btrfs: decrement number of open devices after closing the device not before
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
0b86a832 33
af902047
ZL
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
8789f4fe 40 .tolerated_failures = 1,
af902047
ZL
41 .devs_increment = 2,
42 .ncopies = 2,
b50836ed 43 .nparity = 0,
ed23467b 44 .raid_name = "raid10",
41a6e891 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
8789f4fe 53 .tolerated_failures = 1,
af902047
ZL
54 .devs_increment = 2,
55 .ncopies = 2,
b50836ed 56 .nparity = 0,
ed23467b 57 .raid_name = "raid1",
41a6e891 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 60 },
47e6f742
DS
61 [BTRFS_RAID_RAID1C3] = {
62 .sub_stripes = 1,
63 .dev_stripes = 1,
cf93e15e 64 .devs_max = 3,
47e6f742
DS
65 .devs_min = 3,
66 .tolerated_failures = 2,
67 .devs_increment = 3,
68 .ncopies = 3,
db26a024 69 .nparity = 0,
47e6f742
DS
70 .raid_name = "raid1c3",
71 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
72 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
73 },
8d6fac00
DS
74 [BTRFS_RAID_RAID1C4] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
cf93e15e 77 .devs_max = 4,
8d6fac00
DS
78 .devs_min = 4,
79 .tolerated_failures = 3,
80 .devs_increment = 4,
81 .ncopies = 4,
db26a024 82 .nparity = 0,
8d6fac00
DS
83 .raid_name = "raid1c4",
84 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
85 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
86 },
af902047
ZL
87 [BTRFS_RAID_DUP] = {
88 .sub_stripes = 1,
89 .dev_stripes = 2,
90 .devs_max = 1,
91 .devs_min = 1,
8789f4fe 92 .tolerated_failures = 0,
af902047
ZL
93 .devs_increment = 1,
94 .ncopies = 2,
b50836ed 95 .nparity = 0,
ed23467b 96 .raid_name = "dup",
41a6e891 97 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 98 .mindev_error = 0,
af902047
ZL
99 },
100 [BTRFS_RAID_RAID0] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
8789f4fe 105 .tolerated_failures = 0,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 1,
b50836ed 108 .nparity = 0,
ed23467b 109 .raid_name = "raid0",
41a6e891 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 111 .mindev_error = 0,
af902047
ZL
112 },
113 [BTRFS_RAID_SINGLE] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 1,
117 .devs_min = 1,
8789f4fe 118 .tolerated_failures = 0,
af902047
ZL
119 .devs_increment = 1,
120 .ncopies = 1,
b50836ed 121 .nparity = 0,
ed23467b 122 .raid_name = "single",
41a6e891 123 .bg_flag = 0,
f9fbcaa2 124 .mindev_error = 0,
af902047
ZL
125 },
126 [BTRFS_RAID_RAID5] = {
127 .sub_stripes = 1,
128 .dev_stripes = 1,
129 .devs_max = 0,
130 .devs_min = 2,
8789f4fe 131 .tolerated_failures = 1,
af902047 132 .devs_increment = 1,
da612e31 133 .ncopies = 1,
b50836ed 134 .nparity = 1,
ed23467b 135 .raid_name = "raid5",
41a6e891 136 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 137 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
138 },
139 [BTRFS_RAID_RAID6] = {
140 .sub_stripes = 1,
141 .dev_stripes = 1,
142 .devs_max = 0,
143 .devs_min = 3,
8789f4fe 144 .tolerated_failures = 2,
af902047 145 .devs_increment = 1,
da612e31 146 .ncopies = 1,
b50836ed 147 .nparity = 2,
ed23467b 148 .raid_name = "raid6",
41a6e891 149 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 150 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
151 },
152};
153
158da513 154const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 155{
158da513
DS
156 const int index = btrfs_bg_flags_to_raid_index(flags);
157
158 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
159 return NULL;
160
158da513 161 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
162}
163
f89e09cf
AJ
164/*
165 * Fill @buf with textual description of @bg_flags, no more than @size_buf
166 * bytes including terminating null byte.
167 */
168void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
169{
170 int i;
171 int ret;
172 char *bp = buf;
173 u64 flags = bg_flags;
174 u32 size_bp = size_buf;
175
176 if (!flags) {
177 strcpy(bp, "NONE");
178 return;
179 }
180
181#define DESCRIBE_FLAG(flag, desc) \
182 do { \
183 if (flags & (flag)) { \
184 ret = snprintf(bp, size_bp, "%s|", (desc)); \
185 if (ret < 0 || ret >= size_bp) \
186 goto out_overflow; \
187 size_bp -= ret; \
188 bp += ret; \
189 flags &= ~(flag); \
190 } \
191 } while (0)
192
193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
196
197 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
198 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
199 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
200 btrfs_raid_array[i].raid_name);
201#undef DESCRIBE_FLAG
202
203 if (flags) {
204 ret = snprintf(bp, size_bp, "0x%llx|", flags);
205 size_bp -= ret;
206 }
207
208 if (size_bp < size_buf)
209 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
210
211 /*
212 * The text is trimmed, it's up to the caller to provide sufficiently
213 * large buffer
214 */
215out_overflow:;
216}
217
6f8e0fc7 218static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 219static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 220static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 221static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
222static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
223 enum btrfs_map_op op,
224 u64 logical, u64 *length,
225 struct btrfs_bio **bbio_ret,
226 int mirror_num, int need_raid_map);
2b82032c 227
9c6b1c4d
DS
228/*
229 * Device locking
230 * ==============
231 *
232 * There are several mutexes that protect manipulation of devices and low-level
233 * structures like chunks but not block groups, extents or files
234 *
235 * uuid_mutex (global lock)
236 * ------------------------
237 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239 * device) or requested by the device= mount option
240 *
241 * the mutex can be very coarse and can cover long-running operations
242 *
243 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 244 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
245 *
246 * global::fs_devs - add, remove, updates to the global list
247 *
248 * does not protect: manipulation of the fs_devices::devices list!
249 *
250 * btrfs_device::name - renames (write side), read is RCU
251 *
252 * fs_devices::device_list_mutex (per-fs, with RCU)
253 * ------------------------------------------------
254 * protects updates to fs_devices::devices, ie. adding and deleting
255 *
256 * simple list traversal with read-only actions can be done with RCU protection
257 *
258 * may be used to exclude some operations from running concurrently without any
259 * modifications to the list (see write_all_supers)
260 *
9c6b1c4d
DS
261 * balance_mutex
262 * -------------
263 * protects balance structures (status, state) and context accessed from
264 * several places (internally, ioctl)
265 *
266 * chunk_mutex
267 * -----------
268 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
269 * device is added/removed. Additionally it also protects post_commit_list of
270 * individual devices, since they can be added to the transaction's
271 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
272 *
273 * cleaner_mutex
274 * -------------
275 * a big lock that is held by the cleaner thread and prevents running subvolume
276 * cleaning together with relocation or delayed iputs
277 *
278 *
279 * Lock nesting
280 * ============
281 *
282 * uuid_mutex
283 * volume_mutex
284 * device_list_mutex
285 * chunk_mutex
286 * balance_mutex
89595e80
AJ
287 *
288 *
289 * Exclusive operations, BTRFS_FS_EXCL_OP
290 * ======================================
291 *
292 * Maintains the exclusivity of the following operations that apply to the
293 * whole filesystem and cannot run in parallel.
294 *
295 * - Balance (*)
296 * - Device add
297 * - Device remove
298 * - Device replace (*)
299 * - Resize
300 *
301 * The device operations (as above) can be in one of the following states:
302 *
303 * - Running state
304 * - Paused state
305 * - Completed state
306 *
307 * Only device operations marked with (*) can go into the Paused state for the
308 * following reasons:
309 *
310 * - ioctl (only Balance can be Paused through ioctl)
311 * - filesystem remounted as read-only
312 * - filesystem unmounted and mounted as read-only
313 * - system power-cycle and filesystem mounted as read-only
314 * - filesystem or device errors leading to forced read-only
315 *
316 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
317 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
318 * A device operation in Paused or Running state can be canceled or resumed
319 * either by ioctl (Balance only) or when remounted as read-write.
320 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
321 * completed.
9c6b1c4d
DS
322 */
323
67a2c45e 324DEFINE_MUTEX(uuid_mutex);
8a4b83cc 325static LIST_HEAD(fs_uuids);
4143cb8b 326struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
327{
328 return &fs_uuids;
329}
8a4b83cc 330
2dfeca9b
DS
331/*
332 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
333 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
334 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
335 *
336 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
337 * The returned struct is not linked onto any lists and can be destroyed with
338 * kfree() right away.
339 */
7239ff4b
NB
340static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
341 const u8 *metadata_fsid)
2208a378
ID
342{
343 struct btrfs_fs_devices *fs_devs;
344
78f2c9e6 345 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
346 if (!fs_devs)
347 return ERR_PTR(-ENOMEM);
348
349 mutex_init(&fs_devs->device_list_mutex);
350
351 INIT_LIST_HEAD(&fs_devs->devices);
352 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 353 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
354 if (fsid)
355 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 356
7239ff4b
NB
357 if (metadata_fsid)
358 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
359 else if (fsid)
360 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
361
2208a378
ID
362 return fs_devs;
363}
364
a425f9d4 365void btrfs_free_device(struct btrfs_device *device)
48dae9cf 366{
bbbf7243 367 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 368 rcu_string_free(device->name);
1c11b63e 369 extent_io_tree_release(&device->alloc_state);
48dae9cf
DS
370 bio_put(device->flush_bio);
371 kfree(device);
372}
373
e4404d6e
YZ
374static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
375{
376 struct btrfs_device *device;
377 WARN_ON(fs_devices->opened);
378 while (!list_empty(&fs_devices->devices)) {
379 device = list_entry(fs_devices->devices.next,
380 struct btrfs_device, dev_list);
381 list_del(&device->dev_list);
a425f9d4 382 btrfs_free_device(device);
e4404d6e
YZ
383 }
384 kfree(fs_devices);
385}
386
ffc5a379 387void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
388{
389 struct btrfs_fs_devices *fs_devices;
8a4b83cc 390
2b82032c
YZ
391 while (!list_empty(&fs_uuids)) {
392 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
393 struct btrfs_fs_devices, fs_list);
394 list_del(&fs_devices->fs_list);
e4404d6e 395 free_fs_devices(fs_devices);
8a4b83cc 396 }
8a4b83cc
CM
397}
398
48dae9cf
DS
399/*
400 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
401 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 402 * btrfs_free_device.
48dae9cf 403 */
12bd2fc0
ID
404static struct btrfs_device *__alloc_device(void)
405{
406 struct btrfs_device *dev;
407
78f2c9e6 408 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
409 if (!dev)
410 return ERR_PTR(-ENOMEM);
411
e0ae9994
DS
412 /*
413 * Preallocate a bio that's always going to be used for flushing device
414 * barriers and matches the device lifespan
415 */
416 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
417 if (!dev->flush_bio) {
418 kfree(dev);
419 return ERR_PTR(-ENOMEM);
420 }
e0ae9994 421
12bd2fc0
ID
422 INIT_LIST_HEAD(&dev->dev_list);
423 INIT_LIST_HEAD(&dev->dev_alloc_list);
bbbf7243 424 INIT_LIST_HEAD(&dev->post_commit_list);
12bd2fc0 425
12bd2fc0 426 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 427 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 428 btrfs_device_data_ordered_init(dev);
9bcaaea7 429 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 430 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
1c11b63e 431 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
12bd2fc0
ID
432
433 return dev;
434}
435
7239ff4b
NB
436static noinline struct btrfs_fs_devices *find_fsid(
437 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 438{
8a4b83cc
CM
439 struct btrfs_fs_devices *fs_devices;
440
7239ff4b
NB
441 ASSERT(fsid);
442
7a62d0f0
NB
443 if (metadata_fsid) {
444 /*
445 * Handle scanned device having completed its fsid change but
446 * belonging to a fs_devices that was created by first scanning
447 * a device which didn't have its fsid/metadata_uuid changed
448 * at all and the CHANGING_FSID_V2 flag set.
