rnbd-srv: don't pass a holder for non-exclusive blkdev_get_by_path
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
5a0e3ad6 8#include <linux/slab.h>
442a4f63 9#include <linux/ratelimit.h>
59641015 10#include <linux/kthread.h>
803b2f54 11#include <linux/semaphore.h>
8da4b8c4 12#include <linux/uuid.h>
f8e10cd3 13#include <linux/list_sort.h>
54fde91f 14#include <linux/namei.h>
784352fe 15#include "misc.h"
0b86a832
CM
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
53b381b3 22#include "raid56.h"
606686ee 23#include "rcu-string.h"
8dabb742 24#include "dev-replace.h"
99994cde 25#include "sysfs.h"
82fc28fb 26#include "tree-checker.h"
8719aaae 27#include "space-info.h"
aac0023c 28#include "block-group.h"
b0643e59 29#include "discard.h"
5b316468 30#include "zoned.h"
c7f13d42 31#include "fs.h"
07e81dc9 32#include "accessors.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
7f0add25 37#include "super.h"
0b86a832 38
bf08387f
QW
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
af902047
ZL
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 48 .devs_min = 2,
8789f4fe 49 .tolerated_failures = 1,
af902047
ZL
50 .devs_increment = 2,
51 .ncopies = 2,
b50836ed 52 .nparity = 0,
ed23467b 53 .raid_name = "raid10",
41a6e891 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
8789f4fe 62 .tolerated_failures = 1,
af902047
ZL
63 .devs_increment = 2,
64 .ncopies = 2,
b50836ed 65 .nparity = 0,
ed23467b 66 .raid_name = "raid1",
41a6e891 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 69 },
47e6f742
DS
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
cf93e15e 73 .devs_max = 3,
47e6f742
DS
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
db26a024 78 .nparity = 0,
47e6f742
DS
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
8d6fac00
DS
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
cf93e15e 86 .devs_max = 4,
8d6fac00
DS
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
db26a024 91 .nparity = 0,
8d6fac00
DS
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
af902047
ZL
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
8789f4fe 101 .tolerated_failures = 0,
af902047
ZL
102 .devs_increment = 1,
103 .ncopies = 2,
b50836ed 104 .nparity = 0,
ed23467b 105 .raid_name = "dup",
41a6e891 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 107 .mindev_error = 0,
af902047
ZL
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
b2f78e88 113 .devs_min = 1,
8789f4fe 114 .tolerated_failures = 0,
af902047
ZL
115 .devs_increment = 1,
116 .ncopies = 1,
b50836ed 117 .nparity = 0,
ed23467b 118 .raid_name = "raid0",
41a6e891 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 120 .mindev_error = 0,
af902047
ZL
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
8789f4fe 127 .tolerated_failures = 0,
af902047
ZL
128 .devs_increment = 1,
129 .ncopies = 1,
b50836ed 130 .nparity = 0,
ed23467b 131 .raid_name = "single",
41a6e891 132 .bg_flag = 0,
f9fbcaa2 133 .mindev_error = 0,
af902047
ZL
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
8789f4fe 140 .tolerated_failures = 1,
af902047 141 .devs_increment = 1,
da612e31 142 .ncopies = 1,
b50836ed 143 .nparity = 1,
ed23467b 144 .raid_name = "raid5",
41a6e891 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
8789f4fe 153 .tolerated_failures = 2,
af902047 154 .devs_increment = 1,
da612e31 155 .ncopies = 1,
b50836ed 156 .nparity = 2,
ed23467b 157 .raid_name = "raid6",
41a6e891 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
160 },
161};
162
500a44c9
DS
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
719fae89 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
500a44c9 170
719fae89
QW
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
500a44c9
DS
175}
176
158da513 177const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 178{
158da513
DS
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
182 return NULL;
183
158da513 184 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
185}
186
0b30f719
QW
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
f89e09cf
AJ
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
6f8e0fc7 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 251
9c6b1c4d
DS
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 268 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
18c850fd
JB
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
9c6b1c4d
DS
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
18c850fd
JB
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
9c6b1c4d
DS
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
ae3e715f
AJ
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
89595e80
AJ
315 *
316 *
c3e1f96c
GR
317 * Exclusive operations
318 * ====================
89595e80
AJ
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
c3e1f96c
GR
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 348 * The exclusive status is cleared when the device operation is canceled or
89595e80 349 * completed.
9c6b1c4d
DS
350 */
351
67a2c45e 352DEFINE_MUTEX(uuid_mutex);
8a4b83cc 353static LIST_HEAD(fs_uuids);
4143cb8b 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
355{
356 return &fs_uuids;
357}
8a4b83cc 358
2dfeca9b
DS
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
7239ff4b
NB
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
2208a378
ID
370{
371 struct btrfs_fs_devices *fs_devs;
372
78f2c9e6 373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 381 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 382 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 385
7239ff4b
NB
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
2208a378
ID
391 return fs_devs;
392}
393
a425f9d4 394void btrfs_free_device(struct btrfs_device *device)
48dae9cf 395{
bbbf7243 396 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 397 rcu_string_free(device->name);
611ccc58 398 extent_io_tree_release(&device->alloc_state);
5b316468 399 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
400 kfree(device);
401}
402
e4404d6e
YZ
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
5f58d783 406
e4404d6e
YZ
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
a425f9d4 412 btrfs_free_device(device);
e4404d6e
YZ
413 }
414 kfree(fs_devices);
415}
416
ffc5a379 417void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
418{
419 struct btrfs_fs_devices *fs_devices;
8a4b83cc 420
2b82032c
YZ
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
e4404d6e 425 free_fs_devices(fs_devices);
8a4b83cc 426 }
8a4b83cc
CM
427}
428
7239ff4b
NB
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 431{
8a4b83cc
CM
432 struct btrfs_fs_devices *fs_devices;
433
7239ff4b
NB
434 ASSERT(fsid);
435
7a62d0f0 436 /* Handle non-split brain cases */
c4babc5e 437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
8a4b83cc
CM
447 }
448 return NULL;
449}
450
c6730a0e
SY
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
beaf8ab3
SB
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
8f32380d 495 struct btrfs_super_block **disk_super)
beaf8ab3
SB
496{
497 int ret;
498
0718afd4 499 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
beaf8ab3
SB
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
beaf8ab3
SB
503 goto error;
504 }
505
506 if (flush)
1226dfff 507 sync_blockdev(*bdev);
9f6d2510 508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
8f32380d
JT
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
beaf8ab3
SB
525 return ret;
526}
527
43dd529a
DS
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
16cab91a 531 *
43dd529a
DS
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
16cab91a 534 * @skip_device: Optional. Will skip this device when searching for the stale
43dd529a 535 * devices.
16cab91a
AJ
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
d8367db3 540 */
16cab91a 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 542{
fa6d2ae5
AJ
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
545 int ret = 0;
546
c1247069
AJ
547 lockdep_assert_held(&uuid_mutex);
548
16cab91a 549 if (devt)
70bc7088 550 ret = -ENOENT;
4fde46f0 551
fa6d2ae5 552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 553
70bc7088 554 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
fa6d2ae5 557 if (skip_device && skip_device == device)
d8367db3 558 continue;
330a5bf4 559 if (devt && devt != device->devt)
38cf665d 560 continue;
70bc7088
AJ
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
16cab91a 563 if (devt && ret != 0)
70bc7088
AJ
564 ret = -EBUSY;
565 break;
566 }
4fde46f0 567
4fde46f0 568 /* delete the stale device */
7bcb8164
AJ
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
70bc7088 573 ret = 0;
7bcb8164
AJ
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 576
7bcb8164
AJ
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
4fde46f0
AJ
581 }
582 }
70bc7088
AJ
583
584 return ret;
4fde46f0
AJ
585}
586
18c850fd
JB
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
0fb08bcc
AJ
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
0fb08bcc 596 struct block_device *bdev;
0fb08bcc
AJ
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 607 &bdev, &disk_super);
0fb08bcc
AJ
608 if (ret)
609 return ret;
610
0fb08bcc
AJ
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
8f32380d 613 goto error_free_page;
0fb08bcc
AJ
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 616 goto error_free_page;
0fb08bcc
AJ
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 625 goto error_free_page;
7239ff4b
NB
626 }
627
ebbede42 628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 629 fs_devices->seeding = true;
0fb08bcc 630 } else {
ebbede42
AJ
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
635 }
636
10f0d2a5 637 if (!bdev_nonrot(bdev))
7f0432d0 638 fs_devices->rotating = true;
0fb08bcc 639
63a7cb13
DS
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
0fb08bcc 643 device->bdev = bdev;
e12c9621 644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
645 device->mode = flags;
646
647 fs_devices->open_devices++;
ebbede42
AJ
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 650 fs_devices->rw_devices++;
b1b8e386 651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 652 }
8f32380d 653 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
654
655 return 0;
656
8f32380d
JT
657error_free_page:
658 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
7a62d0f0
NB
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
7a62d0f0
NB
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
c0d81c7c 684 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
685}
686
cc5de4e7
NB
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
1a9fd417 695 * multiple successful changes of FSID but currently device didn't
05840710
NB
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
cc5de4e7
NB
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 703 /* Changed UUIDs */
cc5de4e7
NB
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
cc5de4e7 717 return fs_devices;
cc5de4e7
NB
718 }
719
720 return NULL;
721}
1362089d
NB
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
67da05b3 731 * time fs_devices was first created by another constituent device
1362089d
NB
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
60999ca4
DS
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
e124ece5
AJ
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
60999ca4 754 */
e124ece5 755static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
8a4b83cc
CM
758{
759 struct btrfs_device *device;
7a62d0f0 760 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 761 struct rcu_string *name;
8a4b83cc 762 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
764 dev_t path_devt;
765 int error;
7239ff4b
NB
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 770
4889bc05 771 error = lookup_bdev(path, &path_devt);
ed02363f
QW
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
4889bc05 775 return ERR_PTR(error);
ed02363f 776 }
4889bc05 777
cc5de4e7 778 if (fsid_change_in_progress) {
c0d81c7c 779 if (!has_metadata_uuid)
cc5de4e7 780 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 781 else
cc5de4e7 782 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 783 } else if (has_metadata_uuid) {
c6730a0e 784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 785 } else {
1362089d
NB
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
789 }
790
8a4b83cc 791
8a4b83cc 792 if (!fs_devices) {
7239ff4b
NB
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
2208a378 799 if (IS_ERR(fs_devices))
e124ece5 800 return ERR_CAST(fs_devices);
2208a378 801
92900e51
AV
802 fs_devices->fsid_change = fsid_change_in_progress;
803
9c6d173e 804 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 805 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 806
8a4b83cc
CM
807 device = NULL;
808 } else {
562d7b15
JB
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
9c6d173e 814 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 815 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
1362089d 822 if (fs_devices->fsid_change &&
7a62d0f0
NB
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
1362089d
NB
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
834
835 fs_devices->fsid_change = false;
836 }
8a4b83cc 837 }
443f24fe 838
8a4b83cc 839 if (!device) {
bb21e302
AJ
840 unsigned int nofs_flag;
841
9c6d173e 842 if (fs_devices->opened) {
ed02363f
QW
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
9c6d173e 846 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 847 return ERR_PTR(-EBUSY);
9c6d173e 848 }
2b82032c 849
bb21e302 850 nofs_flag = memalloc_nofs_save();
12bd2fc0 851 device = btrfs_alloc_device(NULL, &devid,
bb21e302
AJ
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
12bd2fc0 854 if (IS_ERR(device)) {
9c6d173e 855 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 856 /* we can safely leave the fs_devices entry around */
e124ece5 857 return device;
8a4b83cc 858 }
606686ee 859
4889bc05 860 device->devt = path_devt;
90519d66 861
1f78160c 862 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 863 fs_devices->num_devices++;
e5e9a520 864
2b82032c 865 device->fs_devices = fs_devices;
4306a974 866 *new_device_added = true;
327f18cc
AJ
867
868 if (disk_super->label[0])
aa6c0df7
AJ
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
327f18cc 873 else
aa6c0df7
AJ
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
327f18cc 878
606686ee 879 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
0f23ae74
CM
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
b96de000 905 */
0f23ae74 906 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
9c6d173e 914 mutex_unlock(&fs_devices->device_list_mutex);
ed02363f
QW
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
e124ece5 918 return ERR_PTR(-EEXIST);
77bdae4d 919 }
b96de000 920
a9261d41
AJ
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
79c9234b
DM
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
a9261d41
AJ
929 */
930 if (device->bdev) {
4889bc05 931 if (device->devt != path_devt) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 933 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
a9261d41
AJ
938 return ERR_PTR(-EEXIST);
939 }
79c9234b 940 btrfs_info_in_rcu(NULL,
79dae17d 941 "devid %llu device path %s changed to %s scanned by %s (%d)",
cb3e217b 942 devid, btrfs_dev_name(device),
79dae17d
AJ
943 path, current->comm,
944 task_pid_nr(current));
a9261d41
AJ
945 }
946
606686ee 947 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 950 return ERR_PTR(-ENOMEM);
9c6d173e 951 }
606686ee
JB
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
e6e674bd 954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 955 fs_devices->missing_devices--;
e6e674bd 956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 957 }
4889bc05 958 device->devt = path_devt;
8a4b83cc
CM
959 }
960
77bdae4d
AJ
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
d1a63002 967 if (!fs_devices->opened) {
77bdae4d 968 device->generation = found_transid;
d1a63002
NB
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
77bdae4d 972
f2788d2f
AJ
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
9c6d173e 975 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 976 return device;
8a4b83cc
CM
977}
978
e4404d6e
YZ
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
d2979aa2 984 int ret = 0;
e4404d6e 985
c1247069
AJ
986 lockdep_assert_held(&uuid_mutex);
987
7239ff4b 988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
989 if (IS_ERR(fs_devices))
990 return fs_devices;
e4404d6e 991
02db0844 992 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
bb21e302
AJ
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
606686ee 1003
12bd2fc0 1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
bb21e302 1005 orig_dev->uuid, dev_path);
d2979aa2
AJ
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
e4404d6e 1008 goto error;
d2979aa2 1009 }
e4404d6e 1010
21e61ec6
JT
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
e4404d6e
YZ
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
d2979aa2 1030 return ERR_PTR(ret);
e4404d6e
YZ
1031}
1032
3712ccb7 1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1034 struct btrfs_device **latest_dev)
dfe25020 1035{
c6e30871 1036 struct btrfs_device *device, *next;
a6b0d5c8 1037
46224705 1038 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1042 &device->dev_state) &&
998a0671
AJ
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
3712ccb7
NB
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
a6b0d5c8 1048 }
2b82032c 1049 continue;
a6b0d5c8 1050 }
2b82032c 1051
cf89af14
AJ
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
2b82032c 1059 if (device->bdev) {
d4d77629 1060 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
ebbede42 1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1065 list_del_init(&device->dev_alloc_list);
ebbede42 1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1067 fs_devices->rw_devices--;
2b82032c 1068 }
e4404d6e
YZ
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
a425f9d4 1071 btrfs_free_device(device);
dfe25020 1072 }
2b82032c 1073
3712ccb7
NB
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
bacce86a 1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1081{
1082 struct btrfs_device *latest_dev = NULL;
944d3f9f 1083 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1084
1085 mutex_lock(&uuid_mutex);
bacce86a 1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1090
d24fa5c1 1091 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1092
dfe25020 1093 mutex_unlock(&uuid_mutex);
dfe25020 1094}
a0af469b 1095
14238819
AJ
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
08ffcae8
DS
1098 if (!device->bdev)
1099 return;
1100
ebbede42 1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
08ffcae8 1106 blkdev_put(device->bdev, device->mode);
14238819
AJ
1107}
1108
959b1c04 1109static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1112
ebbede42 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
0d977e0e
DCZX
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
5d03dbeb
LZ
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1124 fs_devices->missing_devices--;
5d03dbeb 1125 }
f448341a 1126
959b1c04 1127 btrfs_close_bdev(device);
321f69f8 1128 if (device->bdev) {
3fff3975 1129 fs_devices->open_devices--;
321f69f8 1130 device->bdev = NULL;
f448341a 1131 }
321f69f8 1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1133 btrfs_destroy_dev_zone_info(device);
f448341a 1134
321f69f8
JT
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
959b1c04 1138
6b225baa
FM
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
321f69f8 1152 /* Verify the device is back in a pristine state */
1f16033c
AJ
1153 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 WARN_ON(!list_empty(&device->dev_alloc_list));
1156 WARN_ON(!list_empty(&device->post_commit_list));
f448341a
AJ
1157}
1158
54eed6ae 1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1160{
2037a093 1161 struct btrfs_device *device, *tmp;
e4404d6e 1162
425c6ed6
JB
1163 lockdep_assert_held(&uuid_mutex);
1164
2b82032c 1165 if (--fs_devices->opened > 0)
54eed6ae 1166 return;
8a4b83cc 1167
425c6ed6 1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1169 btrfs_close_one_device(device);
c9513edb 1170
e4404d6e
YZ
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
2b82032c 1173 fs_devices->opened = 0;
0395d84f 1174 fs_devices->seeding = false;
c4989c2f 1175 fs_devices->fs_info = NULL;
8a4b83cc
CM
1176}
1177
54eed6ae 1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1179{
944d3f9f
NB
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1182
1183 mutex_lock(&uuid_mutex);
54eed6ae 1184 close_fs_devices(fs_devices);
5f58d783 1185 if (!fs_devices->opened) {
944d3f9f 1186 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1187
5f58d783
AJ
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
944d3f9f 1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1202 close_fs_devices(fs_devices);
944d3f9f 1203 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1204 free_fs_devices(fs_devices);
1205 }
425c6ed6 1206 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1207}
1208
897fb573 1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1210 fmode_t flags, void *holder)
8a4b83cc 1211{
8a4b83cc 1212 struct btrfs_device *device;
443f24fe 1213 struct btrfs_device *latest_dev = NULL;
96c2e067 1214 struct btrfs_device *tmp_device;
8a4b83cc 1215
d4d77629
TH
1216 flags |= FMODE_EXCL;
1217
96c2e067
AJ
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
a0af469b 1221
96c2e067
AJ
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1225 latest_dev = device;
96c2e067
AJ
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
8a4b83cc 1231 }
1ed802c9
AJ
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
2b82032c 1235 fs_devices->opened = 1;
d24fa5c1 1236 fs_devices->latest_dev = latest_dev;
2b82032c 1237 fs_devices->total_rw_bytes = 0;
c4a816c6 1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1240
1241 return 0;
2b82032c
YZ
1242}
1243
4f0f586b
ST
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
f8e10cd3 1246{
214cc184 1247 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
2b82032c 1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1260 fmode_t flags, void *holder)
2b82032c
YZ
1261{
1262 int ret;
1263
f5194e34 1264 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
a8698707 1267 * underlying device takes further locks like open_mutex.
18c850fd
JB
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
f5194e34 1272
2b82032c 1273 if (fs_devices->opened) {
e4404d6e
YZ
1274 fs_devices->opened++;
1275 ret = 0;
2b82032c 1276 } else {
f8e10cd3 1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1278 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1279 }
542c5908 1280
8a4b83cc
CM
1281 return ret;
1282}
1283
8f32380d 1284void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1285{
8f32380d
JT
1286 struct page *page = virt_to_page(super);
1287
6cf86a00
AJ
1288 put_page(page);
1289}
1290
b335eab8 1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1292 u64 bytenr, u64 bytenr_orig)
6cf86a00 1293{
b335eab8
NB
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
6cf86a00
AJ
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
cda00eba 1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1301 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1302
1303 /* make sure our super fits in the page */
b335eab8
NB
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1311
1312 /* pull in the page with our super */
b335eab8 1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1314
b335eab8
NB
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
6cf86a00 1317
b335eab8 1318 p = page_address(page);
6cf86a00
AJ
1319
1320 /* align our pointer to the offset of the super block */
b335eab8 1321 disk_super = p + offset_in_page(bytenr);
6cf86a00 1322
12659251 1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1325 btrfs_release_disk_super(p);
b335eab8 1326 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1327 }
1328
b335eab8
NB
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1331
b335eab8 1332 return disk_super;
6cf86a00
AJ
1333}
1334
16cab91a 1335int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
16cab91a 1340 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
6f60cbd3
DS
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
36350e95
GJ
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
8a4b83cc
CM
1353{
1354 struct btrfs_super_block *disk_super;
4306a974 1355 bool new_device_added = false;
36350e95 1356 struct btrfs_device *device = NULL;
8a4b83cc 1357 struct block_device *bdev;
12659251
NA
1358 u64 bytenr, bytenr_orig;
1359 int ret;
8a4b83cc 1360
899f9307
DS
1361 lockdep_assert_held(&uuid_mutex);
1362
6f60cbd3
DS
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
6f60cbd3 1369
50d281fc
AJ
1370 /*
1371 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may
1372 * initiate the device scan which may race with the user's mount
1373 * or mkfs command, resulting in failure.
1374 * Since the device scan is solely for reading purposes, there is
1375 * no need for FMODE_EXCL. Additionally, the devices are read again
1376 * during the mount process. It is ok to get some inconsistent
1377 * values temporarily, as the device paths of the fsid are the only
1378 * required information for assembling the volume.
1379 */
0718afd4 1380 bdev = blkdev_get_by_path(path, flags, holder, NULL);
b6ed73bc 1381 if (IS_ERR(bdev))
36350e95 1382 return ERR_CAST(bdev);
6f60cbd3 1383
12659251
NA
1384 bytenr_orig = btrfs_sb_offset(0);
1385 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1386 if (ret) {
1387 device = ERR_PTR(ret);
1388 goto error_bdev_put;
1389 }
12659251
NA
1390
1391 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1392 if (IS_ERR(disk_super)) {
1393 device = ERR_CAST(disk_super);
6f60cbd3 1394 goto error_bdev_put;
05a5c55d 1395 }
6f60cbd3 1396
4306a974 1397 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1398 if (!IS_ERR(device) && new_device_added)
1399 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1400
8f32380d 1401 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1402
1403error_bdev_put:
d4d77629 1404 blkdev_put(bdev, flags);
b6ed73bc 1405
36350e95 1406 return device;
8a4b83cc 1407}
0b86a832 1408
1c11b63e
JM
1409/*
1410 * Try to find a chunk that intersects [start, start + len] range and when one
1411 * such is found, record the end of it in *start
1412 */
1c11b63e
JM
1413static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1414 u64 len)
6df9a95e 1415{
1c11b63e 1416 u64 physical_start, physical_end;
6df9a95e 1417
1c11b63e 1418 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1419
1c11b63e
JM
1420 if (!find_first_extent_bit(&device->alloc_state, *start,
1421 &physical_start, &physical_end,
1422 CHUNK_ALLOCATED, NULL)) {
c152b63e 1423
1c11b63e
JM
1424 if (in_range(physical_start, *start, len) ||
1425 in_range(*start, physical_start,
1426 physical_end - physical_start)) {
1427 *start = physical_end + 1;
1428 return true;
6df9a95e
JB
1429 }
1430 }
1c11b63e 1431 return false;
6df9a95e
JB
1432}
1433
3b4ffa40
NA
1434static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1435{
1436 switch (device->fs_devices->chunk_alloc_policy) {
1437 case BTRFS_CHUNK_ALLOC_REGULAR:
37f85ec3 1438 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1cd6121f
NA
1439 case BTRFS_CHUNK_ALLOC_ZONED:
1440 /*
1441 * We don't care about the starting region like regular
1442 * allocator, because we anyway use/reserve the first two zones
1443 * for superblock logging.
1444 */
1445 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1446 default:
1447 BUG();
1448 }
1449}
1450
1cd6121f
NA
1451static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1452 u64 *hole_start, u64 *hole_size,
1453 u64 num_bytes)
1454{
1455 u64 zone_size = device->zone_info->zone_size;
1456 u64 pos;
1457 int ret;
1458 bool changed = false;
1459
1460 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1461
1462 while (*hole_size > 0) {
1463 pos = btrfs_find_allocatable_zones(device, *hole_start,
1464 *hole_start + *hole_size,
1465 num_bytes);
1466 if (pos != *hole_start) {
1467 *hole_size = *hole_start + *hole_size - pos;
1468 *hole_start = pos;
1469 changed = true;
1470 if (*hole_size < num_bytes)
1471 break;
1472 }
1473
1474 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1475
1476 /* Range is ensured to be empty */
1477 if (!ret)
1478 return changed;
1479
1480 /* Given hole range was invalid (outside of device) */
1481 if (ret == -ERANGE) {
1482 *hole_start += *hole_size;
d6f67afb 1483 *hole_size = 0;
7000babd 1484 return true;
1cd6121f
NA
1485 }
1486
1487 *hole_start += zone_size;
1488 *hole_size -= zone_size;
1489 changed = true;
1490 }
1491
1492 return changed;
1493}
1494
43dd529a
DS
1495/*
1496 * Check if specified hole is suitable for allocation.
1497 *
3b4ffa40
NA
1498 * @device: the device which we have the hole
1499 * @hole_start: starting position of the hole
1500 * @hole_size: the size of the hole
1501 * @num_bytes: the size of the free space that we need
1502 *
1cd6121f 1503 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1504 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1505 */
1506static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1507 u64 *hole_size, u64 num_bytes)
1508{
1509 bool changed = false;
1510 u64 hole_end = *hole_start + *hole_size;
1511
1cd6121f
NA
1512 for (;;) {
1513 /*
1514 * Check before we set max_hole_start, otherwise we could end up
1515 * sending back this offset anyway.
1516 */
1517 if (contains_pending_extent(device, hole_start, *hole_size)) {
1518 if (hole_end >= *hole_start)
1519 *hole_size = hole_end - *hole_start;
1520 else
1521 *hole_size = 0;
1522 changed = true;
1523 }
1524
1525 switch (device->fs_devices->chunk_alloc_policy) {
1526 case BTRFS_CHUNK_ALLOC_REGULAR:
1527 /* No extra check */
1528 break;
1529 case BTRFS_CHUNK_ALLOC_ZONED:
1530 if (dev_extent_hole_check_zoned(device, hole_start,
1531 hole_size, num_bytes)) {
1532 changed = true;
1533 /*
1534 * The changed hole can contain pending extent.
1535 * Loop again to check that.
1536 */
1537 continue;
1538 }
1539 break;
1540 default:
1541 BUG();
1542 }
3b4ffa40 1543
3b4ffa40 1544 break;
3b4ffa40
NA
1545 }
1546
1547 return changed;
1548}
6df9a95e 1549
0b86a832 1550/*
43dd529a
DS
1551 * Find free space in the specified device.
1552 *
499f377f
JM
1553 * @device: the device which we search the free space in
1554 * @num_bytes: the size of the free space that we need
1555 * @search_start: the position from which to begin the search
1556 * @start: store the start of the free space.
1557 * @len: the size of the free space. that we find, or the size
1558 * of the max free space if we don't find suitable free space
7bfc837d 1559 *
43dd529a
DS
1560 * This does a pretty simple search, the expectation is that it is called very
1561 * infrequently and that a given device has a small number of extents.
7bfc837d
MX
1562 *
1563 * @start is used to store the start of the free space if we find. But if we
1564 * don't find suitable free space, it will be used to store the start position
1565 * of the max free space.
1566 *
1567 * @len is used to store the size of the free space that we find.
1568 * But if we don't find suitable free space, it is used to store the size of
1569 * the max free space.
135da976
QW
1570 *
1571 * NOTE: This function will search *commit* root of device tree, and does extra
1572 * check to ensure dev extents are not double allocated.
1573 * This makes the function safe to allocate dev extents but may not report
1574 * correct usable device space, as device extent freed in current transaction
1a9fd417 1575 * is not reported as available.
0b86a832 1576 */
9e3246a5
QW
1577static int find_free_dev_extent_start(struct btrfs_device *device,
1578 u64 num_bytes, u64 search_start, u64 *start,
1579 u64 *len)
0b86a832 1580{
0b246afa
JM
1581 struct btrfs_fs_info *fs_info = device->fs_info;
1582 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1583 struct btrfs_key key;
7bfc837d 1584 struct btrfs_dev_extent *dev_extent;
2b82032c 1585 struct btrfs_path *path;
7bfc837d
MX
1586 u64 hole_size;
1587 u64 max_hole_start;
1588 u64 max_hole_size;
1589 u64 extent_end;
0b86a832
CM
1590 u64 search_end = device->total_bytes;
1591 int ret;
7bfc837d 1592 int slot;
0b86a832 1593 struct extent_buffer *l;
8cdc7c5b 1594
3b4ffa40 1595 search_start = dev_extent_search_start(device, search_start);
0b86a832 1596
1cd6121f
NA
1597 WARN_ON(device->zone_info &&
1598 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1599
6df9a95e
JB
1600 path = btrfs_alloc_path();
1601 if (!path)
1602 return -ENOMEM;
f2ab7618 1603
7bfc837d
MX
1604 max_hole_start = search_start;
1605 max_hole_size = 0;
1606
f2ab7618 1607again:
401e29c1
AJ
1608 if (search_start >= search_end ||
1609 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1610 ret = -ENOSPC;
6df9a95e 1611 goto out;
7bfc837d
MX
1612 }
1613
e4058b54 1614 path->reada = READA_FORWARD;
6df9a95e
JB
1615 path->search_commit_root = 1;
1616 path->skip_locking = 1;
7bfc837d 1617
0b86a832
CM
1618 key.objectid = device->devid;
1619 key.offset = search_start;
1620 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1621
0ff40a91 1622 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1623 if (ret < 0)
7bfc837d 1624 goto out;
7bfc837d 1625
3c538de0 1626 while (search_start < search_end) {
0b86a832
CM
1627 l = path->nodes[0];
1628 slot = path->slots[0];
1629 if (slot >= btrfs_header_nritems(l)) {
1630 ret = btrfs_next_leaf(root, path);
1631 if (ret == 0)
1632 continue;
1633 if (ret < 0)
7bfc837d
MX
1634 goto out;
1635
1636 break;
0b86a832
CM
1637 }
1638 btrfs_item_key_to_cpu(l, &key, slot);
1639
1640 if (key.objectid < device->devid)
1641 goto next;
1642
1643 if (key.objectid > device->devid)
7bfc837d 1644 break;
0b86a832 1645
962a298f 1646 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1647 goto next;
9779b72f 1648
3c538de0
JB
1649 if (key.offset > search_end)
1650 break;
1651
7bfc837d
MX
1652 if (key.offset > search_start) {
1653 hole_size = key.offset - search_start;
3b4ffa40
NA
1654 dev_extent_hole_check(device, &search_start, &hole_size,
1655 num_bytes);
6df9a95e 1656
7bfc837d
MX
1657 if (hole_size > max_hole_size) {
1658 max_hole_start = search_start;
1659 max_hole_size = hole_size;
1660 }
9779b72f 1661
7bfc837d
MX
1662 /*
1663 * If this free space is greater than which we need,
1664 * it must be the max free space that we have found
1665 * until now, so max_hole_start must point to the start
1666 * of this free space and the length of this free space
1667 * is stored in max_hole_size. Thus, we return
1668 * max_hole_start and max_hole_size and go back to the
1669 * caller.
