Btrfs: fix memory leak in resolver code
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
59641015 26#include <linux/kthread.h>
593060d7 27#include <asm/div64.h>
4b4e25f2 28#include "compat.h"
0b86a832
CM
29#include "ctree.h"
30#include "extent_map.h"
31#include "disk-io.h"
32#include "transaction.h"
33#include "print-tree.h"
34#include "volumes.h"
8b712842 35#include "async-thread.h"
21adbd5c 36#include "check-integrity.h"
0b86a832 37
2b82032c
YZ
38static int init_first_rw_device(struct btrfs_trans_handle *trans,
39 struct btrfs_root *root,
40 struct btrfs_device *device);
41static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
42
8a4b83cc
CM
43static DEFINE_MUTEX(uuid_mutex);
44static LIST_HEAD(fs_uuids);
45
7d9eb12c
CM
46static void lock_chunks(struct btrfs_root *root)
47{
7d9eb12c
CM
48 mutex_lock(&root->fs_info->chunk_mutex);
49}
50
51static void unlock_chunks(struct btrfs_root *root)
52{
7d9eb12c
CM
53 mutex_unlock(&root->fs_info->chunk_mutex);
54}
55
e4404d6e
YZ
56static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
57{
58 struct btrfs_device *device;
59 WARN_ON(fs_devices->opened);
60 while (!list_empty(&fs_devices->devices)) {
61 device = list_entry(fs_devices->devices.next,
62 struct btrfs_device, dev_list);
63 list_del(&device->dev_list);
64 kfree(device->name);
65 kfree(device);
66 }
67 kfree(fs_devices);
68}
69
8a4b83cc
CM
70int btrfs_cleanup_fs_uuids(void)
71{
72 struct btrfs_fs_devices *fs_devices;
8a4b83cc 73
2b82032c
YZ
74 while (!list_empty(&fs_uuids)) {
75 fs_devices = list_entry(fs_uuids.next,
76 struct btrfs_fs_devices, list);
77 list_del(&fs_devices->list);
e4404d6e 78 free_fs_devices(fs_devices);
8a4b83cc
CM
79 }
80 return 0;
81}
82
a1b32a59
CM
83static noinline struct btrfs_device *__find_device(struct list_head *head,
84 u64 devid, u8 *uuid)
8a4b83cc
CM
85{
86 struct btrfs_device *dev;
8a4b83cc 87
c6e30871 88 list_for_each_entry(dev, head, dev_list) {
a443755f 89 if (dev->devid == devid &&
8f18cf13 90 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 91 return dev;
a443755f 92 }
8a4b83cc
CM
93 }
94 return NULL;
95}
96
a1b32a59 97static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 98{
8a4b83cc
CM
99 struct btrfs_fs_devices *fs_devices;
100
c6e30871 101 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
102 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103 return fs_devices;
104 }
105 return NULL;
106}
107
ffbd517d
CM
108static void requeue_list(struct btrfs_pending_bios *pending_bios,
109 struct bio *head, struct bio *tail)
110{
111
112 struct bio *old_head;
113
114 old_head = pending_bios->head;
115 pending_bios->head = head;
116 if (pending_bios->tail)
117 tail->bi_next = old_head;
118 else
119 pending_bios->tail = tail;
120}
121
8b712842
CM
122/*
123 * we try to collect pending bios for a device so we don't get a large
124 * number of procs sending bios down to the same device. This greatly
125 * improves the schedulers ability to collect and merge the bios.
126 *
127 * But, it also turns into a long list of bios to process and that is sure
128 * to eventually make the worker thread block. The solution here is to
129 * make some progress and then put this work struct back at the end of
130 * the list if the block device is congested. This way, multiple devices
131 * can make progress from a single worker thread.
132 */
d397712b 133static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
134{
135 struct bio *pending;
136 struct backing_dev_info *bdi;
b64a2851 137 struct btrfs_fs_info *fs_info;
ffbd517d 138 struct btrfs_pending_bios *pending_bios;
8b712842
CM
139 struct bio *tail;
140 struct bio *cur;
141 int again = 0;
ffbd517d 142 unsigned long num_run;
d644d8a1 143 unsigned long batch_run = 0;
b64a2851 144 unsigned long limit;
b765ead5 145 unsigned long last_waited = 0;
d84275c9 146 int force_reg = 0;
0e588859 147 int sync_pending = 0;
211588ad
CM
148 struct blk_plug plug;
149
150 /*
151 * this function runs all the bios we've collected for
152 * a particular device. We don't want to wander off to
153 * another device without first sending all of these down.
154 * So, setup a plug here and finish it off before we return
155 */
156 blk_start_plug(&plug);
8b712842 157
bedf762b 158 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
159 fs_info = device->dev_root->fs_info;
160 limit = btrfs_async_submit_limit(fs_info);
161 limit = limit * 2 / 3;
162
8b712842
CM
163loop:
164 spin_lock(&device->io_lock);
165
a6837051 166loop_lock:
d84275c9 167 num_run = 0;
ffbd517d 168
8b712842
CM
169 /* take all the bios off the list at once and process them
170 * later on (without the lock held). But, remember the
171 * tail and other pointers so the bios can be properly reinserted
172 * into the list if we hit congestion
173 */
d84275c9 174 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 175 pending_bios = &device->pending_sync_bios;
d84275c9
CM
176 force_reg = 1;
177 } else {
ffbd517d 178 pending_bios = &device->pending_bios;
d84275c9
CM
179 force_reg = 0;
180 }
ffbd517d
CM
181
182 pending = pending_bios->head;
183 tail = pending_bios->tail;
8b712842 184 WARN_ON(pending && !tail);
8b712842
CM
185
186 /*
187 * if pending was null this time around, no bios need processing
188 * at all and we can stop. Otherwise it'll loop back up again
189 * and do an additional check so no bios are missed.
190 *
191 * device->running_pending is used to synchronize with the
192 * schedule_bio code.
193 */
ffbd517d
CM
194 if (device->pending_sync_bios.head == NULL &&
195 device->pending_bios.head == NULL) {
8b712842
CM
196 again = 0;
197 device->running_pending = 0;
ffbd517d
CM
198 } else {
199 again = 1;
200 device->running_pending = 1;
8b712842 201 }
ffbd517d
CM
202
203 pending_bios->head = NULL;
204 pending_bios->tail = NULL;
205
8b712842
CM
206 spin_unlock(&device->io_lock);
207
d397712b 208 while (pending) {
ffbd517d
CM
209
210 rmb();
d84275c9
CM
211 /* we want to work on both lists, but do more bios on the
212 * sync list than the regular list
213 */
214 if ((num_run > 32 &&
215 pending_bios != &device->pending_sync_bios &&
216 device->pending_sync_bios.head) ||
217 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218 device->pending_bios.head)) {
ffbd517d
CM
219 spin_lock(&device->io_lock);
220 requeue_list(pending_bios, pending, tail);
221 goto loop_lock;
222 }
223
8b712842
CM
224 cur = pending;
225 pending = pending->bi_next;
226 cur->bi_next = NULL;
b64a2851
CM
227 atomic_dec(&fs_info->nr_async_bios);
228
229 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230 waitqueue_active(&fs_info->async_submit_wait))
231 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
232
233 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 234
2ab1ba68
CM
235 /*
236 * if we're doing the sync list, record that our
237 * plug has some sync requests on it
238 *
239 * If we're doing the regular list and there are
240 * sync requests sitting around, unplug before
241 * we add more
242 */
243 if (pending_bios == &device->pending_sync_bios) {
244 sync_pending = 1;
245 } else if (sync_pending) {
246 blk_finish_plug(&plug);
247 blk_start_plug(&plug);
248 sync_pending = 0;
249 }
250
21adbd5c 251 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
252 num_run++;
253 batch_run++;
7eaceacc 254 if (need_resched())
ffbd517d 255 cond_resched();
8b712842
CM
256
257 /*
258 * we made progress, there is more work to do and the bdi
259 * is now congested. Back off and let other work structs
260 * run instead
261 */
57fd5a5f 262 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 263 fs_info->fs_devices->open_devices > 1) {
b765ead5 264 struct io_context *ioc;
8b712842 265
b765ead5
CM
266 ioc = current->io_context;
267
268 /*
269 * the main goal here is that we don't want to
270 * block if we're going to be able to submit
271 * more requests without blocking.
272 *
273 * This code does two great things, it pokes into
274 * the elevator code from a filesystem _and_
275 * it makes assumptions about how batching works.
276 */
277 if (ioc && ioc->nr_batch_requests > 0 &&
278 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279 (last_waited == 0 ||
280 ioc->last_waited == last_waited)) {
281 /*
282 * we want to go through our batch of
283 * requests and stop. So, we copy out
284 * the ioc->last_waited time and test
285 * against it before looping
286 */
287 last_waited = ioc->last_waited;
7eaceacc 288 if (need_resched())
ffbd517d 289 cond_resched();
b765ead5
CM
290 continue;
291 }
8b712842 292 spin_lock(&device->io_lock);
ffbd517d 293 requeue_list(pending_bios, pending, tail);
a6837051 294 device->running_pending = 1;
8b712842
CM
295
296 spin_unlock(&device->io_lock);
297 btrfs_requeue_work(&device->work);
298 goto done;
299 }
d85c8a6f
CM
300 /* unplug every 64 requests just for good measure */
301 if (batch_run % 64 == 0) {
302 blk_finish_plug(&plug);
303 blk_start_plug(&plug);
304 sync_pending = 0;
305 }
8b712842 306 }
ffbd517d 307
51684082
CM
308 cond_resched();
309 if (again)
310 goto loop;
311
312 spin_lock(&device->io_lock);
313 if (device->pending_bios.head || device->pending_sync_bios.head)
314 goto loop_lock;
315 spin_unlock(&device->io_lock);
316
8b712842 317done:
211588ad 318 blk_finish_plug(&plug);
8b712842
CM
319 return 0;
320}
321
b2950863 322static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
323{
324 struct btrfs_device *device;
325
326 device = container_of(work, struct btrfs_device, work);
327 run_scheduled_bios(device);
328}
329
a1b32a59 330static noinline int device_list_add(const char *path,
8a4b83cc
CM
331 struct btrfs_super_block *disk_super,
332 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
333{
334 struct btrfs_device *device;
335 struct btrfs_fs_devices *fs_devices;
336 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 337 char *name;
8a4b83cc
CM
338
339 fs_devices = find_fsid(disk_super->fsid);
340 if (!fs_devices) {
515dc322 341 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
342 if (!fs_devices)
343 return -ENOMEM;
344 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 345 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
346 list_add(&fs_devices->list, &fs_uuids);
347 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348 fs_devices->latest_devid = devid;
349 fs_devices->latest_trans = found_transid;
e5e9a520 350 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
351 device = NULL;
352 } else {
a443755f
CM
353 device = __find_device(&fs_devices->devices, devid,
354 disk_super->dev_item.uuid);
8a4b83cc
CM
355 }
356 if (!device) {
2b82032c
YZ
357 if (fs_devices->opened)
358 return -EBUSY;
359
8a4b83cc
CM
360 device = kzalloc(sizeof(*device), GFP_NOFS);
361 if (!device) {
362 /* we can safely leave the fs_devices entry around */
363 return -ENOMEM;
364 }
365 device->devid = devid;
8b712842 366 device->work.func = pending_bios_fn;
a443755f
CM
367 memcpy(device->uuid, disk_super->dev_item.uuid,
368 BTRFS_UUID_SIZE);
b248a415 369 spin_lock_init(&device->io_lock);
8a4b83cc
CM
370 device->name = kstrdup(path, GFP_NOFS);
371 if (!device->name) {
372 kfree(device);
373 return -ENOMEM;
374 }
2b82032c 375 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 376
90519d66
AJ
377 /* init readahead state */
378 spin_lock_init(&device->reada_lock);
379 device->reada_curr_zone = NULL;
380 atomic_set(&device->reada_in_flight, 0);
381 device->reada_next = 0;
382 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
384
e5e9a520 385 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 386 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
387 mutex_unlock(&fs_devices->device_list_mutex);
388
2b82032c 389 device->fs_devices = fs_devices;
8a4b83cc 390 fs_devices->num_devices++;
cd02dca5 391 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
392 name = kstrdup(path, GFP_NOFS);
393 if (!name)
394 return -ENOMEM;
395 kfree(device->name);
396 device->name = name;
cd02dca5
CM
397 if (device->missing) {
398 fs_devices->missing_devices--;
399 device->missing = 0;
400 }
8a4b83cc
CM
401 }
402
403 if (found_transid > fs_devices->latest_trans) {
404 fs_devices->latest_devid = devid;
405 fs_devices->latest_trans = found_transid;
406 }
8a4b83cc
CM
407 *fs_devices_ret = fs_devices;
408 return 0;
409}
410
e4404d6e
YZ
411static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
412{
413 struct btrfs_fs_devices *fs_devices;
414 struct btrfs_device *device;
415 struct btrfs_device *orig_dev;
416
417 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
418 if (!fs_devices)
419 return ERR_PTR(-ENOMEM);
420
421 INIT_LIST_HEAD(&fs_devices->devices);
422 INIT_LIST_HEAD(&fs_devices->alloc_list);
423 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 424 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
425 fs_devices->latest_devid = orig->latest_devid;
426 fs_devices->latest_trans = orig->latest_trans;
427 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
428
46224705 429 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
430 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431 device = kzalloc(sizeof(*device), GFP_NOFS);
432 if (!device)
433 goto error;
434
435 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
436 if (!device->name) {
437 kfree(device);
e4404d6e 438 goto error;
fd2696f3 439 }
e4404d6e
YZ
440
441 device->devid = orig_dev->devid;
442 device->work.func = pending_bios_fn;
443 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
444 spin_lock_init(&device->io_lock);
445 INIT_LIST_HEAD(&device->dev_list);
446 INIT_LIST_HEAD(&device->dev_alloc_list);
447
448 list_add(&device->dev_list, &fs_devices->devices);
449 device->fs_devices = fs_devices;
450 fs_devices->num_devices++;
451 }
452 return fs_devices;
453error:
454 free_fs_devices(fs_devices);
455 return ERR_PTR(-ENOMEM);
456}
457
dfe25020
CM
458int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
459{
c6e30871 460 struct btrfs_device *device, *next;
dfe25020 461
a6b0d5c8
CM
462 struct block_device *latest_bdev = NULL;
463 u64 latest_devid = 0;
464 u64 latest_transid = 0;
465
dfe25020
CM
466 mutex_lock(&uuid_mutex);
467again:
46224705 468 /* This is the initialized path, it is safe to release the devices. */
c6e30871 469 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
470 if (device->in_fs_metadata) {
471 if (!latest_transid ||
472 device->generation > latest_transid) {
473 latest_devid = device->devid;
474 latest_transid = device->generation;
475 latest_bdev = device->bdev;
476 }
2b82032c 477 continue;
a6b0d5c8 478 }
2b82032c
YZ
479
480 if (device->bdev) {
d4d77629 481 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
482 device->bdev = NULL;
483 fs_devices->open_devices--;
484 }
485 if (device->writeable) {
486 list_del_init(&device->dev_alloc_list);
487 device->writeable = 0;
488 fs_devices->rw_devices--;
489 }
e4404d6e
YZ
490 list_del_init(&device->dev_list);
491 fs_devices->num_devices--;
492 kfree(device->name);
493 kfree(device);
dfe25020 494 }
2b82032c
YZ
495
496 if (fs_devices->seed) {
497 fs_devices = fs_devices->seed;
2b82032c
YZ
498 goto again;
499 }
500
a6b0d5c8
CM
501 fs_devices->latest_bdev = latest_bdev;
502 fs_devices->latest_devid = latest_devid;
503 fs_devices->latest_trans = latest_transid;
504
dfe25020
CM
505 mutex_unlock(&uuid_mutex);
506 return 0;
507}
a0af469b 508
1f78160c
XG
509static void __free_device(struct work_struct *work)
510{
511 struct btrfs_device *device;
512
513 device = container_of(work, struct btrfs_device, rcu_work);
514
515 if (device->bdev)
516 blkdev_put(device->bdev, device->mode);
517
518 kfree(device->name);
519 kfree(device);
520}
521
522static void free_device(struct rcu_head *head)
523{
524 struct btrfs_device *device;
525
526 device = container_of(head, struct btrfs_device, rcu);
527
528 INIT_WORK(&device->rcu_work, __free_device);
529 schedule_work(&device->rcu_work);
530}
531
2b82032c 532static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 533{
8a4b83cc 534 struct btrfs_device *device;
e4404d6e 535
2b82032c
YZ
536 if (--fs_devices->opened > 0)
537 return 0;
8a4b83cc 538
c9513edb 539 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 540 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
541 struct btrfs_device *new_device;
542
543 if (device->bdev)
a0af469b 544 fs_devices->open_devices--;
1f78160c 545
2b82032c
YZ
546 if (device->writeable) {
547 list_del_init(&device->dev_alloc_list);
548 fs_devices->rw_devices--;
549 }
550
d5e2003c
JB
551 if (device->can_discard)
552 fs_devices->num_can_discard--;
553
1f78160c
XG
554 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
555 BUG_ON(!new_device);
556 memcpy(new_device, device, sizeof(*new_device));
557 new_device->name = kstrdup(device->name, GFP_NOFS);
5f3f302a 558 BUG_ON(device->name && !new_device->name);
1f78160c
XG
559 new_device->bdev = NULL;
560 new_device->writeable = 0;
561 new_device->in_fs_metadata = 0;
d5e2003c 562 new_device->can_discard = 0;
1f78160c
XG
563 list_replace_rcu(&device->dev_list, &new_device->dev_list);
564
565 call_rcu(&device->rcu, free_device);
8a4b83cc 566 }
c9513edb
XG
567 mutex_unlock(&fs_devices->device_list_mutex);
568
e4404d6e
YZ
569 WARN_ON(fs_devices->open_devices);
570 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
571 fs_devices->opened = 0;
572 fs_devices->seeding = 0;
2b82032c 573
8a4b83cc
CM
574 return 0;
575}
576
2b82032c
YZ
577int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
578{
e4404d6e 579 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
580 int ret;
581
582 mutex_lock(&uuid_mutex);
583 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
584 if (!fs_devices->opened) {
585 seed_devices = fs_devices->seed;
586 fs_devices->seed = NULL;
587 }
2b82032c 588 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
589
590 while (seed_devices) {
591 fs_devices = seed_devices;
592 seed_devices = fs_devices->seed;
593 __btrfs_close_devices(fs_devices);
594 free_fs_devices(fs_devices);
595 }
2b82032c
YZ
596 return ret;
597}
598
e4404d6e
YZ
599static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
600 fmode_t flags, void *holder)
8a4b83cc 601{
d5e2003c 602 struct request_queue *q;
8a4b83cc
CM
603 struct block_device *bdev;
604 struct list_head *head = &fs_devices->devices;
8a4b83cc 605 struct btrfs_device *device;
a0af469b
CM
606 struct block_device *latest_bdev = NULL;
607 struct buffer_head *bh;
608 struct btrfs_super_block *disk_super;
609 u64 latest_devid = 0;
610 u64 latest_transid = 0;
a0af469b 611 u64 devid;
2b82032c 612 int seeding = 1;
a0af469b 613 int ret = 0;
8a4b83cc 614
d4d77629
TH
615 flags |= FMODE_EXCL;
616
c6e30871 617 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
618 if (device->bdev)
619 continue;
dfe25020
CM
620 if (!device->name)
621 continue;
622
d4d77629 623 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 624 if (IS_ERR(bdev)) {
d397712b 625 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 626 goto error;
8a4b83cc 627 }
a061fc8d 628 set_blocksize(bdev, 4096);
a0af469b 629
a512bbf8 630 bh = btrfs_read_dev_super(bdev);
20bcd649 631 if (!bh)
a0af469b
CM
632 goto error_close;
633
634 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 635 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
636 if (devid != device->devid)
637 goto error_brelse;
638
2b82032c
YZ
639 if (memcmp(device->uuid, disk_super->dev_item.uuid,
640 BTRFS_UUID_SIZE))
641 goto error_brelse;
642
643 device->generation = btrfs_super_generation(disk_super);
644 if (!latest_transid || device->generation > latest_transid) {
a0af469b 645 latest_devid = devid;
2b82032c 646 latest_transid = device->generation;
a0af469b
CM
647 latest_bdev = bdev;
648 }
649
2b82032c
YZ
650 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651 device->writeable = 0;
652 } else {
653 device->writeable = !bdev_read_only(bdev);
654 seeding = 0;
655 }
656
d5e2003c
JB
657 q = bdev_get_queue(bdev);
658 if (blk_queue_discard(q)) {
