_PTR(-ENOMEM);
9c6d173e 961 }
606686ee
JB
962 rcu_string_free(device->name);
963 rcu_assign_pointer(device->name, name);
e6e674bd 964 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 965 fs_devices->missing_devices--;
e6e674bd 966 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 967 }
4889bc05 968 device->devt = path_devt;
8a4b83cc
CM
969 }
970
77bdae4d
AJ
971 /*
972 * Unmount does not free the btrfs_device struct but would zero
973 * generation along with most of the other members. So just update
974 * it back. We need it to pick the disk with largest generation
975 * (as above).
976 */
d1a63002 977 if (!fs_devices->opened) {
77bdae4d 978 device->generation = found_transid;
d1a63002
NB
979 fs_devices->latest_generation = max_t(u64, found_transid,
980 fs_devices->latest_generation);
981 }
77bdae4d 982
f2788d2f
AJ
983 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984
9c6d173e 985 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 986 return device;
8a4b83cc
CM
987}
988
e4404d6e
YZ
989static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990{
991 struct btrfs_fs_devices *fs_devices;
992 struct btrfs_device *device;
993 struct btrfs_device *orig_dev;
d2979aa2 994 int ret = 0;
e4404d6e 995
c1247069
AJ
996 lockdep_assert_held(&uuid_mutex);
997
7239ff4b 998 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
999 if (IS_ERR(fs_devices))
1000 return fs_devices;
e4404d6e 1001
02db0844 1002 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1003
1004 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
bb21e302
AJ
1005 const char *dev_path = NULL;
1006
1007 /*
1008 * This is ok to do without RCU read locked because we hold the
1009 * uuid mutex so nothing we touch in here is going to disappear.
1010 */
1011 if (orig_dev->name)
1012 dev_path = orig_dev->name->str;
606686ee 1013
12bd2fc0 1014 device = btrfs_alloc_device(NULL, &orig_dev->devid,
bb21e302 1015 orig_dev->uuid, dev_path);
d2979aa2
AJ
1016 if (IS_ERR(device)) {
1017 ret = PTR_ERR(device);
e4404d6e 1018 goto error;
d2979aa2 1019 }
e4404d6e 1020
21e61ec6
JT
1021 if (orig_dev->zone_info) {
1022 struct btrfs_zoned_device_info *zone_info;
1023
1024 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1025 if (!zone_info) {
1026 btrfs_free_device(device);
1027 ret = -ENOMEM;
1028 goto error;
1029 }
1030 device->zone_info = zone_info;
1031 }
1032
e4404d6e
YZ
1033 list_add(&device->dev_list, &fs_devices->devices);
1034 device->fs_devices = fs_devices;
1035 fs_devices->num_devices++;
1036 }
1037 return fs_devices;
1038error:
1039 free_fs_devices(fs_devices);
d2979aa2 1040 return ERR_PTR(ret);
e4404d6e
YZ
1041}
1042
3712ccb7 1043static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1044 struct btrfs_device **latest_dev)
dfe25020 1045{
c6e30871 1046 struct btrfs_device *device, *next;
a6b0d5c8 1047
46224705 1048 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1049 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1050 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1051 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1052 &device->dev_state) &&
998a0671
AJ
1053 !test_bit(BTRFS_DEV_STATE_MISSING,
1054 &device->dev_state) &&
3712ccb7
NB
1055 (!*latest_dev ||
1056 device->generation > (*latest_dev)->generation)) {
1057 *latest_dev = device;
a6b0d5c8 1058 }
2b82032c 1059 continue;
a6b0d5c8 1060 }
2b82032c 1061
cf89af14
AJ
1062 /*
1063 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1064 * in btrfs_init_dev_replace() so just continue.
1065 */
1066 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1067 continue;
1068
2b82032c 1069 if (device->bdev) {
d4d77629 1070 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1071 device->bdev = NULL;
1072 fs_devices->open_devices--;
1073 }
ebbede42 1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1075 list_del_init(&device->dev_alloc_list);
ebbede42 1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1077 fs_devices->rw_devices--;
2b82032c 1078 }
e4404d6e
YZ
1079 list_del_init(&device->dev_list);
1080 fs_devices->num_devices--;
a425f9d4 1081 btrfs_free_device(device);
dfe25020 1082 }
2b82032c 1083
3712ccb7
NB
1084}
1085
1086/*
1087 * After we have read the system tree and know devids belonging to this
1088 * filesystem, remove the device which does not belong there.
1089 */
bacce86a 1090void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1091{
1092 struct btrfs_device *latest_dev = NULL;
944d3f9f 1093 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1094
1095 mutex_lock(&uuid_mutex);
bacce86a 1096 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1097
1098 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1099 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1100
d24fa5c1 1101 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1102
dfe25020 1103 mutex_unlock(&uuid_mutex);
dfe25020 1104}
a0af469b 1105
14238819
AJ
1106static void btrfs_close_bdev(struct btrfs_device *device)
1107{
08ffcae8
DS
1108 if (!device->bdev)
1109 return;
1110
ebbede42 1111 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1112 sync_blockdev(device->bdev);
1113 invalidate_bdev(device->bdev);
1114 }
1115
08ffcae8 1116 blkdev_put(device->bdev, device->mode);
14238819
AJ
1117}
1118
959b1c04 1119static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1120{
1121 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1122
ebbede42 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1124 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1125 list_del_init(&device->dev_alloc_list);
1126 fs_devices->rw_devices--;
1127 }
1128
0d977e0e
DCZX
1129 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1131
5d03dbeb
LZ
1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1133 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1134 fs_devices->missing_devices--;
5d03dbeb 1135 }
f448341a 1136
959b1c04 1137 btrfs_close_bdev(device);
321f69f8 1138 if (device->bdev) {
3fff3975 1139 fs_devices->open_devices--;
321f69f8 1140 device->bdev = NULL;
f448341a 1141 }
321f69f8 1142 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1143 btrfs_destroy_dev_zone_info(device);
f448341a 1144
321f69f8
JT
1145 device->fs_info = NULL;
1146 atomic_set(&device->dev_stats_ccnt, 0);
1147 extent_io_tree_release(&device->alloc_state);
959b1c04 1148
6b225baa
FM
1149 /*
1150 * Reset the flush error record. We might have a transient flush error
1151 * in this mount, and if so we aborted the current transaction and set
1152 * the fs to an error state, guaranteeing no super blocks can be further
1153 * committed. However that error might be transient and if we unmount the
1154 * filesystem and mount it again, we should allow the mount to succeed
1155 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1156 * filesystem again we still get flush errors, then we will again abort
1157 * any transaction and set the error state, guaranteeing no commits of
1158 * unsafe super blocks.
1159 */
1160 device->last_flush_error = 0;
1161
321f69f8 1162 /* Verify the device is back in a pristine state */
1f16033c
AJ
1163 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1164 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1165 WARN_ON(!list_empty(&device->dev_alloc_list));
1166 WARN_ON(!list_empty(&device->post_commit_list));
f448341a
AJ
1167}
1168
54eed6ae 1169static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1170{
2037a093 1171 struct btrfs_device *device, *tmp;
e4404d6e 1172
425c6ed6
JB
1173 lockdep_assert_held(&uuid_mutex);
1174
2b82032c 1175 if (--fs_devices->opened > 0)
54eed6ae 1176 return;
8a4b83cc 1177
425c6ed6 1178 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1179 btrfs_close_one_device(device);
c9513edb 1180
e4404d6e
YZ
1181 WARN_ON(fs_devices->open_devices);
1182 WARN_ON(fs_devices->rw_devices);
2b82032c 1183 fs_devices->opened = 0;
0395d84f 1184 fs_devices->seeding = false;
c4989c2f 1185 fs_devices->fs_info = NULL;
8a4b83cc
CM
1186}
1187
54eed6ae 1188void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1189{
944d3f9f
NB
1190 LIST_HEAD(list);
1191 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1192
1193 mutex_lock(&uuid_mutex);
54eed6ae 1194 close_fs_devices(fs_devices);
5f58d783 1195 if (!fs_devices->opened) {
944d3f9f 1196 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1197
5f58d783
AJ
1198 /*
1199 * If the struct btrfs_fs_devices is not assembled with any
1200 * other device, it can be re-initialized during the next mount
1201 * without the needing device-scan step. Therefore, it can be
1202 * fully freed.
1203 */
1204 if (fs_devices->num_devices == 1) {
1205 list_del(&fs_devices->fs_list);
1206 free_fs_devices(fs_devices);
1207 }
1208 }
1209
1210
944d3f9f 1211 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1212 close_fs_devices(fs_devices);
944d3f9f 1213 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1214 free_fs_devices(fs_devices);
1215 }
425c6ed6 1216 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1217}
1218
897fb573 1219static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1220 fmode_t flags, void *holder)
8a4b83cc 1221{
8a4b83cc 1222 struct btrfs_device *device;
443f24fe 1223 struct btrfs_device *latest_dev = NULL;
96c2e067 1224 struct btrfs_device *tmp_device;
8a4b83cc 1225
d4d77629
TH
1226 flags |= FMODE_EXCL;
1227
96c2e067
AJ
1228 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229 dev_list) {
1230 int ret;
a0af469b 1231
96c2e067
AJ
1232 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233 if (ret == 0 &&
1234 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1235 latest_dev = device;
96c2e067
AJ
1236 } else if (ret == -ENODATA) {
1237 fs_devices->num_devices--;
1238 list_del(&device->dev_list);
1239 btrfs_free_device(device);
1240 }
8a4b83cc 1241 }
1ed802c9
AJ
1242 if (fs_devices->open_devices == 0)
1243 return -EINVAL;
1244
2b82032c 1245 fs_devices->opened = 1;
d24fa5c1 1246 fs_devices->latest_dev = latest_dev;
2b82032c 1247 fs_devices->total_rw_bytes = 0;
c4a816c6 1248 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1249 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1250
1251 return 0;
2b82032c
YZ
1252}
1253
4f0f586b
ST
1254static int devid_cmp(void *priv, const struct list_head *a,
1255 const struct list_head *b)
f8e10cd3 1256{
214cc184 1257 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1258
1259 dev1 = list_entry(a, struct btrfs_device, dev_list);
1260 dev2 = list_entry(b, struct btrfs_device, dev_list);
1261
1262 if (dev1->devid < dev2->devid)
1263 return -1;
1264 else if (dev1->devid > dev2->devid)
1265 return 1;
1266 return 0;
1267}
1268
2b82032c 1269int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1270 fmode_t flags, void *holder)
2b82032c
YZ
1271{
1272 int ret;
1273
f5194e34 1274 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1275 /*
1276 * The device_list_mutex cannot be taken here in case opening the
a8698707 1277 * underlying device takes further locks like open_mutex.
18c850fd
JB
1278 *
1279 * We also don't need the lock here as this is called during mount and
1280 * exclusion is provided by uuid_mutex
1281 */
f5194e34 1282
2b82032c 1283 if (fs_devices->opened) {
e4404d6e
YZ
1284 fs_devices->opened++;
1285 ret = 0;
2b82032c 1286 } else {
f8e10cd3 1287 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1288 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1289 }
542c5908 1290
8a4b83cc
CM
1291 return ret;
1292}
1293
8f32380d 1294void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1295{
8f32380d
JT
1296 struct page *page = virt_to_page(super);
1297
6cf86a00
AJ
1298 put_page(page);
1299}
1300
b335eab8 1301static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1302 u64 bytenr, u64 bytenr_orig)
6cf86a00 1303{
b335eab8
NB
1304 struct btrfs_super_block *disk_super;
1305 struct page *page;
6cf86a00
AJ
1306 void *p;
1307 pgoff_t index;
1308
1309 /* make sure our super fits in the device */
cda00eba 1310 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1311 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1312
1313 /* make sure our super fits in the page */
b335eab8
NB
1314 if (sizeof(*disk_super) > PAGE_SIZE)
1315 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1316
1317 /* make sure our super doesn't straddle pages on disk */
1318 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1319 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1321
1322 /* pull in the page with our super */
b335eab8 1323 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1324
b335eab8
NB
1325 if (IS_ERR(page))
1326 return ERR_CAST(page);
6cf86a00 1327
b335eab8 1328 p = page_address(page);
6cf86a00
AJ
1329
1330 /* align our pointer to the offset of the super block */
b335eab8 1331 disk_super = p + offset_in_page(bytenr);
6cf86a00 1332
12659251 1333 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1334 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1335 btrfs_release_disk_super(p);
b335eab8 1336 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1337 }
1338
b335eab8
NB
1339 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1341
b335eab8 1342 return disk_super;
6cf86a00
AJ
1343}
1344
16cab91a 1345int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1346{
1347 int ret;
1348
1349 mutex_lock(&uuid_mutex);
16cab91a 1350 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1351 mutex_unlock(&uuid_mutex);
1352
1353 return ret;
1354}
1355
6f60cbd3
DS
1356/*
1357 * Look for a btrfs signature on a device. This may be called out of the mount path
1358 * and we are not allowed to call set_blocksize during the scan. The superblock
1359 * is read via pagecache
1360 */
36350e95
GJ
1361struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1362 void *holder)
8a4b83cc
CM
1363{
1364 struct btrfs_super_block *disk_super;
4306a974 1365 bool new_device_added = false;
36350e95 1366 struct btrfs_device *device = NULL;
8a4b83cc 1367 struct block_device *bdev;
12659251
NA
1368 u64 bytenr, bytenr_orig;
1369 int ret;
8a4b83cc 1370
899f9307
DS
1371 lockdep_assert_held(&uuid_mutex);
1372
6f60cbd3
DS
1373 /*
1374 * we would like to check all the supers, but that would make
1375 * a btrfs mount succeed after a mkfs from a different FS.
1376 * So, we need to add a special mount option to scan for
1377 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1378 */
6f60cbd3 1379
50d281fc
AJ
1380 /*
1381 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may
1382 * initiate the device scan which may race with the user's mount
1383 * or mkfs command, resulting in failure.
1384 * Since the device scan is solely for reading purposes, there is
1385 * no need for FMODE_EXCL. Additionally, the devices are read again
1386 * during the mount process. It is ok to get some inconsistent
1387 * values temporarily, as the device paths of the fsid are the only
1388 * required information for assembling the volume.
1389 */
6f60cbd3 1390 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1391 if (IS_ERR(bdev))
36350e95 1392 return ERR_CAST(bdev);
6f60cbd3 1393
12659251
NA
1394 bytenr_orig = btrfs_sb_offset(0);
1395 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1396 if (ret) {
1397 device = ERR_PTR(ret);
1398 goto error_bdev_put;
1399 }
12659251
NA
1400
1401 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1402 if (IS_ERR(disk_super)) {
1403 device = ERR_CAST(disk_super);
6f60cbd3 1404 goto error_bdev_put;
05a5c55d 1405 }
6f60cbd3 1406
4306a974 1407 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1408 if (!IS_ERR(device) && new_device_added)
1409 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1410
8f32380d 1411 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1412
1413error_bdev_put:
d4d77629 1414 blkdev_put(bdev, flags);
b6ed73bc 1415
36350e95 1416 return device;
8a4b83cc 1417}
0b86a832 1418
1c11b63e
JM
1419/*
1420 * Try to find a chunk that intersects [start, start + len] range and when one
1421 * such is found, record the end of it in *start
1422 */
1c11b63e
JM
1423static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1424 u64 len)
6df9a95e 1425{
1c11b63e 1426 u64 physical_start, physical_end;
6df9a95e 1427
1c11b63e 1428 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1429
1c11b63e
JM
1430 if (!find_first_extent_bit(&device->alloc_state, *start,
1431 &physical_start, &physical_end,
1432 CHUNK_ALLOCATED, NULL)) {
c152b63e 1433
1c11b63e
JM
1434 if (in_range(physical_start, *start, len) ||
1435 in_range(*start, physical_start,
1436 physical_end - physical_start)) {
1437 *start = physical_end + 1;
1438 return true;
6df9a95e
JB
1439 }
1440 }
1c11b63e 1441 return false;
6df9a95e
JB
1442}
1443
3b4ffa40
NA
1444static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1445{
1446 switch (device->fs_devices->chunk_alloc_policy) {
1447 case BTRFS_CHUNK_ALLOC_REGULAR:
37f85ec3 1448 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1cd6121f
NA
1449 case BTRFS_CHUNK_ALLOC_ZONED:
1450 /*
1451 * We don't care about the starting region like regular
1452 * allocator, because we anyway use/reserve the first two zones
1453 * for superblock logging.
1454 */
1455 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1456 default:
1457 BUG();
1458 }
1459}
1460
1cd6121f
NA
1461static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1462 u64 *hole_start, u64 *hole_size,
1463 u64 num_bytes)
1464{
1465 u64 zone_size = device->zone_info->zone_size;
1466 u64 pos;
1467 int ret;
1468 bool changed = false;
1469
1470 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1471
1472 while (*hole_size > 0) {
1473 pos = btrfs_find_allocatable_zones(device, *hole_start,
1474 *hole_start + *hole_size,
1475 num_bytes);
1476 if (pos != *hole_start) {
1477 *hole_size = *hole_start + *hole_size - pos;
1478 *hole_start = pos;
1479 changed = true;
1480 if (*hole_size < num_bytes)
1481 break;
1482 }
1483
1484 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1485
1486 /* Range is ensured to be empty */
1487 if (!ret)
1488 return changed;
1489
1490 /* Given hole range was invalid (outside of device) */
1491 if (ret == -ERANGE) {
1492 *hole_start += *hole_size;
d6f67afb 1493 *hole_size = 0;
7000babd 1494 return true;
1cd6121f
NA
1495 }
1496
1497 *hole_start += zone_size;
1498 *hole_size -= zone_size;
1499 changed = true;
1500 }
1501
1502 return changed;
1503}
1504
43dd529a
DS
1505/*
1506 * Check if specified hole is suitable for allocation.
1507 *
3b4ffa40
NA
1508 * @device: the device which we have the hole
1509 * @hole_start: starting position of the hole
1510 * @hole_size: the size of the hole
1511 * @num_bytes: the size of the free space that we need
1512 *
1cd6121f 1513 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1514 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1515 */
1516static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1517 u64 *hole_size, u64 num_bytes)
1518{
1519 bool changed = false;
1520 u64 hole_end = *hole_start + *hole_size;
1521
1cd6121f
NA
1522 for (;;) {
1523 /*
1524 * Check before we set max_hole_start, otherwise we could end up
1525 * sending back this offset anyway.
1526 */
1527 if (contains_pending_extent(device, hole_start, *hole_size)) {
1528 if (hole_end >= *hole_start)
1529 *hole_size = hole_end - *hole_start;
1530 else
1531 *hole_size = 0;
1532 changed = true;
1533 }
1534
1535 switch (device->fs_devices->chunk_alloc_policy) {
1536 case BTRFS_CHUNK_ALLOC_REGULAR:
1537 /* No extra check */
1538 break;
1539 case BTRFS_CHUNK_ALLOC_ZONED:
1540 if (dev_extent_hole_check_zoned(device, hole_start,
1541 hole_size, num_bytes)) {
1542 changed = true;
1543 /*
1544 * The changed hole can contain pending extent.
1545 * Loop again to check that.
1546 */
1547 continue;
1548 }
1549 break;
1550 default:
1551 BUG();
1552 }
3b4ffa40 1553
3b4ffa40 1554 break;
3b4ffa40
NA
1555 }
1556
1557 return changed;
1558}
6df9a95e 1559
0b86a832 1560/*
43dd529a
DS
1561 * Find free space in the specified device.
1562 *
499f377f
JM
1563 * @device: the device which we search the free space in
1564 * @num_bytes: the size of the free space that we need
1565 * @search_start: the position from which to begin the search
1566 * @start: store the start of the free space.
1567 * @len: the size of the free space. that we find, or the size
1568 * of the max free space if we don't find suitable free space
7bfc837d 1569 *
43dd529a
DS
1570 * This does a pretty simple search, the expectation is that it is called very
1571 * infrequently and that a given device has a small number of extents.
7bfc837d
MX
1572 *
1573 * @start is used to store the start of the free space if we find. But if we
1574 * don't find suitable free space, it will be used to store the start position
1575 * of the max free space.
1576 *
1577 * @len is used to store the size of the free space that we find.
1578 * But if we don't find suitable free space, it is used to store the size of
1579 * the max free space.
135da976
QW
1580 *
1581 * NOTE: This function will search *commit* root of device tree, and does extra
1582 * check to ensure dev extents are not double allocated.
1583 * This makes the function safe to allocate dev extents but may not report
1584 * correct usable device space, as device extent freed in current transaction
1a9fd417 1585 * is not reported as available.
0b86a832 1586 */
9e3246a5
QW
1587static int find_free_dev_extent_start(struct btrfs_device *device,
1588 u64 num_bytes, u64 search_start, u64 *start,
1589 u64 *len)
0b86a832 1590{
0b246afa
JM
1591 struct btrfs_fs_info *fs_info = device->fs_info;
1592 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1593 struct btrfs_key key;
7bfc837d 1594 struct btrfs_dev_extent *dev_extent;
2b82032c 1595 struct btrfs_path *path;
7bfc837d
MX
1596 u64 hole_size;
1597 u64 max_hole_start;
1598 u64 max_hole_size;
1599 u64 extent_end;
0b86a832
CM
1600 u64 search_end = device->total_bytes;
1601 int ret;
7bfc837d 1602 int slot;
0b86a832 1603 struct extent_buffer *l;
8cdc7c5b 1604
3b4ffa40 1605 search_start = dev_extent_search_start(device, search_start);
0b86a832 1606
1cd6121f
NA
1607 WARN_ON(device->zone_info &&
1608 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609
6df9a95e
JB
1610 path = btrfs_alloc_path();
1611 if (!path)
1612 return -ENOMEM;
f2ab7618 1613
7bfc837d
MX
1614 max_hole_start = search_start;
1615 max_hole_size = 0;
1616
f2ab7618 1617again:
401e29c1
AJ
1618 if (search_start >= search_end ||
1619 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1620 ret = -ENOSPC;
6df9a95e 1621 goto out;
7bfc837d
MX
1622 }
1623
e4058b54 1624 path->reada = READA_FORWARD;
6df9a95e
JB
1625 path->search_commit_root = 1;
1626 path->skip_locking = 1;
7bfc837d 1627
0b86a832
CM
1628 key.objectid = device->devid;
1629 key.offset = search_start;
1630 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1631
0ff40a91 1632 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1633 if (ret < 0)
7bfc837d 1634 goto out;
7bfc837d 1635
3c538de0 1636 while (search_start < search_end) {
0b86a832
CM
1637 l = path->nodes[0];
1638 slot = path->slots[0];
1639 if (slot >= btrfs_header_nritems(l)) {
1640 ret = btrfs_next_leaf(root, path);
1641 if (ret == 0)
1642 continue;
1643 if (ret < 0)
7bfc837d
MX
1644 goto out;
1645
1646 break;
0b86a832
CM
1647 }
1648 btrfs_item_key_to_cpu(l, &key, slot);
1649
1650 if (key.objectid < device->devid)
1651 goto next;
1652
1653 if (key.objectid > device->devid)
7bfc837d 1654 break;
0b86a832 1655
962a298f 1656 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1657 goto next;
9779b72f 1658
3c538de0
JB
1659 if (key.offset > search_end)
1660 break;
1661
7bfc837d
MX
1662 if (key.offset > search_start) {
1663 hole_size = key.offset - search_start;
3b4ffa40
NA
1664 dev_extent_hole_check(device, &search_start, &hole_size,
1665 num_bytes);
6df9a95e 1666
7bfc837d
MX
1667 if (hole_size > max_hole_size) {
1668 max_hole_start = search_start;
1669 max_hole_size = hole_size;
1670 }
9779b72f 1671
7bfc837d
MX
1672 /*
1673 * If this free space is greater than which we need,
1674 * it must be the max free space that we have found
1675 * until now, so max_hole_start must point to the start
1676 * of this free space and the length of this free space
1677 * is stored in max_hole_size. Thus, we return
1678 * max_hole_start and max_hole_size and go back to the
1679 * caller.
1680 */
1681 if (hole_size >= num_bytes) {
1682 ret = 0;
1683 goto out;
0b86a832
CM
1684 }
1685 }
0b86a832 1686
0b86a832 1687 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1688 extent_end = key.offset + btrfs_dev_extent_length(l,
1689 dev_extent);
1690 if (extent_end > search_start)
1691 search_start = extent_end;
0b86a832
CM
1692next:
1693 path->slots[0]++;
1694 cond_resched();
1695 }
0b86a832 1696
38c01b96 1697 /*
1698 * At this point, search_start should be the end of
1699 * allocated dev extents, and when shrinking the device,
1700 * search_end may be smaller than search_start.
1701 */
f2ab7618 1702 if (search_end > search_start) {
38c01b96 1703 hole_size = search_end - search_start;
3b4ffa40
NA
1704 if (dev_extent_hole_check(device, &search_start, &hole_size,
1705 num_bytes)) {
f2ab7618
ZL
1706 btrfs_release_path(path);
1707 goto again;
1708 }
0b86a832 1709
f2ab7618
ZL
1710 if (hole_size > max_hole_size) {
1711 max_hole_start = search_start;
1712 max_hole_size = hole_size;
1713 }
6df9a95e
JB
1714 }
1715
7bfc837d 1716 /* See above. */
f2ab7618 1717 if (max_hole_size < num_bytes)
7bfc837d
MX
1718 ret = -ENOSPC;
1719 else
1720 ret = 0;
1721
3c538de0 1722 ASSERT(max_hole_start + max_hole_size <= search_end);
7bfc837d 1723out:
2b82032c 1724 btrfs_free_path(path);
7bfc837d 1725 *start = max_hole_start;
b2117a39 1726 if (len)
7bfc837d 1727 *len = max_hole_size;
0b86a832
CM
1728 return ret;
1729}
1730
60dfdf25 1731int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1732 u64 *start, u64 *len)
1733{
499f377f 1734 /* FIXME use last free of some kind */
60dfdf25 1735 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1736}
1737
b2950863 1738static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1739 struct btrfs_device *device,
2196d6e8 1740 u64 start, u64 *dev_extent_len)
8f18cf13 1741{
0b246afa
JM
1742 struct btrfs_fs_info *fs_info = device->fs_info;
1743 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1744 int ret;
1745 struct btrfs_path *path;
8f18cf13 1746 struct btrfs_key key;
a061fc8d
CM
1747 struct btrfs_key found_key;
1748 struct extent_buffer *leaf = NULL;
1749 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1750
1751 path = btrfs_alloc_path();
1752 if (!path)
1753 return -ENOMEM;
1754
1755 key.objectid = device->devid;
1756 key.offset = start;
1757 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1758again:
8f18cf13 1759 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1760 if (ret > 0) {
1761 ret = btrfs_previous_item(root, path, key.objectid,
1762 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1763 if (ret)
1764 goto out;
a061fc8d
CM
1765 leaf = path->nodes[0];
1766 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1767 extent = btrfs_item_ptr(leaf, path->slots[0],
1768 struct btrfs_dev_extent);
1769 BUG_ON(found_key.offset > start || found_key.offset +
1770 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1771 key = found_key;
1772 btrfs_release_path(path);
1773 goto again;
a061fc8d
CM
1774 } else if (ret == 0) {
1775 leaf = path->nodes[0];
1776 extent = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_dev_extent);
79787eaa 1778 } else {
79787eaa 1779 goto out;
a061fc8d 1780 }
8f18cf13 1781
2196d6e8
MX
1782 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1783
8f18cf13 1784 ret = btrfs_del_item(trans, root, path);
79bd3712 1785 if (ret == 0)
3204d33c 1786 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1787out:
8f18cf13
CM
1788 btrfs_free_path(path);
1789 return ret;
1790}
1791
6df9a95e 1792static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1793{
6df9a95e
JB
1794 struct extent_map_tree *em_tree;
1795 struct extent_map *em;
1796 struct rb_node *n;
1797 u64 ret = 0;
0b86a832 1798
c8bf1b67 1799 em_tree = &fs_info->mapping_tree;
6df9a95e 1800 read_lock(&em_tree->lock);
07e1ce09 1801 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1802 if (n) {
1803 em = rb_entry(n, struct extent_map, rb_node);
1804 ret = em->start + em->len;
0b86a832 1805 }
6df9a95e
JB
1806 read_unlock(&em_tree->lock);
1807
0b86a832
CM
1808 return ret;
1809}
1810
53f10659
ID
1811static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1812 u64 *devid_ret)
0b86a832
CM
1813{
1814 int ret;
1815 struct btrfs_key key;
1816 struct btrfs_key found_key;
2b82032c
YZ
1817 struct btrfs_path *path;
1818
2b82032c
YZ
1819 path = btrfs_alloc_path();
1820 if (!path)
1821 return -ENOMEM;
0b86a832
CM
1822
1823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1824 key.type = BTRFS_DEV_ITEM_KEY;
1825 key.offset = (u64)-1;
1826
53f10659 1827 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1828 if (ret < 0)
1829 goto error;
1830
a06dee4d
AJ
1831 if (ret == 0) {
1832 /* Corruption */
1833 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1834 ret = -EUCLEAN;
1835 goto error;
1836 }
0b86a832 1837
53f10659
ID
1838 ret = btrfs_previous_item(fs_info->chunk_root, path,
1839 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1840 BTRFS_DEV_ITEM_KEY);
1841 if (ret) {
53f10659 1842 *devid_ret = 1;
0b86a832
CM
1843 } else {
1844 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1845 path->slots[0]);
53f10659 1846 *devid_ret = found_key.offset + 1;
0b86a832
CM
1847 }
1848 ret = 0;
1849error:
2b82032c 1850 btrfs_free_path(path);
0b86a832
CM
1851 return ret;
1852}
1853
1854/*
1855 * the device information is stored in the chunk root
1856 * the btrfs_device struct should be fully filled in
1857 */
c74a0b02 1858static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1859 struct btrfs_device *device)
0b86a832
CM
1860{
1861 int ret;
1862 struct btrfs_path *path;
1863 struct btrfs_dev_item *dev_item;
1864 struct extent_buffer *leaf;
1865 struct btrfs_key key;
1866 unsigned long ptr;
0b86a832 1867
0b86a832
CM
1868 path = btrfs_alloc_path();
1869 if (!path)
1870 return -ENOMEM;
1871
0b86a832
CM
1872 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1873 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1874 key.offset = device->devid;
0b86a832 1875
2bb2e00e 1876 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1877 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1878 &key, sizeof(*dev_item));
2bb2e00e 1879 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1880 if (ret)
1881 goto out;
1882
1883 leaf = path->nodes[0];
1884 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1885
1886 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1887 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1888 btrfs_set_device_type(leaf, dev_item, device->type);
1889 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1890 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1891 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1892 btrfs_set_device_total_bytes(leaf, dev_item,
1893 btrfs_device_get_disk_total_bytes(device));
1894 btrfs_set_device_bytes_used(leaf, dev_item,
1895 btrfs_device_get_bytes_used(device));
e17cade2
CM
1896 btrfs_set_device_group(leaf, dev_item, 0);
1897 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1898 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1899 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1900
410ba3a2 1901 ptr = btrfs_device_uuid(dev_item);
e17cade2 1902 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1903 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1904 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1905 ptr, BTRFS_FSID_SIZE);
0b86a832 1906 btrfs_mark_buffer_dirty(leaf);
0b86a832 1907
2b82032c 1908 ret = 0;
0b86a832
CM
1909out:
1910 btrfs_free_path(path);
1911 return ret;
1912}
8f18cf13 1913
5a1972bd
QW
1914/*
1915 * Function to update ctime/mtime for a given device path.
