btrfs: introduce device delete by devid
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
87ad58c5 128static void btrfs_close_one_device(struct btrfs_device *device);
2b82032c 129
67a2c45e 130DEFINE_MUTEX(uuid_mutex);
8a4b83cc 131static LIST_HEAD(fs_uuids);
c73eccf7
AJ
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
8a4b83cc 136
2208a378
ID
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
78f2c9e6 141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 148 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
e4404d6e
YZ
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
606686ee 188 rcu_string_free(device->name);
e4404d6e
YZ
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
b8b8ff59
LC
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
efe120a0 201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
143bede5 207void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
208{
209 struct btrfs_fs_devices *fs_devices;
8a4b83cc 210
2b82032c
YZ
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
e4404d6e 215 free_fs_devices(fs_devices);
8a4b83cc 216 }
8a4b83cc
CM
217}
218
12bd2fc0
ID
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
78f2c9e6 223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 229 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 235 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 236 btrfs_device_data_ordered_init(dev);
d0164adc
MG
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
239
240 return dev;
241}
242
a1b32a59
CM
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
8a4b83cc
CM
245{
246 struct btrfs_device *dev;
8a4b83cc 247
c6e30871 248 list_for_each_entry(dev, head, dev_list) {
a443755f 249 if (dev->devid == devid &&
8f18cf13 250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 251 return dev;
a443755f 252 }
8a4b83cc
CM
253 }
254 return NULL;
255}
256
a1b32a59 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 258{
8a4b83cc
CM
259 struct btrfs_fs_devices *fs_devices;
260
c6e30871 261 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
beaf8ab3
SB
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
beaf8ab3
SB
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
beaf8ab3
SB
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
ffbd517d
CM
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
8b712842
CM
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
143bede5 330static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
b64a2851 334 struct btrfs_fs_info *fs_info;
ffbd517d 335 struct btrfs_pending_bios *pending_bios;
8b712842
CM
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
ffbd517d 339 unsigned long num_run;
d644d8a1 340 unsigned long batch_run = 0;
b64a2851 341 unsigned long limit;
b765ead5 342 unsigned long last_waited = 0;
d84275c9 343 int force_reg = 0;
0e588859 344 int sync_pending = 0;
211588ad
CM
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
8b712842 354
bedf762b 355 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
8b712842
CM
360loop:
361 spin_lock(&device->io_lock);
362
a6837051 363loop_lock:
d84275c9 364 num_run = 0;
ffbd517d 365
8b712842
CM
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
d84275c9 371 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 372 pending_bios = &device->pending_sync_bios;
d84275c9
CM
373 force_reg = 1;
374 } else {
ffbd517d 375 pending_bios = &device->pending_bios;
d84275c9
CM
376 force_reg = 0;
377 }
ffbd517d
CM
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
8b712842 381 WARN_ON(pending && !tail);
8b712842
CM
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
ffbd517d
CM
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
8b712842
CM
393 again = 0;
394 device->running_pending = 0;
ffbd517d
CM
395 } else {
396 again = 1;
397 device->running_pending = 1;
8b712842 398 }
ffbd517d
CM
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
8b712842
CM
403 spin_unlock(&device->io_lock);
404
d397712b 405 while (pending) {
ffbd517d
CM
406
407 rmb();
d84275c9
CM
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
ffbd517d
CM
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
8b712842
CM
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
b64a2851 424
ee863954
DS
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
66657b31 428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
492bb6de 431
dac56212 432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 433
2ab1ba68
CM
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
21adbd5c 450 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
451 num_run++;
452 batch_run++;
853d8ec4
DS
453
454 cond_resched();
8b712842
CM
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
57fd5a5f 461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 462 fs_info->fs_devices->open_devices > 1) {
b765ead5 463 struct io_context *ioc;
8b712842 464
b765ead5
CM
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
853d8ec4 487 cond_resched();
b765ead5
CM
488 continue;
489 }
8b712842 490 spin_lock(&device->io_lock);
ffbd517d 491 requeue_list(pending_bios, pending, tail);
a6837051 492 device->running_pending = 1;
8b712842
CM
493
494 spin_unlock(&device->io_lock);
a8c93d4e
QW
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
8b712842
CM
497 goto done;
498 }
d85c8a6f
CM
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
8b712842 505 }
ffbd517d 506
51684082
CM
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
8b712842 516done:
211588ad 517 blk_finish_plug(&plug);
8b712842
CM
518}
519
b2950863 520static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
4fde46f0
AJ
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
60999ca4
DS
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
a1b32a59 591static noinline int device_list_add(const char *path,
8a4b83cc
CM
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
606686ee 597 struct rcu_string *name;
60999ca4 598 int ret = 0;
8a4b83cc
CM
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
2208a378
ID
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
8a4b83cc 607 list_add(&fs_devices->list, &fs_uuids);
2208a378 608
8a4b83cc
CM
609 device = NULL;
610 } else {
a443755f
CM
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
8a4b83cc 613 }
443f24fe 614
8a4b83cc 615 if (!device) {
2b82032c
YZ
616 if (fs_devices->opened)
617 return -EBUSY;
618
12bd2fc0
ID
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
8a4b83cc 622 /* we can safely leave the fs_devices entry around */
12bd2fc0 623 return PTR_ERR(device);
8a4b83cc 624 }
606686ee
JB
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
8a4b83cc
CM
628 kfree(device);
629 return -ENOMEM;
630 }
606686ee 631 rcu_assign_pointer(device->name, name);
90519d66 632
e5e9a520 633 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 634 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 635 fs_devices->num_devices++;
e5e9a520
CM
636 mutex_unlock(&fs_devices->device_list_mutex);
637
60999ca4 638 ret = 1;
2b82032c 639 device->fs_devices = fs_devices;
606686ee 640 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
0f23ae74
CM
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
b96de000 666 */
0f23ae74 667 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
0f23ae74 675 return -EEXIST;
77bdae4d 676 }
b96de000 677
606686ee 678 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
679 if (!name)
680 return -ENOMEM;
606686ee
JB
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
cd02dca5
CM
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
8a4b83cc
CM
687 }
688
77bdae4d
AJ
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
4fde46f0
AJ
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
8a4b83cc 704 *fs_devices_ret = fs_devices;
60999ca4
DS
705
706 return ret;
8a4b83cc
CM
707}
708
e4404d6e
YZ
709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710{
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
2208a378
ID
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
e4404d6e 718
adbbb863 719 mutex_lock(&orig->device_list_mutex);
02db0844 720 fs_devices->total_devices = orig->total_devices;
e4404d6e 721
46224705 722 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
724 struct rcu_string *name;
725
12bd2fc0
ID
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
e4404d6e
YZ
729 goto error;
730
606686ee
JB
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
e755f780 735 if (orig_dev->name) {
78f2c9e6
DS
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
e755f780
AJ
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
fd2696f3 743 }
e4404d6e 744
e4404d6e
YZ
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
adbbb863 749 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
750 return fs_devices;
751error:
adbbb863 752 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755}
756
9eaed21e 757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 758{
c6e30871 759 struct btrfs_device *device, *next;
443f24fe 760 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 761
dfe25020
CM
762 mutex_lock(&uuid_mutex);
763again:
46224705 764 /* This is the initialized path, it is safe to release the devices. */
c6e30871 765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 766 if (device->in_fs_metadata) {
63a212ab 767 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
a6b0d5c8 771 }
2b82032c 772 continue;
a6b0d5c8 773 }
2b82032c 774
8dabb742
SB
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
2b82032c 790 if (device->bdev) {
d4d77629 791 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
8dabb742
SB
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
2b82032c 800 }
e4404d6e
YZ
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
606686ee 803 rcu_string_free(device->name);
e4404d6e 804 kfree(device);
dfe25020 805 }
2b82032c
YZ
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
2b82032c
YZ
809 goto again;
810 }
811
443f24fe 812 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 813
dfe25020 814 mutex_unlock(&uuid_mutex);
dfe25020 815}
a0af469b 816
1f78160c
XG
817static void __free_device(struct work_struct *work)
818{
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
606686ee 826 rcu_string_free(device->name);
1f78160c
XG
827 kfree(device);
828}
829
830static void free_device(struct rcu_head *head)
831{
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838}
839
2b82032c 840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 841{
2037a093 842 struct btrfs_device *device, *tmp;
e4404d6e 843
2b82032c
YZ
844 if (--fs_devices->opened > 0)
845 return 0;
8a4b83cc 846
c9513edb 847 mutex_lock(&fs_devices->device_list_mutex);
2037a093 848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 849 btrfs_close_one_device(device);
8a4b83cc 850 }
c9513edb
XG
851 mutex_unlock(&fs_devices->device_list_mutex);
852
e4404d6e
YZ
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
2b82032c 857
8a4b83cc
CM
858 return 0;
859}
860
2b82032c
YZ
861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862{
e4404d6e 863 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
2b82032c 872 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
bc178622
ES
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
2b82032c
YZ
886 return ret;
887}
888
e4404d6e
YZ
889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
8a4b83cc 891{
d5e2003c 892 struct request_queue *q;
8a4b83cc
CM
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
8a4b83cc 895 struct btrfs_device *device;
443f24fe 896 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
a0af469b 899 u64 devid;
2b82032c 900 int seeding = 1;
a0af469b 901 int ret = 0;
8a4b83cc 902
d4d77629
TH
903 flags |= FMODE_EXCL;
904
c6e30871 905 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
906 if (device->bdev)
907 continue;
dfe25020
CM
908 if (!device->name)
909 continue;
910
f63e0cca
ES
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
beaf8ab3 914 continue;
a0af469b
CM
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 917 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
918 if (devid != device->devid)
919 goto error_brelse;
920
2b82032c
YZ
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
a0af469b 929
2b82032c
YZ
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
d5e2003c 937 q = bdev_get_queue(bdev);
90180da4 938 if (blk_queue_discard(q))
d5e2003c 939 device->can_discard = 1;
d5e2003c 940
8a4b83cc 941 device->bdev = bdev;
dfe25020 942 device->in_fs_metadata = 0;
15916de8
CM
943 device->mode = flags;
944
c289811c
CM
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
a0af469b 948 fs_devices->open_devices++;
55e50e45
ID
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
4f6c9328 955 brelse(bh);
a0af469b 956 continue;
a061fc8d 957
a0af469b
CM
958error_brelse:
959 brelse(bh);
d4d77629 960 blkdev_put(bdev, flags);
a0af469b 961 continue;
8a4b83cc 962 }
a0af469b 963 if (fs_devices->open_devices == 0) {
20bcd649 964 ret = -EINVAL;
a0af469b
CM
965 goto out;
966 }
2b82032c
YZ
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
443f24fe 969 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 970 fs_devices->total_rw_bytes = 0;
a0af469b 971out:
2b82032c
YZ
972 return ret;
973}
974
975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 976 fmode_t flags, void *holder)
2b82032c
YZ
977{
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
e4404d6e
YZ
982 fs_devices->opened++;
983 ret = 0;
2b82032c 984 } else {
15916de8 985 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 986 }
8a4b83cc 987 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
988 return ret;
989}
990
6cf86a00
AJ
991void btrfs_release_disk_super(struct page *page)
992{
993 kunmap(page);
994 put_page(page);
995}
996
997int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
998 struct page **page, struct btrfs_super_block **disk_super)
999{
1000 void *p;
1001 pgoff_t index;
1002
1003 /* make sure our super fits in the device */
1004 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1005 return 1;
1006
1007 /* make sure our super fits in the page */
1008 if (sizeof(**disk_super) > PAGE_SIZE)
1009 return 1;
1010
1011 /* make sure our super doesn't straddle pages on disk */
1012 index = bytenr >> PAGE_SHIFT;
1013 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1014 return 1;
1015
1016 /* pull in the page with our super */
1017 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1018 index, GFP_KERNEL);
1019
1020 if (IS_ERR_OR_NULL(*page))
1021 return 1;
1022
1023 p = kmap(*page);
1024
1025 /* align our pointer to the offset of the super block */
1026 *disk_super = p + (bytenr & ~PAGE_MASK);
1027
1028 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1029 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1030 btrfs_release_disk_super(*page);
1031 return 1;
1032 }
1033
1034 if ((*disk_super)->label[0] &&
1035 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1036 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1037
1038 return 0;
1039}
1040
6f60cbd3
DS
1041/*
1042 * Look for a btrfs signature on a device. This may be called out of the mount path
1043 * and we are not allowed to call set_blocksize during the scan. The superblock
1044 * is read via pagecache
1045 */
97288f2c 1046int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1047 struct btrfs_fs_devices **fs_devices_ret)
1048{
1049 struct btrfs_super_block *disk_super;
1050 struct block_device *bdev;
6f60cbd3 1051 struct page *page;
6f60cbd3 1052 int ret = -EINVAL;
8a4b83cc 1053 u64 devid;
f2984462 1054 u64 transid;
02db0844 1055 u64 total_devices;
6f60cbd3 1056 u64 bytenr;
8a4b83cc 1057
6f60cbd3
DS
1058 /*
1059 * we would like to check all the supers, but that would make
1060 * a btrfs mount succeed after a mkfs from a different FS.
1061 * So, we need to add a special mount option to scan for
1062 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1063 */
1064 bytenr = btrfs_sb_offset(0);
d4d77629 1065 flags |= FMODE_EXCL;
10f6327b 1066 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1067
1068 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1069 if (IS_ERR(bdev)) {
1070 ret = PTR_ERR(bdev);
beaf8ab3 1071 goto error;
6f60cbd3
DS
1072 }
1073
6cf86a00 1074 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1075 goto error_bdev_put;
1076
a343832f 1077 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1078 transid = btrfs_super_generation(disk_super);
02db0844 1079 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1080
8a4b83cc 1081 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1082 if (ret > 0) {
1083 if (disk_super->label[0]) {
60999ca4
DS
1084 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1085 } else {
1086 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1087 }
1088
1089 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1090 ret = 0;
1091 }
02db0844
JB
1092 if (!ret && fs_devices_ret)
1093 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1094
6cf86a00 1095 btrfs_release_disk_super(page);
6f60cbd3
DS
1096
1097error_bdev_put:
d4d77629 1098 blkdev_put(bdev, flags);
8a4b83cc 1099error:
beaf8ab3 1100 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1101 return ret;
1102}
0b86a832 1103
6d07bcec
MX
1104/* helper to account the used device space in the range */
1105int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1106 u64 end, u64 *length)
1107{
1108 struct btrfs_key key;
1109 struct btrfs_root *root = device->dev_root;
1110 struct btrfs_dev_extent *dev_extent;
1111 struct btrfs_path *path;
1112 u64 extent_end;
1113 int ret;
1114 int slot;
1115 struct extent_buffer *l;
1116
1117 *length = 0;
1118
63a212ab 1119 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1120 return 0;
1121
1122 path = btrfs_alloc_path();
1123 if (!path)
1124 return -ENOMEM;
e4058b54 1125 path->reada = READA_FORWARD;
6d07bcec
MX
1126
1127 key.objectid = device->devid;
1128 key.offset = start;
1129 key.type = BTRFS_DEV_EXTENT_KEY;
1130
1131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132 if (ret < 0)
1133 goto out;
1134 if (ret > 0) {
1135 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1136 if (ret < 0)
1137 goto out;
1138 }
1139
1140 while (1) {
1141 l = path->nodes[0];
1142 slot = path->slots[0];
1143 if (slot >= btrfs_header_nritems(l)) {
1144 ret = btrfs_next_leaf(root, path);
1145 if (ret == 0)
1146 continue;
1147 if (ret < 0)
1148 goto out;
1149
1150 break;
1151 }
1152 btrfs_item_key_to_cpu(l, &key, slot);
1153
1154 if (key.objectid < device->devid)
1155 goto next;
1156
1157 if (key.objectid > device->devid)
1158 break;
1159
962a298f 1160 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1161 goto next;
1162
1163 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1164 extent_end = key.offset + btrfs_dev_extent_length(l,
1165 dev_extent);
1166 if (key.offset <= start && extent_end > end) {
1167 *length = end - start + 1;
1168 break;
1169 } else if (key.offset <= start && extent_end > start)
1170 *length += extent_end - start;
1171 else if (key.offset > start && extent_end <= end)
1172 *length += extent_end - key.offset;
1173 else if (key.offset > start && key.offset <= end) {
1174 *length += end - key.offset + 1;
1175 break;
1176 } else if (key.offset > end)
1177 break;
1178
1179next:
1180 path->slots[0]++;
1181 }
1182 ret = 0;
1183out:
1184 btrfs_free_path(path);
1185 return ret;
1186}
1187
499f377f 1188static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1189 struct btrfs_device *device,
1190 u64 *start, u64 len)
1191{
499f377f 1192 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1193 struct extent_map *em;
499f377f 1194 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1195 int ret = 0;
1b984508 1196 u64 physical_start = *start;
6df9a95e 1197
499f377f
JM
1198 if (transaction)
1199 search_list = &transaction->pending_chunks;
04216820
FM
1200again:
1201 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1202 struct map_lookup *map;
1203 int i;
1204
95617d69 1205 map = em->map_lookup;
6df9a95e 1206 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1207 u64 end;
1208
6df9a95e
JB
1209 if (map->stripes[i].dev != device)
1210 continue;
1b984508 1211 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1212 map->stripes[i].physical + em->orig_block_len <=
1b984508 1213 physical_start)
6df9a95e 1214 continue;
c152b63e
FM
1215 /*
1216 * Make sure that while processing the pinned list we do
1217 * not override our *start with a lower value, because
1218 * we can have pinned chunks that fall within this
1219 * device hole and that have lower physical addresses
1220 * than the pending chunks we processed before. If we
1221 * do not take this special care we can end up getting
1222 * 2 pending chunks that start at the same physical
1223 * device offsets because the end offset of a pinned
1224 * chunk can be equal to the start offset of some
1225 * pending chunk.
1226 */
1227 end = map->stripes[i].physical + em->orig_block_len;
1228 if (end > *start) {
1229 *start = end;
1230 ret = 1;
1231 }
6df9a95e
JB
1232 }
1233 }
499f377f
JM
1234 if (search_list != &fs_info->pinned_chunks) {
1235 search_list = &fs_info->pinned_chunks;
04216820
FM
1236 goto again;
1237 }
6df9a95e
JB
1238
1239 return ret;
1240}
1241
1242
0b86a832 1243/*
499f377f
JM
1244 * find_free_dev_extent_start - find free space in the specified device
1245 * @device: the device which we search the free space in
1246 * @num_bytes: the size of the free space that we need
1247 * @search_start: the position from which to begin the search
1248 * @start: store the start of the free space.
1249 * @len: the size of the free space. that we find, or the size
1250 * of the max free space if we don't find suitable free space
7bfc837d 1251 *
0b86a832
CM
1252 * this uses a pretty simple search, the expectation is that it is
1253 * called very infrequently and that a given device has a small number
1254 * of extents
7bfc837d
MX
1255 *
1256 * @start is used to store the start of the free space if we find. But if we
1257 * don't find suitable free space, it will be used to store the start position
1258 * of the max free space.
1259 *
1260 * @len is used to store the size of the free space that we find.
1261 * But if we don't find suitable free space, it is used to store the size of
1262 * the max free space.
0b86a832 1263 */
499f377f
JM
1264int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1265 struct btrfs_device *device, u64 num_bytes,
1266 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1267{
1268 struct btrfs_key key;
1269 struct btrfs_root *root = device->dev_root;
7bfc837d 1270 struct btrfs_dev_extent *dev_extent;
2b82032c 1271 struct btrfs_path *path;
7bfc837d
MX
1272 u64 hole_size;
1273 u64 max_hole_start;
1274 u64 max_hole_size;
1275 u64 extent_end;
0b86a832
CM
1276 u64 search_end = device->total_bytes;
1277 int ret;
7bfc837d 1278 int slot;
0b86a832 1279 struct extent_buffer *l;
8cdc7c5b
FM
1280 u64 min_search_start;
1281
1282 /*
1283 * We don't want to overwrite the superblock on the drive nor any area
1284 * used by the boot loader (grub for example), so we make sure to start
1285 * at an offset of at least 1MB.
1286 */
1287 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1288 search_start = max(search_start, min_search_start);
0b86a832 1289
6df9a95e
JB
1290 path = btrfs_alloc_path();
1291 if (!path)
1292 return -ENOMEM;
f2ab7618 1293
7bfc837d
MX
1294 max_hole_start = search_start;
1295 max_hole_size = 0;
1296
f2ab7618 1297again:
63a212ab 1298 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1299 ret = -ENOSPC;
6df9a95e 1300 goto out;
7bfc837d
MX
1301 }
1302
e4058b54 1303 path->reada = READA_FORWARD;
6df9a95e
JB
1304 path->search_commit_root = 1;
1305 path->skip_locking = 1;
7bfc837d 1306
0b86a832
CM
1307 key.objectid = device->devid;
1308 key.offset = search_start;
1309 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1310
125ccb0a 1311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1312 if (ret < 0)
7bfc837d 1313 goto out;
1fcbac58
YZ
1314 if (ret > 0) {
1315 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1316 if (ret < 0)
7bfc837d 1317 goto out;
1fcbac58 1318 }
7bfc837d 1319
0b86a832
CM
1320 while (1) {
1321 l = path->nodes[0];
1322 slot = path->slots[0];
1323 if (slot >= btrfs_header_nritems(l)) {
1324 ret = btrfs_next_leaf(root, path);
1325 if (ret == 0)
1326 continue;
1327 if (ret < 0)
7bfc837d
MX
1328 goto out;
1329
1330 break;
0b86a832
CM
1331 }
1332 btrfs_item_key_to_cpu(l, &key, slot);
1333
1334 if (key.objectid < device->devid)
1335 goto next;
1336
1337 if (key.objectid > device->devid)
7bfc837d 1338 break;
0b86a832 1339
962a298f 1340 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1341 goto next;
9779b72f 1342
7bfc837d
MX
1343 if (key.offset > search_start) {
1344 hole_size = key.offset - search_start;
9779b72f 1345
6df9a95e
JB
1346 /*
1347 * Have to check before we set max_hole_start, otherwise
1348 * we could end up sending back this offset anyway.
1349 */
499f377f 1350 if (contains_pending_extent(transaction, device,
6df9a95e 1351 &search_start,
1b984508
FL
1352 hole_size)) {
1353 if (key.offset >= search_start) {
1354 hole_size = key.offset - search_start;
1355 } else {
1356 WARN_ON_ONCE(1);
1357 hole_size = 0;
1358 }
1359 }
6df9a95e 1360
7bfc837d
MX
1361 if (hole_size > max_hole_size) {
1362 max_hole_start = search_start;
1363 max_hole_size = hole_size;
1364 }
9779b72f 1365
7bfc837d
MX
1366 /*
1367 * If this free space is greater than which we need,
1368 * it must be the max free space that we have found
1369 * until now, so max_hole_start must point to the start
1370 * of this free space and the length of this free space
1371 * is stored in max_hole_size. Thus, we return
1372 * max_hole_start and max_hole_size and go back to the
1373 * caller.
1374 */
1375 if (hole_size >= num_bytes) {
1376 ret = 0;
1377 goto out;
0b86a832
CM
1378 }
1379 }
0b86a832 1380
0b86a832 1381 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1382 extent_end = key.offset + btrfs_dev_extent_length(l,
1383 dev_extent);
1384 if (extent_end > search_start)
1385 search_start = extent_end;
0b86a832
CM
1386next:
1387 path->slots[0]++;
1388 cond_resched();
1389 }
0b86a832 1390
38c01b96 1391 /*
1392 * At this point, search_start should be the end of
1393 * allocated dev extents, and when shrinking the device,
1394 * search_end may be smaller than search_start.