1670 */
1671 if (hole_size >= num_bytes) {
1672 ret = 0;
1673 goto out;
0b86a832
CM
1674 }
1675 }
0b86a832 1676
0b86a832 1677 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1678 extent_end = key.offset + btrfs_dev_extent_length(l,
1679 dev_extent);
1680 if (extent_end > search_start)
1681 search_start = extent_end;
0b86a832
CM
1682next:
1683 path->slots[0]++;
1684 cond_resched();
1685 }
0b86a832 1686
38c01b96 1687 /*
1688 * At this point, search_start should be the end of
1689 * allocated dev extents, and when shrinking the device,
1690 * search_end may be smaller than search_start.
1691 */
f2ab7618 1692 if (search_end > search_start) {
38c01b96 1693 hole_size = search_end - search_start;
3b4ffa40
NA
1694 if (dev_extent_hole_check(device, &search_start, &hole_size,
1695 num_bytes)) {
f2ab7618
ZL
1696 btrfs_release_path(path);
1697 goto again;
1698 }
0b86a832 1699
f2ab7618
ZL
1700 if (hole_size > max_hole_size) {
1701 max_hole_start = search_start;
1702 max_hole_size = hole_size;
1703 }
6df9a95e
JB
1704 }
1705
7bfc837d 1706 /* See above. */
f2ab7618 1707 if (max_hole_size < num_bytes)
7bfc837d
MX
1708 ret = -ENOSPC;
1709 else
1710 ret = 0;
1711
3c538de0 1712 ASSERT(max_hole_start + max_hole_size <= search_end);
7bfc837d 1713out:
2b82032c 1714 btrfs_free_path(path);
7bfc837d 1715 *start = max_hole_start;
b2117a39 1716 if (len)
7bfc837d 1717 *len = max_hole_size;
0b86a832
CM
1718 return ret;
1719}
1720
60dfdf25 1721int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1722 u64 *start, u64 *len)
1723{
499f377f 1724 /* FIXME use last free of some kind */
60dfdf25 1725 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1726}
1727
b2950863 1728static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1729 struct btrfs_device *device,
2196d6e8 1730 u64 start, u64 *dev_extent_len)
8f18cf13 1731{
0b246afa
JM
1732 struct btrfs_fs_info *fs_info = device->fs_info;
1733 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1734 int ret;
1735 struct btrfs_path *path;
8f18cf13 1736 struct btrfs_key key;
a061fc8d
CM
1737 struct btrfs_key found_key;
1738 struct extent_buffer *leaf = NULL;
1739 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1740
1741 path = btrfs_alloc_path();
1742 if (!path)
1743 return -ENOMEM;
1744
1745 key.objectid = device->devid;
1746 key.offset = start;
1747 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1748again:
8f18cf13 1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1750 if (ret > 0) {
1751 ret = btrfs_previous_item(root, path, key.objectid,
1752 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1753 if (ret)
1754 goto out;
a061fc8d
CM
1755 leaf = path->nodes[0];
1756 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 BUG_ON(found_key.offset > start || found_key.offset +
1760 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1761 key = found_key;
1762 btrfs_release_path(path);
1763 goto again;
a061fc8d
CM
1764 } else if (ret == 0) {
1765 leaf = path->nodes[0];
1766 extent = btrfs_item_ptr(leaf, path->slots[0],
1767 struct btrfs_dev_extent);
79787eaa 1768 } else {
79787eaa 1769 goto out;
a061fc8d 1770 }
8f18cf13 1771
2196d6e8
MX
1772 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1773
8f18cf13 1774 ret = btrfs_del_item(trans, root, path);
79bd3712 1775 if (ret == 0)
3204d33c 1776 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1777out:
8f18cf13
CM
1778 btrfs_free_path(path);
1779 return ret;
1780}
1781
6df9a95e 1782static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1783{
6df9a95e
JB
1784 struct extent_map_tree *em_tree;
1785 struct extent_map *em;
1786 struct rb_node *n;
1787 u64 ret = 0;
0b86a832 1788
c8bf1b67 1789 em_tree = &fs_info->mapping_tree;
6df9a95e 1790 read_lock(&em_tree->lock);
07e1ce09 1791 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1792 if (n) {
1793 em = rb_entry(n, struct extent_map, rb_node);
1794 ret = em->start + em->len;
0b86a832 1795 }
6df9a95e
JB
1796 read_unlock(&em_tree->lock);
1797
0b86a832
CM
1798 return ret;
1799}
1800
53f10659
ID
1801static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1802 u64 *devid_ret)
0b86a832
CM
1803{
1804 int ret;
1805 struct btrfs_key key;
1806 struct btrfs_key found_key;
2b82032c
YZ
1807 struct btrfs_path *path;
1808
2b82032c
YZ
1809 path = btrfs_alloc_path();
1810 if (!path)
1811 return -ENOMEM;
0b86a832
CM
1812
1813 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1814 key.type = BTRFS_DEV_ITEM_KEY;
1815 key.offset = (u64)-1;
1816
53f10659 1817 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1818 if (ret < 0)
1819 goto error;
1820
a06dee4d
AJ
1821 if (ret == 0) {
1822 /* Corruption */
1823 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1824 ret = -EUCLEAN;
1825 goto error;
1826 }
0b86a832 1827
53f10659
ID
1828 ret = btrfs_previous_item(fs_info->chunk_root, path,
1829 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1830 BTRFS_DEV_ITEM_KEY);
1831 if (ret) {
53f10659 1832 *devid_ret = 1;
0b86a832
CM
1833 } else {
1834 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1835 path->slots[0]);
53f10659 1836 *devid_ret = found_key.offset + 1;
0b86a832
CM
1837 }
1838 ret = 0;
1839error:
2b82032c 1840 btrfs_free_path(path);
0b86a832
CM
1841 return ret;
1842}
1843
1844/*
1845 * the device information is stored in the chunk root
1846 * the btrfs_device struct should be fully filled in
1847 */
c74a0b02 1848static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1849 struct btrfs_device *device)
0b86a832
CM
1850{
1851 int ret;
1852 struct btrfs_path *path;
1853 struct btrfs_dev_item *dev_item;
1854 struct extent_buffer *leaf;
1855 struct btrfs_key key;
1856 unsigned long ptr;
0b86a832 1857
0b86a832
CM
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1861
0b86a832
CM
1862 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1863 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1864 key.offset = device->devid;
0b86a832 1865
2bb2e00e 1866 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1867 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1868 &key, sizeof(*dev_item));
2bb2e00e 1869 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1870 if (ret)
1871 goto out;
1872
1873 leaf = path->nodes[0];
1874 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1875
1876 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1877 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1878 btrfs_set_device_type(leaf, dev_item, device->type);
1879 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1880 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1881 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1882 btrfs_set_device_total_bytes(leaf, dev_item,
1883 btrfs_device_get_disk_total_bytes(device));
1884 btrfs_set_device_bytes_used(leaf, dev_item,
1885 btrfs_device_get_bytes_used(device));
e17cade2
CM
1886 btrfs_set_device_group(leaf, dev_item, 0);
1887 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1888 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1889 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1890
410ba3a2 1891 ptr = btrfs_device_uuid(dev_item);
e17cade2 1892 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1893 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1894 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1895 ptr, BTRFS_FSID_SIZE);
0b86a832 1896 btrfs_mark_buffer_dirty(leaf);
0b86a832 1897
2b82032c 1898 ret = 0;
0b86a832
CM
1899out:
1900 btrfs_free_path(path);
1901 return ret;
1902}
8f18cf13 1903
5a1972bd
QW
1904/*
1905 * Function to update ctime/mtime for a given device path.
1906 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1907 *
1908 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1909 */
54fde91f 1910static void update_dev_time(const char *device_path)
5a1972bd 1911{
54fde91f 1912 struct path path;
8f96a5bf 1913 struct timespec64 now;
54fde91f 1914 int ret;
5a1972bd 1915
54fde91f
JB
1916 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917 if (ret)
5a1972bd 1918 return;
8f96a5bf 1919
54fde91f
JB
1920 now = current_time(d_inode(path.dentry));
1921 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1922 path_put(&path);
5a1972bd
QW
1923}
1924
bbac5869
QW
1925static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1926 struct btrfs_device *device)
a061fc8d 1927{
f331a952 1928 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1929 int ret;
1930 struct btrfs_path *path;
a061fc8d 1931 struct btrfs_key key;
a061fc8d 1932
a061fc8d
CM
1933 path = btrfs_alloc_path();
1934 if (!path)
1935 return -ENOMEM;
1936
a061fc8d
CM
1937 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1938 key.type = BTRFS_DEV_ITEM_KEY;
1939 key.offset = device->devid;
1940
2bb2e00e 1941 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1943 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1944 if (ret) {
1945 if (ret > 0)
1946 ret = -ENOENT;
a061fc8d
CM
1947 goto out;
1948 }
1949
1950 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1951out:
1952 btrfs_free_path(path);
a061fc8d
CM
1953 return ret;
1954}
1955
3cc31a0d
DS
1956/*
1957 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1958 * filesystem. It's up to the caller to adjust that number regarding eg. device
1959 * replace.
1960 */
1961static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1962 u64 num_devices)
a061fc8d 1963{
a061fc8d 1964 u64 all_avail;
de98ced9 1965 unsigned seq;
418775a2 1966 int i;
a061fc8d 1967
de98ced9 1968 do {
bd45ffbc 1969 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1970
bd45ffbc
AJ
1971 all_avail = fs_info->avail_data_alloc_bits |
1972 fs_info->avail_system_alloc_bits |
1973 fs_info->avail_metadata_alloc_bits;
1974 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1975
418775a2 1976 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1977 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1978 continue;
a061fc8d 1979
efc222f8
AJ
1980 if (num_devices < btrfs_raid_array[i].devs_min)
1981 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1982 }
1983
bd45ffbc 1984 return 0;
f1fa7f26
AJ
1985}
1986
c9162bdf
OS
1987static struct btrfs_device * btrfs_find_next_active_device(
1988 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1989{
2b82032c 1990 struct btrfs_device *next_device;
88acff64
AJ
1991
1992 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1993 if (next_device != device &&
e6e674bd
AJ
1994 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1995 && next_device->bdev)
88acff64
AJ
1996 return next_device;
1997 }
1998
1999 return NULL;
2000}
2001
2002/*
d24fa5c1 2003 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
2004 * and replace it with the provided or the next active device, in the context
2005 * where this function called, there should be always be another device (or
2006 * this_dev) which is active.
2007 */
b105e927 2008void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 2009 struct btrfs_device *next_device)
88acff64 2010{
d6507cf1 2011 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 2012
e493e8f9 2013 if (!next_device)
88acff64 2014 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2015 device);
88acff64
AJ
2016 ASSERT(next_device);
2017
2018 if (fs_info->sb->s_bdev &&
2019 (fs_info->sb->s_bdev == device->bdev))
2020 fs_info->sb->s_bdev = next_device->bdev;
2021
d24fa5c1
AJ
2022 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2023 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
2024}
2025
1da73967
AJ
2026/*
2027 * Return btrfs_fs_devices::num_devices excluding the device that's being
2028 * currently replaced.
2029 */
2030static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2031{
2032 u64 num_devices = fs_info->fs_devices->num_devices;
2033
cb5583dd 2034 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2035 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2036 ASSERT(num_devices > 1);
2037 num_devices--;
2038 }
cb5583dd 2039 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2040
2041 return num_devices;
2042}
2043
0e0078f7
CH
2044static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2045 struct block_device *bdev, int copy_num)
2046{
2047 struct btrfs_super_block *disk_super;
26ecf243
CH
2048 const size_t len = sizeof(disk_super->magic);
2049 const u64 bytenr = btrfs_sb_offset(copy_num);
0e0078f7
CH
2050 int ret;
2051
26ecf243 2052 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
0e0078f7
CH
2053 if (IS_ERR(disk_super))
2054 return;
2055
26ecf243
CH
2056 memset(&disk_super->magic, 0, len);
2057 folio_mark_dirty(virt_to_folio(disk_super));
2058 btrfs_release_disk_super(disk_super);
2059
2060 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
0e0078f7
CH
2061 if (ret)
2062 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2063 copy_num, ret);
0e0078f7
CH
2064}
2065
313b0858
JB
2066void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2067 struct block_device *bdev,
2068 const char *device_path)
6fbceb9f 2069{
6fbceb9f
JT
2070 int copy_num;
2071
2072 if (!bdev)
2073 return;
2074
2075 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
0e0078f7 2076 if (bdev_is_zoned(bdev))
12659251 2077 btrfs_reset_sb_log_zones(bdev, copy_num);
0e0078f7
CH
2078 else
2079 btrfs_scratch_superblock(fs_info, bdev, copy_num);
6fbceb9f
JT
2080 }
2081
2082 /* Notify udev that device has changed */
2083 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2084
2085 /* Update ctime/mtime for device path for libblkid */
54fde91f 2086 update_dev_time(device_path);
6fbceb9f
JT
2087}
2088
1a15eb72
JB
2089int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2090 struct btrfs_dev_lookup_args *args,
2091 struct block_device **bdev, fmode_t *mode)
f1fa7f26 2092{
bbac5869 2093 struct btrfs_trans_handle *trans;
f1fa7f26 2094 struct btrfs_device *device;
1f78160c 2095 struct btrfs_fs_devices *cur_devices;
b5185197 2096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2097 u64 num_devices;
a061fc8d
CM
2098 int ret = 0;
2099
914a519b
JB
2100 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2101 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2102 return -EINVAL;
2103 }
2104
8ef9dc0f
JB
2105 /*
2106 * The device list in fs_devices is accessed without locks (neither
2107 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2108 * filesystem and another device rm cannot run.
2109 */
1da73967 2110 num_devices = btrfs_num_devices(fs_info);
8dabb742 2111
0b246afa 2112 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2113 if (ret)
bbac5869 2114 return ret;
a061fc8d 2115
1a15eb72
JB
2116 device = btrfs_find_device(fs_info->fs_devices, args);
2117 if (!device) {
2118 if (args->missing)
a27a94c2
NB
2119 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2120 else
1a15eb72 2121 ret = -ENOENT;
bbac5869 2122 return ret;
a27a94c2 2123 }
dfe25020 2124
eede2bf3
OS
2125 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2126 btrfs_warn_in_rcu(fs_info,
2127 "cannot remove device %s (devid %llu) due to active swapfile",
cb3e217b 2128 btrfs_dev_name(device), device->devid);
bbac5869 2129 return -ETXTBSY;
eede2bf3
OS
2130 }
2131
bbac5869
QW
2132 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2133 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2134
ebbede42 2135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2136 fs_info->fs_devices->rw_devices == 1)
2137 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2138
ebbede42 2139 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2140 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2141 list_del_init(&device->dev_alloc_list);
c3929c36 2142 device->fs_devices->rw_devices--;
34441361 2143 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2144 }
a061fc8d
CM
2145
2146 ret = btrfs_shrink_device(device, 0);
2147 if (ret)
9b3517e9 2148 goto error_undo;
a061fc8d 2149
bbac5869
QW
2150 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2151 if (IS_ERR(trans)) {
2152 ret = PTR_ERR(trans);
9b3517e9 2153 goto error_undo;
bbac5869
QW
2154 }
2155
2156 ret = btrfs_rm_dev_item(trans, device);
2157 if (ret) {
2158 /* Any error in dev item removal is critical */
2159 btrfs_crit(fs_info,
2160 "failed to remove device item for devid %llu: %d",
2161 device->devid, ret);
2162 btrfs_abort_transaction(trans, ret);
2163 btrfs_end_transaction(trans);
2164 return ret;
2165 }
a061fc8d 2166
e12c9621 2167 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2168 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2169
2170 /*
2171 * the device list mutex makes sure that we don't change
2172 * the device list while someone else is writing out all
d7306801
FDBM
2173 * the device supers. Whoever is writing all supers, should
2174 * lock the device list mutex before getting the number of
2175 * devices in the super block (super_copy). Conversely,
2176 * whoever updates the number of devices in the super block
2177 * (super_copy) should hold the device list mutex.
e5e9a520 2178 */
1f78160c 2179
41a52a0f
AJ
2180 /*
2181 * In normal cases the cur_devices == fs_devices. But in case
2182 * of deleting a seed device, the cur_devices should point to
9675ea8c 2183 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2184 */
1f78160c 2185 cur_devices = device->fs_devices;
b5185197 2186 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2187 list_del_rcu(&device->dev_list);
e5e9a520 2188
41a52a0f
AJ
2189 cur_devices->num_devices--;
2190 cur_devices->total_devices--;
b4993e64
AJ
2191 /* Update total_devices of the parent fs_devices if it's seed */
2192 if (cur_devices != fs_devices)
2193 fs_devices->total_devices--;
2b82032c 2194
e6e674bd 2195 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2196 cur_devices->missing_devices--;
cd02dca5 2197
d6507cf1 2198 btrfs_assign_next_active_device(device, NULL);
2b82032c 2199
0bfaa9c5 2200 if (device->bdev) {
41a52a0f 2201 cur_devices->open_devices--;
0bfaa9c5 2202 /* remove sysfs entry */
53f8a74c 2203 btrfs_sysfs_remove_device(device);
0bfaa9c5 2204 }
99994cde 2205
0b246afa
JM
2206 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2207 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2208 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2209
cea67ab9 2210 /*
3fa421de
JB
2211 * At this point, the device is zero sized and detached from the
2212 * devices list. All that's left is to zero out the old supers and
2213 * free the device.
2214 *
2215 * We cannot call btrfs_close_bdev() here because we're holding the sb
2216 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2217 * block device and it's dependencies. Instead just flush the device
2218 * and let the caller do the final blkdev_put.
cea67ab9 2219 */
3fa421de 2220 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2221 btrfs_scratch_superblocks(fs_info, device->bdev,
2222 device->name->str);
3fa421de
JB
2223 if (device->bdev) {
2224 sync_blockdev(device->bdev);
2225 invalidate_bdev(device->bdev);
2226 }
2227 }
cea67ab9 2228
3fa421de
JB
2229 *bdev = device->bdev;
2230 *mode = device->mode;
8e75fd89
NB
2231 synchronize_rcu();
2232 btrfs_free_device(device);
cea67ab9 2233
8b41393f
JB
2234 /*
2235 * This can happen if cur_devices is the private seed devices list. We
2236 * cannot call close_fs_devices() here because it expects the uuid_mutex
2237 * to be held, but in fact we don't need that for the private
2238 * seed_devices, we can simply decrement cur_devices->opened and then
2239 * remove it from our list and free the fs_devices.
2240 */
8e906945 2241 if (cur_devices->num_devices == 0) {
944d3f9f 2242 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2243 ASSERT(cur_devices->opened == 1);
2244 cur_devices->opened--;
1f78160c 2245 free_fs_devices(cur_devices);
2b82032c
YZ
2246 }
2247
bbac5869
QW
2248 ret = btrfs_commit_transaction(trans);
2249
a061fc8d 2250 return ret;
24fc572f 2251
9b3517e9 2252error_undo:
ebbede42 2253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2254 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2255 list_add(&device->dev_alloc_list,
b5185197 2256 &fs_devices->alloc_list);
c3929c36 2257 device->fs_devices->rw_devices++;
34441361 2258 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2259 }
bbac5869 2260 return ret;
a061fc8d
CM
2261}
2262
68a9db5f 2263void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2264{
d51908ce
AJ
2265 struct btrfs_fs_devices *fs_devices;
2266
68a9db5f 2267 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2268
25e8e911
AJ
2269 /*
2270 * in case of fs with no seed, srcdev->fs_devices will point
2271 * to fs_devices of fs_info. However when the dev being replaced is
2272 * a seed dev it will point to the seed's local fs_devices. In short
2273 * srcdev will have its correct fs_devices in both the cases.
2274 */
2275 fs_devices = srcdev->fs_devices;
d51908ce 2276
e93c89c1 2277 list_del_rcu(&srcdev->dev_list);
619c47f3 2278 list_del(&srcdev->dev_alloc_list);
d51908ce 2279 fs_devices->num_devices--;
e6e674bd 2280 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2281 fs_devices->missing_devices--;
e93c89c1 2282
ebbede42 2283 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2284 fs_devices->rw_devices--;
1357272f 2285
82372bc8 2286 if (srcdev->bdev)
d51908ce 2287 fs_devices->open_devices--;
084b6e7c
QW
2288}
2289
65237ee3 2290void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2291{
2292 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2293
a466c85e
JB
2294 mutex_lock(&uuid_mutex);
2295
14238819 2296 btrfs_close_bdev(srcdev);
8e75fd89
NB
2297 synchronize_rcu();
2298 btrfs_free_device(srcdev);
94d5f0c2 2299
94d5f0c2
AJ
2300 /* if this is no devs we rather delete the fs_devices */
2301 if (!fs_devices->num_devices) {
6dd38f81
AJ
2302 /*
2303 * On a mounted FS, num_devices can't be zero unless it's a
2304 * seed. In case of a seed device being replaced, the replace
2305 * target added to the sprout FS, so there will be no more
2306 * device left under the seed FS.
2307 */
2308 ASSERT(fs_devices->seeding);
2309
944d3f9f 2310 list_del_init(&fs_devices->seed_list);
0226e0eb 2311 close_fs_devices(fs_devices);
8bef8401 2312 free_fs_devices(fs_devices);
94d5f0c2 2313 }
a466c85e 2314 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2315}
2316
4f5ad7bd 2317void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2318{
4f5ad7bd 2319 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2320
d9a071f0 2321 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2322
53f8a74c 2323 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2324
779bf3fe 2325 if (tgtdev->bdev)
d9a071f0 2326 fs_devices->open_devices--;
779bf3fe 2327
d9a071f0 2328 fs_devices->num_devices--;
e93c89c1 2329
d6507cf1 2330 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2331
e93c89c1 2332 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2333
d9a071f0 2334 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2335
8f32380d
JT
2336 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2337 tgtdev->name->str);
14238819
AJ
2338
2339 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2340 synchronize_rcu();
2341 btrfs_free_device(tgtdev);
e93c89c1
SB
2342}
2343
43dd529a
DS
2344/*
2345 * Populate args from device at path.
faa775c4
JB
2346 *
2347 * @fs_info: the filesystem
2348 * @args: the args to populate
2349 * @path: the path to the device
2350 *
2351 * This will read the super block of the device at @path and populate @args with
2352 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2353 * lookup a device to operate on, but need to do it before we take any locks.
2354 * This properly handles the special case of "missing" that a user may pass in,
2355 * and does some basic sanity checks. The caller must make sure that @path is
2356 * properly NUL terminated before calling in, and must call
2357 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2358 * uuid buffers.
2359 *
2360 * Return: 0 for success, -errno for failure
2361 */
2362int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2363 struct btrfs_dev_lookup_args *args,
2364 const char *path)
7ba15b7d 2365{
7ba15b7d 2366 struct btrfs_super_block *disk_super;
7ba15b7d 2367 struct block_device *bdev;
faa775c4 2368 int ret;
7ba15b7d 2369
faa775c4
JB
2370 if (!path || !path[0])
2371 return -EINVAL;
2372 if (!strcmp(path, "missing")) {
2373 args->missing = true;
2374 return 0;
2375 }
8f32380d 2376
faa775c4
JB
2377 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2378 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2379 if (!args->uuid || !args->fsid) {
2380 btrfs_put_dev_args_from_path(args);
2381 return -ENOMEM;
2382 }
8f32380d 2383
faa775c4
JB
2384 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2385 &bdev, &disk_super);
9ea0106a
ZF
2386 if (ret) {
2387 btrfs_put_dev_args_from_path(args);
faa775c4 2388 return ret;
9ea0106a
ZF
2389 }
2390
faa775c4
JB
2391 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2392 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2393 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2394 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2395 else
faa775c4 2396 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2397 btrfs_release_disk_super(disk_super);
7ba15b7d 2398 blkdev_put(bdev, FMODE_READ);
faa775c4 2399 return 0;
7ba15b7d
SB
2400}
2401
5c5c0df0 2402/*
faa775c4
JB
2403 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2404 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2405 * that don't need to be freed.
5c5c0df0 2406 */
faa775c4
JB
2407void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2408{
2409 kfree(args->uuid);
2410 kfree(args->fsid);
2411 args->uuid = NULL;
2412 args->fsid = NULL;
2413}
2414
a27a94c2 2415struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2416 struct btrfs_fs_info *fs_info, u64 devid,
2417 const char *device_path)
24e0474b 2418{
562d7b15 2419 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2420 struct btrfs_device *device;
faa775c4 2421 int ret;
24e0474b 2422
5c5c0df0 2423 if (devid) {
562d7b15
JB
2424 args.devid = devid;
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2426 if (!device)
2427 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2428 return device;
2429 }
2430
faa775c4
JB
2431 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2432 if (ret)
2433 return ERR_PTR(ret);
2434 device = btrfs_find_device(fs_info->fs_devices, &args);
2435 btrfs_put_dev_args_from_path(&args);
2436 if (!device)
6e927ceb 2437 return ERR_PTR(-ENOENT);
faa775c4 2438 return device;
24e0474b
AJ
2439}
2440
849eae5e 2441static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2442{
0b246afa 2443 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2444 struct btrfs_fs_devices *old_devices;
e4404d6e 2445 struct btrfs_fs_devices *seed_devices;
2b82032c 2446
a32bf9a3 2447 lockdep_assert_held(&uuid_mutex);
e4404d6e 2448 if (!fs_devices->seeding)
849eae5e 2449 return ERR_PTR(-EINVAL);
2b82032c 2450
427c8fdd
NB
2451 /*
2452 * Private copy of the seed devices, anchored at
2453 * fs_info->fs_devices->seed_list
2454 */
7239ff4b 2455 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378 2456 if (IS_ERR(seed_devices))
849eae5e 2457 return seed_devices;
2b82032c 2458
427c8fdd
NB
2459 /*
2460 * It's necessary to retain a copy of the original seed fs_devices in
2461 * fs_uuids so that filesystems which have been seeded can successfully
2462 * reference the seed device from open_seed_devices. This also supports
2463 * multiple fs seed.
2464 */
e4404d6e
YZ
2465 old_devices = clone_fs_devices(fs_devices);
2466 if (IS_ERR(old_devices)) {
2467 kfree(seed_devices);
849eae5e 2468 return old_devices;
2b82032c 2469 }
e4404d6e 2470
c4babc5e 2471 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2472
e4404d6e
YZ
2473 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2474 seed_devices->opened = 1;
2475 INIT_LIST_HEAD(&seed_devices->devices);
2476 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2477 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2478
849eae5e
AJ
2479 return seed_devices;
2480}
2481
2482/*
2483 * Splice seed devices into the sprout fs_devices.
2484 * Generate a new fsid for the sprouted read-write filesystem.
2485 */
2486static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2487 struct btrfs_fs_devices *seed_devices)
2488{
2489 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2490 struct btrfs_super_block *disk_super = fs_info->super_copy;
2491 struct btrfs_device *device;
2492 u64 super_flags;
2493
2494 /*
2495 * We are updating the fsid, the thread leading to device_list_add()
2496 * could race, so uuid_mutex is needed.
2497 */
2498 lockdep_assert_held(&uuid_mutex);
2499
2500 /*
2501 * The threads listed below may traverse dev_list but can do that without
2502 * device_list_mutex:
2503 * - All device ops and balance - as we are in btrfs_exclop_start.
2504 * - Various dev_list readers - are using RCU.
2505 * - btrfs_ioctl_fitrim() - is using RCU.
2506 *
2507 * For-read threads as below are using device_list_mutex:
2508 * - Readonly scrub btrfs_scrub_dev()
2509 * - Readonly scrub btrfs_scrub_progress()
2510 * - btrfs_get_dev_stats()
2511 */
2512 lockdep_assert_held(&fs_devices->device_list_mutex);
2513
1f78160c
XG
2514 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2515 synchronize_rcu);
2196d6e8
MX
2516 list_for_each_entry(device, &seed_devices->devices, dev_list)
2517 device->fs_devices = seed_devices;
c9513edb 2518
0395d84f 2519 fs_devices->seeding = false;
2b82032c
YZ
2520 fs_devices->num_devices = 0;
2521 fs_devices->open_devices = 0;
69611ac8 2522 fs_devices->missing_devices = 0;
7f0432d0 2523 fs_devices->rotating = false;
944d3f9f 2524 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2525
2526 generate_random_uuid(fs_devices->fsid);
7239ff4b 2527 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2528 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2529
2b82032c
YZ
2530 super_flags = btrfs_super_flags(disk_super) &
2531 ~BTRFS_SUPER_FLAG_SEEDING;
2532 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2533}
2534
2535/*
01327610 2536 * Store the expected generation for seed devices in device items.