659 device->can_discard = 1;
660 fs_devices->num_can_discard++;
661 }
662
8a4b83cc 663 device->bdev = bdev;
dfe25020 664 device->in_fs_metadata = 0;
15916de8
CM
665 device->mode = flags;
666
c289811c
CM
667 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668 fs_devices->rotating = 1;
669
a0af469b 670 fs_devices->open_devices++;
2b82032c
YZ
671 if (device->writeable) {
672 fs_devices->rw_devices++;
673 list_add(&device->dev_alloc_list,
674 &fs_devices->alloc_list);
675 }
4f6c9328 676 brelse(bh);
a0af469b 677 continue;
a061fc8d 678
a0af469b
CM
679error_brelse:
680 brelse(bh);
681error_close:
d4d77629 682 blkdev_put(bdev, flags);
a0af469b
CM
683error:
684 continue;
8a4b83cc 685 }
a0af469b 686 if (fs_devices->open_devices == 0) {
20bcd649 687 ret = -EINVAL;
a0af469b
CM
688 goto out;
689 }
2b82032c
YZ
690 fs_devices->seeding = seeding;
691 fs_devices->opened = 1;
a0af469b
CM
692 fs_devices->latest_bdev = latest_bdev;
693 fs_devices->latest_devid = latest_devid;
694 fs_devices->latest_trans = latest_transid;
2b82032c 695 fs_devices->total_rw_bytes = 0;
a0af469b 696out:
2b82032c
YZ
697 return ret;
698}
699
700int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 701 fmode_t flags, void *holder)
2b82032c
YZ
702{
703 int ret;
704
705 mutex_lock(&uuid_mutex);
706 if (fs_devices->opened) {
e4404d6e
YZ
707 fs_devices->opened++;
708 ret = 0;
2b82032c 709 } else {
15916de8 710 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 711 }
8a4b83cc 712 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
713 return ret;
714}
715
97288f2c 716int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
717 struct btrfs_fs_devices **fs_devices_ret)
718{
719 struct btrfs_super_block *disk_super;
720 struct block_device *bdev;
721 struct buffer_head *bh;
722 int ret;
723 u64 devid;
f2984462 724 u64 transid;
8a4b83cc 725
d4d77629
TH
726 flags |= FMODE_EXCL;
727 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
728
729 if (IS_ERR(bdev)) {
8a4b83cc
CM
730 ret = PTR_ERR(bdev);
731 goto error;
732 }
733
10f6327b 734 mutex_lock(&uuid_mutex);
8a4b83cc
CM
735 ret = set_blocksize(bdev, 4096);
736 if (ret)
737 goto error_close;
a512bbf8 738 bh = btrfs_read_dev_super(bdev);
8a4b83cc 739 if (!bh) {
20b45077 740 ret = -EINVAL;
8a4b83cc
CM
741 goto error_close;
742 }
743 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 744 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 745 transid = btrfs_super_generation(disk_super);
7ae9c09d 746 if (disk_super->label[0])
d397712b 747 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
748 else
749 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 750 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 751 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
752 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
753
8a4b83cc
CM
754 brelse(bh);
755error_close:
10f6327b 756 mutex_unlock(&uuid_mutex);
d4d77629 757 blkdev_put(bdev, flags);
8a4b83cc 758error:
8a4b83cc
CM
759 return ret;
760}
0b86a832 761
6d07bcec
MX
762/* helper to account the used device space in the range */
763int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764 u64 end, u64 *length)
765{
766 struct btrfs_key key;
767 struct btrfs_root *root = device->dev_root;
768 struct btrfs_dev_extent *dev_extent;
769 struct btrfs_path *path;
770 u64 extent_end;
771 int ret;
772 int slot;
773 struct extent_buffer *l;
774
775 *length = 0;
776
777 if (start >= device->total_bytes)
778 return 0;
779
780 path = btrfs_alloc_path();
781 if (!path)
782 return -ENOMEM;
783 path->reada = 2;
784
785 key.objectid = device->devid;
786 key.offset = start;
787 key.type = BTRFS_DEV_EXTENT_KEY;
788
789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
790 if (ret < 0)
791 goto out;
792 if (ret > 0) {
793 ret = btrfs_previous_item(root, path, key.objectid, key.type);
794 if (ret < 0)
795 goto out;
796 }
797
798 while (1) {
799 l = path->nodes[0];
800 slot = path->slots[0];
801 if (slot >= btrfs_header_nritems(l)) {
802 ret = btrfs_next_leaf(root, path);
803 if (ret == 0)
804 continue;
805 if (ret < 0)
806 goto out;
807
808 break;
809 }
810 btrfs_item_key_to_cpu(l, &key, slot);
811
812 if (key.objectid < device->devid)
813 goto next;
814
815 if (key.objectid > device->devid)
816 break;
817
818 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
819 goto next;
820
821 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822 extent_end = key.offset + btrfs_dev_extent_length(l,
823 dev_extent);
824 if (key.offset <= start && extent_end > end) {
825 *length = end - start + 1;
826 break;
827 } else if (key.offset <= start && extent_end > start)
828 *length += extent_end - start;
829 else if (key.offset > start && extent_end <= end)
830 *length += extent_end - key.offset;
831 else if (key.offset > start && key.offset <= end) {
832 *length += end - key.offset + 1;
833 break;
834 } else if (key.offset > end)
835 break;
836
837next:
838 path->slots[0]++;
839 }
840 ret = 0;
841out:
842 btrfs_free_path(path);
843 return ret;
844}
845
0b86a832 846/*
7bfc837d 847 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
848 * @device: the device which we search the free space in
849 * @num_bytes: the size of the free space that we need
850 * @start: store the start of the free space.
851 * @len: the size of the free space. that we find, or the size of the max
852 * free space if we don't find suitable free space
853 *
0b86a832
CM
854 * this uses a pretty simple search, the expectation is that it is
855 * called very infrequently and that a given device has a small number
856 * of extents
7bfc837d
MX
857 *
858 * @start is used to store the start of the free space if we find. But if we
859 * don't find suitable free space, it will be used to store the start position
860 * of the max free space.
861 *
862 * @len is used to store the size of the free space that we find.
863 * But if we don't find suitable free space, it is used to store the size of
864 * the max free space.
0b86a832 865 */
125ccb0a 866int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 867 u64 *start, u64 *len)
0b86a832
CM
868{
869 struct btrfs_key key;
870 struct btrfs_root *root = device->dev_root;
7bfc837d 871 struct btrfs_dev_extent *dev_extent;
2b82032c 872 struct btrfs_path *path;
7bfc837d
MX
873 u64 hole_size;
874 u64 max_hole_start;
875 u64 max_hole_size;
876 u64 extent_end;
877 u64 search_start;
0b86a832
CM
878 u64 search_end = device->total_bytes;
879 int ret;
7bfc837d 880 int slot;
0b86a832
CM
881 struct extent_buffer *l;
882
0b86a832
CM
883 /* FIXME use last free of some kind */
884
8a4b83cc
CM
885 /* we don't want to overwrite the superblock on the drive,
886 * so we make sure to start at an offset of at least 1MB
887 */
a9c9bf68 888 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 889
7bfc837d
MX
890 max_hole_start = search_start;
891 max_hole_size = 0;
38c01b96 892 hole_size = 0;
7bfc837d
MX
893
894 if (search_start >= search_end) {
895 ret = -ENOSPC;
896 goto error;
897 }
898
899 path = btrfs_alloc_path();
900 if (!path) {
901 ret = -ENOMEM;
902 goto error;
903 }
904 path->reada = 2;
905
0b86a832
CM
906 key.objectid = device->devid;
907 key.offset = search_start;
908 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 909
125ccb0a 910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 911 if (ret < 0)
7bfc837d 912 goto out;
1fcbac58
YZ
913 if (ret > 0) {
914 ret = btrfs_previous_item(root, path, key.objectid, key.type);
915 if (ret < 0)
7bfc837d 916 goto out;
1fcbac58 917 }
7bfc837d 918
0b86a832
CM
919 while (1) {
920 l = path->nodes[0];
921 slot = path->slots[0];
922 if (slot >= btrfs_header_nritems(l)) {
923 ret = btrfs_next_leaf(root, path);
924 if (ret == 0)
925 continue;
926 if (ret < 0)
7bfc837d
MX
927 goto out;
928
929 break;
0b86a832
CM
930 }
931 btrfs_item_key_to_cpu(l, &key, slot);
932
933 if (key.objectid < device->devid)
934 goto next;
935
936 if (key.objectid > device->devid)
7bfc837d 937 break;
0b86a832 938
7bfc837d
MX
939 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
940 goto next;
9779b72f 941
7bfc837d
MX
942 if (key.offset > search_start) {
943 hole_size = key.offset - search_start;
9779b72f 944
7bfc837d
MX
945 if (hole_size > max_hole_size) {
946 max_hole_start = search_start;
947 max_hole_size = hole_size;
948 }
9779b72f 949
7bfc837d
MX
950 /*
951 * If this free space is greater than which we need,
952 * it must be the max free space that we have found
953 * until now, so max_hole_start must point to the start
954 * of this free space and the length of this free space
955 * is stored in max_hole_size. Thus, we return
956 * max_hole_start and max_hole_size and go back to the
957 * caller.
958 */
959 if (hole_size >= num_bytes) {
960 ret = 0;
961 goto out;
0b86a832
CM
962 }
963 }
0b86a832 964
0b86a832 965 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
966 extent_end = key.offset + btrfs_dev_extent_length(l,
967 dev_extent);
968 if (extent_end > search_start)
969 search_start = extent_end;
0b86a832
CM
970next:
971 path->slots[0]++;
972 cond_resched();
973 }
0b86a832 974
38c01b96 975 /*
976 * At this point, search_start should be the end of
977 * allocated dev extents, and when shrinking the device,
978 * search_end may be smaller than search_start.
979 */
980 if (search_end > search_start)
981 hole_size = search_end - search_start;
982
7bfc837d
MX
983 if (hole_size > max_hole_size) {
984 max_hole_start = search_start;
985 max_hole_size = hole_size;
0b86a832 986 }
0b86a832 987
7bfc837d
MX
988 /* See above. */
989 if (hole_size < num_bytes)
990 ret = -ENOSPC;
991 else
992 ret = 0;
993
994out:
2b82032c 995 btrfs_free_path(path);
7bfc837d
MX
996error:
997 *start = max_hole_start;
b2117a39 998 if (len)
7bfc837d 999 *len = max_hole_size;
0b86a832
CM
1000 return ret;
1001}
1002
b2950863 1003static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1004 struct btrfs_device *device,
1005 u64 start)
1006{
1007 int ret;
1008 struct btrfs_path *path;
1009 struct btrfs_root *root = device->dev_root;
1010 struct btrfs_key key;
a061fc8d
CM
1011 struct btrfs_key found_key;
1012 struct extent_buffer *leaf = NULL;
1013 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1014
1015 path = btrfs_alloc_path();
1016 if (!path)
1017 return -ENOMEM;
1018
1019 key.objectid = device->devid;
1020 key.offset = start;
1021 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1022again:
8f18cf13 1023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1024 if (ret > 0) {
1025 ret = btrfs_previous_item(root, path, key.objectid,
1026 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1027 if (ret)
1028 goto out;
a061fc8d
CM
1029 leaf = path->nodes[0];
1030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031 extent = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_dev_extent);
1033 BUG_ON(found_key.offset > start || found_key.offset +
1034 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1035 key = found_key;
1036 btrfs_release_path(path);
1037 goto again;
a061fc8d
CM
1038 } else if (ret == 0) {
1039 leaf = path->nodes[0];
1040 extent = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_dev_extent);
1042 }
8f18cf13
CM
1043 BUG_ON(ret);
1044
2bf64758
JB
1045 if (device->bytes_used > 0) {
1046 u64 len = btrfs_dev_extent_length(leaf, extent);
1047 device->bytes_used -= len;
1048 spin_lock(&root->fs_info->free_chunk_lock);
1049 root->fs_info->free_chunk_space += len;
1050 spin_unlock(&root->fs_info->free_chunk_lock);
1051 }
8f18cf13 1052 ret = btrfs_del_item(trans, root, path);
8f18cf13 1053
b0b802d7 1054out:
8f18cf13
CM
1055 btrfs_free_path(path);
1056 return ret;
1057}
1058
2b82032c 1059int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1060 struct btrfs_device *device,
e17cade2 1061 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1062 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1063{
1064 int ret;
1065 struct btrfs_path *path;
1066 struct btrfs_root *root = device->dev_root;
1067 struct btrfs_dev_extent *extent;
1068 struct extent_buffer *leaf;
1069 struct btrfs_key key;
1070
dfe25020 1071 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1072 path = btrfs_alloc_path();
1073 if (!path)
1074 return -ENOMEM;
1075
0b86a832 1076 key.objectid = device->devid;
2b82032c 1077 key.offset = start;
0b86a832
CM
1078 key.type = BTRFS_DEV_EXTENT_KEY;
1079 ret = btrfs_insert_empty_item(trans, root, path, &key,
1080 sizeof(*extent));
1081 BUG_ON(ret);
1082
1083 leaf = path->nodes[0];
1084 extent = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_dev_extent);
e17cade2
CM
1086 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1087 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1088 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1089
1090 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1091 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1092 BTRFS_UUID_SIZE);
1093
0b86a832
CM
1094 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1095 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1096 btrfs_free_path(path);
1097 return ret;
1098}
1099
a1b32a59
CM
1100static noinline int find_next_chunk(struct btrfs_root *root,
1101 u64 objectid, u64 *offset)
0b86a832
CM
1102{
1103 struct btrfs_path *path;
1104 int ret;
1105 struct btrfs_key key;
e17cade2 1106 struct btrfs_chunk *chunk;
0b86a832
CM
1107 struct btrfs_key found_key;
1108
1109 path = btrfs_alloc_path();
92b8e897
MF
1110 if (!path)
1111 return -ENOMEM;
0b86a832 1112
e17cade2 1113 key.objectid = objectid;
0b86a832
CM
1114 key.offset = (u64)-1;
1115 key.type = BTRFS_CHUNK_ITEM_KEY;
1116
1117 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1118 if (ret < 0)
1119 goto error;
1120
1121 BUG_ON(ret == 0);
1122
1123 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1124 if (ret) {
e17cade2 1125 *offset = 0;
0b86a832
CM
1126 } else {
1127 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1128 path->slots[0]);
e17cade2
CM
1129 if (found_key.objectid != objectid)
1130 *offset = 0;
1131 else {
1132 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1133 struct btrfs_chunk);
1134 *offset = found_key.offset +
1135 btrfs_chunk_length(path->nodes[0], chunk);
1136 }
0b86a832
CM
1137 }
1138 ret = 0;
1139error:
1140 btrfs_free_path(path);
1141 return ret;
1142}
1143
2b82032c 1144static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1145{
1146 int ret;
1147 struct btrfs_key key;
1148 struct btrfs_key found_key;
2b82032c
YZ
1149 struct btrfs_path *path;
1150
1151 root = root->fs_info->chunk_root;
1152
1153 path = btrfs_alloc_path();
1154 if (!path)
1155 return -ENOMEM;
0b86a832
CM
1156
1157 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1158 key.type = BTRFS_DEV_ITEM_KEY;
1159 key.offset = (u64)-1;
1160
1161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1162 if (ret < 0)
1163 goto error;
1164
1165 BUG_ON(ret == 0);
1166
1167 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1168 BTRFS_DEV_ITEM_KEY);
1169 if (ret) {
1170 *objectid = 1;
1171 } else {
1172 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1173 path->slots[0]);
1174 *objectid = found_key.offset + 1;
1175 }
1176 ret = 0;
1177error:
2b82032c 1178 btrfs_free_path(path);
0b86a832
CM
1179 return ret;
1180}
1181
1182/*
1183 * the device information is stored in the chunk root
1184 * the btrfs_device struct should be fully filled in
1185 */
1186int btrfs_add_device(struct btrfs_trans_handle *trans,
1187 struct btrfs_root *root,
1188 struct btrfs_device *device)
1189{
1190 int ret;
1191 struct btrfs_path *path;
1192 struct btrfs_dev_item *dev_item;
1193 struct extent_buffer *leaf;
1194 struct btrfs_key key;
1195 unsigned long ptr;
0b86a832
CM
1196
1197 root = root->fs_info->chunk_root;
1198
1199 path = btrfs_alloc_path();
1200 if (!path)
1201 return -ENOMEM;
1202
0b86a832
CM
1203 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1204 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1205 key.offset = device->devid;
0b86a832
CM
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1208 sizeof(*dev_item));
0b86a832
CM
1209 if (ret)
1210 goto out;
1211
1212 leaf = path->nodes[0];
1213 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1214
1215 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1216 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1217 btrfs_set_device_type(leaf, dev_item, device->type);
1218 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1219 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1220 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1221 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1222 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1223 btrfs_set_device_group(leaf, dev_item, 0);
1224 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1225 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1226 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1227
0b86a832 1228 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1229 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1230 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1231 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1232 btrfs_mark_buffer_dirty(leaf);
0b86a832 1233
2b82032c 1234 ret = 0;
0b86a832
CM
1235out:
1236 btrfs_free_path(path);
1237 return ret;
1238}
8f18cf13 1239
a061fc8d
CM
1240static int btrfs_rm_dev_item(struct btrfs_root *root,
1241 struct btrfs_device *device)
1242{
1243 int ret;
1244 struct btrfs_path *path;
a061fc8d 1245 struct btrfs_key key;
a061fc8d
CM
1246 struct btrfs_trans_handle *trans;
1247
1248 root = root->fs_info->chunk_root;
1249
1250 path = btrfs_alloc_path();
1251 if (!path)
1252 return -ENOMEM;
1253
a22285a6 1254 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1255 if (IS_ERR(trans)) {
1256 btrfs_free_path(path);
1257 return PTR_ERR(trans);
1258 }
a061fc8d
CM
1259 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1260 key.type = BTRFS_DEV_ITEM_KEY;
1261 key.offset = device->devid;
7d9eb12c 1262 lock_chunks(root);
a061fc8d
CM
1263
1264 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1265 if (ret < 0)
1266 goto out;
1267
1268 if (ret > 0) {
1269 ret = -ENOENT;
1270 goto out;
1271 }
1272
1273 ret = btrfs_del_item(trans, root, path);
1274 if (ret)
1275 goto out;
a061fc8d
CM
1276out:
1277 btrfs_free_path(path);
7d9eb12c 1278 unlock_chunks(root);
a061fc8d
CM
1279 btrfs_commit_transaction(trans, root);
1280 return ret;
1281}
1282
1283int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1284{
1285 struct btrfs_device *device;
2b82032c 1286 struct btrfs_device *next_device;
a061fc8d 1287 struct block_device *bdev;
dfe25020 1288 struct buffer_head *bh = NULL;
a061fc8d 1289 struct btrfs_super_block *disk_super;
1f78160c 1290 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1291 u64 all_avail;
1292 u64 devid;
2b82032c
YZ
1293 u64 num_devices;
1294 u8 *dev_uuid;
a061fc8d 1295 int ret = 0;
1f78160c 1296 bool clear_super = false;
a061fc8d 1297
a061fc8d
CM
1298 mutex_lock(&uuid_mutex);
1299
1300 all_avail = root->fs_info->avail_data_alloc_bits |
1301 root->fs_info->avail_system_alloc_bits |
1302 root->fs_info->avail_metadata_alloc_bits;
1303
1304 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1305 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1306 printk(KERN_ERR "btrfs: unable to go below four devices "
1307 "on raid10\n");
a061fc8d
CM
1308 ret = -EINVAL;
1309 goto out;
1310 }
1311
1312 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1313 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1314 printk(KERN_ERR "btrfs: unable to go below two "
1315 "devices on raid1\n");
a061fc8d
CM
1316 ret = -EINVAL;
1317 goto out;
1318 }
1319
dfe25020 1320 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1321 struct list_head *devices;
1322 struct btrfs_device *tmp;
a061fc8d 1323
dfe25020
CM
1324 device = NULL;
1325 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1326 /*
1327 * It is safe to read the devices since the volume_mutex
1328 * is held.