1395 */
f2ab7618 1396 if (search_end > search_start) {
38c01b96 1397 hole_size = search_end - search_start;
1398
499f377f 1399 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1400 hole_size)) {
1401 btrfs_release_path(path);
1402 goto again;
1403 }
0b86a832 1404
f2ab7618
ZL
1405 if (hole_size > max_hole_size) {
1406 max_hole_start = search_start;
1407 max_hole_size = hole_size;
1408 }
6df9a95e
JB
1409 }
1410
7bfc837d 1411 /* See above. */
f2ab7618 1412 if (max_hole_size < num_bytes)
7bfc837d
MX
1413 ret = -ENOSPC;
1414 else
1415 ret = 0;
1416
1417out:
2b82032c 1418 btrfs_free_path(path);
7bfc837d 1419 *start = max_hole_start;
b2117a39 1420 if (len)
7bfc837d 1421 *len = max_hole_size;
0b86a832
CM
1422 return ret;
1423}
1424
499f377f
JM
1425int find_free_dev_extent(struct btrfs_trans_handle *trans,
1426 struct btrfs_device *device, u64 num_bytes,
1427 u64 *start, u64 *len)
1428{
499f377f 1429 /* FIXME use last free of some kind */
499f377f 1430 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1431 num_bytes, 0, start, len);
499f377f
JM
1432}
1433
b2950863 1434static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1435 struct btrfs_device *device,
2196d6e8 1436 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1437{
1438 int ret;
1439 struct btrfs_path *path;
1440 struct btrfs_root *root = device->dev_root;
1441 struct btrfs_key key;
a061fc8d
CM
1442 struct btrfs_key found_key;
1443 struct extent_buffer *leaf = NULL;
1444 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 key.objectid = device->devid;
1451 key.offset = start;
1452 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1453again:
8f18cf13 1454 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1455 if (ret > 0) {
1456 ret = btrfs_previous_item(root, path, key.objectid,
1457 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1458 if (ret)
1459 goto out;
a061fc8d
CM
1460 leaf = path->nodes[0];
1461 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1462 extent = btrfs_item_ptr(leaf, path->slots[0],
1463 struct btrfs_dev_extent);
1464 BUG_ON(found_key.offset > start || found_key.offset +
1465 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1466 key = found_key;
1467 btrfs_release_path(path);
1468 goto again;
a061fc8d
CM
1469 } else if (ret == 0) {
1470 leaf = path->nodes[0];
1471 extent = btrfs_item_ptr(leaf, path->slots[0],
1472 struct btrfs_dev_extent);
79787eaa 1473 } else {
a4553fef 1474 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1475 goto out;
a061fc8d 1476 }
8f18cf13 1477
2196d6e8
MX
1478 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1479
8f18cf13 1480 ret = btrfs_del_item(trans, root, path);
79787eaa 1481 if (ret) {
a4553fef 1482 btrfs_std_error(root->fs_info, ret,
79787eaa 1483 "Failed to remove dev extent item");
13212b54 1484 } else {
3204d33c 1485 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1486 }
b0b802d7 1487out:
8f18cf13
CM
1488 btrfs_free_path(path);
1489 return ret;
1490}
1491
48a3b636
ES
1492static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1493 struct btrfs_device *device,
1494 u64 chunk_tree, u64 chunk_objectid,
1495 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1496{
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_dev_extent *extent;
1501 struct extent_buffer *leaf;
1502 struct btrfs_key key;
1503
dfe25020 1504 WARN_ON(!device->in_fs_metadata);
63a212ab 1505 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1506 path = btrfs_alloc_path();
1507 if (!path)
1508 return -ENOMEM;
1509
0b86a832 1510 key.objectid = device->devid;
2b82032c 1511 key.offset = start;
0b86a832
CM
1512 key.type = BTRFS_DEV_EXTENT_KEY;
1513 ret = btrfs_insert_empty_item(trans, root, path, &key,
1514 sizeof(*extent));
2cdcecbc
MF
1515 if (ret)
1516 goto out;
0b86a832
CM
1517
1518 leaf = path->nodes[0];
1519 extent = btrfs_item_ptr(leaf, path->slots[0],
1520 struct btrfs_dev_extent);
e17cade2
CM
1521 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1522 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1523 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1524
1525 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1526 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1527
0b86a832
CM
1528 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1529 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1530out:
0b86a832
CM
1531 btrfs_free_path(path);
1532 return ret;
1533}
1534
6df9a95e 1535static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1536{
6df9a95e
JB
1537 struct extent_map_tree *em_tree;
1538 struct extent_map *em;
1539 struct rb_node *n;
1540 u64 ret = 0;
0b86a832 1541
6df9a95e
JB
1542 em_tree = &fs_info->mapping_tree.map_tree;
1543 read_lock(&em_tree->lock);
1544 n = rb_last(&em_tree->map);
1545 if (n) {
1546 em = rb_entry(n, struct extent_map, rb_node);
1547 ret = em->start + em->len;
0b86a832 1548 }
6df9a95e
JB
1549 read_unlock(&em_tree->lock);
1550
0b86a832
CM
1551 return ret;
1552}
1553
53f10659
ID
1554static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1555 u64 *devid_ret)
0b86a832
CM
1556{
1557 int ret;
1558 struct btrfs_key key;
1559 struct btrfs_key found_key;
2b82032c
YZ
1560 struct btrfs_path *path;
1561
2b82032c
YZ
1562 path = btrfs_alloc_path();
1563 if (!path)
1564 return -ENOMEM;
0b86a832
CM
1565
1566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1567 key.type = BTRFS_DEV_ITEM_KEY;
1568 key.offset = (u64)-1;
1569
53f10659 1570 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1571 if (ret < 0)
1572 goto error;
1573
79787eaa 1574 BUG_ON(ret == 0); /* Corruption */
0b86a832 1575
53f10659
ID
1576 ret = btrfs_previous_item(fs_info->chunk_root, path,
1577 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1578 BTRFS_DEV_ITEM_KEY);
1579 if (ret) {
53f10659 1580 *devid_ret = 1;
0b86a832
CM
1581 } else {
1582 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1583 path->slots[0]);
53f10659 1584 *devid_ret = found_key.offset + 1;
0b86a832
CM
1585 }
1586 ret = 0;
1587error:
2b82032c 1588 btrfs_free_path(path);
0b86a832
CM
1589 return ret;
1590}
1591
1592/*
1593 * the device information is stored in the chunk root
1594 * the btrfs_device struct should be fully filled in
1595 */
48a3b636
ES
1596static int btrfs_add_device(struct btrfs_trans_handle *trans,
1597 struct btrfs_root *root,
1598 struct btrfs_device *device)
0b86a832
CM
1599{
1600 int ret;
1601 struct btrfs_path *path;
1602 struct btrfs_dev_item *dev_item;
1603 struct extent_buffer *leaf;
1604 struct btrfs_key key;
1605 unsigned long ptr;
0b86a832
CM
1606
1607 root = root->fs_info->chunk_root;
1608
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1612
0b86a832
CM
1613 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1614 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1615 key.offset = device->devid;
0b86a832
CM
1616
1617 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1618 sizeof(*dev_item));
0b86a832
CM
1619 if (ret)
1620 goto out;
1621
1622 leaf = path->nodes[0];
1623 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1624
1625 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1626 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1627 btrfs_set_device_type(leaf, dev_item, device->type);
1628 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1629 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1630 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1631 btrfs_set_device_total_bytes(leaf, dev_item,
1632 btrfs_device_get_disk_total_bytes(device));
1633 btrfs_set_device_bytes_used(leaf, dev_item,
1634 btrfs_device_get_bytes_used(device));
e17cade2
CM
1635 btrfs_set_device_group(leaf, dev_item, 0);
1636 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1637 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1638 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1639
410ba3a2 1640 ptr = btrfs_device_uuid(dev_item);
e17cade2 1641 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1642 ptr = btrfs_device_fsid(dev_item);
2b82032c 1643 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1644 btrfs_mark_buffer_dirty(leaf);
0b86a832 1645
2b82032c 1646 ret = 0;
0b86a832
CM
1647out:
1648 btrfs_free_path(path);
1649 return ret;
1650}
8f18cf13 1651
5a1972bd
QW
1652/*
1653 * Function to update ctime/mtime for a given device path.
1654 * Mainly used for ctime/mtime based probe like libblkid.
1655 */
1656static void update_dev_time(char *path_name)
1657{
1658 struct file *filp;
1659
1660 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1661 if (IS_ERR(filp))
5a1972bd
QW
1662 return;
1663 file_update_time(filp);
1664 filp_close(filp, NULL);
5a1972bd
QW
1665}
1666
a061fc8d
CM
1667static int btrfs_rm_dev_item(struct btrfs_root *root,
1668 struct btrfs_device *device)
1669{
1670 int ret;
1671 struct btrfs_path *path;
a061fc8d 1672 struct btrfs_key key;
a061fc8d
CM
1673 struct btrfs_trans_handle *trans;
1674
1675 root = root->fs_info->chunk_root;
1676
1677 path = btrfs_alloc_path();
1678 if (!path)
1679 return -ENOMEM;
1680
a22285a6 1681 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1682 if (IS_ERR(trans)) {
1683 btrfs_free_path(path);
1684 return PTR_ERR(trans);
1685 }
a061fc8d
CM
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = device->devid;
1689
1690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1691 if (ret < 0)
1692 goto out;
1693
1694 if (ret > 0) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698
1699 ret = btrfs_del_item(trans, root, path);
1700 if (ret)
1701 goto out;
a061fc8d
CM
1702out:
1703 btrfs_free_path(path);
1704 btrfs_commit_transaction(trans, root);
1705 return ret;
1706}
1707
bd45ffbc 1708static int __check_raid_min_devices(struct btrfs_fs_info *fs_info)
a061fc8d 1709{
a061fc8d 1710 u64 all_avail;
2b82032c 1711 u64 num_devices;
de98ced9 1712 unsigned seq;
a061fc8d 1713
bd45ffbc
AJ
1714 num_devices = fs_info->fs_devices->num_devices;
1715 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1716 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
f1fa7f26
AJ
1717 WARN_ON(num_devices < 1);
1718 num_devices--;
1719 }
bd45ffbc 1720 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a061fc8d 1721
de98ced9 1722 do {
bd45ffbc 1723 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1724
bd45ffbc
AJ
1725 all_avail = fs_info->avail_data_alloc_bits |
1726 fs_info->avail_system_alloc_bits |
1727 fs_info->avail_metadata_alloc_bits;
1728 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1729
8dabb742 1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
bd45ffbc 1731 return BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1732 }
1733
8dabb742 1734 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
bd45ffbc 1735 return BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1736 }
1737
53b381b3 1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
bd45ffbc
AJ
1739 fs_info->fs_devices->rw_devices <= 2) {
1740 return BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3 1741 }
bd45ffbc 1742
53b381b3 1743 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
bd45ffbc
AJ
1744 fs_info->fs_devices->rw_devices <= 3) {
1745 return BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1746 }
1747
bd45ffbc 1748 return 0;
f1fa7f26
AJ
1749}
1750
6b526ed7 1751int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1752{
1753 struct btrfs_device *device;
1754 struct btrfs_device *next_device;
f1fa7f26 1755 struct btrfs_fs_devices *cur_devices;
f1fa7f26 1756 u64 num_devices;
f1fa7f26
AJ
1757 int ret = 0;
1758 bool clear_super = false;
42b67427 1759 char *dev_name = NULL;
f1fa7f26
AJ
1760
1761 mutex_lock(&uuid_mutex);
1762
bd45ffbc 1763 ret = __check_raid_min_devices(root->fs_info);
f1fa7f26
AJ
1764 if (ret)
1765 goto out;
1766
6b526ed7 1767 ret = btrfs_find_device_by_user_input(root, devid, device_path,
24fc572f
AJ
1768 &device);
1769 if (ret)
1770 goto out;
dfe25020 1771
63a212ab 1772 if (device->is_tgtdev_for_dev_replace) {
183860f6 1773 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1774 goto out;
63a212ab
SB
1775 }
1776
2b82032c 1777 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1778 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1779 goto out;
2b82032c
YZ
1780 }
1781
1782 if (device->writeable) {
0c1daee0 1783 lock_chunks(root);
2b82032c 1784 list_del_init(&device->dev_alloc_list);
c3929c36 1785 device->fs_devices->rw_devices--;
0c1daee0 1786 unlock_chunks(root);
42b67427
AJ
1787 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1788 if (!dev_name) {
1789 ret = -ENOMEM;
1790 goto error_undo;
1791 }
1f78160c 1792 clear_super = true;
dfe25020 1793 }
a061fc8d 1794
d7901554 1795 mutex_unlock(&uuid_mutex);
a061fc8d 1796 ret = btrfs_shrink_device(device, 0);
d7901554 1797 mutex_lock(&uuid_mutex);
a061fc8d 1798 if (ret)
9b3517e9 1799 goto error_undo;
a061fc8d 1800
63a212ab
SB
1801 /*
1802 * TODO: the superblock still includes this device in its num_devices
1803 * counter although write_all_supers() is not locked out. This
1804 * could give a filesystem state which requires a degraded mount.
1805 */
a061fc8d
CM
1806 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1807 if (ret)
9b3517e9 1808 goto error_undo;
a061fc8d 1809
2b82032c 1810 device->in_fs_metadata = 0;
aa1b8cd4 1811 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1812
1813 /*
1814 * the device list mutex makes sure that we don't change
1815 * the device list while someone else is writing out all
d7306801
FDBM
1816 * the device supers. Whoever is writing all supers, should
1817 * lock the device list mutex before getting the number of
1818 * devices in the super block (super_copy). Conversely,
1819 * whoever updates the number of devices in the super block
1820 * (super_copy) should hold the device list mutex.
e5e9a520 1821 */
1f78160c
XG
1822
1823 cur_devices = device->fs_devices;
e5e9a520 1824 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1825 list_del_rcu(&device->dev_list);
e5e9a520 1826
e4404d6e 1827 device->fs_devices->num_devices--;
02db0844 1828 device->fs_devices->total_devices--;
2b82032c 1829
cd02dca5 1830 if (device->missing)
3a7d55c8 1831 device->fs_devices->missing_devices--;
cd02dca5 1832
2b82032c
YZ
1833 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1834 struct btrfs_device, dev_list);
1835 if (device->bdev == root->fs_info->sb->s_bdev)
1836 root->fs_info->sb->s_bdev = next_device->bdev;
1837 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1838 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1839
0bfaa9c5 1840 if (device->bdev) {
e4404d6e 1841 device->fs_devices->open_devices--;
0bfaa9c5 1842 /* remove sysfs entry */
32576040 1843 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1844 }
99994cde 1845
1f78160c 1846 call_rcu(&device->rcu, free_device);
e4404d6e 1847
6c41761f
DS
1848 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1849 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1850 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1851
1f78160c 1852 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1853 struct btrfs_fs_devices *fs_devices;
1854 fs_devices = root->fs_info->fs_devices;
1855 while (fs_devices) {
8321cf25
RS
1856 if (fs_devices->seed == cur_devices) {
1857 fs_devices->seed = cur_devices->seed;
e4404d6e 1858 break;
8321cf25 1859 }
e4404d6e 1860 fs_devices = fs_devices->seed;
2b82032c 1861 }
1f78160c 1862 cur_devices->seed = NULL;
1f78160c 1863 __btrfs_close_devices(cur_devices);
1f78160c 1864 free_fs_devices(cur_devices);
2b82032c
YZ
1865 }
1866
5af3e8cc
SB
1867 root->fs_info->num_tolerated_disk_barrier_failures =
1868 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1869
2b82032c
YZ
1870 /*
1871 * at this point, the device is zero sized. We want to
1872 * remove it from the devices list and zero out the old super
1873 */
24fc572f 1874 if (clear_super) {
42b67427 1875 struct block_device *bdev;
4d90d28b 1876
42b67427
AJ
1877 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1878 root->fs_info->bdev_holder);
1879 if (!IS_ERR(bdev)) {
1880 btrfs_scratch_superblocks(bdev, dev_name);
24fc572f
AJ
1881 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1882 }
5a1972bd
QW
1883 }
1884
a061fc8d 1885out:
42b67427
AJ
1886 kfree(dev_name);
1887
a061fc8d 1888 mutex_unlock(&uuid_mutex);
a061fc8d 1889 return ret;
24fc572f 1890
9b3517e9
ID
1891error_undo:
1892 if (device->writeable) {
0c1daee0 1893 lock_chunks(root);
9b3517e9
ID
1894 list_add(&device->dev_alloc_list,
1895 &root->fs_info->fs_devices->alloc_list);
c3929c36 1896 device->fs_devices->rw_devices++;
0c1daee0 1897 unlock_chunks(root);
9b3517e9 1898 }
24fc572f 1899 goto out;
a061fc8d
CM
1900}
1901
084b6e7c
QW
1902void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1903 struct btrfs_device *srcdev)
e93c89c1 1904{
d51908ce
AJ
1905 struct btrfs_fs_devices *fs_devices;
1906
e93c89c1 1907 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1908
25e8e911
AJ
1909 /*
1910 * in case of fs with no seed, srcdev->fs_devices will point
1911 * to fs_devices of fs_info. However when the dev being replaced is
1912 * a seed dev it will point to the seed's local fs_devices. In short
1913 * srcdev will have its correct fs_devices in both the cases.
1914 */
1915 fs_devices = srcdev->fs_devices;
d51908ce 1916
e93c89c1
SB
1917 list_del_rcu(&srcdev->dev_list);
1918 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1919 fs_devices->num_devices--;
82372bc8 1920 if (srcdev->missing)
d51908ce 1921 fs_devices->missing_devices--;
e93c89c1 1922
82372bc8
MX
1923 if (srcdev->writeable) {
1924 fs_devices->rw_devices--;
1925 /* zero out the old super if it is writable */
31388ab2 1926 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1357272f
ID
1927 }
1928
82372bc8 1929 if (srcdev->bdev)
d51908ce 1930 fs_devices->open_devices--;
084b6e7c
QW
1931}
1932
1933void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1934 struct btrfs_device *srcdev)
1935{
1936 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1937
1938 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1939
1940 /*
1941 * unless fs_devices is seed fs, num_devices shouldn't go
1942 * zero
1943 */
1944 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1945
1946 /* if this is no devs we rather delete the fs_devices */
1947 if (!fs_devices->num_devices) {
1948 struct btrfs_fs_devices *tmp_fs_devices;
1949
1950 tmp_fs_devices = fs_info->fs_devices;
1951 while (tmp_fs_devices) {
1952 if (tmp_fs_devices->seed == fs_devices) {
1953 tmp_fs_devices->seed = fs_devices->seed;
1954 break;
1955 }
1956 tmp_fs_devices = tmp_fs_devices->seed;
1957 }
1958 fs_devices->seed = NULL;
8bef8401
AJ
1959 __btrfs_close_devices(fs_devices);
1960 free_fs_devices(fs_devices);
94d5f0c2 1961 }
e93c89c1
SB
1962}
1963
1964void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1965 struct btrfs_device *tgtdev)
1966{
1967 struct btrfs_device *next_device;
1968
67a2c45e 1969 mutex_lock(&uuid_mutex);
e93c89c1
SB
1970 WARN_ON(!tgtdev);
1971 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 1972
32576040 1973 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 1974
e93c89c1 1975 if (tgtdev->bdev) {
31388ab2 1976 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
e93c89c1
SB
1977 fs_info->fs_devices->open_devices--;
1978 }
1979 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1980
1981 next_device = list_entry(fs_info->fs_devices->devices.next,
1982 struct btrfs_device, dev_list);
1983 if (tgtdev->bdev == fs_info->sb->s_bdev)
1984 fs_info->sb->s_bdev = next_device->bdev;
1985 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1986 fs_info->fs_devices->latest_bdev = next_device->bdev;
1987 list_del_rcu(&tgtdev->dev_list);
1988
1989 call_rcu(&tgtdev->rcu, free_device);
1990
1991 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 1992 mutex_unlock(&uuid_mutex);
e93c89c1
SB
1993}
1994
48a3b636
ES
1995static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1996 struct btrfs_device **device)
7ba15b7d
SB
1997{
1998 int ret = 0;
1999 struct btrfs_super_block *disk_super;
2000 u64 devid;
2001 u8 *dev_uuid;
2002 struct block_device *bdev;
2003 struct buffer_head *bh;
2004
2005 *device = NULL;
2006 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2007 root->fs_info->bdev_holder, 0, &bdev, &bh);
2008 if (ret)
2009 return ret;
2010 disk_super = (struct btrfs_super_block *)bh->b_data;
2011 devid = btrfs_stack_device_id(&disk_super->dev_item);
2012 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2013 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2014 disk_super->fsid);
2015 brelse(bh);
2016 if (!*device)
2017 ret = -ENOENT;
2018 blkdev_put(bdev, FMODE_READ);
2019 return ret;
2020}
2021
2022int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2023 char *device_path,
2024 struct btrfs_device **device)
2025{
2026 *device = NULL;
2027 if (strcmp(device_path, "missing") == 0) {
2028 struct list_head *devices;
2029 struct btrfs_device *tmp;
2030
2031 devices = &root->fs_info->fs_devices->devices;
2032 /*
2033 * It is safe to read the devices since the volume_mutex
2034 * is held by the caller.
2035 */
2036 list_for_each_entry(tmp, devices, dev_list) {
2037 if (tmp->in_fs_metadata && !tmp->bdev) {
2038 *device = tmp;
2039 break;
2040 }
2041 }
2042
d74a6259
AJ
2043 if (!*device)
2044 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2045
2046 return 0;
2047 } else {
2048 return btrfs_find_device_by_path(root, device_path, device);
2049 }
2050}
2051
24e0474b
AJ
2052int btrfs_find_device_by_user_input(struct btrfs_root *root, u64 srcdevid,
2053 char *srcdev_name,
2054 struct btrfs_device **device)
2055{
2056 int ret;
2057
2058 if (srcdevid) {
2059 ret = 0;
2060 *device = btrfs_find_device(root->fs_info, srcdevid, NULL,
2061 NULL);
2062 if (!*device)
2063 ret = -ENOENT;
2064 } else {
b3d1b153
AJ
2065 if (!srcdev_name || !srcdev_name[0])
2066 return -EINVAL;
2067
24e0474b
AJ
2068 ret = btrfs_find_device_missing_or_by_path(root, srcdev_name,
2069 device);
2070 }
2071 return ret;
2072}
2073
2b82032c
YZ
2074/*
2075 * does all the dirty work required for changing file system's UUID.
2076 */
125ccb0a 2077static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2078{
2079 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2080 struct btrfs_fs_devices *old_devices;
e4404d6e 2081 struct btrfs_fs_devices *seed_devices;
6c41761f 2082 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2083 struct btrfs_device *device;
2084 u64 super_flags;
2085
2086 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2087 if (!fs_devices->seeding)
2b82032c
YZ
2088 return -EINVAL;
2089
2208a378
ID
2090 seed_devices = __alloc_fs_devices();
2091 if (IS_ERR(seed_devices))
2092 return PTR_ERR(seed_devices);
2b82032c 2093
e4404d6e
YZ
2094 old_devices = clone_fs_devices(fs_devices);
2095 if (IS_ERR(old_devices)) {
2096 kfree(seed_devices);
2097 return PTR_ERR(old_devices);
2b82032c 2098 }
e4404d6e 2099
2b82032c
YZ
2100 list_add(&old_devices->list, &fs_uuids);
2101
e4404d6e
YZ
2102 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2103 seed_devices->opened = 1;
2104 INIT_LIST_HEAD(&seed_devices->devices);
2105 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2106 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2107
2108 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2109 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2110 synchronize_rcu);
2196d6e8
MX
2111 list_for_each_entry(device, &seed_devices->devices, dev_list)
2112 device->fs_devices = seed_devices;
c9513edb 2113
2196d6e8 2114 lock_chunks(root);
e4404d6e 2115 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2116 unlock_chunks(root);
e4404d6e 2117
2b82032c
YZ
2118 fs_devices->seeding = 0;
2119 fs_devices->num_devices = 0;
2120 fs_devices->open_devices = 0;
69611ac8 2121 fs_devices->missing_devices = 0;
69611ac8 2122 fs_devices->rotating = 0;
e4404d6e 2123 fs_devices->seed = seed_devices;
2b82032c
YZ
2124
2125 generate_random_uuid(fs_devices->fsid);
2126 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2127 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2128 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2129
2b82032c
YZ
2130 super_flags = btrfs_super_flags(disk_super) &
2131 ~BTRFS_SUPER_FLAG_SEEDING;
2132 btrfs_set_super_flags(disk_super, super_flags);
2133
2134 return 0;
2135}
2136
2137/*
2138 * strore the expected generation for seed devices in device items.