2b82032c 2537 */
5c466629 2538static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2539{
562d7b15 2540 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2541 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2542 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2543 struct btrfs_path *path;
2544 struct extent_buffer *leaf;
2545 struct btrfs_dev_item *dev_item;
2546 struct btrfs_device *device;
2547 struct btrfs_key key;
44880fdc 2548 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2549 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2550 int ret;
2551
2552 path = btrfs_alloc_path();
2553 if (!path)
2554 return -ENOMEM;
2555
2b82032c
YZ
2556 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2557 key.offset = 0;
2558 key.type = BTRFS_DEV_ITEM_KEY;
2559
2560 while (1) {
2bb2e00e 2561 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2562 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2563 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2564 if (ret < 0)
2565 goto error;
2566
2567 leaf = path->nodes[0];
2568next_slot:
2569 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2570 ret = btrfs_next_leaf(root, path);
2571 if (ret > 0)
2572 break;
2573 if (ret < 0)
2574 goto error;
2575 leaf = path->nodes[0];
2576 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2577 btrfs_release_path(path);
2b82032c
YZ
2578 continue;
2579 }
2580
2581 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2582 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2583 key.type != BTRFS_DEV_ITEM_KEY)
2584 break;
2585
2586 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2587 struct btrfs_dev_item);
562d7b15 2588 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2589 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2590 BTRFS_UUID_SIZE);
1473b24e 2591 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2592 BTRFS_FSID_SIZE);
562d7b15
JB
2593 args.uuid = dev_uuid;
2594 args.fsid = fs_uuid;
2595 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2596 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2597
2598 if (device->fs_devices->seeding) {
2599 btrfs_set_device_generation(leaf, dev_item,
2600 device->generation);
2601 btrfs_mark_buffer_dirty(leaf);
2602 }
2603
2604 path->slots[0]++;
2605 goto next_slot;
2606 }
2607 ret = 0;
2608error:
2609 btrfs_free_path(path);
2610 return ret;
2611}
2612
da353f6b 2613int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2614{
5112febb 2615 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2616 struct btrfs_trans_handle *trans;
2617 struct btrfs_device *device;
2618 struct block_device *bdev;
0b246afa 2619 struct super_block *sb = fs_info->sb;
5da54bc1 2620 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8ba7d5f5 2621 struct btrfs_fs_devices *seed_devices = NULL;
39379faa
NA
2622 u64 orig_super_total_bytes;
2623 u64 orig_super_num_devices;
788f20eb 2624 int ret = 0;
fd880809 2625 bool seeding_dev = false;
44cab9ba 2626 bool locked = false;
788f20eb 2627
5da54bc1 2628 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2629 return -EROFS;
788f20eb 2630
a5d16333 2631 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0718afd4 2632 fs_info->bdev_holder, NULL);
7f59203a
JB
2633 if (IS_ERR(bdev))
2634 return PTR_ERR(bdev);
a2135011 2635
b70f5097
NA
2636 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2637 ret = -EINVAL;
2638 goto error;
2639 }
2640
5da54bc1 2641 if (fs_devices->seeding) {
fd880809 2642 seeding_dev = true;
2b82032c
YZ
2643 down_write(&sb->s_umount);
2644 mutex_lock(&uuid_mutex);
44cab9ba 2645 locked = true;
2b82032c
YZ
2646 }
2647
b9ba017f 2648 sync_blockdev(bdev);
a2135011 2649
f4cfa9bd
NB
2650 rcu_read_lock();
2651 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2652 if (device->bdev == bdev) {
2653 ret = -EEXIST;
f4cfa9bd 2654 rcu_read_unlock();
2b82032c 2655 goto error;
788f20eb
CM
2656 }
2657 }
f4cfa9bd 2658 rcu_read_unlock();
788f20eb 2659
bb21e302 2660 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
12bd2fc0 2661 if (IS_ERR(device)) {
788f20eb 2662 /* we can safely leave the fs_devices entry around */
12bd2fc0 2663 ret = PTR_ERR(device);
2b82032c 2664 goto error;
788f20eb
CM
2665 }
2666
5b316468
NA
2667 device->fs_info = fs_info;
2668 device->bdev = bdev;
4889bc05
AJ
2669 ret = lookup_bdev(device_path, &device->devt);
2670 if (ret)
2671 goto error_free_device;
5b316468 2672
16beac87 2673 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2674 if (ret)
2675 goto error_free_device;
2676
a22285a6 2677 trans = btrfs_start_transaction(root, 0);
98d5dc13 2678 if (IS_ERR(trans)) {
98d5dc13 2679 ret = PTR_ERR(trans);
5b316468 2680 goto error_free_zone;
98d5dc13
TI
2681 }
2682
ebbede42 2683 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2684 device->generation = trans->transid;
0b246afa
JM
2685 device->io_width = fs_info->sectorsize;
2686 device->io_align = fs_info->sectorsize;
2687 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2688 device->total_bytes =
2689 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2690 device->disk_total_bytes = device->total_bytes;
935e5cc9 2691 device->commit_total_bytes = device->total_bytes;
e12c9621 2692 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2693 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2694 device->mode = FMODE_EXCL;
27087f37 2695 device->dev_stats_valid = 1;
9f6d2510 2696 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2697
2b82032c 2698 if (seeding_dev) {
a0a1db70 2699 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2700
2701 /* GFP_KERNEL allocation must not be under device_list_mutex */
2702 seed_devices = btrfs_init_sprout(fs_info);
2703 if (IS_ERR(seed_devices)) {
2704 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2705 btrfs_abort_transaction(trans, ret);
2706 goto error_trans;
2707 }
849eae5e
AJ
2708 }
2709
2710 mutex_lock(&fs_devices->device_list_mutex);
2711 if (seeding_dev) {
2712 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2713 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2714 device);
2b82032c 2715 }
788f20eb 2716
5da54bc1 2717 device->fs_devices = fs_devices;
e5e9a520 2718
34441361 2719 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2720 list_add_rcu(&device->dev_list, &fs_devices->devices);
2721 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2722 fs_devices->num_devices++;
2723 fs_devices->open_devices++;
2724 fs_devices->rw_devices++;
2725 fs_devices->total_devices++;
2726 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2727
a5ed45f8 2728 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2729
10f0d2a5 2730 if (!bdev_nonrot(bdev))
7f0432d0 2731 fs_devices->rotating = true;
c289811c 2732
39379faa 2733 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2734 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2735 round_down(orig_super_total_bytes + device->total_bytes,
2736 fs_info->sectorsize));
788f20eb 2737
39379faa
NA
2738 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2739 btrfs_set_super_num_devices(fs_info->super_copy,
2740 orig_super_num_devices + 1);
0d39376a 2741
2196d6e8
MX
2742 /*
2743 * we've got more storage, clear any full flags on the space
2744 * infos
2745 */
0b246afa 2746 btrfs_clear_space_info_full(fs_info);
2196d6e8 2747
34441361 2748 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2749
2750 /* Add sysfs device entry */
cd36da2e 2751 btrfs_sysfs_add_device(device);
ca10845a 2752
5da54bc1 2753 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2754
2b82032c 2755 if (seeding_dev) {
34441361 2756 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2757 ret = init_first_rw_device(trans);
34441361 2758 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2759 if (ret) {
66642832 2760 btrfs_abort_transaction(trans, ret);
d31c32f6 2761 goto error_sysfs;
005d6427 2762 }
2196d6e8
MX
2763 }
2764
8e87e856 2765 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2766 if (ret) {
66642832 2767 btrfs_abort_transaction(trans, ret);
d31c32f6 2768 goto error_sysfs;
2196d6e8
MX
2769 }
2770
2771 if (seeding_dev) {
5c466629 2772 ret = btrfs_finish_sprout(trans);
005d6427 2773 if (ret) {
66642832 2774 btrfs_abort_transaction(trans, ret);
d31c32f6 2775 goto error_sysfs;
005d6427 2776 }
b2373f25 2777
8e560081
NB
2778 /*
2779 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2780 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2781 */
2782 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2783 }
2784
3a45bb20 2785 ret = btrfs_commit_transaction(trans);
a2135011 2786
2b82032c
YZ
2787 if (seeding_dev) {
2788 mutex_unlock(&uuid_mutex);
2789 up_write(&sb->s_umount);
44cab9ba 2790 locked = false;
788f20eb 2791
79787eaa
JM
2792 if (ret) /* transaction commit */
2793 return ret;
2794
2ff7e61e 2795 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2796 if (ret < 0)
0b246afa 2797 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2798 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2799 trans = btrfs_attach_transaction(root);
2800 if (IS_ERR(trans)) {
2801 if (PTR_ERR(trans) == -ENOENT)
2802 return 0;
7132a262
AJ
2803 ret = PTR_ERR(trans);
2804 trans = NULL;
2805 goto error_sysfs;
671415b7 2806 }
3a45bb20 2807 ret = btrfs_commit_transaction(trans);
2b82032c 2808 }
c9e9f97b 2809
7f551d96
AJ
2810 /*
2811 * Now that we have written a new super block to this device, check all
2812 * other fs_devices list if device_path alienates any other scanned
2813 * device.
2814 * We can ignore the return value as it typically returns -EINVAL and
2815 * only succeeds if the device was an alien.
2816 */
4889bc05 2817 btrfs_forget_devices(device->devt);
7f551d96
AJ
2818
2819 /* Update ctime/mtime for blkid or udev */
54fde91f 2820 update_dev_time(device_path);
7f551d96 2821
2b82032c 2822 return ret;
79787eaa 2823
d31c32f6 2824error_sysfs:
53f8a74c 2825 btrfs_sysfs_remove_device(device);
39379faa
NA
2826 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2827 mutex_lock(&fs_info->chunk_mutex);
2828 list_del_rcu(&device->dev_list);
2829 list_del(&device->dev_alloc_list);
2830 fs_info->fs_devices->num_devices--;
2831 fs_info->fs_devices->open_devices--;
2832 fs_info->fs_devices->rw_devices--;
2833 fs_info->fs_devices->total_devices--;
2834 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2835 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2836 btrfs_set_super_total_bytes(fs_info->super_copy,
2837 orig_super_total_bytes);
2838 btrfs_set_super_num_devices(fs_info->super_copy,
2839 orig_super_num_devices);
2840 mutex_unlock(&fs_info->chunk_mutex);
2841 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2842error_trans:
0af2c4bf 2843 if (seeding_dev)
a0a1db70 2844 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2845 if (trans)
2846 btrfs_end_transaction(trans);
5b316468
NA
2847error_free_zone:
2848 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2849error_free_device:
a425f9d4 2850 btrfs_free_device(device);
2b82032c 2851error:
e525fd89 2852 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2853 if (locked) {
2b82032c
YZ
2854 mutex_unlock(&uuid_mutex);
2855 up_write(&sb->s_umount);
2856 }
c9e9f97b 2857 return ret;
788f20eb
CM
2858}
2859
d397712b
CM
2860static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2861 struct btrfs_device *device)
0b86a832
CM
2862{
2863 int ret;
2864 struct btrfs_path *path;
0b246afa 2865 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2866 struct btrfs_dev_item *dev_item;
2867 struct extent_buffer *leaf;
2868 struct btrfs_key key;
2869
0b86a832
CM
2870 path = btrfs_alloc_path();
2871 if (!path)
2872 return -ENOMEM;
2873
2874 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2875 key.type = BTRFS_DEV_ITEM_KEY;
2876 key.offset = device->devid;
2877
2878 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2879 if (ret < 0)
2880 goto out;
2881
2882 if (ret > 0) {
2883 ret = -ENOENT;
2884 goto out;
2885 }
2886
2887 leaf = path->nodes[0];
2888 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2889
2890 btrfs_set_device_id(leaf, dev_item, device->devid);
2891 btrfs_set_device_type(leaf, dev_item, device->type);
2892 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2893 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2894 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2895 btrfs_set_device_total_bytes(leaf, dev_item,
2896 btrfs_device_get_disk_total_bytes(device));
2897 btrfs_set_device_bytes_used(leaf, dev_item,
2898 btrfs_device_get_bytes_used(device));
0b86a832
CM
2899 btrfs_mark_buffer_dirty(leaf);
2900
2901out:
2902 btrfs_free_path(path);
2903 return ret;
2904}
2905
2196d6e8 2906int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2907 struct btrfs_device *device, u64 new_size)
2908{
0b246afa
JM
2909 struct btrfs_fs_info *fs_info = device->fs_info;
2910 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2911 u64 old_total;
2912 u64 diff;
2bb2e00e 2913 int ret;
8f18cf13 2914
ebbede42 2915 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2916 return -EACCES;
2196d6e8 2917
7dfb8be1
NB
2918 new_size = round_down(new_size, fs_info->sectorsize);
2919
34441361 2920 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2921 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2922 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2923
63a212ab 2924 if (new_size <= device->total_bytes ||
401e29c1 2925 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2926 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2927 return -EINVAL;
2196d6e8 2928 }
2b82032c 2929
7dfb8be1
NB
2930 btrfs_set_super_total_bytes(super_copy,
2931 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2932 device->fs_devices->total_rw_bytes += diff;
2933
7cc8e58d
MX
2934 btrfs_device_set_total_bytes(device, new_size);
2935 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2936 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2937 if (list_empty(&device->post_commit_list))
2938 list_add_tail(&device->post_commit_list,
2939 &trans->transaction->dev_update_list);
34441361 2940 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2941
2bb2e00e
FM
2942 btrfs_reserve_chunk_metadata(trans, false);
2943 ret = btrfs_update_device(trans, device);
2944 btrfs_trans_release_chunk_metadata(trans);
2945
2946 return ret;
8f18cf13
CM
2947}
2948
f4208794 2949static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2950{
f4208794 2951 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2952 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2953 int ret;
2954 struct btrfs_path *path;
2955 struct btrfs_key key;
2956
8f18cf13
CM
2957 path = btrfs_alloc_path();
2958 if (!path)
2959 return -ENOMEM;
2960
408fbf19 2961 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2962 key.offset = chunk_offset;
2963 key.type = BTRFS_CHUNK_ITEM_KEY;
2964
2965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2966 if (ret < 0)
2967 goto out;
2968 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2969 btrfs_handle_fs_error(fs_info, -ENOENT,
2970 "Failed lookup while freeing chunk.");
79787eaa
JM
2971 ret = -ENOENT;
2972 goto out;
2973 }
8f18cf13
CM
2974
2975 ret = btrfs_del_item(trans, root, path);
79787eaa 2976 if (ret < 0)
0b246afa
JM
2977 btrfs_handle_fs_error(fs_info, ret,
2978 "Failed to delete chunk item.");
79787eaa 2979out:
8f18cf13 2980 btrfs_free_path(path);
65a246c5 2981 return ret;
8f18cf13
CM
2982}
2983
408fbf19 2984static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2985{
0b246afa 2986 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2987 struct btrfs_disk_key *disk_key;
2988 struct btrfs_chunk *chunk;
2989 u8 *ptr;
2990 int ret = 0;
2991 u32 num_stripes;
2992 u32 array_size;
2993 u32 len = 0;
2994 u32 cur;
2995 struct btrfs_key key;
2996
79bd3712 2997 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2998 array_size = btrfs_super_sys_array_size(super_copy);
2999
3000 ptr = super_copy->sys_chunk_array;
3001 cur = 0;
3002
3003 while (cur < array_size) {
3004 disk_key = (struct btrfs_disk_key *)ptr;
3005 btrfs_disk_key_to_cpu(&key, disk_key);
3006
3007 len = sizeof(*disk_key);
3008
3009 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3010 chunk = (struct btrfs_chunk *)(ptr + len);
3011 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3012 len += btrfs_chunk_item_size(num_stripes);
3013 } else {
3014 ret = -EIO;
3015 break;
3016 }
408fbf19 3017 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
3018 key.offset == chunk_offset) {
3019 memmove(ptr, ptr + len, array_size - (cur + len));
3020 array_size -= len;
3021 btrfs_set_super_sys_array_size(super_copy, array_size);
3022 } else {
3023 ptr += len;
3024 cur += len;
3025 }
3026 }
3027 return ret;
3028}
3029
60ca842e
OS
3030/*
3031 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3032 * @logical: Logical block offset in bytes.
3033 * @length: Length of extent in bytes.
3034 *
3035 * Return: Chunk mapping or ERR_PTR.
3036 */
3037struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3038 u64 logical, u64 length)
592d92ee
LB
3039{
3040 struct extent_map_tree *em_tree;
3041 struct extent_map *em;
3042
c8bf1b67 3043 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3044 read_lock(&em_tree->lock);
3045 em = lookup_extent_mapping(em_tree, logical, length);
3046 read_unlock(&em_tree->lock);
3047
3048 if (!em) {
3049 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3050 logical, length);
3051 return ERR_PTR(-EINVAL);
3052 }
3053
3054 if (em->start > logical || em->start + em->len < logical) {
3055 btrfs_crit(fs_info,
3056 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3057 logical, length, em->start, em->start + em->len);
3058 free_extent_map(em);
3059 return ERR_PTR(-EINVAL);
3060 }
3061
3062 /* callers are responsible for dropping em's ref. */
3063 return em;
3064}
3065
79bd3712
FM
3066static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 struct map_lookup *map, u64 chunk_offset)
3068{
3069 int i;
3070
3071 /*
3072 * Removing chunk items and updating the device items in the chunks btree
3073 * requires holding the chunk_mutex.
3074 * See the comment at btrfs_chunk_alloc() for the details.
3075 */
3076 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077
3078 for (i = 0; i < map->num_stripes; i++) {
3079 int ret;
3080
3081 ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 if (ret)
3083 return ret;
3084 }
3085
3086 return btrfs_free_chunk(trans, chunk_offset);
3087}
3088
97aff912 3089int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3090{
97aff912 3091 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3092 struct extent_map *em;
3093 struct map_lookup *map;
2196d6e8 3094 u64 dev_extent_len = 0;
47ab2a6c 3095 int i, ret = 0;
0b246afa 3096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3097
60ca842e 3098 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3099 if (IS_ERR(em)) {
47ab2a6c
JB
3100 /*
3101 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3102 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3103 * do anything we still error out.
3104 */
3105 ASSERT(0);
592d92ee 3106 return PTR_ERR(em);
47ab2a6c 3107 }
95617d69 3108 map = em->map_lookup;
8f18cf13 3109
57ba4cb8 3110 /*
79bd3712
FM
3111 * First delete the device extent items from the devices btree.
3112 * We take the device_list_mutex to avoid racing with the finishing phase
3113 * of a device replace operation. See the comment below before acquiring
3114 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 * because that can result in a deadlock when deleting the device extent
3116 * items from the devices btree - COWing an extent buffer from the btree
3117 * may result in allocating a new metadata chunk, which would attempt to
3118 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3119 */
3120 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3121 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3122 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3123 ret = btrfs_free_dev_extent(trans, device,
3124 map->stripes[i].physical,
3125 &dev_extent_len);
47ab2a6c 3126 if (ret) {
57ba4cb8 3127 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3128 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3129 goto out;
3130 }
a061fc8d 3131
2196d6e8 3132 if (device->bytes_used > 0) {
34441361 3133 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3134 btrfs_device_set_bytes_used(device,
3135 device->bytes_used - dev_extent_len);
a5ed45f8 3136 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3137 btrfs_clear_space_info_full(fs_info);
34441361 3138 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3139 }
79bd3712
FM
3140 }
3141 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3142
79bd3712
FM
3143 /*
3144 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 *
3146 * 1) Just like with the first phase of the chunk allocation, we must
3147 * reserve system space, do all chunk btree updates and deletions, and
3148 * update the system chunk array in the superblock while holding this
3149 * mutex. This is for similar reasons as explained on the comment at
3150 * the top of btrfs_chunk_alloc();
3151 *
3152 * 2) Prevent races with the final phase of a device replace operation
3153 * that replaces the device object associated with the map's stripes,
3154 * because the device object's id can change at any time during that
3155 * final phase of the device replace operation
3156 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 * replaced device and then see it with an ID of
3158 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 * the device item, which does not exists on the chunk btree.
3160 * The finishing phase of device replace acquires both the
3161 * device_list_mutex and the chunk_mutex, in that order, so we are
3162 * safe by just acquiring the chunk_mutex.
3163 */
3164 trans->removing_chunk = true;
3165 mutex_lock(&fs_info->chunk_mutex);
3166
3167 check_system_chunk(trans, map->type);
3168
3169 ret = remove_chunk_item(trans, map, chunk_offset);
3170 /*
3171 * Normally we should not get -ENOSPC since we reserved space before
3172 * through the call to check_system_chunk().
3173 *
3174 * Despite our system space_info having enough free space, we may not
3175 * be able to allocate extents from its block groups, because all have
3176 * an incompatible profile, which will force us to allocate a new system
3177 * block group with the right profile, or right after we called
3178 * check_system_space() above, a scrub turned the only system block group
3179 * with enough free space into RO mode.
3180 * This is explained with more detail at do_chunk_alloc().
3181 *
3182 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 */
3184 if (ret == -ENOSPC) {
3185 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 struct btrfs_block_group *sys_bg;
3187
f6f39f7a 3188 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3189 if (IS_ERR(sys_bg)) {
3190 ret = PTR_ERR(sys_bg);
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194
3195 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3196 if (ret) {
64bc6c2a
NB
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
dfe25020 3199 }
57ba4cb8 3200
79bd3712
FM
3201 ret = remove_chunk_item(trans, map, chunk_offset);
3202 if (ret) {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206 } else if (ret) {
66642832 3207 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3208 goto out;
3209 }
8f18cf13 3210
6bccf3ab 3211 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3212
8f18cf13 3213 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3214 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3215 if (ret) {
66642832 3216 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3217 goto out;
3218 }
8f18cf13
CM
3219 }
3220
79bd3712
FM
3221 mutex_unlock(&fs_info->chunk_mutex);
3222 trans->removing_chunk = false;
3223
3224 /*
3225 * We are done with chunk btree updates and deletions, so release the
3226 * system space we previously reserved (with check_system_chunk()).
3227 */
3228 btrfs_trans_release_chunk_metadata(trans);
3229
5a98ec01 3230 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3231 if (ret) {
66642832 3232 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3233 goto out;
3234 }
2b82032c 3235
47ab2a6c 3236out:
79bd3712
FM
3237 if (trans->removing_chunk) {
3238 mutex_unlock(&fs_info->chunk_mutex);
3239 trans->removing_chunk = false;
3240 }
2b82032c
YZ
3241 /* once for us */
3242 free_extent_map(em);
47ab2a6c
JB
3243 return ret;
3244}
2b82032c 3245
18bb8bbf 3246int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3247{
5b4aacef 3248 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3249 struct btrfs_trans_handle *trans;
b0643e59 3250 struct btrfs_block_group *block_group;
01e86008 3251 u64 length;
47ab2a6c 3252 int ret;
2b82032c 3253
4b349253
JB
3254 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255 btrfs_err(fs_info,
3256 "relocate: not supported on extent tree v2 yet");
3257 return -EINVAL;
3258 }
3259
67c5e7d4
FM
3260 /*
3261 * Prevent races with automatic removal of unused block groups.
3262 * After we relocate and before we remove the chunk with offset
3263 * chunk_offset, automatic removal of the block group can kick in,
3264 * resulting in a failure when calling btrfs_remove_chunk() below.
3265 *
3266 * Make sure to acquire this mutex before doing a tree search (dev
3267 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3268 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3269 * we release the path used to search the chunk/dev tree and before
3270 * the current task acquires this mutex and calls us.
3271 */
f3372065 3272 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3273
47ab2a6c 3274 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3275 btrfs_scrub_pause(fs_info);
0b246afa 3276 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3277 btrfs_scrub_continue(fs_info);
2d82a40a
FM
3278 if (ret) {
3279 /*
3280 * If we had a transaction abort, stop all running scrubs.
3281 * See transaction.c:cleanup_transaction() why we do it here.
3282 */
3283 if (BTRFS_FS_ERROR(fs_info))
3284 btrfs_scrub_cancel(fs_info);
47ab2a6c 3285 return ret;
2d82a40a 3286 }
47ab2a6c 3287
b0643e59
DZ
3288 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 if (!block_group)
3290 return -ENOENT;
3291 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3292 length = block_group->length;
b0643e59
DZ
3293 btrfs_put_block_group(block_group);
3294
01e86008
JT
3295 /*
3296 * On a zoned file system, discard the whole block group, this will
3297 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3298 * resetting the zone fails, don't treat it as a fatal problem from the
3299 * filesystem's point of view.
3300 */
3301 if (btrfs_is_zoned(fs_info)) {
3302 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3303 if (ret)
3304 btrfs_info(fs_info,
3305 "failed to reset zone %llu after relocation",
3306 chunk_offset);
3307 }
3308
19c4d2f9
CM
3309 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3310 chunk_offset);
3311 if (IS_ERR(trans)) {
3312 ret = PTR_ERR(trans);
3313 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3314 return ret;
3315 }
3316
47ab2a6c 3317 /*
19c4d2f9
CM
3318 * step two, delete the device extents and the
3319 * chunk tree entries
47ab2a6c 3320 */
97aff912 3321 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3322 btrfs_end_transaction(trans);
19c4d2f9 3323 return ret;
2b82032c
YZ
3324}
3325
2ff7e61e 3326static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3327{
0b246afa 3328 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3329 struct btrfs_path *path;
3330 struct extent_buffer *leaf;
3331 struct btrfs_chunk *chunk;
3332 struct btrfs_key key;
3333 struct btrfs_key found_key;
2b82032c 3334 u64 chunk_type;
ba1bf481
JB
3335 bool retried = false;
3336 int failed = 0;
2b82032c
YZ
3337 int ret;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
ba1bf481 3343again:
2b82032c
YZ
3344 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3345 key.offset = (u64)-1;
3346 key.type = BTRFS_CHUNK_ITEM_KEY;
3347
3348 while (1) {
f3372065 3349 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3350 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3351 if (ret < 0) {
f3372065 3352 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3353 goto error;
67c5e7d4 3354 }
79787eaa 3355 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3356
3357 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3358 key.type);
67c5e7d4 3359 if (ret)
f3372065 3360 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3361 if (ret < 0)
3362 goto error;
3363 if (ret > 0)
3364 break;
1a40e23b 3365
2b82032c
YZ
3366 leaf = path->nodes[0];
3367 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3368
2b82032c
YZ
3369 chunk = btrfs_item_ptr(leaf, path->slots[0],
3370 struct btrfs_chunk);
3371 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3372 btrfs_release_path(path);
8f18cf13 3373
2b82032c 3374 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3375 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3376 if (ret == -ENOSPC)
3377 failed++;
14586651
HS
3378 else
3379 BUG_ON(ret);
2b82032c 3380 }
f3372065 3381 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3382
2b82032c
YZ
3383 if (found_key.offset == 0)
3384 break;
3385 key.offset = found_key.offset - 1;
3386 }
3387 ret = 0;
ba1bf481
JB
3388 if (failed && !retried) {
3389 failed = 0;
3390 retried = true;
3391 goto again;
fae7f21c 3392 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3393 ret = -ENOSPC;
3394 }
2b82032c
YZ
3395error:
3396 btrfs_free_path(path);
3397 return ret;
8f18cf13
CM
3398}
3399
a6f93c71
LB
3400/*
3401 * return 1 : allocate a data chunk successfully,
3402 * return <0: errors during allocating a data chunk,
3403 * return 0 : no need to allocate a data chunk.