1329 */
c6e30871 1330 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1331 if (tmp->in_fs_metadata && !tmp->bdev) {
1332 device = tmp;
1333 break;
1334 }
1335 }
1336 bdev = NULL;
1337 bh = NULL;
1338 disk_super = NULL;
1339 if (!device) {
d397712b
CM
1340 printk(KERN_ERR "btrfs: no missing devices found to "
1341 "remove\n");
dfe25020
CM
1342 goto out;
1343 }
dfe25020 1344 } else {
d4d77629
TH
1345 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1346 root->fs_info->bdev_holder);
dfe25020
CM
1347 if (IS_ERR(bdev)) {
1348 ret = PTR_ERR(bdev);
1349 goto out;
1350 }
a061fc8d 1351
2b82032c 1352 set_blocksize(bdev, 4096);
a512bbf8 1353 bh = btrfs_read_dev_super(bdev);
dfe25020 1354 if (!bh) {
20b45077 1355 ret = -EINVAL;
dfe25020
CM
1356 goto error_close;
1357 }
1358 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1360 dev_uuid = disk_super->dev_item.uuid;
1361 device = btrfs_find_device(root, devid, dev_uuid,
1362 disk_super->fsid);
dfe25020
CM
1363 if (!device) {
1364 ret = -ENOENT;
1365 goto error_brelse;
1366 }
2b82032c 1367 }
dfe25020 1368
2b82032c 1369 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1370 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1371 "device\n");
2b82032c
YZ
1372 ret = -EINVAL;
1373 goto error_brelse;
1374 }
1375
1376 if (device->writeable) {
0c1daee0 1377 lock_chunks(root);
2b82032c 1378 list_del_init(&device->dev_alloc_list);
0c1daee0 1379 unlock_chunks(root);
2b82032c 1380 root->fs_info->fs_devices->rw_devices--;
1f78160c 1381 clear_super = true;
dfe25020 1382 }
a061fc8d
CM
1383
1384 ret = btrfs_shrink_device(device, 0);
1385 if (ret)
9b3517e9 1386 goto error_undo;
a061fc8d 1387
a061fc8d
CM
1388 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1389 if (ret)
9b3517e9 1390 goto error_undo;
a061fc8d 1391
2bf64758
JB
1392 spin_lock(&root->fs_info->free_chunk_lock);
1393 root->fs_info->free_chunk_space = device->total_bytes -
1394 device->bytes_used;
1395 spin_unlock(&root->fs_info->free_chunk_lock);
1396
2b82032c 1397 device->in_fs_metadata = 0;
a2de733c 1398 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1399
1400 /*
1401 * the device list mutex makes sure that we don't change
1402 * the device list while someone else is writing out all
1403 * the device supers.
1404 */
1f78160c
XG
1405
1406 cur_devices = device->fs_devices;
e5e9a520 1407 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1408 list_del_rcu(&device->dev_list);
e5e9a520 1409
e4404d6e 1410 device->fs_devices->num_devices--;
2b82032c 1411
cd02dca5
CM
1412 if (device->missing)
1413 root->fs_info->fs_devices->missing_devices--;
1414
2b82032c
YZ
1415 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1416 struct btrfs_device, dev_list);
1417 if (device->bdev == root->fs_info->sb->s_bdev)
1418 root->fs_info->sb->s_bdev = next_device->bdev;
1419 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1420 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1421
1f78160c 1422 if (device->bdev)
e4404d6e 1423 device->fs_devices->open_devices--;
1f78160c
XG
1424
1425 call_rcu(&device->rcu, free_device);
1426 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1427
6c41761f
DS
1428 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1429 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1430
1f78160c 1431 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1432 struct btrfs_fs_devices *fs_devices;
1433 fs_devices = root->fs_info->fs_devices;
1434 while (fs_devices) {
1f78160c 1435 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1436 break;
1437 fs_devices = fs_devices->seed;
2b82032c 1438 }
1f78160c
XG
1439 fs_devices->seed = cur_devices->seed;
1440 cur_devices->seed = NULL;
0c1daee0 1441 lock_chunks(root);
1f78160c 1442 __btrfs_close_devices(cur_devices);
0c1daee0 1443 unlock_chunks(root);
1f78160c 1444 free_fs_devices(cur_devices);
2b82032c
YZ
1445 }
1446
1447 /*
1448 * at this point, the device is zero sized. We want to
1449 * remove it from the devices list and zero out the old super
1450 */
1f78160c 1451 if (clear_super) {
dfe25020
CM
1452 /* make sure this device isn't detected as part of
1453 * the FS anymore
1454 */
1455 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1456 set_buffer_dirty(bh);
1457 sync_dirty_buffer(bh);
dfe25020 1458 }
a061fc8d 1459
a061fc8d 1460 ret = 0;
a061fc8d
CM
1461
1462error_brelse:
1463 brelse(bh);
1464error_close:
dfe25020 1465 if (bdev)
e525fd89 1466 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1467out:
1468 mutex_unlock(&uuid_mutex);
a061fc8d 1469 return ret;
9b3517e9
ID
1470error_undo:
1471 if (device->writeable) {
0c1daee0 1472 lock_chunks(root);
9b3517e9
ID
1473 list_add(&device->dev_alloc_list,
1474 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1475 unlock_chunks(root);
9b3517e9
ID
1476 root->fs_info->fs_devices->rw_devices++;
1477 }
1478 goto error_brelse;
a061fc8d
CM
1479}
1480
2b82032c
YZ
1481/*
1482 * does all the dirty work required for changing file system's UUID.
1483 */
125ccb0a 1484static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1485{
1486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1487 struct btrfs_fs_devices *old_devices;
e4404d6e 1488 struct btrfs_fs_devices *seed_devices;
6c41761f 1489 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1490 struct btrfs_device *device;
1491 u64 super_flags;
1492
1493 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1494 if (!fs_devices->seeding)
2b82032c
YZ
1495 return -EINVAL;
1496
e4404d6e
YZ
1497 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1498 if (!seed_devices)
2b82032c
YZ
1499 return -ENOMEM;
1500
e4404d6e
YZ
1501 old_devices = clone_fs_devices(fs_devices);
1502 if (IS_ERR(old_devices)) {
1503 kfree(seed_devices);
1504 return PTR_ERR(old_devices);
2b82032c 1505 }
e4404d6e 1506
2b82032c
YZ
1507 list_add(&old_devices->list, &fs_uuids);
1508
e4404d6e
YZ
1509 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1510 seed_devices->opened = 1;
1511 INIT_LIST_HEAD(&seed_devices->devices);
1512 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1513 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1514
1515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1516 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1517 synchronize_rcu);
c9513edb
XG
1518 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1519
e4404d6e
YZ
1520 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1521 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1522 device->fs_devices = seed_devices;
1523 }
1524
2b82032c
YZ
1525 fs_devices->seeding = 0;
1526 fs_devices->num_devices = 0;
1527 fs_devices->open_devices = 0;
e4404d6e 1528 fs_devices->seed = seed_devices;
2b82032c
YZ
1529
1530 generate_random_uuid(fs_devices->fsid);
1531 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1532 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1533 super_flags = btrfs_super_flags(disk_super) &
1534 ~BTRFS_SUPER_FLAG_SEEDING;
1535 btrfs_set_super_flags(disk_super, super_flags);
1536
1537 return 0;
1538}
1539
1540/*
1541 * strore the expected generation for seed devices in device items.
1542 */
1543static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root)
1545{
1546 struct btrfs_path *path;
1547 struct extent_buffer *leaf;
1548 struct btrfs_dev_item *dev_item;
1549 struct btrfs_device *device;
1550 struct btrfs_key key;
1551 u8 fs_uuid[BTRFS_UUID_SIZE];
1552 u8 dev_uuid[BTRFS_UUID_SIZE];
1553 u64 devid;
1554 int ret;
1555
1556 path = btrfs_alloc_path();
1557 if (!path)
1558 return -ENOMEM;
1559
1560 root = root->fs_info->chunk_root;
1561 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1562 key.offset = 0;
1563 key.type = BTRFS_DEV_ITEM_KEY;
1564
1565 while (1) {
1566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1567 if (ret < 0)
1568 goto error;
1569
1570 leaf = path->nodes[0];
1571next_slot:
1572 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1573 ret = btrfs_next_leaf(root, path);
1574 if (ret > 0)
1575 break;
1576 if (ret < 0)
1577 goto error;
1578 leaf = path->nodes[0];
1579 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1580 btrfs_release_path(path);
2b82032c
YZ
1581 continue;
1582 }
1583
1584 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1585 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1586 key.type != BTRFS_DEV_ITEM_KEY)
1587 break;
1588
1589 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1590 struct btrfs_dev_item);
1591 devid = btrfs_device_id(leaf, dev_item);
1592 read_extent_buffer(leaf, dev_uuid,
1593 (unsigned long)btrfs_device_uuid(dev_item),
1594 BTRFS_UUID_SIZE);
1595 read_extent_buffer(leaf, fs_uuid,
1596 (unsigned long)btrfs_device_fsid(dev_item),
1597 BTRFS_UUID_SIZE);
1598 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1599 BUG_ON(!device);
1600
1601 if (device->fs_devices->seeding) {
1602 btrfs_set_device_generation(leaf, dev_item,
1603 device->generation);
1604 btrfs_mark_buffer_dirty(leaf);
1605 }
1606
1607 path->slots[0]++;
1608 goto next_slot;
1609 }
1610 ret = 0;
1611error:
1612 btrfs_free_path(path);
1613 return ret;
1614}
1615
788f20eb
CM
1616int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1617{
d5e2003c 1618 struct request_queue *q;
788f20eb
CM
1619 struct btrfs_trans_handle *trans;
1620 struct btrfs_device *device;
1621 struct block_device *bdev;
788f20eb 1622 struct list_head *devices;
2b82032c 1623 struct super_block *sb = root->fs_info->sb;
788f20eb 1624 u64 total_bytes;
2b82032c 1625 int seeding_dev = 0;
788f20eb
CM
1626 int ret = 0;
1627
2b82032c
YZ
1628 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1629 return -EINVAL;
788f20eb 1630
a5d16333 1631 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1632 root->fs_info->bdev_holder);
7f59203a
JB
1633 if (IS_ERR(bdev))
1634 return PTR_ERR(bdev);
a2135011 1635
2b82032c
YZ
1636 if (root->fs_info->fs_devices->seeding) {
1637 seeding_dev = 1;
1638 down_write(&sb->s_umount);
1639 mutex_lock(&uuid_mutex);
1640 }
1641
8c8bee1d 1642 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1643
788f20eb 1644 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1645 /*
1646 * we have the volume lock, so we don't need the extra
1647 * device list mutex while reading the list here.