449 */
450 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
451 if (fs_devices->fsid_change &&
452 memcmp(metadata_fsid, fs_devices->fsid,
453 BTRFS_FSID_SIZE) == 0 &&
454 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0) {
456 return fs_devices;
457 }
458 }
cc5de4e7
NB
459 /*
460 * Handle scanned device having completed its fsid change but
461 * belonging to a fs_devices that was created by a device that
462 * has an outdated pair of fsid/metadata_uuid and
463 * CHANGING_FSID_V2 flag set.
464 */
465 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
466 if (fs_devices->fsid_change &&
467 memcmp(fs_devices->metadata_uuid,
468 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
469 memcmp(metadata_fsid, fs_devices->metadata_uuid,
470 BTRFS_FSID_SIZE) == 0) {
471 return fs_devices;
472 }
473 }
7a62d0f0
NB
474 }
475
476 /* Handle non-split brain cases */
c4babc5e 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
478 if (metadata_fsid) {
479 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
480 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
481 BTRFS_FSID_SIZE) == 0)
482 return fs_devices;
483 } else {
484 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
485 return fs_devices;
486 }
8a4b83cc
CM
487 }
488 return NULL;
489}
490
beaf8ab3
SB
491static int
492btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
493 int flush, struct block_device **bdev,
494 struct buffer_head **bh)
495{
496 int ret;
497
498 *bdev = blkdev_get_by_path(device_path, flags, holder);
499
500 if (IS_ERR(*bdev)) {
501 ret = PTR_ERR(*bdev);
beaf8ab3
SB
502 goto error;
503 }
504
505 if (flush)
506 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 507 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
508 if (ret) {
509 blkdev_put(*bdev, flags);
510 goto error;
511 }
512 invalidate_bdev(*bdev);
513 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
514 if (IS_ERR(*bh)) {
515 ret = PTR_ERR(*bh);
beaf8ab3
SB
516 blkdev_put(*bdev, flags);
517 goto error;
518 }
519
520 return 0;
521
522error:
523 *bdev = NULL;
524 *bh = NULL;
525 return ret;
526}
527
70bc7088
AJ
528static bool device_path_matched(const char *path, struct btrfs_device *device)
529{
530 int found;
531
532 rcu_read_lock();
533 found = strcmp(rcu_str_deref(device->name), path);
534 rcu_read_unlock();
535
536 return found == 0;
537}
538
d8367db3
AJ
539/*
540 * Search and remove all stale (devices which are not mounted) devices.
541 * When both inputs are NULL, it will search and release all stale devices.
542 * path: Optional. When provided will it release all unmounted devices
543 * matching this path only.
544 * skip_dev: Optional. Will skip this device when searching for the stale
545 * devices.
70bc7088
AJ
546 * Return: 0 for success or if @path is NULL.
547 * -EBUSY if @path is a mounted device.
548 * -ENOENT if @path does not match any device in the list.
d8367db3 549 */
70bc7088 550static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 551 struct btrfs_device *skip_device)
4fde46f0 552{
fa6d2ae5
AJ
553 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
554 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
555 int ret = 0;
556
557 if (path)
558 ret = -ENOENT;
4fde46f0 559
fa6d2ae5 560 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 561
70bc7088 562 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
563 list_for_each_entry_safe(device, tmp_device,
564 &fs_devices->devices, dev_list) {
fa6d2ae5 565 if (skip_device && skip_device == device)
d8367db3 566 continue;
fa6d2ae5 567 if (path && !device->name)
4fde46f0 568 continue;
70bc7088 569 if (path && !device_path_matched(path, device))
38cf665d 570 continue;
70bc7088
AJ
571 if (fs_devices->opened) {
572 /* for an already deleted device return 0 */
573 if (path && ret != 0)
574 ret = -EBUSY;
575 break;
576 }
4fde46f0 577
4fde46f0 578 /* delete the stale device */
7bcb8164
AJ
579 fs_devices->num_devices--;
580 list_del(&device->dev_list);
581 btrfs_free_device(device);
582
70bc7088 583 ret = 0;
7bcb8164 584 if (fs_devices->num_devices == 0)
fd649f10 585 break;
7bcb8164
AJ
586 }
587 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 588
7bcb8164
AJ
589 if (fs_devices->num_devices == 0) {
590 btrfs_sysfs_remove_fsid(fs_devices);
591 list_del(&fs_devices->fs_list);
592 free_fs_devices(fs_devices);
4fde46f0
AJ
593 }
594 }
70bc7088
AJ
595
596 return ret;
4fde46f0
AJ
597}
598
0fb08bcc
AJ
599static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
600 struct btrfs_device *device, fmode_t flags,
601 void *holder)
602{
603 struct request_queue *q;
604 struct block_device *bdev;
605 struct buffer_head *bh;
606 struct btrfs_super_block *disk_super;
607 u64 devid;
608 int ret;
609
610 if (device->bdev)
611 return -EINVAL;
612 if (!device->name)
613 return -EINVAL;
614
615 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
616 &bdev, &bh);
617 if (ret)
618 return ret;
619
620 disk_super = (struct btrfs_super_block *)bh->b_data;
621 devid = btrfs_stack_device_id(&disk_super->dev_item);
622 if (devid != device->devid)
623 goto error_brelse;
624
625 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
626 goto error_brelse;
627
628 device->generation = btrfs_super_generation(disk_super);
629
630 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
631 if (btrfs_super_incompat_flags(disk_super) &
632 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
633 pr_err(
634 "BTRFS: Invalid seeding and uuid-changed device detected\n");
635 goto error_brelse;
636 }
637
ebbede42 638 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 639 fs_devices->seeding = true;
0fb08bcc 640 } else {
ebbede42
AJ
641 if (bdev_read_only(bdev))
642 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
643 else
644 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
645 }
646
647 q = bdev_get_queue(bdev);
0fb08bcc 648 if (!blk_queue_nonrot(q))
7f0432d0 649 fs_devices->rotating = true;
0fb08bcc
AJ
650
651 device->bdev = bdev;
e12c9621 652 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
653 device->mode = flags;
654
655 fs_devices->open_devices++;
ebbede42
AJ
656 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
657 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 658 fs_devices->rw_devices++;
b1b8e386 659 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
660 }
661 brelse(bh);
662
663 return 0;
664
665error_brelse:
666 brelse(bh);
667 blkdev_put(bdev, flags);
668
669 return -EINVAL;
670}
671
7a62d0f0
NB
672/*
673 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
674 * being created with a disk that has already completed its fsid change.
675 */
676static struct btrfs_fs_devices *find_fsid_inprogress(
677 struct btrfs_super_block *disk_super)
678{
679 struct btrfs_fs_devices *fs_devices;
680
681 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
682 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
683 BTRFS_FSID_SIZE) != 0 &&
684 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
685 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
686 return fs_devices;
687 }
688 }
689
690 return NULL;
691}
692
cc5de4e7
NB
693
694static struct btrfs_fs_devices *find_fsid_changed(
695 struct btrfs_super_block *disk_super)
696{
697 struct btrfs_fs_devices *fs_devices;
698
699 /*
700 * Handles the case where scanned device is part of an fs that had
701 * multiple successful changes of FSID but curently device didn't
702 * observe it. Meaning our fsid will be different than theirs.
703 */
704 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 BTRFS_FSID_SIZE) != 0 &&
707 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
708 BTRFS_FSID_SIZE) == 0 &&
709 memcmp(fs_devices->fsid, disk_super->fsid,
710 BTRFS_FSID_SIZE) != 0) {
711 return fs_devices;
712 }
713 }
714
715 return NULL;
716}
60999ca4
DS
717/*
718 * Add new device to list of registered devices
719 *
720 * Returns:
e124ece5
AJ
721 * device pointer which was just added or updated when successful
722 * error pointer when failed
60999ca4 723 */
e124ece5 724static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
725 struct btrfs_super_block *disk_super,
726 bool *new_device_added)
8a4b83cc
CM
727{
728 struct btrfs_device *device;
7a62d0f0 729 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 730 struct rcu_string *name;
8a4b83cc 731 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 732 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
733 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
734 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
735 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
736 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 737
cc5de4e7
NB
738 if (fsid_change_in_progress) {
739 if (!has_metadata_uuid) {
740 /*
741 * When we have an image which has CHANGING_FSID_V2 set
742 * it might belong to either a filesystem which has
743 * disks with completed fsid change or it might belong
744 * to fs with no UUID changes in effect, handle both.
745 */
746 fs_devices = find_fsid_inprogress(disk_super);
747 if (!fs_devices)
748 fs_devices = find_fsid(disk_super->fsid, NULL);
749 } else {
750 fs_devices = find_fsid_changed(disk_super);
751 }
7a62d0f0
NB
752 } else if (has_metadata_uuid) {
753 fs_devices = find_fsid(disk_super->fsid,
754 disk_super->metadata_uuid);
755 } else {
7239ff4b 756 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
757 }
758
8a4b83cc 759
8a4b83cc 760 if (!fs_devices) {
7239ff4b
NB
761 if (has_metadata_uuid)
762 fs_devices = alloc_fs_devices(disk_super->fsid,
763 disk_super->metadata_uuid);
764 else
765 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
766
2208a378 767 if (IS_ERR(fs_devices))
e124ece5 768 return ERR_CAST(fs_devices);
2208a378 769
92900e51
AV
770 fs_devices->fsid_change = fsid_change_in_progress;
771
9c6d173e 772 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 773 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 774
8a4b83cc
CM
775 device = NULL;
776 } else {
9c6d173e 777 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
778 device = btrfs_find_device(fs_devices, devid,
779 disk_super->dev_item.uuid, NULL, false);
7a62d0f0
NB
780
781 /*
782 * If this disk has been pulled into an fs devices created by
783 * a device which had the CHANGING_FSID_V2 flag then replace the
784 * metadata_uuid/fsid values of the fs_devices.
785 */
786 if (has_metadata_uuid && fs_devices->fsid_change &&
787 found_transid > fs_devices->latest_generation) {
788 memcpy(fs_devices->fsid, disk_super->fsid,
789 BTRFS_FSID_SIZE);
790 memcpy(fs_devices->metadata_uuid,
791 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
792
793 fs_devices->fsid_change = false;
794 }
8a4b83cc 795 }
443f24fe 796
8a4b83cc 797 if (!device) {
9c6d173e
AJ
798 if (fs_devices->opened) {
799 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 800 return ERR_PTR(-EBUSY);
9c6d173e 801 }
2b82032c 802
12bd2fc0
ID
803 device = btrfs_alloc_device(NULL, &devid,
804 disk_super->dev_item.uuid);
805 if (IS_ERR(device)) {
9c6d173e 806 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 807 /* we can safely leave the fs_devices entry around */
e124ece5 808 return device;
8a4b83cc 809 }
606686ee
JB
810
811 name = rcu_string_strdup(path, GFP_NOFS);
812 if (!name) {
a425f9d4 813 btrfs_free_device(device);
9c6d173e 814 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 815 return ERR_PTR(-ENOMEM);
8a4b83cc 816 }
606686ee 817 rcu_assign_pointer(device->name, name);
90519d66 818
1f78160c 819 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 820 fs_devices->num_devices++;
e5e9a520 821
2b82032c 822 device->fs_devices = fs_devices;
4306a974 823 *new_device_added = true;
327f18cc
AJ
824
825 if (disk_super->label[0])
aa6c0df7
AJ
826 pr_info(
827 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
828 disk_super->label, devid, found_transid, path,
829 current->comm, task_pid_nr(current));
327f18cc 830 else
aa6c0df7
AJ
831 pr_info(
832 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
833 disk_super->fsid, devid, found_transid, path,
834 current->comm, task_pid_nr(current));
327f18cc 835
606686ee 836 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
837 /*
838 * When FS is already mounted.
839 * 1. If you are here and if the device->name is NULL that
840 * means this device was missing at time of FS mount.
841 * 2. If you are here and if the device->name is different
842 * from 'path' that means either
843 * a. The same device disappeared and reappeared with
844 * different name. or
845 * b. The missing-disk-which-was-replaced, has
846 * reappeared now.
847 *
848 * We must allow 1 and 2a above. But 2b would be a spurious
849 * and unintentional.
850 *
851 * Further in case of 1 and 2a above, the disk at 'path'
852 * would have missed some transaction when it was away and
853 * in case of 2a the stale bdev has to be updated as well.