1916 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1917 *
1918 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1919 */
54fde91f 1920static void update_dev_time(const char *device_path)
5a1972bd 1921{
54fde91f 1922 struct path path;
8f96a5bf 1923 struct timespec64 now;
54fde91f 1924 int ret;
5a1972bd 1925
54fde91f
JB
1926 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1927 if (ret)
5a1972bd 1928 return;
8f96a5bf 1929
54fde91f
JB
1930 now = current_time(d_inode(path.dentry));
1931 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1932 path_put(&path);
5a1972bd
QW
1933}
1934
bbac5869
QW
1935static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1936 struct btrfs_device *device)
a061fc8d 1937{
f331a952 1938 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1939 int ret;
1940 struct btrfs_path *path;
a061fc8d 1941 struct btrfs_key key;
a061fc8d 1942
a061fc8d
CM
1943 path = btrfs_alloc_path();
1944 if (!path)
1945 return -ENOMEM;
1946
a061fc8d
CM
1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1948 key.type = BTRFS_DEV_ITEM_KEY;
1949 key.offset = device->devid;
1950
2bb2e00e 1951 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1952 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1953 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1954 if (ret) {
1955 if (ret > 0)
1956 ret = -ENOENT;
a061fc8d
CM
1957 goto out;
1958 }
1959
1960 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1961out:
1962 btrfs_free_path(path);
a061fc8d
CM
1963 return ret;
1964}
1965
3cc31a0d
DS
1966/*
1967 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1968 * filesystem. It's up to the caller to adjust that number regarding eg. device
1969 * replace.
1970 */
1971static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1972 u64 num_devices)
a061fc8d 1973{
a061fc8d 1974 u64 all_avail;
de98ced9 1975 unsigned seq;
418775a2 1976 int i;
a061fc8d 1977
de98ced9 1978 do {
bd45ffbc 1979 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1980
bd45ffbc
AJ
1981 all_avail = fs_info->avail_data_alloc_bits |
1982 fs_info->avail_system_alloc_bits |
1983 fs_info->avail_metadata_alloc_bits;
1984 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1985
418775a2 1986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1987 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1988 continue;
a061fc8d 1989
efc222f8
AJ
1990 if (num_devices < btrfs_raid_array[i].devs_min)
1991 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1992 }
1993
bd45ffbc 1994 return 0;
f1fa7f26
AJ
1995}
1996
c9162bdf
OS
1997static struct btrfs_device * btrfs_find_next_active_device(
1998 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1999{
2b82032c 2000 struct btrfs_device *next_device;
88acff64
AJ
2001
2002 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2003 if (next_device != device &&
e6e674bd
AJ
2004 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2005 && next_device->bdev)
88acff64
AJ
2006 return next_device;
2007 }
2008
2009 return NULL;
2010}
2011
2012/*
d24fa5c1 2013 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
2014 * and replace it with the provided or the next active device, in the context
2015 * where this function called, there should be always be another device (or
2016 * this_dev) which is active.
2017 */
b105e927 2018void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 2019 struct btrfs_device *next_device)
88acff64 2020{
d6507cf1 2021 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 2022
e493e8f9 2023 if (!next_device)
88acff64 2024 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2025 device);
88acff64
AJ
2026 ASSERT(next_device);
2027
2028 if (fs_info->sb->s_bdev &&
2029 (fs_info->sb->s_bdev == device->bdev))
2030 fs_info->sb->s_bdev = next_device->bdev;
2031
d24fa5c1
AJ
2032 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2033 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
2034}
2035
1da73967
AJ
2036/*
2037 * Return btrfs_fs_devices::num_devices excluding the device that's being
2038 * currently replaced.
2039 */
2040static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2041{
2042 u64 num_devices = fs_info->fs_devices->num_devices;
2043
cb5583dd 2044 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2045 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2046 ASSERT(num_devices > 1);
2047 num_devices--;
2048 }
cb5583dd 2049 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2050
2051 return num_devices;
2052}
2053
0e0078f7
CH
2054static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2055 struct block_device *bdev, int copy_num)
2056{
2057 struct btrfs_super_block *disk_super;
26ecf243
CH
2058 const size_t len = sizeof(disk_super->magic);
2059 const u64 bytenr = btrfs_sb_offset(copy_num);
0e0078f7
CH
2060 int ret;
2061
26ecf243 2062 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
0e0078f7
CH
2063 if (IS_ERR(disk_super))
2064 return;
2065
26ecf243
CH
2066 memset(&disk_super->magic, 0, len);
2067 folio_mark_dirty(virt_to_folio(disk_super));
2068 btrfs_release_disk_super(disk_super);
2069
2070 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
0e0078f7
CH
2071 if (ret)
2072 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2073 copy_num, ret);
0e0078f7
CH
2074}
2075
313b0858
JB
2076void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2077 struct block_device *bdev,
2078 const char *device_path)
6fbceb9f 2079{
6fbceb9f
JT
2080 int copy_num;
2081
2082 if (!bdev)
2083 return;
2084
2085 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
0e0078f7 2086 if (bdev_is_zoned(bdev))
12659251 2087 btrfs_reset_sb_log_zones(bdev, copy_num);
0e0078f7
CH
2088 else
2089 btrfs_scratch_superblock(fs_info, bdev, copy_num);
6fbceb9f
JT
2090 }
2091
2092 /* Notify udev that device has changed */
2093 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2094
2095 /* Update ctime/mtime for device path for libblkid */
54fde91f 2096 update_dev_time(device_path);
6fbceb9f
JT
2097}
2098
1a15eb72
JB
2099int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2100 struct btrfs_dev_lookup_args *args,
2101 struct block_device **bdev, fmode_t *mode)
f1fa7f26 2102{
bbac5869 2103 struct btrfs_trans_handle *trans;
f1fa7f26 2104 struct btrfs_device *device;
1f78160c 2105 struct btrfs_fs_devices *cur_devices;
b5185197 2106 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2107 u64 num_devices;
a061fc8d
CM
2108 int ret = 0;
2109
914a519b
JB
2110 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2111 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2112 return -EINVAL;
2113 }
2114
8ef9dc0f
JB
2115 /*
2116 * The device list in fs_devices is accessed without locks (neither
2117 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2118 * filesystem and another device rm cannot run.
2119 */
1da73967 2120 num_devices = btrfs_num_devices(fs_info);
8dabb742 2121
0b246afa 2122 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2123 if (ret)
bbac5869 2124 return ret;
a061fc8d 2125
1a15eb72
JB
2126 device = btrfs_find_device(fs_info->fs_devices, args);
2127 if (!device) {
2128 if (args->missing)
a27a94c2
NB
2129 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2130 else
1a15eb72 2131 ret = -ENOENT;
bbac5869 2132 return ret;
a27a94c2 2133 }
dfe25020 2134
eede2bf3
OS
2135 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2136 btrfs_warn_in_rcu(fs_info,
2137 "cannot remove device %s (devid %llu) due to active swapfile",
cb3e217b 2138 btrfs_dev_name(device), device->devid);
bbac5869 2139 return -ETXTBSY;
eede2bf3
OS
2140 }
2141
bbac5869
QW
2142 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2143 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2144
ebbede42 2145 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2146 fs_info->fs_devices->rw_devices == 1)
2147 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2148
ebbede42 2149 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2150 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2151 list_del_init(&device->dev_alloc_list);
c3929c36 2152 device->fs_devices->rw_devices--;
34441361 2153 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2154 }
a061fc8d
CM
2155
2156 ret = btrfs_shrink_device(device, 0);
2157 if (ret)
9b3517e9 2158 goto error_undo;
a061fc8d 2159
bbac5869
QW
2160 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2161 if (IS_ERR(trans)) {
2162 ret = PTR_ERR(trans);
9b3517e9 2163 goto error_undo;
bbac5869
QW
2164 }
2165
2166 ret = btrfs_rm_dev_item(trans, device);
2167 if (ret) {
2168 /* Any error in dev item removal is critical */
2169 btrfs_crit(fs_info,
2170 "failed to remove device item for devid %llu: %d",
2171 device->devid, ret);
2172 btrfs_abort_transaction(trans, ret);
2173 btrfs_end_transaction(trans);
2174 return ret;
2175 }
a061fc8d 2176
e12c9621 2177 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2178 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2179
2180 /*
2181 * the device list mutex makes sure that we don't change
2182 * the device list while someone else is writing out all
d7306801
FDBM
2183 * the device supers. Whoever is writing all supers, should
2184 * lock the device list mutex before getting the number of
2185 * devices in the super block (super_copy). Conversely,
2186 * whoever updates the number of devices in the super block
2187 * (super_copy) should hold the device list mutex.
e5e9a520 2188 */
1f78160c 2189
41a52a0f
AJ
2190 /*
2191 * In normal cases the cur_devices == fs_devices. But in case
2192 * of deleting a seed device, the cur_devices should point to
9675ea8c 2193 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2194 */
1f78160c 2195 cur_devices = device->fs_devices;
b5185197 2196 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2197 list_del_rcu(&device->dev_list);
e5e9a520 2198
41a52a0f
AJ
2199 cur_devices->num_devices--;
2200 cur_devices->total_devices--;
b4993e64
AJ
2201 /* Update total_devices of the parent fs_devices if it's seed */
2202 if (cur_devices != fs_devices)
2203 fs_devices->total_devices--;
2b82032c 2204
e6e674bd 2205 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2206 cur_devices->missing_devices--;
cd02dca5 2207
d6507cf1 2208 btrfs_assign_next_active_device(device, NULL);
2b82032c 2209
0bfaa9c5 2210 if (device->bdev) {
41a52a0f 2211 cur_devices->open_devices--;
0bfaa9c5 2212 /* remove sysfs entry */
53f8a74c 2213 btrfs_sysfs_remove_device(device);
0bfaa9c5 2214 }
99994cde 2215
0b246afa
JM
2216 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2217 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2218 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2219
cea67ab9 2220 /*
3fa421de
JB
2221 * At this point, the device is zero sized and detached from the
2222 * devices list. All that's left is to zero out the old supers and
2223 * free the device.
2224 *
2225 * We cannot call btrfs_close_bdev() here because we're holding the sb
2226 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2227 * block device and it's dependencies. Instead just flush the device
2228 * and let the caller do the final blkdev_put.
cea67ab9 2229 */
3fa421de 2230 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2231 btrfs_scratch_superblocks(fs_info, device->bdev,
2232 device->name->str);
3fa421de
JB
2233 if (device->bdev) {
2234 sync_blockdev(device->bdev);
2235 invalidate_bdev(device->bdev);
2236 }
2237 }
cea67ab9 2238
3fa421de
JB
2239 *bdev = device->bdev;
2240 *mode = device->mode;
8e75fd89
NB
2241 synchronize_rcu();
2242 btrfs_free_device(device);
cea67ab9 2243
8b41393f
JB
2244 /*
2245 * This can happen if cur_devices is the private seed devices list. We
2246 * cannot call close_fs_devices() here because it expects the uuid_mutex
2247 * to be held, but in fact we don't need that for the private
2248 * seed_devices, we can simply decrement cur_devices->opened and then
2249 * remove it from our list and free the fs_devices.
2250 */
8e906945 2251 if (cur_devices->num_devices == 0) {
944d3f9f 2252 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2253 ASSERT(cur_devices->opened == 1);
2254 cur_devices->opened--;
1f78160c 2255 free_fs_devices(cur_devices);
2b82032c
YZ
2256 }
2257
bbac5869
QW
2258 ret = btrfs_commit_transaction(trans);
2259
a061fc8d 2260 return ret;
24fc572f 2261
9b3517e9 2262error_undo:
ebbede42 2263 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2264 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2265 list_add(&device->dev_alloc_list,
b5185197 2266 &fs_devices->alloc_list);
c3929c36 2267 device->fs_devices->rw_devices++;
34441361 2268 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2269 }
bbac5869 2270 return ret;
a061fc8d
CM
2271}
2272
68a9db5f 2273void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2274{
d51908ce
AJ
2275 struct btrfs_fs_devices *fs_devices;
2276
68a9db5f 2277 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2278
25e8e911
AJ
2279 /*
2280 * in case of fs with no seed, srcdev->fs_devices will point
2281 * to fs_devices of fs_info. However when the dev being replaced is
2282 * a seed dev it will point to the seed's local fs_devices. In short
2283 * srcdev will have its correct fs_devices in both the cases.
2284 */
2285 fs_devices = srcdev->fs_devices;
d51908ce 2286
e93c89c1 2287 list_del_rcu(&srcdev->dev_list);
619c47f3 2288 list_del(&srcdev->dev_alloc_list);
d51908ce 2289 fs_devices->num_devices--;
e6e674bd 2290 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2291 fs_devices->missing_devices--;
e93c89c1 2292
ebbede42 2293 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2294 fs_devices->rw_devices--;
1357272f 2295
82372bc8 2296 if (srcdev->bdev)
d51908ce 2297 fs_devices->open_devices--;
084b6e7c
QW
2298}
2299
65237ee3 2300void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2301{
2302 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2303
a466c85e
JB
2304 mutex_lock(&uuid_mutex);
2305
14238819 2306 btrfs_close_bdev(srcdev);
8e75fd89
NB
2307 synchronize_rcu();
2308 btrfs_free_device(srcdev);
94d5f0c2 2309
94d5f0c2
AJ
2310 /* if this is no devs we rather delete the fs_devices */
2311 if (!fs_devices->num_devices) {
6dd38f81
AJ
2312 /*
2313 * On a mounted FS, num_devices can't be zero unless it's a
2314 * seed. In case of a seed device being replaced, the replace
2315 * target added to the sprout FS, so there will be no more
2316 * device left under the seed FS.
2317 */
2318 ASSERT(fs_devices->seeding);
2319
944d3f9f 2320 list_del_init(&fs_devices->seed_list);
0226e0eb 2321 close_fs_devices(fs_devices);
8bef8401 2322 free_fs_devices(fs_devices);
94d5f0c2 2323 }
a466c85e 2324 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2325}
2326
4f5ad7bd 2327void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2328{
4f5ad7bd 2329 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2330
d9a071f0 2331 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2332
53f8a74c 2333 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2334
779bf3fe 2335 if (tgtdev->bdev)
d9a071f0 2336 fs_devices->open_devices--;
779bf3fe 2337
d9a071f0 2338 fs_devices->num_devices--;
e93c89c1 2339
d6507cf1 2340 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2341
e93c89c1 2342 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2343
d9a071f0 2344 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2345
8f32380d
JT
2346 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2347 tgtdev->name->str);
14238819
AJ
2348
2349 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2350 synchronize_rcu();
2351 btrfs_free_device(tgtdev);
e93c89c1
SB
2352}
2353
43dd529a
DS
2354/*
2355 * Populate args from device at path.
faa775c4
JB
2356 *
2357 * @fs_info: the filesystem
2358 * @args: the args to populate
2359 * @path: the path to the device
2360 *
2361 * This will read the super block of the device at @path and populate @args with
2362 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2363 * lookup a device to operate on, but need to do it before we take any locks.
2364 * This properly handles the special case of "missing" that a user may pass in,
2365 * and does some basic sanity checks. The caller must make sure that @path is
2366 * properly NUL terminated before calling in, and must call
2367 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2368 * uuid buffers.
2369 *
2370 * Return: 0 for success, -errno for failure
2371 */
2372int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2373 struct btrfs_dev_lookup_args *args,
2374 const char *path)
7ba15b7d 2375{
7ba15b7d 2376 struct btrfs_super_block *disk_super;
7ba15b7d 2377 struct block_device *bdev;
faa775c4 2378 int ret;
7ba15b7d 2379
faa775c4
JB
2380 if (!path || !path[0])
2381 return -EINVAL;
2382 if (!strcmp(path, "missing")) {
2383 args->missing = true;
2384 return 0;
2385 }
8f32380d 2386
faa775c4
JB
2387 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2388 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2389 if (!args->uuid || !args->fsid) {
2390 btrfs_put_dev_args_from_path(args);
2391 return -ENOMEM;
2392 }
8f32380d 2393
faa775c4
JB
2394 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2395 &bdev, &disk_super);
9ea0106a
ZF
2396 if (ret) {
2397 btrfs_put_dev_args_from_path(args);
faa775c4 2398 return ret;
9ea0106a
ZF
2399 }
2400
faa775c4
JB
2401 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2402 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2403 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2404 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2405 else
faa775c4 2406 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2407 btrfs_release_disk_super(disk_super);
7ba15b7d 2408 blkdev_put(bdev, FMODE_READ);
faa775c4 2409 return 0;
7ba15b7d
SB
2410}
2411
5c5c0df0 2412/*
faa775c4
JB
2413 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2414 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2415 * that don't need to be freed.
5c5c0df0 2416 */
faa775c4
JB
2417void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2418{
2419 kfree(args->uuid);
2420 kfree(args->fsid);
2421 args->uuid = NULL;
2422 args->fsid = NULL;
2423}
2424
a27a94c2 2425struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2426 struct btrfs_fs_info *fs_info, u64 devid,
2427 const char *device_path)
24e0474b 2428{
562d7b15 2429 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2430 struct btrfs_device *device;
faa775c4 2431 int ret;
24e0474b 2432
5c5c0df0 2433 if (devid) {
562d7b15
JB
2434 args.devid = devid;
2435 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2436 if (!device)
2437 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2438 return device;
2439 }
2440
faa775c4
JB
2441 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2442 if (ret)
2443 return ERR_PTR(ret);
2444 device = btrfs_find_device(fs_info->fs_devices, &args);
2445 btrfs_put_dev_args_from_path(&args);
2446 if (!device)
6e927ceb 2447 return ERR_PTR(-ENOENT);
faa775c4 2448 return device;
24e0474b
AJ
2449}
2450
849eae5e 2451static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2452{
0b246afa 2453 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2454 struct btrfs_fs_devices *old_devices;
e4404d6e 2455 struct btrfs_fs_devices *seed_devices;
2b82032c 2456
a32bf9a3 2457 lockdep_assert_held(&uuid_mutex);
e4404d6e 2458 if (!fs_devices->seeding)
849eae5e 2459 return ERR_PTR(-EINVAL);
2b82032c 2460
427c8fdd
NB
2461 /*
2462 * Private copy of the seed devices, anchored at
2463 * fs_info->fs_devices->seed_list
2464 */
7239ff4b 2465 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378 2466 if (IS_ERR(seed_devices))
849eae5e 2467 return seed_devices;
2b82032c 2468
427c8fdd
NB
2469 /*
2470 * It's necessary to retain a copy of the original seed fs_devices in
2471 * fs_uuids so that filesystems which have been seeded can successfully
2472 * reference the seed device from open_seed_devices. This also supports
2473 * multiple fs seed.
2474 */
e4404d6e
YZ
2475 old_devices = clone_fs_devices(fs_devices);
2476 if (IS_ERR(old_devices)) {
2477 kfree(seed_devices);
849eae5e 2478 return old_devices;
2b82032c 2479 }
e4404d6e 2480
c4babc5e 2481 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2482
e4404d6e
YZ
2483 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2484 seed_devices->opened = 1;
2485 INIT_LIST_HEAD(&seed_devices->devices);
2486 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2487 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2488
849eae5e
AJ
2489 return seed_devices;
2490}
2491
2492/*
2493 * Splice seed devices into the sprout fs_devices.
2494 * Generate a new fsid for the sprouted read-write filesystem.
2495 */
2496static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2497 struct btrfs_fs_devices *seed_devices)
2498{
2499 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2500 struct btrfs_super_block *disk_super = fs_info->super_copy;
2501 struct btrfs_device *device;
2502 u64 super_flags;
2503
2504 /*
2505 * We are updating the fsid, the thread leading to device_list_add()
2506 * could race, so uuid_mutex is needed.
2507 */
2508 lockdep_assert_held(&uuid_mutex);
2509
2510 /*
2511 * The threads listed below may traverse dev_list but can do that without
2512 * device_list_mutex:
2513 * - All device ops and balance - as we are in btrfs_exclop_start.
2514 * - Various dev_list readers - are using RCU.
2515 * - btrfs_ioctl_fitrim() - is using RCU.
2516 *
2517 * For-read threads as below are using device_list_mutex:
2518 * - Readonly scrub btrfs_scrub_dev()
2519 * - Readonly scrub btrfs_scrub_progress()
2520 * - btrfs_get_dev_stats()
2521 */
2522 lockdep_assert_held(&fs_devices->device_list_mutex);
2523
1f78160c
XG
2524 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2525 synchronize_rcu);
2196d6e8
MX
2526 list_for_each_entry(device, &seed_devices->devices, dev_list)
2527 device->fs_devices = seed_devices;
c9513edb 2528
0395d84f 2529 fs_devices->seeding = false;
2b82032c
YZ
2530 fs_devices->num_devices = 0;
2531 fs_devices->open_devices = 0;
69611ac8 2532 fs_devices->missing_devices = 0;
7f0432d0 2533 fs_devices->rotating = false;
944d3f9f 2534 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2535
2536 generate_random_uuid(fs_devices->fsid);
7239ff4b 2537 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2538 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2539
2b82032c
YZ
2540 super_flags = btrfs_super_flags(disk_super) &
2541 ~BTRFS_SUPER_FLAG_SEEDING;
2542 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2543}
2544
2545/*
01327610 2546 * Store the expected generation for seed devices in device items.
2b82032c 2547 */
5c466629 2548static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2549{
562d7b15 2550 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2551 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2552 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2553 struct btrfs_path *path;
2554 struct extent_buffer *leaf;
2555 struct btrfs_dev_item *dev_item;
2556 struct btrfs_device *device;
2557 struct btrfs_key key;
44880fdc 2558 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2559 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2560 int ret;
2561
2562 path = btrfs_alloc_path();
2563 if (!path)
2564 return -ENOMEM;
2565
2b82032c
YZ
2566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2567 key.offset = 0;
2568 key.type = BTRFS_DEV_ITEM_KEY;
2569
2570 while (1) {
2bb2e00e 2571 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2572 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2573 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2574 if (ret < 0)
2575 goto error;
2576
2577 leaf = path->nodes[0];
2578next_slot:
2579 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2580 ret = btrfs_next_leaf(root, path);
2581 if (ret > 0)
2582 break;
2583 if (ret < 0)
2584 goto error;
2585 leaf = path->nodes[0];
2586 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2587 btrfs_release_path(path);
2b82032c
YZ
2588 continue;
2589 }
2590
2591 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2592 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2593 key.type != BTRFS_DEV_ITEM_KEY)
2594 break;
2595
2596 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2597 struct btrfs_dev_item);
562d7b15 2598 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2599 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2600 BTRFS_UUID_SIZE);
1473b24e 2601 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2602 BTRFS_FSID_SIZE);
562d7b15
JB
2603 args.uuid = dev_uuid;
2604 args.fsid = fs_uuid;
2605 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2606 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2607
2608 if (device->fs_devices->seeding) {
2609 btrfs_set_device_generation(leaf, dev_item,
2610 device->generation);
2611 btrfs_mark_buffer_dirty(leaf);
2612 }
2613
2614 path->slots[0]++;
2615 goto next_slot;
2616 }
2617 ret = 0;
2618error:
2619 btrfs_free_path(path);
2620 return ret;
2621}
2622
da353f6b 2623int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2624{
5112febb 2625 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2626 struct btrfs_trans_handle *trans;
2627 struct btrfs_device *device;
2628 struct block_device *bdev;
0b246afa 2629 struct super_block *sb = fs_info->sb;
5da54bc1 2630 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8ba7d5f5 2631 struct btrfs_fs_devices *seed_devices = NULL;
39379faa
NA
2632 u64 orig_super_total_bytes;
2633 u64 orig_super_num_devices;
788f20eb 2634 int ret = 0;
fd880809 2635 bool seeding_dev = false;
44cab9ba 2636 bool locked = false;
788f20eb 2637
5da54bc1 2638 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2639 return -EROFS;
788f20eb 2640
a5d16333 2641 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2642 fs_info->bdev_holder);
7f59203a
JB
2643 if (IS_ERR(bdev))
2644 return PTR_ERR(bdev);
a2135011 2645
b70f5097
NA
2646 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2647 ret = -EINVAL;
2648 goto error;
2649 }
2650
5da54bc1 2651 if (fs_devices->seeding) {
fd880809 2652 seeding_dev = true;
2b82032c
YZ
2653 down_write(&sb->s_umount);
2654 mutex_lock(&uuid_mutex);
44cab9ba 2655 locked = true;
2b82032c
YZ
2656 }
2657
b9ba017f 2658 sync_blockdev(bdev);
a2135011 2659
f4cfa9bd
NB
2660 rcu_read_lock();
2661 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2662 if (device->bdev == bdev) {
2663 ret = -EEXIST;
f4cfa9bd 2664 rcu_read_unlock();
2b82032c 2665 goto error;
788f20eb
CM
2666 }
2667 }
f4cfa9bd 2668 rcu_read_unlock();
788f20eb 2669
bb21e302 2670 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
12bd2fc0 2671 if (IS_ERR(device)) {
788f20eb 2672 /* we can safely leave the fs_devices entry around */
12bd2fc0 2673 ret = PTR_ERR(device);
2b82032c 2674 goto error;
788f20eb
CM
2675 }
2676
5b316468
NA
2677 device->fs_info = fs_info;
2678 device->bdev = bdev;
4889bc05
AJ
2679 ret = lookup_bdev(device_path, &device->devt);
2680 if (ret)
2681 goto error_free_device;
5b316468 2682
16beac87 2683 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2684 if (ret)
2685 goto error_free_device;
2686
a22285a6 2687 trans = btrfs_start_transaction(root, 0);
98d5dc13 2688 if (IS_ERR(trans)) {
98d5dc13 2689 ret = PTR_ERR(trans);
5b316468 2690 goto error_free_zone;
98d5dc13
TI
2691 }
2692
ebbede42 2693 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2694 device->generation = trans->transid;
0b246afa
JM
2695 device->io_width = fs_info->sectorsize;
2696 device->io_align = fs_info->sectorsize;
2697 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2698 device->total_bytes =
2699 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2700 device->disk_total_bytes = device->total_bytes;
935e5cc9 2701 device->commit_total_bytes = device->total_bytes;
e12c9621 2702 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2703 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2704 device->mode = FMODE_EXCL;
27087f37 2705 device->dev_stats_valid = 1;
9f6d2510 2706 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2707
2b82032c 2708 if (seeding_dev) {
a0a1db70 2709 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2710
2711 /* GFP_KERNEL allocation must not be under device_list_mutex */
2712 seed_devices = btrfs_init_sprout(fs_info);
2713 if (IS_ERR(seed_devices)) {
2714 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2715 btrfs_abort_transaction(trans, ret);
2716 goto error_trans;
2717 }
849eae5e
AJ
2718 }
2719
2720 mutex_lock(&fs_devices->device_list_mutex);
2721 if (seeding_dev) {
2722 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2723 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2724 device);
2b82032c 2725 }
788f20eb 2726
5da54bc1 2727 device->fs_devices = fs_devices;
e5e9a520 2728
34441361 2729 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2730 list_add_rcu(&device->dev_list, &fs_devices->devices);
2731 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2732 fs_devices->num_devices++;
2733 fs_devices->open_devices++;
2734 fs_devices->rw_devices++;
2735 fs_devices->total_devices++;
2736 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2737
a5ed45f8 2738 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2739
10f0d2a5 2740 if (!bdev_nonrot(bdev))
7f0432d0 2741 fs_devices->rotating = true;
c289811c 2742
39379faa 2743 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2744 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2745 round_down(orig_super_total_bytes + device->total_bytes,
2746 fs_info->sectorsize));
788f20eb 2747
39379faa
NA
2748 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2749 btrfs_set_super_num_devices(fs_info->super_copy,
2750 orig_super_num_devices + 1);
0d39376a 2751
2196d6e8
MX
2752 /*
2753 * we've got more storage, clear any full flags on the space
2754 * infos
2755 */
0b246afa 2756 btrfs_clear_space_info_full(fs_info);
2196d6e8 2757
34441361 2758 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2759
2760 /* Add sysfs device entry */
cd36da2e 2761 btrfs_sysfs_add_device(device);
ca10845a 2762
5da54bc1 2763 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2764
2b82032c 2765 if (seeding_dev) {
34441361 2766 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2767 ret = init_first_rw_device(trans);
34441361 2768 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2769 if (ret) {
66642832 2770 btrfs_abort_transaction(trans, ret);
d31c32f6 2771 goto error_sysfs;
005d6427 2772 }
2196d6e8
MX
2773 }
2774
8e87e856 2775 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2776 if (ret) {
66642832 2777 btrfs_abort_transaction(trans, ret);
d31c32f6 2778 goto error_sysfs;
2196d6e8
MX
2779 }
2780
2781 if (seeding_dev) {
5c466629 2782 ret = btrfs_finish_sprout(trans);
005d6427 2783 if (ret) {
66642832 2784 btrfs_abort_transaction(trans, ret);
d31c32f6 2785 goto error_sysfs;
005d6427 2786 }
b2373f25 2787
8e560081
NB
2788 /*
2789 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2790 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2791 */
2792 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2793 }
2794
3a45bb20 2795 ret = btrfs_commit_transaction(trans);
a2135011 2796
2b82032c
YZ
2797 if (seeding_dev) {
2798 mutex_unlock(&uuid_mutex);
2799 up_write(&sb->s_umount);
44cab9ba 2800 locked = false;
788f20eb 2801
79787eaa
JM
2802 if (ret) /* transaction commit */
2803 return ret;
2804
2ff7e61e 2805 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2806 if (ret < 0)
0b246afa 2807 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2808 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2809 trans = btrfs_attach_transaction(root);
2810 if (IS_ERR(trans)) {
2811 if (PTR_ERR(trans) == -ENOENT)
2812 return 0;
7132a262
AJ
2813 ret = PTR_ERR(trans);
2814 trans = NULL;
2815 goto error_sysfs;
671415b7 2816 }
3a45bb20 2817 ret = btrfs_commit_transaction(trans);
2b82032c 2818 }
c9e9f97b 2819
7f551d96
AJ
2820 /*
2821 * Now that we have written a new super block to this device, check all
2822 * other fs_devices list if device_path alienates any other scanned
2823 * device.