1648 */
c6e30871 1649 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1650 if (device->bdev == bdev) {
1651 ret = -EEXIST;
2b82032c 1652 goto error;
788f20eb
CM
1653 }
1654 }
1655
1656 device = kzalloc(sizeof(*device), GFP_NOFS);
1657 if (!device) {
1658 /* we can safely leave the fs_devices entry around */
1659 ret = -ENOMEM;
2b82032c 1660 goto error;
788f20eb
CM
1661 }
1662
788f20eb
CM
1663 device->name = kstrdup(device_path, GFP_NOFS);
1664 if (!device->name) {
1665 kfree(device);
2b82032c
YZ
1666 ret = -ENOMEM;
1667 goto error;
788f20eb 1668 }
2b82032c
YZ
1669
1670 ret = find_next_devid(root, &device->devid);
1671 if (ret) {
67100f25 1672 kfree(device->name);
2b82032c
YZ
1673 kfree(device);
1674 goto error;
1675 }
1676
a22285a6 1677 trans = btrfs_start_transaction(root, 0);
98d5dc13 1678 if (IS_ERR(trans)) {
67100f25 1679 kfree(device->name);
98d5dc13
TI
1680 kfree(device);
1681 ret = PTR_ERR(trans);
1682 goto error;
1683 }
1684
2b82032c
YZ
1685 lock_chunks(root);
1686
d5e2003c
JB
1687 q = bdev_get_queue(bdev);
1688 if (blk_queue_discard(q))
1689 device->can_discard = 1;
2b82032c
YZ
1690 device->writeable = 1;
1691 device->work.func = pending_bios_fn;
1692 generate_random_uuid(device->uuid);
1693 spin_lock_init(&device->io_lock);
1694 device->generation = trans->transid;
788f20eb
CM
1695 device->io_width = root->sectorsize;
1696 device->io_align = root->sectorsize;
1697 device->sector_size = root->sectorsize;
1698 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1699 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1700 device->dev_root = root->fs_info->dev_root;
1701 device->bdev = bdev;
dfe25020 1702 device->in_fs_metadata = 1;
fb01aa85 1703 device->mode = FMODE_EXCL;
2b82032c 1704 set_blocksize(device->bdev, 4096);
788f20eb 1705
2b82032c
YZ
1706 if (seeding_dev) {
1707 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1708 ret = btrfs_prepare_sprout(root);
2b82032c
YZ
1709 BUG_ON(ret);
1710 }
788f20eb 1711
2b82032c 1712 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1713
1714 /*
1715 * we don't want write_supers to jump in here with our device
1716 * half setup
1717 */
1718 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1719 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1720 list_add(&device->dev_alloc_list,
1721 &root->fs_info->fs_devices->alloc_list);
1722 root->fs_info->fs_devices->num_devices++;
1723 root->fs_info->fs_devices->open_devices++;
1724 root->fs_info->fs_devices->rw_devices++;
d5e2003c
JB
1725 if (device->can_discard)
1726 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1727 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1728
2bf64758
JB
1729 spin_lock(&root->fs_info->free_chunk_lock);
1730 root->fs_info->free_chunk_space += device->total_bytes;
1731 spin_unlock(&root->fs_info->free_chunk_lock);
1732
c289811c
CM
1733 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1734 root->fs_info->fs_devices->rotating = 1;
1735
6c41761f
DS
1736 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1737 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1738 total_bytes + device->total_bytes);
1739
6c41761f
DS
1740 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1741 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1742 total_bytes + 1);
e5e9a520 1743 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1744
2b82032c
YZ
1745 if (seeding_dev) {
1746 ret = init_first_rw_device(trans, root, device);
1747 BUG_ON(ret);
1748 ret = btrfs_finish_sprout(trans, root);
1749 BUG_ON(ret);
1750 } else {
1751 ret = btrfs_add_device(trans, root, device);
1752 }
1753
913d952e
CM
1754 /*
1755 * we've got more storage, clear any full flags on the space
1756 * infos
1757 */
1758 btrfs_clear_space_info_full(root->fs_info);
1759
7d9eb12c 1760 unlock_chunks(root);
2b82032c 1761 btrfs_commit_transaction(trans, root);
a2135011 1762
2b82032c
YZ
1763 if (seeding_dev) {
1764 mutex_unlock(&uuid_mutex);
1765 up_write(&sb->s_umount);
788f20eb 1766
2b82032c
YZ
1767 ret = btrfs_relocate_sys_chunks(root);
1768 BUG_ON(ret);
1769 }
c9e9f97b 1770
2b82032c
YZ
1771 return ret;
1772error:
e525fd89 1773 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1774 if (seeding_dev) {
1775 mutex_unlock(&uuid_mutex);
1776 up_write(&sb->s_umount);
1777 }
c9e9f97b 1778 return ret;
788f20eb
CM
1779}
1780
d397712b
CM
1781static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1782 struct btrfs_device *device)
0b86a832
CM
1783{
1784 int ret;
1785 struct btrfs_path *path;
1786 struct btrfs_root *root;
1787 struct btrfs_dev_item *dev_item;
1788 struct extent_buffer *leaf;
1789 struct btrfs_key key;
1790
1791 root = device->dev_root->fs_info->chunk_root;
1792
1793 path = btrfs_alloc_path();
1794 if (!path)
1795 return -ENOMEM;
1796
1797 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1798 key.type = BTRFS_DEV_ITEM_KEY;
1799 key.offset = device->devid;
1800
1801 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1802 if (ret < 0)
1803 goto out;
1804
1805 if (ret > 0) {
1806 ret = -ENOENT;
1807 goto out;
1808 }
1809
1810 leaf = path->nodes[0];
1811 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1812
1813 btrfs_set_device_id(leaf, dev_item, device->devid);
1814 btrfs_set_device_type(leaf, dev_item, device->type);
1815 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1816 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1817 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1818 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1819 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1820 btrfs_mark_buffer_dirty(leaf);
1821
1822out:
1823 btrfs_free_path(path);
1824 return ret;
1825}
1826
7d9eb12c 1827static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1828 struct btrfs_device *device, u64 new_size)
1829{
1830 struct btrfs_super_block *super_copy =
6c41761f 1831 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1832 u64 old_total = btrfs_super_total_bytes(super_copy);
1833 u64 diff = new_size - device->total_bytes;
1834
2b82032c
YZ
1835 if (!device->writeable)
1836 return -EACCES;
1837 if (new_size <= device->total_bytes)
1838 return -EINVAL;
1839
8f18cf13 1840 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1841 device->fs_devices->total_rw_bytes += diff;
1842
1843 device->total_bytes = new_size;
9779b72f 1844 device->disk_total_bytes = new_size;
4184ea7f
CM
1845 btrfs_clear_space_info_full(device->dev_root->fs_info);
1846
8f18cf13
CM
1847 return btrfs_update_device(trans, device);
1848}
1849
7d9eb12c
CM
1850int btrfs_grow_device(struct btrfs_trans_handle *trans,
1851 struct btrfs_device *device, u64 new_size)
1852{
1853 int ret;
1854 lock_chunks(device->dev_root);
1855 ret = __btrfs_grow_device(trans, device, new_size);
1856 unlock_chunks(device->dev_root);
1857 return ret;
1858}
1859
8f18cf13
CM
1860static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1861 struct btrfs_root *root,
1862 u64 chunk_tree, u64 chunk_objectid,
1863 u64 chunk_offset)
1864{
1865 int ret;
1866 struct btrfs_path *path;
1867 struct btrfs_key key;
1868
1869 root = root->fs_info->chunk_root;
1870 path = btrfs_alloc_path();
1871 if (!path)
1872 return -ENOMEM;
1873
1874 key.objectid = chunk_objectid;
1875 key.offset = chunk_offset;
1876 key.type = BTRFS_CHUNK_ITEM_KEY;
1877
1878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1879 BUG_ON(ret);
1880
1881 ret = btrfs_del_item(trans, root, path);
8f18cf13
CM
1882
1883 btrfs_free_path(path);
65a246c5 1884 return ret;
8f18cf13
CM
1885}
1886
b2950863 1887static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1888 chunk_offset)
1889{
6c41761f 1890 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1891 struct btrfs_disk_key *disk_key;
1892 struct btrfs_chunk *chunk;
1893 u8 *ptr;
1894 int ret = 0;
1895 u32 num_stripes;
1896 u32 array_size;
1897 u32 len = 0;
1898 u32 cur;
1899 struct btrfs_key key;
1900
1901 array_size = btrfs_super_sys_array_size(super_copy);
1902
1903 ptr = super_copy->sys_chunk_array;
1904 cur = 0;
1905
1906 while (cur < array_size) {
1907 disk_key = (struct btrfs_disk_key *)ptr;
1908 btrfs_disk_key_to_cpu(&key, disk_key);
1909
1910 len = sizeof(*disk_key);
1911
1912 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1913 chunk = (struct btrfs_chunk *)(ptr + len);
1914 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1915 len += btrfs_chunk_item_size(num_stripes);
1916 } else {
1917 ret = -EIO;
1918 break;
1919 }
1920 if (key.objectid == chunk_objectid &&
1921 key.offset == chunk_offset) {
1922 memmove(ptr, ptr + len, array_size - (cur + len));
1923 array_size -= len;
1924 btrfs_set_super_sys_array_size(super_copy, array_size);
1925 } else {
1926 ptr += len;
1927 cur += len;
1928 }
1929 }
1930 return ret;
1931}
1932
b2950863 1933static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1934 u64 chunk_tree, u64 chunk_objectid,
1935 u64 chunk_offset)
1936{
1937 struct extent_map_tree *em_tree;
1938 struct btrfs_root *extent_root;
1939 struct btrfs_trans_handle *trans;
1940 struct extent_map *em;
1941 struct map_lookup *map;
1942 int ret;
1943 int i;
1944
1945 root = root->fs_info->chunk_root;
1946 extent_root = root->fs_info->extent_root;
1947 em_tree = &root->fs_info->mapping_tree.map_tree;
1948
ba1bf481
JB
1949 ret = btrfs_can_relocate(extent_root, chunk_offset);
1950 if (ret)
1951 return -ENOSPC;
1952
8f18cf13 1953 /* step one, relocate all the extents inside this chunk */
1a40e23b 1954 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1955 if (ret)
1956 return ret;
8f18cf13 1957
a22285a6 1958 trans = btrfs_start_transaction(root, 0);
98d5dc13 1959 BUG_ON(IS_ERR(trans));
8f18cf13 1960
7d9eb12c
CM
1961 lock_chunks(root);
1962
8f18cf13
CM
1963 /*
1964 * step two, delete the device extents and the
1965 * chunk tree entries
1966 */
890871be 1967 read_lock(&em_tree->lock);
8f18cf13 1968 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1969 read_unlock(&em_tree->lock);
8f18cf13 1970
285190d9 1971 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 1972 em->start + em->len < chunk_offset);
8f18cf13
CM
1973 map = (struct map_lookup *)em->bdev;
1974
1975 for (i = 0; i < map->num_stripes; i++) {
1976 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1977 map->stripes[i].physical);
1978 BUG_ON(ret);
a061fc8d 1979
dfe25020
CM
1980 if (map->stripes[i].dev) {
1981 ret = btrfs_update_device(trans, map->stripes[i].dev);
1982 BUG_ON(ret);
1983 }
8f18cf13
CM
1984 }
1985 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1986 chunk_offset);
1987
1988 BUG_ON(ret);
1989
1abe9b8a 1990 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1991
8f18cf13
CM
1992 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1993 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1994 BUG_ON(ret);
8f18cf13
CM
1995 }
1996
2b82032c
YZ
1997 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1998 BUG_ON(ret);
1999
890871be 2000 write_lock(&em_tree->lock);
2b82032c 2001 remove_extent_mapping(em_tree, em);
890871be 2002 write_unlock(&em_tree->lock);
2b82032c
YZ
2003
2004 kfree(map);
2005 em->bdev = NULL;
2006
2007 /* once for the tree */
2008 free_extent_map(em);
2009 /* once for us */
2010 free_extent_map(em);
2011
2012 unlock_chunks(root);
2013 btrfs_end_transaction(trans, root);
2014 return 0;
2015}
2016
2017static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2018{
2019 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2020 struct btrfs_path *path;
2021 struct extent_buffer *leaf;
2022 struct btrfs_chunk *chunk;
2023 struct btrfs_key key;
2024 struct btrfs_key found_key;
2025 u64 chunk_tree = chunk_root->root_key.objectid;
2026 u64 chunk_type;
ba1bf481
JB
2027 bool retried = false;
2028 int failed = 0;
2b82032c
YZ
2029 int ret;
2030
2031 path = btrfs_alloc_path();
2032 if (!path)
2033 return -ENOMEM;
2034
ba1bf481 2035again:
2b82032c
YZ
2036 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2037 key.offset = (u64)-1;
2038 key.type = BTRFS_CHUNK_ITEM_KEY;
2039
2040 while (1) {
2041 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2042 if (ret < 0)
2043 goto error;
2044 BUG_ON(ret == 0);
2045
2046 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2047 key.type);
2048 if (ret < 0)
2049 goto error;
2050 if (ret > 0)
2051 break;
1a40e23b 2052
2b82032c
YZ
2053 leaf = path->nodes[0];
2054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2055
2b82032c
YZ
2056 chunk = btrfs_item_ptr(leaf, path->slots[0],
2057 struct btrfs_chunk);
2058 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2059 btrfs_release_path(path);
8f18cf13 2060
2b82032c
YZ
2061 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2063 found_key.objectid,
2064 found_key.offset);
ba1bf481
JB
2065 if (ret == -ENOSPC)
2066 failed++;
2067 else if (ret)
2068 BUG();
2b82032c 2069 }
8f18cf13 2070
2b82032c
YZ
2071 if (found_key.offset == 0)
2072 break;
2073 key.offset = found_key.offset - 1;
2074 }
2075 ret = 0;
ba1bf481
JB
2076 if (failed && !retried) {
2077 failed = 0;
2078 retried = true;
2079 goto again;
2080 } else if (failed && retried) {
2081 WARN_ON(1);
2082 ret = -ENOSPC;
2083 }
2b82032c
YZ
2084error:
2085 btrfs_free_path(path);
2086 return ret;
8f18cf13
CM
2087}
2088
0940ebf6
ID
2089static int insert_balance_item(struct btrfs_root *root,
2090 struct btrfs_balance_control *bctl)
2091{
2092 struct btrfs_trans_handle *trans;
2093 struct btrfs_balance_item *item;
2094 struct btrfs_disk_balance_args disk_bargs;
2095 struct btrfs_path *path;
2096 struct extent_buffer *leaf;
2097 struct btrfs_key key;
2098 int ret, err;
2099
2100 path = btrfs_alloc_path();
2101 if (!path)
2102 return -ENOMEM;
2103
2104 trans = btrfs_start_transaction(root, 0);
2105 if (IS_ERR(trans)) {
2106 btrfs_free_path(path);
2107 return PTR_ERR(trans);
2108 }
2109
2110 key.objectid = BTRFS_BALANCE_OBJECTID;
2111 key.type = BTRFS_BALANCE_ITEM_KEY;
2112 key.offset = 0;
2113
2114 ret = btrfs_insert_empty_item(trans, root, path, &key,
2115 sizeof(*item));
2116 if (ret)
2117 goto out;
2118
2119 leaf = path->nodes[0];
2120 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2121
2122 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2123
2124 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2125 btrfs_set_balance_data(leaf, item, &disk_bargs);
2126 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2127 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2128 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2129 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2130
2131 btrfs_set_balance_flags(leaf, item, bctl->flags);
2132
2133 btrfs_mark_buffer_dirty(leaf);
2134out:
2135 btrfs_free_path(path);
2136 err = btrfs_commit_transaction(trans, root);
2137 if (err && !ret)
2138 ret = err;
2139 return ret;
2140}
2141
2142static int del_balance_item(struct btrfs_root *root)
2143{
2144 struct btrfs_trans_handle *trans;
2145 struct btrfs_path *path;
2146 struct btrfs_key key;
2147 int ret, err;
2148
2149 path = btrfs_alloc_path();
2150 if (!path)
2151 return -ENOMEM;
2152
2153 trans = btrfs_start_transaction(root, 0);
2154 if (IS_ERR(trans)) {
2155 btrfs_free_path(path);
2156 return PTR_ERR(trans);
2157 }
2158
2159 key.objectid = BTRFS_BALANCE_OBJECTID;
2160 key.type = BTRFS_BALANCE_ITEM_KEY;
2161 key.offset = 0;
2162
2163 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2164 if (ret < 0)
2165 goto out;
2166 if (ret > 0) {
2167 ret = -ENOENT;
2168 goto out;
2169 }
2170
2171 ret = btrfs_del_item(trans, root, path);
2172out:
2173 btrfs_free_path(path);
2174 err = btrfs_commit_transaction(trans, root);
2175 if (err && !ret)
2176 ret = err;
2177 return ret;
2178}
2179
59641015
ID
2180/*
2181 * This is a heuristic used to reduce the number of chunks balanced on
2182 * resume after balance was interrupted.
2183 */
2184static void update_balance_args(struct btrfs_balance_control *bctl)
2185{
2186 /*
2187 * Turn on soft mode for chunk types that were being converted.
2188 */
2189 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2190 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2191 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2192 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2193 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2194 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2195
2196 /*
2197 * Turn on usage filter if is not already used. The idea is
2198 * that chunks that we have already balanced should be
2199 * reasonably full. Don't do it for chunks that are being
2200 * converted - that will keep us from relocating unconverted
2201 * (albeit full) chunks.
2202 */
2203 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2204 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2205 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2206 bctl->data.usage = 90;
2207 }
2208 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2209 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2210 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2211 bctl->sys.usage = 90;
2212 }
2213 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2214 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2215 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2216 bctl->meta.usage = 90;
2217 }
2218}
2219
c9e9f97b
ID
2220/*
2221 * Should be called with both balance and volume mutexes held to
2222 * serialize other volume operations (add_dev/rm_dev/resize) with
2223 * restriper. Same goes for unset_balance_control.
2224 */
2225static void set_balance_control(struct btrfs_balance_control *bctl)
2226{
2227 struct btrfs_fs_info *fs_info = bctl->fs_info;
2228
2229 BUG_ON(fs_info->balance_ctl);
2230
2231 spin_lock(&fs_info->balance_lock);
2232 fs_info->balance_ctl = bctl;
2233 spin_unlock(&fs_info->balance_lock);
2234}
2235
2236static void unset_balance_control(struct btrfs_fs_info *fs_info)
2237{
2238 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2239
2240 BUG_ON(!fs_info->balance_ctl);
2241
2242 spin_lock(&fs_info->balance_lock);
2243 fs_info->balance_ctl = NULL;
2244 spin_unlock(&fs_info->balance_lock);
2245
2246 kfree(bctl);
2247}
2248
ed25e9b2
ID
2249/*
2250 * Balance filters. Return 1 if chunk should be filtered out
2251 * (should not be balanced).