854 * 2b must not be allowed at all time.
855 */
856
857 /*
0f23ae74
CM
858 * For now, we do allow update to btrfs_fs_device through the
859 * btrfs dev scan cli after FS has been mounted. We're still
860 * tracking a problem where systems fail mount by subvolume id
861 * when we reject replacement on a mounted FS.
b96de000 862 */
0f23ae74 863 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
864 /*
865 * That is if the FS is _not_ mounted and if you
866 * are here, that means there is more than one
867 * disk with same uuid and devid.We keep the one
868 * with larger generation number or the last-in if
869 * generation are equal.
870 */
9c6d173e 871 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 872 return ERR_PTR(-EEXIST);
77bdae4d 873 }
b96de000 874
a9261d41
AJ
875 /*
876 * We are going to replace the device path for a given devid,
877 * make sure it's the same device if the device is mounted
878 */
879 if (device->bdev) {
880 struct block_device *path_bdev;
881
882 path_bdev = lookup_bdev(path);
883 if (IS_ERR(path_bdev)) {
884 mutex_unlock(&fs_devices->device_list_mutex);
885 return ERR_CAST(path_bdev);
886 }
887
888 if (device->bdev != path_bdev) {
889 bdput(path_bdev);
890 mutex_unlock(&fs_devices->device_list_mutex);
891 btrfs_warn_in_rcu(device->fs_info,
892 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
893 disk_super->fsid, devid,
894 rcu_str_deref(device->name), path);
895 return ERR_PTR(-EEXIST);
896 }
897 bdput(path_bdev);
898 btrfs_info_in_rcu(device->fs_info,
899 "device fsid %pU devid %llu moved old:%s new:%s",
900 disk_super->fsid, devid,
901 rcu_str_deref(device->name), path);
902 }
903
606686ee 904 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
905 if (!name) {
906 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 907 return ERR_PTR(-ENOMEM);
9c6d173e 908 }
606686ee
JB
909 rcu_string_free(device->name);
910 rcu_assign_pointer(device->name, name);
e6e674bd 911 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 912 fs_devices->missing_devices--;
e6e674bd 913 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 914 }
8a4b83cc
CM
915 }
916
77bdae4d
AJ
917 /*
918 * Unmount does not free the btrfs_device struct but would zero
919 * generation along with most of the other members. So just update
920 * it back. We need it to pick the disk with largest generation
921 * (as above).
922 */
d1a63002 923 if (!fs_devices->opened) {
77bdae4d 924 device->generation = found_transid;
d1a63002
NB
925 fs_devices->latest_generation = max_t(u64, found_transid,
926 fs_devices->latest_generation);
927 }
77bdae4d 928
f2788d2f
AJ
929 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
930
9c6d173e 931 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 932 return device;
8a4b83cc
CM
933}
934
e4404d6e
YZ
935static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
936{
937 struct btrfs_fs_devices *fs_devices;
938 struct btrfs_device *device;
939 struct btrfs_device *orig_dev;
d2979aa2 940 int ret = 0;
e4404d6e 941
7239ff4b 942 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
943 if (IS_ERR(fs_devices))
944 return fs_devices;
e4404d6e 945
adbbb863 946 mutex_lock(&orig->device_list_mutex);
02db0844 947 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
948
949 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
950 struct rcu_string *name;
951
12bd2fc0
ID
952 device = btrfs_alloc_device(NULL, &orig_dev->devid,
953 orig_dev->uuid);
d2979aa2
AJ
954 if (IS_ERR(device)) {
955 ret = PTR_ERR(device);
e4404d6e 956 goto error;
d2979aa2 957 }
e4404d6e 958
606686ee
JB
959 /*
960 * This is ok to do without rcu read locked because we hold the
961 * uuid mutex so nothing we touch in here is going to disappear.
962 */
e755f780 963 if (orig_dev->name) {
78f2c9e6
DS
964 name = rcu_string_strdup(orig_dev->name->str,
965 GFP_KERNEL);
e755f780 966 if (!name) {
a425f9d4 967 btrfs_free_device(device);
d2979aa2 968 ret = -ENOMEM;
e755f780
AJ
969 goto error;
970 }
971 rcu_assign_pointer(device->name, name);
fd2696f3 972 }
e4404d6e 973
e4404d6e
YZ
974 list_add(&device->dev_list, &fs_devices->devices);
975 device->fs_devices = fs_devices;
976 fs_devices->num_devices++;
977 }
adbbb863 978 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
979 return fs_devices;
980error:
adbbb863 981 mutex_unlock(&orig->device_list_mutex);
e4404d6e 982 free_fs_devices(fs_devices);
d2979aa2 983 return ERR_PTR(ret);
e4404d6e
YZ
984}
985
9b99b115
AJ
986/*
987 * After we have read the system tree and know devids belonging to
988 * this filesystem, remove the device which does not belong there.
989 */
990void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 991{
c6e30871 992 struct btrfs_device *device, *next;
443f24fe 993 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 994
dfe25020
CM
995 mutex_lock(&uuid_mutex);
996again:
46224705 997 /* This is the initialized path, it is safe to release the devices. */
c6e30871 998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1000 &device->dev_state)) {
401e29c1
AJ
1001 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1002 &device->dev_state) &&
1003 (!latest_dev ||
1004 device->generation > latest_dev->generation)) {
443f24fe 1005 latest_dev = device;
a6b0d5c8 1006 }
2b82032c 1007 continue;
a6b0d5c8 1008 }
2b82032c 1009
8dabb742
SB
1010 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1011 /*
1012 * In the first step, keep the device which has
1013 * the correct fsid and the devid that is used
1014 * for the dev_replace procedure.
1015 * In the second step, the dev_replace state is
1016 * read from the device tree and it is known
1017 * whether the procedure is really active or
1018 * not, which means whether this device is
1019 * used or whether it should be removed.
1020 */
401e29c1
AJ
1021 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1022 &device->dev_state)) {
8dabb742
SB
1023 continue;
1024 }
1025 }
2b82032c 1026 if (device->bdev) {
d4d77629 1027 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1028 device->bdev = NULL;
1029 fs_devices->open_devices--;
1030 }
ebbede42 1031 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1032 list_del_init(&device->dev_alloc_list);
ebbede42 1033 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
1034 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1035 &device->dev_state))
8dabb742 1036 fs_devices->rw_devices--;
2b82032c 1037 }
e4404d6e
YZ
1038 list_del_init(&device->dev_list);
1039 fs_devices->num_devices--;
a425f9d4 1040 btrfs_free_device(device);
dfe25020 1041 }
2b82032c
YZ
1042
1043 if (fs_devices->seed) {
1044 fs_devices = fs_devices->seed;
2b82032c
YZ
1045 goto again;
1046 }
1047
443f24fe 1048 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1049
dfe25020 1050 mutex_unlock(&uuid_mutex);
dfe25020 1051}
a0af469b 1052
14238819
AJ
1053static void btrfs_close_bdev(struct btrfs_device *device)
1054{
08ffcae8
DS
1055 if (!device->bdev)
1056 return;
1057
ebbede42 1058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1059 sync_blockdev(device->bdev);
1060 invalidate_bdev(device->bdev);
1061 }
1062
08ffcae8 1063 blkdev_put(device->bdev, device->mode);
14238819
AJ
1064}
1065
959b1c04 1066static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1067{
1068 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1069 struct btrfs_device *new_device;
1070 struct rcu_string *name;
1071
ebbede42 1072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1073 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1074 list_del_init(&device->dev_alloc_list);
1075 fs_devices->rw_devices--;
1076 }
1077
e6e674bd 1078 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1079 fs_devices->missing_devices--;
1080
959b1c04 1081 btrfs_close_bdev(device);
3fff3975
JT
1082 if (device->bdev)
1083 fs_devices->open_devices--;
959b1c04 1084
f448341a
AJ
1085 new_device = btrfs_alloc_device(NULL, &device->devid,
1086 device->uuid);
1087 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1088
1089 /* Safe because we are under uuid_mutex */
1090 if (device->name) {
1091 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1092 BUG_ON(!name); /* -ENOMEM */
1093 rcu_assign_pointer(new_device->name, name);
1094 }
1095
1096 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1097 new_device->fs_devices = device->fs_devices;
959b1c04 1098
8e75fd89
NB
1099 synchronize_rcu();
1100 btrfs_free_device(device);
f448341a
AJ
1101}
1102
0226e0eb 1103static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1104{
2037a093 1105 struct btrfs_device *device, *tmp;
e4404d6e 1106
2b82032c
YZ
1107 if (--fs_devices->opened > 0)
1108 return 0;
8a4b83cc 1109
c9513edb 1110 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1111 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
959b1c04 1112 btrfs_close_one_device(device);
8a4b83cc 1113 }
c9513edb
XG
1114 mutex_unlock(&fs_devices->device_list_mutex);
1115
e4404d6e
YZ
1116 WARN_ON(fs_devices->open_devices);
1117 WARN_ON(fs_devices->rw_devices);
2b82032c 1118 fs_devices->opened = 0;
0395d84f 1119 fs_devices->seeding = false;
2b82032c 1120
8a4b83cc
CM
1121 return 0;
1122}
1123
2b82032c
YZ
1124int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1125{
e4404d6e 1126 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1127 int ret;
1128
1129 mutex_lock(&uuid_mutex);
0226e0eb 1130 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1131 if (!fs_devices->opened) {
1132 seed_devices = fs_devices->seed;
1133 fs_devices->seed = NULL;
1134 }
2b82032c 1135 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1136
1137 while (seed_devices) {
1138 fs_devices = seed_devices;
1139 seed_devices = fs_devices->seed;
0226e0eb 1140 close_fs_devices(fs_devices);
e4404d6e
YZ
1141 free_fs_devices(fs_devices);
1142 }
2b82032c
YZ
1143 return ret;
1144}
1145
897fb573 1146static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1147 fmode_t flags, void *holder)
8a4b83cc 1148{
8a4b83cc 1149 struct btrfs_device *device;
443f24fe 1150 struct btrfs_device *latest_dev = NULL;
a0af469b 1151 int ret = 0;
8a4b83cc 1152
d4d77629
TH
1153 flags |= FMODE_EXCL;
1154
f117e290 1155 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1156 /* Just open everything we can; ignore failures here */
0fb08bcc 1157 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1158 continue;
a0af469b 1159
9f050db4
AJ
1160 if (!latest_dev ||
1161 device->generation > latest_dev->generation)
1162 latest_dev = device;
8a4b83cc 1163 }
a0af469b 1164 if (fs_devices->open_devices == 0) {
20bcd649 1165 ret = -EINVAL;
a0af469b
CM
1166 goto out;
1167 }
2b82032c 1168 fs_devices->opened = 1;
443f24fe 1169 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1170 fs_devices->total_rw_bytes = 0;
a0af469b 1171out:
2b82032c
YZ
1172 return ret;
1173}
1174
f8e10cd3
AJ
1175static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1176{
1177 struct btrfs_device *dev1, *dev2;
1178
1179 dev1 = list_entry(a, struct btrfs_device, dev_list);
1180 dev2 = list_entry(b, struct btrfs_device, dev_list);
1181
1182 if (dev1->devid < dev2->devid)
1183 return -1;
1184 else if (dev1->devid > dev2->devid)
1185 return 1;
1186 return 0;
1187}
1188
2b82032c 1189int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1190 fmode_t flags, void *holder)
2b82032c
YZ
1191{
1192 int ret;
1193
f5194e34
DS
1194 lockdep_assert_held(&uuid_mutex);
1195
542c5908 1196 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1197 if (fs_devices->opened) {
e4404d6e
YZ
1198 fs_devices->opened++;
1199 ret = 0;
2b82032c 1200 } else {
f8e10cd3 1201 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1202 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1203 }
542c5908
AJ
1204 mutex_unlock(&fs_devices->device_list_mutex);
1205
8a4b83cc
CM
1206 return ret;
1207}
1208
c9162bdf 1209static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1210{
1211 kunmap(page);
1212 put_page(page);
1213}
1214
c9162bdf
OS
1215static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1216 struct page **page,
1217 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1218{
1219 void *p;
1220 pgoff_t index;
1221
1222 /* make sure our super fits in the device */
1223 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1224 return 1;
1225
1226 /* make sure our super fits in the page */
1227 if (sizeof(**disk_super) > PAGE_SIZE)
1228 return 1;
1229
1230 /* make sure our super doesn't straddle pages on disk */
1231 index = bytenr >> PAGE_SHIFT;
1232 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1233 return 1;
1234
1235 /* pull in the page with our super */
1236 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1237 index, GFP_KERNEL);
1238
1239 if (IS_ERR_OR_NULL(*page))
1240 return 1;
1241
1242 p = kmap(*page);
1243
1244 /* align our pointer to the offset of the super block */
7073017a 1245 *disk_super = p + offset_in_page(bytenr);
6cf86a00
AJ
1246
1247 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1248 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1249 btrfs_release_disk_super(*page);
1250 return 1;
1251 }
1252
1253 if ((*disk_super)->label[0] &&
1254 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1255 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1256
1257 return 0;
1258}
1259
228a73ab
AJ
1260int btrfs_forget_devices(const char *path)
1261{
1262 int ret;
1263
1264 mutex_lock(&uuid_mutex);
1265 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1266 mutex_unlock(&uuid_mutex);
1267
1268 return ret;
1269}
1270
6f60cbd3
DS
1271/*
1272 * Look for a btrfs signature on a device. This may be called out of the mount path
1273 * and we are not allowed to call set_blocksize during the scan. The superblock
1274 * is read via pagecache
1275 */
36350e95
GJ
1276struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1277 void *holder)
8a4b83cc
CM
1278{
1279 struct btrfs_super_block *disk_super;
4306a974 1280 bool new_device_added = false;
36350e95 1281 struct btrfs_device *device = NULL;
8a4b83cc 1282 struct block_device *bdev;
6f60cbd3 1283 struct page *page;
6f60cbd3 1284 u64 bytenr;
8a4b83cc 1285
899f9307
DS
1286 lockdep_assert_held(&uuid_mutex);
1287
6f60cbd3
DS
1288 /*
1289 * we would like to check all the supers, but that would make
1290 * a btrfs mount succeed after a mkfs from a different FS.