2824 * We can ignore the return value as it typically returns -EINVAL and
2825 * only succeeds if the device was an alien.
2826 */
4889bc05 2827 btrfs_forget_devices(device->devt);
7f551d96
AJ
2828
2829 /* Update ctime/mtime for blkid or udev */
54fde91f 2830 update_dev_time(device_path);
7f551d96 2831
2b82032c 2832 return ret;
79787eaa 2833
d31c32f6 2834error_sysfs:
53f8a74c 2835 btrfs_sysfs_remove_device(device);
39379faa
NA
2836 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2837 mutex_lock(&fs_info->chunk_mutex);
2838 list_del_rcu(&device->dev_list);
2839 list_del(&device->dev_alloc_list);
2840 fs_info->fs_devices->num_devices--;
2841 fs_info->fs_devices->open_devices--;
2842 fs_info->fs_devices->rw_devices--;
2843 fs_info->fs_devices->total_devices--;
2844 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2845 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2846 btrfs_set_super_total_bytes(fs_info->super_copy,
2847 orig_super_total_bytes);
2848 btrfs_set_super_num_devices(fs_info->super_copy,
2849 orig_super_num_devices);
2850 mutex_unlock(&fs_info->chunk_mutex);
2851 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2852error_trans:
0af2c4bf 2853 if (seeding_dev)
a0a1db70 2854 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2855 if (trans)
2856 btrfs_end_transaction(trans);
5b316468
NA
2857error_free_zone:
2858 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2859error_free_device:
a425f9d4 2860 btrfs_free_device(device);
2b82032c 2861error:
e525fd89 2862 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2863 if (locked) {
2b82032c
YZ
2864 mutex_unlock(&uuid_mutex);
2865 up_write(&sb->s_umount);
2866 }
c9e9f97b 2867 return ret;
788f20eb
CM
2868}
2869
d397712b
CM
2870static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2871 struct btrfs_device *device)
0b86a832
CM
2872{
2873 int ret;
2874 struct btrfs_path *path;
0b246afa 2875 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2876 struct btrfs_dev_item *dev_item;
2877 struct extent_buffer *leaf;
2878 struct btrfs_key key;
2879
0b86a832
CM
2880 path = btrfs_alloc_path();
2881 if (!path)
2882 return -ENOMEM;
2883
2884 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2885 key.type = BTRFS_DEV_ITEM_KEY;
2886 key.offset = device->devid;
2887
2888 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2889 if (ret < 0)
2890 goto out;
2891
2892 if (ret > 0) {
2893 ret = -ENOENT;
2894 goto out;
2895 }
2896
2897 leaf = path->nodes[0];
2898 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2899
2900 btrfs_set_device_id(leaf, dev_item, device->devid);
2901 btrfs_set_device_type(leaf, dev_item, device->type);
2902 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2903 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2904 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2905 btrfs_set_device_total_bytes(leaf, dev_item,
2906 btrfs_device_get_disk_total_bytes(device));
2907 btrfs_set_device_bytes_used(leaf, dev_item,
2908 btrfs_device_get_bytes_used(device));
0b86a832
CM
2909 btrfs_mark_buffer_dirty(leaf);
2910
2911out:
2912 btrfs_free_path(path);
2913 return ret;
2914}
2915
2196d6e8 2916int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2917 struct btrfs_device *device, u64 new_size)
2918{
0b246afa
JM
2919 struct btrfs_fs_info *fs_info = device->fs_info;
2920 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2921 u64 old_total;
2922 u64 diff;
2bb2e00e 2923 int ret;
8f18cf13 2924
ebbede42 2925 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2926 return -EACCES;
2196d6e8 2927
7dfb8be1
NB
2928 new_size = round_down(new_size, fs_info->sectorsize);
2929
34441361 2930 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2931 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2932 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2933
63a212ab 2934 if (new_size <= device->total_bytes ||
401e29c1 2935 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2936 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2937 return -EINVAL;
2196d6e8 2938 }
2b82032c 2939
7dfb8be1
NB
2940 btrfs_set_super_total_bytes(super_copy,
2941 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2942 device->fs_devices->total_rw_bytes += diff;
2943
7cc8e58d
MX
2944 btrfs_device_set_total_bytes(device, new_size);
2945 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2946 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2947 if (list_empty(&device->post_commit_list))
2948 list_add_tail(&device->post_commit_list,
2949 &trans->transaction->dev_update_list);
34441361 2950 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2951
2bb2e00e
FM
2952 btrfs_reserve_chunk_metadata(trans, false);
2953 ret = btrfs_update_device(trans, device);
2954 btrfs_trans_release_chunk_metadata(trans);
2955
2956 return ret;
8f18cf13
CM
2957}
2958
f4208794 2959static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2960{
f4208794 2961 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2962 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2963 int ret;
2964 struct btrfs_path *path;
2965 struct btrfs_key key;
2966
8f18cf13
CM
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2970
408fbf19 2971 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2972 key.offset = chunk_offset;
2973 key.type = BTRFS_CHUNK_ITEM_KEY;
2974
2975 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2976 if (ret < 0)
2977 goto out;
2978 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2979 btrfs_handle_fs_error(fs_info, -ENOENT,
2980 "Failed lookup while freeing chunk.");
79787eaa
JM
2981 ret = -ENOENT;
2982 goto out;
2983 }
8f18cf13
CM
2984
2985 ret = btrfs_del_item(trans, root, path);
79787eaa 2986 if (ret < 0)
0b246afa
JM
2987 btrfs_handle_fs_error(fs_info, ret,
2988 "Failed to delete chunk item.");
79787eaa 2989out:
8f18cf13 2990 btrfs_free_path(path);
65a246c5 2991 return ret;
8f18cf13
CM
2992}
2993
408fbf19 2994static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2995{
0b246afa 2996 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2997 struct btrfs_disk_key *disk_key;
2998 struct btrfs_chunk *chunk;
2999 u8 *ptr;
3000 int ret = 0;
3001 u32 num_stripes;
3002 u32 array_size;
3003 u32 len = 0;
3004 u32 cur;
3005 struct btrfs_key key;
3006
79bd3712 3007 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
3008 array_size = btrfs_super_sys_array_size(super_copy);
3009
3010 ptr = super_copy->sys_chunk_array;
3011 cur = 0;
3012
3013 while (cur < array_size) {
3014 disk_key = (struct btrfs_disk_key *)ptr;
3015 btrfs_disk_key_to_cpu(&key, disk_key);
3016
3017 len = sizeof(*disk_key);
3018
3019 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3020 chunk = (struct btrfs_chunk *)(ptr + len);
3021 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3022 len += btrfs_chunk_item_size(num_stripes);
3023 } else {
3024 ret = -EIO;
3025 break;
3026 }
408fbf19 3027 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
3028 key.offset == chunk_offset) {
3029 memmove(ptr, ptr + len, array_size - (cur + len));
3030 array_size -= len;
3031 btrfs_set_super_sys_array_size(super_copy, array_size);
3032 } else {
3033 ptr += len;
3034 cur += len;
3035 }
3036 }
3037 return ret;
3038}
3039
60ca842e
OS
3040/*
3041 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3042 * @logical: Logical block offset in bytes.
3043 * @length: Length of extent in bytes.
3044 *
3045 * Return: Chunk mapping or ERR_PTR.
3046 */
3047struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3048 u64 logical, u64 length)
592d92ee
LB
3049{
3050 struct extent_map_tree *em_tree;
3051 struct extent_map *em;
3052
c8bf1b67 3053 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3054 read_lock(&em_tree->lock);
3055 em = lookup_extent_mapping(em_tree, logical, length);
3056 read_unlock(&em_tree->lock);
3057
3058 if (!em) {
3059 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3060 logical, length);
3061 return ERR_PTR(-EINVAL);
3062 }
3063
3064 if (em->start > logical || em->start + em->len < logical) {
3065 btrfs_crit(fs_info,
3066 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3067 logical, length, em->start, em->start + em->len);
3068 free_extent_map(em);
3069 return ERR_PTR(-EINVAL);
3070 }
3071
3072 /* callers are responsible for dropping em's ref. */
3073 return em;
3074}
3075
79bd3712
FM
3076static int remove_chunk_item(struct btrfs_trans_handle *trans,
3077 struct map_lookup *map, u64 chunk_offset)
3078{
3079 int i;
3080
3081 /*
3082 * Removing chunk items and updating the device items in the chunks btree
3083 * requires holding the chunk_mutex.
3084 * See the comment at btrfs_chunk_alloc() for the details.
3085 */
3086 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3087
3088 for (i = 0; i < map->num_stripes; i++) {
3089 int ret;
3090
3091 ret = btrfs_update_device(trans, map->stripes[i].dev);
3092 if (ret)
3093 return ret;
3094 }
3095
3096 return btrfs_free_chunk(trans, chunk_offset);
3097}
3098
97aff912 3099int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3100{
97aff912 3101 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3102 struct extent_map *em;
3103 struct map_lookup *map;
2196d6e8 3104 u64 dev_extent_len = 0;
47ab2a6c 3105 int i, ret = 0;
0b246afa 3106 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3107
60ca842e 3108 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3109 if (IS_ERR(em)) {
47ab2a6c
JB
3110 /*
3111 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3112 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3113 * do anything we still error out.
3114 */
3115 ASSERT(0);
592d92ee 3116 return PTR_ERR(em);
47ab2a6c 3117 }
95617d69 3118 map = em->map_lookup;
8f18cf13 3119
57ba4cb8 3120 /*
79bd3712
FM
3121 * First delete the device extent items from the devices btree.
3122 * We take the device_list_mutex to avoid racing with the finishing phase
3123 * of a device replace operation. See the comment below before acquiring
3124 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3125 * because that can result in a deadlock when deleting the device extent
3126 * items from the devices btree - COWing an extent buffer from the btree
3127 * may result in allocating a new metadata chunk, which would attempt to
3128 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3129 */
3130 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3131 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3132 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3133 ret = btrfs_free_dev_extent(trans, device,
3134 map->stripes[i].physical,
3135 &dev_extent_len);
47ab2a6c 3136 if (ret) {
57ba4cb8 3137 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3138 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3139 goto out;
3140 }
a061fc8d 3141
2196d6e8 3142 if (device->bytes_used > 0) {
34441361 3143 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3144 btrfs_device_set_bytes_used(device,
3145 device->bytes_used - dev_extent_len);
a5ed45f8 3146 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3147 btrfs_clear_space_info_full(fs_info);
34441361 3148 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3149 }
79bd3712
FM
3150 }
3151 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3152
79bd3712
FM
3153 /*
3154 * We acquire fs_info->chunk_mutex for 2 reasons:
3155 *
3156 * 1) Just like with the first phase of the chunk allocation, we must
3157 * reserve system space, do all chunk btree updates and deletions, and
3158 * update the system chunk array in the superblock while holding this
3159 * mutex. This is for similar reasons as explained on the comment at
3160 * the top of btrfs_chunk_alloc();
3161 *
3162 * 2) Prevent races with the final phase of a device replace operation
3163 * that replaces the device object associated with the map's stripes,
3164 * because the device object's id can change at any time during that
3165 * final phase of the device replace operation
3166 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3167 * replaced device and then see it with an ID of
3168 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3169 * the device item, which does not exists on the chunk btree.
3170 * The finishing phase of device replace acquires both the
3171 * device_list_mutex and the chunk_mutex, in that order, so we are
3172 * safe by just acquiring the chunk_mutex.
3173 */
3174 trans->removing_chunk = true;
3175 mutex_lock(&fs_info->chunk_mutex);
3176
3177 check_system_chunk(trans, map->type);
3178
3179 ret = remove_chunk_item(trans, map, chunk_offset);
3180 /*
3181 * Normally we should not get -ENOSPC since we reserved space before
3182 * through the call to check_system_chunk().
3183 *
3184 * Despite our system space_info having enough free space, we may not
3185 * be able to allocate extents from its block groups, because all have
3186 * an incompatible profile, which will force us to allocate a new system
3187 * block group with the right profile, or right after we called
3188 * check_system_space() above, a scrub turned the only system block group
3189 * with enough free space into RO mode.
3190 * This is explained with more detail at do_chunk_alloc().
3191 *
3192 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3193 */
3194 if (ret == -ENOSPC) {
3195 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3196 struct btrfs_block_group *sys_bg;
3197
f6f39f7a 3198 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3199 if (IS_ERR(sys_bg)) {
3200 ret = PTR_ERR(sys_bg);
3201 btrfs_abort_transaction(trans, ret);
3202 goto out;
3203 }
3204
3205 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3206 if (ret) {
64bc6c2a
NB
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
dfe25020 3209 }
57ba4cb8 3210
79bd3712
FM
3211 ret = remove_chunk_item(trans, map, chunk_offset);
3212 if (ret) {
3213 btrfs_abort_transaction(trans, ret);
3214 goto out;
3215 }
3216 } else if (ret) {
66642832 3217 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3218 goto out;
3219 }
8f18cf13 3220
6bccf3ab 3221 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3222
8f18cf13 3223 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3224 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3225 if (ret) {
66642832 3226 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3227 goto out;
3228 }
8f18cf13
CM
3229 }
3230
79bd3712
FM
3231 mutex_unlock(&fs_info->chunk_mutex);
3232 trans->removing_chunk = false;
3233
3234 /*
3235 * We are done with chunk btree updates and deletions, so release the
3236 * system space we previously reserved (with check_system_chunk()).
3237 */
3238 btrfs_trans_release_chunk_metadata(trans);
3239
5a98ec01 3240 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3241 if (ret) {
66642832 3242 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3243 goto out;
3244 }
2b82032c 3245
47ab2a6c 3246out:
79bd3712
FM
3247 if (trans->removing_chunk) {
3248 mutex_unlock(&fs_info->chunk_mutex);
3249 trans->removing_chunk = false;
3250 }
2b82032c
YZ
3251 /* once for us */
3252 free_extent_map(em);
47ab2a6c
JB
3253 return ret;
3254}
2b82032c 3255
18bb8bbf 3256int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3257{
5b4aacef 3258 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3259 struct btrfs_trans_handle *trans;
b0643e59 3260 struct btrfs_block_group *block_group;
01e86008 3261 u64 length;
47ab2a6c 3262 int ret;
2b82032c 3263
4b349253
JB
3264 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3265 btrfs_err(fs_info,
3266 "relocate: not supported on extent tree v2 yet");
3267 return -EINVAL;
3268 }
3269
67c5e7d4
FM
3270 /*
3271 * Prevent races with automatic removal of unused block groups.
3272 * After we relocate and before we remove the chunk with offset
3273 * chunk_offset, automatic removal of the block group can kick in,
3274 * resulting in a failure when calling btrfs_remove_chunk() below.
3275 *
3276 * Make sure to acquire this mutex before doing a tree search (dev
3277 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3278 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3279 * we release the path used to search the chunk/dev tree and before
3280 * the current task acquires this mutex and calls us.
3281 */
f3372065 3282 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3283
47ab2a6c 3284 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3285 btrfs_scrub_pause(fs_info);
0b246afa 3286 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3287 btrfs_scrub_continue(fs_info);
2d82a40a
FM
3288 if (ret) {
3289 /*
3290 * If we had a transaction abort, stop all running scrubs.
3291 * See transaction.c:cleanup_transaction() why we do it here.
3292 */
3293 if (BTRFS_FS_ERROR(fs_info))
3294 btrfs_scrub_cancel(fs_info);
47ab2a6c 3295 return ret;
2d82a40a 3296 }
47ab2a6c 3297
b0643e59
DZ
3298 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3299 if (!block_group)
3300 return -ENOENT;
3301 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3302 length = block_group->length;
b0643e59
DZ
3303 btrfs_put_block_group(block_group);
3304
01e86008
JT
3305 /*
3306 * On a zoned file system, discard the whole block group, this will
3307 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3308 * resetting the zone fails, don't treat it as a fatal problem from the
3309 * filesystem's point of view.
3310 */
3311 if (btrfs_is_zoned(fs_info)) {
3312 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3313 if (ret)
3314 btrfs_info(fs_info,
3315 "failed to reset zone %llu after relocation",
3316 chunk_offset);
3317 }
3318
19c4d2f9
CM
3319 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3320 chunk_offset);
3321 if (IS_ERR(trans)) {
3322 ret = PTR_ERR(trans);
3323 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3324 return ret;
3325 }
3326
47ab2a6c 3327 /*
19c4d2f9
CM
3328 * step two, delete the device extents and the
3329 * chunk tree entries
47ab2a6c 3330 */
97aff912 3331 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3332 btrfs_end_transaction(trans);
19c4d2f9 3333 return ret;
2b82032c
YZ
3334}
3335
2ff7e61e 3336static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3337{
0b246afa 3338 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3339 struct btrfs_path *path;
3340 struct extent_buffer *leaf;
3341 struct btrfs_chunk *chunk;
3342 struct btrfs_key key;
3343 struct btrfs_key found_key;
2b82032c 3344 u64 chunk_type;
ba1bf481
JB
3345 bool retried = false;
3346 int failed = 0;
2b82032c
YZ
3347 int ret;
3348
3349 path = btrfs_alloc_path();
3350 if (!path)
3351 return -ENOMEM;
3352
ba1bf481 3353again:
2b82032c
YZ
3354 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3355 key.offset = (u64)-1;
3356 key.type = BTRFS_CHUNK_ITEM_KEY;
3357
3358 while (1) {
f3372065 3359 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3360 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3361 if (ret < 0) {
f3372065 3362 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3363 goto error;
67c5e7d4 3364 }
79787eaa 3365 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3366
3367 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3368 key.type);
67c5e7d4 3369 if (ret)
f3372065 3370 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3371 if (ret < 0)
3372 goto error;
3373 if (ret > 0)
3374 break;
1a40e23b 3375
2b82032c
YZ
3376 leaf = path->nodes[0];
3377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3378
2b82032c
YZ
3379 chunk = btrfs_item_ptr(leaf, path->slots[0],
3380 struct btrfs_chunk);
3381 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3382 btrfs_release_path(path);
8f18cf13 3383
2b82032c 3384 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3385 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3386 if (ret == -ENOSPC)
3387 failed++;
14586651
HS
3388 else
3389 BUG_ON(ret);
2b82032c 3390 }
f3372065 3391 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3392
2b82032c
YZ
3393 if (found_key.offset == 0)
3394 break;
3395 key.offset = found_key.offset - 1;
3396 }
3397 ret = 0;
ba1bf481
JB
3398 if (failed && !retried) {
3399 failed = 0;
3400 retried = true;
3401 goto again;
fae7f21c 3402 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3403 ret = -ENOSPC;
3404 }
2b82032c
YZ
3405error:
3406 btrfs_free_path(path);
3407 return ret;
8f18cf13
CM
3408}
3409
a6f93c71
LB
3410/*
3411 * return 1 : allocate a data chunk successfully,
3412 * return <0: errors during allocating a data chunk,
3413 * return 0 : no need to allocate a data chunk.
3414 */
3415static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3416 u64 chunk_offset)
3417{
32da5386 3418 struct btrfs_block_group *cache;
a6f93c71
LB
3419 u64 bytes_used;
3420 u64 chunk_type;
3421
3422 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3423 ASSERT(cache);
3424 chunk_type = cache->flags;
3425 btrfs_put_block_group(cache);
3426
5ae21692
JT
3427 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3428 return 0;
3429
3430 spin_lock(&fs_info->data_sinfo->lock);
3431 bytes_used = fs_info->data_sinfo->bytes_used;
3432 spin_unlock(&fs_info->data_sinfo->lock);
3433
3434 if (!bytes_used) {
3435 struct btrfs_trans_handle *trans;
3436 int ret;
3437
3438 trans = btrfs_join_transaction(fs_info->tree_root);
3439 if (IS_ERR(trans))
3440 return PTR_ERR(trans);
3441
3442 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3443 btrfs_end_transaction(trans);
3444 if (ret < 0)
3445 return ret;
3446 return 1;
a6f93c71 3447 }
5ae21692 3448
a6f93c71
LB
3449 return 0;
3450}
3451
6bccf3ab 3452static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3453 struct btrfs_balance_control *bctl)
3454{
6bccf3ab 3455 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3456 struct btrfs_trans_handle *trans;
3457 struct btrfs_balance_item *item;
3458 struct btrfs_disk_balance_args disk_bargs;
3459 struct btrfs_path *path;
3460 struct extent_buffer *leaf;
3461 struct btrfs_key key;
3462 int ret, err;
3463
3464 path = btrfs_alloc_path();
3465 if (!path)
3466 return -ENOMEM;
3467
3468 trans = btrfs_start_transaction(root, 0);
3469 if (IS_ERR(trans)) {
3470 btrfs_free_path(path);
3471 return PTR_ERR(trans);
3472 }
3473
3474 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3475 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3476 key.offset = 0;
3477
3478 ret = btrfs_insert_empty_item(trans, root, path, &key,
3479 sizeof(*item));
3480 if (ret)
3481 goto out;
3482
3483 leaf = path->nodes[0];
3484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3485
b159fa28 3486 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3487
3488 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3489 btrfs_set_balance_data(leaf, item, &disk_bargs);
3490 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3491 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3492 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3493 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3494
3495 btrfs_set_balance_flags(leaf, item, bctl->flags);
3496
3497 btrfs_mark_buffer_dirty(leaf);
3498out:
3499 btrfs_free_path(path);
3a45bb20 3500 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3501 if (err && !ret)
3502 ret = err;
3503 return ret;
3504}
3505
6bccf3ab 3506static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3507{
6bccf3ab 3508 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3509 struct btrfs_trans_handle *trans;
3510 struct btrfs_path *path;
3511 struct btrfs_key key;
3512 int ret, err;
3513
3514 path = btrfs_alloc_path();
3515 if (!path)
3516 return -ENOMEM;
3517
3502a8c0 3518 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3519 if (IS_ERR(trans)) {
3520 btrfs_free_path(path);
3521 return PTR_ERR(trans);
3522 }
3523
3524 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3525 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3526 key.offset = 0;
3527
3528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3529 if (ret < 0)
3530 goto out;
3531 if (ret > 0) {
3532 ret = -ENOENT;
3533 goto out;
3534 }
3535
3536 ret = btrfs_del_item(trans, root, path);
3537out:
3538 btrfs_free_path(path);
3a45bb20 3539 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3540 if (err && !ret)
3541 ret = err;
3542 return ret;
3543}
3544
59641015
ID
3545/*
3546 * This is a heuristic used to reduce the number of chunks balanced on
3547 * resume after balance was interrupted.
3548 */
3549static void update_balance_args(struct btrfs_balance_control *bctl)
3550{
3551 /*
3552 * Turn on soft mode for chunk types that were being converted.
3553 */
3554 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3555 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3556 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3557 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3558 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3559 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3560
3561 /*
3562 * Turn on usage filter if is not already used. The idea is
3563 * that chunks that we have already balanced should be
3564 * reasonably full. Don't do it for chunks that are being
3565 * converted - that will keep us from relocating unconverted
3566 * (albeit full) chunks.
3567 */
3568 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3569 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3570 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3571 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3572 bctl->data.usage = 90;
3573 }
3574 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3575 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3576 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3577 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3578 bctl->sys.usage = 90;
3579 }
3580 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3581 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3582 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3583 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3584 bctl->meta.usage = 90;
3585 }
3586}
3587
149196a2
DS
3588/*
3589 * Clear the balance status in fs_info and delete the balance item from disk.
3590 */
3591static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3592{
3593 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3594 int ret;
c9e9f97b
ID
3595
3596 BUG_ON(!fs_info->balance_ctl);
3597
3598 spin_lock(&fs_info->balance_lock);
3599 fs_info->balance_ctl = NULL;
3600 spin_unlock(&fs_info->balance_lock);
3601
3602 kfree(bctl);
149196a2
DS
3603 ret = del_balance_item(fs_info);
3604 if (ret)
3605 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3606}
3607
ed25e9b2
ID
3608/*
3609 * Balance filters. Return 1 if chunk should be filtered out
3610 * (should not be balanced).