2252 */
899c81ea 2253static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2254 struct btrfs_balance_args *bargs)
2255{
899c81ea
ID
2256 chunk_type = chunk_to_extended(chunk_type) &
2257 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2258
899c81ea 2259 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2260 return 0;
2261
2262 return 1;
2263}
2264
5ce5b3c0
ID
2265static u64 div_factor_fine(u64 num, int factor)
2266{
2267 if (factor <= 0)
2268 return 0;
2269 if (factor >= 100)
2270 return num;
2271
2272 num *= factor;
2273 do_div(num, 100);
2274 return num;
2275}
2276
2277static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2278 struct btrfs_balance_args *bargs)
2279{
2280 struct btrfs_block_group_cache *cache;
2281 u64 chunk_used, user_thresh;
2282 int ret = 1;
2283
2284 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2285 chunk_used = btrfs_block_group_used(&cache->item);
2286
2287 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2288 if (chunk_used < user_thresh)
2289 ret = 0;
2290
2291 btrfs_put_block_group(cache);
2292 return ret;
2293}
2294
409d404b
ID
2295static int chunk_devid_filter(struct extent_buffer *leaf,
2296 struct btrfs_chunk *chunk,
2297 struct btrfs_balance_args *bargs)
2298{
2299 struct btrfs_stripe *stripe;
2300 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2301 int i;
2302
2303 for (i = 0; i < num_stripes; i++) {
2304 stripe = btrfs_stripe_nr(chunk, i);
2305 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2306 return 0;
2307 }
2308
2309 return 1;
2310}
2311
94e60d5a
ID
2312/* [pstart, pend) */
2313static int chunk_drange_filter(struct extent_buffer *leaf,
2314 struct btrfs_chunk *chunk,
2315 u64 chunk_offset,
2316 struct btrfs_balance_args *bargs)
2317{
2318 struct btrfs_stripe *stripe;
2319 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2320 u64 stripe_offset;
2321 u64 stripe_length;
2322 int factor;
2323 int i;
2324
2325 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2326 return 0;
2327
2328 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2329 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2330 factor = 2;
2331 else
2332 factor = 1;
2333 factor = num_stripes / factor;
2334
2335 for (i = 0; i < num_stripes; i++) {
2336 stripe = btrfs_stripe_nr(chunk, i);
2337 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2338 continue;
2339
2340 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2341 stripe_length = btrfs_chunk_length(leaf, chunk);
2342 do_div(stripe_length, factor);
2343
2344 if (stripe_offset < bargs->pend &&
2345 stripe_offset + stripe_length > bargs->pstart)
2346 return 0;
2347 }
2348
2349 return 1;
2350}
2351
ea67176a
ID
2352/* [vstart, vend) */
2353static int chunk_vrange_filter(struct extent_buffer *leaf,
2354 struct btrfs_chunk *chunk,
2355 u64 chunk_offset,
2356 struct btrfs_balance_args *bargs)
2357{
2358 if (chunk_offset < bargs->vend &&
2359 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2360 /* at least part of the chunk is inside this vrange */
2361 return 0;
2362
2363 return 1;
2364}
2365
899c81ea 2366static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2367 struct btrfs_balance_args *bargs)
2368{
2369 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2370 return 0;
2371
899c81ea
ID
2372 chunk_type = chunk_to_extended(chunk_type) &
2373 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2374
899c81ea 2375 if (bargs->target == chunk_type)
cfa4c961
ID
2376 return 1;
2377
2378 return 0;
2379}
2380
f43ffb60
ID
2381static int should_balance_chunk(struct btrfs_root *root,
2382 struct extent_buffer *leaf,
2383 struct btrfs_chunk *chunk, u64 chunk_offset)
2384{
2385 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2386 struct btrfs_balance_args *bargs = NULL;
2387 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2388
2389 /* type filter */
2390 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2391 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2392 return 0;
2393 }
2394
2395 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2396 bargs = &bctl->data;
2397 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2398 bargs = &bctl->sys;
2399 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2400 bargs = &bctl->meta;
2401
ed25e9b2
ID
2402 /* profiles filter */
2403 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2404 chunk_profiles_filter(chunk_type, bargs)) {
2405 return 0;
5ce5b3c0
ID
2406 }
2407
2408 /* usage filter */
2409 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2410 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2411 return 0;
409d404b
ID
2412 }
2413
2414 /* devid filter */
2415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2416 chunk_devid_filter(leaf, chunk, bargs)) {
2417 return 0;
94e60d5a
ID
2418 }
2419
2420 /* drange filter, makes sense only with devid filter */
2421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2422 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2423 return 0;
ea67176a
ID
2424 }
2425
2426 /* vrange filter */
2427 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2428 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2429 return 0;
ed25e9b2
ID
2430 }
2431
cfa4c961
ID
2432 /* soft profile changing mode */
2433 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2434 chunk_soft_convert_filter(chunk_type, bargs)) {
2435 return 0;
2436 }
2437
f43ffb60
ID
2438 return 1;
2439}
2440
ec44a35c
CM
2441static u64 div_factor(u64 num, int factor)
2442{
2443 if (factor == 10)
2444 return num;
2445 num *= factor;
2446 do_div(num, 10);
2447 return num;
2448}
2449
c9e9f97b 2450static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2451{
19a39dce 2452 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2453 struct btrfs_root *chunk_root = fs_info->chunk_root;
2454 struct btrfs_root *dev_root = fs_info->dev_root;
2455 struct list_head *devices;
ec44a35c
CM
2456 struct btrfs_device *device;
2457 u64 old_size;
2458 u64 size_to_free;
f43ffb60 2459 struct btrfs_chunk *chunk;
ec44a35c
CM
2460 struct btrfs_path *path;
2461 struct btrfs_key key;
ec44a35c 2462 struct btrfs_key found_key;
c9e9f97b 2463 struct btrfs_trans_handle *trans;
f43ffb60
ID
2464 struct extent_buffer *leaf;
2465 int slot;
c9e9f97b
ID
2466 int ret;
2467 int enospc_errors = 0;
19a39dce 2468 bool counting = true;
ec44a35c 2469
ec44a35c 2470 /* step one make some room on all the devices */
c9e9f97b 2471 devices = &fs_info->fs_devices->devices;
c6e30871 2472 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2473 old_size = device->total_bytes;
2474 size_to_free = div_factor(old_size, 1);
2475 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2476 if (!device->writeable ||
2477 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2478 continue;
2479
2480 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2481 if (ret == -ENOSPC)
2482 break;
ec44a35c
CM
2483 BUG_ON(ret);
2484
a22285a6 2485 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2486 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2487
2488 ret = btrfs_grow_device(trans, device, old_size);
2489 BUG_ON(ret);
2490
2491 btrfs_end_transaction(trans, dev_root);
2492 }
2493
2494 /* step two, relocate all the chunks */
2495 path = btrfs_alloc_path();
17e9f796
MF
2496 if (!path) {
2497 ret = -ENOMEM;
2498 goto error;
2499 }
19a39dce
ID
2500
2501 /* zero out stat counters */
2502 spin_lock(&fs_info->balance_lock);
2503 memset(&bctl->stat, 0, sizeof(bctl->stat));
2504 spin_unlock(&fs_info->balance_lock);
2505again:
ec44a35c
CM
2506 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2507 key.offset = (u64)-1;
2508 key.type = BTRFS_CHUNK_ITEM_KEY;
2509
d397712b 2510 while (1) {
19a39dce 2511 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2512 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2513 ret = -ECANCELED;
2514 goto error;
2515 }
2516
ec44a35c
CM
2517 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2518 if (ret < 0)
2519 goto error;
2520
2521 /*
2522 * this shouldn't happen, it means the last relocate
2523 * failed
2524 */
2525 if (ret == 0)
c9e9f97b 2526 BUG(); /* FIXME break ? */
ec44a35c
CM
2527
2528 ret = btrfs_previous_item(chunk_root, path, 0,
2529 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2530 if (ret) {
2531 ret = 0;
ec44a35c 2532 break;
c9e9f97b 2533 }
7d9eb12c 2534
f43ffb60
ID
2535 leaf = path->nodes[0];
2536 slot = path->slots[0];
2537 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2538
ec44a35c
CM
2539 if (found_key.objectid != key.objectid)
2540 break;
7d9eb12c 2541
ec44a35c 2542 /* chunk zero is special */
ba1bf481 2543 if (found_key.offset == 0)
ec44a35c
CM
2544 break;
2545
f43ffb60
ID
2546 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2547
19a39dce
ID
2548 if (!counting) {
2549 spin_lock(&fs_info->balance_lock);
2550 bctl->stat.considered++;
2551 spin_unlock(&fs_info->balance_lock);
2552 }
2553
f43ffb60
ID
2554 ret = should_balance_chunk(chunk_root, leaf, chunk,
2555 found_key.offset);
b3b4aa74 2556 btrfs_release_path(path);
f43ffb60
ID
2557 if (!ret)
2558 goto loop;
2559
19a39dce
ID
2560 if (counting) {
2561 spin_lock(&fs_info->balance_lock);
2562 bctl->stat.expected++;
2563 spin_unlock(&fs_info->balance_lock);
2564 goto loop;
2565 }
2566
ec44a35c
CM
2567 ret = btrfs_relocate_chunk(chunk_root,
2568 chunk_root->root_key.objectid,
2569 found_key.objectid,
2570 found_key.offset);
508794eb
JB
2571 if (ret && ret != -ENOSPC)
2572 goto error;
19a39dce 2573 if (ret == -ENOSPC) {
c9e9f97b 2574 enospc_errors++;
19a39dce
ID
2575 } else {
2576 spin_lock(&fs_info->balance_lock);
2577 bctl->stat.completed++;
2578 spin_unlock(&fs_info->balance_lock);
2579 }
f43ffb60 2580loop:
ba1bf481 2581 key.offset = found_key.offset - 1;
ec44a35c 2582 }
c9e9f97b 2583
19a39dce
ID
2584 if (counting) {
2585 btrfs_release_path(path);
2586 counting = false;
2587 goto again;
2588 }
ec44a35c
CM
2589error:
2590 btrfs_free_path(path);
c9e9f97b
ID
2591 if (enospc_errors) {
2592 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2593 enospc_errors);
2594 if (!ret)
2595 ret = -ENOSPC;
2596 }
2597
ec44a35c
CM
2598 return ret;
2599}
2600
0c460c0d
ID
2601/**
2602 * alloc_profile_is_valid - see if a given profile is valid and reduced
2603 * @flags: profile to validate
2604 * @extended: if true @flags is treated as an extended profile
2605 */
2606static int alloc_profile_is_valid(u64 flags, int extended)
2607{
2608 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2609 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2610
2611 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2612
2613 /* 1) check that all other bits are zeroed */
2614 if (flags & ~mask)
2615 return 0;
2616
2617 /* 2) see if profile is reduced */
2618 if (flags == 0)
2619 return !extended; /* "0" is valid for usual profiles */
2620
2621 /* true if exactly one bit set */
2622 return (flags & (flags - 1)) == 0;
2623}
2624
837d5b6e
ID
2625static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2626{
a7e99c69
ID
2627 /* cancel requested || normal exit path */
2628 return atomic_read(&fs_info->balance_cancel_req) ||
2629 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2630 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2631}
2632
c9e9f97b
ID
2633static void __cancel_balance(struct btrfs_fs_info *fs_info)
2634{
0940ebf6
ID
2635 int ret;
2636
c9e9f97b 2637 unset_balance_control(fs_info);
0940ebf6
ID
2638 ret = del_balance_item(fs_info->tree_root);
2639 BUG_ON(ret);
c9e9f97b
ID
2640}
2641
19a39dce 2642void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2643 struct btrfs_ioctl_balance_args *bargs);
2644
2645/*
2646 * Should be called with both balance and volume mutexes held
2647 */
2648int btrfs_balance(struct btrfs_balance_control *bctl,
2649 struct btrfs_ioctl_balance_args *bargs)
2650{
2651 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2652 u64 allowed;
e4837f8f 2653 int mixed = 0;
c9e9f97b
ID
2654 int ret;
2655
837d5b6e 2656 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2657 atomic_read(&fs_info->balance_pause_req) ||
2658 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2659 ret = -EINVAL;
2660 goto out;
2661 }
2662
e4837f8f
ID
2663 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2664 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2665 mixed = 1;
2666
f43ffb60
ID
2667 /*
2668 * In case of mixed groups both data and meta should be picked,
2669 * and identical options should be given for both of them.
2670 */
e4837f8f
ID
2671 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2672 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2673 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2674 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2675 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2676 printk(KERN_ERR "btrfs: with mixed groups data and "
2677 "metadata balance options must be the same\n");
2678 ret = -EINVAL;
2679 goto out;
2680 }
2681 }
2682
e4d8ec0f
ID
2683 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2684 if (fs_info->fs_devices->num_devices == 1)
2685 allowed |= BTRFS_BLOCK_GROUP_DUP;
2686 else if (fs_info->fs_devices->num_devices < 4)
2687 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2688 else
2689 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2690 BTRFS_BLOCK_GROUP_RAID10);
2691
6728b198
ID
2692 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2693 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2694 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2695 printk(KERN_ERR "btrfs: unable to start balance with target "
2696 "data profile %llu\n",
2697 (unsigned long long)bctl->data.target);
2698 ret = -EINVAL;
2699 goto out;
2700 }
6728b198
ID
2701 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2702 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2703 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2704 printk(KERN_ERR "btrfs: unable to start balance with target "
2705 "metadata profile %llu\n",
2706 (unsigned long long)bctl->meta.target);
2707 ret = -EINVAL;
2708 goto out;
2709 }
6728b198
ID
2710 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2711 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2712 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2713 printk(KERN_ERR "btrfs: unable to start balance with target "
2714 "system profile %llu\n",
2715 (unsigned long long)bctl->sys.target);
2716 ret = -EINVAL;
2717 goto out;
2718 }
2719
e4837f8f
ID
2720 /* allow dup'ed data chunks only in mixed mode */
2721 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2722 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2723 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2724 ret = -EINVAL;
2725 goto out;
2726 }
2727
2728 /* allow to reduce meta or sys integrity only if force set */
2729 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2730 BTRFS_BLOCK_GROUP_RAID10;
2731 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2732 (fs_info->avail_system_alloc_bits & allowed) &&
2733 !(bctl->sys.target & allowed)) ||
2734 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2735 (fs_info->avail_metadata_alloc_bits & allowed) &&
2736 !(bctl->meta.target & allowed))) {
2737 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2738 printk(KERN_INFO "btrfs: force reducing metadata "
2739 "integrity\n");
2740 } else {
2741 printk(KERN_ERR "btrfs: balance will reduce metadata "
2742 "integrity, use force if you want this\n");
2743 ret = -EINVAL;
2744 goto out;
2745 }
2746 }
2747
0940ebf6 2748 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2749 if (ret && ret != -EEXIST)
0940ebf6
ID
2750 goto out;
2751
59641015
ID
2752 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2753 BUG_ON(ret == -EEXIST);
2754 set_balance_control(bctl);
2755 } else {
2756 BUG_ON(ret != -EEXIST);
2757 spin_lock(&fs_info->balance_lock);
2758 update_balance_args(bctl);
2759 spin_unlock(&fs_info->balance_lock);
2760 }
c9e9f97b 2761
837d5b6e 2762 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2763 mutex_unlock(&fs_info->balance_mutex);
2764
2765 ret = __btrfs_balance(fs_info);
2766
2767 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2768 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2769
2770 if (bargs) {
2771 memset(bargs, 0, sizeof(*bargs));
19a39dce 2772 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2773 }
2774
837d5b6e
ID
2775 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2776 balance_need_close(fs_info)) {
2777 __cancel_balance(fs_info);
2778 }
2779
2780 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2781
2782 return ret;
2783out:
59641015
ID
2784 if (bctl->flags & BTRFS_BALANCE_RESUME)
2785 __cancel_balance(fs_info);
2786 else
2787 kfree(bctl);
2788 return ret;
2789}
2790
2791static int balance_kthread(void *data)
2792{
2793 struct btrfs_balance_control *bctl =
2794 (struct btrfs_balance_control *)data;
2795 struct btrfs_fs_info *fs_info = bctl->fs_info;
9555c6c1 2796 int ret = 0;
59641015
ID
2797
2798 mutex_lock(&fs_info->volume_mutex);
2799 mutex_lock(&fs_info->balance_mutex);
2800
2801 set_balance_control(bctl);
2802
9555c6c1
ID
2803 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2804 printk(KERN_INFO "btrfs: force skipping balance\n");
2805 } else {
2806 printk(KERN_INFO "btrfs: continuing balance\n");
2807 ret = btrfs_balance(bctl, NULL);
2808 }
59641015
ID
2809
2810 mutex_unlock(&fs_info->balance_mutex);
2811 mutex_unlock(&fs_info->volume_mutex);
2812 return ret;
2813}
2814
2815int btrfs_recover_balance(struct btrfs_root *tree_root)
2816{
2817 struct task_struct *tsk;
2818 struct btrfs_balance_control *bctl;
2819 struct btrfs_balance_item *item;
2820 struct btrfs_disk_balance_args disk_bargs;
2821 struct btrfs_path *path;
2822 struct extent_buffer *leaf;
2823 struct btrfs_key key;
2824 int ret;
2825
2826 path = btrfs_alloc_path();
2827 if (!path)
2828 return -ENOMEM;
2829
2830 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2831 if (!bctl) {
2832 ret = -ENOMEM;
2833 goto out;
2834 }
2835
2836 key.objectid = BTRFS_BALANCE_OBJECTID;
2837 key.type = BTRFS_BALANCE_ITEM_KEY;
2838 key.offset = 0;
2839
2840 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2841 if (ret < 0)
2842 goto out_bctl;
2843 if (ret > 0) { /* ret = -ENOENT; */
2844 ret = 0;
2845 goto out_bctl;
2846 }
2847
2848 leaf = path->nodes[0];
2849 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2850
2851 bctl->fs_info = tree_root->fs_info;
2852 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2853
2854 btrfs_balance_data(leaf, item, &disk_bargs);
2855 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2856 btrfs_balance_meta(leaf, item, &disk_bargs);
2857 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2858 btrfs_balance_sys(leaf, item, &disk_bargs);
2859 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2860
2861 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2862 if (IS_ERR(tsk))
2863 ret = PTR_ERR(tsk);
2864 else
2865 goto out;
2866
2867out_bctl:
c9e9f97b 2868 kfree(bctl);
59641015
ID
2869out:
2870 btrfs_free_path(path);
ec44a35c
CM
2871 return ret;
2872}
2873
837d5b6e
ID
2874int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2875{
2876 int ret = 0;
2877
2878 mutex_lock(&fs_info->balance_mutex);
2879 if (!fs_info->balance_ctl) {
2880 mutex_unlock(&fs_info->balance_mutex);
2881 return -ENOTCONN;
2882 }
2883
2884 if (atomic_read(&fs_info->balance_running)) {
2885 atomic_inc(&fs_info->balance_pause_req);
2886 mutex_unlock(&fs_info->balance_mutex);
2887
2888 wait_event(fs_info->balance_wait_q,
2889 atomic_read(&fs_info->balance_running) == 0);
2890
2891 mutex_lock(&fs_info->balance_mutex);
2892 /* we are good with balance_ctl ripped off from under us */
2893 BUG_ON(atomic_read(&fs_info->balance_running));
2894 atomic_dec(&fs_info->balance_pause_req);
2895 } else {
2896 ret = -ENOTCONN;
2897 }
2898
2899 mutex_unlock(&fs_info->balance_mutex);
2900 return ret;
2901}
2902
a7e99c69
ID
2903int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2904{
2905 mutex_lock(&fs_info->balance_mutex);
2906 if (!fs_info->balance_ctl) {
2907 mutex_unlock(&fs_info->balance_mutex);
2908 return -ENOTCONN;
2909 }
2910
2911 atomic_inc(&fs_info->balance_cancel_req);
2912 /*
2913 * if we are running just wait and return, balance item is
2914 * deleted in btrfs_balance in this case
2915 */
2916 if (atomic_read(&fs_info->balance_running)) {
2917 mutex_unlock(&fs_info->balance_mutex);
2918 wait_event(fs_info->balance_wait_q,
2919 atomic_read(&fs_info->balance_running) == 0);
2920 mutex_lock(&fs_info->balance_mutex);
2921 } else {
2922 /* __cancel_balance needs volume_mutex */
2923 mutex_unlock(&fs_info->balance_mutex);
2924 mutex_lock(&fs_info->volume_mutex);
2925 mutex_lock(&fs_info->balance_mutex);
2926
2927 if (fs_info->balance_ctl)
2928 __cancel_balance(fs_info);
2929
2930 mutex_unlock(&fs_info->volume_mutex);
2931 }
2932
2933 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2934 atomic_dec(&fs_info->balance_cancel_req);
2935 mutex_unlock(&fs_info->balance_mutex);
2936 return 0;
2937}
2938
8f18cf13
CM
2939/*
2940 * shrinking a device means finding all of the device extents past
2941 * the new size, and then following the back refs to the chunks.