1291 * So, we need to add a special mount option to scan for
1292 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1293 */
1294 bytenr = btrfs_sb_offset(0);
d4d77629 1295 flags |= FMODE_EXCL;
6f60cbd3
DS
1296
1297 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1298 if (IS_ERR(bdev))
36350e95 1299 return ERR_CAST(bdev);
6f60cbd3 1300
05a5c55d 1301 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
36350e95 1302 device = ERR_PTR(-EINVAL);
6f60cbd3 1303 goto error_bdev_put;
05a5c55d 1304 }
6f60cbd3 1305
4306a974 1306 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1307 if (!IS_ERR(device)) {
4306a974
AJ
1308 if (new_device_added)
1309 btrfs_free_stale_devices(path, device);
1310 }
6f60cbd3 1311
6cf86a00 1312 btrfs_release_disk_super(page);
6f60cbd3
DS
1313
1314error_bdev_put:
d4d77629 1315 blkdev_put(bdev, flags);
b6ed73bc 1316
36350e95 1317 return device;
8a4b83cc 1318}
0b86a832 1319
1c11b63e
JM
1320/*
1321 * Try to find a chunk that intersects [start, start + len] range and when one
1322 * such is found, record the end of it in *start
1323 */
1c11b63e
JM
1324static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1325 u64 len)
6df9a95e 1326{
1c11b63e 1327 u64 physical_start, physical_end;
6df9a95e 1328
1c11b63e 1329 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1330
1c11b63e
JM
1331 if (!find_first_extent_bit(&device->alloc_state, *start,
1332 &physical_start, &physical_end,
1333 CHUNK_ALLOCATED, NULL)) {
c152b63e 1334
1c11b63e
JM
1335 if (in_range(physical_start, *start, len) ||
1336 in_range(*start, physical_start,
1337 physical_end - physical_start)) {
1338 *start = physical_end + 1;
1339 return true;
6df9a95e
JB
1340 }
1341 }
1c11b63e 1342 return false;
6df9a95e
JB
1343}
1344
1345
0b86a832 1346/*
499f377f
JM
1347 * find_free_dev_extent_start - find free space in the specified device
1348 * @device: the device which we search the free space in
1349 * @num_bytes: the size of the free space that we need
1350 * @search_start: the position from which to begin the search
1351 * @start: store the start of the free space.
1352 * @len: the size of the free space. that we find, or the size
1353 * of the max free space if we don't find suitable free space
7bfc837d 1354 *
0b86a832
CM
1355 * this uses a pretty simple search, the expectation is that it is
1356 * called very infrequently and that a given device has a small number
1357 * of extents
7bfc837d
MX
1358 *
1359 * @start is used to store the start of the free space if we find. But if we
1360 * don't find suitable free space, it will be used to store the start position
1361 * of the max free space.
1362 *
1363 * @len is used to store the size of the free space that we find.
1364 * But if we don't find suitable free space, it is used to store the size of
1365 * the max free space.
135da976
QW
1366 *
1367 * NOTE: This function will search *commit* root of device tree, and does extra
1368 * check to ensure dev extents are not double allocated.
1369 * This makes the function safe to allocate dev extents but may not report
1370 * correct usable device space, as device extent freed in current transaction
1371 * is not reported as avaiable.
0b86a832 1372 */
9e3246a5
QW
1373static int find_free_dev_extent_start(struct btrfs_device *device,
1374 u64 num_bytes, u64 search_start, u64 *start,
1375 u64 *len)
0b86a832 1376{
0b246afa
JM
1377 struct btrfs_fs_info *fs_info = device->fs_info;
1378 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1379 struct btrfs_key key;
7bfc837d 1380 struct btrfs_dev_extent *dev_extent;
2b82032c 1381 struct btrfs_path *path;
7bfc837d
MX
1382 u64 hole_size;
1383 u64 max_hole_start;
1384 u64 max_hole_size;
1385 u64 extent_end;
0b86a832
CM
1386 u64 search_end = device->total_bytes;
1387 int ret;
7bfc837d 1388 int slot;
0b86a832 1389 struct extent_buffer *l;
8cdc7c5b
FM
1390
1391 /*
1392 * We don't want to overwrite the superblock on the drive nor any area
1393 * used by the boot loader (grub for example), so we make sure to start
1394 * at an offset of at least 1MB.
1395 */
0d0c71b3 1396 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1397
6df9a95e
JB
1398 path = btrfs_alloc_path();
1399 if (!path)
1400 return -ENOMEM;
f2ab7618 1401
7bfc837d
MX
1402 max_hole_start = search_start;
1403 max_hole_size = 0;
1404
f2ab7618 1405again:
401e29c1
AJ
1406 if (search_start >= search_end ||
1407 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1408 ret = -ENOSPC;
6df9a95e 1409 goto out;
7bfc837d
MX
1410 }
1411
e4058b54 1412 path->reada = READA_FORWARD;
6df9a95e
JB
1413 path->search_commit_root = 1;
1414 path->skip_locking = 1;
7bfc837d 1415
0b86a832
CM
1416 key.objectid = device->devid;
1417 key.offset = search_start;
1418 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1419
125ccb0a 1420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1421 if (ret < 0)
7bfc837d 1422 goto out;
1fcbac58
YZ
1423 if (ret > 0) {
1424 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1425 if (ret < 0)
7bfc837d 1426 goto out;
1fcbac58 1427 }
7bfc837d 1428
0b86a832
CM
1429 while (1) {
1430 l = path->nodes[0];
1431 slot = path->slots[0];
1432 if (slot >= btrfs_header_nritems(l)) {
1433 ret = btrfs_next_leaf(root, path);
1434 if (ret == 0)
1435 continue;
1436 if (ret < 0)
7bfc837d
MX
1437 goto out;
1438
1439 break;
0b86a832
CM
1440 }
1441 btrfs_item_key_to_cpu(l, &key, slot);
1442
1443 if (key.objectid < device->devid)
1444 goto next;
1445
1446 if (key.objectid > device->devid)
7bfc837d 1447 break;
0b86a832 1448
962a298f 1449 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1450 goto next;
9779b72f 1451
7bfc837d
MX
1452 if (key.offset > search_start) {
1453 hole_size = key.offset - search_start;
9779b72f 1454
6df9a95e
JB
1455 /*
1456 * Have to check before we set max_hole_start, otherwise
1457 * we could end up sending back this offset anyway.
1458 */
1c11b63e 1459 if (contains_pending_extent(device, &search_start,
1b984508 1460 hole_size)) {
1c11b63e 1461 if (key.offset >= search_start)
1b984508 1462 hole_size = key.offset - search_start;
1c11b63e 1463 else
1b984508 1464 hole_size = 0;
1b984508 1465 }
6df9a95e 1466
7bfc837d
MX
1467 if (hole_size > max_hole_size) {
1468 max_hole_start = search_start;
1469 max_hole_size = hole_size;
1470 }
9779b72f 1471
7bfc837d
MX
1472 /*
1473 * If this free space is greater than which we need,
1474 * it must be the max free space that we have found
1475 * until now, so max_hole_start must point to the start
1476 * of this free space and the length of this free space
1477 * is stored in max_hole_size. Thus, we return
1478 * max_hole_start and max_hole_size and go back to the
1479 * caller.
1480 */
1481 if (hole_size >= num_bytes) {
1482 ret = 0;
1483 goto out;
0b86a832
CM
1484 }
1485 }
0b86a832 1486
0b86a832 1487 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1488 extent_end = key.offset + btrfs_dev_extent_length(l,
1489 dev_extent);
1490 if (extent_end > search_start)
1491 search_start = extent_end;
0b86a832
CM
1492next:
1493 path->slots[0]++;
1494 cond_resched();
1495 }
0b86a832 1496
38c01b96 1497 /*
1498 * At this point, search_start should be the end of
1499 * allocated dev extents, and when shrinking the device,
1500 * search_end may be smaller than search_start.