3611 */
899c81ea 3612static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3613 struct btrfs_balance_args *bargs)
3614{
899c81ea
ID
3615 chunk_type = chunk_to_extended(chunk_type) &
3616 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3617
899c81ea 3618 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3619 return 0;
3620
3621 return 1;
3622}
3623
dba72cb3 3624static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3625 struct btrfs_balance_args *bargs)
bc309467 3626{
32da5386 3627 struct btrfs_block_group *cache;
bc309467
DS
3628 u64 chunk_used;
3629 u64 user_thresh_min;
3630 u64 user_thresh_max;
3631 int ret = 1;
3632
3633 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3634 chunk_used = cache->used;
bc309467
DS
3635
3636 if (bargs->usage_min == 0)
3637 user_thresh_min = 0;
3638 else
428c8e03 3639 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
bc309467
DS
3640
3641 if (bargs->usage_max == 0)
3642 user_thresh_max = 1;
3643 else if (bargs->usage_max > 100)
b3470b5d 3644 user_thresh_max = cache->length;
bc309467 3645 else
428c8e03 3646 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
bc309467
DS
3647
3648 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3649 ret = 0;
3650
3651 btrfs_put_block_group(cache);
3652 return ret;
3653}
3654
dba72cb3 3655static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3656 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3657{
32da5386 3658 struct btrfs_block_group *cache;
5ce5b3c0
ID
3659 u64 chunk_used, user_thresh;
3660 int ret = 1;
3661
3662 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3663 chunk_used = cache->used;
5ce5b3c0 3664
bc309467 3665 if (bargs->usage_min == 0)
3e39cea6 3666 user_thresh = 1;
a105bb88 3667 else if (bargs->usage > 100)
b3470b5d 3668 user_thresh = cache->length;
a105bb88 3669 else
428c8e03 3670 user_thresh = mult_perc(cache->length, bargs->usage);
a105bb88 3671
5ce5b3c0
ID
3672 if (chunk_used < user_thresh)
3673 ret = 0;
3674
3675 btrfs_put_block_group(cache);
3676 return ret;
3677}
3678
409d404b
ID
3679static int chunk_devid_filter(struct extent_buffer *leaf,
3680 struct btrfs_chunk *chunk,
3681 struct btrfs_balance_args *bargs)
3682{
3683 struct btrfs_stripe *stripe;
3684 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3685 int i;
3686
3687 for (i = 0; i < num_stripes; i++) {
3688 stripe = btrfs_stripe_nr(chunk, i);
3689 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3690 return 0;
3691 }
3692
3693 return 1;
3694}
3695
946c9256
DS
3696static u64 calc_data_stripes(u64 type, int num_stripes)
3697{
3698 const int index = btrfs_bg_flags_to_raid_index(type);
3699 const int ncopies = btrfs_raid_array[index].ncopies;
3700 const int nparity = btrfs_raid_array[index].nparity;
3701
d58ede8d 3702 return (num_stripes - nparity) / ncopies;
946c9256
DS
3703}
3704
94e60d5a
ID
3705/* [pstart, pend) */
3706static int chunk_drange_filter(struct extent_buffer *leaf,
3707 struct btrfs_chunk *chunk,
94e60d5a
ID
3708 struct btrfs_balance_args *bargs)
3709{
3710 struct btrfs_stripe *stripe;
3711 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3712 u64 stripe_offset;
3713 u64 stripe_length;
946c9256 3714 u64 type;
94e60d5a
ID
3715 int factor;
3716 int i;
3717
3718 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3719 return 0;
3720
946c9256
DS
3721 type = btrfs_chunk_type(leaf, chunk);
3722 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3723
3724 for (i = 0; i < num_stripes; i++) {
3725 stripe = btrfs_stripe_nr(chunk, i);
3726 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3727 continue;
3728
3729 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3730 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3731 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3732
3733 if (stripe_offset < bargs->pend &&
3734 stripe_offset + stripe_length > bargs->pstart)
3735 return 0;
3736 }
3737
3738 return 1;
3739}
3740
ea67176a
ID
3741/* [vstart, vend) */
3742static int chunk_vrange_filter(struct extent_buffer *leaf,
3743 struct btrfs_chunk *chunk,
3744 u64 chunk_offset,
3745 struct btrfs_balance_args *bargs)
3746{
3747 if (chunk_offset < bargs->vend &&
3748 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3749 /* at least part of the chunk is inside this vrange */
3750 return 0;
3751
3752 return 1;
3753}
3754
dee32d0a
GAP
3755static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3756 struct btrfs_chunk *chunk,
3757 struct btrfs_balance_args *bargs)
3758{
3759 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3760
3761 if (bargs->stripes_min <= num_stripes
3762 && num_stripes <= bargs->stripes_max)
3763 return 0;
3764
3765 return 1;
3766}
3767
899c81ea 3768static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3769 struct btrfs_balance_args *bargs)
3770{
3771 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3772 return 0;
3773
899c81ea
ID
3774 chunk_type = chunk_to_extended(chunk_type) &
3775 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3776
899c81ea 3777 if (bargs->target == chunk_type)
cfa4c961
ID
3778 return 1;
3779
3780 return 0;
3781}
3782
6ec0896c 3783static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3784 struct btrfs_chunk *chunk, u64 chunk_offset)
3785{
6ec0896c 3786 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3787 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3788 struct btrfs_balance_args *bargs = NULL;
3789 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3790
3791 /* type filter */
3792 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3793 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3794 return 0;
3795 }
3796
3797 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3798 bargs = &bctl->data;
3799 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3800 bargs = &bctl->sys;
3801 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3802 bargs = &bctl->meta;
3803
ed25e9b2
ID
3804 /* profiles filter */
3805 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3806 chunk_profiles_filter(chunk_type, bargs)) {
3807 return 0;
5ce5b3c0
ID
3808 }
3809
3810 /* usage filter */
3811 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3812 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3813 return 0;
bc309467 3814 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3815 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3816 return 0;
409d404b
ID
3817 }
3818
3819 /* devid filter */
3820 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3821 chunk_devid_filter(leaf, chunk, bargs)) {
3822 return 0;
94e60d5a
ID
3823 }
3824
3825 /* drange filter, makes sense only with devid filter */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3827 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3828 return 0;
ea67176a
ID
3829 }
3830
3831 /* vrange filter */
3832 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3833 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3834 return 0;
ed25e9b2
ID
3835 }
3836
dee32d0a
GAP
3837 /* stripes filter */
3838 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3839 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3840 return 0;
3841 }
3842
cfa4c961
ID
3843 /* soft profile changing mode */
3844 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3845 chunk_soft_convert_filter(chunk_type, bargs)) {
3846 return 0;
3847 }
3848
7d824b6f
DS
3849 /*
3850 * limited by count, must be the last filter
3851 */
3852 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3853 if (bargs->limit == 0)
3854 return 0;
3855 else
3856 bargs->limit--;
12907fc7
DS
3857 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3858 /*
3859 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3860 * determined here because we do not have the global information
12907fc7
DS
3861 * about the count of all chunks that satisfy the filters.
3862 */
3863 if (bargs->limit_max == 0)
3864 return 0;
3865 else
3866 bargs->limit_max--;
7d824b6f
DS
3867 }
3868
f43ffb60
ID
3869 return 1;
3870}
3871
c9e9f97b 3872static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3873{
19a39dce 3874 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3875 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3876 u64 chunk_type;
f43ffb60 3877 struct btrfs_chunk *chunk;
5a488b9d 3878 struct btrfs_path *path = NULL;
ec44a35c 3879 struct btrfs_key key;
ec44a35c 3880 struct btrfs_key found_key;
f43ffb60
ID
3881 struct extent_buffer *leaf;
3882 int slot;
c9e9f97b
ID
3883 int ret;
3884 int enospc_errors = 0;
19a39dce 3885 bool counting = true;
12907fc7 3886 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3887 u64 limit_data = bctl->data.limit;
3888 u64 limit_meta = bctl->meta.limit;
3889 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3890 u32 count_data = 0;
3891 u32 count_meta = 0;
3892 u32 count_sys = 0;
2c9fe835 3893 int chunk_reserved = 0;
ec44a35c 3894
ec44a35c 3895 path = btrfs_alloc_path();
17e9f796
MF
3896 if (!path) {
3897 ret = -ENOMEM;
3898 goto error;
3899 }
19a39dce
ID
3900
3901 /* zero out stat counters */
3902 spin_lock(&fs_info->balance_lock);
3903 memset(&bctl->stat, 0, sizeof(bctl->stat));
3904 spin_unlock(&fs_info->balance_lock);
3905again:
7d824b6f 3906 if (!counting) {
12907fc7
DS
3907 /*
3908 * The single value limit and min/max limits use the same bytes
3909 * in the
3910 */
7d824b6f
DS
3911 bctl->data.limit = limit_data;
3912 bctl->meta.limit = limit_meta;
3913 bctl->sys.limit = limit_sys;
3914 }
ec44a35c
CM
3915 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3916 key.offset = (u64)-1;
3917 key.type = BTRFS_CHUNK_ITEM_KEY;
3918
d397712b 3919 while (1) {
19a39dce 3920 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3921 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3922 ret = -ECANCELED;
3923 goto error;
3924 }
3925
f3372065 3926 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3927 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3928 if (ret < 0) {
f3372065 3929 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3930 goto error;
67c5e7d4 3931 }
ec44a35c
CM
3932
3933 /*
3934 * this shouldn't happen, it means the last relocate
3935 * failed
3936 */
3937 if (ret == 0)
c9e9f97b 3938 BUG(); /* FIXME break ? */
ec44a35c
CM
3939
3940 ret = btrfs_previous_item(chunk_root, path, 0,
3941 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3942 if (ret) {
f3372065 3943 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3944 ret = 0;
ec44a35c 3945 break;
c9e9f97b 3946 }
7d9eb12c 3947
f43ffb60
ID
3948 leaf = path->nodes[0];
3949 slot = path->slots[0];
3950 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3951
67c5e7d4 3952 if (found_key.objectid != key.objectid) {
f3372065 3953 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3954 break;
67c5e7d4 3955 }
7d9eb12c 3956
f43ffb60 3957 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3958 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3959
19a39dce
ID
3960 if (!counting) {
3961 spin_lock(&fs_info->balance_lock);
3962 bctl->stat.considered++;
3963 spin_unlock(&fs_info->balance_lock);
3964 }
3965
6ec0896c 3966 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3967
b3b4aa74 3968 btrfs_release_path(path);
67c5e7d4 3969 if (!ret) {
f3372065 3970 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3971 goto loop;
67c5e7d4 3972 }
f43ffb60 3973
19a39dce 3974 if (counting) {
f3372065 3975 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3976 spin_lock(&fs_info->balance_lock);
3977 bctl->stat.expected++;
3978 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3979
3980 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3981 count_data++;
3982 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3983 count_sys++;
3984 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3985 count_meta++;
3986
3987 goto loop;
3988 }
3989
3990 /*
3991 * Apply limit_min filter, no need to check if the LIMITS
3992 * filter is used, limit_min is 0 by default
3993 */
3994 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3995 count_data < bctl->data.limit_min)
3996 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3997 count_meta < bctl->meta.limit_min)
3998 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3999 count_sys < bctl->sys.limit_min)) {
f3372065 4000 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
4001 goto loop;
4002 }
4003
a6f93c71
LB
4004 if (!chunk_reserved) {
4005 /*
4006 * We may be relocating the only data chunk we have,
4007 * which could potentially end up with losing data's
4008 * raid profile, so lets allocate an empty one in
4009 * advance.
4010 */
4011 ret = btrfs_may_alloc_data_chunk(fs_info,
4012 found_key.offset);
2c9fe835 4013 if (ret < 0) {
f3372065 4014 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 4015 goto error;
a6f93c71
LB
4016 } else if (ret == 1) {
4017 chunk_reserved = 1;
2c9fe835 4018 }
2c9fe835
ZL
4019 }
4020
5b4aacef 4021 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 4022 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 4023 if (ret == -ENOSPC) {
c9e9f97b 4024 enospc_errors++;
eede2bf3
OS
4025 } else if (ret == -ETXTBSY) {
4026 btrfs_info(fs_info,
4027 "skipping relocation of block group %llu due to active swapfile",
4028 found_key.offset);
4029 ret = 0;
4030 } else if (ret) {
4031 goto error;
19a39dce
ID
4032 } else {
4033 spin_lock(&fs_info->balance_lock);
4034 bctl->stat.completed++;
4035 spin_unlock(&fs_info->balance_lock);
4036 }
f43ffb60 4037loop:
795a3321
ID
4038 if (found_key.offset == 0)
4039 break;
ba1bf481 4040 key.offset = found_key.offset - 1;
ec44a35c 4041 }
c9e9f97b 4042
19a39dce
ID
4043 if (counting) {
4044 btrfs_release_path(path);
4045 counting = false;
4046 goto again;
4047 }
ec44a35c
CM
4048error:
4049 btrfs_free_path(path);
c9e9f97b 4050 if (enospc_errors) {
efe120a0 4051 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4052 enospc_errors);
c9e9f97b
ID
4053 if (!ret)
4054 ret = -ENOSPC;
4055 }
4056
ec44a35c
CM
4057 return ret;
4058}
4059
43dd529a
DS
4060/*
4061 * See if a given profile is valid and reduced.
4062 *
4063 * @flags: profile to validate
4064 * @extended: if true @flags is treated as an extended profile
0c460c0d
ID
4065 */
4066static int alloc_profile_is_valid(u64 flags, int extended)
4067{
4068 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4069 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4070
4071 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4072
4073 /* 1) check that all other bits are zeroed */
4074 if (flags & ~mask)
4075 return 0;
4076
4077 /* 2) see if profile is reduced */
4078 if (flags == 0)
4079 return !extended; /* "0" is valid for usual profiles */
4080
c1499166 4081 return has_single_bit_set(flags);
0c460c0d
ID
4082}
4083
837d5b6e
ID
4084static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4085{
a7e99c69
ID
4086 /* cancel requested || normal exit path */
4087 return atomic_read(&fs_info->balance_cancel_req) ||
4088 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4089 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
4090}
4091
5ba366c3
DS
4092/*
4093 * Validate target profile against allowed profiles and return true if it's OK.
4094 * Otherwise print the error message and return false.
4095 */
4096static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4097 const struct btrfs_balance_args *bargs,
4098 u64 allowed, const char *type)
bdcd3c97 4099{
5ba366c3
DS
4100 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4101 return true;
4102
4103 /* Profile is valid and does not have bits outside of the allowed set */
4104 if (alloc_profile_is_valid(bargs->target, 1) &&
4105 (bargs->target & ~allowed) == 0)
4106 return true;
4107
4108 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4109 type, btrfs_bg_type_to_raid_name(bargs->target));
4110 return false;
bdcd3c97
AM
4111}
4112
56fc37d9
AJ
4113/*
4114 * Fill @buf with textual description of balance filter flags @bargs, up to
4115 * @size_buf including the terminating null. The output may be trimmed if it
4116 * does not fit into the provided buffer.
4117 */
4118static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4119 u32 size_buf)
4120{
4121 int ret;
4122 u32 size_bp = size_buf;
4123 char *bp = buf;
4124 u64 flags = bargs->flags;
4125 char tmp_buf[128] = {'\0'};
4126
4127 if (!flags)
4128 return;
4129
4130#define CHECK_APPEND_NOARG(a) \
4131 do { \
4132 ret = snprintf(bp, size_bp, (a)); \
4133 if (ret < 0 || ret >= size_bp) \
4134 goto out_overflow; \
4135 size_bp -= ret; \
4136 bp += ret; \
4137 } while (0)
4138
4139#define CHECK_APPEND_1ARG(a, v1) \
4140 do { \
4141 ret = snprintf(bp, size_bp, (a), (v1)); \
4142 if (ret < 0 || ret >= size_bp) \
4143 goto out_overflow; \
4144 size_bp -= ret; \
4145 bp += ret; \
4146 } while (0)
4147
4148#define CHECK_APPEND_2ARG(a, v1, v2) \
4149 do { \
4150 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4151 if (ret < 0 || ret >= size_bp) \
4152 goto out_overflow; \
4153 size_bp -= ret; \
4154 bp += ret; \
4155 } while (0)
4156
158da513
DS
4157 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4158 CHECK_APPEND_1ARG("convert=%s,",
4159 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4160
4161 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4162 CHECK_APPEND_NOARG("soft,");
4163
4164 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4165 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4166 sizeof(tmp_buf));
4167 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4168 }
4169
4170 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4171 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4172
4173 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4174 CHECK_APPEND_2ARG("usage=%u..%u,",
4175 bargs->usage_min, bargs->usage_max);
4176
4177 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4178 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4179
4180 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4181 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4182 bargs->pstart, bargs->pend);
4183
4184 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4185 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4186 bargs->vstart, bargs->vend);
4187
4188 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4189 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4190
4191 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4192 CHECK_APPEND_2ARG("limit=%u..%u,",
4193 bargs->limit_min, bargs->limit_max);
4194
4195 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4196 CHECK_APPEND_2ARG("stripes=%u..%u,",
4197 bargs->stripes_min, bargs->stripes_max);
4198
4199#undef CHECK_APPEND_2ARG
4200#undef CHECK_APPEND_1ARG
4201#undef CHECK_APPEND_NOARG
4202
4203out_overflow:
4204
4205 if (size_bp < size_buf)
4206 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4207 else
4208 buf[0] = '\0';
4209}
4210
4211static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4212{
4213 u32 size_buf = 1024;
4214 char tmp_buf[192] = {'\0'};
4215 char *buf;
4216 char *bp;
4217 u32 size_bp = size_buf;
4218 int ret;
4219 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4220
4221 buf = kzalloc(size_buf, GFP_KERNEL);
4222 if (!buf)
4223 return;
4224
4225 bp = buf;
4226
4227#define CHECK_APPEND_1ARG(a, v1) \
4228 do { \
4229 ret = snprintf(bp, size_bp, (a), (v1)); \
4230 if (ret < 0 || ret >= size_bp) \
4231 goto out_overflow; \
4232 size_bp -= ret; \
4233 bp += ret; \
4234 } while (0)
4235
4236 if (bctl->flags & BTRFS_BALANCE_FORCE)
4237 CHECK_APPEND_1ARG("%s", "-f ");
4238
4239 if (bctl->flags & BTRFS_BALANCE_DATA) {
4240 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4241 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4242 }
4243
4244 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4245 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4246 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4247 }
4248
4249 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4250 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4251 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4252 }
4253
4254#undef CHECK_APPEND_1ARG
4255
4256out_overflow:
4257
4258 if (size_bp < size_buf)
4259 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4260 btrfs_info(fs_info, "balance: %s %s",
4261 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4262 "resume" : "start", buf);
4263
4264 kfree(buf);
4265}
4266
c9e9f97b 4267/*
dccdb07b 4268 * Should be called with balance mutexe held
c9e9f97b 4269 */
6fcf6e2b
DS
4270int btrfs_balance(struct btrfs_fs_info *fs_info,
4271 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4272 struct btrfs_ioctl_balance_args *bargs)
4273{
14506127 4274 u64 meta_target, data_target;
f43ffb60 4275 u64 allowed;
e4837f8f 4276 int mixed = 0;
c9e9f97b 4277 int ret;
8dabb742 4278 u64 num_devices;
de98ced9 4279 unsigned seq;
e62869be 4280 bool reducing_redundancy;
081db89b 4281 int i;
c9e9f97b 4282
837d5b6e 4283 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4284 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4285 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4286 ret = -EINVAL;
4287 goto out;
4288 }
4289
e4837f8f
ID
4290 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4291 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4292 mixed = 1;
4293
f43ffb60
ID
4294 /*
4295 * In case of mixed groups both data and meta should be picked,
4296 * and identical options should be given for both of them.
4297 */
e4837f8f
ID
4298 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4299 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4300 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4301 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4302 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4303 btrfs_err(fs_info,
6dac13f8 4304 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4305 ret = -EINVAL;
4306 goto out;
4307 }
4308 }
4309
b35cf1f0
JB
4310 /*
4311 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4312 * are exclusive
b35cf1f0
JB
4313 */
4314 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4315
4316 /*
4317 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4318 * special bit for it, to make it easier to distinguish. Thus we need
4319 * to set it manually, or balance would refuse the profile.
4320 */
4321 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4322 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4323 if (num_devices >= btrfs_raid_array[i].devs_min)
4324 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4325
5ba366c3
DS
4326 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4327 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4328 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332
6079e12c
DS
4333 /*
4334 * Allow to reduce metadata or system integrity only if force set for
4335 * profiles with redundancy (copies, parity)
4336 */
4337 allowed = 0;
4338 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4339 if (btrfs_raid_array[i].ncopies >= 2 ||
4340 btrfs_raid_array[i].tolerated_failures >= 1)
4341 allowed |= btrfs_raid_array[i].bg_flag;
4342 }
de98ced9
MX
4343 do {
4344 seq = read_seqbegin(&fs_info->profiles_lock);
4345
4346 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4347 (fs_info->avail_system_alloc_bits & allowed) &&
4348 !(bctl->sys.target & allowed)) ||
4349 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4350 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4351 !(bctl->meta.target & allowed)))
e62869be 4352 reducing_redundancy = true;
5a8067c0 4353 else
e62869be 4354 reducing_redundancy = false;
5a8067c0
FM
4355
4356 /* if we're not converting, the target field is uninitialized */
4357 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4358 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4359 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4360 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4361 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4362
e62869be 4363 if (reducing_redundancy) {
5a8067c0
FM
4364 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4365 btrfs_info(fs_info,
e62869be 4366 "balance: force reducing metadata redundancy");
5a8067c0
FM
4367 } else {
4368 btrfs_err(fs_info,
e62869be 4369 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4370 ret = -EINVAL;
4371 goto out;
4372 }
4373 }
4374
14506127
AB
4375 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4376 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4377 btrfs_warn(fs_info,
6dac13f8 4378 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4379 btrfs_bg_type_to_raid_name(meta_target),
4380 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4381 }
4382
6bccf3ab 4383 ret = insert_balance_item(fs_info, bctl);
59641015 4384 if (ret && ret != -EEXIST)
0940ebf6
ID
4385 goto out;
4386
59641015
ID
4387 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4388 BUG_ON(ret == -EEXIST);
833aae18
DS
4389 BUG_ON(fs_info->balance_ctl);
4390 spin_lock(&fs_info->balance_lock);
4391 fs_info->balance_ctl = bctl;
4392 spin_unlock(&fs_info->balance_lock);
59641015
ID
4393 } else {
4394 BUG_ON(ret != -EEXIST);
4395 spin_lock(&fs_info->balance_lock);
4396 update_balance_args(bctl);
4397 spin_unlock(&fs_info->balance_lock);
4398 }
c9e9f97b 4399
3009a62f
DS
4400 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4401 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4402 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4403 mutex_unlock(&fs_info->balance_mutex);
4404
4405 ret = __btrfs_balance(fs_info);
4406
4407 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4408 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4409 btrfs_info(fs_info, "balance: paused");
efc0e69c
NB
4410 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4411 }
44d354ab
QW
4412 /*
4413 * Balance can be canceled by:
4414 *
4415 * - Regular cancel request
4416 * Then ret == -ECANCELED and balance_cancel_req > 0
4417 *
4418 * - Fatal signal to "btrfs" process
4419 * Either the signal caught by wait_reserve_ticket() and callers
4420 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4421 * got -ECANCELED.
4422 * Either way, in this case balance_cancel_req = 0, and
4423 * ret == -EINTR or ret == -ECANCELED.
4424 *
4425 * So here we only check the return value to catch canceled balance.
4426 */
4427 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4428 btrfs_info(fs_info, "balance: canceled");
4429 else
4430 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4431
3009a62f 4432 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4433
4434 if (bargs) {
4435 memset(bargs, 0, sizeof(*bargs));
008ef096 4436 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4437 }
4438
3a01aa7a
ID
4439 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4440 balance_need_close(fs_info)) {
149196a2 4441 reset_balance_state(fs_info);
c3e1f96c 4442 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4443 }
4444
837d5b6e 4445 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4446
4447 return ret;
4448out:
59641015 4449 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4450 reset_balance_state(fs_info);
a17c95df 4451 else
59641015 4452 kfree(bctl);
c3e1f96c 4453 btrfs_exclop_finish(fs_info);
a17c95df 4454
59641015
ID
4455 return ret;
4456}
4457
4458static int balance_kthread(void *data)
4459{
2b6ba629 4460 struct btrfs_fs_info *fs_info = data;
9555c6c1 4461 int ret = 0;
59641015 4462
a690e5f2 4463 sb_start_write(fs_info->sb);
59641015 4464 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4465 if (fs_info->balance_ctl)
6fcf6e2b 4466 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4467 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4468 sb_end_write(fs_info->sb);
2b6ba629 4469
59641015
ID
4470 return ret;
4471}
4472
2b6ba629
ID
4473int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4474{
4475 struct task_struct *tsk;
4476
1354e1a1 4477 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4478 if (!fs_info->balance_ctl) {
1354e1a1 4479 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4480 return 0;
4481 }
1354e1a1 4482 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4483
3cdde224 4484 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4485 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4486 return 0;
4487 }
4488
efc0e69c
NB
4489 spin_lock(&fs_info->super_lock);
4490 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4491 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4492 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4493 /*
4494 * A ro->rw remount sequence should continue with the paused balance
4495 * regardless of who pauses it, system or the user as of now, so set
4496 * the resume flag.
4497 */
4498 spin_lock(&fs_info->balance_lock);
4499 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4500 spin_unlock(&fs_info->balance_lock);
4501
2b6ba629 4502 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4503 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4504}
4505
68310a5e 4506int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4507{
59641015
ID
4508 struct btrfs_balance_control *bctl;
4509 struct btrfs_balance_item *item;
4510 struct btrfs_disk_balance_args disk_bargs;
4511 struct btrfs_path *path;
4512 struct extent_buffer *leaf;
4513 struct btrfs_key key;
4514 int ret;
4515
4516 path = btrfs_alloc_path();
4517 if (!path)
4518 return -ENOMEM;
4519
59641015 4520 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4521 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4522 key.offset = 0;
4523
68310a5e 4524 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4525 if (ret < 0)
68310a5e 4526 goto out;
59641015
ID
4527 if (ret > 0) { /* ret = -ENOENT; */
4528 ret = 0;
68310a5e
ID
4529 goto out;
4530 }
4531
4532 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4533 if (!bctl) {
4534 ret = -ENOMEM;
4535 goto out;
59641015
ID
4536 }
4537
4538 leaf = path->nodes[0];
4539 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4540
68310a5e
ID
4541 bctl->flags = btrfs_balance_flags(leaf, item);
4542 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4543
4544 btrfs_balance_data(leaf, item, &disk_bargs);
4545 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4546 btrfs_balance_meta(leaf, item, &disk_bargs);
4547 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4548 btrfs_balance_sys(leaf, item, &disk_bargs);
4549 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4550
eee95e3f
DS
4551 /*
4552 * This should never happen, as the paused balance state is recovered
4553 * during mount without any chance of other exclusive ops to collide.
4554 *
4555 * This gives the exclusive op status to balance and keeps in paused
4556 * state until user intervention (cancel or umount). If the ownership
4557 * cannot be assigned, show a message but do not fail. The balance
4558 * is in a paused state and must have fs_info::balance_ctl properly
4559 * set up.
4560 */
efc0e69c 4561 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4562 btrfs_warn(fs_info,
6dac13f8 4563 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4564
fb286100
JB
4565 btrfs_release_path(path);
4566
68310a5e 4567 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4568 BUG_ON(fs_info->balance_ctl);
4569 spin_lock(&fs_info->balance_lock);
4570 fs_info->balance_ctl = bctl;
4571 spin_unlock(&fs_info->balance_lock);
68310a5e 4572 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4573out:
4574 btrfs_free_path(path);
ec44a35c
CM
4575 return ret;
4576}
4577
837d5b6e
ID
4578int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4579{
4580 int ret = 0;
4581
4582 mutex_lock(&fs_info->balance_mutex);
4583 if (!fs_info->balance_ctl) {
4584 mutex_unlock(&fs_info->balance_mutex);
4585 return -ENOTCONN;
4586 }
4587
3009a62f 4588 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4589 atomic_inc(&fs_info->balance_pause_req);
4590 mutex_unlock(&fs_info->balance_mutex);
4591
4592 wait_event(fs_info->balance_wait_q,
3009a62f 4593 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4594
4595 mutex_lock(&fs_info->balance_mutex);
4596 /* we are good with balance_ctl ripped off from under us */
3009a62f 4597 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4598 atomic_dec(&fs_info->balance_pause_req);
4599 } else {
4600 ret = -ENOTCONN;
4601 }
4602
4603 mutex_unlock(&fs_info->balance_mutex);
4604 return ret;
4605}
4606
a7e99c69
ID
4607int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4608{
4609 mutex_lock(&fs_info->balance_mutex);
4610 if (!fs_info->balance_ctl) {
4611 mutex_unlock(&fs_info->balance_mutex);
4612 return -ENOTCONN;
4613 }
4614
cf7d20f4
DS
4615 /*
4616 * A paused balance with the item stored on disk can be resumed at
4617 * mount time if the mount is read-write. Otherwise it's still paused
4618 * and we must not allow cancelling as it deletes the item.