2139 */
2140static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2141 struct btrfs_root *root)
2142{
2143 struct btrfs_path *path;
2144 struct extent_buffer *leaf;
2145 struct btrfs_dev_item *dev_item;
2146 struct btrfs_device *device;
2147 struct btrfs_key key;
2148 u8 fs_uuid[BTRFS_UUID_SIZE];
2149 u8 dev_uuid[BTRFS_UUID_SIZE];
2150 u64 devid;
2151 int ret;
2152
2153 path = btrfs_alloc_path();
2154 if (!path)
2155 return -ENOMEM;
2156
2157 root = root->fs_info->chunk_root;
2158 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2159 key.offset = 0;
2160 key.type = BTRFS_DEV_ITEM_KEY;
2161
2162 while (1) {
2163 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2164 if (ret < 0)
2165 goto error;
2166
2167 leaf = path->nodes[0];
2168next_slot:
2169 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2170 ret = btrfs_next_leaf(root, path);
2171 if (ret > 0)
2172 break;
2173 if (ret < 0)
2174 goto error;
2175 leaf = path->nodes[0];
2176 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2177 btrfs_release_path(path);
2b82032c
YZ
2178 continue;
2179 }
2180
2181 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2182 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2183 key.type != BTRFS_DEV_ITEM_KEY)
2184 break;
2185
2186 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2187 struct btrfs_dev_item);
2188 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2189 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2190 BTRFS_UUID_SIZE);
1473b24e 2191 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2192 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2193 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2194 fs_uuid);
79787eaa 2195 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2196
2197 if (device->fs_devices->seeding) {
2198 btrfs_set_device_generation(leaf, dev_item,
2199 device->generation);
2200 btrfs_mark_buffer_dirty(leaf);
2201 }
2202
2203 path->slots[0]++;
2204 goto next_slot;
2205 }
2206 ret = 0;
2207error:
2208 btrfs_free_path(path);
2209 return ret;
2210}
2211
788f20eb
CM
2212int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2213{
d5e2003c 2214 struct request_queue *q;
788f20eb
CM
2215 struct btrfs_trans_handle *trans;
2216 struct btrfs_device *device;
2217 struct block_device *bdev;
788f20eb 2218 struct list_head *devices;
2b82032c 2219 struct super_block *sb = root->fs_info->sb;
606686ee 2220 struct rcu_string *name;
3c1dbdf5 2221 u64 tmp;
2b82032c 2222 int seeding_dev = 0;
788f20eb
CM
2223 int ret = 0;
2224
2b82032c 2225 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2226 return -EROFS;
788f20eb 2227
a5d16333 2228 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2229 root->fs_info->bdev_holder);
7f59203a
JB
2230 if (IS_ERR(bdev))
2231 return PTR_ERR(bdev);
a2135011 2232
2b82032c
YZ
2233 if (root->fs_info->fs_devices->seeding) {
2234 seeding_dev = 1;
2235 down_write(&sb->s_umount);
2236 mutex_lock(&uuid_mutex);
2237 }
2238
8c8bee1d 2239 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2240
788f20eb 2241 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2242
2243 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2244 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2245 if (device->bdev == bdev) {
2246 ret = -EEXIST;
d25628bd
LB
2247 mutex_unlock(
2248 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2249 goto error;
788f20eb
CM
2250 }
2251 }
d25628bd 2252 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2253
12bd2fc0
ID
2254 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2255 if (IS_ERR(device)) {
788f20eb 2256 /* we can safely leave the fs_devices entry around */
12bd2fc0 2257 ret = PTR_ERR(device);
2b82032c 2258 goto error;
788f20eb
CM
2259 }
2260
78f2c9e6 2261 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2262 if (!name) {
788f20eb 2263 kfree(device);
2b82032c
YZ
2264 ret = -ENOMEM;
2265 goto error;
788f20eb 2266 }
606686ee 2267 rcu_assign_pointer(device->name, name);
2b82032c 2268
a22285a6 2269 trans = btrfs_start_transaction(root, 0);
98d5dc13 2270 if (IS_ERR(trans)) {
606686ee 2271 rcu_string_free(device->name);
98d5dc13
TI
2272 kfree(device);
2273 ret = PTR_ERR(trans);
2274 goto error;
2275 }
2276
d5e2003c
JB
2277 q = bdev_get_queue(bdev);
2278 if (blk_queue_discard(q))
2279 device->can_discard = 1;
2b82032c 2280 device->writeable = 1;
2b82032c 2281 device->generation = trans->transid;
788f20eb
CM
2282 device->io_width = root->sectorsize;
2283 device->io_align = root->sectorsize;
2284 device->sector_size = root->sectorsize;
2285 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2286 device->disk_total_bytes = device->total_bytes;
935e5cc9 2287 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2288 device->dev_root = root->fs_info->dev_root;
2289 device->bdev = bdev;
dfe25020 2290 device->in_fs_metadata = 1;
63a212ab 2291 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2292 device->mode = FMODE_EXCL;
27087f37 2293 device->dev_stats_valid = 1;
2b82032c 2294 set_blocksize(device->bdev, 4096);
788f20eb 2295
2b82032c
YZ
2296 if (seeding_dev) {
2297 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2298 ret = btrfs_prepare_sprout(root);
79787eaa 2299 BUG_ON(ret); /* -ENOMEM */
2b82032c 2300 }
788f20eb 2301
2b82032c 2302 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2303
e5e9a520 2304 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2305 lock_chunks(root);
1f78160c 2306 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2307 list_add(&device->dev_alloc_list,
2308 &root->fs_info->fs_devices->alloc_list);
2309 root->fs_info->fs_devices->num_devices++;
2310 root->fs_info->fs_devices->open_devices++;
2311 root->fs_info->fs_devices->rw_devices++;
02db0844 2312 root->fs_info->fs_devices->total_devices++;
2b82032c 2313 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2314
2bf64758
JB
2315 spin_lock(&root->fs_info->free_chunk_lock);
2316 root->fs_info->free_chunk_space += device->total_bytes;
2317 spin_unlock(&root->fs_info->free_chunk_lock);
2318
c289811c
CM
2319 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2320 root->fs_info->fs_devices->rotating = 1;
2321
3c1dbdf5 2322 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2323 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2324 tmp + device->total_bytes);
788f20eb 2325
3c1dbdf5 2326 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2327 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2328 tmp + 1);
0d39376a
AJ
2329
2330 /* add sysfs device entry */
e3bd6973 2331 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2332
2196d6e8
MX
2333 /*
2334 * we've got more storage, clear any full flags on the space
2335 * infos
2336 */
2337 btrfs_clear_space_info_full(root->fs_info);
2338
2339 unlock_chunks(root);
e5e9a520 2340 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2341
2b82032c 2342 if (seeding_dev) {
2196d6e8 2343 lock_chunks(root);
2b82032c 2344 ret = init_first_rw_device(trans, root, device);
2196d6e8 2345 unlock_chunks(root);
005d6427
DS
2346 if (ret) {
2347 btrfs_abort_transaction(trans, root, ret);
79787eaa 2348 goto error_trans;
005d6427 2349 }
2196d6e8
MX
2350 }
2351
2352 ret = btrfs_add_device(trans, root, device);
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 goto error_trans;
2356 }
2357
2358 if (seeding_dev) {
2359 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2360
2b82032c 2361 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2362 if (ret) {
2363 btrfs_abort_transaction(trans, root, ret);
79787eaa 2364 goto error_trans;
005d6427 2365 }
b2373f25
AJ
2366
2367 /* Sprouting would change fsid of the mounted root,
2368 * so rename the fsid on the sysfs
2369 */
2370 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2371 root->fs_info->fsid);
c1b7e474 2372 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2373 fsid_buf))
f14d104d
DS
2374 btrfs_warn(root->fs_info,
2375 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2376 }
2377
5af3e8cc
SB
2378 root->fs_info->num_tolerated_disk_barrier_failures =
2379 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2380 ret = btrfs_commit_transaction(trans, root);
a2135011 2381
2b82032c
YZ
2382 if (seeding_dev) {
2383 mutex_unlock(&uuid_mutex);
2384 up_write(&sb->s_umount);
788f20eb 2385
79787eaa
JM
2386 if (ret) /* transaction commit */
2387 return ret;
2388
2b82032c 2389 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2390 if (ret < 0)
a4553fef 2391 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2392 "Failed to relocate sys chunks after "
2393 "device initialization. This can be fixed "
2394 "using the \"btrfs balance\" command.");
671415b7
MX
2395 trans = btrfs_attach_transaction(root);
2396 if (IS_ERR(trans)) {
2397 if (PTR_ERR(trans) == -ENOENT)
2398 return 0;
2399 return PTR_ERR(trans);
2400 }
2401 ret = btrfs_commit_transaction(trans, root);
2b82032c 2402 }
c9e9f97b 2403
5a1972bd
QW
2404 /* Update ctime/mtime for libblkid */
2405 update_dev_time(device_path);
2b82032c 2406 return ret;
79787eaa
JM
2407
2408error_trans:
79787eaa 2409 btrfs_end_transaction(trans, root);
606686ee 2410 rcu_string_free(device->name);
32576040 2411 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2412 kfree(device);
2b82032c 2413error:
e525fd89 2414 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2415 if (seeding_dev) {
2416 mutex_unlock(&uuid_mutex);
2417 up_write(&sb->s_umount);
2418 }
c9e9f97b 2419 return ret;
788f20eb
CM
2420}
2421
e93c89c1 2422int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2423 struct btrfs_device *srcdev,
e93c89c1
SB
2424 struct btrfs_device **device_out)
2425{
2426 struct request_queue *q;
2427 struct btrfs_device *device;
2428 struct block_device *bdev;
2429 struct btrfs_fs_info *fs_info = root->fs_info;
2430 struct list_head *devices;
2431 struct rcu_string *name;
12bd2fc0 2432 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2433 int ret = 0;
2434
2435 *device_out = NULL;
1c43366d
MX
2436 if (fs_info->fs_devices->seeding) {
2437 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2438 return -EINVAL;
1c43366d 2439 }
e93c89c1
SB
2440
2441 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2442 fs_info->bdev_holder);
1c43366d
MX
2443 if (IS_ERR(bdev)) {
2444 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2445 return PTR_ERR(bdev);
1c43366d 2446 }
e93c89c1
SB
2447
2448 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2449
2450 devices = &fs_info->fs_devices->devices;
2451 list_for_each_entry(device, devices, dev_list) {
2452 if (device->bdev == bdev) {
1c43366d 2453 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2454 ret = -EEXIST;
2455 goto error;
2456 }
2457 }
2458
1c43366d 2459
7cc8e58d
MX
2460 if (i_size_read(bdev->bd_inode) <
2461 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2462 btrfs_err(fs_info, "target device is smaller than source device!");
2463 ret = -EINVAL;
2464 goto error;
2465 }
2466
2467
12bd2fc0
ID
2468 device = btrfs_alloc_device(NULL, &devid, NULL);
2469 if (IS_ERR(device)) {
2470 ret = PTR_ERR(device);
e93c89c1
SB
2471 goto error;
2472 }
2473
2474 name = rcu_string_strdup(device_path, GFP_NOFS);
2475 if (!name) {
2476 kfree(device);
2477 ret = -ENOMEM;
2478 goto error;
2479 }
2480 rcu_assign_pointer(device->name, name);
2481
2482 q = bdev_get_queue(bdev);
2483 if (blk_queue_discard(q))
2484 device->can_discard = 1;
2485 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2486 device->writeable = 1;
e93c89c1
SB
2487 device->generation = 0;
2488 device->io_width = root->sectorsize;
2489 device->io_align = root->sectorsize;
2490 device->sector_size = root->sectorsize;
7cc8e58d
MX
2491 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2492 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2493 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2494 ASSERT(list_empty(&srcdev->resized_list));
2495 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2496 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2497 device->dev_root = fs_info->dev_root;
2498 device->bdev = bdev;
2499 device->in_fs_metadata = 1;
2500 device->is_tgtdev_for_dev_replace = 1;
2501 device->mode = FMODE_EXCL;
27087f37 2502 device->dev_stats_valid = 1;
e93c89c1
SB
2503 set_blocksize(device->bdev, 4096);
2504 device->fs_devices = fs_info->fs_devices;
2505 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2506 fs_info->fs_devices->num_devices++;
2507 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2508 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2509
2510 *device_out = device;
2511 return ret;
2512
2513error:
2514 blkdev_put(bdev, FMODE_EXCL);
2515 return ret;
2516}
2517
2518void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2519 struct btrfs_device *tgtdev)
2520{
2521 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2522 tgtdev->io_width = fs_info->dev_root->sectorsize;
2523 tgtdev->io_align = fs_info->dev_root->sectorsize;
2524 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2525 tgtdev->dev_root = fs_info->dev_root;
2526 tgtdev->in_fs_metadata = 1;
2527}
2528
d397712b
CM
2529static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2530 struct btrfs_device *device)
0b86a832
CM
2531{
2532 int ret;
2533 struct btrfs_path *path;
2534 struct btrfs_root *root;
2535 struct btrfs_dev_item *dev_item;
2536 struct extent_buffer *leaf;
2537 struct btrfs_key key;
2538
2539 root = device->dev_root->fs_info->chunk_root;
2540
2541 path = btrfs_alloc_path();
2542 if (!path)
2543 return -ENOMEM;
2544
2545 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2546 key.type = BTRFS_DEV_ITEM_KEY;
2547 key.offset = device->devid;
2548
2549 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2550 if (ret < 0)
2551 goto out;
2552
2553 if (ret > 0) {
2554 ret = -ENOENT;
2555 goto out;
2556 }
2557
2558 leaf = path->nodes[0];
2559 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2560
2561 btrfs_set_device_id(leaf, dev_item, device->devid);
2562 btrfs_set_device_type(leaf, dev_item, device->type);
2563 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2564 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2565 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2566 btrfs_set_device_total_bytes(leaf, dev_item,
2567 btrfs_device_get_disk_total_bytes(device));
2568 btrfs_set_device_bytes_used(leaf, dev_item,
2569 btrfs_device_get_bytes_used(device));
0b86a832
CM
2570 btrfs_mark_buffer_dirty(leaf);
2571
2572out:
2573 btrfs_free_path(path);
2574 return ret;
2575}
2576
2196d6e8 2577int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2578 struct btrfs_device *device, u64 new_size)
2579{
2580 struct btrfs_super_block *super_copy =
6c41761f 2581 device->dev_root->fs_info->super_copy;
935e5cc9 2582 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2583 u64 old_total;
2584 u64 diff;
8f18cf13 2585
2b82032c
YZ
2586 if (!device->writeable)
2587 return -EACCES;
2196d6e8
MX
2588
2589 lock_chunks(device->dev_root);
2590 old_total = btrfs_super_total_bytes(super_copy);
2591 diff = new_size - device->total_bytes;
2592
63a212ab 2593 if (new_size <= device->total_bytes ||
2196d6e8
MX
2594 device->is_tgtdev_for_dev_replace) {
2595 unlock_chunks(device->dev_root);
2b82032c 2596 return -EINVAL;
2196d6e8 2597 }
2b82032c 2598
935e5cc9 2599 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2600
8f18cf13 2601 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2602 device->fs_devices->total_rw_bytes += diff;
2603
7cc8e58d
MX
2604 btrfs_device_set_total_bytes(device, new_size);
2605 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2606 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2607 if (list_empty(&device->resized_list))
2608 list_add_tail(&device->resized_list,
2609 &fs_devices->resized_devices);
2196d6e8 2610 unlock_chunks(device->dev_root);
4184ea7f 2611
8f18cf13
CM
2612 return btrfs_update_device(trans, device);
2613}
2614
2615static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2616 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2617 u64 chunk_offset)
2618{
2619 int ret;
2620 struct btrfs_path *path;
2621 struct btrfs_key key;
2622
2623 root = root->fs_info->chunk_root;
2624 path = btrfs_alloc_path();
2625 if (!path)
2626 return -ENOMEM;
2627
2628 key.objectid = chunk_objectid;
2629 key.offset = chunk_offset;
2630 key.type = BTRFS_CHUNK_ITEM_KEY;
2631
2632 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2633 if (ret < 0)
2634 goto out;
2635 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2636 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2637 "Failed lookup while freeing chunk.");
2638 ret = -ENOENT;
2639 goto out;
2640 }
8f18cf13
CM
2641
2642 ret = btrfs_del_item(trans, root, path);
79787eaa 2643 if (ret < 0)
a4553fef 2644 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2645 "Failed to delete chunk item.");
2646out:
8f18cf13 2647 btrfs_free_path(path);
65a246c5 2648 return ret;
8f18cf13
CM
2649}
2650
b2950863 2651static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2652 chunk_offset)
2653{
6c41761f 2654 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2655 struct btrfs_disk_key *disk_key;
2656 struct btrfs_chunk *chunk;
2657 u8 *ptr;
2658 int ret = 0;
2659 u32 num_stripes;
2660 u32 array_size;
2661 u32 len = 0;
2662 u32 cur;
2663 struct btrfs_key key;
2664
2196d6e8 2665 lock_chunks(root);
8f18cf13
CM
2666 array_size = btrfs_super_sys_array_size(super_copy);
2667
2668 ptr = super_copy->sys_chunk_array;
2669 cur = 0;
2670
2671 while (cur < array_size) {
2672 disk_key = (struct btrfs_disk_key *)ptr;
2673 btrfs_disk_key_to_cpu(&key, disk_key);
2674
2675 len = sizeof(*disk_key);
2676
2677 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2678 chunk = (struct btrfs_chunk *)(ptr + len);
2679 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2680 len += btrfs_chunk_item_size(num_stripes);
2681 } else {
2682 ret = -EIO;
2683 break;
2684 }
2685 if (key.objectid == chunk_objectid &&
2686 key.offset == chunk_offset) {
2687 memmove(ptr, ptr + len, array_size - (cur + len));
2688 array_size -= len;
2689 btrfs_set_super_sys_array_size(super_copy, array_size);
2690 } else {
2691 ptr += len;
2692 cur += len;
2693 }
2694 }
2196d6e8 2695 unlock_chunks(root);
8f18cf13
CM
2696 return ret;
2697}
2698
47ab2a6c
JB
2699int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2701{
2702 struct extent_map_tree *em_tree;
8f18cf13 2703 struct extent_map *em;
47ab2a6c 2704 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2705 struct map_lookup *map;
2196d6e8 2706 u64 dev_extent_len = 0;
47ab2a6c 2707 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2708 int i, ret = 0;
8f18cf13 2709
47ab2a6c 2710 /* Just in case */
8f18cf13 2711 root = root->fs_info->chunk_root;
8f18cf13
CM
2712 em_tree = &root->fs_info->mapping_tree.map_tree;
2713
890871be 2714 read_lock(&em_tree->lock);
8f18cf13 2715 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2716 read_unlock(&em_tree->lock);
8f18cf13 2717
47ab2a6c
JB
2718 if (!em || em->start > chunk_offset ||
2719 em->start + em->len < chunk_offset) {
2720 /*
2721 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2722 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2723 * do anything we still error out.
2724 */
2725 ASSERT(0);
2726 if (em)
2727 free_extent_map(em);
2728 return -EINVAL;
2729 }
95617d69 2730 map = em->map_lookup;
39c2d7fa 2731 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2732 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2733 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2734
2735 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2736 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2737 ret = btrfs_free_dev_extent(trans, device,
2738 map->stripes[i].physical,
2739 &dev_extent_len);
47ab2a6c
JB
2740 if (ret) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto out;
2743 }
a061fc8d 2744
2196d6e8
MX
2745 if (device->bytes_used > 0) {
2746 lock_chunks(root);
2747 btrfs_device_set_bytes_used(device,
2748 device->bytes_used - dev_extent_len);
2749 spin_lock(&root->fs_info->free_chunk_lock);
2750 root->fs_info->free_chunk_space += dev_extent_len;
2751 spin_unlock(&root->fs_info->free_chunk_lock);
2752 btrfs_clear_space_info_full(root->fs_info);
2753 unlock_chunks(root);
2754 }
a061fc8d 2755
dfe25020
CM
2756 if (map->stripes[i].dev) {
2757 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2758 if (ret) {
2759 btrfs_abort_transaction(trans, root, ret);
2760 goto out;
2761 }
dfe25020 2762 }
8f18cf13 2763 }
a688a04a 2764 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2765 if (ret) {
2766 btrfs_abort_transaction(trans, root, ret);
2767 goto out;
2768 }
8f18cf13 2769
1abe9b8a 2770 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2771
8f18cf13
CM
2772 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2773 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2774 if (ret) {
2775 btrfs_abort_transaction(trans, root, ret);
2776 goto out;
2777 }
8f18cf13
CM
2778 }
2779
04216820 2780 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2781 if (ret) {
2782 btrfs_abort_transaction(trans, extent_root, ret);
2783 goto out;
2784 }
2b82032c 2785
47ab2a6c 2786out:
2b82032c
YZ
2787 /* once for us */
2788 free_extent_map(em);
47ab2a6c
JB
2789 return ret;
2790}
2b82032c 2791
dc2ee4e2 2792static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2793{
2794 struct btrfs_root *extent_root;
2795 struct btrfs_trans_handle *trans;
2796 int ret;
2b82032c 2797
47ab2a6c
JB
2798 root = root->fs_info->chunk_root;
2799 extent_root = root->fs_info->extent_root;
2800
67c5e7d4
FM
2801 /*
2802 * Prevent races with automatic removal of unused block groups.
2803 * After we relocate and before we remove the chunk with offset
2804 * chunk_offset, automatic removal of the block group can kick in,
2805 * resulting in a failure when calling btrfs_remove_chunk() below.
2806 *
2807 * Make sure to acquire this mutex before doing a tree search (dev
2808 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2809 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2810 * we release the path used to search the chunk/dev tree and before
2811 * the current task acquires this mutex and calls us.
2812 */
2813 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2814
47ab2a6c
JB
2815 ret = btrfs_can_relocate(extent_root, chunk_offset);
2816 if (ret)
2817 return -ENOSPC;
2818
2819 /* step one, relocate all the extents inside this chunk */
55e3a601 2820 btrfs_scrub_pause(root);
47ab2a6c 2821 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2822 btrfs_scrub_continue(root);
47ab2a6c
JB
2823 if (ret)
2824 return ret;
2825
7fd01182
FM
2826 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2827 chunk_offset);
47ab2a6c
JB
2828 if (IS_ERR(trans)) {
2829 ret = PTR_ERR(trans);
a4553fef 2830 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2831 return ret;
2832 }
2833
2834 /*
2835 * step two, delete the device extents and the
2836 * chunk tree entries
2837 */
2838 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2839 btrfs_end_transaction(trans, root);
47ab2a6c 2840 return ret;
2b82032c
YZ
2841}
2842
2843static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2844{
2845 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2846 struct btrfs_path *path;
2847 struct extent_buffer *leaf;
2848 struct btrfs_chunk *chunk;
2849 struct btrfs_key key;
2850 struct btrfs_key found_key;
2b82032c 2851 u64 chunk_type;
ba1bf481
JB
2852 bool retried = false;
2853 int failed = 0;
2b82032c
YZ
2854 int ret;
2855
2856 path = btrfs_alloc_path();
2857 if (!path)
2858 return -ENOMEM;
2859
ba1bf481 2860again:
2b82032c
YZ
2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 key.offset = (u64)-1;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 while (1) {
67c5e7d4 2866 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2867 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2868 if (ret < 0) {
2869 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2870 goto error;
67c5e7d4 2871 }
79787eaa 2872 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2873
2874 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2875 key.type);
67c5e7d4
FM
2876 if (ret)
2877 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2878 if (ret < 0)
2879 goto error;
2880 if (ret > 0)
2881 break;
1a40e23b 2882
2b82032c
YZ
2883 leaf = path->nodes[0];
2884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2885
2b82032c
YZ
2886 chunk = btrfs_item_ptr(leaf, path->slots[0],
2887 struct btrfs_chunk);
2888 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2889 btrfs_release_path(path);
8f18cf13 2890
2b82032c 2891 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2892 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2893 found_key.offset);
ba1bf481
JB
2894 if (ret == -ENOSPC)
2895 failed++;
14586651
HS
2896 else
2897 BUG_ON(ret);
2b82032c 2898 }
67c5e7d4 2899 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2900
2b82032c
YZ
2901 if (found_key.offset == 0)
2902 break;
2903 key.offset = found_key.offset - 1;
2904 }
2905 ret = 0;
ba1bf481
JB
2906 if (failed && !retried) {
2907 failed = 0;
2908 retried = true;
2909 goto again;
fae7f21c 2910 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2911 ret = -ENOSPC;
2912 }
2b82032c
YZ
2913error:
2914 btrfs_free_path(path);
2915 return ret;
8f18cf13
CM
2916}
2917
0940ebf6
ID
2918static int insert_balance_item(struct btrfs_root *root,
2919 struct btrfs_balance_control *bctl)
2920{
2921 struct btrfs_trans_handle *trans;
2922 struct btrfs_balance_item *item;
2923 struct btrfs_disk_balance_args disk_bargs;
2924 struct btrfs_path *path;
2925 struct extent_buffer *leaf;
2926 struct btrfs_key key;
2927 int ret, err;
2928
2929 path = btrfs_alloc_path();
2930 if (!path)
2931 return -ENOMEM;
2932
2933 trans = btrfs_start_transaction(root, 0);
2934 if (IS_ERR(trans)) {
2935 btrfs_free_path(path);
2936 return PTR_ERR(trans);
2937 }
2938
2939 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2940 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2941 key.offset = 0;
2942
2943 ret = btrfs_insert_empty_item(trans, root, path, &key,
2944 sizeof(*item));
2945 if (ret)
2946 goto out;
2947
2948 leaf = path->nodes[0];
2949 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2950
2951 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2952
2953 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2954 btrfs_set_balance_data(leaf, item, &disk_bargs);
2955 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2956 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2957 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2958 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2959
2960 btrfs_set_balance_flags(leaf, item, bctl->flags);
2961
2962 btrfs_mark_buffer_dirty(leaf);
2963out:
2964 btrfs_free_path(path);
2965 err = btrfs_commit_transaction(trans, root);
2966 if (err && !ret)
2967 ret = err;
2968 return ret;
2969}
2970
2971static int del_balance_item(struct btrfs_root *root)
2972{
2973 struct btrfs_trans_handle *trans;
2974 struct btrfs_path *path;
2975 struct btrfs_key key;
2976 int ret, err;
2977
2978 path = btrfs_alloc_path();
2979 if (!path)
2980 return -ENOMEM;
2981
2982 trans = btrfs_start_transaction(root, 0);
2983 if (IS_ERR(trans)) {
2984 btrfs_free_path(path);
2985 return PTR_ERR(trans);
2986 }
2987
2988 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2989 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2990 key.offset = 0;
2991
2992 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2993 if (ret < 0)
2994 goto out;
2995 if (ret > 0) {
2996 ret = -ENOENT;
2997 goto out;
2998 }
2999
3000 ret = btrfs_del_item(trans, root, path);
3001out:
3002 btrfs_free_path(path);
3003 err = btrfs_commit_transaction(trans, root);
3004 if (err && !ret)
3005 ret = err;
3006 return ret;
3007}
3008
59641015
ID
3009/*
3010 * This is a heuristic used to reduce the number of chunks balanced on
3011 * resume after balance was interrupted.