1501 */
f2ab7618 1502 if (search_end > search_start) {
38c01b96 1503 hole_size = search_end - search_start;
1504
1c11b63e 1505 if (contains_pending_extent(device, &search_start, hole_size)) {
f2ab7618
ZL
1506 btrfs_release_path(path);
1507 goto again;
1508 }
0b86a832 1509
f2ab7618
ZL
1510 if (hole_size > max_hole_size) {
1511 max_hole_start = search_start;
1512 max_hole_size = hole_size;
1513 }
6df9a95e
JB
1514 }
1515
7bfc837d 1516 /* See above. */
f2ab7618 1517 if (max_hole_size < num_bytes)
7bfc837d
MX
1518 ret = -ENOSPC;
1519 else
1520 ret = 0;
1521
1522out:
2b82032c 1523 btrfs_free_path(path);
7bfc837d 1524 *start = max_hole_start;
b2117a39 1525 if (len)
7bfc837d 1526 *len = max_hole_size;
0b86a832
CM
1527 return ret;
1528}
1529
60dfdf25 1530int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1531 u64 *start, u64 *len)
1532{
499f377f 1533 /* FIXME use last free of some kind */
60dfdf25 1534 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1535}
1536
b2950863 1537static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1538 struct btrfs_device *device,
2196d6e8 1539 u64 start, u64 *dev_extent_len)
8f18cf13 1540{
0b246afa
JM
1541 struct btrfs_fs_info *fs_info = device->fs_info;
1542 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1543 int ret;
1544 struct btrfs_path *path;
8f18cf13 1545 struct btrfs_key key;
a061fc8d
CM
1546 struct btrfs_key found_key;
1547 struct extent_buffer *leaf = NULL;
1548 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1549
1550 path = btrfs_alloc_path();
1551 if (!path)
1552 return -ENOMEM;
1553
1554 key.objectid = device->devid;
1555 key.offset = start;
1556 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1557again:
8f18cf13 1558 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1559 if (ret > 0) {
1560 ret = btrfs_previous_item(root, path, key.objectid,
1561 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1562 if (ret)
1563 goto out;
a061fc8d
CM
1564 leaf = path->nodes[0];
1565 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1566 extent = btrfs_item_ptr(leaf, path->slots[0],
1567 struct btrfs_dev_extent);
1568 BUG_ON(found_key.offset > start || found_key.offset +
1569 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1570 key = found_key;
1571 btrfs_release_path(path);
1572 goto again;
a061fc8d
CM
1573 } else if (ret == 0) {
1574 leaf = path->nodes[0];
1575 extent = btrfs_item_ptr(leaf, path->slots[0],
1576 struct btrfs_dev_extent);
79787eaa 1577 } else {
0b246afa 1578 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1579 goto out;
a061fc8d 1580 }
8f18cf13 1581
2196d6e8
MX
1582 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1583
8f18cf13 1584 ret = btrfs_del_item(trans, root, path);
79787eaa 1585 if (ret) {
0b246afa
JM
1586 btrfs_handle_fs_error(fs_info, ret,
1587 "Failed to remove dev extent item");
13212b54 1588 } else {
3204d33c 1589 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1590 }
b0b802d7 1591out:
8f18cf13
CM
1592 btrfs_free_path(path);
1593 return ret;
1594}
1595
48a3b636
ES
1596static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1597 struct btrfs_device *device,
48a3b636 1598 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1599{
1600 int ret;
1601 struct btrfs_path *path;
0b246afa
JM
1602 struct btrfs_fs_info *fs_info = device->fs_info;
1603 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1604 struct btrfs_dev_extent *extent;
1605 struct extent_buffer *leaf;
1606 struct btrfs_key key;
1607
e12c9621 1608 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1609 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1610 path = btrfs_alloc_path();
1611 if (!path)
1612 return -ENOMEM;
1613
0b86a832 1614 key.objectid = device->devid;
2b82032c 1615 key.offset = start;
0b86a832
CM
1616 key.type = BTRFS_DEV_EXTENT_KEY;
1617 ret = btrfs_insert_empty_item(trans, root, path, &key,
1618 sizeof(*extent));
2cdcecbc
MF
1619 if (ret)
1620 goto out;
0b86a832
CM
1621
1622 leaf = path->nodes[0];
1623 extent = btrfs_item_ptr(leaf, path->slots[0],
1624 struct btrfs_dev_extent);
b5d9071c
NB
1625 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1626 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1627 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1628 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1629 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1630
0b86a832
CM
1631 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1632 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1633out:
0b86a832
CM
1634 btrfs_free_path(path);
1635 return ret;
1636}
1637
6df9a95e 1638static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1639{
6df9a95e
JB
1640 struct extent_map_tree *em_tree;
1641 struct extent_map *em;
1642 struct rb_node *n;
1643 u64 ret = 0;
0b86a832 1644
c8bf1b67 1645 em_tree = &fs_info->mapping_tree;
6df9a95e 1646 read_lock(&em_tree->lock);
07e1ce09 1647 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1648 if (n) {
1649 em = rb_entry(n, struct extent_map, rb_node);
1650 ret = em->start + em->len;
0b86a832 1651 }
6df9a95e
JB
1652 read_unlock(&em_tree->lock);
1653
0b86a832
CM
1654 return ret;
1655}
1656
53f10659
ID
1657static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1658 u64 *devid_ret)
0b86a832
CM
1659{
1660 int ret;
1661 struct btrfs_key key;
1662 struct btrfs_key found_key;
2b82032c
YZ
1663 struct btrfs_path *path;
1664
2b82032c
YZ
1665 path = btrfs_alloc_path();
1666 if (!path)
1667 return -ENOMEM;
0b86a832
CM
1668
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = (u64)-1;
1672
53f10659 1673 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1674 if (ret < 0)
1675 goto error;
1676
a06dee4d
AJ
1677 if (ret == 0) {
1678 /* Corruption */
1679 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1680 ret = -EUCLEAN;
1681 goto error;
1682 }
0b86a832 1683
53f10659
ID
1684 ret = btrfs_previous_item(fs_info->chunk_root, path,
1685 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1686 BTRFS_DEV_ITEM_KEY);
1687 if (ret) {
53f10659 1688 *devid_ret = 1;
0b86a832
CM
1689 } else {
1690 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1691 path->slots[0]);
53f10659 1692 *devid_ret = found_key.offset + 1;
0b86a832
CM
1693 }
1694 ret = 0;
1695error:
2b82032c 1696 btrfs_free_path(path);
0b86a832
CM
1697 return ret;
1698}
1699
1700/*
1701 * the device information is stored in the chunk root
1702 * the btrfs_device struct should be fully filled in
1703 */
c74a0b02 1704static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1705 struct btrfs_device *device)
0b86a832
CM
1706{
1707 int ret;
1708 struct btrfs_path *path;
1709 struct btrfs_dev_item *dev_item;
1710 struct extent_buffer *leaf;
1711 struct btrfs_key key;
1712 unsigned long ptr;
0b86a832 1713
0b86a832
CM
1714 path = btrfs_alloc_path();
1715 if (!path)
1716 return -ENOMEM;
1717
0b86a832
CM
1718 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1719 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1720 key.offset = device->devid;
0b86a832 1721
8e87e856
NB
1722 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1723 &key, sizeof(*dev_item));
0b86a832
CM
1724 if (ret)
1725 goto out;
1726
1727 leaf = path->nodes[0];
1728 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1729
1730 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1731 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1732 btrfs_set_device_type(leaf, dev_item, device->type);
1733 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1734 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1735 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1736 btrfs_set_device_total_bytes(leaf, dev_item,
1737 btrfs_device_get_disk_total_bytes(device));
1738 btrfs_set_device_bytes_used(leaf, dev_item,
1739 btrfs_device_get_bytes_used(device));
e17cade2
CM
1740 btrfs_set_device_group(leaf, dev_item, 0);
1741 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1742 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1743 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1744
410ba3a2 1745 ptr = btrfs_device_uuid(dev_item);
e17cade2 1746 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1747 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1748 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1749 ptr, BTRFS_FSID_SIZE);
0b86a832 1750 btrfs_mark_buffer_dirty(leaf);
0b86a832 1751
2b82032c 1752 ret = 0;
0b86a832
CM
1753out:
1754 btrfs_free_path(path);
1755 return ret;
1756}
8f18cf13 1757
5a1972bd
QW
1758/*
1759 * Function to update ctime/mtime for a given device path.
1760 * Mainly used for ctime/mtime based probe like libblkid.
1761 */
da353f6b 1762static void update_dev_time(const char *path_name)
5a1972bd
QW
1763{
1764 struct file *filp;
1765
1766 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1767 if (IS_ERR(filp))
5a1972bd
QW
1768 return;
1769 file_update_time(filp);
1770 filp_close(filp, NULL);
5a1972bd
QW
1771}
1772
f331a952 1773static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1774{
f331a952 1775 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1776 int ret;
1777 struct btrfs_path *path;
a061fc8d 1778 struct btrfs_key key;
a061fc8d
CM
1779 struct btrfs_trans_handle *trans;
1780
a061fc8d
CM
1781 path = btrfs_alloc_path();
1782 if (!path)
1783 return -ENOMEM;
1784
a22285a6 1785 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1786 if (IS_ERR(trans)) {
1787 btrfs_free_path(path);
1788 return PTR_ERR(trans);
1789 }
a061fc8d
CM
1790 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1791 key.type = BTRFS_DEV_ITEM_KEY;
1792 key.offset = device->devid;
1793
1794 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1795 if (ret) {
1796 if (ret > 0)
1797 ret = -ENOENT;
1798 btrfs_abort_transaction(trans, ret);
1799 btrfs_end_transaction(trans);
a061fc8d
CM
1800 goto out;
1801 }
1802
1803 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1804 if (ret) {
1805 btrfs_abort_transaction(trans, ret);
1806 btrfs_end_transaction(trans);
1807 }
1808
a061fc8d
CM
1809out:
1810 btrfs_free_path(path);
5e9f2ad5
NB
1811 if (!ret)
1812 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1813 return ret;
1814}
1815
3cc31a0d
DS
1816/*
1817 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1818 * filesystem. It's up to the caller to adjust that number regarding eg. device
1819 * replace.
1820 */
1821static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1822 u64 num_devices)
a061fc8d 1823{
a061fc8d 1824 u64 all_avail;
de98ced9 1825 unsigned seq;
418775a2 1826 int i;
a061fc8d 1827
de98ced9 1828 do {
bd45ffbc 1829 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1830
bd45ffbc
AJ
1831 all_avail = fs_info->avail_data_alloc_bits |
1832 fs_info->avail_system_alloc_bits |
1833 fs_info->avail_metadata_alloc_bits;
1834 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1835
418775a2 1836 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1837 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1838 continue;
a061fc8d 1839
418775a2 1840 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 1841 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 1842
418775a2
DS
1843 if (ret)
1844 return ret;
1845 }
53b381b3
DW
1846 }
1847
bd45ffbc 1848 return 0;
f1fa7f26
AJ
1849}
1850
c9162bdf
OS
1851static struct btrfs_device * btrfs_find_next_active_device(
1852 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1853{
2b82032c 1854 struct btrfs_device *next_device;
88acff64
AJ
1855
1856 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1857 if (next_device != device &&
e6e674bd
AJ
1858 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1859 && next_device->bdev)
88acff64
AJ
1860 return next_device;
1861 }
1862
1863 return NULL;
1864}
1865
1866/*
1867 * Helper function to check if the given device is part of s_bdev / latest_bdev
1868 * and replace it with the provided or the next active device, in the context
1869 * where this function called, there should be always be another device (or
1870 * this_dev) which is active.
1871 */
b105e927 1872void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
d6507cf1 1873 struct btrfs_device *this_dev)
88acff64 1874{
d6507cf1 1875 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64
AJ
1876 struct btrfs_device *next_device;
1877
1878 if (this_dev)
1879 next_device = this_dev;
1880 else
1881 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1882 device);
1883 ASSERT(next_device);
1884
1885 if (fs_info->sb->s_bdev &&
1886 (fs_info->sb->s_bdev == device->bdev))
1887 fs_info->sb->s_bdev = next_device->bdev;
1888
1889 if (fs_info->fs_devices->latest_bdev == device->bdev)
1890 fs_info->fs_devices->latest_bdev = next_device->bdev;
1891}
1892
1da73967
AJ
1893/*
1894 * Return btrfs_fs_devices::num_devices excluding the device that's being
1895 * currently replaced.
1896 */
1897static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1898{
1899 u64 num_devices = fs_info->fs_devices->num_devices;
1900
cb5583dd 1901 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1902 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1903 ASSERT(num_devices > 1);
1904 num_devices--;
1905 }
cb5583dd 1906 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1907
1908 return num_devices;
1909}
1910
da353f6b
DS
1911int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1912 u64 devid)
f1fa7f26
AJ
1913{
1914 struct btrfs_device *device;
1f78160c 1915 struct btrfs_fs_devices *cur_devices;
b5185197 1916 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 1917 u64 num_devices;
a061fc8d
CM
1918 int ret = 0;
1919
a061fc8d
CM
1920 mutex_lock(&uuid_mutex);
1921
1da73967 1922 num_devices = btrfs_num_devices(fs_info);
8dabb742 1923
0b246afa 1924 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1925 if (ret)
a061fc8d 1926 goto out;
a061fc8d 1927
a27a94c2
NB
1928 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1929
1930 if (IS_ERR(device)) {
1931 if (PTR_ERR(device) == -ENOENT &&
1932 strcmp(device_path, "missing") == 0)
1933 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1934 else
1935 ret = PTR_ERR(device);
53b381b3 1936 goto out;
a27a94c2 1937 }
dfe25020 1938
eede2bf3
OS
1939 if (btrfs_pinned_by_swapfile(fs_info, device)) {
1940 btrfs_warn_in_rcu(fs_info,
1941 "cannot remove device %s (devid %llu) due to active swapfile",
1942 rcu_str_deref(device->name), device->devid);
1943 ret = -ETXTBSY;
1944 goto out;
1945 }
1946
401e29c1 1947 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 1948 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1949 goto out;
63a212ab
SB
1950 }
1951
ebbede42
AJ
1952 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1953 fs_info->fs_devices->rw_devices == 1) {
183860f6 1954 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1955 goto out;
2b82032c
YZ
1956 }
1957
ebbede42 1958 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 1959 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1960 list_del_init(&device->dev_alloc_list);
c3929c36 1961 device->fs_devices->rw_devices--;
34441361 1962 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1963 }
a061fc8d 1964
d7901554 1965 mutex_unlock(&uuid_mutex);
a061fc8d 1966 ret = btrfs_shrink_device(device, 0);
d7901554 1967 mutex_lock(&uuid_mutex);
a061fc8d 1968 if (ret)
9b3517e9 1969 goto error_undo;
a061fc8d 1970
63a212ab
SB
1971 /*
1972 * TODO: the superblock still includes this device in its num_devices
1973 * counter although write_all_supers() is not locked out. This
1974 * could give a filesystem state which requires a degraded mount.