4619 */
4620 if (sb_rdonly(fs_info->sb)) {
4621 mutex_unlock(&fs_info->balance_mutex);
4622 return -EROFS;
4623 }
4624
a7e99c69
ID
4625 atomic_inc(&fs_info->balance_cancel_req);
4626 /*
4627 * if we are running just wait and return, balance item is
4628 * deleted in btrfs_balance in this case
4629 */
3009a62f 4630 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4631 mutex_unlock(&fs_info->balance_mutex);
4632 wait_event(fs_info->balance_wait_q,
3009a62f 4633 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4634 mutex_lock(&fs_info->balance_mutex);
4635 } else {
a7e99c69 4636 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4637 /*
4638 * Lock released to allow other waiters to continue, we'll
4639 * reexamine the status again.
4640 */
a7e99c69
ID
4641 mutex_lock(&fs_info->balance_mutex);
4642
a17c95df 4643 if (fs_info->balance_ctl) {
149196a2 4644 reset_balance_state(fs_info);
c3e1f96c 4645 btrfs_exclop_finish(fs_info);
6dac13f8 4646 btrfs_info(fs_info, "balance: canceled");
a17c95df 4647 }
a7e99c69
ID
4648 }
4649
3009a62f
DS
4650 BUG_ON(fs_info->balance_ctl ||
4651 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4652 atomic_dec(&fs_info->balance_cancel_req);
4653 mutex_unlock(&fs_info->balance_mutex);
4654 return 0;
4655}
4656
97f4dd09 4657int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4658{
4659 struct btrfs_fs_info *fs_info = data;
4660 struct btrfs_root *root = fs_info->tree_root;
4661 struct btrfs_key key;
803b2f54
SB
4662 struct btrfs_path *path = NULL;
4663 int ret = 0;
4664 struct extent_buffer *eb;
4665 int slot;
4666 struct btrfs_root_item root_item;
4667 u32 item_size;
f45388f3 4668 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4669 bool closing = false;
803b2f54
SB
4670
4671 path = btrfs_alloc_path();
4672 if (!path) {
4673 ret = -ENOMEM;
4674 goto out;
4675 }
4676
4677 key.objectid = 0;
4678 key.type = BTRFS_ROOT_ITEM_KEY;
4679 key.offset = 0;
4680
803b2f54 4681 while (1) {
c94bec2c
JB
4682 if (btrfs_fs_closing(fs_info)) {
4683 closing = true;
4684 break;
4685 }
7c829b72
AJ
4686 ret = btrfs_search_forward(root, &key, path,
4687 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4688 if (ret) {
4689 if (ret > 0)
4690 ret = 0;
4691 break;
4692 }
4693
4694 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4695 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4696 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4697 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4698 goto skip;
4699
4700 eb = path->nodes[0];
4701 slot = path->slots[0];
3212fa14 4702 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4703 if (item_size < sizeof(root_item))
4704 goto skip;
4705
803b2f54
SB
4706 read_extent_buffer(eb, &root_item,
4707 btrfs_item_ptr_offset(eb, slot),
4708 (int)sizeof(root_item));
4709 if (btrfs_root_refs(&root_item) == 0)
4710 goto skip;
f45388f3
FDBM
4711
4712 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4713 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4714 if (trans)
4715 goto update_tree;
4716
4717 btrfs_release_path(path);
803b2f54
SB
4718 /*
4719 * 1 - subvol uuid item
4720 * 1 - received_subvol uuid item
4721 */
4722 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4723 if (IS_ERR(trans)) {
4724 ret = PTR_ERR(trans);
4725 break;
4726 }
f45388f3
FDBM
4727 continue;
4728 } else {
4729 goto skip;
4730 }
4731update_tree:
9771a5cf 4732 btrfs_release_path(path);
f45388f3 4733 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4734 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4735 BTRFS_UUID_KEY_SUBVOL,
4736 key.objectid);
4737 if (ret < 0) {
efe120a0 4738 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4739 ret);
803b2f54
SB
4740 break;
4741 }
4742 }
4743
4744 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4745 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4746 root_item.received_uuid,
4747 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4748 key.objectid);
4749 if (ret < 0) {
efe120a0 4750 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4751 ret);
803b2f54
SB
4752 break;
4753 }
4754 }
4755
f45388f3 4756skip:
9771a5cf 4757 btrfs_release_path(path);
803b2f54 4758 if (trans) {
3a45bb20 4759 ret = btrfs_end_transaction(trans);
f45388f3 4760 trans = NULL;
803b2f54
SB
4761 if (ret)
4762 break;
4763 }
4764
803b2f54
SB
4765 if (key.offset < (u64)-1) {
4766 key.offset++;
4767 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4768 key.offset = 0;
4769 key.type = BTRFS_ROOT_ITEM_KEY;
4770 } else if (key.objectid < (u64)-1) {
4771 key.offset = 0;
4772 key.type = BTRFS_ROOT_ITEM_KEY;
4773 key.objectid++;
4774 } else {
4775 break;
4776 }
4777 cond_resched();
4778 }
4779
4780out:
4781 btrfs_free_path(path);
f45388f3 4782 if (trans && !IS_ERR(trans))
3a45bb20 4783 btrfs_end_transaction(trans);
803b2f54 4784 if (ret)
efe120a0 4785 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4786 else if (!closing)
afcdd129 4787 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4788 up(&fs_info->uuid_tree_rescan_sem);
4789 return 0;
4790}
4791
f7a81ea4
SB
4792int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4793{
4794 struct btrfs_trans_handle *trans;
4795 struct btrfs_root *tree_root = fs_info->tree_root;
4796 struct btrfs_root *uuid_root;
803b2f54
SB
4797 struct task_struct *task;
4798 int ret;
f7a81ea4
SB
4799
4800 /*
4801 * 1 - root node
4802 * 1 - root item
4803 */
4804 trans = btrfs_start_transaction(tree_root, 2);
4805 if (IS_ERR(trans))
4806 return PTR_ERR(trans);
4807
9b7a2440 4808 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4809 if (IS_ERR(uuid_root)) {
6d13f549 4810 ret = PTR_ERR(uuid_root);
66642832 4811 btrfs_abort_transaction(trans, ret);
3a45bb20 4812 btrfs_end_transaction(trans);
6d13f549 4813 return ret;
f7a81ea4
SB
4814 }
4815
4816 fs_info->uuid_root = uuid_root;
4817
3a45bb20 4818 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4819 if (ret)
4820 return ret;
4821
4822 down(&fs_info->uuid_tree_rescan_sem);
4823 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4824 if (IS_ERR(task)) {
70f80175 4825 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4826 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4827 up(&fs_info->uuid_tree_rescan_sem);
4828 return PTR_ERR(task);
4829 }
4830
4831 return 0;
f7a81ea4 4832}
803b2f54 4833
8f18cf13
CM
4834/*
4835 * shrinking a device means finding all of the device extents past
4836 * the new size, and then following the back refs to the chunks.
4837 * The chunk relocation code actually frees the device extent
4838 */
4839int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4840{
0b246afa
JM
4841 struct btrfs_fs_info *fs_info = device->fs_info;
4842 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4843 struct btrfs_trans_handle *trans;
8f18cf13
CM
4844 struct btrfs_dev_extent *dev_extent = NULL;
4845 struct btrfs_path *path;
4846 u64 length;
8f18cf13
CM
4847 u64 chunk_offset;
4848 int ret;
4849 int slot;
ba1bf481
JB
4850 int failed = 0;
4851 bool retried = false;
8f18cf13
CM
4852 struct extent_buffer *l;
4853 struct btrfs_key key;
0b246afa 4854 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4855 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4856 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4857 u64 diff;
61d0d0d2 4858 u64 start;
7dfb8be1
NB
4859
4860 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4861 start = new_size;
0e4324a4 4862 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4863
401e29c1 4864 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4865 return -EINVAL;
4866
8f18cf13
CM
4867 path = btrfs_alloc_path();
4868 if (!path)
4869 return -ENOMEM;
4870
0338dff6 4871 path->reada = READA_BACK;
8f18cf13 4872
61d0d0d2
NB
4873 trans = btrfs_start_transaction(root, 0);
4874 if (IS_ERR(trans)) {
4875 btrfs_free_path(path);
4876 return PTR_ERR(trans);
4877 }
4878
34441361 4879 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4880
7cc8e58d 4881 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4882 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4883 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4884 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4885 }
61d0d0d2
NB
4886
4887 /*
4888 * Once the device's size has been set to the new size, ensure all
4889 * in-memory chunks are synced to disk so that the loop below sees them
4890 * and relocates them accordingly.
4891 */
1c11b63e 4892 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4893 mutex_unlock(&fs_info->chunk_mutex);
4894 ret = btrfs_commit_transaction(trans);
4895 if (ret)
4896 goto done;
4897 } else {
4898 mutex_unlock(&fs_info->chunk_mutex);
4899 btrfs_end_transaction(trans);
4900 }
8f18cf13 4901
ba1bf481 4902again:
8f18cf13
CM
4903 key.objectid = device->devid;
4904 key.offset = (u64)-1;
4905 key.type = BTRFS_DEV_EXTENT_KEY;
4906
213e64da 4907 do {
f3372065 4908 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4910 if (ret < 0) {
f3372065 4911 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4912 goto done;
67c5e7d4 4913 }
8f18cf13
CM
4914
4915 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4916 if (ret) {
f3372065 4917 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4918 if (ret < 0)
4919 goto done;
8f18cf13 4920 ret = 0;
b3b4aa74 4921 btrfs_release_path(path);
bf1fb512 4922 break;
8f18cf13
CM
4923 }
4924
4925 l = path->nodes[0];
4926 slot = path->slots[0];
4927 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4928
ba1bf481 4929 if (key.objectid != device->devid) {
f3372065 4930 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4931 btrfs_release_path(path);
bf1fb512 4932 break;
ba1bf481 4933 }
8f18cf13
CM
4934
4935 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4936 length = btrfs_dev_extent_length(l, dev_extent);
4937
ba1bf481 4938 if (key.offset + length <= new_size) {
f3372065 4939 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4940 btrfs_release_path(path);
d6397bae 4941 break;
ba1bf481 4942 }
8f18cf13 4943
8f18cf13 4944 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4945 btrfs_release_path(path);
8f18cf13 4946
a6f93c71
LB
4947 /*
4948 * We may be relocating the only data chunk we have,
4949 * which could potentially end up with losing data's
4950 * raid profile, so lets allocate an empty one in
4951 * advance.
4952 */
4953 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4954 if (ret < 0) {
f3372065 4955 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4956 goto done;
4957 }
4958
0b246afa 4959 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4960 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4961 if (ret == -ENOSPC) {
ba1bf481 4962 failed++;
eede2bf3
OS
4963 } else if (ret) {
4964 if (ret == -ETXTBSY) {
4965 btrfs_warn(fs_info,
4966 "could not shrink block group %llu due to active swapfile",
4967 chunk_offset);
4968 }
4969 goto done;
4970 }
213e64da 4971 } while (key.offset-- > 0);
ba1bf481
JB
4972
4973 if (failed && !retried) {
4974 failed = 0;
4975 retried = true;
4976 goto again;
4977 } else if (failed && retried) {
4978 ret = -ENOSPC;
ba1bf481 4979 goto done;
8f18cf13
CM
4980 }
4981
d6397bae 4982 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4983 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4984 if (IS_ERR(trans)) {
4985 ret = PTR_ERR(trans);
4986 goto done;
4987 }
4988
34441361 4989 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4990 /* Clear all state bits beyond the shrunk device size */
4991 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4992 CHUNK_STATE_MASK);
4993
7cc8e58d 4994 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4995 if (list_empty(&device->post_commit_list))
4996 list_add_tail(&device->post_commit_list,
4997 &trans->transaction->dev_update_list);
d6397bae 4998
d6397bae 4999 WARN_ON(diff > old_total);
7dfb8be1
NB
5000 btrfs_set_super_total_bytes(super_copy,
5001 round_down(old_total - diff, fs_info->sectorsize));
34441361 5002 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 5003
2bb2e00e 5004 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
5005 /* Now btrfs_update_device() will change the on-disk size. */
5006 ret = btrfs_update_device(trans, device);
2bb2e00e 5007 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
5008 if (ret < 0) {
5009 btrfs_abort_transaction(trans, ret);
5010 btrfs_end_transaction(trans);
5011 } else {
5012 ret = btrfs_commit_transaction(trans);
5013 }
8f18cf13
CM
5014done:
5015 btrfs_free_path(path);
53e489bc 5016 if (ret) {
34441361 5017 mutex_lock(&fs_info->chunk_mutex);
53e489bc 5018 btrfs_device_set_total_bytes(device, old_size);
ebbede42 5019 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 5020 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 5021 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 5022 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 5023 }
8f18cf13
CM
5024 return ret;
5025}
5026
2ff7e61e 5027static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5028 struct btrfs_key *key,
5029 struct btrfs_chunk *chunk, int item_size)
5030{
0b246afa 5031 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5032 struct btrfs_disk_key disk_key;
5033 u32 array_size;
5034 u8 *ptr;
5035
79bd3712
FM
5036 lockdep_assert_held(&fs_info->chunk_mutex);
5037
0b86a832 5038 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5039 if (array_size + item_size + sizeof(disk_key)
79bd3712 5040 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5041 return -EFBIG;
5042
5043 ptr = super_copy->sys_chunk_array + array_size;
5044 btrfs_cpu_key_to_disk(&disk_key, key);
5045 memcpy(ptr, &disk_key, sizeof(disk_key));
5046 ptr += sizeof(disk_key);
5047 memcpy(ptr, chunk, item_size);
5048 item_size += sizeof(disk_key);
5049 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5050
0b86a832
CM
5051 return 0;
5052}
5053
73c5de00
AJ
5054/*
5055 * sort the devices in descending order by max_avail, total_avail
5056 */
5057static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5058{
73c5de00
AJ
5059 const struct btrfs_device_info *di_a = a;
5060 const struct btrfs_device_info *di_b = b;
9b3f68b9 5061
73c5de00 5062 if (di_a->max_avail > di_b->max_avail)
b2117a39 5063 return -1;
73c5de00 5064 if (di_a->max_avail < di_b->max_avail)
b2117a39 5065 return 1;
73c5de00
AJ
5066 if (di_a->total_avail > di_b->total_avail)
5067 return -1;
5068 if (di_a->total_avail < di_b->total_avail)
5069 return 1;
5070 return 0;
b2117a39 5071}
0b86a832 5072
53b381b3
DW
5073static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5074{
ffe2d203 5075 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5076 return;
5077
ceda0864 5078 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5079}
5080
cfbb825c
DS
5081static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5082{
5083 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5084 return;
5085
5086 btrfs_set_fs_incompat(info, RAID1C34);
5087}
5088
4f2bafe8 5089/*
f6f39f7a 5090 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5091 * Wraps needed parameters.
5092 */
5093struct alloc_chunk_ctl {
5094 u64 start;
5095 u64 type;
5096 /* Total number of stripes to allocate */
5097 int num_stripes;
5098 /* sub_stripes info for map */
5099 int sub_stripes;
5100 /* Stripes per device */
5101 int dev_stripes;
5102 /* Maximum number of devices to use */
5103 int devs_max;
5104 /* Minimum number of devices to use */
5105 int devs_min;
5106 /* ndevs has to be a multiple of this */
5107 int devs_increment;
5108 /* Number of copies */
5109 int ncopies;
5110 /* Number of stripes worth of bytes to store parity information */
5111 int nparity;
5112 u64 max_stripe_size;
5113 u64 max_chunk_size;
6aafb303 5114 u64 dev_extent_min;
4f2bafe8
NA
5115 u64 stripe_size;
5116 u64 chunk_size;
5117 int ndevs;
5118};
5119
27c314d5
NA
5120static void init_alloc_chunk_ctl_policy_regular(
5121 struct btrfs_fs_devices *fs_devices,
5122 struct alloc_chunk_ctl *ctl)
5123{
f6fca391 5124 struct btrfs_space_info *space_info;
27c314d5 5125
f6fca391
SR
5126 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5127 ASSERT(space_info);
5128
5129 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5130 ctl->max_stripe_size = ctl->max_chunk_size;
5131
5132 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5133 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
27c314d5
NA
5134
5135 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5136 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
27c314d5 5137 ctl->max_chunk_size);
a97699d1 5138 ctl->dev_extent_min = ctl->dev_stripes << BTRFS_STRIPE_LEN_SHIFT;
27c314d5
NA
5139}
5140
1cd6121f
NA
5141static void init_alloc_chunk_ctl_policy_zoned(
5142 struct btrfs_fs_devices *fs_devices,
5143 struct alloc_chunk_ctl *ctl)
5144{
5145 u64 zone_size = fs_devices->fs_info->zone_size;
5146 u64 limit;
5147 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5148 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5149 u64 min_chunk_size = min_data_stripes * zone_size;
5150 u64 type = ctl->type;
5151
5152 ctl->max_stripe_size = zone_size;
5153 if (type & BTRFS_BLOCK_GROUP_DATA) {
5154 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5155 zone_size);
5156 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5157 ctl->max_chunk_size = ctl->max_stripe_size;
5158 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5159 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5160 ctl->devs_max = min_t(int, ctl->devs_max,
5161 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5162 } else {
5163 BUG();
1cd6121f
NA
5164 }
5165
5166 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5167 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
1cd6121f
NA
5168 zone_size),
5169 min_chunk_size);
5170 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5171 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5172}
5173
27c314d5
NA
5174static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5175 struct alloc_chunk_ctl *ctl)
5176{
5177 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5178
5179 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5180 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5181 ctl->devs_max = btrfs_raid_array[index].devs_max;
5182 if (!ctl->devs_max)
5183 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5184 ctl->devs_min = btrfs_raid_array[index].devs_min;
5185 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5186 ctl->ncopies = btrfs_raid_array[index].ncopies;
5187 ctl->nparity = btrfs_raid_array[index].nparity;
5188 ctl->ndevs = 0;
5189
5190 switch (fs_devices->chunk_alloc_policy) {
5191 case BTRFS_CHUNK_ALLOC_REGULAR:
5192 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5193 break;
1cd6121f
NA
5194 case BTRFS_CHUNK_ALLOC_ZONED:
5195 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5196 break;
27c314d5
NA
5197 default:
5198 BUG();
5199 }
5200}
5201
560156cb
NA
5202static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5203 struct alloc_chunk_ctl *ctl,
5204 struct btrfs_device_info *devices_info)
b2117a39 5205{
560156cb 5206 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5207 struct btrfs_device *device;
73c5de00 5208 u64 total_avail;
560156cb 5209 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5210 int ret;
560156cb
NA
5211 int ndevs = 0;
5212 u64 max_avail;
5213 u64 dev_offset;
0cad8a11 5214
9f680ce0 5215 /*
73c5de00
AJ
5216 * in the first pass through the devices list, we gather information
5217 * about the available holes on each device.
9f680ce0 5218 */
ebcc9301 5219 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5220 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5221 WARN(1, KERN_ERR
efe120a0 5222 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5223 continue;
5224 }
b2117a39 5225
e12c9621
AJ
5226 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5227 &device->dev_state) ||
401e29c1 5228 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5229 continue;
b2117a39 5230
73c5de00
AJ
5231 if (device->total_bytes > device->bytes_used)
5232 total_avail = device->total_bytes - device->bytes_used;
5233 else
5234 total_avail = 0;
38c01b96 5235
5236 /* If there is no space on this device, skip it. */
6aafb303 5237 if (total_avail < ctl->dev_extent_min)
38c01b96 5238 continue;
b2117a39 5239
560156cb
NA
5240 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5241 &max_avail);
73c5de00 5242 if (ret && ret != -ENOSPC)
560156cb 5243 return ret;
b2117a39 5244
73c5de00 5245 if (ret == 0)
560156cb 5246 max_avail = dev_extent_want;
b2117a39 5247
6aafb303 5248 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5249 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5250 btrfs_debug(info,
560156cb 5251 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5252 __func__, device->devid, max_avail,
6aafb303 5253 ctl->dev_extent_min);
73c5de00 5254 continue;
4117f207 5255 }
b2117a39 5256
063d006f
ES
5257 if (ndevs == fs_devices->rw_devices) {
5258 WARN(1, "%s: found more than %llu devices\n",
5259 __func__, fs_devices->rw_devices);
5260 break;
5261 }
73c5de00
AJ
5262 devices_info[ndevs].dev_offset = dev_offset;
5263 devices_info[ndevs].max_avail = max_avail;
5264 devices_info[ndevs].total_avail = total_avail;
5265 devices_info[ndevs].dev = device;
5266 ++ndevs;
5267 }
560156cb 5268 ctl->ndevs = ndevs;
b2117a39 5269
73c5de00
AJ
5270 /*
5271 * now sort the devices by hole size / available space
5272 */
560156cb 5273 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5274 btrfs_cmp_device_info, NULL);
b2117a39 5275
560156cb
NA
5276 return 0;
5277}
5278
5badf512
NA
5279static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5280 struct btrfs_device_info *devices_info)
5281{
5282 /* Number of stripes that count for block group size */
5283 int data_stripes;
5284
5285 /*
5286 * The primary goal is to maximize the number of stripes, so use as
5287 * many devices as possible, even if the stripes are not maximum sized.
5288 *
5289 * The DUP profile stores more than one stripe per device, the
5290 * max_avail is the total size so we have to adjust.
5291 */
5292 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5293 ctl->dev_stripes);
5294 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5295
5296 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5297 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5298
5299 /*
5300 * Use the number of data stripes to figure out how big this chunk is
5301 * really going to be in terms of logical address space, and compare
5302 * that answer with the max chunk size. If it's higher, we try to
5303 * reduce stripe_size.
5304 */
5305 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5306 /*
5307 * Reduce stripe_size, round it up to a 16MB boundary again and
5308 * then use it, unless it ends up being even bigger than the
5309 * previous value we had already.
5310 */
5311 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5312 data_stripes), SZ_16M),
5313 ctl->stripe_size);
5314 }
5315
5da431b7
QW
5316 /* Stripe size should not go beyond 1G. */
5317 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5318
5badf512
NA
5319 /* Align to BTRFS_STRIPE_LEN */
5320 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5321 ctl->chunk_size = ctl->stripe_size * data_stripes;
5322
5323 return 0;
5324}
5325
1cd6121f
NA
5326static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5327 struct btrfs_device_info *devices_info)
5328{
5329 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5330 /* Number of stripes that count for block group size */
5331 int data_stripes;
5332
5333 /*
5334 * It should hold because:
5335 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5336 */
5337 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5338
5339 ctl->stripe_size = zone_size;
5340 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5341 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5342
5343 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5344 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5345 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5346 ctl->stripe_size) + ctl->nparity,
5347 ctl->dev_stripes);
5348 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5349 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5350 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5351 }
5352
5353 ctl->chunk_size = ctl->stripe_size * data_stripes;
5354
5355 return 0;
5356}
5357
5badf512
NA
5358static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5359 struct alloc_chunk_ctl *ctl,
5360 struct btrfs_device_info *devices_info)
5361{
5362 struct btrfs_fs_info *info = fs_devices->fs_info;
5363
5364 /*
5365 * Round down to number of usable stripes, devs_increment can be any
5366 * number so we can't use round_down() that requires power of 2, while
5367 * rounddown is safe.
5368 */
5369 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5370
5371 if (ctl->ndevs < ctl->devs_min) {
5372 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5373 btrfs_debug(info,
5374 "%s: not enough devices with free space: have=%d minimum required=%d",
5375 __func__, ctl->ndevs, ctl->devs_min);
5376 }
5377 return -ENOSPC;
5378 }
5379
5380 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5381
5382 switch (fs_devices->chunk_alloc_policy) {
5383 case BTRFS_CHUNK_ALLOC_REGULAR:
5384 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5385 case BTRFS_CHUNK_ALLOC_ZONED:
5386 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5387 default:
5388 BUG();
5389 }
5390}
5391
79bd3712 5392static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5393 struct alloc_chunk_ctl *ctl,
5394 struct btrfs_device_info *devices_info)
560156cb
NA
5395{
5396 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5397 struct map_lookup *map = NULL;
5398 struct extent_map_tree *em_tree;
79bd3712 5399 struct btrfs_block_group *block_group;
560156cb 5400 struct extent_map *em;
dce580ca
NA
5401 u64 start = ctl->start;
5402 u64 type = ctl->type;
560156cb
NA
5403 int ret;
5404 int i;
5405 int j;
5406
dce580ca
NA
5407 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5408 if (!map)
79bd3712 5409 return ERR_PTR(-ENOMEM);
dce580ca 5410 map->num_stripes = ctl->num_stripes;
560156cb 5411
dce580ca
NA
5412 for (i = 0; i < ctl->ndevs; ++i) {
5413 for (j = 0; j < ctl->dev_stripes; ++j) {
5414 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5415 map->stripes[s].dev = devices_info[i].dev;
5416 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5417 j * ctl->stripe_size;
6324fbf3 5418 }
6324fbf3 5419 }
500ceed8
NB
5420 map->io_align = BTRFS_STRIPE_LEN;
5421 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5422 map->type = type;
dce580ca 5423 map->sub_stripes = ctl->sub_stripes;
0b86a832 5424
dce580ca 5425 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5426
172ddd60 5427 em = alloc_extent_map();
2b82032c 5428 if (!em) {
298a8f9c 5429 kfree(map);
79bd3712 5430 return ERR_PTR(-ENOMEM);
593060d7 5431 }
298a8f9c 5432 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5433 em->map_lookup = map;
2b82032c 5434 em->start = start;
dce580ca 5435 em->len = ctl->chunk_size;
2b82032c
YZ
5436 em->block_start = 0;
5437 em->block_len = em->len;
dce580ca 5438 em->orig_block_len = ctl->stripe_size;
593060d7 5439
c8bf1b67 5440 em_tree = &info->mapping_tree;
890871be 5441 write_lock(&em_tree->lock);
09a2a8f9 5442 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5443 if (ret) {
1efb72a3 5444 write_unlock(&em_tree->lock);
0f5d42b2 5445 free_extent_map(em);
79bd3712 5446 return ERR_PTR(ret);
0f5d42b2 5447 }
1efb72a3
NB
5448 write_unlock(&em_tree->lock);
5449
5758d1bd 5450 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
79bd3712 5451 if (IS_ERR(block_group))
6df9a95e 5452 goto error_del_extent;
2b82032c 5453
bbbf7243
NB
5454 for (i = 0; i < map->num_stripes; i++) {
5455 struct btrfs_device *dev = map->stripes[i].dev;
5456
4f2bafe8 5457 btrfs_device_set_bytes_used(dev,
dce580ca 5458 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5459 if (list_empty(&dev->post_commit_list))
5460 list_add_tail(&dev->post_commit_list,
5461 &trans->transaction->dev_update_list);
5462 }
43530c46 5463
dce580ca 5464 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5465 &info->free_chunk_space);
1c116187 5466
0f5d42b2 5467 free_extent_map(em);
0b246afa 5468 check_raid56_incompat_flag(info, type);
cfbb825c 5469 check_raid1c34_incompat_flag(info, type);
53b381b3 5470
79bd3712 5471 return block_group;
b2117a39 5472
6df9a95e 5473error_del_extent:
0f5d42b2
JB
5474 write_lock(&em_tree->lock);
5475 remove_extent_mapping(em_tree, em);
5476 write_unlock(&em_tree->lock);
5477
5478 /* One for our allocation */
5479 free_extent_map(em);
5480 /* One for the tree reference */
5481 free_extent_map(em);
dce580ca 5482
79bd3712 5483 return block_group;
dce580ca
NA
5484}
5485
f6f39f7a 5486struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5487 u64 type)
dce580ca
NA
5488{
5489 struct btrfs_fs_info *info = trans->fs_info;
5490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5491 struct btrfs_device_info *devices_info = NULL;
5492 struct alloc_chunk_ctl ctl;
79bd3712 5493 struct btrfs_block_group *block_group;
dce580ca
NA
5494 int ret;
5495
11c67b1a
NB
5496 lockdep_assert_held(&info->chunk_mutex);
5497
dce580ca
NA
5498 if (!alloc_profile_is_valid(type, 0)) {
5499 ASSERT(0);
79bd3712 5500 return ERR_PTR(-EINVAL);
dce580ca
NA
5501 }
5502
5503 if (list_empty(&fs_devices->alloc_list)) {
5504 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5505 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5506 return ERR_PTR(-ENOSPC);
dce580ca
NA
5507 }
5508
5509 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5510 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5511 ASSERT(0);
79bd3712 5512 return ERR_PTR(-EINVAL);
dce580ca
NA
5513 }
5514
11c67b1a 5515 ctl.start = find_next_chunk(info);
dce580ca
NA
5516 ctl.type = type;
5517 init_alloc_chunk_ctl(fs_devices, &ctl);
5518
5519 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5520 GFP_NOFS);
5521 if (!devices_info)
79bd3712 5522 return ERR_PTR(-ENOMEM);
dce580ca
NA
5523
5524 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5525 if (ret < 0) {
5526 block_group = ERR_PTR(ret);
dce580ca 5527 goto out;
79bd3712 5528 }
dce580ca
NA
5529
5530 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5531 if (ret < 0) {
5532 block_group = ERR_PTR(ret);
dce580ca 5533 goto out;
79bd3712 5534 }
dce580ca 5535
79bd3712 5536 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5537
5538out:
b2117a39 5539 kfree(devices_info);
79bd3712 5540 return block_group;
2b82032c
YZ
5541}
5542
79bd3712
FM
5543/*
5544 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5545 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5546 * chunks.