2942 * The chunk relocation code actually frees the device extent
2943 */
2944int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2945{
2946 struct btrfs_trans_handle *trans;
2947 struct btrfs_root *root = device->dev_root;
2948 struct btrfs_dev_extent *dev_extent = NULL;
2949 struct btrfs_path *path;
2950 u64 length;
2951 u64 chunk_tree;
2952 u64 chunk_objectid;
2953 u64 chunk_offset;
2954 int ret;
2955 int slot;
ba1bf481
JB
2956 int failed = 0;
2957 bool retried = false;
8f18cf13
CM
2958 struct extent_buffer *l;
2959 struct btrfs_key key;
6c41761f 2960 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 2961 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2962 u64 old_size = device->total_bytes;
8f18cf13
CM
2963 u64 diff = device->total_bytes - new_size;
2964
2b82032c
YZ
2965 if (new_size >= device->total_bytes)
2966 return -EINVAL;
8f18cf13
CM
2967
2968 path = btrfs_alloc_path();
2969 if (!path)
2970 return -ENOMEM;
2971
8f18cf13
CM
2972 path->reada = 2;
2973
7d9eb12c
CM
2974 lock_chunks(root);
2975
8f18cf13 2976 device->total_bytes = new_size;
2bf64758 2977 if (device->writeable) {
2b82032c 2978 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
2979 spin_lock(&root->fs_info->free_chunk_lock);
2980 root->fs_info->free_chunk_space -= diff;
2981 spin_unlock(&root->fs_info->free_chunk_lock);
2982 }
7d9eb12c 2983 unlock_chunks(root);
8f18cf13 2984
ba1bf481 2985again:
8f18cf13
CM
2986 key.objectid = device->devid;
2987 key.offset = (u64)-1;
2988 key.type = BTRFS_DEV_EXTENT_KEY;
2989
2990 while (1) {
2991 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2992 if (ret < 0)
2993 goto done;
2994
2995 ret = btrfs_previous_item(root, path, 0, key.type);
2996 if (ret < 0)
2997 goto done;
2998 if (ret) {
2999 ret = 0;
b3b4aa74 3000 btrfs_release_path(path);
bf1fb512 3001 break;
8f18cf13
CM
3002 }
3003
3004 l = path->nodes[0];
3005 slot = path->slots[0];
3006 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3007
ba1bf481 3008 if (key.objectid != device->devid) {
b3b4aa74 3009 btrfs_release_path(path);
bf1fb512 3010 break;
ba1bf481 3011 }
8f18cf13
CM
3012
3013 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3014 length = btrfs_dev_extent_length(l, dev_extent);
3015
ba1bf481 3016 if (key.offset + length <= new_size) {
b3b4aa74 3017 btrfs_release_path(path);
d6397bae 3018 break;
ba1bf481 3019 }
8f18cf13
CM
3020
3021 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3022 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3023 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3024 btrfs_release_path(path);
8f18cf13
CM
3025
3026 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3027 chunk_offset);
ba1bf481 3028 if (ret && ret != -ENOSPC)
8f18cf13 3029 goto done;
ba1bf481
JB
3030 if (ret == -ENOSPC)
3031 failed++;
3032 key.offset -= 1;
3033 }
3034
3035 if (failed && !retried) {
3036 failed = 0;
3037 retried = true;
3038 goto again;
3039 } else if (failed && retried) {
3040 ret = -ENOSPC;
3041 lock_chunks(root);
3042
3043 device->total_bytes = old_size;
3044 if (device->writeable)
3045 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3046 spin_lock(&root->fs_info->free_chunk_lock);
3047 root->fs_info->free_chunk_space += diff;
3048 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3049 unlock_chunks(root);
3050 goto done;
8f18cf13
CM
3051 }
3052
d6397bae 3053 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3054 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3055 if (IS_ERR(trans)) {
3056 ret = PTR_ERR(trans);
3057 goto done;
3058 }
3059
d6397bae
CB
3060 lock_chunks(root);
3061
3062 device->disk_total_bytes = new_size;
3063 /* Now btrfs_update_device() will change the on-disk size. */
3064 ret = btrfs_update_device(trans, device);
3065 if (ret) {
3066 unlock_chunks(root);
3067 btrfs_end_transaction(trans, root);
3068 goto done;
3069 }
3070 WARN_ON(diff > old_total);
3071 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3072 unlock_chunks(root);
3073 btrfs_end_transaction(trans, root);
8f18cf13
CM
3074done:
3075 btrfs_free_path(path);
3076 return ret;
3077}
3078
125ccb0a 3079static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3080 struct btrfs_key *key,
3081 struct btrfs_chunk *chunk, int item_size)
3082{
6c41761f 3083 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3084 struct btrfs_disk_key disk_key;
3085 u32 array_size;
3086 u8 *ptr;
3087
3088 array_size = btrfs_super_sys_array_size(super_copy);
3089 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3090 return -EFBIG;
3091
3092 ptr = super_copy->sys_chunk_array + array_size;
3093 btrfs_cpu_key_to_disk(&disk_key, key);
3094 memcpy(ptr, &disk_key, sizeof(disk_key));
3095 ptr += sizeof(disk_key);
3096 memcpy(ptr, chunk, item_size);
3097 item_size += sizeof(disk_key);
3098 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3099 return 0;
3100}
3101
73c5de00
AJ
3102/*
3103 * sort the devices in descending order by max_avail, total_avail
3104 */
3105static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3106{
73c5de00
AJ
3107 const struct btrfs_device_info *di_a = a;
3108 const struct btrfs_device_info *di_b = b;
9b3f68b9 3109
73c5de00 3110 if (di_a->max_avail > di_b->max_avail)
b2117a39 3111 return -1;
73c5de00 3112 if (di_a->max_avail < di_b->max_avail)
b2117a39 3113 return 1;
73c5de00
AJ
3114 if (di_a->total_avail > di_b->total_avail)
3115 return -1;
3116 if (di_a->total_avail < di_b->total_avail)
3117 return 1;
3118 return 0;
b2117a39 3119}
0b86a832 3120
73c5de00
AJ
3121static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3122 struct btrfs_root *extent_root,
3123 struct map_lookup **map_ret,
3124 u64 *num_bytes_out, u64 *stripe_size_out,
3125 u64 start, u64 type)
b2117a39 3126{
73c5de00
AJ
3127 struct btrfs_fs_info *info = extent_root->fs_info;
3128 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3129 struct list_head *cur;
3130 struct map_lookup *map = NULL;
3131 struct extent_map_tree *em_tree;
3132 struct extent_map *em;
3133 struct btrfs_device_info *devices_info = NULL;
3134 u64 total_avail;
3135 int num_stripes; /* total number of stripes to allocate */
3136 int sub_stripes; /* sub_stripes info for map */
3137 int dev_stripes; /* stripes per dev */
3138 int devs_max; /* max devs to use */
3139 int devs_min; /* min devs needed */
3140 int devs_increment; /* ndevs has to be a multiple of this */
3141 int ncopies; /* how many copies to data has */
3142 int ret;
3143 u64 max_stripe_size;
3144 u64 max_chunk_size;
3145 u64 stripe_size;
3146 u64 num_bytes;
3147 int ndevs;
3148 int i;
3149 int j;
593060d7 3150
0c460c0d 3151 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3152
73c5de00
AJ
3153 if (list_empty(&fs_devices->alloc_list))
3154 return -ENOSPC;
b2117a39 3155
73c5de00
AJ
3156 sub_stripes = 1;
3157 dev_stripes = 1;
3158 devs_increment = 1;
3159 ncopies = 1;
3160 devs_max = 0; /* 0 == as many as possible */
3161 devs_min = 1;
3162
3163 /*
3164 * define the properties of each RAID type.
3165 * FIXME: move this to a global table and use it in all RAID
3166 * calculation code
3167 */
3168 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3169 dev_stripes = 2;
b2117a39 3170 ncopies = 2;
73c5de00
AJ
3171 devs_max = 1;
3172 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3173 devs_min = 2;
3174 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3175 devs_increment = 2;
b2117a39 3176 ncopies = 2;
73c5de00
AJ
3177 devs_max = 2;
3178 devs_min = 2;
3179 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3180 sub_stripes = 2;
3181 devs_increment = 2;
3182 ncopies = 2;
3183 devs_min = 4;
3184 } else {
3185 devs_max = 1;
3186 }
b2117a39 3187
9b3f68b9 3188 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3189 max_stripe_size = 1024 * 1024 * 1024;
3190 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3191 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3192 /* for larger filesystems, use larger metadata chunks */
3193 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3194 max_stripe_size = 1024 * 1024 * 1024;
3195 else
3196 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3197 max_chunk_size = max_stripe_size;
a40a90a0 3198 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3199 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3200 max_chunk_size = 2 * max_stripe_size;
3201 } else {
3202 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3203 type);
3204 BUG_ON(1);
9b3f68b9
CM
3205 }
3206
2b82032c
YZ
3207 /* we don't want a chunk larger than 10% of writeable space */
3208 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3209 max_chunk_size);
9b3f68b9 3210
73c5de00
AJ
3211 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3212 GFP_NOFS);
3213 if (!devices_info)
3214 return -ENOMEM;
0cad8a11 3215
73c5de00 3216 cur = fs_devices->alloc_list.next;
9b3f68b9 3217
9f680ce0 3218 /*
73c5de00
AJ
3219 * in the first pass through the devices list, we gather information
3220 * about the available holes on each device.
9f680ce0 3221 */
73c5de00
AJ
3222 ndevs = 0;
3223 while (cur != &fs_devices->alloc_list) {
3224 struct btrfs_device *device;
3225 u64 max_avail;
3226 u64 dev_offset;
b2117a39 3227
73c5de00 3228 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3229
73c5de00 3230 cur = cur->next;
b2117a39 3231
73c5de00
AJ
3232 if (!device->writeable) {
3233 printk(KERN_ERR
3234 "btrfs: read-only device in alloc_list\n");
3235 WARN_ON(1);
3236 continue;
3237 }
b2117a39 3238
73c5de00
AJ
3239 if (!device->in_fs_metadata)
3240 continue;
b2117a39 3241
73c5de00
AJ
3242 if (device->total_bytes > device->bytes_used)
3243 total_avail = device->total_bytes - device->bytes_used;
3244 else
3245 total_avail = 0;
38c01b96 3246
3247 /* If there is no space on this device, skip it. */
3248 if (total_avail == 0)
3249 continue;
b2117a39 3250
125ccb0a 3251 ret = find_free_dev_extent(device,
73c5de00
AJ
3252 max_stripe_size * dev_stripes,
3253 &dev_offset, &max_avail);
3254 if (ret && ret != -ENOSPC)
3255 goto error;
b2117a39 3256
73c5de00
AJ
3257 if (ret == 0)
3258 max_avail = max_stripe_size * dev_stripes;
b2117a39 3259
73c5de00
AJ
3260 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3261 continue;
b2117a39 3262
73c5de00
AJ
3263 devices_info[ndevs].dev_offset = dev_offset;
3264 devices_info[ndevs].max_avail = max_avail;
3265 devices_info[ndevs].total_avail = total_avail;
3266 devices_info[ndevs].dev = device;
3267 ++ndevs;
3268 }
b2117a39 3269
73c5de00
AJ
3270 /*
3271 * now sort the devices by hole size / available space
3272 */
3273 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3274 btrfs_cmp_device_info, NULL);
b2117a39 3275
73c5de00
AJ
3276 /* round down to number of usable stripes */
3277 ndevs -= ndevs % devs_increment;
b2117a39 3278
73c5de00
AJ
3279 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3280 ret = -ENOSPC;
3281 goto error;
b2117a39 3282 }
9f680ce0 3283
73c5de00
AJ
3284 if (devs_max && ndevs > devs_max)
3285 ndevs = devs_max;
3286 /*
3287 * the primary goal is to maximize the number of stripes, so use as many
3288 * devices as possible, even if the stripes are not maximum sized.
3289 */
3290 stripe_size = devices_info[ndevs-1].max_avail;
3291 num_stripes = ndevs * dev_stripes;
b2117a39 3292
73c5de00
AJ
3293 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3294 stripe_size = max_chunk_size * ncopies;
3295 do_div(stripe_size, num_stripes);
b2117a39 3296 }
b2117a39 3297
73c5de00
AJ
3298 do_div(stripe_size, dev_stripes);
3299 do_div(stripe_size, BTRFS_STRIPE_LEN);
3300 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3301
3302 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3303 if (!map) {
3304 ret = -ENOMEM;
3305 goto error;
3306 }
3307 map->num_stripes = num_stripes;
9b3f68b9 3308
73c5de00
AJ
3309 for (i = 0; i < ndevs; ++i) {
3310 for (j = 0; j < dev_stripes; ++j) {
3311 int s = i * dev_stripes + j;
3312 map->stripes[s].dev = devices_info[i].dev;
3313 map->stripes[s].physical = devices_info[i].dev_offset +
3314 j * stripe_size;
6324fbf3 3315 }
6324fbf3 3316 }
2b82032c 3317 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3318 map->stripe_len = BTRFS_STRIPE_LEN;
3319 map->io_align = BTRFS_STRIPE_LEN;
3320 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3321 map->type = type;
2b82032c 3322 map->sub_stripes = sub_stripes;
0b86a832 3323
2b82032c 3324 *map_ret = map;
73c5de00 3325 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3326
73c5de00
AJ
3327 *stripe_size_out = stripe_size;
3328 *num_bytes_out = num_bytes;
0b86a832 3329
73c5de00 3330 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3331
172ddd60 3332 em = alloc_extent_map();
2b82032c 3333 if (!em) {
b2117a39
MX
3334 ret = -ENOMEM;
3335 goto error;
593060d7 3336 }
2b82032c
YZ
3337 em->bdev = (struct block_device *)map;
3338 em->start = start;
73c5de00 3339 em->len = num_bytes;
2b82032c
YZ
3340 em->block_start = 0;
3341 em->block_len = em->len;
593060d7 3342
2b82032c 3343 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3344 write_lock(&em_tree->lock);
2b82032c 3345 ret = add_extent_mapping(em_tree, em);
890871be 3346 write_unlock(&em_tree->lock);
2b82032c
YZ
3347 BUG_ON(ret);
3348 free_extent_map(em);
0b86a832 3349
2b82032c
YZ
3350 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3351 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3352 start, num_bytes);
2b82032c 3353 BUG_ON(ret);
611f0e00 3354
73c5de00
AJ
3355 for (i = 0; i < map->num_stripes; ++i) {
3356 struct btrfs_device *device;
3357 u64 dev_offset;
3358
3359 device = map->stripes[i].dev;
3360 dev_offset = map->stripes[i].physical;
0b86a832
CM
3361
3362 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3363 info->chunk_root->root_key.objectid,
3364 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3365 start, dev_offset, stripe_size);
0b86a832 3366 BUG_ON(ret);
2b82032c
YZ
3367 }
3368
b2117a39 3369 kfree(devices_info);
2b82032c 3370 return 0;
b2117a39
MX
3371
3372error:
3373 kfree(map);
3374 kfree(devices_info);
3375 return ret;
2b82032c
YZ
3376}
3377
3378static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3379 struct btrfs_root *extent_root,
3380 struct map_lookup *map, u64 chunk_offset,
3381 u64 chunk_size, u64 stripe_size)
3382{
3383 u64 dev_offset;
3384 struct btrfs_key key;
3385 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3386 struct btrfs_device *device;
3387 struct btrfs_chunk *chunk;
3388 struct btrfs_stripe *stripe;
3389 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3390 int index = 0;
3391 int ret;
3392
3393 chunk = kzalloc(item_size, GFP_NOFS);
3394 if (!chunk)
3395 return -ENOMEM;
3396
3397 index = 0;
3398 while (index < map->num_stripes) {
3399 device = map->stripes[index].dev;
3400 device->bytes_used += stripe_size;
0b86a832
CM
3401 ret = btrfs_update_device(trans, device);
3402 BUG_ON(ret);
2b82032c
YZ
3403 index++;
3404 }
3405
2bf64758
JB
3406 spin_lock(&extent_root->fs_info->free_chunk_lock);
3407 extent_root->fs_info->free_chunk_space -= (stripe_size *
3408 map->num_stripes);
3409 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3410
2b82032c
YZ
3411 index = 0;
3412 stripe = &chunk->stripe;
3413 while (index < map->num_stripes) {
3414 device = map->stripes[index].dev;
3415 dev_offset = map->stripes[index].physical;
0b86a832 3416
e17cade2
CM
3417 btrfs_set_stack_stripe_devid(stripe, device->devid);
3418 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3419 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3420 stripe++;
0b86a832
CM
3421 index++;
3422 }
3423
2b82032c 3424 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3425 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3426 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3427 btrfs_set_stack_chunk_type(chunk, map->type);
3428 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3429 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3430 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3431 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3432 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3433
2b82032c
YZ
3434 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3435 key.type = BTRFS_CHUNK_ITEM_KEY;
3436 key.offset = chunk_offset;
0b86a832 3437
2b82032c
YZ
3438 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3439 BUG_ON(ret);
0b86a832 3440
2b82032c 3441 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
125ccb0a 3442 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3443 item_size);
8f18cf13
CM
3444 BUG_ON(ret);
3445 }
1abe9b8a 3446
0b86a832 3447 kfree(chunk);
2b82032c
YZ
3448 return 0;
3449}
0b86a832 3450
2b82032c
YZ
3451/*
3452 * Chunk allocation falls into two parts. The first part does works
3453 * that make the new allocated chunk useable, but not do any operation
3454 * that modifies the chunk tree. The second part does the works that
3455 * require modifying the chunk tree. This division is important for the
3456 * bootstrap process of adding storage to a seed btrfs.