1975 */
f331a952 1976 ret = btrfs_rm_dev_item(device);
a061fc8d 1977 if (ret)
9b3517e9 1978 goto error_undo;
a061fc8d 1979
e12c9621 1980 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 1981 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
1982
1983 /*
1984 * the device list mutex makes sure that we don't change
1985 * the device list while someone else is writing out all
d7306801
FDBM
1986 * the device supers. Whoever is writing all supers, should
1987 * lock the device list mutex before getting the number of
1988 * devices in the super block (super_copy). Conversely,
1989 * whoever updates the number of devices in the super block
1990 * (super_copy) should hold the device list mutex.
e5e9a520 1991 */
1f78160c 1992
41a52a0f
AJ
1993 /*
1994 * In normal cases the cur_devices == fs_devices. But in case
1995 * of deleting a seed device, the cur_devices should point to
1996 * its own fs_devices listed under the fs_devices->seed.
1997 */
1f78160c 1998 cur_devices = device->fs_devices;
b5185197 1999 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2000 list_del_rcu(&device->dev_list);
e5e9a520 2001
41a52a0f
AJ
2002 cur_devices->num_devices--;
2003 cur_devices->total_devices--;
b4993e64
AJ
2004 /* Update total_devices of the parent fs_devices if it's seed */
2005 if (cur_devices != fs_devices)
2006 fs_devices->total_devices--;
2b82032c 2007
e6e674bd 2008 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2009 cur_devices->missing_devices--;
cd02dca5 2010
d6507cf1 2011 btrfs_assign_next_active_device(device, NULL);
2b82032c 2012
0bfaa9c5 2013 if (device->bdev) {
41a52a0f 2014 cur_devices->open_devices--;
0bfaa9c5 2015 /* remove sysfs entry */
b5185197 2016 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 2017 }
99994cde 2018
0b246afa
JM
2019 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2020 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2021 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2022
cea67ab9
JM
2023 /*
2024 * at this point, the device is zero sized and detached from
2025 * the devices list. All that's left is to zero out the old
2026 * supers and free the device.
2027 */
ebbede42 2028 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2029 btrfs_scratch_superblocks(device->bdev, device->name->str);
2030
2031 btrfs_close_bdev(device);
8e75fd89
NB
2032 synchronize_rcu();
2033 btrfs_free_device(device);
cea67ab9 2034
1f78160c 2035 if (cur_devices->open_devices == 0) {
e4404d6e 2036 while (fs_devices) {
8321cf25
RS
2037 if (fs_devices->seed == cur_devices) {
2038 fs_devices->seed = cur_devices->seed;
e4404d6e 2039 break;
8321cf25 2040 }
e4404d6e 2041 fs_devices = fs_devices->seed;
2b82032c 2042 }
1f78160c 2043 cur_devices->seed = NULL;
0226e0eb 2044 close_fs_devices(cur_devices);
1f78160c 2045 free_fs_devices(cur_devices);
2b82032c
YZ
2046 }
2047
a061fc8d
CM
2048out:
2049 mutex_unlock(&uuid_mutex);
a061fc8d 2050 return ret;
24fc572f 2051
9b3517e9 2052error_undo:
ebbede42 2053 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2054 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2055 list_add(&device->dev_alloc_list,
b5185197 2056 &fs_devices->alloc_list);
c3929c36 2057 device->fs_devices->rw_devices++;
34441361 2058 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2059 }
24fc572f 2060 goto out;
a061fc8d
CM
2061}
2062
68a9db5f 2063void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2064{
d51908ce
AJ
2065 struct btrfs_fs_devices *fs_devices;
2066
68a9db5f 2067 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2068
25e8e911
AJ
2069 /*
2070 * in case of fs with no seed, srcdev->fs_devices will point
2071 * to fs_devices of fs_info. However when the dev being replaced is
2072 * a seed dev it will point to the seed's local fs_devices. In short
2073 * srcdev will have its correct fs_devices in both the cases.
2074 */
2075 fs_devices = srcdev->fs_devices;
d51908ce 2076
e93c89c1 2077 list_del_rcu(&srcdev->dev_list);
619c47f3 2078 list_del(&srcdev->dev_alloc_list);
d51908ce 2079 fs_devices->num_devices--;
e6e674bd 2080 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2081 fs_devices->missing_devices--;
e93c89c1 2082
ebbede42 2083 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2084 fs_devices->rw_devices--;
1357272f 2085
82372bc8 2086 if (srcdev->bdev)
d51908ce 2087 fs_devices->open_devices--;
084b6e7c
QW
2088}
2089
65237ee3 2090void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c 2091{
65237ee3 2092 struct btrfs_fs_info *fs_info = srcdev->fs_info;
084b6e7c 2093 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2094
ebbede42 2095 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2096 /* zero out the old super if it is writable */
2097 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2098 }
14238819
AJ
2099
2100 btrfs_close_bdev(srcdev);
8e75fd89
NB
2101 synchronize_rcu();
2102 btrfs_free_device(srcdev);
94d5f0c2 2103
94d5f0c2
AJ
2104 /* if this is no devs we rather delete the fs_devices */
2105 if (!fs_devices->num_devices) {
2106 struct btrfs_fs_devices *tmp_fs_devices;
2107
6dd38f81
AJ
2108 /*
2109 * On a mounted FS, num_devices can't be zero unless it's a
2110 * seed. In case of a seed device being replaced, the replace
2111 * target added to the sprout FS, so there will be no more
2112 * device left under the seed FS.
2113 */
2114 ASSERT(fs_devices->seeding);
2115
94d5f0c2
AJ
2116 tmp_fs_devices = fs_info->fs_devices;
2117 while (tmp_fs_devices) {
2118 if (tmp_fs_devices->seed == fs_devices) {
2119 tmp_fs_devices->seed = fs_devices->seed;
2120 break;
2121 }
2122 tmp_fs_devices = tmp_fs_devices->seed;
2123 }
2124 fs_devices->seed = NULL;
0226e0eb 2125 close_fs_devices(fs_devices);
8bef8401 2126 free_fs_devices(fs_devices);
94d5f0c2 2127 }
e93c89c1
SB
2128}
2129
4f5ad7bd 2130void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2131{
4f5ad7bd 2132 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2133
d9a071f0 2134 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2135
d9a071f0 2136 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2137
779bf3fe 2138 if (tgtdev->bdev)
d9a071f0 2139 fs_devices->open_devices--;
779bf3fe 2140
d9a071f0 2141 fs_devices->num_devices--;
e93c89c1 2142
d6507cf1 2143 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2144
e93c89c1 2145 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2146
d9a071f0 2147 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2148
2149 /*
2150 * The update_dev_time() with in btrfs_scratch_superblocks()
2151 * may lead to a call to btrfs_show_devname() which will try
2152 * to hold device_list_mutex. And here this device
2153 * is already out of device list, so we don't have to hold
2154 * the device_list_mutex lock.
2155 */
2156 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2157
2158 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2159 synchronize_rcu();
2160 btrfs_free_device(tgtdev);
e93c89c1
SB
2161}
2162
b444ad46
NB
2163static struct btrfs_device *btrfs_find_device_by_path(
2164 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2165{
2166 int ret = 0;
2167 struct btrfs_super_block *disk_super;
2168 u64 devid;
2169 u8 *dev_uuid;
2170 struct block_device *bdev;
2171 struct buffer_head *bh;
b444ad46 2172 struct btrfs_device *device;
7ba15b7d 2173
7ba15b7d 2174 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2175 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d 2176 if (ret)
b444ad46 2177 return ERR_PTR(ret);
7ba15b7d
SB
2178 disk_super = (struct btrfs_super_block *)bh->b_data;
2179 devid = btrfs_stack_device_id(&disk_super->dev_item);
2180 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2181 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2182 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2183 disk_super->metadata_uuid, true);
7239ff4b 2184 else
e4319cd9 2185 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2186 disk_super->fsid, true);
7239ff4b 2187
7ba15b7d 2188 brelse(bh);
b444ad46
NB
2189 if (!device)
2190 device = ERR_PTR(-ENOENT);
7ba15b7d 2191 blkdev_put(bdev, FMODE_READ);
b444ad46 2192 return device;
7ba15b7d
SB
2193}
2194
5c5c0df0
DS
2195/*
2196 * Lookup a device given by device id, or the path if the id is 0.
2197 */
a27a94c2 2198struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2199 struct btrfs_fs_info *fs_info, u64 devid,
2200 const char *device_path)
24e0474b 2201{
a27a94c2 2202 struct btrfs_device *device;
24e0474b 2203
5c5c0df0 2204 if (devid) {
e4319cd9 2205 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
09ba3bc9 2206 NULL, true);
a27a94c2
NB
2207 if (!device)
2208 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2209 return device;
2210 }
2211
2212 if (!device_path || !device_path[0])
2213 return ERR_PTR(-EINVAL);
2214
2215 if (strcmp(device_path, "missing") == 0) {
2216 /* Find first missing device */
2217 list_for_each_entry(device, &fs_info->fs_devices->devices,
2218 dev_list) {
2219 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2220 &device->dev_state) && !device->bdev)
2221 return device;
d95a830c 2222 }
6e927ceb 2223 return ERR_PTR(-ENOENT);
24e0474b 2224 }
6e927ceb
AJ
2225
2226 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2227}
2228
2b82032c
YZ
2229/*
2230 * does all the dirty work required for changing file system's UUID.
2231 */
2ff7e61e 2232static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2233{
0b246afa 2234 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2235 struct btrfs_fs_devices *old_devices;
e4404d6e 2236 struct btrfs_fs_devices *seed_devices;
0b246afa 2237 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2238 struct btrfs_device *device;
2239 u64 super_flags;
2240
a32bf9a3 2241 lockdep_assert_held(&uuid_mutex);
e4404d6e 2242 if (!fs_devices->seeding)
2b82032c
YZ
2243 return -EINVAL;
2244
7239ff4b 2245 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2246 if (IS_ERR(seed_devices))
2247 return PTR_ERR(seed_devices);
2b82032c 2248
e4404d6e
YZ
2249 old_devices = clone_fs_devices(fs_devices);
2250 if (IS_ERR(old_devices)) {
2251 kfree(seed_devices);
2252 return PTR_ERR(old_devices);
2b82032c 2253 }
e4404d6e 2254
c4babc5e 2255 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2256
e4404d6e
YZ
2257 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2258 seed_devices->opened = 1;
2259 INIT_LIST_HEAD(&seed_devices->devices);
2260 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2261 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2262
321a4bf7 2263 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2264 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2265 synchronize_rcu);
2196d6e8
MX
2266 list_for_each_entry(device, &seed_devices->devices, dev_list)
2267 device->fs_devices = seed_devices;
c9513edb 2268
34441361 2269 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2270 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2271 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2272
0395d84f 2273 fs_devices->seeding = false;
2b82032c
YZ
2274 fs_devices->num_devices = 0;
2275 fs_devices->open_devices = 0;
69611ac8 2276 fs_devices->missing_devices = 0;
7f0432d0 2277 fs_devices->rotating = false;
e4404d6e 2278 fs_devices->seed = seed_devices;
2b82032c
YZ
2279
2280 generate_random_uuid(fs_devices->fsid);
7239ff4b 2281 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2282 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2283 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2284
2b82032c
YZ
2285 super_flags = btrfs_super_flags(disk_super) &
2286 ~BTRFS_SUPER_FLAG_SEEDING;
2287 btrfs_set_super_flags(disk_super, super_flags);
2288
2289 return 0;
2290}
2291
2292/*
01327610 2293 * Store the expected generation for seed devices in device items.