3404 */
3405static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3406 u64 chunk_offset)
3407{
32da5386 3408 struct btrfs_block_group *cache;
a6f93c71
LB
3409 u64 bytes_used;
3410 u64 chunk_type;
3411
3412 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3413 ASSERT(cache);
3414 chunk_type = cache->flags;
3415 btrfs_put_block_group(cache);
3416
5ae21692
JT
3417 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3418 return 0;
3419
3420 spin_lock(&fs_info->data_sinfo->lock);
3421 bytes_used = fs_info->data_sinfo->bytes_used;
3422 spin_unlock(&fs_info->data_sinfo->lock);
3423
3424 if (!bytes_used) {
3425 struct btrfs_trans_handle *trans;
3426 int ret;
3427
3428 trans = btrfs_join_transaction(fs_info->tree_root);
3429 if (IS_ERR(trans))
3430 return PTR_ERR(trans);
3431
3432 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3433 btrfs_end_transaction(trans);
3434 if (ret < 0)
3435 return ret;
3436 return 1;
a6f93c71 3437 }
5ae21692 3438
a6f93c71
LB
3439 return 0;
3440}
3441
6bccf3ab 3442static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3443 struct btrfs_balance_control *bctl)
3444{
6bccf3ab 3445 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3446 struct btrfs_trans_handle *trans;
3447 struct btrfs_balance_item *item;
3448 struct btrfs_disk_balance_args disk_bargs;
3449 struct btrfs_path *path;
3450 struct extent_buffer *leaf;
3451 struct btrfs_key key;
3452 int ret, err;
3453
3454 path = btrfs_alloc_path();
3455 if (!path)
3456 return -ENOMEM;
3457
3458 trans = btrfs_start_transaction(root, 0);
3459 if (IS_ERR(trans)) {
3460 btrfs_free_path(path);
3461 return PTR_ERR(trans);
3462 }
3463
3464 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3465 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3466 key.offset = 0;
3467
3468 ret = btrfs_insert_empty_item(trans, root, path, &key,
3469 sizeof(*item));
3470 if (ret)
3471 goto out;
3472
3473 leaf = path->nodes[0];
3474 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3475
b159fa28 3476 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3477
3478 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3479 btrfs_set_balance_data(leaf, item, &disk_bargs);
3480 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3481 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3482 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3483 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3484
3485 btrfs_set_balance_flags(leaf, item, bctl->flags);
3486
3487 btrfs_mark_buffer_dirty(leaf);
3488out:
3489 btrfs_free_path(path);
3a45bb20 3490 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3491 if (err && !ret)
3492 ret = err;
3493 return ret;
3494}
3495
6bccf3ab 3496static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3497{
6bccf3ab 3498 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3499 struct btrfs_trans_handle *trans;
3500 struct btrfs_path *path;
3501 struct btrfs_key key;
3502 int ret, err;
3503
3504 path = btrfs_alloc_path();
3505 if (!path)
3506 return -ENOMEM;
3507
3502a8c0 3508 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3509 if (IS_ERR(trans)) {
3510 btrfs_free_path(path);
3511 return PTR_ERR(trans);
3512 }
3513
3514 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3515 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3516 key.offset = 0;
3517
3518 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3519 if (ret < 0)
3520 goto out;
3521 if (ret > 0) {
3522 ret = -ENOENT;
3523 goto out;
3524 }
3525
3526 ret = btrfs_del_item(trans, root, path);
3527out:
3528 btrfs_free_path(path);
3a45bb20 3529 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3530 if (err && !ret)
3531 ret = err;
3532 return ret;
3533}
3534
59641015
ID
3535/*
3536 * This is a heuristic used to reduce the number of chunks balanced on
3537 * resume after balance was interrupted.
3538 */
3539static void update_balance_args(struct btrfs_balance_control *bctl)
3540{
3541 /*
3542 * Turn on soft mode for chunk types that were being converted.
3543 */
3544 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3546 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3547 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3548 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3549 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3550
3551 /*
3552 * Turn on usage filter if is not already used. The idea is
3553 * that chunks that we have already balanced should be
3554 * reasonably full. Don't do it for chunks that are being
3555 * converted - that will keep us from relocating unconverted
3556 * (albeit full) chunks.
3557 */
3558 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3559 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3560 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3561 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3562 bctl->data.usage = 90;
3563 }
3564 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3565 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3566 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3567 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3568 bctl->sys.usage = 90;
3569 }
3570 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3571 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3572 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3573 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3574 bctl->meta.usage = 90;
3575 }
3576}
3577
149196a2
DS
3578/*
3579 * Clear the balance status in fs_info and delete the balance item from disk.
3580 */
3581static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3582{
3583 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3584 int ret;
c9e9f97b
ID
3585
3586 BUG_ON(!fs_info->balance_ctl);
3587
3588 spin_lock(&fs_info->balance_lock);
3589 fs_info->balance_ctl = NULL;
3590 spin_unlock(&fs_info->balance_lock);
3591
3592 kfree(bctl);
149196a2
DS
3593 ret = del_balance_item(fs_info);
3594 if (ret)
3595 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3596}
3597
ed25e9b2
ID
3598/*
3599 * Balance filters. Return 1 if chunk should be filtered out
3600 * (should not be balanced).
3601 */
899c81ea 3602static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3603 struct btrfs_balance_args *bargs)
3604{
899c81ea
ID
3605 chunk_type = chunk_to_extended(chunk_type) &
3606 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3607
899c81ea 3608 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3609 return 0;
3610
3611 return 1;
3612}
3613
dba72cb3 3614static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3615 struct btrfs_balance_args *bargs)
bc309467 3616{
32da5386 3617 struct btrfs_block_group *cache;
bc309467
DS
3618 u64 chunk_used;
3619 u64 user_thresh_min;
3620 u64 user_thresh_max;
3621 int ret = 1;
3622
3623 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3624 chunk_used = cache->used;
bc309467
DS
3625
3626 if (bargs->usage_min == 0)
3627 user_thresh_min = 0;
3628 else
428c8e03 3629 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
bc309467
DS
3630
3631 if (bargs->usage_max == 0)
3632 user_thresh_max = 1;
3633 else if (bargs->usage_max > 100)
b3470b5d 3634 user_thresh_max = cache->length;
bc309467 3635 else
428c8e03 3636 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
bc309467
DS
3637
3638 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3639 ret = 0;
3640
3641 btrfs_put_block_group(cache);
3642 return ret;
3643}
3644
dba72cb3 3645static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3646 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3647{
32da5386 3648 struct btrfs_block_group *cache;
5ce5b3c0
ID
3649 u64 chunk_used, user_thresh;
3650 int ret = 1;
3651
3652 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3653 chunk_used = cache->used;
5ce5b3c0 3654
bc309467 3655 if (bargs->usage_min == 0)
3e39cea6 3656 user_thresh = 1;
a105bb88 3657 else if (bargs->usage > 100)
b3470b5d 3658 user_thresh = cache->length;
a105bb88 3659 else
428c8e03 3660 user_thresh = mult_perc(cache->length, bargs->usage);
a105bb88 3661
5ce5b3c0
ID
3662 if (chunk_used < user_thresh)
3663 ret = 0;
3664
3665 btrfs_put_block_group(cache);
3666 return ret;
3667}
3668
409d404b
ID
3669static int chunk_devid_filter(struct extent_buffer *leaf,
3670 struct btrfs_chunk *chunk,
3671 struct btrfs_balance_args *bargs)
3672{
3673 struct btrfs_stripe *stripe;
3674 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3675 int i;
3676
3677 for (i = 0; i < num_stripes; i++) {
3678 stripe = btrfs_stripe_nr(chunk, i);
3679 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3680 return 0;
3681 }
3682
3683 return 1;
3684}
3685
946c9256
DS
3686static u64 calc_data_stripes(u64 type, int num_stripes)
3687{
3688 const int index = btrfs_bg_flags_to_raid_index(type);
3689 const int ncopies = btrfs_raid_array[index].ncopies;
3690 const int nparity = btrfs_raid_array[index].nparity;
3691
d58ede8d 3692 return (num_stripes - nparity) / ncopies;
946c9256
DS
3693}
3694
94e60d5a
ID
3695/* [pstart, pend) */
3696static int chunk_drange_filter(struct extent_buffer *leaf,
3697 struct btrfs_chunk *chunk,
94e60d5a
ID
3698 struct btrfs_balance_args *bargs)
3699{
3700 struct btrfs_stripe *stripe;
3701 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3702 u64 stripe_offset;
3703 u64 stripe_length;
946c9256 3704 u64 type;
94e60d5a
ID
3705 int factor;
3706 int i;
3707
3708 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3709 return 0;
3710
946c9256
DS
3711 type = btrfs_chunk_type(leaf, chunk);
3712 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3713
3714 for (i = 0; i < num_stripes; i++) {
3715 stripe = btrfs_stripe_nr(chunk, i);
3716 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3717 continue;
3718
3719 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3720 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3721 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3722
3723 if (stripe_offset < bargs->pend &&
3724 stripe_offset + stripe_length > bargs->pstart)
3725 return 0;
3726 }
3727
3728 return 1;
3729}
3730
ea67176a
ID
3731/* [vstart, vend) */
3732static int chunk_vrange_filter(struct extent_buffer *leaf,
3733 struct btrfs_chunk *chunk,
3734 u64 chunk_offset,
3735 struct btrfs_balance_args *bargs)
3736{
3737 if (chunk_offset < bargs->vend &&
3738 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3739 /* at least part of the chunk is inside this vrange */
3740 return 0;
3741
3742 return 1;
3743}
3744
dee32d0a
GAP
3745static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3746 struct btrfs_chunk *chunk,
3747 struct btrfs_balance_args *bargs)
3748{
3749 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3750
3751 if (bargs->stripes_min <= num_stripes
3752 && num_stripes <= bargs->stripes_max)
3753 return 0;
3754
3755 return 1;
3756}
3757
899c81ea 3758static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3759 struct btrfs_balance_args *bargs)
3760{
3761 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3762 return 0;
3763
899c81ea
ID
3764 chunk_type = chunk_to_extended(chunk_type) &
3765 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3766
899c81ea 3767 if (bargs->target == chunk_type)
cfa4c961
ID
3768 return 1;
3769
3770 return 0;
3771}
3772
6ec0896c 3773static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3774 struct btrfs_chunk *chunk, u64 chunk_offset)
3775{
6ec0896c 3776 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3777 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3778 struct btrfs_balance_args *bargs = NULL;
3779 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3780
3781 /* type filter */
3782 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3783 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3784 return 0;
3785 }
3786
3787 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3788 bargs = &bctl->data;
3789 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3790 bargs = &bctl->sys;
3791 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3792 bargs = &bctl->meta;
3793
ed25e9b2
ID
3794 /* profiles filter */
3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3796 chunk_profiles_filter(chunk_type, bargs)) {
3797 return 0;
5ce5b3c0
ID
3798 }
3799
3800 /* usage filter */
3801 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3802 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3803 return 0;
bc309467 3804 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3805 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3806 return 0;
409d404b
ID
3807 }
3808
3809 /* devid filter */
3810 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3811 chunk_devid_filter(leaf, chunk, bargs)) {
3812 return 0;
94e60d5a
ID
3813 }
3814
3815 /* drange filter, makes sense only with devid filter */
3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3817 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3818 return 0;
ea67176a
ID
3819 }
3820
3821 /* vrange filter */
3822 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3823 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3824 return 0;
ed25e9b2
ID
3825 }
3826
dee32d0a
GAP
3827 /* stripes filter */
3828 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3829 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3830 return 0;
3831 }
3832
cfa4c961
ID
3833 /* soft profile changing mode */
3834 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3835 chunk_soft_convert_filter(chunk_type, bargs)) {
3836 return 0;
3837 }
3838
7d824b6f
DS
3839 /*
3840 * limited by count, must be the last filter
3841 */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3843 if (bargs->limit == 0)
3844 return 0;
3845 else
3846 bargs->limit--;
12907fc7
DS
3847 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3848 /*
3849 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3850 * determined here because we do not have the global information
12907fc7
DS
3851 * about the count of all chunks that satisfy the filters.
3852 */
3853 if (bargs->limit_max == 0)
3854 return 0;
3855 else
3856 bargs->limit_max--;
7d824b6f
DS
3857 }
3858
f43ffb60
ID
3859 return 1;
3860}
3861
c9e9f97b 3862static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3863{
19a39dce 3864 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3865 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3866 u64 chunk_type;
f43ffb60 3867 struct btrfs_chunk *chunk;
5a488b9d 3868 struct btrfs_path *path = NULL;
ec44a35c 3869 struct btrfs_key key;
ec44a35c 3870 struct btrfs_key found_key;
f43ffb60
ID
3871 struct extent_buffer *leaf;
3872 int slot;
c9e9f97b
ID
3873 int ret;
3874 int enospc_errors = 0;
19a39dce 3875 bool counting = true;
12907fc7 3876 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3877 u64 limit_data = bctl->data.limit;
3878 u64 limit_meta = bctl->meta.limit;
3879 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3880 u32 count_data = 0;
3881 u32 count_meta = 0;
3882 u32 count_sys = 0;
2c9fe835 3883 int chunk_reserved = 0;
ec44a35c 3884
ec44a35c 3885 path = btrfs_alloc_path();
17e9f796
MF
3886 if (!path) {
3887 ret = -ENOMEM;
3888 goto error;
3889 }
19a39dce
ID
3890
3891 /* zero out stat counters */
3892 spin_lock(&fs_info->balance_lock);
3893 memset(&bctl->stat, 0, sizeof(bctl->stat));
3894 spin_unlock(&fs_info->balance_lock);
3895again:
7d824b6f 3896 if (!counting) {
12907fc7
DS
3897 /*
3898 * The single value limit and min/max limits use the same bytes
3899 * in the
3900 */
7d824b6f
DS
3901 bctl->data.limit = limit_data;
3902 bctl->meta.limit = limit_meta;
3903 bctl->sys.limit = limit_sys;
3904 }
ec44a35c
CM
3905 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3906 key.offset = (u64)-1;
3907 key.type = BTRFS_CHUNK_ITEM_KEY;
3908
d397712b 3909 while (1) {
19a39dce 3910 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3911 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3912 ret = -ECANCELED;
3913 goto error;
3914 }
3915
f3372065 3916 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3917 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3918 if (ret < 0) {
f3372065 3919 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3920 goto error;
67c5e7d4 3921 }
ec44a35c
CM
3922
3923 /*
3924 * this shouldn't happen, it means the last relocate
3925 * failed
3926 */
3927 if (ret == 0)
c9e9f97b 3928 BUG(); /* FIXME break ? */
ec44a35c
CM
3929
3930 ret = btrfs_previous_item(chunk_root, path, 0,
3931 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3932 if (ret) {
f3372065 3933 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3934 ret = 0;
ec44a35c 3935 break;
c9e9f97b 3936 }
7d9eb12c 3937
f43ffb60
ID
3938 leaf = path->nodes[0];
3939 slot = path->slots[0];
3940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3941
67c5e7d4 3942 if (found_key.objectid != key.objectid) {
f3372065 3943 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3944 break;
67c5e7d4 3945 }
7d9eb12c 3946
f43ffb60 3947 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3948 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3949
19a39dce
ID
3950 if (!counting) {
3951 spin_lock(&fs_info->balance_lock);
3952 bctl->stat.considered++;
3953 spin_unlock(&fs_info->balance_lock);
3954 }
3955
6ec0896c 3956 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3957
b3b4aa74 3958 btrfs_release_path(path);
67c5e7d4 3959 if (!ret) {
f3372065 3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3961 goto loop;
67c5e7d4 3962 }
f43ffb60 3963
19a39dce 3964 if (counting) {
f3372065 3965 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3966 spin_lock(&fs_info->balance_lock);
3967 bctl->stat.expected++;
3968 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3969
3970 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3971 count_data++;
3972 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3973 count_sys++;
3974 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3975 count_meta++;
3976
3977 goto loop;
3978 }
3979
3980 /*
3981 * Apply limit_min filter, no need to check if the LIMITS
3982 * filter is used, limit_min is 0 by default
3983 */
3984 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3985 count_data < bctl->data.limit_min)
3986 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3987 count_meta < bctl->meta.limit_min)
3988 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3989 count_sys < bctl->sys.limit_min)) {
f3372065 3990 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3991 goto loop;
3992 }
3993
a6f93c71
LB
3994 if (!chunk_reserved) {
3995 /*
3996 * We may be relocating the only data chunk we have,
3997 * which could potentially end up with losing data's
3998 * raid profile, so lets allocate an empty one in
3999 * advance.
4000 */
4001 ret = btrfs_may_alloc_data_chunk(fs_info,
4002 found_key.offset);
2c9fe835 4003 if (ret < 0) {
f3372065 4004 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 4005 goto error;
a6f93c71
LB
4006 } else if (ret == 1) {
4007 chunk_reserved = 1;
2c9fe835 4008 }
2c9fe835
ZL
4009 }
4010
5b4aacef 4011 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 4012 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 4013 if (ret == -ENOSPC) {
c9e9f97b 4014 enospc_errors++;
eede2bf3
OS
4015 } else if (ret == -ETXTBSY) {
4016 btrfs_info(fs_info,
4017 "skipping relocation of block group %llu due to active swapfile",
4018 found_key.offset);
4019 ret = 0;
4020 } else if (ret) {
4021 goto error;
19a39dce
ID
4022 } else {
4023 spin_lock(&fs_info->balance_lock);
4024 bctl->stat.completed++;
4025 spin_unlock(&fs_info->balance_lock);
4026 }
f43ffb60 4027loop:
795a3321
ID
4028 if (found_key.offset == 0)
4029 break;
ba1bf481 4030 key.offset = found_key.offset - 1;
ec44a35c 4031 }
c9e9f97b 4032
19a39dce
ID
4033 if (counting) {
4034 btrfs_release_path(path);
4035 counting = false;
4036 goto again;
4037 }
ec44a35c
CM
4038error:
4039 btrfs_free_path(path);
c9e9f97b 4040 if (enospc_errors) {
efe120a0 4041 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4042 enospc_errors);
c9e9f97b
ID
4043 if (!ret)
4044 ret = -ENOSPC;
4045 }
4046
ec44a35c
CM
4047 return ret;
4048}
4049
43dd529a
DS
4050/*
4051 * See if a given profile is valid and reduced.
4052 *
4053 * @flags: profile to validate
4054 * @extended: if true @flags is treated as an extended profile
0c460c0d
ID
4055 */
4056static int alloc_profile_is_valid(u64 flags, int extended)
4057{
4058 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4059 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4060
4061 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4062
4063 /* 1) check that all other bits are zeroed */
4064 if (flags & ~mask)
4065 return 0;
4066
4067 /* 2) see if profile is reduced */
4068 if (flags == 0)
4069 return !extended; /* "0" is valid for usual profiles */
4070
c1499166 4071 return has_single_bit_set(flags);
0c460c0d
ID
4072}
4073
837d5b6e
ID
4074static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4075{
a7e99c69
ID
4076 /* cancel requested || normal exit path */
4077 return atomic_read(&fs_info->balance_cancel_req) ||
4078 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4079 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
4080}
4081
5ba366c3
DS
4082/*
4083 * Validate target profile against allowed profiles and return true if it's OK.
4084 * Otherwise print the error message and return false.
4085 */
4086static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4087 const struct btrfs_balance_args *bargs,
4088 u64 allowed, const char *type)
bdcd3c97 4089{
5ba366c3
DS
4090 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4091 return true;
4092
4093 /* Profile is valid and does not have bits outside of the allowed set */
4094 if (alloc_profile_is_valid(bargs->target, 1) &&
4095 (bargs->target & ~allowed) == 0)
4096 return true;
4097
4098 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4099 type, btrfs_bg_type_to_raid_name(bargs->target));
4100 return false;
bdcd3c97
AM
4101}
4102
56fc37d9
AJ
4103/*
4104 * Fill @buf with textual description of balance filter flags @bargs, up to
4105 * @size_buf including the terminating null. The output may be trimmed if it
4106 * does not fit into the provided buffer.
4107 */
4108static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4109 u32 size_buf)
4110{
4111 int ret;
4112 u32 size_bp = size_buf;
4113 char *bp = buf;
4114 u64 flags = bargs->flags;
4115 char tmp_buf[128] = {'\0'};
4116
4117 if (!flags)
4118 return;
4119
4120#define CHECK_APPEND_NOARG(a) \
4121 do { \
4122 ret = snprintf(bp, size_bp, (a)); \
4123 if (ret < 0 || ret >= size_bp) \
4124 goto out_overflow; \
4125 size_bp -= ret; \
4126 bp += ret; \
4127 } while (0)
4128
4129#define CHECK_APPEND_1ARG(a, v1) \
4130 do { \
4131 ret = snprintf(bp, size_bp, (a), (v1)); \
4132 if (ret < 0 || ret >= size_bp) \
4133 goto out_overflow; \
4134 size_bp -= ret; \
4135 bp += ret; \
4136 } while (0)
4137
4138#define CHECK_APPEND_2ARG(a, v1, v2) \
4139 do { \
4140 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4141 if (ret < 0 || ret >= size_bp) \
4142 goto out_overflow; \
4143 size_bp -= ret; \
4144 bp += ret; \
4145 } while (0)
4146
158da513
DS
4147 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4148 CHECK_APPEND_1ARG("convert=%s,",
4149 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4150
4151 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4152 CHECK_APPEND_NOARG("soft,");
4153
4154 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4155 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4156 sizeof(tmp_buf));
4157 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4158 }
4159
4160 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4161 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4162
4163 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4164 CHECK_APPEND_2ARG("usage=%u..%u,",
4165 bargs->usage_min, bargs->usage_max);
4166
4167 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4168 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4169
4170 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4171 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4172 bargs->pstart, bargs->pend);
4173
4174 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4175 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4176 bargs->vstart, bargs->vend);
4177
4178 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4179 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4180
4181 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4182 CHECK_APPEND_2ARG("limit=%u..%u,",
4183 bargs->limit_min, bargs->limit_max);
4184
4185 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4186 CHECK_APPEND_2ARG("stripes=%u..%u,",
4187 bargs->stripes_min, bargs->stripes_max);
4188
4189#undef CHECK_APPEND_2ARG
4190#undef CHECK_APPEND_1ARG
4191#undef CHECK_APPEND_NOARG
4192
4193out_overflow:
4194
4195 if (size_bp < size_buf)
4196 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4197 else
4198 buf[0] = '\0';
4199}
4200
4201static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4202{
4203 u32 size_buf = 1024;
4204 char tmp_buf[192] = {'\0'};
4205 char *buf;
4206 char *bp;
4207 u32 size_bp = size_buf;
4208 int ret;
4209 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4210
4211 buf = kzalloc(size_buf, GFP_KERNEL);
4212 if (!buf)
4213 return;
4214
4215 bp = buf;
4216
4217#define CHECK_APPEND_1ARG(a, v1) \
4218 do { \
4219 ret = snprintf(bp, size_bp, (a), (v1)); \
4220 if (ret < 0 || ret >= size_bp) \
4221 goto out_overflow; \
4222 size_bp -= ret; \
4223 bp += ret; \
4224 } while (0)
4225
4226 if (bctl->flags & BTRFS_BALANCE_FORCE)
4227 CHECK_APPEND_1ARG("%s", "-f ");
4228
4229 if (bctl->flags & BTRFS_BALANCE_DATA) {
4230 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4231 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4232 }
4233
4234 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4235 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4236 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4237 }
4238
4239 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4240 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4241 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4242 }
4243
4244#undef CHECK_APPEND_1ARG
4245
4246out_overflow:
4247
4248 if (size_bp < size_buf)
4249 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4250 btrfs_info(fs_info, "balance: %s %s",
4251 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4252 "resume" : "start", buf);
4253
4254 kfree(buf);
4255}
4256
c9e9f97b 4257/*
dccdb07b 4258 * Should be called with balance mutexe held
c9e9f97b 4259 */
6fcf6e2b
DS
4260int btrfs_balance(struct btrfs_fs_info *fs_info,
4261 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4262 struct btrfs_ioctl_balance_args *bargs)
4263{
14506127 4264 u64 meta_target, data_target;
f43ffb60 4265 u64 allowed;
e4837f8f 4266 int mixed = 0;
c9e9f97b 4267 int ret;
8dabb742 4268 u64 num_devices;
de98ced9 4269 unsigned seq;
e62869be 4270 bool reducing_redundancy;
081db89b 4271 int i;
c9e9f97b 4272
837d5b6e 4273 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4274 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4275 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4276 ret = -EINVAL;
4277 goto out;
4278 }
4279
e4837f8f
ID
4280 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4281 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4282 mixed = 1;
4283
f43ffb60
ID
4284 /*
4285 * In case of mixed groups both data and meta should be picked,
4286 * and identical options should be given for both of them.
4287 */
e4837f8f
ID
4288 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4289 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4290 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4291 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4292 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4293 btrfs_err(fs_info,
6dac13f8 4294 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4295 ret = -EINVAL;
4296 goto out;
4297 }
4298 }
4299
b35cf1f0
JB
4300 /*
4301 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4302 * are exclusive
b35cf1f0
JB
4303 */
4304 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4305
4306 /*
4307 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4308 * special bit for it, to make it easier to distinguish. Thus we need
4309 * to set it manually, or balance would refuse the profile.
4310 */
4311 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4313 if (num_devices >= btrfs_raid_array[i].devs_min)
4314 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4315
5ba366c3
DS
4316 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4317 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4318 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4319 ret = -EINVAL;
4320 goto out;
4321 }
4322
6079e12c
DS
4323 /*
4324 * Allow to reduce metadata or system integrity only if force set for
4325 * profiles with redundancy (copies, parity)
4326 */
4327 allowed = 0;
4328 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4329 if (btrfs_raid_array[i].ncopies >= 2 ||
4330 btrfs_raid_array[i].tolerated_failures >= 1)
4331 allowed |= btrfs_raid_array[i].bg_flag;
4332 }
de98ced9
MX
4333 do {
4334 seq = read_seqbegin(&fs_info->profiles_lock);
4335
4336 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4337 (fs_info->avail_system_alloc_bits & allowed) &&
4338 !(bctl->sys.target & allowed)) ||
4339 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4340 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4341 !(bctl->meta.target & allowed)))
e62869be 4342 reducing_redundancy = true;
5a8067c0 4343 else
e62869be 4344 reducing_redundancy = false;
5a8067c0
FM
4345
4346 /* if we're not converting, the target field is uninitialized */
4347 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4348 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4349 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4350 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4351 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4352
e62869be 4353 if (reducing_redundancy) {
5a8067c0
FM
4354 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4355 btrfs_info(fs_info,
e62869be 4356 "balance: force reducing metadata redundancy");
5a8067c0
FM
4357 } else {
4358 btrfs_err(fs_info,
e62869be 4359 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4360 ret = -EINVAL;
4361 goto out;
4362 }
4363 }
4364
14506127
AB
4365 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4366 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4367 btrfs_warn(fs_info,
6dac13f8 4368 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4369 btrfs_bg_type_to_raid_name(meta_target),
4370 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4371 }
4372
6bccf3ab 4373 ret = insert_balance_item(fs_info, bctl);
59641015 4374 if (ret && ret != -EEXIST)
0940ebf6
ID
4375 goto out;
4376
59641015
ID
4377 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4378 BUG_ON(ret == -EEXIST);
833aae18
DS
4379 BUG_ON(fs_info->balance_ctl);
4380 spin_lock(&fs_info->balance_lock);
4381 fs_info->balance_ctl = bctl;
4382 spin_unlock(&fs_info->balance_lock);
59641015
ID
4383 } else {
4384 BUG_ON(ret != -EEXIST);
4385 spin_lock(&fs_info->balance_lock);
4386 update_balance_args(bctl);
4387 spin_unlock(&fs_info->balance_lock);
4388 }
c9e9f97b 4389
3009a62f
DS
4390 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4391 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4392 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4393 mutex_unlock(&fs_info->balance_mutex);
4394
4395 ret = __btrfs_balance(fs_info);
4396
4397 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4398 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4399 btrfs_info(fs_info, "balance: paused");
efc0e69c
NB
4400 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4401 }
44d354ab
QW
4402 /*
4403 * Balance can be canceled by:
4404 *
4405 * - Regular cancel request
4406 * Then ret == -ECANCELED and balance_cancel_req > 0
4407 *
4408 * - Fatal signal to "btrfs" process
4409 * Either the signal caught by wait_reserve_ticket() and callers
4410 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4411 * got -ECANCELED.
4412 * Either way, in this case balance_cancel_req = 0, and
4413 * ret == -EINTR or ret == -ECANCELED.
4414 *
4415 * So here we only check the return value to catch canceled balance.
4416 */
4417 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4418 btrfs_info(fs_info, "balance: canceled");
4419 else
4420 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4421
3009a62f 4422 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4423
4424 if (bargs) {
4425 memset(bargs, 0, sizeof(*bargs));
008ef096 4426 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4427 }
4428
3a01aa7a
ID
4429 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4430 balance_need_close(fs_info)) {
149196a2 4431 reset_balance_state(fs_info);
c3e1f96c 4432 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4433 }
4434
837d5b6e 4435 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4436
4437 return ret;
4438out:
59641015 4439 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4440 reset_balance_state(fs_info);
a17c95df 4441 else
59641015 4442 kfree(bctl);
c3e1f96c 4443 btrfs_exclop_finish(fs_info);
a17c95df 4444
59641015
ID
4445 return ret;
4446}
4447
4448static int balance_kthread(void *data)
4449{
2b6ba629 4450 struct btrfs_fs_info *fs_info = data;
9555c6c1 4451 int ret = 0;
59641015 4452
a690e5f2 4453 sb_start_write(fs_info->sb);
59641015 4454 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4455 if (fs_info->balance_ctl)
6fcf6e2b 4456 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4457 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4458 sb_end_write(fs_info->sb);
2b6ba629 4459
59641015
ID
4460 return ret;
4461}
4462
2b6ba629
ID
4463int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4464{
4465 struct task_struct *tsk;
4466
1354e1a1 4467 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4468 if (!fs_info->balance_ctl) {
1354e1a1 4469 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4470 return 0;
4471 }
1354e1a1 4472 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4473
3cdde224 4474 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4475 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4476 return 0;
4477 }
4478
efc0e69c
NB
4479 spin_lock(&fs_info->super_lock);
4480 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4481 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4482 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4483 /*
4484 * A ro->rw remount sequence should continue with the paused balance
4485 * regardless of who pauses it, system or the user as of now, so set
4486 * the resume flag.