3012 */
3013static void update_balance_args(struct btrfs_balance_control *bctl)
3014{
3015 /*
3016 * Turn on soft mode for chunk types that were being converted.
3017 */
3018 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3019 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3020 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3021 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3022 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3023 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3024
3025 /*
3026 * Turn on usage filter if is not already used. The idea is
3027 * that chunks that we have already balanced should be
3028 * reasonably full. Don't do it for chunks that are being
3029 * converted - that will keep us from relocating unconverted
3030 * (albeit full) chunks.
3031 */
3032 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3033 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3034 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3035 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3036 bctl->data.usage = 90;
3037 }
3038 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3039 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3040 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3041 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3042 bctl->sys.usage = 90;
3043 }
3044 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3045 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3046 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3047 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3048 bctl->meta.usage = 90;
3049 }
3050}
3051
c9e9f97b
ID
3052/*
3053 * Should be called with both balance and volume mutexes held to
3054 * serialize other volume operations (add_dev/rm_dev/resize) with
3055 * restriper. Same goes for unset_balance_control.
3056 */
3057static void set_balance_control(struct btrfs_balance_control *bctl)
3058{
3059 struct btrfs_fs_info *fs_info = bctl->fs_info;
3060
3061 BUG_ON(fs_info->balance_ctl);
3062
3063 spin_lock(&fs_info->balance_lock);
3064 fs_info->balance_ctl = bctl;
3065 spin_unlock(&fs_info->balance_lock);
3066}
3067
3068static void unset_balance_control(struct btrfs_fs_info *fs_info)
3069{
3070 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3071
3072 BUG_ON(!fs_info->balance_ctl);
3073
3074 spin_lock(&fs_info->balance_lock);
3075 fs_info->balance_ctl = NULL;
3076 spin_unlock(&fs_info->balance_lock);
3077
3078 kfree(bctl);
3079}
3080
ed25e9b2
ID
3081/*
3082 * Balance filters. Return 1 if chunk should be filtered out
3083 * (should not be balanced).
3084 */
899c81ea 3085static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3086 struct btrfs_balance_args *bargs)
3087{
899c81ea
ID
3088 chunk_type = chunk_to_extended(chunk_type) &
3089 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3090
899c81ea 3091 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3092 return 0;
3093
3094 return 1;
3095}
3096
dba72cb3 3097static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3098 struct btrfs_balance_args *bargs)
bc309467
DS
3099{
3100 struct btrfs_block_group_cache *cache;
3101 u64 chunk_used;
3102 u64 user_thresh_min;
3103 u64 user_thresh_max;
3104 int ret = 1;
3105
3106 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3107 chunk_used = btrfs_block_group_used(&cache->item);
3108
3109 if (bargs->usage_min == 0)
3110 user_thresh_min = 0;
3111 else
3112 user_thresh_min = div_factor_fine(cache->key.offset,
3113 bargs->usage_min);
3114
3115 if (bargs->usage_max == 0)
3116 user_thresh_max = 1;
3117 else if (bargs->usage_max > 100)
3118 user_thresh_max = cache->key.offset;
3119 else
3120 user_thresh_max = div_factor_fine(cache->key.offset,
3121 bargs->usage_max);
3122
3123 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3124 ret = 0;
3125
3126 btrfs_put_block_group(cache);
3127 return ret;
3128}
3129
dba72cb3 3130static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3131 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3132{
3133 struct btrfs_block_group_cache *cache;
3134 u64 chunk_used, user_thresh;
3135 int ret = 1;
3136
3137 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3138 chunk_used = btrfs_block_group_used(&cache->item);
3139
bc309467 3140 if (bargs->usage_min == 0)
3e39cea6 3141 user_thresh = 1;
a105bb88
ID
3142 else if (bargs->usage > 100)
3143 user_thresh = cache->key.offset;
3144 else
3145 user_thresh = div_factor_fine(cache->key.offset,
3146 bargs->usage);
3147
5ce5b3c0
ID
3148 if (chunk_used < user_thresh)
3149 ret = 0;
3150
3151 btrfs_put_block_group(cache);
3152 return ret;
3153}
3154
409d404b
ID
3155static int chunk_devid_filter(struct extent_buffer *leaf,
3156 struct btrfs_chunk *chunk,
3157 struct btrfs_balance_args *bargs)
3158{
3159 struct btrfs_stripe *stripe;
3160 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3161 int i;
3162
3163 for (i = 0; i < num_stripes; i++) {
3164 stripe = btrfs_stripe_nr(chunk, i);
3165 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3166 return 0;
3167 }
3168
3169 return 1;
3170}
3171
94e60d5a
ID
3172/* [pstart, pend) */
3173static int chunk_drange_filter(struct extent_buffer *leaf,
3174 struct btrfs_chunk *chunk,
3175 u64 chunk_offset,
3176 struct btrfs_balance_args *bargs)
3177{
3178 struct btrfs_stripe *stripe;
3179 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3180 u64 stripe_offset;
3181 u64 stripe_length;
3182 int factor;
3183 int i;
3184
3185 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3186 return 0;
3187
3188 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3189 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3190 factor = num_stripes / 2;
3191 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3192 factor = num_stripes - 1;
3193 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3194 factor = num_stripes - 2;
3195 } else {
3196 factor = num_stripes;
3197 }
94e60d5a
ID
3198
3199 for (i = 0; i < num_stripes; i++) {
3200 stripe = btrfs_stripe_nr(chunk, i);
3201 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3202 continue;
3203
3204 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3205 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3206 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3207
3208 if (stripe_offset < bargs->pend &&
3209 stripe_offset + stripe_length > bargs->pstart)
3210 return 0;
3211 }
3212
3213 return 1;
3214}
3215
ea67176a
ID
3216/* [vstart, vend) */
3217static int chunk_vrange_filter(struct extent_buffer *leaf,
3218 struct btrfs_chunk *chunk,
3219 u64 chunk_offset,
3220 struct btrfs_balance_args *bargs)
3221{
3222 if (chunk_offset < bargs->vend &&
3223 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3224 /* at least part of the chunk is inside this vrange */
3225 return 0;
3226
3227 return 1;
3228}
3229
dee32d0a
GAP
3230static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3231 struct btrfs_chunk *chunk,
3232 struct btrfs_balance_args *bargs)
3233{
3234 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3235
3236 if (bargs->stripes_min <= num_stripes
3237 && num_stripes <= bargs->stripes_max)
3238 return 0;
3239
3240 return 1;
3241}
3242
899c81ea 3243static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3244 struct btrfs_balance_args *bargs)
3245{
3246 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3247 return 0;
3248
899c81ea
ID
3249 chunk_type = chunk_to_extended(chunk_type) &
3250 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3251
899c81ea 3252 if (bargs->target == chunk_type)
cfa4c961
ID
3253 return 1;
3254
3255 return 0;
3256}
3257
f43ffb60
ID
3258static int should_balance_chunk(struct btrfs_root *root,
3259 struct extent_buffer *leaf,
3260 struct btrfs_chunk *chunk, u64 chunk_offset)
3261{
3262 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3263 struct btrfs_balance_args *bargs = NULL;
3264 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3265
3266 /* type filter */
3267 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3268 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3269 return 0;
3270 }
3271
3272 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3273 bargs = &bctl->data;
3274 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3275 bargs = &bctl->sys;
3276 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3277 bargs = &bctl->meta;
3278
ed25e9b2
ID
3279 /* profiles filter */
3280 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3281 chunk_profiles_filter(chunk_type, bargs)) {
3282 return 0;
5ce5b3c0
ID
3283 }
3284
3285 /* usage filter */
3286 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3287 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3288 return 0;
bc309467
DS
3289 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3290 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3291 return 0;
409d404b
ID
3292 }
3293
3294 /* devid filter */
3295 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3296 chunk_devid_filter(leaf, chunk, bargs)) {
3297 return 0;
94e60d5a
ID
3298 }
3299
3300 /* drange filter, makes sense only with devid filter */
3301 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3302 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3303 return 0;
ea67176a
ID
3304 }
3305
3306 /* vrange filter */
3307 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3308 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3309 return 0;
ed25e9b2
ID
3310 }
3311
dee32d0a
GAP
3312 /* stripes filter */
3313 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3314 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3315 return 0;
3316 }
3317
cfa4c961
ID
3318 /* soft profile changing mode */
3319 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3320 chunk_soft_convert_filter(chunk_type, bargs)) {
3321 return 0;
3322 }
3323
7d824b6f
DS
3324 /*
3325 * limited by count, must be the last filter
3326 */
3327 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3328 if (bargs->limit == 0)
3329 return 0;
3330 else
3331 bargs->limit--;
12907fc7
DS
3332 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3333 /*
3334 * Same logic as the 'limit' filter; the minimum cannot be
3335 * determined here because we do not have the global informatoin
3336 * about the count of all chunks that satisfy the filters.
3337 */
3338 if (bargs->limit_max == 0)
3339 return 0;
3340 else
3341 bargs->limit_max--;
7d824b6f
DS
3342 }
3343
f43ffb60
ID
3344 return 1;
3345}
3346
c9e9f97b 3347static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3348{
19a39dce 3349 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3350 struct btrfs_root *chunk_root = fs_info->chunk_root;
3351 struct btrfs_root *dev_root = fs_info->dev_root;
3352 struct list_head *devices;
ec44a35c
CM
3353 struct btrfs_device *device;
3354 u64 old_size;
3355 u64 size_to_free;
12907fc7 3356 u64 chunk_type;
f43ffb60 3357 struct btrfs_chunk *chunk;
ec44a35c
CM
3358 struct btrfs_path *path;
3359 struct btrfs_key key;
ec44a35c 3360 struct btrfs_key found_key;
c9e9f97b 3361 struct btrfs_trans_handle *trans;
f43ffb60
ID
3362 struct extent_buffer *leaf;
3363 int slot;
c9e9f97b
ID
3364 int ret;
3365 int enospc_errors = 0;
19a39dce 3366 bool counting = true;
12907fc7 3367 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3368 u64 limit_data = bctl->data.limit;
3369 u64 limit_meta = bctl->meta.limit;
3370 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3371 u32 count_data = 0;
3372 u32 count_meta = 0;
3373 u32 count_sys = 0;
2c9fe835 3374 int chunk_reserved = 0;
ec44a35c 3375
ec44a35c 3376 /* step one make some room on all the devices */
c9e9f97b 3377 devices = &fs_info->fs_devices->devices;
c6e30871 3378 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3379 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3380 size_to_free = div_factor(old_size, 1);
ee22184b 3381 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3382 if (!device->writeable ||
7cc8e58d
MX
3383 btrfs_device_get_total_bytes(device) -
3384 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3385 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3386 continue;
3387
3388 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3389 if (ret == -ENOSPC)
3390 break;
ec44a35c
CM
3391 BUG_ON(ret);
3392
a22285a6 3393 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3394 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3395
3396 ret = btrfs_grow_device(trans, device, old_size);
3397 BUG_ON(ret);
3398
3399 btrfs_end_transaction(trans, dev_root);
3400 }
3401
3402 /* step two, relocate all the chunks */
3403 path = btrfs_alloc_path();
17e9f796
MF
3404 if (!path) {
3405 ret = -ENOMEM;
3406 goto error;
3407 }
19a39dce
ID
3408
3409 /* zero out stat counters */
3410 spin_lock(&fs_info->balance_lock);
3411 memset(&bctl->stat, 0, sizeof(bctl->stat));
3412 spin_unlock(&fs_info->balance_lock);
3413again:
7d824b6f 3414 if (!counting) {
12907fc7
DS
3415 /*
3416 * The single value limit and min/max limits use the same bytes
3417 * in the
3418 */
7d824b6f
DS
3419 bctl->data.limit = limit_data;
3420 bctl->meta.limit = limit_meta;
3421 bctl->sys.limit = limit_sys;
3422 }
ec44a35c
CM
3423 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3424 key.offset = (u64)-1;
3425 key.type = BTRFS_CHUNK_ITEM_KEY;
3426
d397712b 3427 while (1) {
19a39dce 3428 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3429 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3430 ret = -ECANCELED;
3431 goto error;
3432 }
3433
67c5e7d4 3434 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3435 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3436 if (ret < 0) {
3437 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3438 goto error;
67c5e7d4 3439 }
ec44a35c
CM
3440
3441 /*
3442 * this shouldn't happen, it means the last relocate
3443 * failed
3444 */
3445 if (ret == 0)
c9e9f97b 3446 BUG(); /* FIXME break ? */
ec44a35c
CM
3447
3448 ret = btrfs_previous_item(chunk_root, path, 0,
3449 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3450 if (ret) {
67c5e7d4 3451 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3452 ret = 0;
ec44a35c 3453 break;
c9e9f97b 3454 }
7d9eb12c 3455
f43ffb60
ID
3456 leaf = path->nodes[0];
3457 slot = path->slots[0];
3458 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3459
67c5e7d4
FM
3460 if (found_key.objectid != key.objectid) {
3461 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3462 break;
67c5e7d4 3463 }
7d9eb12c 3464
f43ffb60 3465 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3466 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3467
19a39dce
ID
3468 if (!counting) {
3469 spin_lock(&fs_info->balance_lock);
3470 bctl->stat.considered++;
3471 spin_unlock(&fs_info->balance_lock);
3472 }
3473
f43ffb60
ID
3474 ret = should_balance_chunk(chunk_root, leaf, chunk,
3475 found_key.offset);
2c9fe835 3476
b3b4aa74 3477 btrfs_release_path(path);
67c5e7d4
FM
3478 if (!ret) {
3479 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3480 goto loop;
67c5e7d4 3481 }
f43ffb60 3482
19a39dce 3483 if (counting) {
67c5e7d4 3484 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3485 spin_lock(&fs_info->balance_lock);
3486 bctl->stat.expected++;
3487 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3488
3489 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3490 count_data++;
3491 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3492 count_sys++;
3493 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3494 count_meta++;
3495
3496 goto loop;
3497 }
3498
3499 /*
3500 * Apply limit_min filter, no need to check if the LIMITS
3501 * filter is used, limit_min is 0 by default
3502 */
3503 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3504 count_data < bctl->data.limit_min)
3505 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3506 count_meta < bctl->meta.limit_min)
3507 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3508 count_sys < bctl->sys.limit_min)) {
3509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3510 goto loop;
3511 }
3512
2c9fe835
ZL
3513 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3514 trans = btrfs_start_transaction(chunk_root, 0);
3515 if (IS_ERR(trans)) {
3516 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3517 ret = PTR_ERR(trans);
3518 goto error;
3519 }
3520
3521 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3522 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3523 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3524 if (ret < 0) {
3525 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3526 goto error;
3527 }
2c9fe835
ZL
3528 chunk_reserved = 1;
3529 }
3530
ec44a35c 3531 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3532 found_key.offset);
67c5e7d4 3533 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3534 if (ret && ret != -ENOSPC)
3535 goto error;
19a39dce 3536 if (ret == -ENOSPC) {
c9e9f97b 3537 enospc_errors++;
19a39dce
ID
3538 } else {
3539 spin_lock(&fs_info->balance_lock);
3540 bctl->stat.completed++;
3541 spin_unlock(&fs_info->balance_lock);
3542 }
f43ffb60 3543loop:
795a3321
ID
3544 if (found_key.offset == 0)
3545 break;
ba1bf481 3546 key.offset = found_key.offset - 1;
ec44a35c 3547 }
c9e9f97b 3548
19a39dce
ID
3549 if (counting) {
3550 btrfs_release_path(path);
3551 counting = false;
3552 goto again;
3553 }
ec44a35c
CM
3554error:
3555 btrfs_free_path(path);
c9e9f97b 3556 if (enospc_errors) {
efe120a0 3557 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3558 enospc_errors);
3559 if (!ret)
3560 ret = -ENOSPC;
3561 }
3562
ec44a35c
CM
3563 return ret;
3564}
3565
0c460c0d
ID
3566/**
3567 * alloc_profile_is_valid - see if a given profile is valid and reduced
3568 * @flags: profile to validate
3569 * @extended: if true @flags is treated as an extended profile
3570 */
3571static int alloc_profile_is_valid(u64 flags, int extended)
3572{
3573 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3574 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3575
3576 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3577
3578 /* 1) check that all other bits are zeroed */
3579 if (flags & ~mask)
3580 return 0;
3581
3582 /* 2) see if profile is reduced */
3583 if (flags == 0)
3584 return !extended; /* "0" is valid for usual profiles */
3585
3586 /* true if exactly one bit set */
3587 return (flags & (flags - 1)) == 0;
3588}
3589
837d5b6e
ID
3590static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3591{
a7e99c69
ID
3592 /* cancel requested || normal exit path */
3593 return atomic_read(&fs_info->balance_cancel_req) ||
3594 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3595 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3596}
3597
c9e9f97b
ID
3598static void __cancel_balance(struct btrfs_fs_info *fs_info)
3599{
0940ebf6
ID
3600 int ret;
3601
c9e9f97b 3602 unset_balance_control(fs_info);
0940ebf6 3603 ret = del_balance_item(fs_info->tree_root);
0f788c58 3604 if (ret)
a4553fef 3605 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3606
3607 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3608}
3609
bdcd3c97
AM
3610/* Non-zero return value signifies invalidity */
3611static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3612 u64 allowed)
3613{
3614 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3615 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3616 (bctl_arg->target & ~allowed)));
3617}
3618
c9e9f97b
ID
3619/*
3620 * Should be called with both balance and volume mutexes held
3621 */
3622int btrfs_balance(struct btrfs_balance_control *bctl,
3623 struct btrfs_ioctl_balance_args *bargs)
3624{
3625 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3626 u64 allowed;
e4837f8f 3627 int mixed = 0;
c9e9f97b 3628 int ret;
8dabb742 3629 u64 num_devices;
de98ced9 3630 unsigned seq;
c9e9f97b 3631
837d5b6e 3632 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3633 atomic_read(&fs_info->balance_pause_req) ||
3634 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3635 ret = -EINVAL;
3636 goto out;
3637 }
3638
e4837f8f
ID
3639 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3640 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3641 mixed = 1;
3642
f43ffb60
ID
3643 /*
3644 * In case of mixed groups both data and meta should be picked,
3645 * and identical options should be given for both of them.
3646 */
e4837f8f
ID
3647 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3648 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3649 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3650 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3651 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3652 btrfs_err(fs_info, "with mixed groups data and "
3653 "metadata balance options must be the same");
f43ffb60
ID
3654 ret = -EINVAL;
3655 goto out;
3656 }
3657 }
3658
8dabb742 3659 num_devices = fs_info->fs_devices->num_devices;
73beece9 3660 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3661 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3662 BUG_ON(num_devices < 1);
3663 num_devices--;
3664 }
73beece9 3665 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
e4d8ec0f 3666 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3667 if (num_devices == 1)
e4d8ec0f 3668 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3669 else if (num_devices > 1)
e4d8ec0f 3670 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3671 if (num_devices > 2)
3672 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3673 if (num_devices > 3)
3674 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3675 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3676 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3677 btrfs_err(fs_info, "unable to start balance with target "
3678 "data profile %llu",
c1c9ff7c 3679 bctl->data.target);
e4d8ec0f
ID
3680 ret = -EINVAL;
3681 goto out;
3682 }
bdcd3c97 3683 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3684 btrfs_err(fs_info,
3685 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3686 bctl->meta.target);
e4d8ec0f
ID
3687 ret = -EINVAL;
3688 goto out;
3689 }
bdcd3c97 3690 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3691 btrfs_err(fs_info,
3692 "unable to start balance with target system profile %llu",
c1c9ff7c 3693 bctl->sys.target);
e4d8ec0f
ID
3694 ret = -EINVAL;
3695 goto out;
3696 }
3697
e4d8ec0f
ID
3698 /* allow to reduce meta or sys integrity only if force set */
3699 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3700 BTRFS_BLOCK_GROUP_RAID10 |
3701 BTRFS_BLOCK_GROUP_RAID5 |
3702 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3703 do {
3704 seq = read_seqbegin(&fs_info->profiles_lock);
3705
3706 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3707 (fs_info->avail_system_alloc_bits & allowed) &&
3708 !(bctl->sys.target & allowed)) ||
3709 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3710 (fs_info->avail_metadata_alloc_bits & allowed) &&
3711 !(bctl->meta.target & allowed))) {
3712 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3713 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3714 } else {
efe120a0
FH
3715 btrfs_err(fs_info, "balance will reduce metadata "
3716 "integrity, use force if you want this");
de98ced9
MX
3717 ret = -EINVAL;
3718 goto out;
3719 }
e4d8ec0f 3720 }
de98ced9 3721 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3722
ee592d07
ST
3723 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3724 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3725 btrfs_warn(fs_info,
fedc0045 3726 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3727 bctl->meta.target, bctl->data.target);
3728 }
3729
5af3e8cc 3730 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3731 fs_info->num_tolerated_disk_barrier_failures = min(
3732 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3733 btrfs_get_num_tolerated_disk_barrier_failures(
3734 bctl->sys.target));
5af3e8cc
SB
3735 }
3736
0940ebf6 3737 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3738 if (ret && ret != -EEXIST)
0940ebf6
ID
3739 goto out;
3740
59641015
ID
3741 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3742 BUG_ON(ret == -EEXIST);
3743 set_balance_control(bctl);
3744 } else {
3745 BUG_ON(ret != -EEXIST);
3746 spin_lock(&fs_info->balance_lock);
3747 update_balance_args(bctl);
3748 spin_unlock(&fs_info->balance_lock);
3749 }
c9e9f97b 3750
837d5b6e 3751 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3752 mutex_unlock(&fs_info->balance_mutex);
3753
3754 ret = __btrfs_balance(fs_info);
3755
3756 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3757 atomic_dec(&fs_info->balance_running);
c9e9f97b 3758
bf023ecf
ID
3759 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3760 fs_info->num_tolerated_disk_barrier_failures =
3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3762 }
3763
c9e9f97b
ID
3764 if (bargs) {
3765 memset(bargs, 0, sizeof(*bargs));
19a39dce 3766 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3767 }
3768
3a01aa7a
ID
3769 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3770 balance_need_close(fs_info)) {
3771 __cancel_balance(fs_info);
3772 }
3773
837d5b6e 3774 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3775
3776 return ret;
3777out:
59641015
ID
3778 if (bctl->flags & BTRFS_BALANCE_RESUME)
3779 __cancel_balance(fs_info);
ed0fb78f 3780 else {
59641015 3781 kfree(bctl);
ed0fb78f
ID
3782 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3783 }
59641015
ID
3784 return ret;
3785}
3786
3787static int balance_kthread(void *data)
3788{
2b6ba629 3789 struct btrfs_fs_info *fs_info = data;
9555c6c1 3790 int ret = 0;
59641015
ID
3791
3792 mutex_lock(&fs_info->volume_mutex);
3793 mutex_lock(&fs_info->balance_mutex);
3794
2b6ba629 3795 if (fs_info->balance_ctl) {
efe120a0 3796 btrfs_info(fs_info, "continuing balance");
2b6ba629 3797 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3798 }
59641015
ID
3799
3800 mutex_unlock(&fs_info->balance_mutex);
3801 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3802
59641015
ID
3803 return ret;
3804}
3805
2b6ba629
ID
3806int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3807{
3808 struct task_struct *tsk;
3809
3810 spin_lock(&fs_info->balance_lock);
3811 if (!fs_info->balance_ctl) {
3812 spin_unlock(&fs_info->balance_lock);
3813 return 0;
3814 }
3815 spin_unlock(&fs_info->balance_lock);
3816
3817 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3818 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3819 return 0;
3820 }
3821
3822 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3823 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3824}
3825
68310a5e 3826int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3827{
59641015
ID
3828 struct btrfs_balance_control *bctl;
3829 struct btrfs_balance_item *item;
3830 struct btrfs_disk_balance_args disk_bargs;
3831 struct btrfs_path *path;
3832 struct extent_buffer *leaf;
3833 struct btrfs_key key;
3834 int ret;
3835
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3839
59641015 3840 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3841 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3842 key.offset = 0;
3843
68310a5e 3844 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3845 if (ret < 0)
68310a5e 3846 goto out;
59641015
ID
3847 if (ret > 0) { /* ret = -ENOENT; */
3848 ret = 0;
68310a5e
ID
3849 goto out;
3850 }
3851
3852 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3853 if (!bctl) {
3854 ret = -ENOMEM;
3855 goto out;
59641015
ID
3856 }
3857
3858 leaf = path->nodes[0];
3859 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3860
68310a5e
ID
3861 bctl->fs_info = fs_info;
3862 bctl->flags = btrfs_balance_flags(leaf, item);
3863 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3864
3865 btrfs_balance_data(leaf, item, &disk_bargs);
3866 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3867 btrfs_balance_meta(leaf, item, &disk_bargs);
3868 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3869 btrfs_balance_sys(leaf, item, &disk_bargs);
3870 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3871
ed0fb78f
ID
3872 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3873
68310a5e
ID
3874 mutex_lock(&fs_info->volume_mutex);
3875 mutex_lock(&fs_info->balance_mutex);
59641015 3876
68310a5e
ID
3877 set_balance_control(bctl);
3878
3879 mutex_unlock(&fs_info->balance_mutex);
3880 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3881out:
3882 btrfs_free_path(path);
ec44a35c
CM
3883 return ret;
3884}
3885
837d5b6e
ID
3886int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3887{
3888 int ret = 0;
3889
3890 mutex_lock(&fs_info->balance_mutex);
3891 if (!fs_info->balance_ctl) {
3892 mutex_unlock(&fs_info->balance_mutex);
3893 return -ENOTCONN;
3894 }
3895
3896 if (atomic_read(&fs_info->balance_running)) {
3897 atomic_inc(&fs_info->balance_pause_req);
3898 mutex_unlock(&fs_info->balance_mutex);
3899
3900 wait_event(fs_info->balance_wait_q,
3901 atomic_read(&fs_info->balance_running) == 0);
3902
3903 mutex_lock(&fs_info->balance_mutex);
3904 /* we are good with balance_ctl ripped off from under us */
3905 BUG_ON(atomic_read(&fs_info->balance_running));
3906 atomic_dec(&fs_info->balance_pause_req);
3907 } else {
3908 ret = -ENOTCONN;
3909 }
3910
3911 mutex_unlock(&fs_info->balance_mutex);
3912 return ret;
3913}
3914
a7e99c69
ID
3915int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3916{
e649e587
ID
3917 if (fs_info->sb->s_flags & MS_RDONLY)
3918 return -EROFS;
3919
a7e99c69
ID
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 atomic_inc(&fs_info->balance_cancel_req);
3927 /*
3928 * if we are running just wait and return, balance item is
3929 * deleted in btrfs_balance in this case
3930 */
3931 if (atomic_read(&fs_info->balance_running)) {
3932 mutex_unlock(&fs_info->balance_mutex);
3933 wait_event(fs_info->balance_wait_q,
3934 atomic_read(&fs_info->balance_running) == 0);
3935 mutex_lock(&fs_info->balance_mutex);
3936 } else {
3937 /* __cancel_balance needs volume_mutex */
3938 mutex_unlock(&fs_info->balance_mutex);
3939 mutex_lock(&fs_info->volume_mutex);
3940 mutex_lock(&fs_info->balance_mutex);
3941
3942 if (fs_info->balance_ctl)
3943 __cancel_balance(fs_info);
3944
3945 mutex_unlock(&fs_info->volume_mutex);
3946 }
3947
3948 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3949 atomic_dec(&fs_info->balance_cancel_req);
3950 mutex_unlock(&fs_info->balance_mutex);
3951 return 0;
3952}
3953
803b2f54
SB
3954static int btrfs_uuid_scan_kthread(void *data)
3955{
3956 struct btrfs_fs_info *fs_info = data;
3957 struct btrfs_root *root = fs_info->tree_root;
3958 struct btrfs_key key;
3959 struct btrfs_key max_key;
3960 struct btrfs_path *path = NULL;
3961 int ret = 0;
3962 struct extent_buffer *eb;
3963 int slot;
3964 struct btrfs_root_item root_item;
3965 u32 item_size;
f45388f3 3966 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3967
3968 path = btrfs_alloc_path();
3969 if (!path) {
3970 ret = -ENOMEM;
3971 goto out;
3972 }
3973
3974 key.objectid = 0;
3975 key.type = BTRFS_ROOT_ITEM_KEY;
3976 key.offset = 0;
3977
3978 max_key.objectid = (u64)-1;
3979 max_key.type = BTRFS_ROOT_ITEM_KEY;
3980 max_key.offset = (u64)-1;
3981
803b2f54 3982 while (1) {
6174d3cb 3983 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3984 if (ret) {
3985 if (ret > 0)
3986 ret = 0;
3987 break;
3988 }
3989
3990 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3991 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3992 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3993 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3994 goto skip;
3995
3996 eb = path->nodes[0];
3997 slot = path->slots[0];
3998 item_size = btrfs_item_size_nr(eb, slot);
3999 if (item_size < sizeof(root_item))
4000 goto skip;
4001
803b2f54
SB
4002 read_extent_buffer(eb, &root_item,
4003 btrfs_item_ptr_offset(eb, slot),
4004 (int)sizeof(root_item));
4005 if (btrfs_root_refs(&root_item) == 0)
4006 goto skip;
f45388f3
FDBM
4007
4008 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4009 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4010 if (trans)
4011 goto update_tree;
4012
4013 btrfs_release_path(path);
803b2f54
SB
4014 /*
4015 * 1 - subvol uuid item
4016 * 1 - received_subvol uuid item
4017 */
4018 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4019 if (IS_ERR(trans)) {
4020 ret = PTR_ERR(trans);
4021 break;
4022 }
f45388f3
FDBM
4023 continue;
4024 } else {
4025 goto skip;
4026 }
4027update_tree:
4028 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4029 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4030 root_item.uuid,
4031 BTRFS_UUID_KEY_SUBVOL,
4032 key.objectid);
4033 if (ret < 0) {
efe120a0 4034 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4035 ret);
803b2f54
SB
4036 break;
4037 }
4038 }
4039
4040 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4041 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4042 root_item.received_uuid,
4043 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4044 key.objectid);
4045 if (ret < 0) {
efe120a0 4046 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4047 ret);
803b2f54
SB
4048 break;
4049 }
4050 }
4051
f45388f3 4052skip:
803b2f54
SB
4053 if (trans) {
4054 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4055 trans = NULL;
803b2f54
SB
4056 if (ret)
4057 break;
4058 }
4059
803b2f54
SB
4060 btrfs_release_path(path);
4061 if (key.offset < (u64)-1) {
4062 key.offset++;
4063 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4064 key.offset = 0;
4065 key.type = BTRFS_ROOT_ITEM_KEY;
4066 } else if (key.objectid < (u64)-1) {
4067 key.offset = 0;
4068 key.type = BTRFS_ROOT_ITEM_KEY;
4069 key.objectid++;
4070 } else {
4071 break;
4072 }
4073 cond_resched();
4074 }
4075
4076out:
4077 btrfs_free_path(path);
f45388f3
FDBM
4078 if (trans && !IS_ERR(trans))
4079 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4080 if (ret)
efe120a0 4081 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4082 else
4083 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4084 up(&fs_info->uuid_tree_rescan_sem);
4085 return 0;
4086}
4087
70f80175
SB
4088/*
4089 * Callback for btrfs_uuid_tree_iterate().