2b82032c 2294 */
5c466629 2295static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2296{
5c466629 2297 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2298 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2299 struct btrfs_path *path;
2300 struct extent_buffer *leaf;
2301 struct btrfs_dev_item *dev_item;
2302 struct btrfs_device *device;
2303 struct btrfs_key key;
44880fdc 2304 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2305 u8 dev_uuid[BTRFS_UUID_SIZE];
2306 u64 devid;
2307 int ret;
2308
2309 path = btrfs_alloc_path();
2310 if (!path)
2311 return -ENOMEM;
2312
2b82032c
YZ
2313 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2314 key.offset = 0;
2315 key.type = BTRFS_DEV_ITEM_KEY;
2316
2317 while (1) {
2318 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2319 if (ret < 0)
2320 goto error;
2321
2322 leaf = path->nodes[0];
2323next_slot:
2324 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2325 ret = btrfs_next_leaf(root, path);
2326 if (ret > 0)
2327 break;
2328 if (ret < 0)
2329 goto error;
2330 leaf = path->nodes[0];
2331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2332 btrfs_release_path(path);
2b82032c
YZ
2333 continue;
2334 }
2335
2336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2337 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2338 key.type != BTRFS_DEV_ITEM_KEY)
2339 break;
2340
2341 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2342 struct btrfs_dev_item);
2343 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2344 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2345 BTRFS_UUID_SIZE);
1473b24e 2346 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2347 BTRFS_FSID_SIZE);
e4319cd9 2348 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2349 fs_uuid, true);
79787eaa 2350 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2351
2352 if (device->fs_devices->seeding) {
2353 btrfs_set_device_generation(leaf, dev_item,
2354 device->generation);
2355 btrfs_mark_buffer_dirty(leaf);
2356 }
2357
2358 path->slots[0]++;
2359 goto next_slot;
2360 }
2361 ret = 0;
2362error:
2363 btrfs_free_path(path);
2364 return ret;
2365}
2366
da353f6b 2367int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2368{
5112febb 2369 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2370 struct request_queue *q;
788f20eb
CM
2371 struct btrfs_trans_handle *trans;
2372 struct btrfs_device *device;
2373 struct block_device *bdev;
0b246afa 2374 struct super_block *sb = fs_info->sb;
606686ee 2375 struct rcu_string *name;
5da54bc1 2376 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2377 u64 orig_super_total_bytes;
2378 u64 orig_super_num_devices;
2b82032c 2379 int seeding_dev = 0;
788f20eb 2380 int ret = 0;
7132a262 2381 bool unlocked = false;
788f20eb 2382
5da54bc1 2383 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2384 return -EROFS;
788f20eb 2385
a5d16333 2386 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2387 fs_info->bdev_holder);
7f59203a
JB
2388 if (IS_ERR(bdev))
2389 return PTR_ERR(bdev);
a2135011 2390
5da54bc1 2391 if (fs_devices->seeding) {
2b82032c
YZ
2392 seeding_dev = 1;
2393 down_write(&sb->s_umount);
2394 mutex_lock(&uuid_mutex);
2395 }
2396
8c8bee1d 2397 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2398
5da54bc1 2399 mutex_lock(&fs_devices->device_list_mutex);
694c51fb 2400 list_for_each_entry(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2401 if (device->bdev == bdev) {
2402 ret = -EEXIST;
d25628bd 2403 mutex_unlock(
5da54bc1 2404 &fs_devices->device_list_mutex);
2b82032c 2405 goto error;
788f20eb
CM
2406 }
2407 }
5da54bc1 2408 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2409
0b246afa 2410 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2411 if (IS_ERR(device)) {
788f20eb 2412 /* we can safely leave the fs_devices entry around */
12bd2fc0 2413 ret = PTR_ERR(device);
2b82032c 2414 goto error;
788f20eb
CM
2415 }
2416
78f2c9e6 2417 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2418 if (!name) {
2b82032c 2419 ret = -ENOMEM;
5c4cf6c9 2420 goto error_free_device;
788f20eb 2421 }
606686ee 2422 rcu_assign_pointer(device->name, name);
2b82032c 2423
a22285a6 2424 trans = btrfs_start_transaction(root, 0);
98d5dc13 2425 if (IS_ERR(trans)) {
98d5dc13 2426 ret = PTR_ERR(trans);
5c4cf6c9 2427 goto error_free_device;
98d5dc13
TI
2428 }
2429
d5e2003c 2430 q = bdev_get_queue(bdev);
ebbede42 2431 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2432 device->generation = trans->transid;
0b246afa
JM
2433 device->io_width = fs_info->sectorsize;
2434 device->io_align = fs_info->sectorsize;
2435 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2436 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2437 fs_info->sectorsize);
2cc3c559 2438 device->disk_total_bytes = device->total_bytes;
935e5cc9 2439 device->commit_total_bytes = device->total_bytes;
fb456252 2440 device->fs_info = fs_info;
788f20eb 2441 device->bdev = bdev;
e12c9621 2442 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2443 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2444 device->mode = FMODE_EXCL;
27087f37 2445 device->dev_stats_valid = 1;
9f6d2510 2446 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2447
2b82032c 2448 if (seeding_dev) {
1751e8a6 2449 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2450 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2b82032c 2455 }
788f20eb 2456
5da54bc1 2457 device->fs_devices = fs_devices;
e5e9a520 2458
5da54bc1 2459 mutex_lock(&fs_devices->device_list_mutex);
34441361 2460 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2461 list_add_rcu(&device->dev_list, &fs_devices->devices);
2462 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2463 fs_devices->num_devices++;
2464 fs_devices->open_devices++;
2465 fs_devices->rw_devices++;
2466 fs_devices->total_devices++;
2467 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2468
a5ed45f8 2469 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2470
e884f4f0 2471 if (!blk_queue_nonrot(q))
7f0432d0 2472 fs_devices->rotating = true;
c289811c 2473
39379faa 2474 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2475 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2476 round_down(orig_super_total_bytes + device->total_bytes,
2477 fs_info->sectorsize));
788f20eb 2478
39379faa
NA
2479 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2480 btrfs_set_super_num_devices(fs_info->super_copy,
2481 orig_super_num_devices + 1);
0d39376a
AJ
2482
2483 /* add sysfs device entry */
5da54bc1 2484 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2485
2196d6e8
MX
2486 /*
2487 * we've got more storage, clear any full flags on the space
2488 * infos
2489 */
0b246afa 2490 btrfs_clear_space_info_full(fs_info);
2196d6e8 2491
34441361 2492 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2493 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2494
2b82032c 2495 if (seeding_dev) {
34441361 2496 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2497 ret = init_first_rw_device(trans);
34441361 2498 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2499 if (ret) {
66642832 2500 btrfs_abort_transaction(trans, ret);
d31c32f6 2501 goto error_sysfs;
005d6427 2502 }
2196d6e8
MX
2503 }
2504
8e87e856 2505 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2506 if (ret) {
66642832 2507 btrfs_abort_transaction(trans, ret);
d31c32f6 2508 goto error_sysfs;
2196d6e8
MX
2509 }
2510
2511 if (seeding_dev) {
5c466629 2512 ret = btrfs_finish_sprout(trans);
005d6427 2513 if (ret) {
66642832 2514 btrfs_abort_transaction(trans, ret);
d31c32f6 2515 goto error_sysfs;
005d6427 2516 }
b2373f25 2517
f93c3997
DS
2518 btrfs_sysfs_update_sprout_fsid(fs_devices,
2519 fs_info->fs_devices->fsid);
2b82032c
YZ
2520 }
2521
3a45bb20 2522 ret = btrfs_commit_transaction(trans);
a2135011 2523
2b82032c
YZ
2524 if (seeding_dev) {
2525 mutex_unlock(&uuid_mutex);
2526 up_write(&sb->s_umount);
7132a262 2527 unlocked = true;
788f20eb 2528
79787eaa
JM
2529 if (ret) /* transaction commit */
2530 return ret;
2531
2ff7e61e 2532 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2533 if (ret < 0)
0b246afa 2534 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2535 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2536 trans = btrfs_attach_transaction(root);
2537 if (IS_ERR(trans)) {
2538 if (PTR_ERR(trans) == -ENOENT)
2539 return 0;
7132a262
AJ
2540 ret = PTR_ERR(trans);
2541 trans = NULL;
2542 goto error_sysfs;
671415b7 2543 }
3a45bb20 2544 ret = btrfs_commit_transaction(trans);
2b82032c 2545 }
c9e9f97b 2546
5a1972bd
QW
2547 /* Update ctime/mtime for libblkid */
2548 update_dev_time(device_path);
2b82032c 2549 return ret;
79787eaa 2550
d31c32f6 2551error_sysfs:
5da54bc1 2552 btrfs_sysfs_rm_device_link(fs_devices, device);
39379faa
NA
2553 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2554 mutex_lock(&fs_info->chunk_mutex);
2555 list_del_rcu(&device->dev_list);
2556 list_del(&device->dev_alloc_list);
2557 fs_info->fs_devices->num_devices--;
2558 fs_info->fs_devices->open_devices--;
2559 fs_info->fs_devices->rw_devices--;
2560 fs_info->fs_devices->total_devices--;
2561 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2562 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2563 btrfs_set_super_total_bytes(fs_info->super_copy,
2564 orig_super_total_bytes);
2565 btrfs_set_super_num_devices(fs_info->super_copy,
2566 orig_super_num_devices);
2567 mutex_unlock(&fs_info->chunk_mutex);
2568 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2569error_trans:
0af2c4bf 2570 if (seeding_dev)
1751e8a6 2571 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2572 if (trans)
2573 btrfs_end_transaction(trans);
5c4cf6c9 2574error_free_device:
a425f9d4 2575 btrfs_free_device(device);
2b82032c 2576error:
e525fd89 2577 blkdev_put(bdev, FMODE_EXCL);
7132a262 2578 if (seeding_dev && !unlocked) {
2b82032c
YZ
2579 mutex_unlock(&uuid_mutex);
2580 up_write(&sb->s_umount);
2581 }
c9e9f97b 2582 return ret;
788f20eb
CM
2583}
2584
d397712b
CM
2585static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2586 struct btrfs_device *device)
0b86a832
CM
2587{
2588 int ret;
2589 struct btrfs_path *path;
0b246afa 2590 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2591 struct btrfs_dev_item *dev_item;
2592 struct extent_buffer *leaf;
2593 struct btrfs_key key;
2594
0b86a832
CM
2595 path = btrfs_alloc_path();
2596 if (!path)
2597 return -ENOMEM;
2598
2599 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2600 key.type = BTRFS_DEV_ITEM_KEY;
2601 key.offset = device->devid;
2602
2603 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2604 if (ret < 0)
2605 goto out;
2606
2607 if (ret > 0) {
2608 ret = -ENOENT;
2609 goto out;
2610 }
2611
2612 leaf = path->nodes[0];
2613 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2614
2615 btrfs_set_device_id(leaf, dev_item, device->devid);
2616 btrfs_set_device_type(leaf, dev_item, device->type);
2617 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2618 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2619 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2620 btrfs_set_device_total_bytes(leaf, dev_item,
2621 btrfs_device_get_disk_total_bytes(device));
2622 btrfs_set_device_bytes_used(leaf, dev_item,
2623 btrfs_device_get_bytes_used(device));
0b86a832
CM
2624 btrfs_mark_buffer_dirty(leaf);
2625
2626out:
2627 btrfs_free_path(path);
2628 return ret;
2629}
2630
2196d6e8 2631int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2632 struct btrfs_device *device, u64 new_size)
2633{
0b246afa
JM
2634 struct btrfs_fs_info *fs_info = device->fs_info;
2635 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2636 u64 old_total;
2637 u64 diff;
8f18cf13 2638
ebbede42 2639 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2640 return -EACCES;
2196d6e8 2641
7dfb8be1
NB
2642 new_size = round_down(new_size, fs_info->sectorsize);
2643
34441361 2644 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2645 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2646 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2647
63a212ab 2648 if (new_size <= device->total_bytes ||
401e29c1 2649 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2650 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2651 return -EINVAL;
2196d6e8 2652 }
2b82032c 2653
7dfb8be1
NB
2654 btrfs_set_super_total_bytes(super_copy,
2655 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2656 device->fs_devices->total_rw_bytes += diff;
2657
7cc8e58d
MX
2658 btrfs_device_set_total_bytes(device, new_size);
2659 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2660 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2661 if (list_empty(&device->post_commit_list))
2662 list_add_tail(&device->post_commit_list,
2663 &trans->transaction->dev_update_list);
34441361 2664 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2665
8f18cf13
CM
2666 return btrfs_update_device(trans, device);
2667}
2668
f4208794 2669static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2670{
f4208794 2671 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2672 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2673 int ret;
2674 struct btrfs_path *path;
2675 struct btrfs_key key;
2676
8f18cf13
CM
2677 path = btrfs_alloc_path();
2678 if (!path)
2679 return -ENOMEM;
2680
408fbf19 2681 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2682 key.offset = chunk_offset;
2683 key.type = BTRFS_CHUNK_ITEM_KEY;
2684
2685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2686 if (ret < 0)
2687 goto out;
2688 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2689 btrfs_handle_fs_error(fs_info, -ENOENT,
2690 "Failed lookup while freeing chunk.");
79787eaa
JM
2691 ret = -ENOENT;
2692 goto out;
2693 }
8f18cf13
CM
2694
2695 ret = btrfs_del_item(trans, root, path);
79787eaa 2696 if (ret < 0)
0b246afa
JM
2697 btrfs_handle_fs_error(fs_info, ret,
2698 "Failed to delete chunk item.");
79787eaa 2699out:
8f18cf13 2700 btrfs_free_path(path);
65a246c5 2701 return ret;
8f18cf13
CM
2702}
2703
408fbf19 2704static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2705{
0b246afa 2706 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2707 struct btrfs_disk_key *disk_key;
2708 struct btrfs_chunk *chunk;
2709 u8 *ptr;
2710 int ret = 0;
2711 u32 num_stripes;
2712 u32 array_size;
2713 u32 len = 0;
2714 u32 cur;
2715 struct btrfs_key key;
2716
34441361 2717 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2718 array_size = btrfs_super_sys_array_size(super_copy);
2719
2720 ptr = super_copy->sys_chunk_array;
2721 cur = 0;
2722
2723 while (cur < array_size) {
2724 disk_key = (struct btrfs_disk_key *)ptr;
2725 btrfs_disk_key_to_cpu(&key, disk_key);
2726
2727 len = sizeof(*disk_key);
2728
2729 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2730 chunk = (struct btrfs_chunk *)(ptr + len);
2731 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2732 len += btrfs_chunk_item_size(num_stripes);
2733 } else {
2734 ret = -EIO;
2735 break;
2736 }
408fbf19 2737 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2738 key.offset == chunk_offset) {
2739 memmove(ptr, ptr + len, array_size - (cur + len));
2740 array_size -= len;
2741 btrfs_set_super_sys_array_size(super_copy, array_size);
2742 } else {
2743 ptr += len;
2744 cur += len;
2745 }
2746 }
34441361 2747 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2748 return ret;
2749}
2750
60ca842e
OS
2751/*
2752 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2753 * @logical: Logical block offset in bytes.