4487 */
4488 spin_lock(&fs_info->balance_lock);
4489 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4490 spin_unlock(&fs_info->balance_lock);
4491
2b6ba629 4492 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4493 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4494}
4495
68310a5e 4496int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4497{
59641015
ID
4498 struct btrfs_balance_control *bctl;
4499 struct btrfs_balance_item *item;
4500 struct btrfs_disk_balance_args disk_bargs;
4501 struct btrfs_path *path;
4502 struct extent_buffer *leaf;
4503 struct btrfs_key key;
4504 int ret;
4505
4506 path = btrfs_alloc_path();
4507 if (!path)
4508 return -ENOMEM;
4509
59641015 4510 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4511 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4512 key.offset = 0;
4513
68310a5e 4514 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4515 if (ret < 0)
68310a5e 4516 goto out;
59641015
ID
4517 if (ret > 0) { /* ret = -ENOENT; */
4518 ret = 0;
68310a5e
ID
4519 goto out;
4520 }
4521
4522 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4523 if (!bctl) {
4524 ret = -ENOMEM;
4525 goto out;
59641015
ID
4526 }
4527
4528 leaf = path->nodes[0];
4529 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4530
68310a5e
ID
4531 bctl->flags = btrfs_balance_flags(leaf, item);
4532 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4533
4534 btrfs_balance_data(leaf, item, &disk_bargs);
4535 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4536 btrfs_balance_meta(leaf, item, &disk_bargs);
4537 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4538 btrfs_balance_sys(leaf, item, &disk_bargs);
4539 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4540
eee95e3f
DS
4541 /*
4542 * This should never happen, as the paused balance state is recovered
4543 * during mount without any chance of other exclusive ops to collide.
4544 *
4545 * This gives the exclusive op status to balance and keeps in paused
4546 * state until user intervention (cancel or umount). If the ownership
4547 * cannot be assigned, show a message but do not fail. The balance
4548 * is in a paused state and must have fs_info::balance_ctl properly
4549 * set up.
4550 */
efc0e69c 4551 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4552 btrfs_warn(fs_info,
6dac13f8 4553 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4554
fb286100
JB
4555 btrfs_release_path(path);
4556
68310a5e 4557 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4558 BUG_ON(fs_info->balance_ctl);
4559 spin_lock(&fs_info->balance_lock);
4560 fs_info->balance_ctl = bctl;
4561 spin_unlock(&fs_info->balance_lock);
68310a5e 4562 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4563out:
4564 btrfs_free_path(path);
ec44a35c
CM
4565 return ret;
4566}
4567
837d5b6e
ID
4568int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4569{
4570 int ret = 0;
4571
4572 mutex_lock(&fs_info->balance_mutex);
4573 if (!fs_info->balance_ctl) {
4574 mutex_unlock(&fs_info->balance_mutex);
4575 return -ENOTCONN;
4576 }
4577
3009a62f 4578 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4579 atomic_inc(&fs_info->balance_pause_req);
4580 mutex_unlock(&fs_info->balance_mutex);
4581
4582 wait_event(fs_info->balance_wait_q,
3009a62f 4583 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4584
4585 mutex_lock(&fs_info->balance_mutex);
4586 /* we are good with balance_ctl ripped off from under us */
3009a62f 4587 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4588 atomic_dec(&fs_info->balance_pause_req);
4589 } else {
4590 ret = -ENOTCONN;
4591 }
4592
4593 mutex_unlock(&fs_info->balance_mutex);
4594 return ret;
4595}
4596
a7e99c69
ID
4597int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4598{
4599 mutex_lock(&fs_info->balance_mutex);
4600 if (!fs_info->balance_ctl) {
4601 mutex_unlock(&fs_info->balance_mutex);
4602 return -ENOTCONN;
4603 }
4604
cf7d20f4
DS
4605 /*
4606 * A paused balance with the item stored on disk can be resumed at
4607 * mount time if the mount is read-write. Otherwise it's still paused
4608 * and we must not allow cancelling as it deletes the item.
4609 */
4610 if (sb_rdonly(fs_info->sb)) {
4611 mutex_unlock(&fs_info->balance_mutex);
4612 return -EROFS;
4613 }
4614
a7e99c69
ID
4615 atomic_inc(&fs_info->balance_cancel_req);
4616 /*
4617 * if we are running just wait and return, balance item is
4618 * deleted in btrfs_balance in this case
4619 */
3009a62f 4620 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4621 mutex_unlock(&fs_info->balance_mutex);
4622 wait_event(fs_info->balance_wait_q,
3009a62f 4623 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4624 mutex_lock(&fs_info->balance_mutex);
4625 } else {
a7e99c69 4626 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4627 /*
4628 * Lock released to allow other waiters to continue, we'll
4629 * reexamine the status again.
4630 */
a7e99c69
ID
4631 mutex_lock(&fs_info->balance_mutex);
4632
a17c95df 4633 if (fs_info->balance_ctl) {
149196a2 4634 reset_balance_state(fs_info);
c3e1f96c 4635 btrfs_exclop_finish(fs_info);
6dac13f8 4636 btrfs_info(fs_info, "balance: canceled");
a17c95df 4637 }
a7e99c69
ID
4638 }
4639
3009a62f
DS
4640 BUG_ON(fs_info->balance_ctl ||
4641 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4642 atomic_dec(&fs_info->balance_cancel_req);
4643 mutex_unlock(&fs_info->balance_mutex);
4644 return 0;
4645}
4646
97f4dd09 4647int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4648{
4649 struct btrfs_fs_info *fs_info = data;
4650 struct btrfs_root *root = fs_info->tree_root;
4651 struct btrfs_key key;
803b2f54
SB
4652 struct btrfs_path *path = NULL;
4653 int ret = 0;
4654 struct extent_buffer *eb;
4655 int slot;
4656 struct btrfs_root_item root_item;
4657 u32 item_size;
f45388f3 4658 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4659 bool closing = false;
803b2f54
SB
4660
4661 path = btrfs_alloc_path();
4662 if (!path) {
4663 ret = -ENOMEM;
4664 goto out;
4665 }
4666
4667 key.objectid = 0;
4668 key.type = BTRFS_ROOT_ITEM_KEY;
4669 key.offset = 0;
4670
803b2f54 4671 while (1) {
c94bec2c
JB
4672 if (btrfs_fs_closing(fs_info)) {
4673 closing = true;
4674 break;
4675 }
7c829b72
AJ
4676 ret = btrfs_search_forward(root, &key, path,
4677 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4678 if (ret) {
4679 if (ret > 0)
4680 ret = 0;
4681 break;
4682 }
4683
4684 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4685 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4686 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4687 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4688 goto skip;
4689
4690 eb = path->nodes[0];
4691 slot = path->slots[0];
3212fa14 4692 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4693 if (item_size < sizeof(root_item))
4694 goto skip;
4695
803b2f54
SB
4696 read_extent_buffer(eb, &root_item,
4697 btrfs_item_ptr_offset(eb, slot),
4698 (int)sizeof(root_item));
4699 if (btrfs_root_refs(&root_item) == 0)
4700 goto skip;
f45388f3
FDBM
4701
4702 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4703 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4704 if (trans)
4705 goto update_tree;
4706
4707 btrfs_release_path(path);
803b2f54
SB
4708 /*
4709 * 1 - subvol uuid item
4710 * 1 - received_subvol uuid item
4711 */
4712 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4713 if (IS_ERR(trans)) {
4714 ret = PTR_ERR(trans);
4715 break;
4716 }
f45388f3
FDBM
4717 continue;
4718 } else {
4719 goto skip;
4720 }
4721update_tree:
9771a5cf 4722 btrfs_release_path(path);
f45388f3 4723 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4724 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4725 BTRFS_UUID_KEY_SUBVOL,
4726 key.objectid);
4727 if (ret < 0) {
efe120a0 4728 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4729 ret);
803b2f54
SB
4730 break;
4731 }
4732 }
4733
4734 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4735 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4736 root_item.received_uuid,
4737 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4738 key.objectid);
4739 if (ret < 0) {
efe120a0 4740 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4741 ret);
803b2f54
SB
4742 break;
4743 }
4744 }
4745
f45388f3 4746skip:
9771a5cf 4747 btrfs_release_path(path);
803b2f54 4748 if (trans) {
3a45bb20 4749 ret = btrfs_end_transaction(trans);
f45388f3 4750 trans = NULL;
803b2f54
SB
4751 if (ret)
4752 break;
4753 }
4754
803b2f54
SB
4755 if (key.offset < (u64)-1) {
4756 key.offset++;
4757 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4758 key.offset = 0;
4759 key.type = BTRFS_ROOT_ITEM_KEY;
4760 } else if (key.objectid < (u64)-1) {
4761 key.offset = 0;
4762 key.type = BTRFS_ROOT_ITEM_KEY;
4763 key.objectid++;
4764 } else {
4765 break;
4766 }
4767 cond_resched();
4768 }
4769
4770out:
4771 btrfs_free_path(path);
f45388f3 4772 if (trans && !IS_ERR(trans))
3a45bb20 4773 btrfs_end_transaction(trans);
803b2f54 4774 if (ret)
efe120a0 4775 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4776 else if (!closing)
afcdd129 4777 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4778 up(&fs_info->uuid_tree_rescan_sem);
4779 return 0;
4780}
4781
f7a81ea4
SB
4782int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4783{
4784 struct btrfs_trans_handle *trans;
4785 struct btrfs_root *tree_root = fs_info->tree_root;
4786 struct btrfs_root *uuid_root;
803b2f54
SB
4787 struct task_struct *task;
4788 int ret;
f7a81ea4
SB
4789
4790 /*
4791 * 1 - root node
4792 * 1 - root item
4793 */
4794 trans = btrfs_start_transaction(tree_root, 2);
4795 if (IS_ERR(trans))
4796 return PTR_ERR(trans);
4797
9b7a2440 4798 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4799 if (IS_ERR(uuid_root)) {
6d13f549 4800 ret = PTR_ERR(uuid_root);
66642832 4801 btrfs_abort_transaction(trans, ret);
3a45bb20 4802 btrfs_end_transaction(trans);
6d13f549 4803 return ret;
f7a81ea4
SB
4804 }
4805
4806 fs_info->uuid_root = uuid_root;
4807
3a45bb20 4808 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4809 if (ret)
4810 return ret;
4811
4812 down(&fs_info->uuid_tree_rescan_sem);
4813 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4814 if (IS_ERR(task)) {
70f80175 4815 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4816 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4817 up(&fs_info->uuid_tree_rescan_sem);
4818 return PTR_ERR(task);
4819 }
4820
4821 return 0;
f7a81ea4 4822}
803b2f54 4823
8f18cf13
CM
4824/*
4825 * shrinking a device means finding all of the device extents past
4826 * the new size, and then following the back refs to the chunks.
4827 * The chunk relocation code actually frees the device extent
4828 */
4829int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4830{
0b246afa
JM
4831 struct btrfs_fs_info *fs_info = device->fs_info;
4832 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4833 struct btrfs_trans_handle *trans;
8f18cf13
CM
4834 struct btrfs_dev_extent *dev_extent = NULL;
4835 struct btrfs_path *path;
4836 u64 length;
8f18cf13
CM
4837 u64 chunk_offset;
4838 int ret;
4839 int slot;
ba1bf481
JB
4840 int failed = 0;
4841 bool retried = false;
8f18cf13
CM
4842 struct extent_buffer *l;
4843 struct btrfs_key key;
0b246afa 4844 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4845 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4846 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4847 u64 diff;
61d0d0d2 4848 u64 start;
7dfb8be1
NB
4849
4850 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4851 start = new_size;
0e4324a4 4852 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4853
401e29c1 4854 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4855 return -EINVAL;
4856
8f18cf13
CM
4857 path = btrfs_alloc_path();
4858 if (!path)
4859 return -ENOMEM;
4860
0338dff6 4861 path->reada = READA_BACK;
8f18cf13 4862
61d0d0d2
NB
4863 trans = btrfs_start_transaction(root, 0);
4864 if (IS_ERR(trans)) {
4865 btrfs_free_path(path);
4866 return PTR_ERR(trans);
4867 }
4868
34441361 4869 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4870
7cc8e58d 4871 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4872 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4873 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4874 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4875 }
61d0d0d2
NB
4876
4877 /*
4878 * Once the device's size has been set to the new size, ensure all
4879 * in-memory chunks are synced to disk so that the loop below sees them
4880 * and relocates them accordingly.
4881 */
1c11b63e 4882 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4883 mutex_unlock(&fs_info->chunk_mutex);
4884 ret = btrfs_commit_transaction(trans);
4885 if (ret)
4886 goto done;
4887 } else {
4888 mutex_unlock(&fs_info->chunk_mutex);
4889 btrfs_end_transaction(trans);
4890 }
8f18cf13 4891
ba1bf481 4892again:
8f18cf13
CM
4893 key.objectid = device->devid;
4894 key.offset = (u64)-1;
4895 key.type = BTRFS_DEV_EXTENT_KEY;
4896
213e64da 4897 do {
f3372065 4898 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4900 if (ret < 0) {
f3372065 4901 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4902 goto done;
67c5e7d4 4903 }
8f18cf13
CM
4904
4905 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4906 if (ret) {
f3372065 4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4908 if (ret < 0)
4909 goto done;
8f18cf13 4910 ret = 0;
b3b4aa74 4911 btrfs_release_path(path);
bf1fb512 4912 break;
8f18cf13
CM
4913 }
4914
4915 l = path->nodes[0];
4916 slot = path->slots[0];
4917 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4918
ba1bf481 4919 if (key.objectid != device->devid) {
f3372065 4920 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4921 btrfs_release_path(path);
bf1fb512 4922 break;
ba1bf481 4923 }
8f18cf13
CM
4924
4925 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4926 length = btrfs_dev_extent_length(l, dev_extent);
4927
ba1bf481 4928 if (key.offset + length <= new_size) {
f3372065 4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4930 btrfs_release_path(path);
d6397bae 4931 break;
ba1bf481 4932 }
8f18cf13 4933
8f18cf13 4934 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4935 btrfs_release_path(path);
8f18cf13 4936
a6f93c71
LB
4937 /*
4938 * We may be relocating the only data chunk we have,
4939 * which could potentially end up with losing data's
4940 * raid profile, so lets allocate an empty one in
4941 * advance.
4942 */
4943 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4944 if (ret < 0) {
f3372065 4945 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4946 goto done;
4947 }
4948
0b246afa 4949 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4950 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4951 if (ret == -ENOSPC) {
ba1bf481 4952 failed++;
eede2bf3
OS
4953 } else if (ret) {
4954 if (ret == -ETXTBSY) {
4955 btrfs_warn(fs_info,
4956 "could not shrink block group %llu due to active swapfile",
4957 chunk_offset);
4958 }
4959 goto done;
4960 }
213e64da 4961 } while (key.offset-- > 0);
ba1bf481
JB
4962
4963 if (failed && !retried) {
4964 failed = 0;
4965 retried = true;
4966 goto again;
4967 } else if (failed && retried) {
4968 ret = -ENOSPC;
ba1bf481 4969 goto done;
8f18cf13
CM
4970 }
4971
d6397bae 4972 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4973 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4974 if (IS_ERR(trans)) {
4975 ret = PTR_ERR(trans);
4976 goto done;
4977 }
4978
34441361 4979 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4980 /* Clear all state bits beyond the shrunk device size */
4981 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4982 CHUNK_STATE_MASK);
4983
7cc8e58d 4984 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4985 if (list_empty(&device->post_commit_list))
4986 list_add_tail(&device->post_commit_list,
4987 &trans->transaction->dev_update_list);
d6397bae 4988
d6397bae 4989 WARN_ON(diff > old_total);
7dfb8be1
NB
4990 btrfs_set_super_total_bytes(super_copy,
4991 round_down(old_total - diff, fs_info->sectorsize));
34441361 4992 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 4993
2bb2e00e 4994 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
4995 /* Now btrfs_update_device() will change the on-disk size. */
4996 ret = btrfs_update_device(trans, device);
2bb2e00e 4997 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
4998 if (ret < 0) {
4999 btrfs_abort_transaction(trans, ret);
5000 btrfs_end_transaction(trans);
5001 } else {
5002 ret = btrfs_commit_transaction(trans);
5003 }
8f18cf13
CM
5004done:
5005 btrfs_free_path(path);
53e489bc 5006 if (ret) {
34441361 5007 mutex_lock(&fs_info->chunk_mutex);
53e489bc 5008 btrfs_device_set_total_bytes(device, old_size);
ebbede42 5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 5010 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 5011 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 5012 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 5013 }
8f18cf13
CM
5014 return ret;
5015}
5016
2ff7e61e 5017static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5018 struct btrfs_key *key,
5019 struct btrfs_chunk *chunk, int item_size)
5020{
0b246afa 5021 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5022 struct btrfs_disk_key disk_key;
5023 u32 array_size;
5024 u8 *ptr;
5025
79bd3712
FM
5026 lockdep_assert_held(&fs_info->chunk_mutex);
5027
0b86a832 5028 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5029 if (array_size + item_size + sizeof(disk_key)
79bd3712 5030 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5031 return -EFBIG;
5032
5033 ptr = super_copy->sys_chunk_array + array_size;
5034 btrfs_cpu_key_to_disk(&disk_key, key);
5035 memcpy(ptr, &disk_key, sizeof(disk_key));
5036 ptr += sizeof(disk_key);
5037 memcpy(ptr, chunk, item_size);
5038 item_size += sizeof(disk_key);
5039 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5040
0b86a832
CM
5041 return 0;
5042}
5043
73c5de00
AJ
5044/*
5045 * sort the devices in descending order by max_avail, total_avail
5046 */
5047static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5048{
73c5de00
AJ
5049 const struct btrfs_device_info *di_a = a;
5050 const struct btrfs_device_info *di_b = b;
9b3f68b9 5051
73c5de00 5052 if (di_a->max_avail > di_b->max_avail)
b2117a39 5053 return -1;
73c5de00 5054 if (di_a->max_avail < di_b->max_avail)
b2117a39 5055 return 1;
73c5de00
AJ
5056 if (di_a->total_avail > di_b->total_avail)
5057 return -1;
5058 if (di_a->total_avail < di_b->total_avail)
5059 return 1;
5060 return 0;
b2117a39 5061}
0b86a832 5062
53b381b3
DW
5063static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5064{
ffe2d203 5065 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5066 return;
5067
ceda0864 5068 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5069}
5070
cfbb825c
DS
5071static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5072{
5073 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5074 return;
5075
5076 btrfs_set_fs_incompat(info, RAID1C34);
5077}
5078
4f2bafe8 5079/*
f6f39f7a 5080 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5081 * Wraps needed parameters.
5082 */
5083struct alloc_chunk_ctl {
5084 u64 start;
5085 u64 type;
5086 /* Total number of stripes to allocate */
5087 int num_stripes;
5088 /* sub_stripes info for map */
5089 int sub_stripes;
5090 /* Stripes per device */
5091 int dev_stripes;
5092 /* Maximum number of devices to use */
5093 int devs_max;
5094 /* Minimum number of devices to use */
5095 int devs_min;
5096 /* ndevs has to be a multiple of this */
5097 int devs_increment;
5098 /* Number of copies */
5099 int ncopies;
5100 /* Number of stripes worth of bytes to store parity information */
5101 int nparity;
5102 u64 max_stripe_size;
5103 u64 max_chunk_size;
6aafb303 5104 u64 dev_extent_min;
4f2bafe8
NA
5105 u64 stripe_size;
5106 u64 chunk_size;
5107 int ndevs;
5108};
5109
27c314d5
NA
5110static void init_alloc_chunk_ctl_policy_regular(
5111 struct btrfs_fs_devices *fs_devices,
5112 struct alloc_chunk_ctl *ctl)
5113{
f6fca391 5114 struct btrfs_space_info *space_info;
27c314d5 5115
f6fca391
SR
5116 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5117 ASSERT(space_info);
5118
5119 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5120 ctl->max_stripe_size = ctl->max_chunk_size;
5121
5122 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5123 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
27c314d5
NA
5124
5125 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5126 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
27c314d5 5127 ctl->max_chunk_size);
a97699d1 5128 ctl->dev_extent_min = ctl->dev_stripes << BTRFS_STRIPE_LEN_SHIFT;
27c314d5
NA
5129}
5130
1cd6121f
NA
5131static void init_alloc_chunk_ctl_policy_zoned(
5132 struct btrfs_fs_devices *fs_devices,
5133 struct alloc_chunk_ctl *ctl)
5134{
5135 u64 zone_size = fs_devices->fs_info->zone_size;
5136 u64 limit;
5137 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5138 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5139 u64 min_chunk_size = min_data_stripes * zone_size;
5140 u64 type = ctl->type;
5141
5142 ctl->max_stripe_size = zone_size;
5143 if (type & BTRFS_BLOCK_GROUP_DATA) {
5144 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5145 zone_size);
5146 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5147 ctl->max_chunk_size = ctl->max_stripe_size;
5148 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5149 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5150 ctl->devs_max = min_t(int, ctl->devs_max,
5151 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5152 } else {
5153 BUG();
1cd6121f
NA
5154 }
5155
5156 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5157 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
1cd6121f
NA
5158 zone_size),
5159 min_chunk_size);
5160 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5161 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5162}
5163
27c314d5
NA
5164static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5165 struct alloc_chunk_ctl *ctl)
5166{
5167 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5168
5169 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5170 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5171 ctl->devs_max = btrfs_raid_array[index].devs_max;
5172 if (!ctl->devs_max)
5173 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5174 ctl->devs_min = btrfs_raid_array[index].devs_min;
5175 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5176 ctl->ncopies = btrfs_raid_array[index].ncopies;
5177 ctl->nparity = btrfs_raid_array[index].nparity;
5178 ctl->ndevs = 0;
5179
5180 switch (fs_devices->chunk_alloc_policy) {
5181 case BTRFS_CHUNK_ALLOC_REGULAR:
5182 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5183 break;
1cd6121f
NA
5184 case BTRFS_CHUNK_ALLOC_ZONED:
5185 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5186 break;
27c314d5
NA
5187 default:
5188 BUG();
5189 }
5190}
5191
560156cb
NA
5192static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5193 struct alloc_chunk_ctl *ctl,
5194 struct btrfs_device_info *devices_info)
b2117a39 5195{
560156cb 5196 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5197 struct btrfs_device *device;
73c5de00 5198 u64 total_avail;
560156cb 5199 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5200 int ret;
560156cb
NA
5201 int ndevs = 0;
5202 u64 max_avail;
5203 u64 dev_offset;
0cad8a11 5204
9f680ce0 5205 /*
73c5de00
AJ
5206 * in the first pass through the devices list, we gather information
5207 * about the available holes on each device.
9f680ce0 5208 */
ebcc9301 5209 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5210 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5211 WARN(1, KERN_ERR
efe120a0 5212 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5213 continue;
5214 }
b2117a39 5215
e12c9621
AJ
5216 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5217 &device->dev_state) ||
401e29c1 5218 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5219 continue;
b2117a39 5220
73c5de00
AJ
5221 if (device->total_bytes > device->bytes_used)
5222 total_avail = device->total_bytes - device->bytes_used;
5223 else
5224 total_avail = 0;
38c01b96 5225
5226 /* If there is no space on this device, skip it. */
6aafb303 5227 if (total_avail < ctl->dev_extent_min)
38c01b96 5228 continue;
b2117a39 5229
560156cb
NA
5230 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5231 &max_avail);
73c5de00 5232 if (ret && ret != -ENOSPC)
560156cb 5233 return ret;
b2117a39 5234
73c5de00 5235 if (ret == 0)
560156cb 5236 max_avail = dev_extent_want;
b2117a39 5237
6aafb303 5238 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5239 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5240 btrfs_debug(info,
560156cb 5241 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5242 __func__, device->devid, max_avail,
6aafb303 5243 ctl->dev_extent_min);
73c5de00 5244 continue;
4117f207 5245 }
b2117a39 5246
063d006f
ES
5247 if (ndevs == fs_devices->rw_devices) {
5248 WARN(1, "%s: found more than %llu devices\n",
5249 __func__, fs_devices->rw_devices);
5250 break;
5251 }
73c5de00
AJ
5252 devices_info[ndevs].dev_offset = dev_offset;
5253 devices_info[ndevs].max_avail = max_avail;
5254 devices_info[ndevs].total_avail = total_avail;
5255 devices_info[ndevs].dev = device;
5256 ++ndevs;
5257 }
560156cb 5258 ctl->ndevs = ndevs;
b2117a39 5259
73c5de00
AJ
5260 /*
5261 * now sort the devices by hole size / available space
5262 */
560156cb 5263 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5264 btrfs_cmp_device_info, NULL);
b2117a39 5265
560156cb
NA
5266 return 0;
5267}
5268
5badf512
NA
5269static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5270 struct btrfs_device_info *devices_info)
5271{
5272 /* Number of stripes that count for block group size */
5273 int data_stripes;
5274
5275 /*
5276 * The primary goal is to maximize the number of stripes, so use as
5277 * many devices as possible, even if the stripes are not maximum sized.
5278 *
5279 * The DUP profile stores more than one stripe per device, the
5280 * max_avail is the total size so we have to adjust.
5281 */
5282 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5283 ctl->dev_stripes);
5284 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5285
5286 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5287 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5288
5289 /*
5290 * Use the number of data stripes to figure out how big this chunk is
5291 * really going to be in terms of logical address space, and compare
5292 * that answer with the max chunk size. If it's higher, we try to
5293 * reduce stripe_size.
5294 */
5295 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5296 /*
5297 * Reduce stripe_size, round it up to a 16MB boundary again and
5298 * then use it, unless it ends up being even bigger than the
5299 * previous value we had already.
5300 */
5301 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5302 data_stripes), SZ_16M),
5303 ctl->stripe_size);
5304 }
5305
5da431b7
QW
5306 /* Stripe size should not go beyond 1G. */
5307 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5308
5badf512
NA
5309 /* Align to BTRFS_STRIPE_LEN */
5310 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5311 ctl->chunk_size = ctl->stripe_size * data_stripes;
5312
5313 return 0;
5314}
5315
1cd6121f
NA
5316static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5317 struct btrfs_device_info *devices_info)
5318{
5319 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5320 /* Number of stripes that count for block group size */
5321 int data_stripes;
5322
5323 /*
5324 * It should hold because:
5325 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5326 */
5327 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5328
5329 ctl->stripe_size = zone_size;
5330 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5331 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5332
5333 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5334 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5335 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5336 ctl->stripe_size) + ctl->nparity,
5337 ctl->dev_stripes);
5338 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5339 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5340 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5341 }
5342
5343 ctl->chunk_size = ctl->stripe_size * data_stripes;
5344
5345 return 0;
5346}
5347
5badf512
NA
5348static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5349 struct alloc_chunk_ctl *ctl,
5350 struct btrfs_device_info *devices_info)
5351{
5352 struct btrfs_fs_info *info = fs_devices->fs_info;
5353
5354 /*
5355 * Round down to number of usable stripes, devs_increment can be any
5356 * number so we can't use round_down() that requires power of 2, while
5357 * rounddown is safe.
5358 */
5359 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5360
5361 if (ctl->ndevs < ctl->devs_min) {
5362 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5363 btrfs_debug(info,
5364 "%s: not enough devices with free space: have=%d minimum required=%d",
5365 __func__, ctl->ndevs, ctl->devs_min);
5366 }
5367 return -ENOSPC;
5368 }
5369
5370 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5371
5372 switch (fs_devices->chunk_alloc_policy) {
5373 case BTRFS_CHUNK_ALLOC_REGULAR:
5374 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5375 case BTRFS_CHUNK_ALLOC_ZONED:
5376 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5377 default:
5378 BUG();
5379 }
5380}
5381
79bd3712 5382static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5383 struct alloc_chunk_ctl *ctl,
5384 struct btrfs_device_info *devices_info)
560156cb
NA
5385{
5386 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5387 struct map_lookup *map = NULL;
5388 struct extent_map_tree *em_tree;
79bd3712 5389 struct btrfs_block_group *block_group;
560156cb 5390 struct extent_map *em;
dce580ca
NA
5391 u64 start = ctl->start;
5392 u64 type = ctl->type;
560156cb
NA
5393 int ret;
5394 int i;
5395 int j;
5396
dce580ca
NA
5397 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5398 if (!map)
79bd3712 5399 return ERR_PTR(-ENOMEM);
dce580ca 5400 map->num_stripes = ctl->num_stripes;
560156cb 5401
dce580ca
NA
5402 for (i = 0; i < ctl->ndevs; ++i) {
5403 for (j = 0; j < ctl->dev_stripes; ++j) {
5404 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5405 map->stripes[s].dev = devices_info[i].dev;
5406 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5407 j * ctl->stripe_size;
6324fbf3 5408 }
6324fbf3 5409 }
500ceed8
NB
5410 map->io_align = BTRFS_STRIPE_LEN;
5411 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5412 map->type = type;
dce580ca 5413 map->sub_stripes = ctl->sub_stripes;
0b86a832 5414
dce580ca 5415 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5416
172ddd60 5417 em = alloc_extent_map();
2b82032c 5418 if (!em) {
298a8f9c 5419 kfree(map);
79bd3712 5420 return ERR_PTR(-ENOMEM);
593060d7 5421 }
298a8f9c 5422 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5423 em->map_lookup = map;
2b82032c 5424 em->start = start;
dce580ca 5425 em->len = ctl->chunk_size;
2b82032c
YZ
5426 em->block_start = 0;
5427 em->block_len = em->len;
dce580ca 5428 em->orig_block_len = ctl->stripe_size;
593060d7 5429
c8bf1b67 5430 em_tree = &info->mapping_tree;
890871be 5431 write_lock(&em_tree->lock);
09a2a8f9 5432 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5433 if (ret) {
1efb72a3 5434 write_unlock(&em_tree->lock);
0f5d42b2 5435 free_extent_map(em);
79bd3712 5436 return ERR_PTR(ret);
0f5d42b2 5437 }
1efb72a3
NB
5438 write_unlock(&em_tree->lock);
5439
5758d1bd 5440 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
79bd3712 5441 if (IS_ERR(block_group))
6df9a95e 5442 goto error_del_extent;
2b82032c 5443
bbbf7243
NB
5444 for (i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_device *dev = map->stripes[i].dev;
5446
4f2bafe8 5447 btrfs_device_set_bytes_used(dev,
dce580ca 5448 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5449 if (list_empty(&dev->post_commit_list))
5450 list_add_tail(&dev->post_commit_list,
5451 &trans->transaction->dev_update_list);
5452 }
43530c46 5453
dce580ca 5454 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5455 &info->free_chunk_space);
1c116187 5456
0f5d42b2 5457 free_extent_map(em);
0b246afa 5458 check_raid56_incompat_flag(info, type);
cfbb825c 5459 check_raid1c34_incompat_flag(info, type);
53b381b3 5460
79bd3712 5461 return block_group;
b2117a39 5462
6df9a95e 5463error_del_extent:
0f5d42b2
JB
5464 write_lock(&em_tree->lock);
5465 remove_extent_mapping(em_tree, em);
5466 write_unlock(&em_tree->lock);
5467
5468 /* One for our allocation */
5469 free_extent_map(em);
5470 /* One for the tree reference */
5471 free_extent_map(em);
dce580ca 5472
79bd3712 5473 return block_group;
dce580ca
NA
5474}
5475
f6f39f7a 5476struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5477 u64 type)
dce580ca
NA
5478{
5479 struct btrfs_fs_info *info = trans->fs_info;
5480 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5481 struct btrfs_device_info *devices_info = NULL;
5482 struct alloc_chunk_ctl ctl;
79bd3712 5483 struct btrfs_block_group *block_group;
dce580ca
NA
5484 int ret;
5485
11c67b1a
NB
5486 lockdep_assert_held(&info->chunk_mutex);
5487
dce580ca
NA
5488 if (!alloc_profile_is_valid(type, 0)) {
5489 ASSERT(0);
79bd3712 5490 return ERR_PTR(-EINVAL);
dce580ca
NA
5491 }
5492
5493 if (list_empty(&fs_devices->alloc_list)) {
5494 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5495 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5496 return ERR_PTR(-ENOSPC);
dce580ca
NA
5497 }
5498
5499 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5500 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5501 ASSERT(0);
79bd3712 5502 return ERR_PTR(-EINVAL);
dce580ca
NA
5503 }
5504
11c67b1a 5505 ctl.start = find_next_chunk(info);
dce580ca
NA
5506 ctl.type = type;
5507 init_alloc_chunk_ctl(fs_devices, &ctl);
5508
5509 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5510 GFP_NOFS);
5511 if (!devices_info)
79bd3712 5512 return ERR_PTR(-ENOMEM);
dce580ca
NA
5513
5514 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5515 if (ret < 0) {
5516 block_group = ERR_PTR(ret);
dce580ca 5517 goto out;
79bd3712 5518 }
dce580ca
NA
5519
5520 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5521 if (ret < 0) {
5522 block_group = ERR_PTR(ret);
dce580ca 5523 goto out;
79bd3712 5524 }
dce580ca 5525
79bd3712 5526 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5527
5528out:
b2117a39 5529 kfree(devices_info);
79bd3712 5530 return block_group;
2b82032c
YZ
5531}
5532
79bd3712
FM
5533/*
5534 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5535 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5536 * chunks.