4090 * returns:
4091 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4092 * < 0 if an error occurred.
70f80175
SB
4093 * > 0 if the check failed, which means the caller shall remove the entry.
4094 */
4095static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4096 u8 *uuid, u8 type, u64 subid)
4097{
4098 struct btrfs_key key;
4099 int ret = 0;
4100 struct btrfs_root *subvol_root;
4101
4102 if (type != BTRFS_UUID_KEY_SUBVOL &&
4103 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4104 goto out;
4105
4106 key.objectid = subid;
4107 key.type = BTRFS_ROOT_ITEM_KEY;
4108 key.offset = (u64)-1;
4109 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4110 if (IS_ERR(subvol_root)) {
4111 ret = PTR_ERR(subvol_root);
4112 if (ret == -ENOENT)
4113 ret = 1;
4114 goto out;
4115 }
4116
4117 switch (type) {
4118 case BTRFS_UUID_KEY_SUBVOL:
4119 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4120 ret = 1;
4121 break;
4122 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4123 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4124 BTRFS_UUID_SIZE))
4125 ret = 1;
4126 break;
4127 }
4128
4129out:
4130 return ret;
4131}
4132
4133static int btrfs_uuid_rescan_kthread(void *data)
4134{
4135 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4136 int ret;
4137
4138 /*
4139 * 1st step is to iterate through the existing UUID tree and
4140 * to delete all entries that contain outdated data.
4141 * 2nd step is to add all missing entries to the UUID tree.
4142 */
4143 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4144 if (ret < 0) {
efe120a0 4145 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4146 up(&fs_info->uuid_tree_rescan_sem);
4147 return ret;
4148 }
4149 return btrfs_uuid_scan_kthread(data);
4150}
4151
f7a81ea4
SB
4152int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4153{
4154 struct btrfs_trans_handle *trans;
4155 struct btrfs_root *tree_root = fs_info->tree_root;
4156 struct btrfs_root *uuid_root;
803b2f54
SB
4157 struct task_struct *task;
4158 int ret;
f7a81ea4
SB
4159
4160 /*
4161 * 1 - root node
4162 * 1 - root item
4163 */
4164 trans = btrfs_start_transaction(tree_root, 2);
4165 if (IS_ERR(trans))
4166 return PTR_ERR(trans);
4167
4168 uuid_root = btrfs_create_tree(trans, fs_info,
4169 BTRFS_UUID_TREE_OBJECTID);
4170 if (IS_ERR(uuid_root)) {
6d13f549
DS
4171 ret = PTR_ERR(uuid_root);
4172 btrfs_abort_transaction(trans, tree_root, ret);
4173 return ret;
f7a81ea4
SB
4174 }
4175
4176 fs_info->uuid_root = uuid_root;
4177
803b2f54
SB
4178 ret = btrfs_commit_transaction(trans, tree_root);
4179 if (ret)
4180 return ret;
4181
4182 down(&fs_info->uuid_tree_rescan_sem);
4183 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4184 if (IS_ERR(task)) {
70f80175 4185 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4186 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4187 up(&fs_info->uuid_tree_rescan_sem);
4188 return PTR_ERR(task);
4189 }
4190
4191 return 0;
f7a81ea4 4192}
803b2f54 4193
70f80175
SB
4194int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4195{
4196 struct task_struct *task;
4197
4198 down(&fs_info->uuid_tree_rescan_sem);
4199 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4200 if (IS_ERR(task)) {
4201 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4202 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4203 up(&fs_info->uuid_tree_rescan_sem);
4204 return PTR_ERR(task);
4205 }
4206
4207 return 0;
4208}
4209
8f18cf13
CM
4210/*
4211 * shrinking a device means finding all of the device extents past
4212 * the new size, and then following the back refs to the chunks.
4213 * The chunk relocation code actually frees the device extent
4214 */
4215int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4216{
4217 struct btrfs_trans_handle *trans;
4218 struct btrfs_root *root = device->dev_root;
4219 struct btrfs_dev_extent *dev_extent = NULL;
4220 struct btrfs_path *path;
4221 u64 length;
8f18cf13
CM
4222 u64 chunk_offset;
4223 int ret;
4224 int slot;
ba1bf481
JB
4225 int failed = 0;
4226 bool retried = false;
53e489bc 4227 bool checked_pending_chunks = false;
8f18cf13
CM
4228 struct extent_buffer *l;
4229 struct btrfs_key key;
6c41761f 4230 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4231 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4232 u64 old_size = btrfs_device_get_total_bytes(device);
4233 u64 diff = old_size - new_size;
8f18cf13 4234
63a212ab
SB
4235 if (device->is_tgtdev_for_dev_replace)
4236 return -EINVAL;
4237
8f18cf13
CM
4238 path = btrfs_alloc_path();
4239 if (!path)
4240 return -ENOMEM;
4241
e4058b54 4242 path->reada = READA_FORWARD;
8f18cf13 4243
7d9eb12c
CM
4244 lock_chunks(root);
4245
7cc8e58d 4246 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4247 if (device->writeable) {
2b82032c 4248 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4249 spin_lock(&root->fs_info->free_chunk_lock);
4250 root->fs_info->free_chunk_space -= diff;
4251 spin_unlock(&root->fs_info->free_chunk_lock);
4252 }
7d9eb12c 4253 unlock_chunks(root);
8f18cf13 4254
ba1bf481 4255again:
8f18cf13
CM
4256 key.objectid = device->devid;
4257 key.offset = (u64)-1;
4258 key.type = BTRFS_DEV_EXTENT_KEY;
4259
213e64da 4260 do {
67c5e7d4 4261 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4263 if (ret < 0) {
4264 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4265 goto done;
67c5e7d4 4266 }
8f18cf13
CM
4267
4268 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4269 if (ret)
4270 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4271 if (ret < 0)
4272 goto done;
4273 if (ret) {
4274 ret = 0;
b3b4aa74 4275 btrfs_release_path(path);
bf1fb512 4276 break;
8f18cf13
CM
4277 }
4278
4279 l = path->nodes[0];
4280 slot = path->slots[0];
4281 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4282
ba1bf481 4283 if (key.objectid != device->devid) {
67c5e7d4 4284 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4285 btrfs_release_path(path);
bf1fb512 4286 break;
ba1bf481 4287 }
8f18cf13
CM
4288
4289 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4290 length = btrfs_dev_extent_length(l, dev_extent);
4291
ba1bf481 4292 if (key.offset + length <= new_size) {
67c5e7d4 4293 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4294 btrfs_release_path(path);
d6397bae 4295 break;
ba1bf481 4296 }
8f18cf13 4297
8f18cf13 4298 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4299 btrfs_release_path(path);
8f18cf13 4300
dc2ee4e2 4301 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4302 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4303 if (ret && ret != -ENOSPC)
8f18cf13 4304 goto done;
ba1bf481
JB
4305 if (ret == -ENOSPC)
4306 failed++;
213e64da 4307 } while (key.offset-- > 0);
ba1bf481
JB
4308
4309 if (failed && !retried) {
4310 failed = 0;
4311 retried = true;
4312 goto again;
4313 } else if (failed && retried) {
4314 ret = -ENOSPC;
ba1bf481 4315 goto done;
8f18cf13
CM
4316 }
4317
d6397bae 4318 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4319 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4320 if (IS_ERR(trans)) {
4321 ret = PTR_ERR(trans);
4322 goto done;
4323 }
4324
d6397bae 4325 lock_chunks(root);
53e489bc
FM
4326
4327 /*
4328 * We checked in the above loop all device extents that were already in
4329 * the device tree. However before we have updated the device's
4330 * total_bytes to the new size, we might have had chunk allocations that
4331 * have not complete yet (new block groups attached to transaction
4332 * handles), and therefore their device extents were not yet in the
4333 * device tree and we missed them in the loop above. So if we have any
4334 * pending chunk using a device extent that overlaps the device range
4335 * that we can not use anymore, commit the current transaction and
4336 * repeat the search on the device tree - this way we guarantee we will
4337 * not have chunks using device extents that end beyond 'new_size'.
4338 */
4339 if (!checked_pending_chunks) {
4340 u64 start = new_size;
4341 u64 len = old_size - new_size;
4342
499f377f
JM
4343 if (contains_pending_extent(trans->transaction, device,
4344 &start, len)) {
53e489bc
FM
4345 unlock_chunks(root);
4346 checked_pending_chunks = true;
4347 failed = 0;
4348 retried = false;
4349 ret = btrfs_commit_transaction(trans, root);
4350 if (ret)
4351 goto done;
4352 goto again;
4353 }
4354 }
4355
7cc8e58d 4356 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4357 if (list_empty(&device->resized_list))
4358 list_add_tail(&device->resized_list,
4359 &root->fs_info->fs_devices->resized_devices);
d6397bae 4360
d6397bae
CB
4361 WARN_ON(diff > old_total);
4362 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4363 unlock_chunks(root);
2196d6e8
MX
4364
4365 /* Now btrfs_update_device() will change the on-disk size. */
4366 ret = btrfs_update_device(trans, device);
d6397bae 4367 btrfs_end_transaction(trans, root);
8f18cf13
CM
4368done:
4369 btrfs_free_path(path);
53e489bc
FM
4370 if (ret) {
4371 lock_chunks(root);
4372 btrfs_device_set_total_bytes(device, old_size);
4373 if (device->writeable)
4374 device->fs_devices->total_rw_bytes += diff;
4375 spin_lock(&root->fs_info->free_chunk_lock);
4376 root->fs_info->free_chunk_space += diff;
4377 spin_unlock(&root->fs_info->free_chunk_lock);
4378 unlock_chunks(root);
4379 }
8f18cf13
CM
4380 return ret;
4381}
4382
125ccb0a 4383static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4384 struct btrfs_key *key,
4385 struct btrfs_chunk *chunk, int item_size)
4386{
6c41761f 4387 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4388 struct btrfs_disk_key disk_key;
4389 u32 array_size;
4390 u8 *ptr;
4391
fe48a5c0 4392 lock_chunks(root);
0b86a832 4393 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4394 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4395 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4396 unlock_chunks(root);
0b86a832 4397 return -EFBIG;
fe48a5c0 4398 }
0b86a832
CM
4399
4400 ptr = super_copy->sys_chunk_array + array_size;
4401 btrfs_cpu_key_to_disk(&disk_key, key);
4402 memcpy(ptr, &disk_key, sizeof(disk_key));
4403 ptr += sizeof(disk_key);
4404 memcpy(ptr, chunk, item_size);
4405 item_size += sizeof(disk_key);
4406 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4407 unlock_chunks(root);
4408
0b86a832
CM
4409 return 0;
4410}
4411
73c5de00
AJ
4412/*
4413 * sort the devices in descending order by max_avail, total_avail
4414 */
4415static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4416{
73c5de00
AJ
4417 const struct btrfs_device_info *di_a = a;
4418 const struct btrfs_device_info *di_b = b;
9b3f68b9 4419
73c5de00 4420 if (di_a->max_avail > di_b->max_avail)
b2117a39 4421 return -1;
73c5de00 4422 if (di_a->max_avail < di_b->max_avail)
b2117a39 4423 return 1;
73c5de00
AJ
4424 if (di_a->total_avail > di_b->total_avail)
4425 return -1;
4426 if (di_a->total_avail < di_b->total_avail)
4427 return 1;
4428 return 0;
b2117a39 4429}
0b86a832 4430
53b381b3
DW
4431static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4432{
4433 /* TODO allow them to set a preferred stripe size */
ee22184b 4434 return SZ_64K;
53b381b3
DW
4435}
4436
4437static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4438{
ffe2d203 4439 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4440 return;
4441
ceda0864 4442 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4443}
4444
23f8f9b7
GH
4445#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4446 - sizeof(struct btrfs_item) \
4447 - sizeof(struct btrfs_chunk)) \
4448 / sizeof(struct btrfs_stripe) + 1)
4449
4450#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4451 - 2 * sizeof(struct btrfs_disk_key) \
4452 - 2 * sizeof(struct btrfs_chunk)) \
4453 / sizeof(struct btrfs_stripe) + 1)
4454
73c5de00 4455static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4456 struct btrfs_root *extent_root, u64 start,
4457 u64 type)
b2117a39 4458{
73c5de00
AJ
4459 struct btrfs_fs_info *info = extent_root->fs_info;
4460 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4461 struct list_head *cur;
4462 struct map_lookup *map = NULL;
4463 struct extent_map_tree *em_tree;
4464 struct extent_map *em;
4465 struct btrfs_device_info *devices_info = NULL;
4466 u64 total_avail;
4467 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4468 int data_stripes; /* number of stripes that count for
4469 block group size */
73c5de00
AJ
4470 int sub_stripes; /* sub_stripes info for map */
4471 int dev_stripes; /* stripes per dev */
4472 int devs_max; /* max devs to use */
4473 int devs_min; /* min devs needed */
4474 int devs_increment; /* ndevs has to be a multiple of this */
4475 int ncopies; /* how many copies to data has */
4476 int ret;
4477 u64 max_stripe_size;
4478 u64 max_chunk_size;
4479 u64 stripe_size;
4480 u64 num_bytes;
53b381b3 4481 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4482 int ndevs;
4483 int i;
4484 int j;
31e50229 4485 int index;
593060d7 4486
0c460c0d 4487 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4488
73c5de00
AJ
4489 if (list_empty(&fs_devices->alloc_list))
4490 return -ENOSPC;
b2117a39 4491
31e50229 4492 index = __get_raid_index(type);
73c5de00 4493
31e50229
LB
4494 sub_stripes = btrfs_raid_array[index].sub_stripes;
4495 dev_stripes = btrfs_raid_array[index].dev_stripes;
4496 devs_max = btrfs_raid_array[index].devs_max;
4497 devs_min = btrfs_raid_array[index].devs_min;
4498 devs_increment = btrfs_raid_array[index].devs_increment;
4499 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4500
9b3f68b9 4501 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4502 max_stripe_size = SZ_1G;
73c5de00 4503 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4504 if (!devs_max)
4505 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4506 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4507 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4508 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4509 max_stripe_size = SZ_1G;
1100373f 4510 else
ee22184b 4511 max_stripe_size = SZ_256M;
73c5de00 4512 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4513 if (!devs_max)
4514 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4515 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4516 max_stripe_size = SZ_32M;
73c5de00 4517 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4518 if (!devs_max)
4519 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4520 } else {
351fd353 4521 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4522 type);
4523 BUG_ON(1);
9b3f68b9
CM
4524 }
4525
2b82032c
YZ
4526 /* we don't want a chunk larger than 10% of writeable space */
4527 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4528 max_chunk_size);
9b3f68b9 4529
31e818fe 4530 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4531 GFP_NOFS);
4532 if (!devices_info)
4533 return -ENOMEM;
0cad8a11 4534
73c5de00 4535 cur = fs_devices->alloc_list.next;
9b3f68b9 4536
9f680ce0 4537 /*
73c5de00
AJ
4538 * in the first pass through the devices list, we gather information
4539 * about the available holes on each device.
9f680ce0 4540 */
73c5de00
AJ
4541 ndevs = 0;
4542 while (cur != &fs_devices->alloc_list) {
4543 struct btrfs_device *device;
4544 u64 max_avail;
4545 u64 dev_offset;
b2117a39 4546
73c5de00 4547 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4548
73c5de00 4549 cur = cur->next;
b2117a39 4550
73c5de00 4551 if (!device->writeable) {
31b1a2bd 4552 WARN(1, KERN_ERR
efe120a0 4553 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4554 continue;
4555 }
b2117a39 4556
63a212ab
SB
4557 if (!device->in_fs_metadata ||
4558 device->is_tgtdev_for_dev_replace)
73c5de00 4559 continue;
b2117a39 4560
73c5de00
AJ
4561 if (device->total_bytes > device->bytes_used)
4562 total_avail = device->total_bytes - device->bytes_used;
4563 else
4564 total_avail = 0;
38c01b96 4565
4566 /* If there is no space on this device, skip it. */
4567 if (total_avail == 0)
4568 continue;
b2117a39 4569
6df9a95e 4570 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4571 max_stripe_size * dev_stripes,
4572 &dev_offset, &max_avail);
4573 if (ret && ret != -ENOSPC)
4574 goto error;
b2117a39 4575
73c5de00
AJ
4576 if (ret == 0)
4577 max_avail = max_stripe_size * dev_stripes;
b2117a39 4578
73c5de00
AJ
4579 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4580 continue;
b2117a39 4581
063d006f
ES
4582 if (ndevs == fs_devices->rw_devices) {
4583 WARN(1, "%s: found more than %llu devices\n",
4584 __func__, fs_devices->rw_devices);
4585 break;
4586 }
73c5de00
AJ
4587 devices_info[ndevs].dev_offset = dev_offset;
4588 devices_info[ndevs].max_avail = max_avail;
4589 devices_info[ndevs].total_avail = total_avail;
4590 devices_info[ndevs].dev = device;
4591 ++ndevs;
4592 }
b2117a39 4593
73c5de00
AJ
4594 /*
4595 * now sort the devices by hole size / available space
4596 */
4597 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4598 btrfs_cmp_device_info, NULL);
b2117a39 4599
73c5de00
AJ
4600 /* round down to number of usable stripes */
4601 ndevs -= ndevs % devs_increment;
b2117a39 4602
73c5de00
AJ
4603 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4604 ret = -ENOSPC;
4605 goto error;
b2117a39 4606 }
9f680ce0 4607
73c5de00
AJ
4608 if (devs_max && ndevs > devs_max)
4609 ndevs = devs_max;
4610 /*
4611 * the primary goal is to maximize the number of stripes, so use as many
4612 * devices as possible, even if the stripes are not maximum sized.