5547 *
5548 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5549 * phases.
5550 */
5551int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5552 struct btrfs_block_group *bg)
5553{
5554 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5555 struct btrfs_root *chunk_root = fs_info->chunk_root;
5556 struct btrfs_key key;
5557 struct btrfs_chunk *chunk;
5558 struct btrfs_stripe *stripe;
5559 struct extent_map *em;
5560 struct map_lookup *map;
5561 size_t item_size;
5562 int i;
5563 int ret;
5564
5565 /*
5566 * We take the chunk_mutex for 2 reasons:
5567 *
5568 * 1) Updates and insertions in the chunk btree must be done while holding
5569 * the chunk_mutex, as well as updating the system chunk array in the
5570 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5571 * details;
5572 *
5573 * 2) To prevent races with the final phase of a device replace operation
5574 * that replaces the device object associated with the map's stripes,
5575 * because the device object's id can change at any time during that
5576 * final phase of the device replace operation
5577 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5578 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5579 * which would cause a failure when updating the device item, which does
5580 * not exists, or persisting a stripe of the chunk item with such ID.
5581 * Here we can't use the device_list_mutex because our caller already
5582 * has locked the chunk_mutex, and the final phase of device replace
5583 * acquires both mutexes - first the device_list_mutex and then the
5584 * chunk_mutex. Using any of those two mutexes protects us from a
5585 * concurrent device replace.
5586 */
5587 lockdep_assert_held(&fs_info->chunk_mutex);
5588
5589 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5590 if (IS_ERR(em)) {
5591 ret = PTR_ERR(em);
5592 btrfs_abort_transaction(trans, ret);
5593 return ret;
5594 }
5595
5596 map = em->map_lookup;
5597 item_size = btrfs_chunk_item_size(map->num_stripes);
5598
5599 chunk = kzalloc(item_size, GFP_NOFS);
5600 if (!chunk) {
5601 ret = -ENOMEM;
5602 btrfs_abort_transaction(trans, ret);
50460e37 5603 goto out;
2b82032c
YZ
5604 }
5605
79bd3712
FM
5606 for (i = 0; i < map->num_stripes; i++) {
5607 struct btrfs_device *device = map->stripes[i].dev;
5608
5609 ret = btrfs_update_device(trans, device);
5610 if (ret)
5611 goto out;
5612 }
5613
2b82032c 5614 stripe = &chunk->stripe;
6df9a95e 5615 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5616 struct btrfs_device *device = map->stripes[i].dev;
5617 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5618
e17cade2
CM
5619 btrfs_set_stack_stripe_devid(stripe, device->devid);
5620 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5621 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5622 stripe++;
0b86a832
CM
5623 }
5624
79bd3712 5625 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5626 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
a97699d1 5627 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
2b82032c
YZ
5628 btrfs_set_stack_chunk_type(chunk, map->type);
5629 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
a97699d1
QW
5630 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5631 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
0b246afa 5632 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5633 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5634
2b82032c
YZ
5635 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5636 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5637 key.offset = bg->start;
0b86a832 5638
2b82032c 5639 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5640 if (ret)
5641 goto out;
5642
3349b57f 5643 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
79bd3712
FM
5644
5645 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5646 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5647 if (ret)
5648 goto out;
8f18cf13 5649 }
1abe9b8a 5650
6df9a95e 5651out:
0b86a832 5652 kfree(chunk);
6df9a95e 5653 free_extent_map(em);
4ed1d16e 5654 return ret;
2b82032c 5655}
0b86a832 5656
6f8e0fc7 5657static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5658{
6f8e0fc7 5659 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5660 u64 alloc_profile;
79bd3712
FM
5661 struct btrfs_block_group *meta_bg;
5662 struct btrfs_block_group *sys_bg;
5663
5664 /*
5665 * When adding a new device for sprouting, the seed device is read-only
5666 * so we must first allocate a metadata and a system chunk. But before
5667 * adding the block group items to the extent, device and chunk btrees,
5668 * we must first:
5669 *
5670 * 1) Create both chunks without doing any changes to the btrees, as
5671 * otherwise we would get -ENOSPC since the block groups from the
5672 * seed device are read-only;
5673 *
5674 * 2) Add the device item for the new sprout device - finishing the setup
5675 * of a new block group requires updating the device item in the chunk
5676 * btree, so it must exist when we attempt to do it. The previous step
5677 * ensures this does not fail with -ENOSPC.
5678 *
5679 * After that we can add the block group items to their btrees:
5680 * update existing device item in the chunk btree, add a new block group
5681 * item to the extent btree, add a new chunk item to the chunk btree and
5682 * finally add the new device extent items to the devices btree.
5683 */
2b82032c 5684
1b86826d 5685 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5686 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5687 if (IS_ERR(meta_bg))
5688 return PTR_ERR(meta_bg);
2b82032c 5689
1b86826d 5690 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5691 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5692 if (IS_ERR(sys_bg))
5693 return PTR_ERR(sys_bg);
5694
5695 return 0;
2b82032c
YZ
5696}
5697
d20983b4
MX
5698static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5699{
fc9a2ac7 5700 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5701
fc9a2ac7 5702 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5703}
5704
a09f23c3 5705bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5706{
5707 struct extent_map *em;
5708 struct map_lookup *map;
d20983b4 5709 int miss_ndevs = 0;
2b82032c 5710 int i;
a09f23c3 5711 bool ret = true;
2b82032c 5712
60ca842e 5713 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5714 if (IS_ERR(em))
a09f23c3 5715 return false;
2b82032c 5716
95617d69 5717 map = em->map_lookup;
2b82032c 5718 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5719 if (test_bit(BTRFS_DEV_STATE_MISSING,
5720 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5721 miss_ndevs++;
5722 continue;
5723 }
ebbede42
AJ
5724 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5725 &map->stripes[i].dev->dev_state)) {
a09f23c3 5726 ret = false;
d20983b4 5727 goto end;
2b82032c
YZ
5728 }
5729 }
d20983b4
MX
5730
5731 /*
a09f23c3
AJ
5732 * If the number of missing devices is larger than max errors, we can
5733 * not write the data into that chunk successfully.
d20983b4
MX
5734 */
5735 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5736 ret = false;
d20983b4 5737end:
0b86a832 5738 free_extent_map(em);
a09f23c3 5739 return ret;
0b86a832
CM
5740}
5741
c8bf1b67 5742void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5743{
5744 struct extent_map *em;
5745
d397712b 5746 while (1) {
c8bf1b67
DS
5747 write_lock(&tree->lock);
5748 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5749 if (em)
c8bf1b67
DS
5750 remove_extent_mapping(tree, em);
5751 write_unlock(&tree->lock);
0b86a832
CM
5752 if (!em)
5753 break;
0b86a832
CM
5754 /* once for us */
5755 free_extent_map(em);
5756 /* once for the tree */
5757 free_extent_map(em);
5758 }
5759}
5760
5d964051 5761int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5762{
5763 struct extent_map *em;
5764 struct map_lookup *map;
6d322b48
QW
5765 enum btrfs_raid_types index;
5766 int ret = 1;
f188591e 5767
60ca842e 5768 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5769 if (IS_ERR(em))
5770 /*
5771 * We could return errors for these cases, but that could get
5772 * ugly and we'd probably do the same thing which is just not do
5773 * anything else and exit, so return 1 so the callers don't try
5774 * to use other copies.
5775 */
fb7669b5 5776 return 1;
fb7669b5 5777
95617d69 5778 map = em->map_lookup;
6d322b48
QW
5779 index = btrfs_bg_flags_to_raid_index(map->type);
5780
5781 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5782 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5783 ret = btrfs_raid_array[index].ncopies;
53b381b3
DW
5784 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5785 ret = 2;
5786 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5787 /*
5788 * There could be two corrupted data stripes, we need
5789 * to loop retry in order to rebuild the correct data.
e7e02096 5790 *
8810f751
LB
5791 * Fail a stripe at a time on every retry except the
5792 * stripe under reconstruction.
5793 */
5794 ret = map->num_stripes;
f188591e 5795 free_extent_map(em);
f188591e
CM
5796 return ret;
5797}
5798
2ff7e61e 5799unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5800 u64 logical)
5801{
5802 struct extent_map *em;
5803 struct map_lookup *map;
0b246afa 5804 unsigned long len = fs_info->sectorsize;
53b381b3 5805
b036f479
QW
5806 if (!btrfs_fs_incompat(fs_info, RAID56))
5807 return len;
5808
60ca842e 5809 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5810
69f03f13
NB
5811 if (!WARN_ON(IS_ERR(em))) {
5812 map = em->map_lookup;
5813 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
a97699d1 5814 len = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
69f03f13
NB
5815 free_extent_map(em);
5816 }
53b381b3
DW
5817 return len;
5818}
5819
e4ff5fb5 5820int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5821{
5822 struct extent_map *em;
5823 struct map_lookup *map;
53b381b3
DW
5824 int ret = 0;
5825
b036f479
QW
5826 if (!btrfs_fs_incompat(fs_info, RAID56))
5827 return 0;
5828
60ca842e 5829 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5830
69f03f13
NB
5831 if(!WARN_ON(IS_ERR(em))) {
5832 map = em->map_lookup;
5833 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5834 ret = 1;
5835 free_extent_map(em);
5836 }
53b381b3
DW
5837 return ret;
5838}
5839
30d9861f 5840static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5841 struct map_lookup *map, int first,
8ba0ae78 5842 int dev_replace_is_ongoing)
dfe25020
CM
5843{
5844 int i;
99f92a7c 5845 int num_stripes;
8ba0ae78 5846 int preferred_mirror;
30d9861f
SB
5847 int tolerance;
5848 struct btrfs_device *srcdev;
5849
99f92a7c 5850 ASSERT((map->type &
c7369b3f 5851 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5852
5853 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5854 num_stripes = map->sub_stripes;
5855 else
5856 num_stripes = map->num_stripes;
5857
33fd2f71
AJ
5858 switch (fs_info->fs_devices->read_policy) {
5859 default:
5860 /* Shouldn't happen, just warn and use pid instead of failing */
5861 btrfs_warn_rl(fs_info,
5862 "unknown read_policy type %u, reset to pid",
5863 fs_info->fs_devices->read_policy);
5864 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5865 fallthrough;
5866 case BTRFS_READ_POLICY_PID:
5867 preferred_mirror = first + (current->pid % num_stripes);
5868 break;
5869 }
8ba0ae78 5870
30d9861f
SB
5871 if (dev_replace_is_ongoing &&
5872 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5873 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5874 srcdev = fs_info->dev_replace.srcdev;
5875 else
5876 srcdev = NULL;
5877
5878 /*
5879 * try to avoid the drive that is the source drive for a
5880 * dev-replace procedure, only choose it if no other non-missing
5881 * mirror is available
5882 */
5883 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5884 if (map->stripes[preferred_mirror].dev->bdev &&
5885 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5886 return preferred_mirror;
99f92a7c 5887 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5888 if (map->stripes[i].dev->bdev &&
5889 (tolerance || map->stripes[i].dev != srcdev))
5890 return i;
5891 }
dfe25020 5892 }
30d9861f 5893
dfe25020
CM
5894 /* we couldn't find one that doesn't fail. Just return something
5895 * and the io error handling code will clean up eventually
5896 */
8ba0ae78 5897 return preferred_mirror;
dfe25020
CM
5898}
5899
731ccf15 5900static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
1faf3885 5901 u16 total_stripes)
6e9606d2 5902{
4ced85f8
QW
5903 struct btrfs_io_context *bioc;
5904
5905 bioc = kzalloc(
4c664611
QW
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
18d758a2 5909 sizeof(struct btrfs_io_stripe) * (total_stripes),
9f0eac07
L
5910 GFP_NOFS);
5911
5912 if (!bioc)
5913 return NULL;
6e9606d2 5914
4c664611 5915 refcount_set(&bioc->refs, 1);
6e9606d2 5916
731ccf15 5917 bioc->fs_info = fs_info;
1faf3885 5918 bioc->replace_stripe_src = -1;
18d758a2 5919 bioc->full_stripe_logical = (u64)-1;
608769a4 5920
4c664611 5921 return bioc;
6e9606d2
ZL
5922}
5923
4c664611 5924void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5925{
4c664611
QW
5926 WARN_ON(!refcount_read(&bioc->refs));
5927 refcount_inc(&bioc->refs);
6e9606d2
ZL
5928}
5929
4c664611 5930void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5931{
4c664611 5932 if (!bioc)
6e9606d2 5933 return;
4c664611
QW
5934 if (refcount_dec_and_test(&bioc->refs))
5935 kfree(bioc);
6e9606d2
ZL
5936}
5937
0b3d4cd3
LB
5938/*
5939 * Please note that, discard won't be sent to target device of device
5940 * replace.
5941 */
a4012f06
CH
5942struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5943 u64 logical, u64 *length_ret,
5944 u32 *num_stripes)
0b3d4cd3
LB
5945{
5946 struct extent_map *em;
5947 struct map_lookup *map;
a4012f06 5948 struct btrfs_discard_stripe *stripes;
6b7faadd 5949 u64 length = *length_ret;
0b3d4cd3 5950 u64 offset;
6ded22c1
QW
5951 u32 stripe_nr;
5952 u32 stripe_nr_end;
5953 u32 stripe_cnt;
0b3d4cd3 5954 u64 stripe_end_offset;
0b3d4cd3 5955 u64 stripe_offset;
0b3d4cd3
LB
5956 u32 stripe_index;
5957 u32 factor = 0;
5958 u32 sub_stripes = 0;
6ded22c1 5959 u32 stripes_per_dev = 0;
0b3d4cd3
LB
5960 u32 remaining_stripes = 0;
5961 u32 last_stripe = 0;
a4012f06 5962 int ret;
0b3d4cd3
LB
5963 int i;
5964
60ca842e 5965 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3 5966 if (IS_ERR(em))
a4012f06 5967 return ERR_CAST(em);
0b3d4cd3
LB
5968
5969 map = em->map_lookup;
a4012f06 5970
0b3d4cd3
LB
5971 /* we don't discard raid56 yet */
5972 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5973 ret = -EOPNOTSUPP;
a4012f06 5974 goto out_free_map;
a97699d1 5975 }
0b3d4cd3
LB
5976
5977 offset = logical - em->start;
2d974619 5978 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5979 *length_ret = length;
0b3d4cd3 5980
0b3d4cd3
LB
5981 /*
5982 * stripe_nr counts the total number of stripes we have to stride
5983 * to get to this block
5984 */
a97699d1 5985 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
5986
5987 /* stripe_offset is the offset of this block in its stripe */
a97699d1 5988 stripe_offset = offset - (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
0b3d4cd3 5989
a97699d1
QW
5990 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5991 BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3 5992 stripe_cnt = stripe_nr_end - stripe_nr;
a97699d1 5993 stripe_end_offset = (stripe_nr_end << BTRFS_STRIPE_LEN_SHIFT) -
0b3d4cd3
LB
5994 (offset + length);
5995 /*
5996 * after this, stripe_nr is the number of stripes on this
5997 * device we have to walk to find the data, and stripe_index is
5998 * the number of our device in the stripe array
5999 */
a4012f06 6000 *num_stripes = 1;
0b3d4cd3
LB
6001 stripe_index = 0;
6002 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6003 BTRFS_BLOCK_GROUP_RAID10)) {
6004 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6005 sub_stripes = 1;
6006 else
6007 sub_stripes = map->sub_stripes;
6008
6009 factor = map->num_stripes / sub_stripes;
a4012f06 6010 *num_stripes = min_t(u64, map->num_stripes,
0b3d4cd3 6011 sub_stripes * stripe_cnt);
6ded22c1
QW
6012 stripe_index = stripe_nr % factor;
6013 stripe_nr /= factor;
0b3d4cd3 6014 stripe_index *= sub_stripes;
6ded22c1
QW
6015
6016 remaining_stripes = stripe_cnt % factor;
6017 stripes_per_dev = stripe_cnt / factor;
6018 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
c7369b3f 6019 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3 6020 BTRFS_BLOCK_GROUP_DUP)) {
a4012f06 6021 *num_stripes = map->num_stripes;
0b3d4cd3 6022 } else {
6ded22c1
QW
6023 stripe_index = stripe_nr % map->num_stripes;
6024 stripe_nr /= map->num_stripes;
0b3d4cd3
LB
6025 }
6026
a4012f06
CH
6027 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6028 if (!stripes) {
0b3d4cd3 6029 ret = -ENOMEM;
a4012f06 6030 goto out_free_map;
0b3d4cd3
LB
6031 }
6032
a4012f06
CH
6033 for (i = 0; i < *num_stripes; i++) {
6034 stripes[i].physical =
0b3d4cd3 6035 map->stripes[stripe_index].physical +
a97699d1 6036 stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
a4012f06 6037 stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6038
6039 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6040 BTRFS_BLOCK_GROUP_RAID10)) {
a97699d1 6041 stripes[i].length = stripes_per_dev << BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
6042
6043 if (i / sub_stripes < remaining_stripes)
a97699d1 6044 stripes[i].length += BTRFS_STRIPE_LEN;
0b3d4cd3
LB
6045
6046 /*
6047 * Special for the first stripe and
6048 * the last stripe:
6049 *
6050 * |-------|...|-------|
6051 * |----------|
6052 * off end_off
6053 */
6054 if (i < sub_stripes)
a4012f06 6055 stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6056
6057 if (stripe_index >= last_stripe &&
6058 stripe_index <= (last_stripe +
6059 sub_stripes - 1))
a4012f06 6060 stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6061
6062 if (i == sub_stripes - 1)
6063 stripe_offset = 0;
6064 } else {
a4012f06 6065 stripes[i].length = length;
0b3d4cd3
LB
6066 }
6067
6068 stripe_index++;
6069 if (stripe_index == map->num_stripes) {
6070 stripe_index = 0;
6071 stripe_nr++;
6072 }
6073 }
6074
0b3d4cd3 6075 free_extent_map(em);
a4012f06
CH
6076 return stripes;
6077out_free_map:
6078 free_extent_map(em);
6079 return ERR_PTR(ret);
0b3d4cd3
LB
6080}
6081
6143c23c
NA
6082static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6083{
6084 struct btrfs_block_group *cache;
6085 bool ret;
6086
de17addc 6087 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6088 if (!btrfs_is_zoned(fs_info))
6089 return false;
6090
6091 cache = btrfs_lookup_block_group(fs_info, logical);
6092
3349b57f 6093 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6143c23c
NA
6094
6095 btrfs_put_block_group(cache);
6096 return ret;
6097}
6098
73c0f228 6099static void handle_ops_on_dev_replace(enum btrfs_map_op op,
be5c7edb 6100 struct btrfs_io_context *bioc,
73c0f228 6101 struct btrfs_dev_replace *dev_replace,
6143c23c 6102 u64 logical,
73c0f228
LB
6103 int *num_stripes_ret, int *max_errors_ret)
6104{
73c0f228 6105 u64 srcdev_devid = dev_replace->srcdev->devid;
1faf3885
QW
6106 /*
6107 * At this stage, num_stripes is still the real number of stripes,
6108 * excluding the duplicated stripes.
6109 */
73c0f228 6110 int num_stripes = *num_stripes_ret;
1faf3885 6111 int nr_extra_stripes = 0;
73c0f228
LB
6112 int max_errors = *max_errors_ret;
6113 int i;
6114
1faf3885
QW
6115 /*
6116 * A block group which has "to_copy" set will eventually be copied by
6117 * the dev-replace process. We can avoid cloning IO here.
6118 */
6119 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6120 return;
73c0f228 6121
1faf3885
QW
6122 /*
6123 * Duplicate the write operations while the dev-replace procedure is
6124 * running. Since the copying of the old disk to the new disk takes
6125 * place at run time while the filesystem is mounted writable, the
6126 * regular write operations to the old disk have to be duplicated to go
6127 * to the new disk as well.
6128 *
6129 * Note that device->missing is handled by the caller, and that the
6130 * write to the old disk is already set up in the stripes array.
6131 */
6132 for (i = 0; i < num_stripes; i++) {
6133 struct btrfs_io_stripe *old = &bioc->stripes[i];
6134 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6143c23c 6135
1faf3885
QW
6136 if (old->dev->devid != srcdev_devid)
6137 continue;
73c0f228 6138
1faf3885
QW
6139 new->physical = old->physical;
6140 new->dev = dev_replace->tgtdev;
6141 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6142 bioc->replace_stripe_src = i;
6143 nr_extra_stripes++;
6144 }
73c0f228 6145
1faf3885
QW
6146 /* We can only have at most 2 extra nr_stripes (for DUP). */
6147 ASSERT(nr_extra_stripes <= 2);
6148 /*
6149 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6150 * replace.
6151 * If we have 2 extra stripes, only choose the one with smaller physical.
6152 */
6153 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6154 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6155 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
73c0f228 6156
1faf3885
QW
6157 /* Only DUP can have two extra stripes. */
6158 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6159
6160 /*
6161 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6162 * The extra stripe would still be there, but won't be accessed.
6163 */
6164 if (first->physical > second->physical) {
6165 swap(second->physical, first->physical);
6166 swap(second->dev, first->dev);
6167 nr_extra_stripes--;
73c0f228
LB
6168 }
6169 }
6170
1faf3885
QW
6171 *num_stripes_ret = num_stripes + nr_extra_stripes;
6172 *max_errors_ret = max_errors + nr_extra_stripes;
6173 bioc->replace_nr_stripes = nr_extra_stripes;
73c0f228
LB
6174}
6175
2b19a1fe
LB
6176static bool need_full_stripe(enum btrfs_map_op op)
6177{
6178 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6179}
6180
f8a02dc6 6181static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6ded22c1 6182 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
f8a02dc6 6183 u64 *full_stripe_start)
5f141126 6184{
cc353a8b 6185 /*
f8a02dc6
CH
6186 * Stripe_nr is the stripe where this block falls. stripe_offset is
6187 * the offset of this block in its stripe.
cc353a8b 6188 */
a97699d1
QW
6189 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6190 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
f8a02dc6 6191 ASSERT(*stripe_offset < U32_MAX);
5f141126 6192
f8a02dc6 6193 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
a97699d1
QW
6194 unsigned long full_stripe_len = nr_data_stripes(map) <<
6195 BTRFS_STRIPE_LEN_SHIFT;
5f141126 6196
a97699d1
QW
6197 /*
6198 * For full stripe start, we use previously calculated
6199 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6200 * STRIPE_LEN.
6201 *
6202 * By this we can avoid u64 division completely. And we have
6203 * to go rounddown(), not round_down(), as nr_data_stripes is
6204 * not ensured to be power of 2.
6205 */
f8a02dc6 6206 *full_stripe_start =
a97699d1
QW
6207 rounddown(*stripe_nr, nr_data_stripes(map)) <<
6208 BTRFS_STRIPE_LEN_SHIFT;
5f141126
NB
6209
6210 /*
f8a02dc6
CH
6211 * For writes to RAID56, allow to write a full stripe set, but
6212 * no straddling of stripe sets.
5f141126 6213 */
f8a02dc6
CH
6214 if (op == BTRFS_MAP_WRITE)
6215 return full_stripe_len - (offset - *full_stripe_start);
5f141126
NB
6216 }
6217
f8a02dc6
CH
6218 /*
6219 * For other RAID types and for RAID56 reads, allow a single stripe (on
6220 * a single disk).
6221 */
6222 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
a97699d1 6223 return BTRFS_STRIPE_LEN - *stripe_offset;
f8a02dc6 6224 return U64_MAX;
5f141126
NB
6225}
6226
03793cbb 6227static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6ded22c1 6228 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
03793cbb
CH
6229{
6230 dst->dev = map->stripes[stripe_index].dev;
6231 dst->physical = map->stripes[stripe_index].physical +
a97699d1 6232 stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
03793cbb
CH
6233}
6234
cd4efd21
CH
6235int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6236 u64 logical, u64 *length,
6237 struct btrfs_io_context **bioc_ret,
6238 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6239 int need_raid_map)
0b86a832
CM
6240{
6241 struct extent_map *em;
6242 struct map_lookup *map;
f8a02dc6 6243 u64 map_offset;
593060d7 6244 u64 stripe_offset;
6ded22c1 6245 u32 stripe_nr;
9d644a62 6246 u32 stripe_index;
cff82672 6247 int data_stripes;
cea9e445 6248 int i;
de11cc12 6249 int ret = 0;
03793cbb 6250 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
f2d8d74d 6251 int num_stripes;
5f50fa91 6252 int num_copies;
a236aed1 6253 int max_errors = 0;
4c664611 6254 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6255 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6256 int dev_replace_is_ongoing = 0;
4ced85f8 6257 u16 num_alloc_stripes;
53b381b3 6258 u64 raid56_full_stripe_start = (u64)-1;
f8a02dc6 6259 u64 max_len;
89b798ad 6260
4c664611 6261 ASSERT(bioc_ret);
0b3d4cd3 6262
5f50fa91
QW
6263 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6264 if (mirror_num > num_copies)
6265 return -EINVAL;
6266
42034313 6267 em = btrfs_get_chunk_map(fs_info, logical, *length);
1c3ab6df
QW
6268 if (IS_ERR(em))
6269 return PTR_ERR(em);
42034313 6270
95617d69 6271 map = em->map_lookup;
cff82672 6272 data_stripes = nr_data_stripes(map);
f8a02dc6
CH
6273
6274 map_offset = logical - em->start;
6275 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6276 &stripe_offset, &raid56_full_stripe_start);
6277 *length = min_t(u64, em->len - map_offset, max_len);
593060d7 6278
cb5583dd 6279 down_read(&dev_replace->rwsem);
472262f3 6280 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6281 /*
6282 * Hold the semaphore for read during the whole operation, write is
6283 * requested at commit time but must wait.
6284 */
472262f3 6285 if (!dev_replace_is_ongoing)
cb5583dd 6286 up_read(&dev_replace->rwsem);
472262f3 6287
f2d8d74d 6288 num_stripes = 1;
cea9e445 6289 stripe_index = 0;
fce3bb9a 6290 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6ded22c1
QW
6291 stripe_index = stripe_nr % map->num_stripes;
6292 stripe_nr /= map->num_stripes;
de483734 6293 if (!need_full_stripe(op))
28e1cc7d 6294 mirror_num = 1;
c7369b3f 6295 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6296 if (need_full_stripe(op))
f2d8d74d 6297 num_stripes = map->num_stripes;
2fff734f 6298 else if (mirror_num)
f188591e 6299 stripe_index = mirror_num - 1;
dfe25020 6300 else {
30d9861f 6301 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6302 dev_replace_is_ongoing);
a1d3c478 6303 mirror_num = stripe_index + 1;
dfe25020 6304 }
2fff734f 6305
611f0e00 6306 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6307 if (need_full_stripe(op)) {
f2d8d74d 6308 num_stripes = map->num_stripes;
a1d3c478 6309 } else if (mirror_num) {
f188591e 6310 stripe_index = mirror_num - 1;
a1d3c478
JS
6311 } else {
6312 mirror_num = 1;
6313 }
2fff734f 6314
321aecc6 6315 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6316 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6317
6ded22c1
QW
6318 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6319 stripe_nr /= factor;
321aecc6 6320
de483734 6321 if (need_full_stripe(op))
f2d8d74d 6322 num_stripes = map->sub_stripes;
321aecc6
CM
6323 else if (mirror_num)
6324 stripe_index += mirror_num - 1;
dfe25020 6325 else {
3e74317a 6326 int old_stripe_index = stripe_index;
30d9861f
SB
6327 stripe_index = find_live_mirror(fs_info, map,
6328 stripe_index,
30d9861f 6329 dev_replace_is_ongoing);
3e74317a 6330 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6331 }
53b381b3 6332
ffe2d203 6333 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6334 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6ded22c1
QW
6335 /*
6336 * Push stripe_nr back to the start of the full stripe
6337 * For those cases needing a full stripe, @stripe_nr
6338 * is the full stripe number.