5537 *
5538 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5539 * phases.
5540 */
5541int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5542 struct btrfs_block_group *bg)
5543{
5544 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5545 struct btrfs_root *chunk_root = fs_info->chunk_root;
5546 struct btrfs_key key;
5547 struct btrfs_chunk *chunk;
5548 struct btrfs_stripe *stripe;
5549 struct extent_map *em;
5550 struct map_lookup *map;
5551 size_t item_size;
5552 int i;
5553 int ret;
5554
5555 /*
5556 * We take the chunk_mutex for 2 reasons:
5557 *
5558 * 1) Updates and insertions in the chunk btree must be done while holding
5559 * the chunk_mutex, as well as updating the system chunk array in the
5560 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5561 * details;
5562 *
5563 * 2) To prevent races with the final phase of a device replace operation
5564 * that replaces the device object associated with the map's stripes,
5565 * because the device object's id can change at any time during that
5566 * final phase of the device replace operation
5567 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5568 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5569 * which would cause a failure when updating the device item, which does
5570 * not exists, or persisting a stripe of the chunk item with such ID.
5571 * Here we can't use the device_list_mutex because our caller already
5572 * has locked the chunk_mutex, and the final phase of device replace
5573 * acquires both mutexes - first the device_list_mutex and then the
5574 * chunk_mutex. Using any of those two mutexes protects us from a
5575 * concurrent device replace.
5576 */
5577 lockdep_assert_held(&fs_info->chunk_mutex);
5578
5579 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5580 if (IS_ERR(em)) {
5581 ret = PTR_ERR(em);
5582 btrfs_abort_transaction(trans, ret);
5583 return ret;
5584 }
5585
5586 map = em->map_lookup;
5587 item_size = btrfs_chunk_item_size(map->num_stripes);
5588
5589 chunk = kzalloc(item_size, GFP_NOFS);
5590 if (!chunk) {
5591 ret = -ENOMEM;
5592 btrfs_abort_transaction(trans, ret);
50460e37 5593 goto out;
2b82032c
YZ
5594 }
5595
79bd3712
FM
5596 for (i = 0; i < map->num_stripes; i++) {
5597 struct btrfs_device *device = map->stripes[i].dev;
5598
5599 ret = btrfs_update_device(trans, device);
5600 if (ret)
5601 goto out;
5602 }
5603
2b82032c 5604 stripe = &chunk->stripe;
6df9a95e 5605 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5606 struct btrfs_device *device = map->stripes[i].dev;
5607 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5608
e17cade2
CM
5609 btrfs_set_stack_stripe_devid(stripe, device->devid);
5610 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5611 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5612 stripe++;
0b86a832
CM
5613 }
5614
79bd3712 5615 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5616 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
a97699d1 5617 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
2b82032c
YZ
5618 btrfs_set_stack_chunk_type(chunk, map->type);
5619 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
a97699d1
QW
5620 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5621 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
0b246afa 5622 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5623 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5624
2b82032c
YZ
5625 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5626 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5627 key.offset = bg->start;
0b86a832 5628
2b82032c 5629 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5630 if (ret)
5631 goto out;
5632
3349b57f 5633 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
79bd3712
FM
5634
5635 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5636 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5637 if (ret)
5638 goto out;
8f18cf13 5639 }
1abe9b8a 5640
6df9a95e 5641out:
0b86a832 5642 kfree(chunk);
6df9a95e 5643 free_extent_map(em);
4ed1d16e 5644 return ret;
2b82032c 5645}
0b86a832 5646
6f8e0fc7 5647static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5648{
6f8e0fc7 5649 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5650 u64 alloc_profile;
79bd3712
FM
5651 struct btrfs_block_group *meta_bg;
5652 struct btrfs_block_group *sys_bg;
5653
5654 /*
5655 * When adding a new device for sprouting, the seed device is read-only
5656 * so we must first allocate a metadata and a system chunk. But before
5657 * adding the block group items to the extent, device and chunk btrees,
5658 * we must first:
5659 *
5660 * 1) Create both chunks without doing any changes to the btrees, as
5661 * otherwise we would get -ENOSPC since the block groups from the
5662 * seed device are read-only;
5663 *
5664 * 2) Add the device item for the new sprout device - finishing the setup
5665 * of a new block group requires updating the device item in the chunk
5666 * btree, so it must exist when we attempt to do it. The previous step
5667 * ensures this does not fail with -ENOSPC.
5668 *
5669 * After that we can add the block group items to their btrees:
5670 * update existing device item in the chunk btree, add a new block group
5671 * item to the extent btree, add a new chunk item to the chunk btree and
5672 * finally add the new device extent items to the devices btree.
5673 */
2b82032c 5674
1b86826d 5675 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5676 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5677 if (IS_ERR(meta_bg))
5678 return PTR_ERR(meta_bg);
2b82032c 5679
1b86826d 5680 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5681 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5682 if (IS_ERR(sys_bg))
5683 return PTR_ERR(sys_bg);
5684
5685 return 0;
2b82032c
YZ
5686}
5687
d20983b4
MX
5688static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5689{
fc9a2ac7 5690 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5691
fc9a2ac7 5692 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5693}
5694
a09f23c3 5695bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5696{
5697 struct extent_map *em;
5698 struct map_lookup *map;
d20983b4 5699 int miss_ndevs = 0;
2b82032c 5700 int i;
a09f23c3 5701 bool ret = true;
2b82032c 5702
60ca842e 5703 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5704 if (IS_ERR(em))
a09f23c3 5705 return false;
2b82032c 5706
95617d69 5707 map = em->map_lookup;
2b82032c 5708 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5709 if (test_bit(BTRFS_DEV_STATE_MISSING,
5710 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5711 miss_ndevs++;
5712 continue;
5713 }
ebbede42
AJ
5714 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5715 &map->stripes[i].dev->dev_state)) {
a09f23c3 5716 ret = false;
d20983b4 5717 goto end;
2b82032c
YZ
5718 }
5719 }
d20983b4
MX
5720
5721 /*
a09f23c3
AJ
5722 * If the number of missing devices is larger than max errors, we can
5723 * not write the data into that chunk successfully.
d20983b4
MX
5724 */
5725 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5726 ret = false;
d20983b4 5727end:
0b86a832 5728 free_extent_map(em);
a09f23c3 5729 return ret;
0b86a832
CM
5730}
5731
c8bf1b67 5732void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5733{
5734 struct extent_map *em;
5735
d397712b 5736 while (1) {
c8bf1b67
DS
5737 write_lock(&tree->lock);
5738 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5739 if (em)
c8bf1b67
DS
5740 remove_extent_mapping(tree, em);
5741 write_unlock(&tree->lock);
0b86a832
CM
5742 if (!em)
5743 break;
0b86a832
CM
5744 /* once for us */
5745 free_extent_map(em);
5746 /* once for the tree */
5747 free_extent_map(em);
5748 }
5749}
5750
5d964051 5751int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5752{
5753 struct extent_map *em;
5754 struct map_lookup *map;
6d322b48
QW
5755 enum btrfs_raid_types index;
5756 int ret = 1;
f188591e 5757
60ca842e 5758 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5759 if (IS_ERR(em))
5760 /*
5761 * We could return errors for these cases, but that could get
5762 * ugly and we'd probably do the same thing which is just not do
5763 * anything else and exit, so return 1 so the callers don't try
5764 * to use other copies.
5765 */
fb7669b5 5766 return 1;
fb7669b5 5767
95617d69 5768 map = em->map_lookup;
6d322b48
QW
5769 index = btrfs_bg_flags_to_raid_index(map->type);
5770
5771 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5772 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5773 ret = btrfs_raid_array[index].ncopies;
53b381b3
DW
5774 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5775 ret = 2;
5776 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5777 /*
5778 * There could be two corrupted data stripes, we need
5779 * to loop retry in order to rebuild the correct data.
e7e02096 5780 *
8810f751
LB
5781 * Fail a stripe at a time on every retry except the
5782 * stripe under reconstruction.
5783 */
5784 ret = map->num_stripes;
f188591e 5785 free_extent_map(em);
f188591e
CM
5786 return ret;
5787}
5788
2ff7e61e 5789unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5790 u64 logical)
5791{
5792 struct extent_map *em;
5793 struct map_lookup *map;
0b246afa 5794 unsigned long len = fs_info->sectorsize;
53b381b3 5795
b036f479
QW
5796 if (!btrfs_fs_incompat(fs_info, RAID56))
5797 return len;
5798
60ca842e 5799 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5800
69f03f13
NB
5801 if (!WARN_ON(IS_ERR(em))) {
5802 map = em->map_lookup;
5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
a97699d1 5804 len = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
69f03f13
NB
5805 free_extent_map(em);
5806 }
53b381b3
DW
5807 return len;
5808}
5809
e4ff5fb5 5810int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5811{
5812 struct extent_map *em;
5813 struct map_lookup *map;
53b381b3
DW
5814 int ret = 0;
5815
b036f479
QW
5816 if (!btrfs_fs_incompat(fs_info, RAID56))
5817 return 0;
5818
60ca842e 5819 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5820
69f03f13
NB
5821 if(!WARN_ON(IS_ERR(em))) {
5822 map = em->map_lookup;
5823 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5824 ret = 1;
5825 free_extent_map(em);
5826 }
53b381b3
DW
5827 return ret;
5828}
5829
30d9861f 5830static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5831 struct map_lookup *map, int first,
8ba0ae78 5832 int dev_replace_is_ongoing)
dfe25020
CM
5833{
5834 int i;
99f92a7c 5835 int num_stripes;
8ba0ae78 5836 int preferred_mirror;
30d9861f
SB
5837 int tolerance;
5838 struct btrfs_device *srcdev;
5839
99f92a7c 5840 ASSERT((map->type &
c7369b3f 5841 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5842
5843 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5844 num_stripes = map->sub_stripes;
5845 else
5846 num_stripes = map->num_stripes;
5847
33fd2f71
AJ
5848 switch (fs_info->fs_devices->read_policy) {
5849 default:
5850 /* Shouldn't happen, just warn and use pid instead of failing */
5851 btrfs_warn_rl(fs_info,
5852 "unknown read_policy type %u, reset to pid",
5853 fs_info->fs_devices->read_policy);
5854 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5855 fallthrough;
5856 case BTRFS_READ_POLICY_PID:
5857 preferred_mirror = first + (current->pid % num_stripes);
5858 break;
5859 }
8ba0ae78 5860
30d9861f
SB
5861 if (dev_replace_is_ongoing &&
5862 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5863 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5864 srcdev = fs_info->dev_replace.srcdev;
5865 else
5866 srcdev = NULL;
5867
5868 /*
5869 * try to avoid the drive that is the source drive for a
5870 * dev-replace procedure, only choose it if no other non-missing
5871 * mirror is available
5872 */
5873 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5874 if (map->stripes[preferred_mirror].dev->bdev &&
5875 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5876 return preferred_mirror;
99f92a7c 5877 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5878 if (map->stripes[i].dev->bdev &&
5879 (tolerance || map->stripes[i].dev != srcdev))
5880 return i;
5881 }
dfe25020 5882 }
30d9861f 5883
dfe25020
CM
5884 /* we couldn't find one that doesn't fail. Just return something
5885 * and the io error handling code will clean up eventually
5886 */
8ba0ae78 5887 return preferred_mirror;
dfe25020
CM
5888}
5889
731ccf15 5890static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
1faf3885 5891 u16 total_stripes)
6e9606d2 5892{
4ced85f8
QW
5893 struct btrfs_io_context *bioc;
5894
5895 bioc = kzalloc(
4c664611
QW
5896 /* The size of btrfs_io_context */
5897 sizeof(struct btrfs_io_context) +
5898 /* Plus the variable array for the stripes */
18d758a2 5899 sizeof(struct btrfs_io_stripe) * (total_stripes),
9f0eac07
L
5900 GFP_NOFS);
5901
5902 if (!bioc)
5903 return NULL;
6e9606d2 5904
4c664611 5905 refcount_set(&bioc->refs, 1);
6e9606d2 5906
731ccf15 5907 bioc->fs_info = fs_info;
1faf3885 5908 bioc->replace_stripe_src = -1;
18d758a2 5909 bioc->full_stripe_logical = (u64)-1;
608769a4 5910
4c664611 5911 return bioc;
6e9606d2
ZL
5912}
5913
4c664611 5914void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5915{
4c664611
QW
5916 WARN_ON(!refcount_read(&bioc->refs));
5917 refcount_inc(&bioc->refs);
6e9606d2
ZL
5918}
5919
4c664611 5920void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5921{
4c664611 5922 if (!bioc)
6e9606d2 5923 return;
4c664611
QW
5924 if (refcount_dec_and_test(&bioc->refs))
5925 kfree(bioc);
6e9606d2
ZL
5926}
5927
0b3d4cd3
LB
5928/*
5929 * Please note that, discard won't be sent to target device of device
5930 * replace.
5931 */
a4012f06
CH
5932struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5933 u64 logical, u64 *length_ret,
5934 u32 *num_stripes)
0b3d4cd3
LB
5935{
5936 struct extent_map *em;
5937 struct map_lookup *map;
a4012f06 5938 struct btrfs_discard_stripe *stripes;
6b7faadd 5939 u64 length = *length_ret;
0b3d4cd3 5940 u64 offset;
6ded22c1
QW
5941 u32 stripe_nr;
5942 u32 stripe_nr_end;
5943 u32 stripe_cnt;
0b3d4cd3 5944 u64 stripe_end_offset;
0b3d4cd3 5945 u64 stripe_offset;
0b3d4cd3
LB
5946 u32 stripe_index;
5947 u32 factor = 0;
5948 u32 sub_stripes = 0;
6ded22c1 5949 u32 stripes_per_dev = 0;
0b3d4cd3
LB
5950 u32 remaining_stripes = 0;
5951 u32 last_stripe = 0;
a4012f06 5952 int ret;
0b3d4cd3
LB
5953 int i;
5954
60ca842e 5955 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3 5956 if (IS_ERR(em))
a4012f06 5957 return ERR_CAST(em);
0b3d4cd3
LB
5958
5959 map = em->map_lookup;
a4012f06 5960
0b3d4cd3
LB
5961 /* we don't discard raid56 yet */
5962 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5963 ret = -EOPNOTSUPP;
a4012f06 5964 goto out_free_map;
a97699d1 5965 }
0b3d4cd3
LB
5966
5967 offset = logical - em->start;
2d974619 5968 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5969 *length_ret = length;
0b3d4cd3 5970
0b3d4cd3
LB
5971 /*
5972 * stripe_nr counts the total number of stripes we have to stride
5973 * to get to this block
5974 */
a97699d1 5975 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
5976
5977 /* stripe_offset is the offset of this block in its stripe */
a97699d1 5978 stripe_offset = offset - (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
0b3d4cd3 5979
a97699d1
QW
5980 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5981 BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3 5982 stripe_cnt = stripe_nr_end - stripe_nr;
a97699d1 5983 stripe_end_offset = (stripe_nr_end << BTRFS_STRIPE_LEN_SHIFT) -
0b3d4cd3
LB
5984 (offset + length);
5985 /*
5986 * after this, stripe_nr is the number of stripes on this
5987 * device we have to walk to find the data, and stripe_index is
5988 * the number of our device in the stripe array
5989 */
a4012f06 5990 *num_stripes = 1;
0b3d4cd3
LB
5991 stripe_index = 0;
5992 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5993 BTRFS_BLOCK_GROUP_RAID10)) {
5994 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5995 sub_stripes = 1;
5996 else
5997 sub_stripes = map->sub_stripes;
5998
5999 factor = map->num_stripes / sub_stripes;
a4012f06 6000 *num_stripes = min_t(u64, map->num_stripes,
0b3d4cd3 6001 sub_stripes * stripe_cnt);
6ded22c1
QW
6002 stripe_index = stripe_nr % factor;
6003 stripe_nr /= factor;
0b3d4cd3 6004 stripe_index *= sub_stripes;
6ded22c1
QW
6005
6006 remaining_stripes = stripe_cnt % factor;
6007 stripes_per_dev = stripe_cnt / factor;
6008 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
c7369b3f 6009 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3 6010 BTRFS_BLOCK_GROUP_DUP)) {
a4012f06 6011 *num_stripes = map->num_stripes;
0b3d4cd3 6012 } else {
6ded22c1
QW
6013 stripe_index = stripe_nr % map->num_stripes;
6014 stripe_nr /= map->num_stripes;
0b3d4cd3
LB
6015 }
6016
a4012f06
CH
6017 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6018 if (!stripes) {
0b3d4cd3 6019 ret = -ENOMEM;
a4012f06 6020 goto out_free_map;
0b3d4cd3
LB
6021 }
6022
a4012f06
CH
6023 for (i = 0; i < *num_stripes; i++) {
6024 stripes[i].physical =
0b3d4cd3 6025 map->stripes[stripe_index].physical +
a97699d1 6026 stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
a4012f06 6027 stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6028
6029 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6030 BTRFS_BLOCK_GROUP_RAID10)) {
a97699d1 6031 stripes[i].length = stripes_per_dev << BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
6032
6033 if (i / sub_stripes < remaining_stripes)
a97699d1 6034 stripes[i].length += BTRFS_STRIPE_LEN;
0b3d4cd3
LB
6035
6036 /*
6037 * Special for the first stripe and
6038 * the last stripe:
6039 *
6040 * |-------|...|-------|
6041 * |----------|
6042 * off end_off
6043 */
6044 if (i < sub_stripes)
a4012f06 6045 stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6046
6047 if (stripe_index >= last_stripe &&
6048 stripe_index <= (last_stripe +
6049 sub_stripes - 1))
a4012f06 6050 stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6051
6052 if (i == sub_stripes - 1)
6053 stripe_offset = 0;
6054 } else {
a4012f06 6055 stripes[i].length = length;
0b3d4cd3
LB
6056 }
6057
6058 stripe_index++;
6059 if (stripe_index == map->num_stripes) {
6060 stripe_index = 0;
6061 stripe_nr++;
6062 }
6063 }
6064
0b3d4cd3 6065 free_extent_map(em);
a4012f06
CH
6066 return stripes;
6067out_free_map:
6068 free_extent_map(em);
6069 return ERR_PTR(ret);
0b3d4cd3
LB
6070}
6071
6143c23c
NA
6072static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6073{
6074 struct btrfs_block_group *cache;
6075 bool ret;
6076
de17addc 6077 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6078 if (!btrfs_is_zoned(fs_info))
6079 return false;
6080
6081 cache = btrfs_lookup_block_group(fs_info, logical);
6082
3349b57f 6083 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6143c23c
NA
6084
6085 btrfs_put_block_group(cache);
6086 return ret;
6087}
6088
73c0f228 6089static void handle_ops_on_dev_replace(enum btrfs_map_op op,
be5c7edb 6090 struct btrfs_io_context *bioc,
73c0f228 6091 struct btrfs_dev_replace *dev_replace,
6143c23c 6092 u64 logical,
73c0f228
LB
6093 int *num_stripes_ret, int *max_errors_ret)
6094{
73c0f228 6095 u64 srcdev_devid = dev_replace->srcdev->devid;
1faf3885
QW
6096 /*
6097 * At this stage, num_stripes is still the real number of stripes,
6098 * excluding the duplicated stripes.
6099 */
73c0f228 6100 int num_stripes = *num_stripes_ret;
1faf3885 6101 int nr_extra_stripes = 0;
73c0f228
LB
6102 int max_errors = *max_errors_ret;
6103 int i;
6104
1faf3885
QW
6105 /*
6106 * A block group which has "to_copy" set will eventually be copied by
6107 * the dev-replace process. We can avoid cloning IO here.
6108 */
6109 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6110 return;
73c0f228 6111
1faf3885
QW
6112 /*
6113 * Duplicate the write operations while the dev-replace procedure is
6114 * running. Since the copying of the old disk to the new disk takes
6115 * place at run time while the filesystem is mounted writable, the
6116 * regular write operations to the old disk have to be duplicated to go
6117 * to the new disk as well.
6118 *
6119 * Note that device->missing is handled by the caller, and that the
6120 * write to the old disk is already set up in the stripes array.
6121 */
6122 for (i = 0; i < num_stripes; i++) {
6123 struct btrfs_io_stripe *old = &bioc->stripes[i];
6124 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6143c23c 6125
1faf3885
QW
6126 if (old->dev->devid != srcdev_devid)
6127 continue;
73c0f228 6128
1faf3885
QW
6129 new->physical = old->physical;
6130 new->dev = dev_replace->tgtdev;
6131 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6132 bioc->replace_stripe_src = i;
6133 nr_extra_stripes++;
6134 }
73c0f228 6135
1faf3885
QW
6136 /* We can only have at most 2 extra nr_stripes (for DUP). */
6137 ASSERT(nr_extra_stripes <= 2);
6138 /*
6139 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6140 * replace.
6141 * If we have 2 extra stripes, only choose the one with smaller physical.
6142 */
6143 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6144 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6145 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
73c0f228 6146
1faf3885
QW
6147 /* Only DUP can have two extra stripes. */
6148 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6149
6150 /*
6151 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6152 * The extra stripe would still be there, but won't be accessed.
6153 */
6154 if (first->physical > second->physical) {
6155 swap(second->physical, first->physical);
6156 swap(second->dev, first->dev);
6157 nr_extra_stripes--;
73c0f228
LB
6158 }
6159 }
6160
1faf3885
QW
6161 *num_stripes_ret = num_stripes + nr_extra_stripes;
6162 *max_errors_ret = max_errors + nr_extra_stripes;
6163 bioc->replace_nr_stripes = nr_extra_stripes;
73c0f228
LB
6164}
6165
2b19a1fe
LB
6166static bool need_full_stripe(enum btrfs_map_op op)
6167{
6168 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6169}
6170
f8a02dc6 6171static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6ded22c1 6172 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
f8a02dc6 6173 u64 *full_stripe_start)
5f141126 6174{
5f141126
NB
6175 ASSERT(op != BTRFS_MAP_DISCARD);
6176
cc353a8b 6177 /*
f8a02dc6
CH
6178 * Stripe_nr is the stripe where this block falls. stripe_offset is
6179 * the offset of this block in its stripe.
cc353a8b 6180 */
a97699d1
QW
6181 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6182 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
f8a02dc6 6183 ASSERT(*stripe_offset < U32_MAX);
5f141126 6184
f8a02dc6 6185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
a97699d1
QW
6186 unsigned long full_stripe_len = nr_data_stripes(map) <<
6187 BTRFS_STRIPE_LEN_SHIFT;
5f141126 6188
a97699d1
QW
6189 /*
6190 * For full stripe start, we use previously calculated
6191 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6192 * STRIPE_LEN.
6193 *
6194 * By this we can avoid u64 division completely. And we have
6195 * to go rounddown(), not round_down(), as nr_data_stripes is
6196 * not ensured to be power of 2.
6197 */
f8a02dc6 6198 *full_stripe_start =
a97699d1
QW
6199 rounddown(*stripe_nr, nr_data_stripes(map)) <<
6200 BTRFS_STRIPE_LEN_SHIFT;
5f141126
NB
6201
6202 /*
f8a02dc6
CH
6203 * For writes to RAID56, allow to write a full stripe set, but
6204 * no straddling of stripe sets.
5f141126 6205 */
f8a02dc6
CH
6206 if (op == BTRFS_MAP_WRITE)
6207 return full_stripe_len - (offset - *full_stripe_start);
5f141126
NB
6208 }
6209
f8a02dc6
CH
6210 /*
6211 * For other RAID types and for RAID56 reads, allow a single stripe (on
6212 * a single disk).
6213 */
6214 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
a97699d1 6215 return BTRFS_STRIPE_LEN - *stripe_offset;
f8a02dc6 6216 return U64_MAX;
5f141126
NB
6217}
6218
03793cbb 6219static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6ded22c1 6220 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
03793cbb
CH
6221{
6222 dst->dev = map->stripes[stripe_index].dev;
6223 dst->physical = map->stripes[stripe_index].physical +
a97699d1 6224 stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
03793cbb
CH
6225}
6226
103c1972
CH
6227int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6228 u64 logical, u64 *length,
6229 struct btrfs_io_context **bioc_ret,
6230 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6231 int need_raid_map)
0b86a832
CM
6232{
6233 struct extent_map *em;
6234 struct map_lookup *map;
f8a02dc6 6235 u64 map_offset;
593060d7 6236 u64 stripe_offset;
6ded22c1 6237 u32 stripe_nr;
9d644a62 6238 u32 stripe_index;
cff82672 6239 int data_stripes;
cea9e445 6240 int i;
de11cc12 6241 int ret = 0;
03793cbb 6242 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
f2d8d74d 6243 int num_stripes;
5f50fa91 6244 int num_copies;
a236aed1 6245 int max_errors = 0;
4c664611 6246 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6247 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6248 int dev_replace_is_ongoing = 0;
4ced85f8 6249 u16 num_alloc_stripes;
53b381b3 6250 u64 raid56_full_stripe_start = (u64)-1;
f8a02dc6 6251 u64 max_len;
89b798ad 6252
4c664611 6253 ASSERT(bioc_ret);
75fb2e9e 6254 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6255
5f50fa91
QW
6256 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6257 if (mirror_num > num_copies)
6258 return -EINVAL;
6259
42034313 6260 em = btrfs_get_chunk_map(fs_info, logical, *length);
1c3ab6df
QW
6261 if (IS_ERR(em))
6262 return PTR_ERR(em);
42034313 6263
95617d69 6264 map = em->map_lookup;
cff82672 6265 data_stripes = nr_data_stripes(map);
f8a02dc6
CH
6266
6267 map_offset = logical - em->start;
6268 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6269 &stripe_offset, &raid56_full_stripe_start);
6270 *length = min_t(u64, em->len - map_offset, max_len);
593060d7 6271
cb5583dd 6272 down_read(&dev_replace->rwsem);
472262f3 6273 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6274 /*
6275 * Hold the semaphore for read during the whole operation, write is
6276 * requested at commit time but must wait.