4613 */
4614 stripe_size = devices_info[ndevs-1].max_avail;
4615 num_stripes = ndevs * dev_stripes;
b2117a39 4616
53b381b3
DW
4617 /*
4618 * this will have to be fixed for RAID1 and RAID10 over
4619 * more drives
4620 */
4621 data_stripes = num_stripes / ncopies;
4622
53b381b3
DW
4623 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4624 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4625 btrfs_super_stripesize(info->super_copy));
4626 data_stripes = num_stripes - 1;
4627 }
4628 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4629 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4630 btrfs_super_stripesize(info->super_copy));
4631 data_stripes = num_stripes - 2;
4632 }
86db2578
CM
4633
4634 /*
4635 * Use the number of data stripes to figure out how big this chunk
4636 * is really going to be in terms of logical address space,
4637 * and compare that answer with the max chunk size
4638 */
4639 if (stripe_size * data_stripes > max_chunk_size) {
4640 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4641
4642 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4643
4644 /* bump the answer up to a 16MB boundary */
4645 stripe_size = (stripe_size + mask) & ~mask;
4646
4647 /* but don't go higher than the limits we found
4648 * while searching for free extents
4649 */
4650 if (stripe_size > devices_info[ndevs-1].max_avail)
4651 stripe_size = devices_info[ndevs-1].max_avail;
4652 }
4653
b8b93add 4654 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4655
4656 /* align to BTRFS_STRIPE_LEN */
b8b93add 4657 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4658 stripe_size *= raid_stripe_len;
b2117a39
MX
4659
4660 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4661 if (!map) {
4662 ret = -ENOMEM;
4663 goto error;
4664 }
4665 map->num_stripes = num_stripes;
9b3f68b9 4666
73c5de00
AJ
4667 for (i = 0; i < ndevs; ++i) {
4668 for (j = 0; j < dev_stripes; ++j) {
4669 int s = i * dev_stripes + j;
4670 map->stripes[s].dev = devices_info[i].dev;
4671 map->stripes[s].physical = devices_info[i].dev_offset +
4672 j * stripe_size;
6324fbf3 4673 }
6324fbf3 4674 }
2b82032c 4675 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4676 map->stripe_len = raid_stripe_len;
4677 map->io_align = raid_stripe_len;
4678 map->io_width = raid_stripe_len;
2b82032c 4679 map->type = type;
2b82032c 4680 map->sub_stripes = sub_stripes;
0b86a832 4681
53b381b3 4682 num_bytes = stripe_size * data_stripes;
0b86a832 4683
73c5de00 4684 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4685
172ddd60 4686 em = alloc_extent_map();
2b82032c 4687 if (!em) {
298a8f9c 4688 kfree(map);
b2117a39
MX
4689 ret = -ENOMEM;
4690 goto error;
593060d7 4691 }
298a8f9c 4692 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4693 em->map_lookup = map;
2b82032c 4694 em->start = start;
73c5de00 4695 em->len = num_bytes;
2b82032c
YZ
4696 em->block_start = 0;
4697 em->block_len = em->len;
6df9a95e 4698 em->orig_block_len = stripe_size;
593060d7 4699
2b82032c 4700 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4701 write_lock(&em_tree->lock);
09a2a8f9 4702 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4703 if (!ret) {
4704 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4705 atomic_inc(&em->refs);
4706 }
890871be 4707 write_unlock(&em_tree->lock);
0f5d42b2
JB
4708 if (ret) {
4709 free_extent_map(em);
1dd4602f 4710 goto error;
0f5d42b2 4711 }
0b86a832 4712
04487488
JB
4713 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4714 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4715 start, num_bytes);
6df9a95e
JB
4716 if (ret)
4717 goto error_del_extent;
2b82032c 4718
7cc8e58d
MX
4719 for (i = 0; i < map->num_stripes; i++) {
4720 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4721 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4722 }
43530c46 4723
1c116187
MX
4724 spin_lock(&extent_root->fs_info->free_chunk_lock);
4725 extent_root->fs_info->free_chunk_space -= (stripe_size *
4726 map->num_stripes);
4727 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4728
0f5d42b2 4729 free_extent_map(em);
53b381b3
DW
4730 check_raid56_incompat_flag(extent_root->fs_info, type);
4731
b2117a39 4732 kfree(devices_info);
2b82032c 4733 return 0;
b2117a39 4734
6df9a95e 4735error_del_extent:
0f5d42b2
JB
4736 write_lock(&em_tree->lock);
4737 remove_extent_mapping(em_tree, em);
4738 write_unlock(&em_tree->lock);
4739
4740 /* One for our allocation */
4741 free_extent_map(em);
4742 /* One for the tree reference */
4743 free_extent_map(em);
495e64f4
FM
4744 /* One for the pending_chunks list reference */
4745 free_extent_map(em);
b2117a39 4746error:
b2117a39
MX
4747 kfree(devices_info);
4748 return ret;
2b82032c
YZ
4749}
4750
6df9a95e 4751int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4752 struct btrfs_root *extent_root,
6df9a95e 4753 u64 chunk_offset, u64 chunk_size)
2b82032c 4754{
2b82032c
YZ
4755 struct btrfs_key key;
4756 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4757 struct btrfs_device *device;
4758 struct btrfs_chunk *chunk;
4759 struct btrfs_stripe *stripe;
6df9a95e
JB
4760 struct extent_map_tree *em_tree;
4761 struct extent_map *em;
4762 struct map_lookup *map;
4763 size_t item_size;
4764 u64 dev_offset;
4765 u64 stripe_size;
4766 int i = 0;
140e639f 4767 int ret = 0;
2b82032c 4768
6df9a95e
JB
4769 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4770 read_lock(&em_tree->lock);
4771 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4772 read_unlock(&em_tree->lock);
4773
4774 if (!em) {
4775 btrfs_crit(extent_root->fs_info, "unable to find logical "
4776 "%Lu len %Lu", chunk_offset, chunk_size);
4777 return -EINVAL;
4778 }
4779
4780 if (em->start != chunk_offset || em->len != chunk_size) {
4781 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4782 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4783 chunk_size, em->start, em->len);
4784 free_extent_map(em);
4785 return -EINVAL;
4786 }
4787
95617d69 4788 map = em->map_lookup;
6df9a95e
JB
4789 item_size = btrfs_chunk_item_size(map->num_stripes);
4790 stripe_size = em->orig_block_len;
4791
2b82032c 4792 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4793 if (!chunk) {
4794 ret = -ENOMEM;
4795 goto out;
4796 }
4797
50460e37
FM
4798 /*
4799 * Take the device list mutex to prevent races with the final phase of
4800 * a device replace operation that replaces the device object associated
4801 * with the map's stripes, because the device object's id can change
4802 * at any time during that final phase of the device replace operation
4803 * (dev-replace.c:btrfs_dev_replace_finishing()).
4804 */
4805 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4806 for (i = 0; i < map->num_stripes; i++) {
4807 device = map->stripes[i].dev;
4808 dev_offset = map->stripes[i].physical;
2b82032c 4809
0b86a832 4810 ret = btrfs_update_device(trans, device);
3acd3953 4811 if (ret)
50460e37 4812 break;
6df9a95e
JB
4813 ret = btrfs_alloc_dev_extent(trans, device,
4814 chunk_root->root_key.objectid,
4815 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4816 chunk_offset, dev_offset,
4817 stripe_size);
4818 if (ret)
50460e37
FM
4819 break;
4820 }
4821 if (ret) {
4822 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4823 goto out;
2b82032c
YZ
4824 }
4825
2b82032c 4826 stripe = &chunk->stripe;
6df9a95e
JB
4827 for (i = 0; i < map->num_stripes; i++) {
4828 device = map->stripes[i].dev;
4829 dev_offset = map->stripes[i].physical;
0b86a832 4830
e17cade2
CM
4831 btrfs_set_stack_stripe_devid(stripe, device->devid);
4832 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4833 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4834 stripe++;
0b86a832 4835 }
50460e37 4836 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4837
2b82032c 4838 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4839 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4840 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4841 btrfs_set_stack_chunk_type(chunk, map->type);
4842 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4843 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4844 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4845 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4846 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4847
2b82032c
YZ
4848 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4849 key.type = BTRFS_CHUNK_ITEM_KEY;
4850 key.offset = chunk_offset;
0b86a832 4851
2b82032c 4852 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4853 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4854 /*
4855 * TODO: Cleanup of inserted chunk root in case of
4856 * failure.
4857 */
125ccb0a 4858 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4859 item_size);
8f18cf13 4860 }
1abe9b8a 4861
6df9a95e 4862out:
0b86a832 4863 kfree(chunk);
6df9a95e 4864 free_extent_map(em);
4ed1d16e 4865 return ret;
2b82032c 4866}
0b86a832 4867
2b82032c
YZ
4868/*
4869 * Chunk allocation falls into two parts. The first part does works
4870 * that make the new allocated chunk useable, but not do any operation
4871 * that modifies the chunk tree. The second part does the works that
4872 * require modifying the chunk tree. This division is important for the
4873 * bootstrap process of adding storage to a seed btrfs.
4874 */
4875int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4876 struct btrfs_root *extent_root, u64 type)
4877{
4878 u64 chunk_offset;
2b82032c 4879
a9629596 4880 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4881 chunk_offset = find_next_chunk(extent_root->fs_info);
4882 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4883}
4884
d397712b 4885static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4886 struct btrfs_root *root,
4887 struct btrfs_device *device)
4888{
4889 u64 chunk_offset;
4890 u64 sys_chunk_offset;
2b82032c 4891 u64 alloc_profile;
2b82032c
YZ
4892 struct btrfs_fs_info *fs_info = root->fs_info;
4893 struct btrfs_root *extent_root = fs_info->extent_root;
4894 int ret;
4895
6df9a95e 4896 chunk_offset = find_next_chunk(fs_info);
de98ced9 4897 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4898 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4899 alloc_profile);
79787eaa
JM
4900 if (ret)
4901 return ret;
2b82032c 4902
6df9a95e 4903 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4904 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4905 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4906 alloc_profile);
79787eaa 4907 return ret;
2b82032c
YZ
4908}
4909
d20983b4
MX
4910static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4911{
4912 int max_errors;
4913
4914 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4915 BTRFS_BLOCK_GROUP_RAID10 |
4916 BTRFS_BLOCK_GROUP_RAID5 |
4917 BTRFS_BLOCK_GROUP_DUP)) {
4918 max_errors = 1;
4919 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4920 max_errors = 2;
4921 } else {
4922 max_errors = 0;
005d6427 4923 }
2b82032c 4924
d20983b4 4925 return max_errors;
2b82032c
YZ
4926}
4927
4928int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4929{
4930 struct extent_map *em;
4931 struct map_lookup *map;
4932 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4933 int readonly = 0;
d20983b4 4934 int miss_ndevs = 0;
2b82032c
YZ
4935 int i;
4936
890871be 4937 read_lock(&map_tree->map_tree.lock);
2b82032c 4938 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4939 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4940 if (!em)
4941 return 1;
4942
95617d69 4943 map = em->map_lookup;
2b82032c 4944 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4945 if (map->stripes[i].dev->missing) {
4946 miss_ndevs++;
4947 continue;
4948 }
4949
2b82032c
YZ
4950 if (!map->stripes[i].dev->writeable) {
4951 readonly = 1;
d20983b4 4952 goto end;
2b82032c
YZ
4953 }
4954 }
d20983b4
MX
4955
4956 /*
4957 * If the number of missing devices is larger than max errors,
4958 * we can not write the data into that chunk successfully, so
4959 * set it readonly.
4960 */
4961 if (miss_ndevs > btrfs_chunk_max_errors(map))
4962 readonly = 1;
4963end:
0b86a832 4964 free_extent_map(em);
2b82032c 4965 return readonly;
0b86a832
CM
4966}
4967
4968void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4969{
a8067e02 4970 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4971}
4972
4973void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4974{
4975 struct extent_map *em;
4976
d397712b 4977 while (1) {
890871be 4978 write_lock(&tree->map_tree.lock);
0b86a832
CM
4979 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4980 if (em)
4981 remove_extent_mapping(&tree->map_tree, em);
890871be 4982 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4983 if (!em)
4984 break;
0b86a832
CM
4985 /* once for us */
4986 free_extent_map(em);
4987 /* once for the tree */
4988 free_extent_map(em);
4989 }
4990}
4991
5d964051 4992int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4993{
5d964051 4994 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4995 struct extent_map *em;
4996 struct map_lookup *map;
4997 struct extent_map_tree *em_tree = &map_tree->map_tree;
4998 int ret;
4999
890871be 5000 read_lock(&em_tree->lock);
f188591e 5001 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5002 read_unlock(&em_tree->lock);
f188591e 5003
fb7669b5
JB
5004 /*
5005 * We could return errors for these cases, but that could get ugly and
5006 * we'd probably do the same thing which is just not do anything else
5007 * and exit, so return 1 so the callers don't try to use other copies.
5008 */
5009 if (!em) {
351fd353 5010 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5011 logical+len);
5012 return 1;
5013 }
5014
5015 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5016 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5017 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5018 em->start + em->len);
7d3d1744 5019 free_extent_map(em);
fb7669b5
JB
5020 return 1;
5021 }
5022
95617d69 5023 map = em->map_lookup;
f188591e
CM
5024 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5025 ret = map->num_stripes;
321aecc6
CM
5026 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5027 ret = map->sub_stripes;
53b381b3
DW
5028 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5029 ret = 2;
5030 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5031 ret = 3;
f188591e
CM
5032 else
5033 ret = 1;
5034 free_extent_map(em);
ad6d620e 5035
73beece9 5036 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5037 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5038 ret++;
73beece9 5039 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5040
f188591e
CM
5041 return ret;
5042}
5043
53b381b3
DW
5044unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5045 struct btrfs_mapping_tree *map_tree,
5046 u64 logical)
5047{
5048 struct extent_map *em;
5049 struct map_lookup *map;
5050 struct extent_map_tree *em_tree = &map_tree->map_tree;
5051 unsigned long len = root->sectorsize;
5052
5053 read_lock(&em_tree->lock);
5054 em = lookup_extent_mapping(em_tree, logical, len);
5055 read_unlock(&em_tree->lock);
5056 BUG_ON(!em);
5057
5058 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5059 map = em->map_lookup;
ffe2d203 5060 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5061 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5062 free_extent_map(em);
5063 return len;
5064}
5065
5066int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5067 u64 logical, u64 len, int mirror_num)
5068{
5069 struct extent_map *em;
5070 struct map_lookup *map;
5071 struct extent_map_tree *em_tree = &map_tree->map_tree;
5072 int ret = 0;
5073
5074 read_lock(&em_tree->lock);
5075 em = lookup_extent_mapping(em_tree, logical, len);
5076 read_unlock(&em_tree->lock);
5077 BUG_ON(!em);
5078
5079 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5080 map = em->map_lookup;
ffe2d203 5081 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5082 ret = 1;
5083 free_extent_map(em);
5084 return ret;
5085}
5086
30d9861f
SB
5087static int find_live_mirror(struct btrfs_fs_info *fs_info,
5088 struct map_lookup *map, int first, int num,
5089 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5090{
5091 int i;
30d9861f
SB
5092 int tolerance;
5093 struct btrfs_device *srcdev;
5094
5095 if (dev_replace_is_ongoing &&
5096 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5097 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5098 srcdev = fs_info->dev_replace.srcdev;
5099 else
5100 srcdev = NULL;
5101
5102 /*
5103 * try to avoid the drive that is the source drive for a
5104 * dev-replace procedure, only choose it if no other non-missing
5105 * mirror is available
5106 */
5107 for (tolerance = 0; tolerance < 2; tolerance++) {
5108 if (map->stripes[optimal].dev->bdev &&
5109 (tolerance || map->stripes[optimal].dev != srcdev))
5110 return optimal;
5111 for (i = first; i < first + num; i++) {
5112 if (map->stripes[i].dev->bdev &&
5113 (tolerance || map->stripes[i].dev != srcdev))
5114 return i;
5115 }
dfe25020 5116 }
30d9861f 5117
dfe25020
CM
5118 /* we couldn't find one that doesn't fail. Just return something
5119 * and the io error handling code will clean up eventually
5120 */
5121 return optimal;
5122}
5123
53b381b3
DW
5124static inline int parity_smaller(u64 a, u64 b)
5125{
5126 return a > b;
5127}
5128
5129/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5130static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5131{
5132 struct btrfs_bio_stripe s;
5133 int i;
5134 u64 l;
5135 int again = 1;
5136
5137 while (again) {
5138 again = 0;
cc7539ed 5139 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5140 if (parity_smaller(bbio->raid_map[i],
5141 bbio->raid_map[i+1])) {
53b381b3 5142 s = bbio->stripes[i];
8e5cfb55 5143 l = bbio->raid_map[i];
53b381b3 5144 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5145 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5146 bbio->stripes[i+1] = s;
8e5cfb55 5147 bbio->raid_map[i+1] = l;
2c8cdd6e 5148
53b381b3
DW
5149 again = 1;
5150 }
5151 }
5152 }
5153}
5154
6e9606d2
ZL
5155static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5156{
5157 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5158 /* the size of the btrfs_bio */
6e9606d2 5159 sizeof(struct btrfs_bio) +
e57cf21e 5160 /* plus the variable array for the stripes */
6e9606d2 5161 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5162 /* plus the variable array for the tgt dev */
6e9606d2 5163 sizeof(int) * (real_stripes) +
e57cf21e
CM
5164 /*
5165 * plus the raid_map, which includes both the tgt dev
5166 * and the stripes
5167 */
5168 sizeof(u64) * (total_stripes),
277fb5fc 5169 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5170
5171 atomic_set(&bbio->error, 0);
5172 atomic_set(&bbio->refs, 1);
5173
5174 return bbio;
5175}
5176
5177void btrfs_get_bbio(struct btrfs_bio *bbio)
5178{
5179 WARN_ON(!atomic_read(&bbio->refs));
5180 atomic_inc(&bbio->refs);
5181}
5182
5183void btrfs_put_bbio(struct btrfs_bio *bbio)
5184{
5185 if (!bbio)
5186 return;
5187 if (atomic_dec_and_test(&bbio->refs))
5188 kfree(bbio);
5189}
5190
3ec706c8 5191static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5192 u64 logical, u64 *length,
a1d3c478 5193 struct btrfs_bio **bbio_ret,
8e5cfb55 5194 int mirror_num, int need_raid_map)
0b86a832
CM
5195{
5196 struct extent_map *em;
5197 struct map_lookup *map;
3ec706c8 5198 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5199 struct extent_map_tree *em_tree = &map_tree->map_tree;
5200 u64 offset;
593060d7 5201 u64 stripe_offset;
fce3bb9a 5202 u64 stripe_end_offset;
593060d7 5203 u64 stripe_nr;
fce3bb9a
LD
5204 u64 stripe_nr_orig;
5205 u64 stripe_nr_end;
53b381b3 5206 u64 stripe_len;
9d644a62 5207 u32 stripe_index;
cea9e445 5208 int i;
de11cc12 5209 int ret = 0;
f2d8d74d 5210 int num_stripes;
a236aed1 5211 int max_errors = 0;
2c8cdd6e 5212 int tgtdev_indexes = 0;
a1d3c478 5213 struct btrfs_bio *bbio = NULL;
472262f3
SB
5214 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5215 int dev_replace_is_ongoing = 0;
5216 int num_alloc_stripes;
ad6d620e
SB
5217 int patch_the_first_stripe_for_dev_replace = 0;
5218 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5219 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5220
890871be 5221 read_lock(&em_tree->lock);
0b86a832 5222 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5223 read_unlock(&em_tree->lock);
f2d8d74d 5224
3b951516 5225 if (!em) {
c2cf52eb 5226 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5227 logical, *length);
9bb91873
JB
5228 return -EINVAL;
5229 }
5230
5231 if (em->start > logical || em->start + em->len < logical) {
5232 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5233 "found %Lu-%Lu", logical, em->start,
9bb91873 5234 em->start + em->len);
7d3d1744 5235 free_extent_map(em);
9bb91873 5236 return -EINVAL;
3b951516 5237 }
0b86a832 5238
95617d69 5239 map = em->map_lookup;
0b86a832 5240 offset = logical - em->start;
593060d7 5241
53b381b3 5242 stripe_len = map->stripe_len;
593060d7
CM
5243 stripe_nr = offset;
5244 /*
5245 * stripe_nr counts the total number of stripes we have to stride
5246 * to get to this block
5247 */
47c5713f 5248 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5249
53b381b3 5250 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5251 BUG_ON(offset < stripe_offset);
5252
5253 /* stripe_offset is the offset of this block in its stripe*/
5254 stripe_offset = offset - stripe_offset;
5255
53b381b3 5256 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5257 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5258 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5259 raid56_full_stripe_start = offset;
5260
5261 /* allow a write of a full stripe, but make sure we don't
5262 * allow straddling of stripes
5263 */
47c5713f
DS
5264 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5265 full_stripe_len);
53b381b3
DW
5266 raid56_full_stripe_start *= full_stripe_len;
5267 }
5268
5269 if (rw & REQ_DISCARD) {
5270 /* we don't discard raid56 yet */
ffe2d203 5271 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5272 ret = -EOPNOTSUPP;
5273 goto out;
5274 }
fce3bb9a 5275 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5276 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5277 u64 max_len;
5278 /* For writes to RAID[56], allow a full stripeset across all disks.
5279 For other RAID types and for RAID[56] reads, just allow a single
5280 stripe (on a single disk). */
ffe2d203 5281 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5282 (rw & REQ_WRITE)) {
5283 max_len = stripe_len * nr_data_stripes(map) -
5284 (offset - raid56_full_stripe_start);
5285 } else {
5286 /* we limit the length of each bio to what fits in a stripe */
5287 max_len = stripe_len - stripe_offset;
5288 }
5289 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5290 } else {
5291 *length = em->len - offset;
5292 }
f2d8d74d 5293
53b381b3
DW
5294 /* This is for when we're called from btrfs_merge_bio_hook() and all
5295 it cares about is the length */
a1d3c478 5296 if (!bbio_ret)
cea9e445
CM
5297 goto out;
5298
73beece9 5299 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5300 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5301 if (!dev_replace_is_ongoing)
73beece9
LB
5302 btrfs_dev_replace_unlock(dev_replace, 0);
5303 else
5304 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5305
ad6d620e
SB
5306 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5307 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5308 dev_replace->tgtdev != NULL) {
5309 /*
5310 * in dev-replace case, for repair case (that's the only
5311 * case where the mirror is selected explicitly when
5312 * calling btrfs_map_block), blocks left of the left cursor
5313 * can also be read from the target drive.
5314 * For REQ_GET_READ_MIRRORS, the target drive is added as
5315 * the last one to the array of stripes. For READ, it also
5316 * needs to be supported using the same mirror number.
5317 * If the requested block is not left of the left cursor,
5318 * EIO is returned. This can happen because btrfs_num_copies()
5319 * returns one more in the dev-replace case.
5320 */
5321 u64 tmp_length = *length;
5322 struct btrfs_bio *tmp_bbio = NULL;
5323 int tmp_num_stripes;
5324 u64 srcdev_devid = dev_replace->srcdev->devid;
5325 int index_srcdev = 0;
5326 int found = 0;
5327 u64 physical_of_found = 0;
5328
5329 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5330 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5331 if (ret) {
5332 WARN_ON(tmp_bbio != NULL);
5333 goto out;
5334 }
5335
5336 tmp_num_stripes = tmp_bbio->num_stripes;
5337 if (mirror_num > tmp_num_stripes) {
5338 /*
5339 * REQ_GET_READ_MIRRORS does not contain this
5340 * mirror, that means that the requested area
5341 * is not left of the left cursor
5342 */
5343 ret = -EIO;
6e9606d2 5344 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5345 goto out;
5346 }
5347
5348 /*
5349 * process the rest of the function using the mirror_num
5350 * of the source drive. Therefore look it up first.
5351 * At the end, patch the device pointer to the one of the
5352 * target drive.
5353 */
5354 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5355 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5356 continue;
5357
5358 /*
5359 * In case of DUP, in order to keep it simple, only add
5360 * the mirror with the lowest physical address
5361 */
5362 if (found &&
5363 physical_of_found <= tmp_bbio->stripes[i].physical)
5364 continue;
5365
5366 index_srcdev = i;
5367 found = 1;
5368 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5369 }
5370
94a97dfe
ZL
5371 btrfs_put_bbio(tmp_bbio);
5372
5373 if (!found) {
ad6d620e
SB
5374 WARN_ON(1);
5375 ret = -EIO;
ad6d620e
SB
5376 goto out;
5377 }
5378
94a97dfe
ZL
5379 mirror_num = index_srcdev + 1;
5380 patch_the_first_stripe_for_dev_replace = 1;
5381 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5382 } else if (mirror_num > map->num_stripes) {
5383 mirror_num = 0;
5384 }
5385
f2d8d74d 5386 num_stripes = 1;
cea9e445 5387 stripe_index = 0;
fce3bb9a 5388 stripe_nr_orig = stripe_nr;
fda2832f 5389 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5390 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5391 stripe_end_offset = stripe_nr_end * map->stripe_len -
5392 (offset + *length);
53b381b3 5393
fce3bb9a
LD
5394 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5395 if (rw & REQ_DISCARD)
5396 num_stripes = min_t(u64, map->num_stripes,
5397 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5398 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5399 &stripe_index);
28e1cc7d
MX
5400 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5401 mirror_num = 1;
fce3bb9a 5402 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5403 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5404 num_stripes = map->num_stripes;
2fff734f 5405 else if (mirror_num)
f188591e 5406 stripe_index = mirror_num - 1;
dfe25020 5407 else {
30d9861f 5408 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5409 map->num_stripes,
30d9861f
SB
5410 current->pid % map->num_stripes,
5411 dev_replace_is_ongoing);
a1d3c478 5412 mirror_num = stripe_index + 1;
dfe25020 5413 }
2fff734f 5414
611f0e00 5415 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5416 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5417 num_stripes = map->num_stripes;
a1d3c478 5418 } else if (mirror_num) {
f188591e 5419 stripe_index = mirror_num - 1;
a1d3c478
JS
5420 } else {
5421 mirror_num = 1;
5422 }
2fff734f 5423
321aecc6 5424 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5425 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5426
47c5713f 5427 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5428 stripe_index *= map->sub_stripes;
5429
29a8d9a0 5430 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5431 num_stripes = map->sub_stripes;
fce3bb9a
LD
5432 else if (rw & REQ_DISCARD)
5433 num_stripes = min_t(u64, map->sub_stripes *
5434 (stripe_nr_end - stripe_nr_orig),
5435 map->num_stripes);
321aecc6
CM
5436 else if (mirror_num)
5437 stripe_index += mirror_num - 1;
dfe25020 5438 else {
3e74317a 5439 int old_stripe_index = stripe_index;
30d9861f
SB
5440 stripe_index = find_live_mirror(fs_info, map,
5441 stripe_index,
dfe25020 5442 map->sub_stripes, stripe_index +
30d9861f
SB
5443 current->pid % map->sub_stripes,
5444 dev_replace_is_ongoing);
3e74317a 5445 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5446 }
53b381b3 5447
ffe2d203 5448 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5449 if (need_raid_map &&
af8e2d1d
MX
5450 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5451 mirror_num > 1)) {
53b381b3 5452 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5453 stripe_nr = div_u64(raid56_full_stripe_start,
5454 stripe_len * nr_data_stripes(map));
53b381b3
DW
5455
5456 /* RAID[56] write or recovery. Return all stripes */
5457 num_stripes = map->num_stripes;
5458 max_errors = nr_parity_stripes(map);
5459
53b381b3
DW
5460 *length = map->stripe_len;
5461 stripe_index = 0;
5462 stripe_offset = 0;
5463 } else {
5464 /*
5465 * Mirror #0 or #1 means the original data block.