3457 */
3458int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3459 struct btrfs_root *extent_root, u64 type)
3460{
3461 u64 chunk_offset;
3462 u64 chunk_size;
3463 u64 stripe_size;
3464 struct map_lookup *map;
3465 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3466 int ret;
3467
3468 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3469 &chunk_offset);
3470 if (ret)
3471 return ret;
3472
3473 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3474 &stripe_size, chunk_offset, type);
3475 if (ret)
3476 return ret;
3477
3478 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3479 chunk_size, stripe_size);
3480 BUG_ON(ret);
3481 return 0;
3482}
3483
d397712b 3484static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3485 struct btrfs_root *root,
3486 struct btrfs_device *device)
3487{
3488 u64 chunk_offset;
3489 u64 sys_chunk_offset;
3490 u64 chunk_size;
3491 u64 sys_chunk_size;
3492 u64 stripe_size;
3493 u64 sys_stripe_size;
3494 u64 alloc_profile;
3495 struct map_lookup *map;
3496 struct map_lookup *sys_map;
3497 struct btrfs_fs_info *fs_info = root->fs_info;
3498 struct btrfs_root *extent_root = fs_info->extent_root;
3499 int ret;
3500
3501 ret = find_next_chunk(fs_info->chunk_root,
3502 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3503 if (ret)
3504 return ret;
2b82032c
YZ
3505
3506 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3507 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3508 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3509
3510 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3511 &stripe_size, chunk_offset, alloc_profile);
3512 BUG_ON(ret);
3513
3514 sys_chunk_offset = chunk_offset + chunk_size;
3515
3516 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3517 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3518 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3519
3520 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3521 &sys_chunk_size, &sys_stripe_size,
3522 sys_chunk_offset, alloc_profile);
3523 BUG_ON(ret);
3524
3525 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3526 BUG_ON(ret);
3527
3528 /*
3529 * Modifying chunk tree needs allocating new blocks from both
3530 * system block group and metadata block group. So we only can
3531 * do operations require modifying the chunk tree after both
3532 * block groups were created.
3533 */
3534 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3535 chunk_size, stripe_size);
3536 BUG_ON(ret);
3537
3538 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3539 sys_chunk_offset, sys_chunk_size,
3540 sys_stripe_size);
b248a415 3541 BUG_ON(ret);
2b82032c
YZ
3542 return 0;
3543}
3544
3545int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3546{
3547 struct extent_map *em;
3548 struct map_lookup *map;
3549 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3550 int readonly = 0;
3551 int i;
3552
890871be 3553 read_lock(&map_tree->map_tree.lock);
2b82032c 3554 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3555 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3556 if (!em)
3557 return 1;
3558
f48b9075
JB
3559 if (btrfs_test_opt(root, DEGRADED)) {
3560 free_extent_map(em);
3561 return 0;
3562 }
3563
2b82032c
YZ
3564 map = (struct map_lookup *)em->bdev;
3565 for (i = 0; i < map->num_stripes; i++) {
3566 if (!map->stripes[i].dev->writeable) {
3567 readonly = 1;
3568 break;
3569 }
3570 }
0b86a832 3571 free_extent_map(em);
2b82032c 3572 return readonly;
0b86a832
CM
3573}
3574
3575void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3576{
a8067e02 3577 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3578}
3579
3580void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3581{
3582 struct extent_map *em;
3583
d397712b 3584 while (1) {
890871be 3585 write_lock(&tree->map_tree.lock);
0b86a832
CM
3586 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3587 if (em)
3588 remove_extent_mapping(&tree->map_tree, em);
890871be 3589 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3590 if (!em)
3591 break;
3592 kfree(em->bdev);
3593 /* once for us */
3594 free_extent_map(em);
3595 /* once for the tree */
3596 free_extent_map(em);
3597 }
3598}
3599
f188591e
CM
3600int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3601{
3602 struct extent_map *em;
3603 struct map_lookup *map;
3604 struct extent_map_tree *em_tree = &map_tree->map_tree;
3605 int ret;
3606
890871be 3607 read_lock(&em_tree->lock);
f188591e 3608 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3609 read_unlock(&em_tree->lock);
f188591e
CM
3610 BUG_ON(!em);
3611
3612 BUG_ON(em->start > logical || em->start + em->len < logical);
3613 map = (struct map_lookup *)em->bdev;
3614 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3615 ret = map->num_stripes;
321aecc6
CM
3616 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3617 ret = map->sub_stripes;
f188591e
CM
3618 else
3619 ret = 1;
3620 free_extent_map(em);
f188591e
CM
3621 return ret;
3622}
3623
dfe25020
CM
3624static int find_live_mirror(struct map_lookup *map, int first, int num,
3625 int optimal)
3626{
3627 int i;
3628 if (map->stripes[optimal].dev->bdev)
3629 return optimal;
3630 for (i = first; i < first + num; i++) {
3631 if (map->stripes[i].dev->bdev)
3632 return i;
3633 }
3634 /* we couldn't find one that doesn't fail. Just return something
3635 * and the io error handling code will clean up eventually
3636 */
3637 return optimal;
3638}
3639
f2d8d74d
CM
3640static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3641 u64 logical, u64 *length,
a1d3c478 3642 struct btrfs_bio **bbio_ret,
7eaceacc 3643 int mirror_num)
0b86a832
CM
3644{
3645 struct extent_map *em;
3646 struct map_lookup *map;
3647 struct extent_map_tree *em_tree = &map_tree->map_tree;
3648 u64 offset;
593060d7 3649 u64 stripe_offset;
fce3bb9a 3650 u64 stripe_end_offset;
593060d7 3651 u64 stripe_nr;
fce3bb9a
LD
3652 u64 stripe_nr_orig;
3653 u64 stripe_nr_end;
593060d7 3654 int stripe_index;
cea9e445 3655 int i;
de11cc12 3656 int ret = 0;
f2d8d74d 3657 int num_stripes;
a236aed1 3658 int max_errors = 0;
a1d3c478 3659 struct btrfs_bio *bbio = NULL;
0b86a832 3660
890871be 3661 read_lock(&em_tree->lock);
0b86a832 3662 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3663 read_unlock(&em_tree->lock);
f2d8d74d 3664
3b951516 3665 if (!em) {
d397712b
CM
3666 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3667 (unsigned long long)logical,
3668 (unsigned long long)*length);
f2d8d74d 3669 BUG();
3b951516 3670 }
0b86a832
CM
3671
3672 BUG_ON(em->start > logical || em->start + em->len < logical);
3673 map = (struct map_lookup *)em->bdev;
3674 offset = logical - em->start;
593060d7 3675
f188591e
CM
3676 if (mirror_num > map->num_stripes)
3677 mirror_num = 0;
3678
593060d7
CM
3679 stripe_nr = offset;
3680 /*
3681 * stripe_nr counts the total number of stripes we have to stride
3682 * to get to this block
3683 */
3684 do_div(stripe_nr, map->stripe_len);
3685
3686 stripe_offset = stripe_nr * map->stripe_len;
3687 BUG_ON(offset < stripe_offset);
3688
3689 /* stripe_offset is the offset of this block in its stripe*/
3690 stripe_offset = offset - stripe_offset;
3691
fce3bb9a
LD
3692 if (rw & REQ_DISCARD)
3693 *length = min_t(u64, em->len - offset, *length);
52ba6929 3694 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3695 /* we limit the length of each bio to what fits in a stripe */
3696 *length = min_t(u64, em->len - offset,
fce3bb9a 3697 map->stripe_len - stripe_offset);
cea9e445
CM
3698 } else {
3699 *length = em->len - offset;
3700 }
f2d8d74d 3701
a1d3c478 3702 if (!bbio_ret)
cea9e445
CM
3703 goto out;
3704
f2d8d74d 3705 num_stripes = 1;
cea9e445 3706 stripe_index = 0;
fce3bb9a
LD
3707 stripe_nr_orig = stripe_nr;
3708 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3709 (~(map->stripe_len - 1));
3710 do_div(stripe_nr_end, map->stripe_len);
3711 stripe_end_offset = stripe_nr_end * map->stripe_len -
3712 (offset + *length);
3713 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3714 if (rw & REQ_DISCARD)
3715 num_stripes = min_t(u64, map->num_stripes,
3716 stripe_nr_end - stripe_nr_orig);
3717 stripe_index = do_div(stripe_nr, map->num_stripes);
3718 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3719 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3720 num_stripes = map->num_stripes;
2fff734f 3721 else if (mirror_num)
f188591e 3722 stripe_index = mirror_num - 1;
dfe25020
CM
3723 else {
3724 stripe_index = find_live_mirror(map, 0,
3725 map->num_stripes,
3726 current->pid % map->num_stripes);
a1d3c478 3727 mirror_num = stripe_index + 1;
dfe25020 3728 }
2fff734f 3729
611f0e00 3730 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3731 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3732 num_stripes = map->num_stripes;
a1d3c478 3733 } else if (mirror_num) {
f188591e 3734 stripe_index = mirror_num - 1;
a1d3c478
JS
3735 } else {
3736 mirror_num = 1;
3737 }
2fff734f 3738
321aecc6
CM
3739 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3740 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3741
3742 stripe_index = do_div(stripe_nr, factor);
3743 stripe_index *= map->sub_stripes;
3744
7eaceacc 3745 if (rw & REQ_WRITE)
f2d8d74d 3746 num_stripes = map->sub_stripes;
fce3bb9a
LD
3747 else if (rw & REQ_DISCARD)
3748 num_stripes = min_t(u64, map->sub_stripes *
3749 (stripe_nr_end - stripe_nr_orig),
3750 map->num_stripes);
321aecc6
CM
3751 else if (mirror_num)
3752 stripe_index += mirror_num - 1;
dfe25020
CM
3753 else {
3754 stripe_index = find_live_mirror(map, stripe_index,
3755 map->sub_stripes, stripe_index +
3756 current->pid % map->sub_stripes);
a1d3c478 3757 mirror_num = stripe_index + 1;
dfe25020 3758 }
8790d502
CM
3759 } else {
3760 /*
3761 * after this do_div call, stripe_nr is the number of stripes
3762 * on this device we have to walk to find the data, and
3763 * stripe_index is the number of our device in the stripe array
3764 */
3765 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3766 mirror_num = stripe_index + 1;
8790d502 3767 }
593060d7 3768 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3769
de11cc12
LZ
3770 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3771 if (!bbio) {
3772 ret = -ENOMEM;
3773 goto out;
3774 }
3775 atomic_set(&bbio->error, 0);
3776
fce3bb9a 3777 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3778 int factor = 0;
3779 int sub_stripes = 0;
3780 u64 stripes_per_dev = 0;
3781 u32 remaining_stripes = 0;
3782
3783 if (map->type &
3784 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3785 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3786 sub_stripes = 1;
3787 else
3788 sub_stripes = map->sub_stripes;
3789
3790 factor = map->num_stripes / sub_stripes;
3791 stripes_per_dev = div_u64_rem(stripe_nr_end -
3792 stripe_nr_orig,
3793 factor,
3794 &remaining_stripes);
3795 }
3796
fce3bb9a 3797 for (i = 0; i < num_stripes; i++) {
a1d3c478 3798 bbio->stripes[i].physical =
f2d8d74d
CM
3799 map->stripes[stripe_index].physical +
3800 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3801 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3802
ec9ef7a1
LZ
3803 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3804 BTRFS_BLOCK_GROUP_RAID10)) {
3805 bbio->stripes[i].length = stripes_per_dev *
3806 map->stripe_len;
3807 if (i / sub_stripes < remaining_stripes)
3808 bbio->stripes[i].length +=
3809 map->stripe_len;
3810 if (i < sub_stripes)
a1d3c478 3811 bbio->stripes[i].length -=
fce3bb9a 3812 stripe_offset;
ec9ef7a1
LZ
3813 if ((i / sub_stripes + 1) %
3814 sub_stripes == remaining_stripes)
a1d3c478 3815 bbio->stripes[i].length -=
fce3bb9a 3816 stripe_end_offset;
ec9ef7a1
LZ
3817 if (i == sub_stripes - 1)
3818 stripe_offset = 0;
fce3bb9a 3819 } else
a1d3c478 3820 bbio->stripes[i].length = *length;
fce3bb9a
LD
3821
3822 stripe_index++;
3823 if (stripe_index == map->num_stripes) {
3824 /* This could only happen for RAID0/10 */
3825 stripe_index = 0;
3826 stripe_nr++;
3827 }
3828 }
3829 } else {
3830 for (i = 0; i < num_stripes; i++) {
a1d3c478 3831 bbio->stripes[i].physical =
212a17ab
LT
3832 map->stripes[stripe_index].physical +
3833 stripe_offset +
3834 stripe_nr * map->stripe_len;
a1d3c478 3835 bbio->stripes[i].dev =
212a17ab 3836 map->stripes[stripe_index].dev;
fce3bb9a 3837 stripe_index++;
f2d8d74d 3838 }
593060d7 3839 }
de11cc12
LZ
3840
3841 if (rw & REQ_WRITE) {
3842 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3843 BTRFS_BLOCK_GROUP_RAID10 |
3844 BTRFS_BLOCK_GROUP_DUP)) {
3845 max_errors = 1;
3846 }
f2d8d74d 3847 }
de11cc12
LZ
3848
3849 *bbio_ret = bbio;
3850 bbio->num_stripes = num_stripes;
3851 bbio->max_errors = max_errors;
3852 bbio->mirror_num = mirror_num;
cea9e445 3853out:
0b86a832 3854 free_extent_map(em);
de11cc12 3855 return ret;
0b86a832
CM
3856}
3857
f2d8d74d
CM
3858int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3859 u64 logical, u64 *length,
a1d3c478 3860 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3861{
a1d3c478 3862 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3863 mirror_num);
f2d8d74d
CM
3864}
3865
a512bbf8
YZ
3866int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3867 u64 chunk_start, u64 physical, u64 devid,
3868 u64 **logical, int *naddrs, int *stripe_len)
3869{
3870 struct extent_map_tree *em_tree = &map_tree->map_tree;
3871 struct extent_map *em;
3872 struct map_lookup *map;
3873 u64 *buf;
3874 u64 bytenr;
3875 u64 length;
3876 u64 stripe_nr;
3877 int i, j, nr = 0;
3878
890871be 3879 read_lock(&em_tree->lock);
a512bbf8 3880 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3881 read_unlock(&em_tree->lock);
a512bbf8
YZ
3882
3883 BUG_ON(!em || em->start != chunk_start);
3884 map = (struct map_lookup *)em->bdev;
3885
3886 length = em->len;
3887 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3888 do_div(length, map->num_stripes / map->sub_stripes);
3889 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3890 do_div(length, map->num_stripes);
3891
3892 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3893 BUG_ON(!buf);
3894
3895 for (i = 0; i < map->num_stripes; i++) {
3896 if (devid && map->stripes[i].dev->devid != devid)
3897 continue;
3898 if (map->stripes[i].physical > physical ||
3899 map->stripes[i].physical + length <= physical)
3900 continue;
3901
3902 stripe_nr = physical - map->stripes[i].physical;
3903 do_div(stripe_nr, map->stripe_len);
3904
3905 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3906 stripe_nr = stripe_nr * map->num_stripes + i;
3907 do_div(stripe_nr, map->sub_stripes);
3908 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3909 stripe_nr = stripe_nr * map->num_stripes + i;
3910 }
3911 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3912 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3913 for (j = 0; j < nr; j++) {
3914 if (buf[j] == bytenr)
3915 break;
3916 }
934d375b
CM
3917 if (j == nr) {
3918 WARN_ON(nr >= map->num_stripes);
a512bbf8 3919 buf[nr++] = bytenr;
934d375b 3920 }
a512bbf8
YZ
3921 }
3922
a512bbf8
YZ
3923 *logical = buf;
3924 *naddrs = nr;
3925 *stripe_len = map->stripe_len;
3926
3927 free_extent_map(em);
3928 return 0;
f2d8d74d
CM
3929}
3930
a1d3c478 3931static void btrfs_end_bio(struct bio *bio, int err)
8790d502 3932{
a1d3c478 3933 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 3934 int is_orig_bio = 0;
8790d502 3935
8790d502 3936 if (err)
a1d3c478 3937 atomic_inc(&bbio->error);
8790d502 3938
a1d3c478 3939 if (bio == bbio->orig_bio)
7d2b4daa
CM
3940 is_orig_bio = 1;
3941
a1d3c478 3942 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
3943 if (!is_orig_bio) {
3944 bio_put(bio);
a1d3c478 3945 bio = bbio->orig_bio;
7d2b4daa 3946 }
a1d3c478
JS
3947 bio->bi_private = bbio->private;
3948 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
3949 bio->bi_bdev = (struct block_device *)
3950 (unsigned long)bbio->mirror_num;
a236aed1
CM
3951 /* only send an error to the higher layers if it is
3952 * beyond the tolerance of the multi-bio
3953 */
a1d3c478 3954 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 3955 err = -EIO;
5dbc8fca 3956 } else {
1259ab75
CM
3957 /*
3958 * this bio is actually up to date, we didn't
3959 * go over the max number of errors
3960 */
3961 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3962 err = 0;
1259ab75 3963 }
a1d3c478 3964 kfree(bbio);
8790d502
CM
3965
3966 bio_endio(bio, err);
7d2b4daa 3967 } else if (!is_orig_bio) {
8790d502
CM
3968 bio_put(bio);
3969 }
8790d502
CM
3970}
3971
8b712842
CM
3972struct async_sched {
3973 struct bio *bio;
3974 int rw;
3975 struct btrfs_fs_info *info;
3976 struct btrfs_work work;
3977};
3978
3979/*
3980 * see run_scheduled_bios for a description of why bios are collected for
3981 * async submit.