6339 *
6340 * Originally we go raid56_full_stripe_start / full_stripe_len,
6341 * but that can be expensive. Here we just divide
6342 * @stripe_nr with @data_stripes.
6343 */
6344 stripe_nr /= data_stripes;
53b381b3
DW
6345
6346 /* RAID[56] write or recovery. Return all stripes */
6347 num_stripes = map->num_stripes;
6dead96c 6348 max_errors = btrfs_chunk_max_errors(map);
53b381b3 6349
462b0b2a
QW
6350 /* Return the length to the full stripe end */
6351 *length = min(logical + *length,
6352 raid56_full_stripe_start + em->start +
a97699d1 6353 (data_stripes << BTRFS_STRIPE_LEN_SHIFT)) - logical;
53b381b3
DW
6354 stripe_index = 0;
6355 stripe_offset = 0;
6356 } else {
6357 /*
6358 * Mirror #0 or #1 means the original data block.
6359 * Mirror #2 is RAID5 parity block.
6360 * Mirror #3 is RAID6 Q block.
6361 */
6ded22c1
QW
6362 stripe_index = stripe_nr % data_stripes;
6363 stripe_nr /= data_stripes;
53b381b3 6364 if (mirror_num > 1)
cff82672 6365 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6366
6367 /* We distribute the parity blocks across stripes */
6ded22c1 6368 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
de483734 6369 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6370 mirror_num = 1;
53b381b3 6371 }
8790d502
CM
6372 } else {
6373 /*
6ded22c1 6374 * After this, stripe_nr is the number of stripes on this
47c5713f
DS
6375 * device we have to walk to find the data, and stripe_index is
6376 * the number of our device in the stripe array
8790d502 6377 */
6ded22c1
QW
6378 stripe_index = stripe_nr % map->num_stripes;
6379 stripe_nr /= map->num_stripes;
a1d3c478 6380 mirror_num = stripe_index + 1;
8790d502 6381 }
e042d1ec 6382 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6383 btrfs_crit(fs_info,
6384 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6385 stripe_index, map->num_stripes);
6386 ret = -EINVAL;
6387 goto out;
6388 }
cea9e445 6389
472262f3 6390 num_alloc_stripes = num_stripes;
1faf3885
QW
6391 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6392 op != BTRFS_MAP_READ)
6393 /*
6394 * For replace case, we need to add extra stripes for extra
6395 * duplicated stripes.
6396 *
6397 * For both WRITE and GET_READ_MIRRORS, we may have at most
6398 * 2 more stripes (DUP types, otherwise 1).
6399 */
6400 num_alloc_stripes += 2;
2c8cdd6e 6401
03793cbb
CH
6402 /*
6403 * If this I/O maps to a single device, try to return the device and
6404 * physical block information on the stack instead of allocating an
6405 * I/O context structure.
6406 */
6407 if (smap && num_alloc_stripes == 1 &&
6408 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6409 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6410 !dev_replace->tgtdev)) {
5f50fa91
QW
6411 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6412 *mirror_num_ret = mirror_num;
03793cbb
CH
6413 *bioc_ret = NULL;
6414 ret = 0;
6415 goto out;
6416 }
6417
1faf3885 6418 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
4c664611 6419 if (!bioc) {
de11cc12
LZ
6420 ret = -ENOMEM;
6421 goto out;
6422 }
1faf3885 6423 bioc->map_type = map->type;
608769a4 6424
18d758a2
QW
6425 /*
6426 * For RAID56 full map, we need to make sure the stripes[] follows the
6427 * rule that data stripes are all ordered, then followed with P and Q
6428 * (if we have).
6429 *
6430 * It's still mostly the same as other profiles, just with extra rotation.
6431 */
2b19a1fe
LB
6432 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6433 (need_full_stripe(op) || mirror_num > 1)) {
18d758a2
QW
6434 /*
6435 * For RAID56 @stripe_nr is already the number of full stripes
6436 * before us, which is also the rotation value (needs to modulo
6437 * with num_stripes).
6438 *
6439 * In this case, we just add @stripe_nr with @i, then do the
6440 * modulo, to reduce one modulo call.
6441 */
6442 bioc->full_stripe_logical = em->start +
6443 ((stripe_nr * data_stripes) << BTRFS_STRIPE_LEN_SHIFT);
6444 for (i = 0; i < num_stripes; i++)
6445 set_io_stripe(&bioc->stripes[i], map,
6446 (i + stripe_nr) % num_stripes,
6447 stripe_offset, stripe_nr);
6448 } else {
6449 /*
6450 * For all other non-RAID56 profiles, just copy the target
6451 * stripe into the bioc.
6452 */
6453 for (i = 0; i < num_stripes; i++) {
6454 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6455 stripe_offset, stripe_nr);
6456 stripe_index++;
6457 }
593060d7 6458 }
de11cc12 6459
2b19a1fe 6460 if (need_full_stripe(op))
d20983b4 6461 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6462
73c0f228 6463 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6464 need_full_stripe(op)) {
be5c7edb 6465 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6143c23c 6466 &num_stripes, &max_errors);
472262f3
SB
6467 }
6468
4c664611 6469 *bioc_ret = bioc;
4c664611
QW
6470 bioc->num_stripes = num_stripes;
6471 bioc->max_errors = max_errors;
6472 bioc->mirror_num = mirror_num;
ad6d620e 6473
cea9e445 6474out:
73beece9 6475 if (dev_replace_is_ongoing) {
53176dde
DS
6476 lockdep_assert_held(&dev_replace->rwsem);
6477 /* Unlock and let waiting writers proceed */
cb5583dd 6478 up_read(&dev_replace->rwsem);
73beece9 6479 }
0b86a832 6480 free_extent_map(em);
de11cc12 6481 return ret;
0b86a832
CM
6482}
6483
562d7b15
JB
6484static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6485 const struct btrfs_fs_devices *fs_devices)
6486{
6487 if (args->fsid == NULL)
6488 return true;
6489 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6490 return true;
6491 return false;
6492}
6493
6494static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6495 const struct btrfs_device *device)
6496{
0fca385d
LS
6497 if (args->missing) {
6498 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6499 !device->bdev)
6500 return true;
6501 return false;
6502 }
562d7b15 6503
0fca385d 6504 if (device->devid != args->devid)
562d7b15
JB
6505 return false;
6506 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6507 return false;
0fca385d 6508 return true;
562d7b15
JB
6509}
6510
09ba3bc9
AJ
6511/*
6512 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6513 * return NULL.
6514 *
6515 * If devid and uuid are both specified, the match must be exact, otherwise
6516 * only devid is used.
09ba3bc9 6517 */
562d7b15
JB
6518struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6519 const struct btrfs_dev_lookup_args *args)
0b86a832 6520{
2b82032c 6521 struct btrfs_device *device;
944d3f9f
NB
6522 struct btrfs_fs_devices *seed_devs;
6523
562d7b15 6524 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6525 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6526 if (dev_args_match_device(args, device))
944d3f9f
NB
6527 return device;
6528 }
6529 }
2b82032c 6530
944d3f9f 6531 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6532 if (!dev_args_match_fs_devices(args, seed_devs))
6533 continue;
6534 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6535 if (dev_args_match_device(args, device))
6536 return device;
2b82032c 6537 }
2b82032c 6538 }
944d3f9f 6539
2b82032c 6540 return NULL;
0b86a832
CM
6541}
6542
2ff7e61e 6543static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6544 u64 devid, u8 *dev_uuid)
6545{
6546 struct btrfs_device *device;
fccc0007 6547 unsigned int nofs_flag;
dfe25020 6548
fccc0007
JB
6549 /*
6550 * We call this under the chunk_mutex, so we want to use NOFS for this
6551 * allocation, however we don't want to change btrfs_alloc_device() to
6552 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6553 * places.
6554 */
bb21e302 6555
fccc0007 6556 nofs_flag = memalloc_nofs_save();
bb21e302 6557 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
fccc0007 6558 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6559 if (IS_ERR(device))
adfb69af 6560 return device;
12bd2fc0
ID
6561
6562 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6563 device->fs_devices = fs_devices;
dfe25020 6564 fs_devices->num_devices++;
12bd2fc0 6565
e6e674bd 6566 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6567 fs_devices->missing_devices++;
12bd2fc0 6568
dfe25020
CM
6569 return device;
6570}
6571
43dd529a
DS
6572/*
6573 * Allocate new device struct, set up devid and UUID.
6574 *
12bd2fc0
ID
6575 * @fs_info: used only for generating a new devid, can be NULL if
6576 * devid is provided (i.e. @devid != NULL).
6577 * @devid: a pointer to devid for this device. If NULL a new devid
6578 * is generated.
6579 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6580 * is generated.
bb21e302 6581 * @path: a pointer to device path if available, NULL otherwise.
12bd2fc0
ID
6582 *
6583 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6584 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6585 * destroyed with btrfs_free_device.
12bd2fc0
ID
6586 */
6587struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
bb21e302
AJ
6588 const u64 *devid, const u8 *uuid,
6589 const char *path)
12bd2fc0
ID
6590{
6591 struct btrfs_device *dev;
6592 u64 tmp;
6593
fae7f21c 6594 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6595 return ERR_PTR(-EINVAL);
12bd2fc0 6596
fe4f46d4
DS
6597 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6598 if (!dev)
6599 return ERR_PTR(-ENOMEM);
6600
fe4f46d4
DS
6601 INIT_LIST_HEAD(&dev->dev_list);
6602 INIT_LIST_HEAD(&dev->dev_alloc_list);
6603 INIT_LIST_HEAD(&dev->post_commit_list);
6604
fe4f46d4
DS
6605 atomic_set(&dev->dev_stats_ccnt, 0);
6606 btrfs_device_data_ordered_init(dev);
35da5a7e 6607 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
12bd2fc0
ID
6608
6609 if (devid)
6610 tmp = *devid;
6611 else {
6612 int ret;
6613
6614 ret = find_next_devid(fs_info, &tmp);
6615 if (ret) {
a425f9d4 6616 btrfs_free_device(dev);
12bd2fc0
ID
6617 return ERR_PTR(ret);
6618 }
6619 }
6620 dev->devid = tmp;
6621
6622 if (uuid)
6623 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6624 else
6625 generate_random_uuid(dev->uuid);
6626
bb21e302
AJ
6627 if (path) {
6628 struct rcu_string *name;
6629
6630 name = rcu_string_strdup(path, GFP_KERNEL);
6631 if (!name) {
6632 btrfs_free_device(dev);
6633 return ERR_PTR(-ENOMEM);
6634 }
6635 rcu_assign_pointer(dev->name, name);
6636 }
6637
12bd2fc0
ID
6638 return dev;
6639}
6640
5a2b8e60 6641static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6642 u64 devid, u8 *uuid, bool error)
5a2b8e60 6643{
2b902dfc
AJ
6644 if (error)
6645 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6646 devid, uuid);
6647 else
6648 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6649 devid, uuid);
5a2b8e60
AJ
6650}
6651
bc88b486 6652u64 btrfs_calc_stripe_length(const struct extent_map *em)
39e264a4 6653{
bc88b486
QW
6654 const struct map_lookup *map = em->map_lookup;
6655 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
e4f6c6be 6656
bc88b486 6657 return div_u64(em->len, data_stripes);
39e264a4
NB
6658}
6659
e9306ad4
QW
6660#if BITS_PER_LONG == 32
6661/*
6662 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6663 * can't be accessed on 32bit systems.
6664 *
6665 * This function do mount time check to reject the fs if it already has
6666 * metadata chunk beyond that limit.
6667 */
6668static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6669 u64 logical, u64 length, u64 type)
6670{
6671 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6672 return 0;
6673
6674 if (logical + length < MAX_LFS_FILESIZE)
6675 return 0;
6676
6677 btrfs_err_32bit_limit(fs_info);
6678 return -EOVERFLOW;
6679}
6680
6681/*
6682 * This is to give early warning for any metadata chunk reaching
6683 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6684 * Although we can still access the metadata, it's not going to be possible
6685 * once the limit is reached.
6686 */
6687static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6688 u64 logical, u64 length, u64 type)
6689{
6690 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6691 return;
6692
6693 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6694 return;
6695
6696 btrfs_warn_32bit_limit(fs_info);
6697}
6698#endif
6699
ff37c89f
NB
6700static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6701 u64 devid, u8 *uuid)
6702{
6703 struct btrfs_device *dev;
6704
6705 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6706 btrfs_report_missing_device(fs_info, devid, uuid, true);
6707 return ERR_PTR(-ENOENT);
6708 }
6709
6710 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6711 if (IS_ERR(dev)) {
6712 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6713 devid, PTR_ERR(dev));
6714 return dev;
6715 }
6716 btrfs_report_missing_device(fs_info, devid, uuid, false);
6717
6718 return dev;
6719}
6720
9690ac09 6721static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6722 struct btrfs_chunk *chunk)
6723{
562d7b15 6724 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 6725 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6726 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6727 struct map_lookup *map;
6728 struct extent_map *em;
6729 u64 logical;
6730 u64 length;
e06cd3dd 6731 u64 devid;
e9306ad4 6732 u64 type;
e06cd3dd 6733 u8 uuid[BTRFS_UUID_SIZE];
76a66ba1 6734 int index;
e06cd3dd
LB
6735 int num_stripes;
6736 int ret;
6737 int i;
6738
6739 logical = key->offset;
6740 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6741 type = btrfs_chunk_type(leaf, chunk);
76a66ba1 6742 index = btrfs_bg_flags_to_raid_index(type);
e06cd3dd
LB
6743 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6744
e9306ad4
QW
6745#if BITS_PER_LONG == 32
6746 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6747 if (ret < 0)
6748 return ret;
6749 warn_32bit_meta_chunk(fs_info, logical, length, type);
6750#endif
6751
075cb3c7
QW
6752 /*
6753 * Only need to verify chunk item if we're reading from sys chunk array,
6754 * as chunk item in tree block is already verified by tree-checker.
6755 */
6756 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6757 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6758 if (ret)
6759 return ret;
6760 }
a061fc8d 6761
c8bf1b67
DS
6762 read_lock(&map_tree->lock);
6763 em = lookup_extent_mapping(map_tree, logical, 1);
6764 read_unlock(&map_tree->lock);
0b86a832
CM
6765
6766 /* already mapped? */
6767 if (em && em->start <= logical && em->start + em->len > logical) {
6768 free_extent_map(em);
0b86a832
CM
6769 return 0;
6770 } else if (em) {
6771 free_extent_map(em);
6772 }
0b86a832 6773
172ddd60 6774 em = alloc_extent_map();
0b86a832
CM
6775 if (!em)
6776 return -ENOMEM;
593060d7 6777 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6778 if (!map) {
6779 free_extent_map(em);
6780 return -ENOMEM;
6781 }
6782
298a8f9c 6783 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6784 em->map_lookup = map;
0b86a832
CM
6785 em->start = logical;
6786 em->len = length;
70c8a91c 6787 em->orig_start = 0;
0b86a832 6788 em->block_start = 0;
c8b97818 6789 em->block_len = em->len;
0b86a832 6790
593060d7
CM
6791 map->num_stripes = num_stripes;
6792 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6793 map->io_align = btrfs_chunk_io_align(leaf, chunk);
e9306ad4 6794 map->type = type;
76a66ba1
QW
6795 /*
6796 * We can't use the sub_stripes value, as for profiles other than
6797 * RAID10, they may have 0 as sub_stripes for filesystems created by
6798 * older mkfs (<v5.4).
6799 * In that case, it can cause divide-by-zero errors later.
6800 * Since currently sub_stripes is fixed for each profile, let's
6801 * use the trusted value instead.
6802 */
6803 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
cf90d884 6804 map->verified_stripes = 0;
bc88b486 6805 em->orig_block_len = btrfs_calc_stripe_length(em);
593060d7
CM
6806 for (i = 0; i < num_stripes; i++) {
6807 map->stripes[i].physical =
6808 btrfs_stripe_offset_nr(leaf, chunk, i);
6809 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 6810 args.devid = devid;
a443755f
CM
6811 read_extent_buffer(leaf, uuid, (unsigned long)
6812 btrfs_stripe_dev_uuid_nr(chunk, i),
6813 BTRFS_UUID_SIZE);
562d7b15
JB
6814 args.uuid = uuid;
6815 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 6816 if (!map->stripes[i].dev) {
ff37c89f
NB
6817 map->stripes[i].dev = handle_missing_device(fs_info,
6818 devid, uuid);
adfb69af 6819 if (IS_ERR(map->stripes[i].dev)) {
1742e1c9 6820 ret = PTR_ERR(map->stripes[i].dev);
dfe25020 6821 free_extent_map(em);
1742e1c9 6822 return ret;
dfe25020
CM
6823 }
6824 }
ff37c89f 6825
e12c9621
AJ
6826 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6827 &(map->stripes[i].dev->dev_state));
0b86a832
CM
6828 }
6829
c8bf1b67
DS
6830 write_lock(&map_tree->lock);
6831 ret = add_extent_mapping(map_tree, em, 0);
6832 write_unlock(&map_tree->lock);
64f64f43
QW
6833 if (ret < 0) {
6834 btrfs_err(fs_info,
6835 "failed to add chunk map, start=%llu len=%llu: %d",
6836 em->start, em->len, ret);
6837 }
0b86a832
CM
6838 free_extent_map(em);
6839
64f64f43 6840 return ret;
0b86a832
CM
6841}
6842
143bede5 6843static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6844 struct btrfs_dev_item *dev_item,
6845 struct btrfs_device *device)
6846{
6847 unsigned long ptr;
0b86a832
CM
6848
6849 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6850 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6851 device->total_bytes = device->disk_total_bytes;
935e5cc9 6852 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6853 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6854 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6855 device->type = btrfs_device_type(leaf, dev_item);
6856 device->io_align = btrfs_device_io_align(leaf, dev_item);
6857 device->io_width = btrfs_device_io_width(leaf, dev_item);
6858 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6859 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6860 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6861
410ba3a2 6862 ptr = btrfs_device_uuid(dev_item);
e17cade2 6863 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6864}
6865
2ff7e61e 6866static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6867 u8 *fsid)
2b82032c
YZ
6868{
6869 struct btrfs_fs_devices *fs_devices;
6870 int ret;
6871
a32bf9a3 6872 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6873 ASSERT(fsid);
2b82032c 6874
427c8fdd 6875 /* This will match only for multi-device seed fs */
944d3f9f 6876 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 6877 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6878 return fs_devices;
6879
2b82032c 6880
7239ff4b 6881 fs_devices = find_fsid(fsid, NULL);
2b82032c 6882 if (!fs_devices) {
0b246afa 6883 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6884 return ERR_PTR(-ENOENT);
6885
7239ff4b 6886 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6887 if (IS_ERR(fs_devices))
6888 return fs_devices;
6889
0395d84f 6890 fs_devices->seeding = true;
5f375835
MX
6891 fs_devices->opened = 1;
6892 return fs_devices;
2b82032c 6893 }
e4404d6e 6894
427c8fdd
NB
6895 /*
6896 * Upon first call for a seed fs fsid, just create a private copy of the
6897 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6898 */
e4404d6e 6899 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6900 if (IS_ERR(fs_devices))
6901 return fs_devices;
2b82032c 6902
897fb573 6903 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6904 if (ret) {
6905 free_fs_devices(fs_devices);
c83b60c0 6906 return ERR_PTR(ret);
48d28232 6907 }
2b82032c
YZ
6908
6909 if (!fs_devices->seeding) {
0226e0eb 6910 close_fs_devices(fs_devices);
e4404d6e 6911 free_fs_devices(fs_devices);
c83b60c0 6912 return ERR_PTR(-EINVAL);
2b82032c
YZ
6913 }
6914
944d3f9f 6915 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 6916
5f375835 6917 return fs_devices;
2b82032c
YZ
6918}
6919
17850759 6920static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6921 struct btrfs_dev_item *dev_item)
6922{
562d7b15 6923 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 6924 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6925 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6926 struct btrfs_device *device;
6927 u64 devid;
6928 int ret;
44880fdc 6929 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6930 u8 dev_uuid[BTRFS_UUID_SIZE];
6931
c1867eb3
DS
6932 devid = btrfs_device_id(leaf, dev_item);
6933 args.devid = devid;
410ba3a2 6934 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6935 BTRFS_UUID_SIZE);
1473b24e 6936 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6937 BTRFS_FSID_SIZE);
562d7b15
JB
6938 args.uuid = dev_uuid;
6939 args.fsid = fs_uuid;
2b82032c 6940
de37aa51 6941 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6942 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6943 if (IS_ERR(fs_devices))
6944 return PTR_ERR(fs_devices);
2b82032c
YZ
6945 }
6946
562d7b15 6947 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 6948 if (!device) {
c5502451 6949 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6950 btrfs_report_missing_device(fs_info, devid,
6951 dev_uuid, true);
45dbdbc9 6952 return -ENOENT;
c5502451 6953 }
2b82032c 6954
2ff7e61e 6955 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6956 if (IS_ERR(device)) {
6957 btrfs_err(fs_info,
6958 "failed to add missing dev %llu: %ld",
6959 devid, PTR_ERR(device));
6960 return PTR_ERR(device);
6961 }
2b902dfc 6962 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6963 } else {
c5502451 6964 if (!device->bdev) {
2b902dfc
AJ
6965 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6966 btrfs_report_missing_device(fs_info,
6967 devid, dev_uuid, true);
45dbdbc9 6968 return -ENOENT;
2b902dfc
AJ
6969 }
6970 btrfs_report_missing_device(fs_info, devid,
6971 dev_uuid, false);
c5502451 6972 }
5f375835 6973
e6e674bd
AJ
6974 if (!device->bdev &&
6975 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6976 /*
6977 * this happens when a device that was properly setup
6978 * in the device info lists suddenly goes bad.
6979 * device->bdev is NULL, and so we have to set
6980 * device->missing to one here
6981 */
5f375835 6982 device->fs_devices->missing_devices++;
e6e674bd 6983 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6984 }
5f375835
MX
6985
6986 /* Move the device to its own fs_devices */
6987 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6988 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6989 &device->dev_state));
5f375835
MX
6990
6991 list_move(&device->dev_list, &fs_devices->devices);
6992 device->fs_devices->num_devices--;
6993 fs_devices->num_devices++;
6994
6995 device->fs_devices->missing_devices--;
6996 fs_devices->missing_devices++;
6997
6998 device->fs_devices = fs_devices;
6999 }
2b82032c
YZ
7000 }
7001
0b246afa 7002 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7003 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7004 if (device->generation !=
7005 btrfs_device_generation(leaf, dev_item))
7006 return -EINVAL;
6324fbf3 7007 }
0b86a832
CM
7008
7009 fill_device_from_item(leaf, dev_item, device);
3a160a93 7010 if (device->bdev) {
cda00eba 7011 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7012
7013 if (device->total_bytes > max_total_bytes) {
7014 btrfs_err(fs_info,
7015 "device total_bytes should be at most %llu but found %llu",
7016 max_total_bytes, device->total_bytes);
7017 return -EINVAL;
7018 }
7019 }
e12c9621 7020 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7021 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7022 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7023 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7024 atomic64_add(device->total_bytes - device->bytes_used,
7025 &fs_info->free_chunk_space);
2bf64758 7026 }
0b86a832 7027 ret = 0;
0b86a832
CM
7028 return ret;
7029}
7030
6bccf3ab 7031int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7032{
ab8d0fc4 7033 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7034 struct extent_buffer *sb;
0b86a832 7035 struct btrfs_disk_key *disk_key;
0b86a832 7036 struct btrfs_chunk *chunk;
1ffb22cf
DS
7037 u8 *array_ptr;
7038 unsigned long sb_array_offset;
84eed90f 7039 int ret = 0;
0b86a832
CM
7040 u32 num_stripes;
7041 u32 array_size;
7042 u32 len = 0;
1ffb22cf 7043 u32 cur_offset;
e06cd3dd 7044 u64 type;
84eed90f 7045 struct btrfs_key key;
0b86a832 7046
0b246afa 7047 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7048
a83fffb7 7049 /*
e959d3c1
QW
7050 * We allocated a dummy extent, just to use extent buffer accessors.
7051 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7052 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7053 */
e959d3c1
QW
7054 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7055 if (!sb)
7056 return -ENOMEM;
4db8c528 7057 set_extent_buffer_uptodate(sb);
4008c04a 7058
a061fc8d 7059 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7060 array_size = btrfs_super_sys_array_size(super_copy);
7061
1ffb22cf
DS
7062 array_ptr = super_copy->sys_chunk_array;
7063 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7064 cur_offset = 0;
0b86a832 7065
1ffb22cf
DS
7066 while (cur_offset < array_size) {
7067 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7068 len = sizeof(*disk_key);
7069 if (cur_offset + len > array_size)
7070 goto out_short_read;
7071
0b86a832
CM
7072 btrfs_disk_key_to_cpu(&key, disk_key);
7073
1ffb22cf
DS
7074 array_ptr += len;
7075 sb_array_offset += len;
7076 cur_offset += len;
0b86a832 7077
32ab3d1b
JT
7078 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7079 btrfs_err(fs_info,
7080 "unexpected item type %u in sys_array at offset %u",
7081 (u32)key.type, cur_offset);
7082 ret = -EIO;
7083 break;
7084 }
f5cdedd7 7085
32ab3d1b
JT
7086 chunk = (struct btrfs_chunk *)sb_array_offset;
7087 /*
7088 * At least one btrfs_chunk with one stripe must be present,
7089 * exact stripe count check comes afterwards
7090 */
7091 len = btrfs_chunk_item_size(1);
7092 if (cur_offset + len > array_size)
7093 goto out_short_read;
e06cd3dd 7094
32ab3d1b
JT
7095 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7096 if (!num_stripes) {
7097 btrfs_err(fs_info,
7098 "invalid number of stripes %u in sys_array at offset %u",
7099 num_stripes, cur_offset);
7100 ret = -EIO;
7101 break;
7102 }
e3540eab 7103
32ab3d1b
JT
7104 type = btrfs_chunk_type(sb, chunk);
7105 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7106 btrfs_err(fs_info,
32ab3d1b
JT
7107 "invalid chunk type %llu in sys_array at offset %u",
7108 type, cur_offset);
84eed90f
CM
7109 ret = -EIO;
7110 break;
0b86a832 7111 }
32ab3d1b
JT
7112
7113 len = btrfs_chunk_item_size(num_stripes);
7114 if (cur_offset + len > array_size)
7115 goto out_short_read;
7116
7117 ret = read_one_chunk(&key, sb, chunk);
7118 if (ret)
7119 break;
7120
1ffb22cf
DS
7121 array_ptr += len;
7122 sb_array_offset += len;
7123 cur_offset += len;
0b86a832 7124 }
d865177a 7125 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7126 free_extent_buffer_stale(sb);
84eed90f 7127 return ret;
e3540eab
DS
7128
7129out_short_read:
ab8d0fc4 7130 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7131 len, cur_offset);
d865177a 7132 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7133 free_extent_buffer_stale(sb);
e3540eab 7134 return -EIO;
0b86a832
CM
7135}
7136
21634a19
QW
7137/*
7138 * Check if all chunks in the fs are OK for read-write degraded mount
7139 *
6528b99d
AJ
7140 * If the @failing_dev is specified, it's accounted as missing.
7141 *
21634a19
QW
7142 * Return true if all chunks meet the minimal RW mount requirements.