5466 * Mirror #2 is RAID5 parity block.
5467 * Mirror #3 is RAID6 Q block.
5468 */
47c5713f
DS
5469 stripe_nr = div_u64_rem(stripe_nr,
5470 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5471 if (mirror_num > 1)
5472 stripe_index = nr_data_stripes(map) +
5473 mirror_num - 2;
5474
5475 /* We distribute the parity blocks across stripes */
47c5713f
DS
5476 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5477 &stripe_index);
28e1cc7d
MX
5478 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5479 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5480 mirror_num = 1;
53b381b3 5481 }
8790d502
CM
5482 } else {
5483 /*
47c5713f
DS
5484 * after this, stripe_nr is the number of stripes on this
5485 * device we have to walk to find the data, and stripe_index is
5486 * the number of our device in the stripe array
8790d502 5487 */
47c5713f
DS
5488 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5489 &stripe_index);
a1d3c478 5490 mirror_num = stripe_index + 1;
8790d502 5491 }
593060d7 5492 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5493
472262f3 5494 num_alloc_stripes = num_stripes;
ad6d620e
SB
5495 if (dev_replace_is_ongoing) {
5496 if (rw & (REQ_WRITE | REQ_DISCARD))
5497 num_alloc_stripes <<= 1;
5498 if (rw & REQ_GET_READ_MIRRORS)
5499 num_alloc_stripes++;
2c8cdd6e 5500 tgtdev_indexes = num_stripes;
ad6d620e 5501 }
2c8cdd6e 5502
6e9606d2 5503 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5504 if (!bbio) {
5505 ret = -ENOMEM;
5506 goto out;
5507 }
2c8cdd6e
MX
5508 if (dev_replace_is_ongoing)
5509 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5510
8e5cfb55 5511 /* build raid_map */
ffe2d203 5512 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5513 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5514 mirror_num > 1)) {
5515 u64 tmp;
9d644a62 5516 unsigned rot;
8e5cfb55
ZL
5517
5518 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5519 sizeof(struct btrfs_bio_stripe) *
5520 num_alloc_stripes +
5521 sizeof(int) * tgtdev_indexes);
5522
5523 /* Work out the disk rotation on this stripe-set */
47c5713f 5524 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5525
5526 /* Fill in the logical address of each stripe */
5527 tmp = stripe_nr * nr_data_stripes(map);
5528 for (i = 0; i < nr_data_stripes(map); i++)
5529 bbio->raid_map[(i+rot) % num_stripes] =
5530 em->start + (tmp + i) * map->stripe_len;
5531
5532 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5533 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5534 bbio->raid_map[(i+rot+1) % num_stripes] =
5535 RAID6_Q_STRIPE;
5536 }
5537
fce3bb9a 5538 if (rw & REQ_DISCARD) {
9d644a62
DS
5539 u32 factor = 0;
5540 u32 sub_stripes = 0;
ec9ef7a1
LZ
5541 u64 stripes_per_dev = 0;
5542 u32 remaining_stripes = 0;
b89203f7 5543 u32 last_stripe = 0;
ec9ef7a1
LZ
5544
5545 if (map->type &
5546 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5547 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5548 sub_stripes = 1;
5549 else
5550 sub_stripes = map->sub_stripes;
5551
5552 factor = map->num_stripes / sub_stripes;
5553 stripes_per_dev = div_u64_rem(stripe_nr_end -
5554 stripe_nr_orig,
5555 factor,
5556 &remaining_stripes);
b89203f7
LB
5557 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5558 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5559 }
5560
fce3bb9a 5561 for (i = 0; i < num_stripes; i++) {
a1d3c478 5562 bbio->stripes[i].physical =
f2d8d74d
CM
5563 map->stripes[stripe_index].physical +
5564 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5565 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5566
ec9ef7a1
LZ
5567 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5568 BTRFS_BLOCK_GROUP_RAID10)) {
5569 bbio->stripes[i].length = stripes_per_dev *
5570 map->stripe_len;
b89203f7 5571
ec9ef7a1
LZ
5572 if (i / sub_stripes < remaining_stripes)
5573 bbio->stripes[i].length +=
5574 map->stripe_len;
b89203f7
LB
5575
5576 /*
5577 * Special for the first stripe and
5578 * the last stripe:
5579 *
5580 * |-------|...|-------|
5581 * |----------|
5582 * off end_off
5583 */
ec9ef7a1 5584 if (i < sub_stripes)
a1d3c478 5585 bbio->stripes[i].length -=
fce3bb9a 5586 stripe_offset;
b89203f7
LB
5587
5588 if (stripe_index >= last_stripe &&
5589 stripe_index <= (last_stripe +
5590 sub_stripes - 1))
a1d3c478 5591 bbio->stripes[i].length -=
fce3bb9a 5592 stripe_end_offset;
b89203f7 5593
ec9ef7a1
LZ
5594 if (i == sub_stripes - 1)
5595 stripe_offset = 0;
fce3bb9a 5596 } else
a1d3c478 5597 bbio->stripes[i].length = *length;
fce3bb9a
LD
5598
5599 stripe_index++;
5600 if (stripe_index == map->num_stripes) {
5601 /* This could only happen for RAID0/10 */
5602 stripe_index = 0;
5603 stripe_nr++;
5604 }
5605 }
5606 } else {
5607 for (i = 0; i < num_stripes; i++) {
a1d3c478 5608 bbio->stripes[i].physical =
212a17ab
LT
5609 map->stripes[stripe_index].physical +
5610 stripe_offset +
5611 stripe_nr * map->stripe_len;
a1d3c478 5612 bbio->stripes[i].dev =
212a17ab 5613 map->stripes[stripe_index].dev;
fce3bb9a 5614 stripe_index++;
f2d8d74d 5615 }
593060d7 5616 }
de11cc12 5617
d20983b4
MX
5618 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5619 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5620
8e5cfb55
ZL
5621 if (bbio->raid_map)
5622 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5623
2c8cdd6e 5624 tgtdev_indexes = 0;
472262f3
SB
5625 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5626 dev_replace->tgtdev != NULL) {
5627 int index_where_to_add;
5628 u64 srcdev_devid = dev_replace->srcdev->devid;
5629
5630 /*
5631 * duplicate the write operations while the dev replace
5632 * procedure is running. Since the copying of the old disk
5633 * to the new disk takes place at run time while the
5634 * filesystem is mounted writable, the regular write
5635 * operations to the old disk have to be duplicated to go
5636 * to the new disk as well.
5637 * Note that device->missing is handled by the caller, and
5638 * that the write to the old disk is already set up in the
5639 * stripes array.
5640 */
5641 index_where_to_add = num_stripes;
5642 for (i = 0; i < num_stripes; i++) {
5643 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5644 /* write to new disk, too */
5645 struct btrfs_bio_stripe *new =
5646 bbio->stripes + index_where_to_add;
5647 struct btrfs_bio_stripe *old =
5648 bbio->stripes + i;
5649
5650 new->physical = old->physical;
5651 new->length = old->length;
5652 new->dev = dev_replace->tgtdev;
2c8cdd6e 5653 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5654 index_where_to_add++;
5655 max_errors++;
2c8cdd6e 5656 tgtdev_indexes++;
472262f3
SB
5657 }
5658 }
5659 num_stripes = index_where_to_add;
ad6d620e
SB
5660 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5661 dev_replace->tgtdev != NULL) {
5662 u64 srcdev_devid = dev_replace->srcdev->devid;
5663 int index_srcdev = 0;
5664 int found = 0;
5665 u64 physical_of_found = 0;
5666
5667 /*
5668 * During the dev-replace procedure, the target drive can
5669 * also be used to read data in case it is needed to repair
5670 * a corrupt block elsewhere. This is possible if the
5671 * requested area is left of the left cursor. In this area,
5672 * the target drive is a full copy of the source drive.
5673 */
5674 for (i = 0; i < num_stripes; i++) {
5675 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5676 /*
5677 * In case of DUP, in order to keep it
5678 * simple, only add the mirror with the
5679 * lowest physical address
5680 */
5681 if (found &&
5682 physical_of_found <=
5683 bbio->stripes[i].physical)
5684 continue;
5685 index_srcdev = i;
5686 found = 1;
5687 physical_of_found = bbio->stripes[i].physical;
5688 }
5689 }
5690 if (found) {
258ece02 5691 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5692 dev_replace->cursor_left) {
5693 struct btrfs_bio_stripe *tgtdev_stripe =
5694 bbio->stripes + num_stripes;
5695
5696 tgtdev_stripe->physical = physical_of_found;
5697 tgtdev_stripe->length =
5698 bbio->stripes[index_srcdev].length;
5699 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5700 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5701
2c8cdd6e 5702 tgtdev_indexes++;
ad6d620e
SB
5703 num_stripes++;
5704 }
5705 }
472262f3
SB
5706 }
5707
de11cc12 5708 *bbio_ret = bbio;
10f11900 5709 bbio->map_type = map->type;
de11cc12
LZ
5710 bbio->num_stripes = num_stripes;
5711 bbio->max_errors = max_errors;
5712 bbio->mirror_num = mirror_num;
2c8cdd6e 5713 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5714
5715 /*
5716 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5717 * mirror_num == num_stripes + 1 && dev_replace target drive is
5718 * available as a mirror
5719 */
5720 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5721 WARN_ON(num_stripes > 1);
5722 bbio->stripes[0].dev = dev_replace->tgtdev;
5723 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5724 bbio->mirror_num = map->num_stripes + 1;
5725 }
cea9e445 5726out:
73beece9
LB
5727 if (dev_replace_is_ongoing) {
5728 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5729 btrfs_dev_replace_unlock(dev_replace, 0);
5730 }
0b86a832 5731 free_extent_map(em);
de11cc12 5732 return ret;
0b86a832
CM
5733}
5734
3ec706c8 5735int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5736 u64 logical, u64 *length,
a1d3c478 5737 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5738{
3ec706c8 5739 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5740 mirror_num, 0);
f2d8d74d
CM
5741}
5742
af8e2d1d
MX
5743/* For Scrub/replace */
5744int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5745 u64 logical, u64 *length,
5746 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5747 int need_raid_map)
af8e2d1d
MX
5748{
5749 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5750 mirror_num, need_raid_map);
af8e2d1d
MX
5751}
5752
a512bbf8
YZ
5753int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5754 u64 chunk_start, u64 physical, u64 devid,
5755 u64 **logical, int *naddrs, int *stripe_len)
5756{
5757 struct extent_map_tree *em_tree = &map_tree->map_tree;
5758 struct extent_map *em;
5759 struct map_lookup *map;
5760 u64 *buf;
5761 u64 bytenr;
5762 u64 length;
5763 u64 stripe_nr;
53b381b3 5764 u64 rmap_len;
a512bbf8
YZ
5765 int i, j, nr = 0;
5766
890871be 5767 read_lock(&em_tree->lock);
a512bbf8 5768 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5769 read_unlock(&em_tree->lock);
a512bbf8 5770
835d974f 5771 if (!em) {
efe120a0 5772 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5773 chunk_start);
5774 return -EIO;
5775 }
5776
5777 if (em->start != chunk_start) {
efe120a0 5778 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5779 em->start, chunk_start);
5780 free_extent_map(em);
5781 return -EIO;
5782 }
95617d69 5783 map = em->map_lookup;
a512bbf8
YZ
5784
5785 length = em->len;
53b381b3
DW
5786 rmap_len = map->stripe_len;
5787
a512bbf8 5788 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5789 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5790 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5791 length = div_u64(length, map->num_stripes);
ffe2d203 5792 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5793 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5794 rmap_len = map->stripe_len * nr_data_stripes(map);
5795 }
a512bbf8 5796
31e818fe 5797 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5798 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5799
5800 for (i = 0; i < map->num_stripes; i++) {
5801 if (devid && map->stripes[i].dev->devid != devid)
5802 continue;
5803 if (map->stripes[i].physical > physical ||
5804 map->stripes[i].physical + length <= physical)
5805 continue;
5806
5807 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5808 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5809
5810 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5811 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5812 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5813 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5814 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5815 } /* else if RAID[56], multiply by nr_data_stripes().
5816 * Alternatively, just use rmap_len below instead of
5817 * map->stripe_len */
5818
5819 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5820 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5821 for (j = 0; j < nr; j++) {
5822 if (buf[j] == bytenr)
5823 break;
5824 }
934d375b
CM
5825 if (j == nr) {
5826 WARN_ON(nr >= map->num_stripes);
a512bbf8 5827 buf[nr++] = bytenr;
934d375b 5828 }
a512bbf8
YZ
5829 }
5830
a512bbf8
YZ
5831 *logical = buf;
5832 *naddrs = nr;
53b381b3 5833 *stripe_len = rmap_len;
a512bbf8
YZ
5834
5835 free_extent_map(em);
5836 return 0;
f2d8d74d
CM
5837}
5838
4246a0b6 5839static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5840{
326e1dbb
MS
5841 bio->bi_private = bbio->private;
5842 bio->bi_end_io = bbio->end_io;
4246a0b6 5843 bio_endio(bio);
326e1dbb 5844
6e9606d2 5845 btrfs_put_bbio(bbio);
8408c716
MX
5846}
5847
4246a0b6 5848static void btrfs_end_bio(struct bio *bio)
8790d502 5849{
9be3395b 5850 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5851 int is_orig_bio = 0;
8790d502 5852
4246a0b6 5853 if (bio->bi_error) {
a1d3c478 5854 atomic_inc(&bbio->error);
4246a0b6 5855 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5856 unsigned int stripe_index =
9be3395b 5857 btrfs_io_bio(bio)->stripe_index;
65f53338 5858 struct btrfs_device *dev;
442a4f63
SB
5859
5860 BUG_ON(stripe_index >= bbio->num_stripes);
5861 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5862 if (dev->bdev) {
5863 if (bio->bi_rw & WRITE)
5864 btrfs_dev_stat_inc(dev,
5865 BTRFS_DEV_STAT_WRITE_ERRS);
5866 else
5867 btrfs_dev_stat_inc(dev,
5868 BTRFS_DEV_STAT_READ_ERRS);
5869 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5870 btrfs_dev_stat_inc(dev,
5871 BTRFS_DEV_STAT_FLUSH_ERRS);
5872 btrfs_dev_stat_print_on_error(dev);
5873 }
442a4f63
SB
5874 }
5875 }
8790d502 5876
a1d3c478 5877 if (bio == bbio->orig_bio)
7d2b4daa
CM
5878 is_orig_bio = 1;
5879
c404e0dc
MX
5880 btrfs_bio_counter_dec(bbio->fs_info);
5881
a1d3c478 5882 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5883 if (!is_orig_bio) {
5884 bio_put(bio);
a1d3c478 5885 bio = bbio->orig_bio;
7d2b4daa 5886 }
c7b22bb1 5887
9be3395b 5888 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5889 /* only send an error to the higher layers if it is
53b381b3 5890 * beyond the tolerance of the btrfs bio
a236aed1 5891 */
a1d3c478 5892 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5893 bio->bi_error = -EIO;
5dbc8fca 5894 } else {
1259ab75
CM
5895 /*
5896 * this bio is actually up to date, we didn't
5897 * go over the max number of errors
5898 */
4246a0b6 5899 bio->bi_error = 0;
1259ab75 5900 }
c55f1396 5901
4246a0b6 5902 btrfs_end_bbio(bbio, bio);
7d2b4daa 5903 } else if (!is_orig_bio) {
8790d502
CM
5904 bio_put(bio);
5905 }
8790d502
CM
5906}
5907
8b712842
CM
5908/*
5909 * see run_scheduled_bios for a description of why bios are collected for
5910 * async submit.
5911 *
5912 * This will add one bio to the pending list for a device and make sure
5913 * the work struct is scheduled.
5914 */
48a3b636
ES
5915static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5916 struct btrfs_device *device,
5917 int rw, struct bio *bio)
8b712842
CM
5918{
5919 int should_queue = 1;
ffbd517d 5920 struct btrfs_pending_bios *pending_bios;
8b712842 5921
53b381b3 5922 if (device->missing || !device->bdev) {
4246a0b6 5923 bio_io_error(bio);
53b381b3
DW
5924 return;
5925 }
5926
8b712842 5927 /* don't bother with additional async steps for reads, right now */
7b6d91da 5928 if (!(rw & REQ_WRITE)) {
492bb6de 5929 bio_get(bio);
21adbd5c 5930 btrfsic_submit_bio(rw, bio);
492bb6de 5931 bio_put(bio);
143bede5 5932 return;
8b712842
CM
5933 }
5934
5935 /*
0986fe9e 5936 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5937 * higher layers. Otherwise, the async bio makes it appear we have
5938 * made progress against dirty pages when we've really just put it
5939 * on a queue for later
5940 */
0986fe9e 5941 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5942 WARN_ON(bio->bi_next);
8b712842
CM
5943 bio->bi_next = NULL;
5944 bio->bi_rw |= rw;
5945
5946 spin_lock(&device->io_lock);
7b6d91da 5947 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5948 pending_bios = &device->pending_sync_bios;
5949 else
5950 pending_bios = &device->pending_bios;
8b712842 5951
ffbd517d
CM
5952 if (pending_bios->tail)
5953 pending_bios->tail->bi_next = bio;
8b712842 5954
ffbd517d
CM
5955 pending_bios->tail = bio;
5956 if (!pending_bios->head)
5957 pending_bios->head = bio;
8b712842
CM
5958 if (device->running_pending)
5959 should_queue = 0;
5960
5961 spin_unlock(&device->io_lock);
5962
5963 if (should_queue)
a8c93d4e
QW
5964 btrfs_queue_work(root->fs_info->submit_workers,
5965 &device->work);
8b712842
CM
5966}
5967
de1ee92a
JB
5968static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5969 struct bio *bio, u64 physical, int dev_nr,
5970 int rw, int async)
5971{
5972 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5973
5974 bio->bi_private = bbio;
9be3395b 5975 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5976 bio->bi_end_io = btrfs_end_bio;
4f024f37 5977 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5978#ifdef DEBUG
5979 {
5980 struct rcu_string *name;
5981
5982 rcu_read_lock();
5983 name = rcu_dereference(dev->name);
d1423248 5984 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5985 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5986 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5987 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5988 rcu_read_unlock();
5989 }
5990#endif
5991 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5992
5993 btrfs_bio_counter_inc_noblocked(root->fs_info);
5994
de1ee92a 5995 if (async)
53b381b3 5996 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5997 else
5998 btrfsic_submit_bio(rw, bio);
5999}
6000
de1ee92a
JB
6001static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6002{
6003 atomic_inc(&bbio->error);
6004 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
6005 /* Shoud be the original bio. */
6006 WARN_ON(bio != bbio->orig_bio);
6007
9be3395b 6008 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6009 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6010 bio->bi_error = -EIO;
6011 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6012 }
6013}
6014
f188591e 6015int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6016 int mirror_num, int async_submit)
0b86a832 6017{
0b86a832 6018 struct btrfs_device *dev;
8790d502 6019 struct bio *first_bio = bio;
4f024f37 6020 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6021 u64 length = 0;
6022 u64 map_length;
0b86a832 6023 int ret;
08da757d
ZL
6024 int dev_nr;
6025 int total_devs;
a1d3c478 6026 struct btrfs_bio *bbio = NULL;
0b86a832 6027
4f024f37 6028 length = bio->bi_iter.bi_size;
0b86a832 6029 map_length = length;
cea9e445 6030
c404e0dc 6031 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6032 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6033 mirror_num, 1);
c404e0dc
MX
6034 if (ret) {
6035 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6036 return ret;
c404e0dc 6037 }
cea9e445 6038
a1d3c478 6039 total_devs = bbio->num_stripes;
53b381b3
DW
6040 bbio->orig_bio = first_bio;
6041 bbio->private = first_bio->bi_private;
6042 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6043 bbio->fs_info = root->fs_info;
53b381b3
DW
6044 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6045
ad1ba2a0
ZL
6046 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6047 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6048 /* In this case, map_length has been set to the length of
6049 a single stripe; not the whole write */
6050 if (rw & WRITE) {
8e5cfb55 6051 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6052 } else {
8e5cfb55 6053 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6054 mirror_num, 1);
53b381b3 6055 }
4245215d 6056
c404e0dc
MX
6057 btrfs_bio_counter_dec(root->fs_info);
6058 return ret;
53b381b3
DW
6059 }
6060
cea9e445 6061 if (map_length < length) {
c2cf52eb 6062 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6063 logical, length, map_length);
cea9e445
CM
6064 BUG();
6065 }
a1d3c478 6066
08da757d 6067 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6068 dev = bbio->stripes[dev_nr].dev;
6069 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6070 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6071 continue;
6072 }
6073
a1d3c478 6074 if (dev_nr < total_devs - 1) {
9be3395b 6075 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6076 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6077 } else
a1d3c478 6078 bio = first_bio;
de1ee92a
JB
6079
6080 submit_stripe_bio(root, bbio, bio,
6081 bbio->stripes[dev_nr].physical, dev_nr, rw,
6082 async_submit);
8790d502 6083 }
c404e0dc 6084 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6085 return 0;
6086}
6087
aa1b8cd4 6088struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6089 u8 *uuid, u8 *fsid)
0b86a832 6090{
2b82032c
YZ
6091 struct btrfs_device *device;
6092 struct btrfs_fs_devices *cur_devices;
6093
aa1b8cd4 6094 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6095 while (cur_devices) {
6096 if (!fsid ||
6097 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6098 device = __find_device(&cur_devices->devices,
6099 devid, uuid);
6100 if (device)
6101 return device;
6102 }
6103 cur_devices = cur_devices->seed;
6104 }
6105 return NULL;
0b86a832
CM
6106}
6107
dfe25020 6108static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6109 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6110 u64 devid, u8 *dev_uuid)
6111{
6112 struct btrfs_device *device;
dfe25020 6113
12bd2fc0
ID
6114 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6115 if (IS_ERR(device))
7cbd8a83 6116 return NULL;
12bd2fc0
ID
6117
6118 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6119 device->fs_devices = fs_devices;
dfe25020 6120 fs_devices->num_devices++;
12bd2fc0
ID
6121
6122 device->missing = 1;
cd02dca5 6123 fs_devices->missing_devices++;
12bd2fc0 6124
dfe25020
CM
6125 return device;
6126}
6127
12bd2fc0
ID
6128/**
6129 * btrfs_alloc_device - allocate struct btrfs_device
6130 * @fs_info: used only for generating a new devid, can be NULL if
6131 * devid is provided (i.e. @devid != NULL).
6132 * @devid: a pointer to devid for this device. If NULL a new devid
6133 * is generated.
6134 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6135 * is generated.
6136 *
6137 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6138 * on error. Returned struct is not linked onto any lists and can be
6139 * destroyed with kfree() right away.