6277 */
472262f3 6278 if (!dev_replace_is_ongoing)
cb5583dd 6279 up_read(&dev_replace->rwsem);
472262f3 6280
f2d8d74d 6281 num_stripes = 1;
cea9e445 6282 stripe_index = 0;
fce3bb9a 6283 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6ded22c1
QW
6284 stripe_index = stripe_nr % map->num_stripes;
6285 stripe_nr /= map->num_stripes;
de483734 6286 if (!need_full_stripe(op))
28e1cc7d 6287 mirror_num = 1;
c7369b3f 6288 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6289 if (need_full_stripe(op))
f2d8d74d 6290 num_stripes = map->num_stripes;
2fff734f 6291 else if (mirror_num)
f188591e 6292 stripe_index = mirror_num - 1;
dfe25020 6293 else {
30d9861f 6294 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6295 dev_replace_is_ongoing);
a1d3c478 6296 mirror_num = stripe_index + 1;
dfe25020 6297 }
2fff734f 6298
611f0e00 6299 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6300 if (need_full_stripe(op)) {
f2d8d74d 6301 num_stripes = map->num_stripes;
a1d3c478 6302 } else if (mirror_num) {
f188591e 6303 stripe_index = mirror_num - 1;
a1d3c478
JS
6304 } else {
6305 mirror_num = 1;
6306 }
2fff734f 6307
321aecc6 6308 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6309 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6310
6ded22c1
QW
6311 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6312 stripe_nr /= factor;
321aecc6 6313
de483734 6314 if (need_full_stripe(op))
f2d8d74d 6315 num_stripes = map->sub_stripes;
321aecc6
CM
6316 else if (mirror_num)
6317 stripe_index += mirror_num - 1;
dfe25020 6318 else {
3e74317a 6319 int old_stripe_index = stripe_index;
30d9861f
SB
6320 stripe_index = find_live_mirror(fs_info, map,
6321 stripe_index,
30d9861f 6322 dev_replace_is_ongoing);
3e74317a 6323 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6324 }
53b381b3 6325
ffe2d203 6326 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6327 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6ded22c1
QW
6328 /*
6329 * Push stripe_nr back to the start of the full stripe
6330 * For those cases needing a full stripe, @stripe_nr
6331 * is the full stripe number.
6332 *
6333 * Originally we go raid56_full_stripe_start / full_stripe_len,
6334 * but that can be expensive. Here we just divide
6335 * @stripe_nr with @data_stripes.
6336 */
6337 stripe_nr /= data_stripes;
53b381b3
DW
6338
6339 /* RAID[56] write or recovery. Return all stripes */
6340 num_stripes = map->num_stripes;
6dead96c 6341 max_errors = btrfs_chunk_max_errors(map);
53b381b3 6342
462b0b2a
QW
6343 /* Return the length to the full stripe end */
6344 *length = min(logical + *length,
6345 raid56_full_stripe_start + em->start +
a97699d1 6346 (data_stripes << BTRFS_STRIPE_LEN_SHIFT)) - logical;
53b381b3
DW
6347 stripe_index = 0;
6348 stripe_offset = 0;
6349 } else {
6350 /*
6351 * Mirror #0 or #1 means the original data block.
6352 * Mirror #2 is RAID5 parity block.
6353 * Mirror #3 is RAID6 Q block.
6354 */
6ded22c1
QW
6355 stripe_index = stripe_nr % data_stripes;
6356 stripe_nr /= data_stripes;
53b381b3 6357 if (mirror_num > 1)
cff82672 6358 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6359
6360 /* We distribute the parity blocks across stripes */
6ded22c1 6361 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
de483734 6362 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6363 mirror_num = 1;
53b381b3 6364 }
8790d502
CM
6365 } else {
6366 /*
6ded22c1 6367 * After this, stripe_nr is the number of stripes on this
47c5713f
DS
6368 * device we have to walk to find the data, and stripe_index is
6369 * the number of our device in the stripe array
8790d502 6370 */
6ded22c1
QW
6371 stripe_index = stripe_nr % map->num_stripes;
6372 stripe_nr /= map->num_stripes;
a1d3c478 6373 mirror_num = stripe_index + 1;
8790d502 6374 }
e042d1ec 6375 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6376 btrfs_crit(fs_info,
6377 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6378 stripe_index, map->num_stripes);
6379 ret = -EINVAL;
6380 goto out;
6381 }
cea9e445 6382
472262f3 6383 num_alloc_stripes = num_stripes;
1faf3885
QW
6384 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6385 op != BTRFS_MAP_READ)
6386 /*
6387 * For replace case, we need to add extra stripes for extra
6388 * duplicated stripes.
6389 *
6390 * For both WRITE and GET_READ_MIRRORS, we may have at most
6391 * 2 more stripes (DUP types, otherwise 1).
6392 */
6393 num_alloc_stripes += 2;
2c8cdd6e 6394
03793cbb
CH
6395 /*
6396 * If this I/O maps to a single device, try to return the device and
6397 * physical block information on the stack instead of allocating an
6398 * I/O context structure.
6399 */
6400 if (smap && num_alloc_stripes == 1 &&
6401 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6402 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6403 !dev_replace->tgtdev)) {
5f50fa91
QW
6404 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6405 *mirror_num_ret = mirror_num;
03793cbb
CH
6406 *bioc_ret = NULL;
6407 ret = 0;
6408 goto out;
6409 }
6410
1faf3885 6411 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
4c664611 6412 if (!bioc) {
de11cc12
LZ
6413 ret = -ENOMEM;
6414 goto out;
6415 }
1faf3885 6416 bioc->map_type = map->type;
608769a4 6417
18d758a2
QW
6418 /*
6419 * For RAID56 full map, we need to make sure the stripes[] follows the
6420 * rule that data stripes are all ordered, then followed with P and Q
6421 * (if we have).
6422 *
6423 * It's still mostly the same as other profiles, just with extra rotation.
6424 */
2b19a1fe
LB
6425 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6426 (need_full_stripe(op) || mirror_num > 1)) {
18d758a2
QW
6427 /*
6428 * For RAID56 @stripe_nr is already the number of full stripes
6429 * before us, which is also the rotation value (needs to modulo
6430 * with num_stripes).
6431 *
6432 * In this case, we just add @stripe_nr with @i, then do the
6433 * modulo, to reduce one modulo call.
6434 */
6435 bioc->full_stripe_logical = em->start +
6436 ((stripe_nr * data_stripes) << BTRFS_STRIPE_LEN_SHIFT);
6437 for (i = 0; i < num_stripes; i++)
6438 set_io_stripe(&bioc->stripes[i], map,
6439 (i + stripe_nr) % num_stripes,
6440 stripe_offset, stripe_nr);
6441 } else {
6442 /*
6443 * For all other non-RAID56 profiles, just copy the target
6444 * stripe into the bioc.
6445 */
6446 for (i = 0; i < num_stripes; i++) {
6447 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6448 stripe_offset, stripe_nr);
6449 stripe_index++;
6450 }
593060d7 6451 }
de11cc12 6452
2b19a1fe 6453 if (need_full_stripe(op))
d20983b4 6454 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6455
73c0f228 6456 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6457 need_full_stripe(op)) {
be5c7edb 6458 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6143c23c 6459 &num_stripes, &max_errors);
472262f3
SB
6460 }
6461
4c664611 6462 *bioc_ret = bioc;
4c664611
QW
6463 bioc->num_stripes = num_stripes;
6464 bioc->max_errors = max_errors;
6465 bioc->mirror_num = mirror_num;
ad6d620e 6466
cea9e445 6467out:
73beece9 6468 if (dev_replace_is_ongoing) {
53176dde
DS
6469 lockdep_assert_held(&dev_replace->rwsem);
6470 /* Unlock and let waiting writers proceed */
cb5583dd 6471 up_read(&dev_replace->rwsem);
73beece9 6472 }
0b86a832 6473 free_extent_map(em);
de11cc12 6474 return ret;
0b86a832
CM
6475}
6476
cf8cddd3 6477int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6478 u64 logical, u64 *length,
4c664611 6479 struct btrfs_io_context **bioc_ret, int mirror_num)
f2d8d74d 6480{
4c664611 6481 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
03793cbb 6482 NULL, &mirror_num, 0);
f2d8d74d
CM
6483}
6484
af8e2d1d 6485/* For Scrub/replace */
cf8cddd3 6486int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6487 u64 logical, u64 *length,
4c664611 6488 struct btrfs_io_context **bioc_ret)
af8e2d1d 6489{
03793cbb
CH
6490 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6491 NULL, NULL, 1);
af8e2d1d
MX
6492}
6493
562d7b15
JB
6494static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6495 const struct btrfs_fs_devices *fs_devices)
6496{
6497 if (args->fsid == NULL)
6498 return true;
6499 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6500 return true;
6501 return false;
6502}
6503
6504static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6505 const struct btrfs_device *device)
6506{
0fca385d
LS
6507 if (args->missing) {
6508 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6509 !device->bdev)
6510 return true;
6511 return false;
6512 }
562d7b15 6513
0fca385d 6514 if (device->devid != args->devid)
562d7b15
JB
6515 return false;
6516 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6517 return false;
0fca385d 6518 return true;
562d7b15
JB
6519}
6520
09ba3bc9
AJ
6521/*
6522 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6523 * return NULL.
6524 *
6525 * If devid and uuid are both specified, the match must be exact, otherwise
6526 * only devid is used.
09ba3bc9 6527 */
562d7b15
JB
6528struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6529 const struct btrfs_dev_lookup_args *args)
0b86a832 6530{
2b82032c 6531 struct btrfs_device *device;
944d3f9f
NB
6532 struct btrfs_fs_devices *seed_devs;
6533
562d7b15 6534 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6535 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6536 if (dev_args_match_device(args, device))
944d3f9f
NB
6537 return device;
6538 }
6539 }
2b82032c 6540
944d3f9f 6541 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6542 if (!dev_args_match_fs_devices(args, seed_devs))
6543 continue;
6544 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6545 if (dev_args_match_device(args, device))
6546 return device;
2b82032c 6547 }
2b82032c 6548 }
944d3f9f 6549
2b82032c 6550 return NULL;
0b86a832
CM
6551}
6552
2ff7e61e 6553static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6554 u64 devid, u8 *dev_uuid)
6555{
6556 struct btrfs_device *device;
fccc0007 6557 unsigned int nofs_flag;
dfe25020 6558
fccc0007
JB
6559 /*
6560 * We call this under the chunk_mutex, so we want to use NOFS for this
6561 * allocation, however we don't want to change btrfs_alloc_device() to
6562 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6563 * places.
6564 */
bb21e302 6565
fccc0007 6566 nofs_flag = memalloc_nofs_save();
bb21e302 6567 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
fccc0007 6568 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6569 if (IS_ERR(device))
adfb69af 6570 return device;
12bd2fc0
ID
6571
6572 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6573 device->fs_devices = fs_devices;
dfe25020 6574 fs_devices->num_devices++;
12bd2fc0 6575
e6e674bd 6576 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6577 fs_devices->missing_devices++;
12bd2fc0 6578
dfe25020
CM
6579 return device;
6580}
6581
43dd529a
DS
6582/*
6583 * Allocate new device struct, set up devid and UUID.
6584 *
12bd2fc0
ID
6585 * @fs_info: used only for generating a new devid, can be NULL if
6586 * devid is provided (i.e. @devid != NULL).
6587 * @devid: a pointer to devid for this device. If NULL a new devid
6588 * is generated.
6589 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6590 * is generated.
bb21e302 6591 * @path: a pointer to device path if available, NULL otherwise.
12bd2fc0
ID
6592 *
6593 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6594 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6595 * destroyed with btrfs_free_device.
12bd2fc0
ID
6596 */
6597struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
bb21e302
AJ
6598 const u64 *devid, const u8 *uuid,
6599 const char *path)
12bd2fc0
ID
6600{
6601 struct btrfs_device *dev;
6602 u64 tmp;
6603
fae7f21c 6604 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6605 return ERR_PTR(-EINVAL);
12bd2fc0 6606
fe4f46d4
DS
6607 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6608 if (!dev)
6609 return ERR_PTR(-ENOMEM);
6610
fe4f46d4
DS
6611 INIT_LIST_HEAD(&dev->dev_list);
6612 INIT_LIST_HEAD(&dev->dev_alloc_list);
6613 INIT_LIST_HEAD(&dev->post_commit_list);
6614
fe4f46d4
DS
6615 atomic_set(&dev->dev_stats_ccnt, 0);
6616 btrfs_device_data_ordered_init(dev);
35da5a7e 6617 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
12bd2fc0
ID
6618
6619 if (devid)
6620 tmp = *devid;
6621 else {
6622 int ret;
6623
6624 ret = find_next_devid(fs_info, &tmp);
6625 if (ret) {
a425f9d4 6626 btrfs_free_device(dev);
12bd2fc0
ID
6627 return ERR_PTR(ret);
6628 }
6629 }
6630 dev->devid = tmp;
6631
6632 if (uuid)
6633 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6634 else
6635 generate_random_uuid(dev->uuid);
6636
bb21e302
AJ
6637 if (path) {
6638 struct rcu_string *name;
6639
6640 name = rcu_string_strdup(path, GFP_KERNEL);
6641 if (!name) {
6642 btrfs_free_device(dev);
6643 return ERR_PTR(-ENOMEM);
6644 }
6645 rcu_assign_pointer(dev->name, name);
6646 }
6647
12bd2fc0
ID
6648 return dev;
6649}
6650
5a2b8e60 6651static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6652 u64 devid, u8 *uuid, bool error)
5a2b8e60 6653{
2b902dfc
AJ
6654 if (error)
6655 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6656 devid, uuid);
6657 else
6658 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6659 devid, uuid);
5a2b8e60
AJ
6660}
6661
bc88b486 6662u64 btrfs_calc_stripe_length(const struct extent_map *em)
39e264a4 6663{
bc88b486
QW
6664 const struct map_lookup *map = em->map_lookup;
6665 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
e4f6c6be 6666
bc88b486 6667 return div_u64(em->len, data_stripes);
39e264a4
NB
6668}
6669
e9306ad4
QW
6670#if BITS_PER_LONG == 32
6671/*
6672 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6673 * can't be accessed on 32bit systems.
6674 *
6675 * This function do mount time check to reject the fs if it already has
6676 * metadata chunk beyond that limit.
6677 */
6678static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6679 u64 logical, u64 length, u64 type)
6680{
6681 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6682 return 0;
6683
6684 if (logical + length < MAX_LFS_FILESIZE)
6685 return 0;
6686
6687 btrfs_err_32bit_limit(fs_info);
6688 return -EOVERFLOW;
6689}
6690
6691/*
6692 * This is to give early warning for any metadata chunk reaching
6693 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6694 * Although we can still access the metadata, it's not going to be possible
6695 * once the limit is reached.
6696 */
6697static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6698 u64 logical, u64 length, u64 type)
6699{
6700 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6701 return;
6702
6703 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6704 return;
6705
6706 btrfs_warn_32bit_limit(fs_info);
6707}
6708#endif
6709
ff37c89f
NB
6710static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6711 u64 devid, u8 *uuid)
6712{
6713 struct btrfs_device *dev;
6714
6715 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6716 btrfs_report_missing_device(fs_info, devid, uuid, true);
6717 return ERR_PTR(-ENOENT);
6718 }
6719
6720 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6721 if (IS_ERR(dev)) {
6722 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6723 devid, PTR_ERR(dev));
6724 return dev;
6725 }
6726 btrfs_report_missing_device(fs_info, devid, uuid, false);
6727
6728 return dev;
6729}
6730
9690ac09 6731static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6732 struct btrfs_chunk *chunk)
6733{
562d7b15 6734 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 6735 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6736 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6737 struct map_lookup *map;
6738 struct extent_map *em;
6739 u64 logical;
6740 u64 length;
e06cd3dd 6741 u64 devid;
e9306ad4 6742 u64 type;
e06cd3dd 6743 u8 uuid[BTRFS_UUID_SIZE];
76a66ba1 6744 int index;
e06cd3dd
LB
6745 int num_stripes;
6746 int ret;
6747 int i;
6748
6749 logical = key->offset;
6750 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6751 type = btrfs_chunk_type(leaf, chunk);
76a66ba1 6752 index = btrfs_bg_flags_to_raid_index(type);
e06cd3dd
LB
6753 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6754
e9306ad4
QW
6755#if BITS_PER_LONG == 32
6756 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6757 if (ret < 0)
6758 return ret;
6759 warn_32bit_meta_chunk(fs_info, logical, length, type);
6760#endif
6761
075cb3c7
QW
6762 /*
6763 * Only need to verify chunk item if we're reading from sys chunk array,
6764 * as chunk item in tree block is already verified by tree-checker.
6765 */
6766 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6767 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6768 if (ret)
6769 return ret;
6770 }
a061fc8d 6771
c8bf1b67
DS
6772 read_lock(&map_tree->lock);
6773 em = lookup_extent_mapping(map_tree, logical, 1);
6774 read_unlock(&map_tree->lock);
0b86a832
CM
6775
6776 /* already mapped? */
6777 if (em && em->start <= logical && em->start + em->len > logical) {
6778 free_extent_map(em);
0b86a832
CM
6779 return 0;
6780 } else if (em) {
6781 free_extent_map(em);
6782 }
0b86a832 6783
172ddd60 6784 em = alloc_extent_map();
0b86a832
CM
6785 if (!em)
6786 return -ENOMEM;
593060d7 6787 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6788 if (!map) {
6789 free_extent_map(em);
6790 return -ENOMEM;
6791 }
6792
298a8f9c 6793 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6794 em->map_lookup = map;
0b86a832
CM
6795 em->start = logical;
6796 em->len = length;
70c8a91c 6797 em->orig_start = 0;
0b86a832 6798 em->block_start = 0;
c8b97818 6799 em->block_len = em->len;
0b86a832 6800
593060d7
CM
6801 map->num_stripes = num_stripes;
6802 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6803 map->io_align = btrfs_chunk_io_align(leaf, chunk);
e9306ad4 6804 map->type = type;
76a66ba1
QW
6805 /*
6806 * We can't use the sub_stripes value, as for profiles other than
6807 * RAID10, they may have 0 as sub_stripes for filesystems created by
6808 * older mkfs (<v5.4).
6809 * In that case, it can cause divide-by-zero errors later.
6810 * Since currently sub_stripes is fixed for each profile, let's
6811 * use the trusted value instead.
6812 */
6813 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
cf90d884 6814 map->verified_stripes = 0;
bc88b486 6815 em->orig_block_len = btrfs_calc_stripe_length(em);
593060d7
CM
6816 for (i = 0; i < num_stripes; i++) {
6817 map->stripes[i].physical =
6818 btrfs_stripe_offset_nr(leaf, chunk, i);
6819 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 6820 args.devid = devid;
a443755f
CM
6821 read_extent_buffer(leaf, uuid, (unsigned long)
6822 btrfs_stripe_dev_uuid_nr(chunk, i),
6823 BTRFS_UUID_SIZE);
562d7b15
JB
6824 args.uuid = uuid;
6825 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 6826 if (!map->stripes[i].dev) {
ff37c89f
NB
6827 map->stripes[i].dev = handle_missing_device(fs_info,
6828 devid, uuid);
adfb69af 6829 if (IS_ERR(map->stripes[i].dev)) {
1742e1c9 6830 ret = PTR_ERR(map->stripes[i].dev);
dfe25020 6831 free_extent_map(em);
1742e1c9 6832 return ret;
dfe25020
CM
6833 }
6834 }
ff37c89f 6835
e12c9621
AJ
6836 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6837 &(map->stripes[i].dev->dev_state));
0b86a832
CM
6838 }
6839
c8bf1b67
DS
6840 write_lock(&map_tree->lock);
6841 ret = add_extent_mapping(map_tree, em, 0);
6842 write_unlock(&map_tree->lock);
64f64f43
QW
6843 if (ret < 0) {
6844 btrfs_err(fs_info,
6845 "failed to add chunk map, start=%llu len=%llu: %d",
6846 em->start, em->len, ret);
6847 }
0b86a832
CM
6848 free_extent_map(em);
6849
64f64f43 6850 return ret;
0b86a832
CM
6851}
6852
143bede5 6853static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6854 struct btrfs_dev_item *dev_item,
6855 struct btrfs_device *device)
6856{
6857 unsigned long ptr;
0b86a832
CM
6858
6859 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6860 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6861 device->total_bytes = device->disk_total_bytes;
935e5cc9 6862 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6863 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6864 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6865 device->type = btrfs_device_type(leaf, dev_item);
6866 device->io_align = btrfs_device_io_align(leaf, dev_item);
6867 device->io_width = btrfs_device_io_width(leaf, dev_item);
6868 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6869 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6870 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6871
410ba3a2 6872 ptr = btrfs_device_uuid(dev_item);
e17cade2 6873 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6874}
6875
2ff7e61e 6876static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6877 u8 *fsid)
2b82032c
YZ
6878{
6879 struct btrfs_fs_devices *fs_devices;
6880 int ret;
6881
a32bf9a3 6882 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6883 ASSERT(fsid);
2b82032c 6884
427c8fdd 6885 /* This will match only for multi-device seed fs */
944d3f9f 6886 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 6887 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6888 return fs_devices;
6889
2b82032c 6890
7239ff4b 6891 fs_devices = find_fsid(fsid, NULL);
2b82032c 6892 if (!fs_devices) {
0b246afa 6893 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6894 return ERR_PTR(-ENOENT);
6895
7239ff4b 6896 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6897 if (IS_ERR(fs_devices))
6898 return fs_devices;
6899
0395d84f 6900 fs_devices->seeding = true;
5f375835
MX
6901 fs_devices->opened = 1;
6902 return fs_devices;
2b82032c 6903 }
e4404d6e 6904
427c8fdd
NB
6905 /*
6906 * Upon first call for a seed fs fsid, just create a private copy of the
6907 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6908 */
e4404d6e 6909 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6910 if (IS_ERR(fs_devices))
6911 return fs_devices;
2b82032c 6912
897fb573 6913 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6914 if (ret) {
6915 free_fs_devices(fs_devices);
c83b60c0 6916 return ERR_PTR(ret);
48d28232 6917 }
2b82032c
YZ
6918
6919 if (!fs_devices->seeding) {
0226e0eb 6920 close_fs_devices(fs_devices);
e4404d6e 6921 free_fs_devices(fs_devices);
c83b60c0 6922 return ERR_PTR(-EINVAL);
2b82032c
YZ
6923 }
6924
944d3f9f 6925 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 6926
5f375835 6927 return fs_devices;
2b82032c
YZ
6928}
6929
17850759 6930static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6931 struct btrfs_dev_item *dev_item)
6932{
562d7b15 6933 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 6934 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6935 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6936 struct btrfs_device *device;
6937 u64 devid;
6938 int ret;
44880fdc 6939 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6940 u8 dev_uuid[BTRFS_UUID_SIZE];
6941
c1867eb3
DS
6942 devid = btrfs_device_id(leaf, dev_item);
6943 args.devid = devid;
410ba3a2 6944 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6945 BTRFS_UUID_SIZE);
1473b24e 6946 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6947 BTRFS_FSID_SIZE);
562d7b15
JB
6948 args.uuid = dev_uuid;
6949 args.fsid = fs_uuid;
2b82032c 6950
de37aa51 6951 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6952 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6953 if (IS_ERR(fs_devices))
6954 return PTR_ERR(fs_devices);
2b82032c
YZ
6955 }
6956
562d7b15 6957 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 6958 if (!device) {
c5502451 6959 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6960 btrfs_report_missing_device(fs_info, devid,
6961 dev_uuid, true);
45dbdbc9 6962 return -ENOENT;
c5502451 6963 }
2b82032c 6964
2ff7e61e 6965 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6966 if (IS_ERR(device)) {
6967 btrfs_err(fs_info,
6968 "failed to add missing dev %llu: %ld",
6969 devid, PTR_ERR(device));
6970 return PTR_ERR(device);
6971 }
2b902dfc 6972 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6973 } else {
c5502451 6974 if (!device->bdev) {
2b902dfc
AJ
6975 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6976 btrfs_report_missing_device(fs_info,
6977 devid, dev_uuid, true);
45dbdbc9 6978 return -ENOENT;
2b902dfc
AJ
6979 }
6980 btrfs_report_missing_device(fs_info, devid,
6981 dev_uuid, false);
c5502451 6982 }
5f375835 6983
e6e674bd
AJ
6984 if (!device->bdev &&
6985 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6986 /*
6987 * this happens when a device that was properly setup
6988 * in the device info lists suddenly goes bad.
6989 * device->bdev is NULL, and so we have to set
6990 * device->missing to one here
6991 */
5f375835 6992 device->fs_devices->missing_devices++;
e6e674bd 6993 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6994 }
5f375835
MX
6995
6996 /* Move the device to its own fs_devices */
6997 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6998 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6999 &device->dev_state));
5f375835
MX
7000
7001 list_move(&device->dev_list, &fs_devices->devices);
7002 device->fs_devices->num_devices--;
7003 fs_devices->num_devices++;
7004
7005 device->fs_devices->missing_devices--;
7006 fs_devices->missing_devices++;
7007
7008 device->fs_devices = fs_devices;
7009 }
2b82032c
YZ
7010 }
7011
0b246afa 7012 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7013 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7014 if (device->generation !=
7015 btrfs_device_generation(leaf, dev_item))
7016 return -EINVAL;
6324fbf3 7017 }
0b86a832
CM
7018
7019 fill_device_from_item(leaf, dev_item, device);
3a160a93 7020 if (device->bdev) {
cda00eba 7021 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7022
7023 if (device->total_bytes > max_total_bytes) {
7024 btrfs_err(fs_info,
7025 "device total_bytes should be at most %llu but found %llu",
7026 max_total_bytes, device->total_bytes);
7027 return -EINVAL;
7028 }
7029 }
e12c9621 7030 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7031 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7032 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7033 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7034 atomic64_add(device->total_bytes - device->bytes_used,
7035 &fs_info->free_chunk_space);
2bf64758 7036 }
0b86a832 7037 ret = 0;
0b86a832
CM
7038 return ret;
7039}
7040
6bccf3ab 7041int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7042{
ab8d0fc4 7043 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7044 struct extent_buffer *sb;
0b86a832 7045 struct btrfs_disk_key *disk_key;
0b86a832 7046 struct btrfs_chunk *chunk;
1ffb22cf
DS
7047 u8 *array_ptr;
7048 unsigned long sb_array_offset;
84eed90f 7049 int ret = 0;
0b86a832
CM
7050 u32 num_stripes;
7051 u32 array_size;
7052 u32 len = 0;
1ffb22cf 7053 u32 cur_offset;
e06cd3dd 7054 u64 type;
84eed90f 7055 struct btrfs_key key;
0b86a832 7056
0b246afa 7057 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7058
a83fffb7 7059 /*
e959d3c1
QW
7060 * We allocated a dummy extent, just to use extent buffer accessors.
7061 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7062 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7063 */
e959d3c1
QW
7064 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7065 if (!sb)
7066 return -ENOMEM;
4db8c528 7067 set_extent_buffer_uptodate(sb);
4008c04a 7068
a061fc8d 7069 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7070 array_size = btrfs_super_sys_array_size(super_copy);
7071
1ffb22cf
DS
7072 array_ptr = super_copy->sys_chunk_array;
7073 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7074 cur_offset = 0;
0b86a832 7075
1ffb22cf
DS
7076 while (cur_offset < array_size) {
7077 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7078 len = sizeof(*disk_key);
7079 if (cur_offset + len > array_size)
7080 goto out_short_read;
7081
0b86a832
CM
7082 btrfs_disk_key_to_cpu(&key, disk_key);
7083
1ffb22cf
DS
7084 array_ptr += len;
7085 sb_array_offset += len;
7086 cur_offset += len;
0b86a832 7087
32ab3d1b
JT
7088 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7089 btrfs_err(fs_info,
7090 "unexpected item type %u in sys_array at offset %u",
7091 (u32)key.type, cur_offset);
7092 ret = -EIO;
7093 break;
7094 }
f5cdedd7 7095
32ab3d1b
JT
7096 chunk = (struct btrfs_chunk *)sb_array_offset;
7097 /*
7098 * At least one btrfs_chunk with one stripe must be present,
7099 * exact stripe count check comes afterwards
7100 */
7101 len = btrfs_chunk_item_size(1);
7102 if (cur_offset + len > array_size)
7103 goto out_short_read;
e06cd3dd 7104
32ab3d1b
JT
7105 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7106 if (!num_stripes) {
7107 btrfs_err(fs_info,
7108 "invalid number of stripes %u in sys_array at offset %u",
7109 num_stripes, cur_offset);
7110 ret = -EIO;
7111 break;
7112 }
e3540eab 7113
32ab3d1b
JT
7114 type = btrfs_chunk_type(sb, chunk);
7115 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7116 btrfs_err(fs_info,
32ab3d1b
JT
7117 "invalid chunk type %llu in sys_array at offset %u",
7118 type, cur_offset);
84eed90f
CM
7119 ret = -EIO;
7120 break;
0b86a832 7121 }
32ab3d1b
JT
7122
7123 len = btrfs_chunk_item_size(num_stripes);
7124 if (cur_offset + len > array_size)
7125 goto out_short_read;
7126
7127 ret = read_one_chunk(&key, sb, chunk);
7128 if (ret)
7129 break;
7130
1ffb22cf
DS
7131 array_ptr += len;
7132 sb_array_offset += len;
7133 cur_offset += len;
0b86a832 7134 }
d865177a 7135 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7136 free_extent_buffer_stale(sb);
84eed90f 7137 return ret;
e3540eab
DS
7138
7139out_short_read:
ab8d0fc4 7140 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7141 len, cur_offset);
d865177a 7142 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7143 free_extent_buffer_stale(sb);
e3540eab 7144 return -EIO;
0b86a832
CM
7145}
7146
21634a19
QW
7147/*
7148 * Check if all chunks in the fs are OK for read-write degraded mount
7149 *
6528b99d
AJ
7150 * If the @failing_dev is specified, it's accounted as missing.
7151 *
21634a19
QW
7152 * Return true if all chunks meet the minimal RW mount requirements.