7143 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7144 */
6528b99d
AJ
7145bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7146 struct btrfs_device *failing_dev)
21634a19 7147{
c8bf1b67 7148 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7149 struct extent_map *em;
7150 u64 next_start = 0;
7151 bool ret = true;
7152
c8bf1b67
DS
7153 read_lock(&map_tree->lock);
7154 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7155 read_unlock(&map_tree->lock);
21634a19
QW
7156 /* No chunk at all? Return false anyway */
7157 if (!em) {
7158 ret = false;
7159 goto out;
7160 }
7161 while (em) {
7162 struct map_lookup *map;
7163 int missing = 0;
7164 int max_tolerated;
7165 int i;
7166
7167 map = em->map_lookup;
7168 max_tolerated =
7169 btrfs_get_num_tolerated_disk_barrier_failures(
7170 map->type);
7171 for (i = 0; i < map->num_stripes; i++) {
7172 struct btrfs_device *dev = map->stripes[i].dev;
7173
e6e674bd
AJ
7174 if (!dev || !dev->bdev ||
7175 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7176 dev->last_flush_error)
7177 missing++;
6528b99d
AJ
7178 else if (failing_dev && failing_dev == dev)
7179 missing++;
21634a19
QW
7180 }
7181 if (missing > max_tolerated) {
6528b99d
AJ
7182 if (!failing_dev)
7183 btrfs_warn(fs_info,
52042d8e 7184 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7185 em->start, missing, max_tolerated);
7186 free_extent_map(em);
7187 ret = false;
7188 goto out;
7189 }
7190 next_start = extent_map_end(em);
7191 free_extent_map(em);
7192
c8bf1b67
DS
7193 read_lock(&map_tree->lock);
7194 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7195 (u64)(-1) - next_start);
c8bf1b67 7196 read_unlock(&map_tree->lock);
21634a19
QW
7197 }
7198out:
7199 return ret;
7200}
7201
d85327b1
DS
7202static void readahead_tree_node_children(struct extent_buffer *node)
7203{
7204 int i;
7205 const int nr_items = btrfs_header_nritems(node);
7206
bfb484d9
JB
7207 for (i = 0; i < nr_items; i++)
7208 btrfs_readahead_node_child(node, i);
d85327b1
DS
7209}
7210
5b4aacef 7211int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7212{
5b4aacef 7213 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7214 struct btrfs_path *path;
7215 struct extent_buffer *leaf;
7216 struct btrfs_key key;
7217 struct btrfs_key found_key;
7218 int ret;
7219 int slot;
43cb1478 7220 int iter_ret = 0;
99e3ecfc 7221 u64 total_dev = 0;
d85327b1 7222 u64 last_ra_node = 0;
0b86a832 7223
0b86a832
CM
7224 path = btrfs_alloc_path();
7225 if (!path)
7226 return -ENOMEM;
7227
3dd0f7a3
AJ
7228 /*
7229 * uuid_mutex is needed only if we are mounting a sprout FS
7230 * otherwise we don't need it.
7231 */
b367e47f 7232 mutex_lock(&uuid_mutex);
b367e47f 7233
48cfa61b
BB
7234 /*
7235 * It is possible for mount and umount to race in such a way that
7236 * we execute this code path, but open_fs_devices failed to clear
7237 * total_rw_bytes. We certainly want it cleared before reading the
7238 * device items, so clear it here.
7239 */
7240 fs_info->fs_devices->total_rw_bytes = 0;
7241
4d9380e0
FM
7242 /*
7243 * Lockdep complains about possible circular locking dependency between
7244 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7245 * used for freeze procection of a fs (struct super_block.s_writers),
7246 * which we take when starting a transaction, and extent buffers of the
7247 * chunk tree if we call read_one_dev() while holding a lock on an
7248 * extent buffer of the chunk tree. Since we are mounting the filesystem
7249 * and at this point there can't be any concurrent task modifying the
7250 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7251 */
7252 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7253 path->skip_locking = 1;
7254
395927a9
FDBM
7255 /*
7256 * Read all device items, and then all the chunk items. All
7257 * device items are found before any chunk item (their object id
7258 * is smaller than the lowest possible object id for a chunk
7259 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7260 */
7261 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7262 key.offset = 0;
7263 key.type = 0;
43cb1478
GN
7264 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7265 struct extent_buffer *node = path->nodes[1];
d85327b1 7266
0b86a832
CM
7267 leaf = path->nodes[0];
7268 slot = path->slots[0];
43cb1478 7269
d85327b1
DS
7270 if (node) {
7271 if (last_ra_node != node->start) {
7272 readahead_tree_node_children(node);
7273 last_ra_node = node->start;
7274 }
7275 }
395927a9
FDBM
7276 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7277 struct btrfs_dev_item *dev_item;
7278 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7279 struct btrfs_dev_item);
17850759 7280 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7281 if (ret)
7282 goto error;
99e3ecfc 7283 total_dev++;
0b86a832
CM
7284 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7285 struct btrfs_chunk *chunk;
79bd3712
FM
7286
7287 /*
7288 * We are only called at mount time, so no need to take
7289 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7290 * we always lock first fs_info->chunk_mutex before
7291 * acquiring any locks on the chunk tree. This is a
7292 * requirement for chunk allocation, see the comment on
7293 * top of btrfs_chunk_alloc() for details.
7294 */
0b86a832 7295 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7296 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7297 if (ret)
7298 goto error;
0b86a832 7299 }
43cb1478
GN
7300 }
7301 /* Catch error found during iteration */
7302 if (iter_ret < 0) {
7303 ret = iter_ret;
7304 goto error;
0b86a832 7305 }
99e3ecfc
LB
7306
7307 /*
7308 * After loading chunk tree, we've got all device information,
7309 * do another round of validation checks.
7310 */
0b246afa 7311 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7312 btrfs_warn(fs_info,
7313"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7314 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7315 total_dev);
d201238c
QW
7316 fs_info->fs_devices->total_devices = total_dev;
7317 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7318 }
0b246afa
JM
7319 if (btrfs_super_total_bytes(fs_info->super_copy) <
7320 fs_info->fs_devices->total_rw_bytes) {
7321 btrfs_err(fs_info,
99e3ecfc 7322 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7323 btrfs_super_total_bytes(fs_info->super_copy),
7324 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7325 ret = -EINVAL;
7326 goto error;
7327 }
0b86a832
CM
7328 ret = 0;
7329error:
b367e47f
LZ
7330 mutex_unlock(&uuid_mutex);
7331
2b82032c 7332 btrfs_free_path(path);
0b86a832
CM
7333 return ret;
7334}
442a4f63 7335
a8d1b164 7336int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
cb517eab 7337{
944d3f9f 7338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab 7339 struct btrfs_device *device;
a8d1b164 7340 int ret = 0;
cb517eab 7341
944d3f9f
NB
7342 fs_devices->fs_info = fs_info;
7343
7344 mutex_lock(&fs_devices->device_list_mutex);
7345 list_for_each_entry(device, &fs_devices->devices, dev_list)
7346 device->fs_info = fs_info;
944d3f9f
NB
7347
7348 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
a8d1b164 7349 list_for_each_entry(device, &seed_devs->devices, dev_list) {
fb456252 7350 device->fs_info = fs_info;
a8d1b164
JT
7351 ret = btrfs_get_dev_zone_info(device, false);
7352 if (ret)
7353 break;
7354 }
29cc83f6 7355
944d3f9f 7356 seed_devs->fs_info = fs_info;
29cc83f6 7357 }
e17125b5 7358 mutex_unlock(&fs_devices->device_list_mutex);
a8d1b164
JT
7359
7360 return ret;
cb517eab
MX
7361}
7362
1dc990df
DS
7363static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7364 const struct btrfs_dev_stats_item *ptr,
7365 int index)
7366{
7367 u64 val;
7368
7369 read_extent_buffer(eb, &val,
7370 offsetof(struct btrfs_dev_stats_item, values) +
7371 ((unsigned long)ptr) + (index * sizeof(u64)),
7372 sizeof(val));
7373 return val;
7374}
7375
7376static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7377 struct btrfs_dev_stats_item *ptr,
7378 int index, u64 val)
7379{
7380 write_extent_buffer(eb, &val,
7381 offsetof(struct btrfs_dev_stats_item, values) +
7382 ((unsigned long)ptr) + (index * sizeof(u64)),
7383 sizeof(val));
7384}
7385
92e26df4
JB
7386static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7387 struct btrfs_path *path)
733f4fbb 7388{
124604eb 7389 struct btrfs_dev_stats_item *ptr;
733f4fbb 7390 struct extent_buffer *eb;
124604eb
JB
7391 struct btrfs_key key;
7392 int item_size;
7393 int i, ret, slot;
7394
82d62d06
JB
7395 if (!device->fs_info->dev_root)
7396 return 0;
7397
124604eb
JB
7398 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7399 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7400 key.offset = device->devid;
7401 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7402 if (ret) {
7403 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7404 btrfs_dev_stat_set(device, i, 0);
7405 device->dev_stats_valid = 1;
7406 btrfs_release_path(path);
92e26df4 7407 return ret < 0 ? ret : 0;
124604eb
JB
7408 }
7409 slot = path->slots[0];
7410 eb = path->nodes[0];
3212fa14 7411 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7412
7413 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7414
7415 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7416 if (item_size >= (1 + i) * sizeof(__le64))
7417 btrfs_dev_stat_set(device, i,
7418 btrfs_dev_stats_value(eb, ptr, i));
7419 else
7420 btrfs_dev_stat_set(device, i, 0);
7421 }
7422
7423 device->dev_stats_valid = 1;
7424 btrfs_dev_stat_print_on_load(device);
7425 btrfs_release_path(path);
92e26df4
JB
7426
7427 return 0;
124604eb
JB
7428}
7429
7430int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7431{
7432 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7433 struct btrfs_device *device;
7434 struct btrfs_path *path = NULL;
92e26df4 7435 int ret = 0;
733f4fbb
SB
7436
7437 path = btrfs_alloc_path();
3b80a984
AJ
7438 if (!path)
7439 return -ENOMEM;
733f4fbb
SB
7440
7441 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7442 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7443 ret = btrfs_device_init_dev_stats(device, path);
7444 if (ret)
7445 goto out;
7446 }
124604eb 7447 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7448 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7449 ret = btrfs_device_init_dev_stats(device, path);
7450 if (ret)
7451 goto out;
7452 }
733f4fbb 7453 }
92e26df4 7454out:
733f4fbb
SB
7455 mutex_unlock(&fs_devices->device_list_mutex);
7456
733f4fbb 7457 btrfs_free_path(path);
92e26df4 7458 return ret;
733f4fbb
SB
7459}
7460
7461static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7462 struct btrfs_device *device)
7463{
5495f195 7464 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7465 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7466 struct btrfs_path *path;
7467 struct btrfs_key key;
7468 struct extent_buffer *eb;
7469 struct btrfs_dev_stats_item *ptr;
7470 int ret;
7471 int i;
7472
242e2956
DS
7473 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7474 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7475 key.offset = device->devid;
7476
7477 path = btrfs_alloc_path();
fa252992
DS
7478 if (!path)
7479 return -ENOMEM;
733f4fbb
SB
7480 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7481 if (ret < 0) {
0b246afa 7482 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7483 "error %d while searching for dev_stats item for device %s",
cb3e217b 7484 ret, btrfs_dev_name(device));
733f4fbb
SB
7485 goto out;
7486 }
7487
7488 if (ret == 0 &&
3212fa14 7489 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7490 /* need to delete old one and insert a new one */
7491 ret = btrfs_del_item(trans, dev_root, path);
7492 if (ret != 0) {
0b246afa 7493 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7494 "delete too small dev_stats item for device %s failed %d",
cb3e217b 7495 btrfs_dev_name(device), ret);
733f4fbb
SB
7496 goto out;
7497 }
7498 ret = 1;
7499 }
7500
7501 if (ret == 1) {
7502 /* need to insert a new item */
7503 btrfs_release_path(path);
7504 ret = btrfs_insert_empty_item(trans, dev_root, path,
7505 &key, sizeof(*ptr));
7506 if (ret < 0) {
0b246afa 7507 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7508 "insert dev_stats item for device %s failed %d",
cb3e217b 7509 btrfs_dev_name(device), ret);
733f4fbb
SB
7510 goto out;
7511 }
7512 }
7513
7514 eb = path->nodes[0];
7515 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7516 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7517 btrfs_set_dev_stats_value(eb, ptr, i,
7518 btrfs_dev_stat_read(device, i));
7519 btrfs_mark_buffer_dirty(eb);
7520
7521out:
7522 btrfs_free_path(path);
7523 return ret;
7524}
7525
7526/*
7527 * called from commit_transaction. Writes all changed device stats to disk.
7528 */
196c9d8d 7529int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7530{
196c9d8d 7531 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7533 struct btrfs_device *device;
addc3fa7 7534 int stats_cnt;
733f4fbb
SB
7535 int ret = 0;
7536
7537 mutex_lock(&fs_devices->device_list_mutex);
7538 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7539 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7540 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7541 continue;
7542
9deae968
NB
7543
7544 /*
7545 * There is a LOAD-LOAD control dependency between the value of
7546 * dev_stats_ccnt and updating the on-disk values which requires
7547 * reading the in-memory counters. Such control dependencies
7548 * require explicit read memory barriers.
7549 *
7550 * This memory barriers pairs with smp_mb__before_atomic in
7551 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7552 * barrier implied by atomic_xchg in
7553 * btrfs_dev_stats_read_and_reset
7554 */
7555 smp_rmb();
7556
5495f195 7557 ret = update_dev_stat_item(trans, device);
733f4fbb 7558 if (!ret)
addc3fa7 7559 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7560 }
7561 mutex_unlock(&fs_devices->device_list_mutex);
7562
7563 return ret;
7564}
7565
442a4f63
SB
7566void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7567{
7568 btrfs_dev_stat_inc(dev, index);
442a4f63 7569
733f4fbb
SB
7570 if (!dev->dev_stats_valid)
7571 return;
fb456252 7572 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7573 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7574 btrfs_dev_name(dev),
442a4f63
SB
7575 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7576 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7577 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7578 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7579 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7580}
c11d2c23 7581
733f4fbb
SB
7582static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7583{
a98cdb85
SB
7584 int i;
7585
7586 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7587 if (btrfs_dev_stat_read(dev, i) != 0)
7588 break;
7589 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7590 return; /* all values == 0, suppress message */
7591
fb456252 7592 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7593 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7594 btrfs_dev_name(dev),
733f4fbb
SB
7595 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7596 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7597 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7598 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7599 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7600}
7601
2ff7e61e 7602int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7603 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7604{
562d7b15 7605 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7606 struct btrfs_device *dev;
0b246afa 7607 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7608 int i;
7609
7610 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7611 args.devid = stats->devid;
7612 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7613 mutex_unlock(&fs_devices->device_list_mutex);
7614
7615 if (!dev) {
0b246afa 7616 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7617 return -ENODEV;
733f4fbb 7618 } else if (!dev->dev_stats_valid) {
0b246afa 7619 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7620 return -ENODEV;
b27f7c0c 7621 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7622 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7623 if (stats->nr_items > i)
7624 stats->values[i] =
7625 btrfs_dev_stat_read_and_reset(dev, i);
7626 else
4e411a7d 7627 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7628 }
a69976bc
AJ
7629 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7630 current->comm, task_pid_nr(current));
c11d2c23
SB
7631 } else {
7632 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7633 if (stats->nr_items > i)
7634 stats->values[i] = btrfs_dev_stat_read(dev, i);
7635 }
7636 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7637 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7638 return 0;
7639}
a8a6dab7 7640
935e5cc9 7641/*
bbbf7243
NB
7642 * Update the size and bytes used for each device where it changed. This is
7643 * delayed since we would otherwise get errors while writing out the
7644 * superblocks.
7645 *
7646 * Must be invoked during transaction commit.
935e5cc9 7647 */
bbbf7243 7648void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7649{
935e5cc9
MX
7650 struct btrfs_device *curr, *next;
7651
bbbf7243 7652 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7653
bbbf7243 7654 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7655 return;
7656
bbbf7243
NB
7657 /*
7658 * We don't need the device_list_mutex here. This list is owned by the
7659 * transaction and the transaction must complete before the device is
7660 * released.
7661 */
7662 mutex_lock(&trans->fs_info->chunk_mutex);
7663 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7664 post_commit_list) {
7665 list_del_init(&curr->post_commit_list);
7666 curr->commit_total_bytes = curr->disk_total_bytes;
7667 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7668 }
bbbf7243 7669 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7670}
5a13f430 7671
46df06b8
DS
7672/*
7673 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7674 */
7675int btrfs_bg_type_to_factor(u64 flags)
7676{
44b28ada
DS
7677 const int index = btrfs_bg_flags_to_raid_index(flags);
7678
7679 return btrfs_raid_array[index].ncopies;
46df06b8 7680}
cf90d884
QW
7681
7682
cf90d884
QW
7683
7684static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7685 u64 chunk_offset, u64 devid,
7686 u64 physical_offset, u64 physical_len)
7687{
562d7b15 7688 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 7689 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7690 struct extent_map *em;
7691 struct map_lookup *map;
05a37c48 7692 struct btrfs_device *dev;
cf90d884
QW
7693 u64 stripe_len;
7694 bool found = false;
7695 int ret = 0;
7696 int i;
7697
7698 read_lock(&em_tree->lock);
7699 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7700 read_unlock(&em_tree->lock);
7701
7702 if (!em) {
7703 btrfs_err(fs_info,
7704"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7705 physical_offset, devid);
7706 ret = -EUCLEAN;
7707 goto out;
7708 }
7709
7710 map = em->map_lookup;
bc88b486 7711 stripe_len = btrfs_calc_stripe_length(em);
cf90d884
QW
7712 if (physical_len != stripe_len) {
7713 btrfs_err(fs_info,
7714"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7715 physical_offset, devid, em->start, physical_len,
7716 stripe_len);
7717 ret = -EUCLEAN;
7718 goto out;
7719 }
7720
3613249a
QW
7721 /*
7722 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7723 * space. Although kernel can handle it without problem, better to warn
7724 * the users.
7725 */
7726 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7727 btrfs_warn(fs_info,
7728 "devid %llu physical %llu len %llu inside the reserved space",
7729 devid, physical_offset, physical_len);
7730
cf90d884
QW
7731 for (i = 0; i < map->num_stripes; i++) {
7732 if (map->stripes[i].dev->devid == devid &&
7733 map->stripes[i].physical == physical_offset) {
7734 found = true;
7735 if (map->verified_stripes >= map->num_stripes) {
7736 btrfs_err(fs_info,
7737 "too many dev extents for chunk %llu found",
7738 em->start);
7739 ret = -EUCLEAN;
7740 goto out;
7741 }
7742 map->verified_stripes++;
7743 break;
7744 }
7745 }
7746 if (!found) {
7747 btrfs_err(fs_info,
7748 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7749 physical_offset, devid);
7750 ret = -EUCLEAN;
7751 }
05a37c48 7752
1a9fd417 7753 /* Make sure no dev extent is beyond device boundary */
562d7b15 7754 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
7755 if (!dev) {
7756 btrfs_err(fs_info, "failed to find devid %llu", devid);
7757 ret = -EUCLEAN;
7758 goto out;
7759 }
1b3922a8 7760
05a37c48
QW
7761 if (physical_offset + physical_len > dev->disk_total_bytes) {
7762 btrfs_err(fs_info,
7763"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7764 devid, physical_offset, physical_len,
7765 dev->disk_total_bytes);
7766 ret = -EUCLEAN;
7767 goto out;
7768 }
381a696e
NA
7769
7770 if (dev->zone_info) {
7771 u64 zone_size = dev->zone_info->zone_size;
7772
7773 if (!IS_ALIGNED(physical_offset, zone_size) ||
7774 !IS_ALIGNED(physical_len, zone_size)) {
7775 btrfs_err(fs_info,
7776"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7777 devid, physical_offset, physical_len);
7778 ret = -EUCLEAN;
7779 goto out;
7780 }
7781 }
7782
cf90d884
QW
7783out:
7784 free_extent_map(em);
7785 return ret;
7786}
7787
7788static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7789{
c8bf1b67 7790 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7791 struct extent_map *em;
7792 struct rb_node *node;
7793 int ret = 0;
7794
7795 read_lock(&em_tree->lock);
07e1ce09 7796 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7797 em = rb_entry(node, struct extent_map, rb_node);
7798 if (em->map_lookup->num_stripes !=
7799 em->map_lookup->verified_stripes) {
7800 btrfs_err(fs_info,
7801 "chunk %llu has missing dev extent, have %d expect %d",
7802 em->start, em->map_lookup->verified_stripes,
7803 em->map_lookup->num_stripes);
7804 ret = -EUCLEAN;
7805 goto out;
7806 }
7807 }
7808out:
7809 read_unlock(&em_tree->lock);
7810 return ret;
7811}
7812
7813/*
7814 * Ensure that all dev extents are mapped to correct chunk, otherwise
7815 * later chunk allocation/free would cause unexpected behavior.
7816 *
7817 * NOTE: This will iterate through the whole device tree, which should be of
7818 * the same size level as the chunk tree. This slightly increases mount time.
7819 */
7820int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7821{
7822 struct btrfs_path *path;
7823 struct btrfs_root *root = fs_info->dev_root;
7824 struct btrfs_key key;
5eb19381
QW
7825 u64 prev_devid = 0;
7826 u64 prev_dev_ext_end = 0;
cf90d884
QW
7827 int ret = 0;
7828
42437a63
JB
7829 /*
7830 * We don't have a dev_root because we mounted with ignorebadroots and
7831 * failed to load the root, so we want to skip the verification in this
7832 * case for sure.
7833 *
7834 * However if the dev root is fine, but the tree itself is corrupted
7835 * we'd still fail to mount. This verification is only to make sure
7836 * writes can happen safely, so instead just bypass this check
7837 * completely in the case of IGNOREBADROOTS.
7838 */
7839 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7840 return 0;
7841
cf90d884
QW
7842 key.objectid = 1;
7843 key.type = BTRFS_DEV_EXTENT_KEY;
7844 key.offset = 0;
7845
7846 path = btrfs_alloc_path();
7847 if (!path)
7848 return -ENOMEM;
7849
7850 path->reada = READA_FORWARD;
7851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7852 if (ret < 0)
7853 goto out;
7854
7855 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 7856 ret = btrfs_next_leaf(root, path);
cf90d884
QW
7857 if (ret < 0)
7858 goto out;
7859 /* No dev extents at all? Not good */
7860 if (ret > 0) {
7861 ret = -EUCLEAN;
7862 goto out;
7863 }
7864 }
7865 while (1) {
7866 struct extent_buffer *leaf = path->nodes[0];
7867 struct btrfs_dev_extent *dext;
7868 int slot = path->slots[0];
7869 u64 chunk_offset;
7870 u64 physical_offset;
7871 u64 physical_len;
7872 u64 devid;
7873
7874 btrfs_item_key_to_cpu(leaf, &key, slot);
7875 if (key.type != BTRFS_DEV_EXTENT_KEY)
7876 break;
7877 devid = key.objectid;
7878 physical_offset = key.offset;
7879
7880 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7881 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7882 physical_len = btrfs_dev_extent_length(leaf, dext);
7883
5eb19381
QW
7884 /* Check if this dev extent overlaps with the previous one */
7885 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7886 btrfs_err(fs_info,
7887"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7888 devid, physical_offset, prev_dev_ext_end);
7889 ret = -EUCLEAN;
7890 goto out;
7891 }
7892
cf90d884
QW
7893 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7894 physical_offset, physical_len);
7895 if (ret < 0)
7896 goto out;
5eb19381
QW
7897 prev_devid = devid;
7898 prev_dev_ext_end = physical_offset + physical_len;
7899
cf90d884
QW
7900 ret = btrfs_next_item(root, path);
7901 if (ret < 0)
7902 goto out;
7903 if (ret > 0) {
7904 ret = 0;
7905 break;
7906 }
7907 }
7908
7909 /* Ensure all chunks have corresponding dev extents */
7910 ret = verify_chunk_dev_extent_mapping(fs_info);
7911out:
7912 btrfs_free_path(path);
7913 return ret;
7914}
eede2bf3
OS
7915
7916/*
7917 * Check whether the given block group or device is pinned by any inode being
7918 * used as a swapfile.
7919 */
7920bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7921{
7922 struct btrfs_swapfile_pin *sp;
7923 struct rb_node *node;
7924
7925 spin_lock(&fs_info->swapfile_pins_lock);
7926 node = fs_info->swapfile_pins.rb_node;
7927 while (node) {
7928 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7929 if (ptr < sp->ptr)
7930 node = node->rb_left;
7931 else if (ptr > sp->ptr)
7932 node = node->rb_right;
7933 else
7934 break;
7935 }
7936 spin_unlock(&fs_info->swapfile_pins_lock);
7937 return node != NULL;
7938}
f7ef5287
NA
7939
7940static int relocating_repair_kthread(void *data)
7941{
0d031dc4 7942 struct btrfs_block_group *cache = data;
f7ef5287
NA
7943 struct btrfs_fs_info *fs_info = cache->fs_info;
7944 u64 target;
7945 int ret = 0;
7946
7947 target = cache->start;
7948 btrfs_put_block_group(cache);
7949
ca5e4ea0 7950 sb_start_write(fs_info->sb);
f7ef5287
NA
7951 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7952 btrfs_info(fs_info,
7953 "zoned: skip relocating block group %llu to repair: EBUSY",
7954 target);
ca5e4ea0 7955 sb_end_write(fs_info->sb);
f7ef5287
NA
7956 return -EBUSY;
7957 }
7958
f3372065 7959 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
7960
7961 /* Ensure block group still exists */
7962 cache = btrfs_lookup_block_group(fs_info, target);
7963 if (!cache)
7964 goto out;
7965
3349b57f 7966 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
f7ef5287
NA
7967 goto out;
7968
7969 ret = btrfs_may_alloc_data_chunk(fs_info, target);
7970 if (ret < 0)
7971 goto out;
7972
7973 btrfs_info(fs_info,
7974 "zoned: relocating block group %llu to repair IO failure",
7975 target);
7976 ret = btrfs_relocate_chunk(fs_info, target);
7977
7978out:
7979 if (cache)
7980 btrfs_put_block_group(cache);
f3372065 7981 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 7982 btrfs_exclop_finish(fs_info);
ca5e4ea0 7983 sb_end_write(fs_info->sb);
f7ef5287
NA
7984
7985 return ret;
7986}
7987
554aed7d 7988bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
7989{
7990 struct btrfs_block_group *cache;
7991
554aed7d
JT
7992 if (!btrfs_is_zoned(fs_info))
7993 return false;
7994
f7ef5287
NA
7995 /* Do not attempt to repair in degraded state */
7996 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 7997 return true;
f7ef5287
NA
7998
7999 cache = btrfs_lookup_block_group(fs_info, logical);
8000 if (!cache)
554aed7d 8001 return true;
f7ef5287 8002
3349b57f 8003 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
f7ef5287 8004 btrfs_put_block_group(cache);
554aed7d 8005 return true;
f7ef5287 8006 }
f7ef5287
NA
8007
8008 kthread_run(relocating_repair_kthread, cache,
8009 "btrfs-relocating-repair");
8010
554aed7d 8011 return true;
f7ef5287 8012}
4886ff7b
QW
8013
8014static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8015 struct btrfs_io_stripe *smap,
8016 u64 logical)
8017{
8018 int data_stripes = nr_bioc_data_stripes(bioc);
8019 int i;
8020
8021 for (i = 0; i < data_stripes; i++) {
8022 u64 stripe_start = bioc->full_stripe_logical +
8023 (i << BTRFS_STRIPE_LEN_SHIFT);
8024
8025 if (logical >= stripe_start &&
8026 logical < stripe_start + BTRFS_STRIPE_LEN)
8027 break;
8028 }
8029 ASSERT(i < data_stripes);
8030 smap->dev = bioc->stripes[i].dev;
8031 smap->physical = bioc->stripes[i].physical +
8032 ((logical - bioc->full_stripe_logical) &
8033 BTRFS_STRIPE_LEN_MASK);
8034}
8035
8036/*
8037 * Map a repair write into a single device.
8038 *
8039 * A repair write is triggered by read time repair or scrub, which would only
8040 * update the contents of a single device.
8041 * Not update any other mirrors nor go through RMW path.
8042 *
8043 * Callers should ensure:
8044 *
8045 * - Call btrfs_bio_counter_inc_blocked() first
8046 * - The range does not cross stripe boundary
8047 * - Has a valid @mirror_num passed in.
8048 */
8049int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8050 struct btrfs_io_stripe *smap, u64 logical,
8051 u32 length, int mirror_num)
8052{
8053 struct btrfs_io_context *bioc = NULL;
8054 u64 map_length = length;
8055 int mirror_ret = mirror_num;
8056 int ret;
8057
8058 ASSERT(mirror_num > 0);
8059
cd4efd21
CH
8060 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8061 &bioc, smap, &mirror_ret, true);
4886ff7b
QW
8062 if (ret < 0)
8063 return ret;
8064
8065 /* The map range should not cross stripe boundary. */
8066 ASSERT(map_length >= length);
8067
8068 /* Already mapped to single stripe. */
8069 if (!bioc)
8070 goto out;
8071
8072 /* Map the RAID56 multi-stripe writes to a single one. */
8073 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8074 map_raid56_repair_block(bioc, smap, logical);
8075 goto out;
8076 }
8077
8078 ASSERT(mirror_num <= bioc->num_stripes);
8079 smap->dev = bioc->stripes[mirror_num - 1].dev;
8080 smap->physical = bioc->stripes[mirror_num - 1].physical;
8081out:
8082 btrfs_put_bioc(bioc);
8083 ASSERT(smap->dev);
8084 return 0;
8085}