6140 */
6141struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6142 const u64 *devid,
6143 const u8 *uuid)
6144{
6145 struct btrfs_device *dev;
6146 u64 tmp;
6147
fae7f21c 6148 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6149 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6150
6151 dev = __alloc_device();
6152 if (IS_ERR(dev))
6153 return dev;
6154
6155 if (devid)
6156 tmp = *devid;
6157 else {
6158 int ret;
6159
6160 ret = find_next_devid(fs_info, &tmp);
6161 if (ret) {
6162 kfree(dev);
6163 return ERR_PTR(ret);
6164 }
6165 }
6166 dev->devid = tmp;
6167
6168 if (uuid)
6169 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6170 else
6171 generate_random_uuid(dev->uuid);
6172
9e0af237
LB
6173 btrfs_init_work(&dev->work, btrfs_submit_helper,
6174 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6175
6176 return dev;
6177}
6178
0b86a832
CM
6179static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6180 struct extent_buffer *leaf,
6181 struct btrfs_chunk *chunk)
6182{
6183 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6184 struct map_lookup *map;
6185 struct extent_map *em;
6186 u64 logical;
6187 u64 length;
f04b772b 6188 u64 stripe_len;
0b86a832 6189 u64 devid;
a443755f 6190 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6191 int num_stripes;
0b86a832 6192 int ret;
593060d7 6193 int i;
0b86a832 6194
e17cade2
CM
6195 logical = key->offset;
6196 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6197 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6198 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6199 /* Validation check */
6200 if (!num_stripes) {
6201 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6202 num_stripes);
6203 return -EIO;
6204 }
6205 if (!IS_ALIGNED(logical, root->sectorsize)) {
6206 btrfs_err(root->fs_info,
6207 "invalid chunk logical %llu", logical);
6208 return -EIO;
6209 }
6210 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6211 btrfs_err(root->fs_info,
6212 "invalid chunk length %llu", length);
6213 return -EIO;
6214 }
6215 if (!is_power_of_2(stripe_len)) {
6216 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6217 stripe_len);
6218 return -EIO;
6219 }
6220 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6221 btrfs_chunk_type(leaf, chunk)) {
6222 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6223 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6224 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6225 btrfs_chunk_type(leaf, chunk));
6226 return -EIO;
6227 }
a061fc8d 6228
890871be 6229 read_lock(&map_tree->map_tree.lock);
0b86a832 6230 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6231 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6232
6233 /* already mapped? */
6234 if (em && em->start <= logical && em->start + em->len > logical) {
6235 free_extent_map(em);
0b86a832
CM
6236 return 0;
6237 } else if (em) {
6238 free_extent_map(em);
6239 }
0b86a832 6240
172ddd60 6241 em = alloc_extent_map();
0b86a832
CM
6242 if (!em)
6243 return -ENOMEM;
593060d7 6244 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6245 if (!map) {
6246 free_extent_map(em);
6247 return -ENOMEM;
6248 }
6249
298a8f9c 6250 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6251 em->map_lookup = map;
0b86a832
CM
6252 em->start = logical;
6253 em->len = length;
70c8a91c 6254 em->orig_start = 0;
0b86a832 6255 em->block_start = 0;
c8b97818 6256 em->block_len = em->len;
0b86a832 6257
593060d7
CM
6258 map->num_stripes = num_stripes;
6259 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6260 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6261 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6262 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6263 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6264 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6265 for (i = 0; i < num_stripes; i++) {
6266 map->stripes[i].physical =
6267 btrfs_stripe_offset_nr(leaf, chunk, i);
6268 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6269 read_extent_buffer(leaf, uuid, (unsigned long)
6270 btrfs_stripe_dev_uuid_nr(chunk, i),
6271 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6272 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6273 uuid, NULL);
dfe25020 6274 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6275 free_extent_map(em);
6276 return -EIO;
6277 }
dfe25020
CM
6278 if (!map->stripes[i].dev) {
6279 map->stripes[i].dev =
5f375835
MX
6280 add_missing_dev(root, root->fs_info->fs_devices,
6281 devid, uuid);
dfe25020 6282 if (!map->stripes[i].dev) {
dfe25020
CM
6283 free_extent_map(em);
6284 return -EIO;
6285 }
816fcebe
AJ
6286 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6287 devid, uuid);
dfe25020
CM
6288 }
6289 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6290 }
6291
890871be 6292 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6293 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6294 write_unlock(&map_tree->map_tree.lock);
79787eaa 6295 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6296 free_extent_map(em);
6297
6298 return 0;
6299}
6300
143bede5 6301static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6302 struct btrfs_dev_item *dev_item,
6303 struct btrfs_device *device)
6304{
6305 unsigned long ptr;
0b86a832
CM
6306
6307 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6308 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6309 device->total_bytes = device->disk_total_bytes;
935e5cc9 6310 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6311 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6312 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6313 device->type = btrfs_device_type(leaf, dev_item);
6314 device->io_align = btrfs_device_io_align(leaf, dev_item);
6315 device->io_width = btrfs_device_io_width(leaf, dev_item);
6316 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6317 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6318 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6319
410ba3a2 6320 ptr = btrfs_device_uuid(dev_item);
e17cade2 6321 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6322}
6323
5f375835
MX
6324static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6325 u8 *fsid)
2b82032c
YZ
6326{
6327 struct btrfs_fs_devices *fs_devices;
6328 int ret;
6329
b367e47f 6330 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6331
6332 fs_devices = root->fs_info->fs_devices->seed;
6333 while (fs_devices) {
5f375835
MX
6334 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6335 return fs_devices;
6336
2b82032c
YZ
6337 fs_devices = fs_devices->seed;
6338 }
6339
6340 fs_devices = find_fsid(fsid);
6341 if (!fs_devices) {
5f375835
MX
6342 if (!btrfs_test_opt(root, DEGRADED))
6343 return ERR_PTR(-ENOENT);
6344
6345 fs_devices = alloc_fs_devices(fsid);
6346 if (IS_ERR(fs_devices))
6347 return fs_devices;
6348
6349 fs_devices->seeding = 1;
6350 fs_devices->opened = 1;
6351 return fs_devices;
2b82032c 6352 }
e4404d6e
YZ
6353
6354 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6355 if (IS_ERR(fs_devices))
6356 return fs_devices;
2b82032c 6357
97288f2c 6358 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6359 root->fs_info->bdev_holder);
48d28232
JL
6360 if (ret) {
6361 free_fs_devices(fs_devices);
5f375835 6362 fs_devices = ERR_PTR(ret);
2b82032c 6363 goto out;
48d28232 6364 }
2b82032c
YZ
6365
6366 if (!fs_devices->seeding) {
6367 __btrfs_close_devices(fs_devices);
e4404d6e 6368 free_fs_devices(fs_devices);
5f375835 6369 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6370 goto out;
6371 }
6372
6373 fs_devices->seed = root->fs_info->fs_devices->seed;
6374 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6375out:
5f375835 6376 return fs_devices;
2b82032c
YZ
6377}
6378
0d81ba5d 6379static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6380 struct extent_buffer *leaf,
6381 struct btrfs_dev_item *dev_item)
6382{
5f375835 6383 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6384 struct btrfs_device *device;
6385 u64 devid;
6386 int ret;
2b82032c 6387 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6388 u8 dev_uuid[BTRFS_UUID_SIZE];
6389
0b86a832 6390 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6391 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6392 BTRFS_UUID_SIZE);
1473b24e 6393 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6394 BTRFS_UUID_SIZE);
6395
6396 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6397 fs_devices = open_seed_devices(root, fs_uuid);
6398 if (IS_ERR(fs_devices))
6399 return PTR_ERR(fs_devices);
2b82032c
YZ
6400 }
6401
aa1b8cd4 6402 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6403 if (!device) {
e4404d6e 6404 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6405 return -EIO;
6406
5f375835
MX
6407 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6408 if (!device)
6409 return -ENOMEM;
33b97e43
AJ
6410 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6411 devid, dev_uuid);
5f375835
MX
6412 } else {
6413 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6414 return -EIO;
6415
6416 if(!device->bdev && !device->missing) {
cd02dca5
CM
6417 /*
6418 * this happens when a device that was properly setup
6419 * in the device info lists suddenly goes bad.
6420 * device->bdev is NULL, and so we have to set
6421 * device->missing to one here
6422 */
5f375835 6423 device->fs_devices->missing_devices++;
cd02dca5 6424 device->missing = 1;
2b82032c 6425 }
5f375835
MX
6426
6427 /* Move the device to its own fs_devices */
6428 if (device->fs_devices != fs_devices) {
6429 ASSERT(device->missing);
6430
6431 list_move(&device->dev_list, &fs_devices->devices);
6432 device->fs_devices->num_devices--;
6433 fs_devices->num_devices++;
6434
6435 device->fs_devices->missing_devices--;
6436 fs_devices->missing_devices++;
6437
6438 device->fs_devices = fs_devices;
6439 }
2b82032c
YZ
6440 }
6441
6442 if (device->fs_devices != root->fs_info->fs_devices) {
6443 BUG_ON(device->writeable);
6444 if (device->generation !=
6445 btrfs_device_generation(leaf, dev_item))
6446 return -EINVAL;
6324fbf3 6447 }
0b86a832
CM
6448
6449 fill_device_from_item(leaf, dev_item, device);
dfe25020 6450 device->in_fs_metadata = 1;
63a212ab 6451 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6452 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6453 spin_lock(&root->fs_info->free_chunk_lock);
6454 root->fs_info->free_chunk_space += device->total_bytes -
6455 device->bytes_used;
6456 spin_unlock(&root->fs_info->free_chunk_lock);
6457 }
0b86a832 6458 ret = 0;
0b86a832
CM
6459 return ret;
6460}
6461
e4404d6e 6462int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6463{
6c41761f 6464 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6465 struct extent_buffer *sb;
0b86a832 6466 struct btrfs_disk_key *disk_key;
0b86a832 6467 struct btrfs_chunk *chunk;
1ffb22cf
DS
6468 u8 *array_ptr;
6469 unsigned long sb_array_offset;
84eed90f 6470 int ret = 0;
0b86a832
CM
6471 u32 num_stripes;
6472 u32 array_size;
6473 u32 len = 0;
1ffb22cf 6474 u32 cur_offset;
84eed90f 6475 struct btrfs_key key;
0b86a832 6476
a83fffb7
DS
6477 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6478 /*
6479 * This will create extent buffer of nodesize, superblock size is
6480 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6481 * overallocate but we can keep it as-is, only the first page is used.
6482 */
6483 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6484 if (!sb)
6485 return -ENOMEM;
4db8c528 6486 set_extent_buffer_uptodate(sb);
85d4e461 6487 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6488 /*
6489 * The sb extent buffer is artifical and just used to read the system array.
4db8c528 6490 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6491 * pages up-to-date when the page is larger: extent does not cover the
6492 * whole page and consequently check_page_uptodate does not find all
6493 * the page's extents up-to-date (the hole beyond sb),
6494 * write_extent_buffer then triggers a WARN_ON.
6495 *
6496 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6497 * but sb spans only this function. Add an explicit SetPageUptodate call
6498 * to silence the warning eg. on PowerPC 64.
6499 */
09cbfeaf 6500 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6501 SetPageUptodate(sb->pages[0]);
4008c04a 6502
a061fc8d 6503 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6504 array_size = btrfs_super_sys_array_size(super_copy);
6505
1ffb22cf
DS
6506 array_ptr = super_copy->sys_chunk_array;
6507 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6508 cur_offset = 0;
0b86a832 6509
1ffb22cf
DS
6510 while (cur_offset < array_size) {
6511 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6512 len = sizeof(*disk_key);
6513 if (cur_offset + len > array_size)
6514 goto out_short_read;
6515
0b86a832
CM
6516 btrfs_disk_key_to_cpu(&key, disk_key);
6517
1ffb22cf
DS
6518 array_ptr += len;
6519 sb_array_offset += len;
6520 cur_offset += len;
0b86a832 6521
0d81ba5d 6522 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6523 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6524 /*
6525 * At least one btrfs_chunk with one stripe must be
6526 * present, exact stripe count check comes afterwards
6527 */
6528 len = btrfs_chunk_item_size(1);
6529 if (cur_offset + len > array_size)
6530 goto out_short_read;
6531
6532 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6533 if (!num_stripes) {
6534 printk(KERN_ERR
6535 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6536 num_stripes, cur_offset);
6537 ret = -EIO;
6538 break;
6539 }
6540
e3540eab
DS
6541 len = btrfs_chunk_item_size(num_stripes);
6542 if (cur_offset + len > array_size)
6543 goto out_short_read;
6544
0d81ba5d 6545 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6546 if (ret)
6547 break;
0b86a832 6548 } else {
93a3d467
DS
6549 printk(KERN_ERR
6550 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6551 (u32)key.type, cur_offset);
84eed90f
CM
6552 ret = -EIO;
6553 break;
0b86a832 6554 }
1ffb22cf
DS
6555 array_ptr += len;
6556 sb_array_offset += len;
6557 cur_offset += len;
0b86a832 6558 }
a061fc8d 6559 free_extent_buffer(sb);
84eed90f 6560 return ret;
e3540eab
DS
6561
6562out_short_read:
6563 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6564 len, cur_offset);
6565 free_extent_buffer(sb);
6566 return -EIO;
0b86a832
CM
6567}
6568
6569int btrfs_read_chunk_tree(struct btrfs_root *root)
6570{
6571 struct btrfs_path *path;
6572 struct extent_buffer *leaf;
6573 struct btrfs_key key;
6574 struct btrfs_key found_key;
6575 int ret;
6576 int slot;
6577
6578 root = root->fs_info->chunk_root;
6579
6580 path = btrfs_alloc_path();
6581 if (!path)
6582 return -ENOMEM;
6583
b367e47f
LZ
6584 mutex_lock(&uuid_mutex);
6585 lock_chunks(root);
6586
395927a9
FDBM
6587 /*
6588 * Read all device items, and then all the chunk items. All
6589 * device items are found before any chunk item (their object id
6590 * is smaller than the lowest possible object id for a chunk
6591 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6592 */
6593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6594 key.offset = 0;
6595 key.type = 0;
0b86a832 6596 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6597 if (ret < 0)
6598 goto error;
d397712b 6599 while (1) {
0b86a832
CM
6600 leaf = path->nodes[0];
6601 slot = path->slots[0];
6602 if (slot >= btrfs_header_nritems(leaf)) {
6603 ret = btrfs_next_leaf(root, path);
6604 if (ret == 0)
6605 continue;
6606 if (ret < 0)
6607 goto error;
6608 break;
6609 }
6610 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6611 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6612 struct btrfs_dev_item *dev_item;
6613 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6614 struct btrfs_dev_item);
395927a9
FDBM
6615 ret = read_one_dev(root, leaf, dev_item);
6616 if (ret)
6617 goto error;
0b86a832
CM
6618 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6619 struct btrfs_chunk *chunk;
6620 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6621 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6622 if (ret)
6623 goto error;
0b86a832
CM
6624 }
6625 path->slots[0]++;
6626 }
0b86a832
CM
6627 ret = 0;
6628error:
b367e47f
LZ
6629 unlock_chunks(root);
6630 mutex_unlock(&uuid_mutex);
6631
2b82032c 6632 btrfs_free_path(path);
0b86a832
CM
6633 return ret;
6634}
442a4f63 6635
cb517eab
MX
6636void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6637{
6638 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6639 struct btrfs_device *device;
6640
29cc83f6
LB
6641 while (fs_devices) {
6642 mutex_lock(&fs_devices->device_list_mutex);
6643 list_for_each_entry(device, &fs_devices->devices, dev_list)
6644 device->dev_root = fs_info->dev_root;
6645 mutex_unlock(&fs_devices->device_list_mutex);
6646
6647 fs_devices = fs_devices->seed;
6648 }
cb517eab
MX
6649}
6650
733f4fbb
SB
6651static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6652{
6653 int i;
6654
6655 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6656 btrfs_dev_stat_reset(dev, i);
6657}
6658
6659int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6660{
6661 struct btrfs_key key;
6662 struct btrfs_key found_key;
6663 struct btrfs_root *dev_root = fs_info->dev_root;
6664 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6665 struct extent_buffer *eb;
6666 int slot;
6667 int ret = 0;
6668 struct btrfs_device *device;
6669 struct btrfs_path *path = NULL;
6670 int i;
6671
6672 path = btrfs_alloc_path();
6673 if (!path) {
6674 ret = -ENOMEM;
6675 goto out;
6676 }
6677
6678 mutex_lock(&fs_devices->device_list_mutex);
6679 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6680 int item_size;
6681 struct btrfs_dev_stats_item *ptr;
6682
242e2956
DS
6683 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6684 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6685 key.offset = device->devid;
6686 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6687 if (ret) {
733f4fbb
SB
6688 __btrfs_reset_dev_stats(device);
6689 device->dev_stats_valid = 1;
6690 btrfs_release_path(path);
6691 continue;
6692 }
6693 slot = path->slots[0];
6694 eb = path->nodes[0];
6695 btrfs_item_key_to_cpu(eb, &found_key, slot);
6696 item_size = btrfs_item_size_nr(eb, slot);
6697
6698 ptr = btrfs_item_ptr(eb, slot,
6699 struct btrfs_dev_stats_item);
6700
6701 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6702 if (item_size >= (1 + i) * sizeof(__le64))
6703 btrfs_dev_stat_set(device, i,
6704 btrfs_dev_stats_value(eb, ptr, i));
6705 else
6706 btrfs_dev_stat_reset(device, i);
6707 }
6708
6709 device->dev_stats_valid = 1;
6710 btrfs_dev_stat_print_on_load(device);
6711 btrfs_release_path(path);
6712 }
6713 mutex_unlock(&fs_devices->device_list_mutex);
6714
6715out:
6716 btrfs_free_path(path);
6717 return ret < 0 ? ret : 0;
6718}
6719
6720static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6721 struct btrfs_root *dev_root,
6722 struct btrfs_device *device)
6723{
6724 struct btrfs_path *path;
6725 struct btrfs_key key;
6726 struct extent_buffer *eb;
6727 struct btrfs_dev_stats_item *ptr;
6728 int ret;
6729 int i;
6730
242e2956
DS
6731 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6732 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6733 key.offset = device->devid;
6734
6735 path = btrfs_alloc_path();
6736 BUG_ON(!path);
6737 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6738 if (ret < 0) {
ecaeb14b
DS
6739 btrfs_warn_in_rcu(dev_root->fs_info,
6740 "error %d while searching for dev_stats item for device %s",
606686ee 6741 ret, rcu_str_deref(device->name));
733f4fbb
SB
6742 goto out;
6743 }
6744
6745 if (ret == 0 &&
6746 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6747 /* need to delete old one and insert a new one */
6748 ret = btrfs_del_item(trans, dev_root, path);
6749 if (ret != 0) {
ecaeb14b
DS
6750 btrfs_warn_in_rcu(dev_root->fs_info,
6751 "delete too small dev_stats item for device %s failed %d",
606686ee 6752 rcu_str_deref(device->name), ret);
733f4fbb
SB
6753 goto out;
6754 }
6755 ret = 1;
6756 }
6757
6758 if (ret == 1) {
6759 /* need to insert a new item */
6760 btrfs_release_path(path);
6761 ret = btrfs_insert_empty_item(trans, dev_root, path,
6762 &key, sizeof(*ptr));
6763 if (ret < 0) {
ecaeb14b
DS
6764 btrfs_warn_in_rcu(dev_root->fs_info,
6765 "insert dev_stats item for device %s failed %d",
6766 rcu_str_deref(device->name), ret);
733f4fbb
SB
6767 goto out;
6768 }
6769 }
6770
6771 eb = path->nodes[0];
6772 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6774 btrfs_set_dev_stats_value(eb, ptr, i,
6775 btrfs_dev_stat_read(device, i));
6776 btrfs_mark_buffer_dirty(eb);
6777
6778out:
6779 btrfs_free_path(path);
6780 return ret;
6781}
6782
6783/*
6784 * called from commit_transaction. Writes all changed device stats to disk.
6785 */
6786int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6787 struct btrfs_fs_info *fs_info)
6788{
6789 struct btrfs_root *dev_root = fs_info->dev_root;
6790 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6791 struct btrfs_device *device;
addc3fa7 6792 int stats_cnt;
733f4fbb
SB
6793 int ret = 0;
6794
6795 mutex_lock(&fs_devices->device_list_mutex);
6796 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6797 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6798 continue;
6799
addc3fa7 6800 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6801 ret = update_dev_stat_item(trans, dev_root, device);
6802 if (!ret)
addc3fa7 6803 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6804 }
6805 mutex_unlock(&fs_devices->device_list_mutex);
6806
6807 return ret;
6808}
6809
442a4f63
SB
6810void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6811{
6812 btrfs_dev_stat_inc(dev, index);
6813 btrfs_dev_stat_print_on_error(dev);
6814}
6815
48a3b636 6816static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6817{
733f4fbb
SB
6818 if (!dev->dev_stats_valid)
6819 return;
b14af3b4
DS
6820 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6821 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6822 rcu_str_deref(dev->name),
442a4f63
SB
6823 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6824 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6825 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6826 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6827 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6828}
c11d2c23 6829
733f4fbb
SB
6830static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6831{
a98cdb85
SB
6832 int i;
6833
6834 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6835 if (btrfs_dev_stat_read(dev, i) != 0)
6836 break;
6837 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6838 return; /* all values == 0, suppress message */
6839
ecaeb14b
DS
6840 btrfs_info_in_rcu(dev->dev_root->fs_info,
6841 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6842 rcu_str_deref(dev->name),
733f4fbb
SB
6843 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6844 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6845 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6846 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6847 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6848}
6849
c11d2c23 6850int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6851 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6852{
6853 struct btrfs_device *dev;
6854 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6855 int i;
6856
6857 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6858 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6859 mutex_unlock(&fs_devices->device_list_mutex);
6860
6861 if (!dev) {
efe120a0 6862 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6863 return -ENODEV;
733f4fbb 6864 } else if (!dev->dev_stats_valid) {
efe120a0 6865 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6866 return -ENODEV;
b27f7c0c 6867 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6868 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6869 if (stats->nr_items > i)
6870 stats->values[i] =
6871 btrfs_dev_stat_read_and_reset(dev, i);
6872 else
6873 btrfs_dev_stat_reset(dev, i);
6874 }
6875 } else {
6876 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6877 if (stats->nr_items > i)
6878 stats->values[i] = btrfs_dev_stat_read(dev, i);
6879 }
6880 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6881 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6882 return 0;
6883}
a8a6dab7 6884
12b1c263 6885void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6886{
6887 struct buffer_head *bh;
6888 struct btrfs_super_block *disk_super;
12b1c263 6889 int copy_num;
a8a6dab7 6890
12b1c263
AJ
6891 if (!bdev)
6892 return;
a8a6dab7 6893
12b1c263
AJ
6894 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6895 copy_num++) {
a8a6dab7 6896
12b1c263
AJ
6897 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6898 continue;
6899
6900 disk_super = (struct btrfs_super_block *)bh->b_data;
6901
6902 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6903 set_buffer_dirty(bh);
6904 sync_dirty_buffer(bh);
6905 brelse(bh);
6906 }
6907
6908 /* Notify udev that device has changed */
6909 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6910
6911 /* Update ctime/mtime for device path for libblkid */
6912 update_dev_time(device_path);
a8a6dab7 6913}
935e5cc9
MX
6914
6915/*
6916 * Update the size of all devices, which is used for writing out the
6917 * super blocks.
6918 */
6919void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6920{
6921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922 struct btrfs_device *curr, *next;
6923
6924 if (list_empty(&fs_devices->resized_devices))
6925 return;
6926
6927 mutex_lock(&fs_devices->device_list_mutex);
6928 lock_chunks(fs_info->dev_root);
6929 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6930 resized_list) {
6931 list_del_init(&curr->resized_list);
6932 curr->commit_total_bytes = curr->disk_total_bytes;
6933 }
6934 unlock_chunks(fs_info->dev_root);
6935 mutex_unlock(&fs_devices->device_list_mutex);
6936}
ce7213c7
MX
6937
6938/* Must be invoked during the transaction commit */
6939void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6940 struct btrfs_transaction *transaction)
6941{
6942 struct extent_map *em;
6943 struct map_lookup *map;
6944 struct btrfs_device *dev;
6945 int i;
6946
6947 if (list_empty(&transaction->pending_chunks))
6948 return;
6949
6950 /* In order to kick the device replace finish process */
6951 lock_chunks(root);
6952 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 6953 map = em->map_lookup;
ce7213c7
MX
6954
6955 for (i = 0; i < map->num_stripes; i++) {
6956 dev = map->stripes[i].dev;
6957 dev->commit_bytes_used = dev->bytes_used;
6958 }
6959 }
6960 unlock_chunks(root);
6961}
5a13f430
AJ
6962
6963void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6964{
6965 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6966 while (fs_devices) {
6967 fs_devices->fs_info = fs_info;
6968 fs_devices = fs_devices->seed;
6969 }
6970}
6971
6972void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6973{
6974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6975 while (fs_devices) {
6976 fs_devices->fs_info = NULL;
6977 fs_devices = fs_devices->seed;
6978 }
6979}
f190aa47 6980
87ad58c5 6981static void btrfs_close_one_device(struct btrfs_device *device)
f190aa47
AJ
6982{
6983 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6984 struct btrfs_device *new_device;
6985 struct rcu_string *name;
6986
6987 if (device->bdev)
6988 fs_devices->open_devices--;
6989
6990 if (device->writeable &&
6991 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6992 list_del_init(&device->dev_alloc_list);
6993 fs_devices->rw_devices--;
6994 }
6995
6996 if (device->missing)
6997 fs_devices->missing_devices--;
6998
6999 new_device = btrfs_alloc_device(NULL, &device->devid,
7000 device->uuid);
7001 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7002
7003 /* Safe because we are under uuid_mutex */
7004 if (device->name) {
7005 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7006 BUG_ON(!name); /* -ENOMEM */
7007 rcu_assign_pointer(new_device->name, name);
7008 }
7009
7010 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7011 new_device->fs_devices = device->fs_devices;
7012
7013 call_rcu(&device->rcu, free_device);
7014}