3982 *
3983 * This will add one bio to the pending list for a device and make sure
3984 * the work struct is scheduled.
3985 */
d397712b 3986static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3987 struct btrfs_device *device,
3988 int rw, struct bio *bio)
8b712842
CM
3989{
3990 int should_queue = 1;
ffbd517d 3991 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3992
3993 /* don't bother with additional async steps for reads, right now */
7b6d91da 3994 if (!(rw & REQ_WRITE)) {
492bb6de 3995 bio_get(bio);
21adbd5c 3996 btrfsic_submit_bio(rw, bio);
492bb6de 3997 bio_put(bio);
8b712842
CM
3998 return 0;
3999 }
4000
4001 /*
0986fe9e 4002 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4003 * higher layers. Otherwise, the async bio makes it appear we have
4004 * made progress against dirty pages when we've really just put it
4005 * on a queue for later
4006 */
0986fe9e 4007 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4008 WARN_ON(bio->bi_next);
8b712842
CM
4009 bio->bi_next = NULL;
4010 bio->bi_rw |= rw;
4011
4012 spin_lock(&device->io_lock);
7b6d91da 4013 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4014 pending_bios = &device->pending_sync_bios;
4015 else
4016 pending_bios = &device->pending_bios;
8b712842 4017
ffbd517d
CM
4018 if (pending_bios->tail)
4019 pending_bios->tail->bi_next = bio;
8b712842 4020
ffbd517d
CM
4021 pending_bios->tail = bio;
4022 if (!pending_bios->head)
4023 pending_bios->head = bio;
8b712842
CM
4024 if (device->running_pending)
4025 should_queue = 0;
4026
4027 spin_unlock(&device->io_lock);
4028
4029 if (should_queue)
1cc127b5
CM
4030 btrfs_queue_worker(&root->fs_info->submit_workers,
4031 &device->work);
8b712842
CM
4032 return 0;
4033}
4034
f188591e 4035int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4036 int mirror_num, int async_submit)
0b86a832
CM
4037{
4038 struct btrfs_mapping_tree *map_tree;
4039 struct btrfs_device *dev;
8790d502 4040 struct bio *first_bio = bio;
a62b9401 4041 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4042 u64 length = 0;
4043 u64 map_length;
0b86a832 4044 int ret;
8790d502
CM
4045 int dev_nr = 0;
4046 int total_devs = 1;
a1d3c478 4047 struct btrfs_bio *bbio = NULL;
0b86a832 4048
f2d8d74d 4049 length = bio->bi_size;
0b86a832
CM
4050 map_tree = &root->fs_info->mapping_tree;
4051 map_length = length;
cea9e445 4052
a1d3c478 4053 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4054 mirror_num);
cea9e445
CM
4055 BUG_ON(ret);
4056
a1d3c478 4057 total_devs = bbio->num_stripes;
cea9e445 4058 if (map_length < length) {
d397712b
CM
4059 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4060 "len %llu\n", (unsigned long long)logical,
4061 (unsigned long long)length,
4062 (unsigned long long)map_length);
cea9e445
CM
4063 BUG();
4064 }
a1d3c478
JS
4065
4066 bbio->orig_bio = first_bio;
4067 bbio->private = first_bio->bi_private;
4068 bbio->end_io = first_bio->bi_end_io;
4069 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4070
d397712b 4071 while (dev_nr < total_devs) {
a1d3c478
JS
4072 if (dev_nr < total_devs - 1) {
4073 bio = bio_clone(first_bio, GFP_NOFS);
4074 BUG_ON(!bio);
4075 } else {
4076 bio = first_bio;
8790d502 4077 }
a1d3c478
JS
4078 bio->bi_private = bbio;
4079 bio->bi_end_io = btrfs_end_bio;
4080 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4081 dev = bbio->stripes[dev_nr].dev;
18e503d6 4082 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
a1d3c478
JS
4083 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4084 "(%s id %llu), size=%u\n", rw,
4085 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4086 dev->name, dev->devid, bio->bi_size);
dfe25020 4087 bio->bi_bdev = dev->bdev;
8b712842
CM
4088 if (async_submit)
4089 schedule_bio(root, dev, rw, bio);
4090 else
21adbd5c 4091 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4092 } else {
4093 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4094 bio->bi_sector = logical >> 9;
dfe25020 4095 bio_endio(bio, -EIO);
dfe25020 4096 }
8790d502
CM
4097 dev_nr++;
4098 }
0b86a832
CM
4099 return 0;
4100}
4101
a443755f 4102struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4103 u8 *uuid, u8 *fsid)
0b86a832 4104{
2b82032c
YZ
4105 struct btrfs_device *device;
4106 struct btrfs_fs_devices *cur_devices;
4107
4108 cur_devices = root->fs_info->fs_devices;
4109 while (cur_devices) {
4110 if (!fsid ||
4111 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4112 device = __find_device(&cur_devices->devices,
4113 devid, uuid);
4114 if (device)
4115 return device;
4116 }
4117 cur_devices = cur_devices->seed;
4118 }
4119 return NULL;
0b86a832
CM
4120}
4121
dfe25020
CM
4122static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4123 u64 devid, u8 *dev_uuid)
4124{
4125 struct btrfs_device *device;
4126 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4127
4128 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4129 if (!device)
4130 return NULL;
dfe25020
CM
4131 list_add(&device->dev_list,
4132 &fs_devices->devices);
dfe25020
CM
4133 device->dev_root = root->fs_info->dev_root;
4134 device->devid = devid;
8b712842 4135 device->work.func = pending_bios_fn;
e4404d6e 4136 device->fs_devices = fs_devices;
cd02dca5 4137 device->missing = 1;
dfe25020 4138 fs_devices->num_devices++;
cd02dca5 4139 fs_devices->missing_devices++;
dfe25020 4140 spin_lock_init(&device->io_lock);
d20f7043 4141 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4142 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4143 return device;
4144}
4145
0b86a832
CM
4146static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4147 struct extent_buffer *leaf,
4148 struct btrfs_chunk *chunk)
4149{
4150 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4151 struct map_lookup *map;
4152 struct extent_map *em;
4153 u64 logical;
4154 u64 length;
4155 u64 devid;
a443755f 4156 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4157 int num_stripes;
0b86a832 4158 int ret;
593060d7 4159 int i;
0b86a832 4160
e17cade2
CM
4161 logical = key->offset;
4162 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4163
890871be 4164 read_lock(&map_tree->map_tree.lock);
0b86a832 4165 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4166 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4167
4168 /* already mapped? */
4169 if (em && em->start <= logical && em->start + em->len > logical) {
4170 free_extent_map(em);
0b86a832
CM
4171 return 0;
4172 } else if (em) {
4173 free_extent_map(em);
4174 }
0b86a832 4175
172ddd60 4176 em = alloc_extent_map();
0b86a832
CM
4177 if (!em)
4178 return -ENOMEM;
593060d7
CM
4179 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4180 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4181 if (!map) {
4182 free_extent_map(em);
4183 return -ENOMEM;
4184 }
4185
4186 em->bdev = (struct block_device *)map;
4187 em->start = logical;
4188 em->len = length;
4189 em->block_start = 0;
c8b97818 4190 em->block_len = em->len;
0b86a832 4191
593060d7
CM
4192 map->num_stripes = num_stripes;
4193 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4194 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4195 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4196 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4197 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4198 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4199 for (i = 0; i < num_stripes; i++) {
4200 map->stripes[i].physical =
4201 btrfs_stripe_offset_nr(leaf, chunk, i);
4202 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4203 read_extent_buffer(leaf, uuid, (unsigned long)
4204 btrfs_stripe_dev_uuid_nr(chunk, i),
4205 BTRFS_UUID_SIZE);
2b82032c
YZ
4206 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4207 NULL);
dfe25020 4208 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4209 kfree(map);
4210 free_extent_map(em);
4211 return -EIO;
4212 }
dfe25020
CM
4213 if (!map->stripes[i].dev) {
4214 map->stripes[i].dev =
4215 add_missing_dev(root, devid, uuid);
4216 if (!map->stripes[i].dev) {
4217 kfree(map);
4218 free_extent_map(em);
4219 return -EIO;
4220 }
4221 }
4222 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4223 }
4224
890871be 4225 write_lock(&map_tree->map_tree.lock);
0b86a832 4226 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4227 write_unlock(&map_tree->map_tree.lock);
b248a415 4228 BUG_ON(ret);
0b86a832
CM
4229 free_extent_map(em);
4230
4231 return 0;
4232}
4233
4234static int fill_device_from_item(struct extent_buffer *leaf,
4235 struct btrfs_dev_item *dev_item,
4236 struct btrfs_device *device)
4237{
4238 unsigned long ptr;
0b86a832
CM
4239
4240 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4241 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4242 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4243 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4244 device->type = btrfs_device_type(leaf, dev_item);
4245 device->io_align = btrfs_device_io_align(leaf, dev_item);
4246 device->io_width = btrfs_device_io_width(leaf, dev_item);
4247 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4248
4249 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4250 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 4251
0b86a832
CM
4252 return 0;
4253}
4254
2b82032c
YZ
4255static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4256{
4257 struct btrfs_fs_devices *fs_devices;
4258 int ret;
4259
b367e47f 4260 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4261
4262 fs_devices = root->fs_info->fs_devices->seed;
4263 while (fs_devices) {
4264 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4265 ret = 0;
4266 goto out;
4267 }
4268 fs_devices = fs_devices->seed;
4269 }
4270
4271 fs_devices = find_fsid(fsid);
4272 if (!fs_devices) {
4273 ret = -ENOENT;
4274 goto out;
4275 }
e4404d6e
YZ
4276
4277 fs_devices = clone_fs_devices(fs_devices);
4278 if (IS_ERR(fs_devices)) {
4279 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4280 goto out;
4281 }
4282
97288f2c 4283 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4284 root->fs_info->bdev_holder);
2b82032c
YZ
4285 if (ret)
4286 goto out;
4287
4288 if (!fs_devices->seeding) {
4289 __btrfs_close_devices(fs_devices);
e4404d6e 4290 free_fs_devices(fs_devices);
2b82032c
YZ
4291 ret = -EINVAL;
4292 goto out;
4293 }
4294
4295 fs_devices->seed = root->fs_info->fs_devices->seed;
4296 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4297out:
2b82032c
YZ
4298 return ret;
4299}
4300
0d81ba5d 4301static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4302 struct extent_buffer *leaf,
4303 struct btrfs_dev_item *dev_item)
4304{
4305 struct btrfs_device *device;
4306 u64 devid;
4307 int ret;
2b82032c 4308 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4309 u8 dev_uuid[BTRFS_UUID_SIZE];
4310
0b86a832 4311 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4312 read_extent_buffer(leaf, dev_uuid,
4313 (unsigned long)btrfs_device_uuid(dev_item),
4314 BTRFS_UUID_SIZE);
2b82032c
YZ
4315 read_extent_buffer(leaf, fs_uuid,
4316 (unsigned long)btrfs_device_fsid(dev_item),
4317 BTRFS_UUID_SIZE);
4318
4319 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4320 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4321 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4322 return ret;
2b82032c
YZ
4323 }
4324
4325 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4326 if (!device || !device->bdev) {
e4404d6e 4327 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4328 return -EIO;
4329
4330 if (!device) {
d397712b
CM
4331 printk(KERN_WARNING "warning devid %llu missing\n",
4332 (unsigned long long)devid);
2b82032c
YZ
4333 device = add_missing_dev(root, devid, dev_uuid);
4334 if (!device)
4335 return -ENOMEM;
cd02dca5
CM
4336 } else if (!device->missing) {
4337 /*
4338 * this happens when a device that was properly setup
4339 * in the device info lists suddenly goes bad.
4340 * device->bdev is NULL, and so we have to set
4341 * device->missing to one here
4342 */
4343 root->fs_info->fs_devices->missing_devices++;
4344 device->missing = 1;
2b82032c
YZ
4345 }
4346 }
4347
4348 if (device->fs_devices != root->fs_info->fs_devices) {
4349 BUG_ON(device->writeable);
4350 if (device->generation !=
4351 btrfs_device_generation(leaf, dev_item))
4352 return -EINVAL;
6324fbf3 4353 }
0b86a832
CM
4354
4355 fill_device_from_item(leaf, dev_item, device);
4356 device->dev_root = root->fs_info->dev_root;
dfe25020 4357 device->in_fs_metadata = 1;
2bf64758 4358 if (device->writeable) {
2b82032c 4359 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4360 spin_lock(&root->fs_info->free_chunk_lock);
4361 root->fs_info->free_chunk_space += device->total_bytes -
4362 device->bytes_used;
4363 spin_unlock(&root->fs_info->free_chunk_lock);
4364 }
0b86a832 4365 ret = 0;
0b86a832
CM
4366 return ret;
4367}
4368
e4404d6e 4369int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4370{
6c41761f 4371 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4372 struct extent_buffer *sb;
0b86a832 4373 struct btrfs_disk_key *disk_key;
0b86a832 4374 struct btrfs_chunk *chunk;
84eed90f
CM
4375 u8 *ptr;
4376 unsigned long sb_ptr;
4377 int ret = 0;
0b86a832
CM
4378 u32 num_stripes;
4379 u32 array_size;
4380 u32 len = 0;
0b86a832 4381 u32 cur;
84eed90f 4382 struct btrfs_key key;
0b86a832 4383
e4404d6e 4384 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4385 BTRFS_SUPER_INFO_SIZE);
4386 if (!sb)
4387 return -ENOMEM;
4388 btrfs_set_buffer_uptodate(sb);
85d4e461 4389 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4390 /*
4391 * The sb extent buffer is artifical and just used to read the system array.
4392 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4393 * pages up-to-date when the page is larger: extent does not cover the
4394 * whole page and consequently check_page_uptodate does not find all
4395 * the page's extents up-to-date (the hole beyond sb),
4396 * write_extent_buffer then triggers a WARN_ON.
4397 *
4398 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4399 * but sb spans only this function. Add an explicit SetPageUptodate call
4400 * to silence the warning eg. on PowerPC 64.
4401 */
4402 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4403 SetPageUptodate(sb->pages[0]);
4008c04a 4404
a061fc8d 4405 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4406 array_size = btrfs_super_sys_array_size(super_copy);
4407
0b86a832
CM
4408 ptr = super_copy->sys_chunk_array;
4409 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4410 cur = 0;
4411
4412 while (cur < array_size) {
4413 disk_key = (struct btrfs_disk_key *)ptr;
4414 btrfs_disk_key_to_cpu(&key, disk_key);
4415
a061fc8d 4416 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4417 sb_ptr += len;
4418 cur += len;
4419
0d81ba5d 4420 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4421 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4422 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4423 if (ret)
4424 break;
0b86a832
CM
4425 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4426 len = btrfs_chunk_item_size(num_stripes);
4427 } else {
84eed90f
CM
4428 ret = -EIO;
4429 break;
0b86a832
CM
4430 }
4431 ptr += len;
4432 sb_ptr += len;
4433 cur += len;
4434 }
a061fc8d 4435 free_extent_buffer(sb);
84eed90f 4436 return ret;
0b86a832
CM
4437}
4438
4439int btrfs_read_chunk_tree(struct btrfs_root *root)
4440{
4441 struct btrfs_path *path;
4442 struct extent_buffer *leaf;
4443 struct btrfs_key key;
4444 struct btrfs_key found_key;
4445 int ret;
4446 int slot;
4447
4448 root = root->fs_info->chunk_root;
4449
4450 path = btrfs_alloc_path();
4451 if (!path)
4452 return -ENOMEM;
4453
b367e47f
LZ
4454 mutex_lock(&uuid_mutex);
4455 lock_chunks(root);
4456
0b86a832
CM
4457 /* first we search for all of the device items, and then we
4458 * read in all of the chunk items. This way we can create chunk
4459 * mappings that reference all of the devices that are afound
4460 */
4461 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4462 key.offset = 0;
4463 key.type = 0;
4464again:
4465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4466 if (ret < 0)
4467 goto error;
d397712b 4468 while (1) {
0b86a832
CM
4469 leaf = path->nodes[0];
4470 slot = path->slots[0];
4471 if (slot >= btrfs_header_nritems(leaf)) {
4472 ret = btrfs_next_leaf(root, path);
4473 if (ret == 0)
4474 continue;
4475 if (ret < 0)
4476 goto error;
4477 break;
4478 }
4479 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4480 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4481 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4482 break;
4483 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4484 struct btrfs_dev_item *dev_item;
4485 dev_item = btrfs_item_ptr(leaf, slot,
4486 struct btrfs_dev_item);
0d81ba5d 4487 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4488 if (ret)
4489 goto error;
0b86a832
CM
4490 }
4491 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4492 struct btrfs_chunk *chunk;
4493 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4494 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4495 if (ret)
4496 goto error;
0b86a832
CM
4497 }
4498 path->slots[0]++;
4499 }
4500 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4501 key.objectid = 0;
b3b4aa74 4502 btrfs_release_path(path);
0b86a832
CM
4503 goto again;
4504 }
0b86a832
CM
4505 ret = 0;
4506error:
b367e47f
LZ
4507 unlock_chunks(root);
4508 mutex_unlock(&uuid_mutex);
4509
2b82032c 4510 btrfs_free_path(path);
0b86a832
CM
4511 return ret;
4512}