7153 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7154 */
6528b99d
AJ
7155bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7156 struct btrfs_device *failing_dev)
21634a19 7157{
c8bf1b67 7158 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7159 struct extent_map *em;
7160 u64 next_start = 0;
7161 bool ret = true;
7162
c8bf1b67
DS
7163 read_lock(&map_tree->lock);
7164 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7165 read_unlock(&map_tree->lock);
21634a19
QW
7166 /* No chunk at all? Return false anyway */
7167 if (!em) {
7168 ret = false;
7169 goto out;
7170 }
7171 while (em) {
7172 struct map_lookup *map;
7173 int missing = 0;
7174 int max_tolerated;
7175 int i;
7176
7177 map = em->map_lookup;
7178 max_tolerated =
7179 btrfs_get_num_tolerated_disk_barrier_failures(
7180 map->type);
7181 for (i = 0; i < map->num_stripes; i++) {
7182 struct btrfs_device *dev = map->stripes[i].dev;
7183
e6e674bd
AJ
7184 if (!dev || !dev->bdev ||
7185 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7186 dev->last_flush_error)
7187 missing++;
6528b99d
AJ
7188 else if (failing_dev && failing_dev == dev)
7189 missing++;
21634a19
QW
7190 }
7191 if (missing > max_tolerated) {
6528b99d
AJ
7192 if (!failing_dev)
7193 btrfs_warn(fs_info,
52042d8e 7194 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7195 em->start, missing, max_tolerated);
7196 free_extent_map(em);
7197 ret = false;
7198 goto out;
7199 }
7200 next_start = extent_map_end(em);
7201 free_extent_map(em);
7202
c8bf1b67
DS
7203 read_lock(&map_tree->lock);
7204 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7205 (u64)(-1) - next_start);
c8bf1b67 7206 read_unlock(&map_tree->lock);
21634a19
QW
7207 }
7208out:
7209 return ret;
7210}
7211
d85327b1
DS
7212static void readahead_tree_node_children(struct extent_buffer *node)
7213{
7214 int i;
7215 const int nr_items = btrfs_header_nritems(node);
7216
bfb484d9
JB
7217 for (i = 0; i < nr_items; i++)
7218 btrfs_readahead_node_child(node, i);
d85327b1
DS
7219}
7220
5b4aacef 7221int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7222{
5b4aacef 7223 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7224 struct btrfs_path *path;
7225 struct extent_buffer *leaf;
7226 struct btrfs_key key;
7227 struct btrfs_key found_key;
7228 int ret;
7229 int slot;
43cb1478 7230 int iter_ret = 0;
99e3ecfc 7231 u64 total_dev = 0;
d85327b1 7232 u64 last_ra_node = 0;
0b86a832 7233
0b86a832
CM
7234 path = btrfs_alloc_path();
7235 if (!path)
7236 return -ENOMEM;
7237
3dd0f7a3
AJ
7238 /*
7239 * uuid_mutex is needed only if we are mounting a sprout FS
7240 * otherwise we don't need it.
7241 */
b367e47f 7242 mutex_lock(&uuid_mutex);
b367e47f 7243
48cfa61b
BB
7244 /*
7245 * It is possible for mount and umount to race in such a way that
7246 * we execute this code path, but open_fs_devices failed to clear
7247 * total_rw_bytes. We certainly want it cleared before reading the
7248 * device items, so clear it here.
7249 */
7250 fs_info->fs_devices->total_rw_bytes = 0;
7251
4d9380e0
FM
7252 /*
7253 * Lockdep complains about possible circular locking dependency between
7254 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7255 * used for freeze procection of a fs (struct super_block.s_writers),
7256 * which we take when starting a transaction, and extent buffers of the
7257 * chunk tree if we call read_one_dev() while holding a lock on an
7258 * extent buffer of the chunk tree. Since we are mounting the filesystem
7259 * and at this point there can't be any concurrent task modifying the
7260 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7261 */
7262 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7263 path->skip_locking = 1;
7264
395927a9
FDBM
7265 /*
7266 * Read all device items, and then all the chunk items. All
7267 * device items are found before any chunk item (their object id
7268 * is smaller than the lowest possible object id for a chunk
7269 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7270 */
7271 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7272 key.offset = 0;
7273 key.type = 0;
43cb1478
GN
7274 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7275 struct extent_buffer *node = path->nodes[1];
d85327b1 7276
0b86a832
CM
7277 leaf = path->nodes[0];
7278 slot = path->slots[0];
43cb1478 7279
d85327b1
DS
7280 if (node) {
7281 if (last_ra_node != node->start) {
7282 readahead_tree_node_children(node);
7283 last_ra_node = node->start;
7284 }
7285 }
395927a9
FDBM
7286 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7287 struct btrfs_dev_item *dev_item;
7288 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7289 struct btrfs_dev_item);
17850759 7290 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7291 if (ret)
7292 goto error;
99e3ecfc 7293 total_dev++;
0b86a832
CM
7294 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7295 struct btrfs_chunk *chunk;
79bd3712
FM
7296
7297 /*
7298 * We are only called at mount time, so no need to take
7299 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7300 * we always lock first fs_info->chunk_mutex before
7301 * acquiring any locks on the chunk tree. This is a
7302 * requirement for chunk allocation, see the comment on
7303 * top of btrfs_chunk_alloc() for details.
7304 */
0b86a832 7305 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7306 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7307 if (ret)
7308 goto error;
0b86a832 7309 }
43cb1478
GN
7310 }
7311 /* Catch error found during iteration */
7312 if (iter_ret < 0) {
7313 ret = iter_ret;
7314 goto error;
0b86a832 7315 }
99e3ecfc
LB
7316
7317 /*
7318 * After loading chunk tree, we've got all device information,
7319 * do another round of validation checks.
7320 */
0b246afa 7321 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7322 btrfs_warn(fs_info,
7323"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7324 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7325 total_dev);
d201238c
QW
7326 fs_info->fs_devices->total_devices = total_dev;
7327 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7328 }
0b246afa
JM
7329 if (btrfs_super_total_bytes(fs_info->super_copy) <
7330 fs_info->fs_devices->total_rw_bytes) {
7331 btrfs_err(fs_info,
99e3ecfc 7332 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7333 btrfs_super_total_bytes(fs_info->super_copy),
7334 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7335 ret = -EINVAL;
7336 goto error;
7337 }
0b86a832
CM
7338 ret = 0;
7339error:
b367e47f
LZ
7340 mutex_unlock(&uuid_mutex);
7341
2b82032c 7342 btrfs_free_path(path);
0b86a832
CM
7343 return ret;
7344}
442a4f63 7345
a8d1b164 7346int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
cb517eab 7347{
944d3f9f 7348 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab 7349 struct btrfs_device *device;
a8d1b164 7350 int ret = 0;
cb517eab 7351
944d3f9f
NB
7352 fs_devices->fs_info = fs_info;
7353
7354 mutex_lock(&fs_devices->device_list_mutex);
7355 list_for_each_entry(device, &fs_devices->devices, dev_list)
7356 device->fs_info = fs_info;
944d3f9f
NB
7357
7358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
a8d1b164 7359 list_for_each_entry(device, &seed_devs->devices, dev_list) {
fb456252 7360 device->fs_info = fs_info;
a8d1b164
JT
7361 ret = btrfs_get_dev_zone_info(device, false);
7362 if (ret)
7363 break;
7364 }
29cc83f6 7365
944d3f9f 7366 seed_devs->fs_info = fs_info;
29cc83f6 7367 }
e17125b5 7368 mutex_unlock(&fs_devices->device_list_mutex);
a8d1b164
JT
7369
7370 return ret;
cb517eab
MX
7371}
7372
1dc990df
DS
7373static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7374 const struct btrfs_dev_stats_item *ptr,
7375 int index)
7376{
7377 u64 val;
7378
7379 read_extent_buffer(eb, &val,
7380 offsetof(struct btrfs_dev_stats_item, values) +
7381 ((unsigned long)ptr) + (index * sizeof(u64)),
7382 sizeof(val));
7383 return val;
7384}
7385
7386static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7387 struct btrfs_dev_stats_item *ptr,
7388 int index, u64 val)
7389{
7390 write_extent_buffer(eb, &val,
7391 offsetof(struct btrfs_dev_stats_item, values) +
7392 ((unsigned long)ptr) + (index * sizeof(u64)),
7393 sizeof(val));
7394}
7395
92e26df4
JB
7396static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7397 struct btrfs_path *path)
733f4fbb 7398{
124604eb 7399 struct btrfs_dev_stats_item *ptr;
733f4fbb 7400 struct extent_buffer *eb;
124604eb
JB
7401 struct btrfs_key key;
7402 int item_size;
7403 int i, ret, slot;
7404
82d62d06
JB
7405 if (!device->fs_info->dev_root)
7406 return 0;
7407
124604eb
JB
7408 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7409 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7410 key.offset = device->devid;
7411 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7412 if (ret) {
7413 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7414 btrfs_dev_stat_set(device, i, 0);
7415 device->dev_stats_valid = 1;
7416 btrfs_release_path(path);
92e26df4 7417 return ret < 0 ? ret : 0;
124604eb
JB
7418 }
7419 slot = path->slots[0];
7420 eb = path->nodes[0];
3212fa14 7421 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7422
7423 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7424
7425 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7426 if (item_size >= (1 + i) * sizeof(__le64))
7427 btrfs_dev_stat_set(device, i,
7428 btrfs_dev_stats_value(eb, ptr, i));
7429 else
7430 btrfs_dev_stat_set(device, i, 0);
7431 }
7432
7433 device->dev_stats_valid = 1;
7434 btrfs_dev_stat_print_on_load(device);
7435 btrfs_release_path(path);
92e26df4
JB
7436
7437 return 0;
124604eb
JB
7438}
7439
7440int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7441{
7442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7443 struct btrfs_device *device;
7444 struct btrfs_path *path = NULL;
92e26df4 7445 int ret = 0;
733f4fbb
SB
7446
7447 path = btrfs_alloc_path();
3b80a984
AJ
7448 if (!path)
7449 return -ENOMEM;
733f4fbb
SB
7450
7451 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7452 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7453 ret = btrfs_device_init_dev_stats(device, path);
7454 if (ret)
7455 goto out;
7456 }
124604eb 7457 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7458 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7459 ret = btrfs_device_init_dev_stats(device, path);
7460 if (ret)
7461 goto out;
7462 }
733f4fbb 7463 }
92e26df4 7464out:
733f4fbb
SB
7465 mutex_unlock(&fs_devices->device_list_mutex);
7466
733f4fbb 7467 btrfs_free_path(path);
92e26df4 7468 return ret;
733f4fbb
SB
7469}
7470
7471static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7472 struct btrfs_device *device)
7473{
5495f195 7474 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7475 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7476 struct btrfs_path *path;
7477 struct btrfs_key key;
7478 struct extent_buffer *eb;
7479 struct btrfs_dev_stats_item *ptr;
7480 int ret;
7481 int i;
7482
242e2956
DS
7483 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7484 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7485 key.offset = device->devid;
7486
7487 path = btrfs_alloc_path();
fa252992
DS
7488 if (!path)
7489 return -ENOMEM;
733f4fbb
SB
7490 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7491 if (ret < 0) {
0b246afa 7492 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7493 "error %d while searching for dev_stats item for device %s",
cb3e217b 7494 ret, btrfs_dev_name(device));
733f4fbb
SB
7495 goto out;
7496 }
7497
7498 if (ret == 0 &&
3212fa14 7499 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7500 /* need to delete old one and insert a new one */
7501 ret = btrfs_del_item(trans, dev_root, path);
7502 if (ret != 0) {
0b246afa 7503 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7504 "delete too small dev_stats item for device %s failed %d",
cb3e217b 7505 btrfs_dev_name(device), ret);
733f4fbb
SB
7506 goto out;
7507 }
7508 ret = 1;
7509 }
7510
7511 if (ret == 1) {
7512 /* need to insert a new item */
7513 btrfs_release_path(path);
7514 ret = btrfs_insert_empty_item(trans, dev_root, path,
7515 &key, sizeof(*ptr));
7516 if (ret < 0) {
0b246afa 7517 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7518 "insert dev_stats item for device %s failed %d",
cb3e217b 7519 btrfs_dev_name(device), ret);
733f4fbb
SB
7520 goto out;
7521 }
7522 }
7523
7524 eb = path->nodes[0];
7525 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7526 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7527 btrfs_set_dev_stats_value(eb, ptr, i,
7528 btrfs_dev_stat_read(device, i));
7529 btrfs_mark_buffer_dirty(eb);
7530
7531out:
7532 btrfs_free_path(path);
7533 return ret;
7534}
7535
7536/*
7537 * called from commit_transaction. Writes all changed device stats to disk.
7538 */
196c9d8d 7539int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7540{
196c9d8d 7541 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7542 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7543 struct btrfs_device *device;
addc3fa7 7544 int stats_cnt;
733f4fbb
SB
7545 int ret = 0;
7546
7547 mutex_lock(&fs_devices->device_list_mutex);
7548 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7549 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7550 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7551 continue;
7552
9deae968
NB
7553
7554 /*
7555 * There is a LOAD-LOAD control dependency between the value of
7556 * dev_stats_ccnt and updating the on-disk values which requires
7557 * reading the in-memory counters. Such control dependencies
7558 * require explicit read memory barriers.
7559 *
7560 * This memory barriers pairs with smp_mb__before_atomic in
7561 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7562 * barrier implied by atomic_xchg in
7563 * btrfs_dev_stats_read_and_reset
7564 */
7565 smp_rmb();
7566
5495f195 7567 ret = update_dev_stat_item(trans, device);
733f4fbb 7568 if (!ret)
addc3fa7 7569 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7570 }
7571 mutex_unlock(&fs_devices->device_list_mutex);
7572
7573 return ret;
7574}
7575
442a4f63
SB
7576void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7577{
7578 btrfs_dev_stat_inc(dev, index);
442a4f63 7579
733f4fbb
SB
7580 if (!dev->dev_stats_valid)
7581 return;
fb456252 7582 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7583 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7584 btrfs_dev_name(dev),
442a4f63
SB
7585 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7588 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7589 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7590}
c11d2c23 7591
733f4fbb
SB
7592static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7593{
a98cdb85
SB
7594 int i;
7595
7596 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7597 if (btrfs_dev_stat_read(dev, i) != 0)
7598 break;
7599 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7600 return; /* all values == 0, suppress message */
7601
fb456252 7602 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7603 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7604 btrfs_dev_name(dev),
733f4fbb
SB
7605 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7608 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7609 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7610}
7611
2ff7e61e 7612int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7613 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7614{
562d7b15 7615 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7616 struct btrfs_device *dev;
0b246afa 7617 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7618 int i;
7619
7620 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7621 args.devid = stats->devid;
7622 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7623 mutex_unlock(&fs_devices->device_list_mutex);
7624
7625 if (!dev) {
0b246afa 7626 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7627 return -ENODEV;
733f4fbb 7628 } else if (!dev->dev_stats_valid) {
0b246afa 7629 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7630 return -ENODEV;
b27f7c0c 7631 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7632 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7633 if (stats->nr_items > i)
7634 stats->values[i] =
7635 btrfs_dev_stat_read_and_reset(dev, i);
7636 else
4e411a7d 7637 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7638 }
a69976bc
AJ
7639 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7640 current->comm, task_pid_nr(current));
c11d2c23
SB
7641 } else {
7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7643 if (stats->nr_items > i)
7644 stats->values[i] = btrfs_dev_stat_read(dev, i);
7645 }
7646 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7647 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7648 return 0;
7649}
a8a6dab7 7650
935e5cc9 7651/*
bbbf7243
NB
7652 * Update the size and bytes used for each device where it changed. This is
7653 * delayed since we would otherwise get errors while writing out the
7654 * superblocks.
7655 *
7656 * Must be invoked during transaction commit.
935e5cc9 7657 */
bbbf7243 7658void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7659{
935e5cc9
MX
7660 struct btrfs_device *curr, *next;
7661
bbbf7243 7662 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7663
bbbf7243 7664 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7665 return;
7666
bbbf7243
NB
7667 /*
7668 * We don't need the device_list_mutex here. This list is owned by the
7669 * transaction and the transaction must complete before the device is
7670 * released.
7671 */
7672 mutex_lock(&trans->fs_info->chunk_mutex);
7673 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7674 post_commit_list) {
7675 list_del_init(&curr->post_commit_list);
7676 curr->commit_total_bytes = curr->disk_total_bytes;
7677 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7678 }
bbbf7243 7679 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7680}
5a13f430 7681
46df06b8
DS
7682/*
7683 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7684 */
7685int btrfs_bg_type_to_factor(u64 flags)
7686{
44b28ada
DS
7687 const int index = btrfs_bg_flags_to_raid_index(flags);
7688
7689 return btrfs_raid_array[index].ncopies;
46df06b8 7690}
cf90d884
QW
7691
7692
cf90d884
QW
7693
7694static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7695 u64 chunk_offset, u64 devid,
7696 u64 physical_offset, u64 physical_len)
7697{
562d7b15 7698 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 7699 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7700 struct extent_map *em;
7701 struct map_lookup *map;
05a37c48 7702 struct btrfs_device *dev;
cf90d884
QW
7703 u64 stripe_len;
7704 bool found = false;
7705 int ret = 0;
7706 int i;
7707
7708 read_lock(&em_tree->lock);
7709 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7710 read_unlock(&em_tree->lock);
7711
7712 if (!em) {
7713 btrfs_err(fs_info,
7714"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7715 physical_offset, devid);
7716 ret = -EUCLEAN;
7717 goto out;
7718 }
7719
7720 map = em->map_lookup;
bc88b486 7721 stripe_len = btrfs_calc_stripe_length(em);
cf90d884
QW
7722 if (physical_len != stripe_len) {
7723 btrfs_err(fs_info,
7724"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7725 physical_offset, devid, em->start, physical_len,
7726 stripe_len);
7727 ret = -EUCLEAN;
7728 goto out;
7729 }
7730
3613249a
QW
7731 /*
7732 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7733 * space. Although kernel can handle it without problem, better to warn
7734 * the users.
7735 */
7736 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7737 btrfs_warn(fs_info,
7738 "devid %llu physical %llu len %llu inside the reserved space",
7739 devid, physical_offset, physical_len);
7740
cf90d884
QW
7741 for (i = 0; i < map->num_stripes; i++) {
7742 if (map->stripes[i].dev->devid == devid &&
7743 map->stripes[i].physical == physical_offset) {
7744 found = true;
7745 if (map->verified_stripes >= map->num_stripes) {
7746 btrfs_err(fs_info,
7747 "too many dev extents for chunk %llu found",
7748 em->start);
7749 ret = -EUCLEAN;
7750 goto out;
7751 }
7752 map->verified_stripes++;
7753 break;
7754 }
7755 }
7756 if (!found) {
7757 btrfs_err(fs_info,
7758 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7759 physical_offset, devid);
7760 ret = -EUCLEAN;
7761 }
05a37c48 7762
1a9fd417 7763 /* Make sure no dev extent is beyond device boundary */
562d7b15 7764 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
7765 if (!dev) {
7766 btrfs_err(fs_info, "failed to find devid %llu", devid);
7767 ret = -EUCLEAN;
7768 goto out;
7769 }
1b3922a8 7770
05a37c48
QW
7771 if (physical_offset + physical_len > dev->disk_total_bytes) {
7772 btrfs_err(fs_info,
7773"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7774 devid, physical_offset, physical_len,
7775 dev->disk_total_bytes);
7776 ret = -EUCLEAN;
7777 goto out;
7778 }
381a696e
NA
7779
7780 if (dev->zone_info) {
7781 u64 zone_size = dev->zone_info->zone_size;
7782
7783 if (!IS_ALIGNED(physical_offset, zone_size) ||
7784 !IS_ALIGNED(physical_len, zone_size)) {
7785 btrfs_err(fs_info,
7786"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7787 devid, physical_offset, physical_len);
7788 ret = -EUCLEAN;
7789 goto out;
7790 }
7791 }
7792
cf90d884
QW
7793out:
7794 free_extent_map(em);
7795 return ret;
7796}
7797
7798static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7799{
c8bf1b67 7800 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7801 struct extent_map *em;
7802 struct rb_node *node;
7803 int ret = 0;
7804
7805 read_lock(&em_tree->lock);
07e1ce09 7806 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7807 em = rb_entry(node, struct extent_map, rb_node);
7808 if (em->map_lookup->num_stripes !=
7809 em->map_lookup->verified_stripes) {
7810 btrfs_err(fs_info,
7811 "chunk %llu has missing dev extent, have %d expect %d",
7812 em->start, em->map_lookup->verified_stripes,
7813 em->map_lookup->num_stripes);
7814 ret = -EUCLEAN;
7815 goto out;
7816 }
7817 }
7818out:
7819 read_unlock(&em_tree->lock);
7820 return ret;
7821}
7822
7823/*
7824 * Ensure that all dev extents are mapped to correct chunk, otherwise
7825 * later chunk allocation/free would cause unexpected behavior.
7826 *
7827 * NOTE: This will iterate through the whole device tree, which should be of
7828 * the same size level as the chunk tree. This slightly increases mount time.
7829 */
7830int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7831{
7832 struct btrfs_path *path;
7833 struct btrfs_root *root = fs_info->dev_root;
7834 struct btrfs_key key;
5eb19381
QW
7835 u64 prev_devid = 0;
7836 u64 prev_dev_ext_end = 0;
cf90d884
QW
7837 int ret = 0;
7838
42437a63
JB
7839 /*
7840 * We don't have a dev_root because we mounted with ignorebadroots and
7841 * failed to load the root, so we want to skip the verification in this
7842 * case for sure.
7843 *
7844 * However if the dev root is fine, but the tree itself is corrupted
7845 * we'd still fail to mount. This verification is only to make sure
7846 * writes can happen safely, so instead just bypass this check
7847 * completely in the case of IGNOREBADROOTS.
7848 */
7849 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7850 return 0;
7851
cf90d884
QW
7852 key.objectid = 1;
7853 key.type = BTRFS_DEV_EXTENT_KEY;
7854 key.offset = 0;
7855
7856 path = btrfs_alloc_path();
7857 if (!path)
7858 return -ENOMEM;
7859
7860 path->reada = READA_FORWARD;
7861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7862 if (ret < 0)
7863 goto out;
7864
7865 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 7866 ret = btrfs_next_leaf(root, path);
cf90d884
QW
7867 if (ret < 0)
7868 goto out;
7869 /* No dev extents at all? Not good */
7870 if (ret > 0) {
7871 ret = -EUCLEAN;
7872 goto out;
7873 }
7874 }
7875 while (1) {
7876 struct extent_buffer *leaf = path->nodes[0];
7877 struct btrfs_dev_extent *dext;
7878 int slot = path->slots[0];
7879 u64 chunk_offset;
7880 u64 physical_offset;
7881 u64 physical_len;
7882 u64 devid;
7883
7884 btrfs_item_key_to_cpu(leaf, &key, slot);
7885 if (key.type != BTRFS_DEV_EXTENT_KEY)
7886 break;
7887 devid = key.objectid;
7888 physical_offset = key.offset;
7889
7890 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7891 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7892 physical_len = btrfs_dev_extent_length(leaf, dext);
7893
5eb19381
QW
7894 /* Check if this dev extent overlaps with the previous one */
7895 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7896 btrfs_err(fs_info,
7897"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7898 devid, physical_offset, prev_dev_ext_end);
7899 ret = -EUCLEAN;
7900 goto out;
7901 }
7902
cf90d884
QW
7903 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7904 physical_offset, physical_len);
7905 if (ret < 0)
7906 goto out;
5eb19381
QW
7907 prev_devid = devid;
7908 prev_dev_ext_end = physical_offset + physical_len;
7909
cf90d884
QW
7910 ret = btrfs_next_item(root, path);
7911 if (ret < 0)
7912 goto out;
7913 if (ret > 0) {
7914 ret = 0;
7915 break;
7916 }
7917 }
7918
7919 /* Ensure all chunks have corresponding dev extents */
7920 ret = verify_chunk_dev_extent_mapping(fs_info);
7921out:
7922 btrfs_free_path(path);
7923 return ret;
7924}
eede2bf3
OS
7925
7926/*
7927 * Check whether the given block group or device is pinned by any inode being
7928 * used as a swapfile.
7929 */
7930bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7931{
7932 struct btrfs_swapfile_pin *sp;
7933 struct rb_node *node;
7934
7935 spin_lock(&fs_info->swapfile_pins_lock);
7936 node = fs_info->swapfile_pins.rb_node;
7937 while (node) {
7938 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7939 if (ptr < sp->ptr)
7940 node = node->rb_left;
7941 else if (ptr > sp->ptr)
7942 node = node->rb_right;
7943 else
7944 break;
7945 }
7946 spin_unlock(&fs_info->swapfile_pins_lock);
7947 return node != NULL;
7948}
f7ef5287
NA
7949
7950static int relocating_repair_kthread(void *data)
7951{
0d031dc4 7952 struct btrfs_block_group *cache = data;
f7ef5287
NA
7953 struct btrfs_fs_info *fs_info = cache->fs_info;
7954 u64 target;
7955 int ret = 0;
7956
7957 target = cache->start;
7958 btrfs_put_block_group(cache);
7959
ca5e4ea0 7960 sb_start_write(fs_info->sb);
f7ef5287
NA
7961 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7962 btrfs_info(fs_info,
7963 "zoned: skip relocating block group %llu to repair: EBUSY",
7964 target);
ca5e4ea0 7965 sb_end_write(fs_info->sb);
f7ef5287
NA
7966 return -EBUSY;
7967 }
7968
f3372065 7969 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
7970
7971 /* Ensure block group still exists */
7972 cache = btrfs_lookup_block_group(fs_info, target);
7973 if (!cache)
7974 goto out;
7975
3349b57f 7976 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
f7ef5287
NA
7977 goto out;
7978
7979 ret = btrfs_may_alloc_data_chunk(fs_info, target);
7980 if (ret < 0)
7981 goto out;
7982
7983 btrfs_info(fs_info,
7984 "zoned: relocating block group %llu to repair IO failure",
7985 target);
7986 ret = btrfs_relocate_chunk(fs_info, target);
7987
7988out:
7989 if (cache)
7990 btrfs_put_block_group(cache);
f3372065 7991 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 7992 btrfs_exclop_finish(fs_info);
ca5e4ea0 7993 sb_end_write(fs_info->sb);
f7ef5287
NA
7994
7995 return ret;
7996}
7997
554aed7d 7998bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
7999{
8000 struct btrfs_block_group *cache;
8001
554aed7d
JT
8002 if (!btrfs_is_zoned(fs_info))
8003 return false;
8004
f7ef5287
NA
8005 /* Do not attempt to repair in degraded state */
8006 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 8007 return true;
f7ef5287
NA
8008
8009 cache = btrfs_lookup_block_group(fs_info, logical);
8010 if (!cache)
554aed7d 8011 return true;
f7ef5287 8012
3349b57f 8013 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
f7ef5287 8014 btrfs_put_block_group(cache);
554aed7d 8015 return true;
f7ef5287 8016 }
f7ef5287
NA
8017
8018 kthread_run(relocating_repair_kthread, cache,
8019 "btrfs-relocating-repair");
8020
554aed7d 8021 return true;
f7ef5287 8022}
4886ff7b
QW
8023
8024static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8025 struct btrfs_io_stripe *smap,
8026 u64 logical)
8027{
8028 int data_stripes = nr_bioc_data_stripes(bioc);
8029 int i;
8030
8031 for (i = 0; i < data_stripes; i++) {
8032 u64 stripe_start = bioc->full_stripe_logical +
8033 (i << BTRFS_STRIPE_LEN_SHIFT);
8034
8035 if (logical >= stripe_start &&
8036 logical < stripe_start + BTRFS_STRIPE_LEN)
8037 break;
8038 }
8039 ASSERT(i < data_stripes);
8040 smap->dev = bioc->stripes[i].dev;
8041 smap->physical = bioc->stripes[i].physical +
8042 ((logical - bioc->full_stripe_logical) &
8043 BTRFS_STRIPE_LEN_MASK);
8044}
8045
8046/*
8047 * Map a repair write into a single device.
8048 *
8049 * A repair write is triggered by read time repair or scrub, which would only
8050 * update the contents of a single device.
8051 * Not update any other mirrors nor go through RMW path.
8052 *
8053 * Callers should ensure:
8054 *
8055 * - Call btrfs_bio_counter_inc_blocked() first
8056 * - The range does not cross stripe boundary
8057 * - Has a valid @mirror_num passed in.
8058 */
8059int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8060 struct btrfs_io_stripe *smap, u64 logical,
8061 u32 length, int mirror_num)
8062{
8063 struct btrfs_io_context *bioc = NULL;
8064 u64 map_length = length;
8065 int mirror_ret = mirror_num;
8066 int ret;
8067
8068 ASSERT(mirror_num > 0);
8069
8070 ret = __btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8071 &bioc, smap, &mirror_ret, true);
8072 if (ret < 0)
8073 return ret;
8074
8075 /* The map range should not cross stripe boundary. */
8076 ASSERT(map_length >= length);
8077
8078 /* Already mapped to single stripe. */
8079 if (!bioc)
8080 goto out;
8081
8082 /* Map the RAID56 multi-stripe writes to a single one. */
8083 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8084 map_raid56_repair_block(bioc, smap, logical);
8085 goto out;
8086 }
8087
8088 ASSERT(mirror_num <= bioc->num_stripes);
8089 smap->dev = bioc->stripes[mirror_num - 1].dev;
8090 smap->physical = bioc->stripes[mirror_num - 1].physical;
8091out:
8092 btrfs_put_bioc(bioc);
8093 ASSERT(smap->dev);
8094 return 0;
8095}