2754 * @length: Length of extent in bytes.
2755 *
2756 * Return: Chunk mapping or ERR_PTR.
2757 */
2758struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2759 u64 logical, u64 length)
592d92ee
LB
2760{
2761 struct extent_map_tree *em_tree;
2762 struct extent_map *em;
2763
c8bf1b67 2764 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2765 read_lock(&em_tree->lock);
2766 em = lookup_extent_mapping(em_tree, logical, length);
2767 read_unlock(&em_tree->lock);
2768
2769 if (!em) {
2770 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2771 logical, length);
2772 return ERR_PTR(-EINVAL);
2773 }
2774
2775 if (em->start > logical || em->start + em->len < logical) {
2776 btrfs_crit(fs_info,
2777 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2778 logical, length, em->start, em->start + em->len);
2779 free_extent_map(em);
2780 return ERR_PTR(-EINVAL);
2781 }
2782
2783 /* callers are responsible for dropping em's ref. */
2784 return em;
2785}
2786
97aff912 2787int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2788{
97aff912 2789 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2790 struct extent_map *em;
2791 struct map_lookup *map;
2196d6e8 2792 u64 dev_extent_len = 0;
47ab2a6c 2793 int i, ret = 0;
0b246afa 2794 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2795
60ca842e 2796 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2797 if (IS_ERR(em)) {
47ab2a6c
JB
2798 /*
2799 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2800 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2801 * do anything we still error out.
2802 */
2803 ASSERT(0);
592d92ee 2804 return PTR_ERR(em);
47ab2a6c 2805 }
95617d69 2806 map = em->map_lookup;
34441361 2807 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2808 check_system_chunk(trans, map->type);
34441361 2809 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2810
57ba4cb8
FM
2811 /*
2812 * Take the device list mutex to prevent races with the final phase of
2813 * a device replace operation that replaces the device object associated
2814 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2815 */
2816 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2817 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2818 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2819 ret = btrfs_free_dev_extent(trans, device,
2820 map->stripes[i].physical,
2821 &dev_extent_len);
47ab2a6c 2822 if (ret) {
57ba4cb8 2823 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2824 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2825 goto out;
2826 }
a061fc8d 2827
2196d6e8 2828 if (device->bytes_used > 0) {
34441361 2829 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2830 btrfs_device_set_bytes_used(device,
2831 device->bytes_used - dev_extent_len);
a5ed45f8 2832 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2833 btrfs_clear_space_info_full(fs_info);
34441361 2834 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2835 }
a061fc8d 2836
64bc6c2a
NB
2837 ret = btrfs_update_device(trans, device);
2838 if (ret) {
2839 mutex_unlock(&fs_devices->device_list_mutex);
2840 btrfs_abort_transaction(trans, ret);
2841 goto out;
dfe25020 2842 }
8f18cf13 2843 }
57ba4cb8
FM
2844 mutex_unlock(&fs_devices->device_list_mutex);
2845
f4208794 2846 ret = btrfs_free_chunk(trans, chunk_offset);
47ab2a6c 2847 if (ret) {
66642832 2848 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2849 goto out;
2850 }
8f18cf13 2851
6bccf3ab 2852 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2853
8f18cf13 2854 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2855 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2856 if (ret) {
66642832 2857 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2858 goto out;
2859 }
8f18cf13
CM
2860 }
2861
5a98ec01 2862 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 2863 if (ret) {
66642832 2864 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2865 goto out;
2866 }
2b82032c 2867
47ab2a6c 2868out:
2b82032c
YZ
2869 /* once for us */
2870 free_extent_map(em);
47ab2a6c
JB
2871 return ret;
2872}
2b82032c 2873
5b4aacef 2874static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2875{
5b4aacef 2876 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2877 struct btrfs_trans_handle *trans;
47ab2a6c 2878 int ret;
2b82032c 2879
67c5e7d4
FM
2880 /*
2881 * Prevent races with automatic removal of unused block groups.
2882 * After we relocate and before we remove the chunk with offset
2883 * chunk_offset, automatic removal of the block group can kick in,
2884 * resulting in a failure when calling btrfs_remove_chunk() below.
2885 *
2886 * Make sure to acquire this mutex before doing a tree search (dev
2887 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2888 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2889 * we release the path used to search the chunk/dev tree and before
2890 * the current task acquires this mutex and calls us.
2891 */
a32bf9a3 2892 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 2893
47ab2a6c 2894 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2895 btrfs_scrub_pause(fs_info);
0b246afa 2896 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2897 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2898 if (ret)
2899 return ret;
2900
19c4d2f9
CM
2901 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2902 chunk_offset);
2903 if (IS_ERR(trans)) {
2904 ret = PTR_ERR(trans);
2905 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2906 return ret;
2907 }
2908
47ab2a6c 2909 /*
19c4d2f9
CM
2910 * step two, delete the device extents and the
2911 * chunk tree entries
47ab2a6c 2912 */
97aff912 2913 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 2914 btrfs_end_transaction(trans);
19c4d2f9 2915 return ret;
2b82032c
YZ
2916}
2917
2ff7e61e 2918static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2919{
0b246afa 2920 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2921 struct btrfs_path *path;
2922 struct extent_buffer *leaf;
2923 struct btrfs_chunk *chunk;
2924 struct btrfs_key key;
2925 struct btrfs_key found_key;
2b82032c 2926 u64 chunk_type;
ba1bf481
JB
2927 bool retried = false;
2928 int failed = 0;
2b82032c
YZ
2929 int ret;
2930
2931 path = btrfs_alloc_path();
2932 if (!path)
2933 return -ENOMEM;
2934
ba1bf481 2935again:
2b82032c
YZ
2936 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2937 key.offset = (u64)-1;
2938 key.type = BTRFS_CHUNK_ITEM_KEY;
2939
2940 while (1) {
0b246afa 2941 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2942 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2943 if (ret < 0) {
0b246afa 2944 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2945 goto error;
67c5e7d4 2946 }
79787eaa 2947 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2948
2949 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2950 key.type);
67c5e7d4 2951 if (ret)
0b246afa 2952 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2953 if (ret < 0)
2954 goto error;
2955 if (ret > 0)
2956 break;
1a40e23b 2957
2b82032c
YZ
2958 leaf = path->nodes[0];
2959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2960
2b82032c
YZ
2961 chunk = btrfs_item_ptr(leaf, path->slots[0],
2962 struct btrfs_chunk);
2963 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2964 btrfs_release_path(path);
8f18cf13 2965
2b82032c 2966 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 2967 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
2968 if (ret == -ENOSPC)
2969 failed++;
14586651
HS
2970 else
2971 BUG_ON(ret);
2b82032c 2972 }
0b246afa 2973 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 2974
2b82032c
YZ
2975 if (found_key.offset == 0)
2976 break;
2977 key.offset = found_key.offset - 1;
2978 }
2979 ret = 0;
ba1bf481
JB
2980 if (failed && !retried) {
2981 failed = 0;
2982 retried = true;
2983 goto again;
fae7f21c 2984 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2985 ret = -ENOSPC;
2986 }
2b82032c
YZ
2987error:
2988 btrfs_free_path(path);
2989 return ret;
8f18cf13
CM
2990}
2991
a6f93c71
LB
2992/*
2993 * return 1 : allocate a data chunk successfully,
2994 * return <0: errors during allocating a data chunk,
2995 * return 0 : no need to allocate a data chunk.
2996 */
2997static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2998 u64 chunk_offset)
2999{
32da5386 3000 struct btrfs_block_group *cache;
a6f93c71
LB
3001 u64 bytes_used;
3002 u64 chunk_type;
3003
3004 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3005 ASSERT(cache);
3006 chunk_type = cache->flags;
3007 btrfs_put_block_group(cache);
3008
5ae21692
JT
3009 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3010 return 0;
3011
3012 spin_lock(&fs_info->data_sinfo->lock);
3013 bytes_used = fs_info->data_sinfo->bytes_used;
3014 spin_unlock(&fs_info->data_sinfo->lock);
3015
3016 if (!bytes_used) {
3017 struct btrfs_trans_handle *trans;
3018 int ret;
3019
3020 trans = btrfs_join_transaction(fs_info->tree_root);
3021 if (IS_ERR(trans))
3022 return PTR_ERR(trans);
3023
3024 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3025 btrfs_end_transaction(trans);
3026 if (ret < 0)
3027 return ret;
3028 return 1;
a6f93c71 3029 }
5ae21692 3030
a6f93c71
LB
3031 return 0;
3032}
3033
6bccf3ab 3034static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3035 struct btrfs_balance_control *bctl)
3036{
6bccf3ab 3037 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3038 struct btrfs_trans_handle *trans;
3039 struct btrfs_balance_item *item;
3040 struct btrfs_disk_balance_args disk_bargs;
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key;
3044 int ret, err;
3045
3046 path = btrfs_alloc_path();
3047 if (!path)
3048 return -ENOMEM;
3049
3050 trans = btrfs_start_transaction(root, 0);
3051 if (IS_ERR(trans)) {
3052 btrfs_free_path(path);
3053 return PTR_ERR(trans);
3054 }
3055
3056 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3057 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3058 key.offset = 0;
3059
3060 ret = btrfs_insert_empty_item(trans, root, path, &key,
3061 sizeof(*item));
3062 if (ret)
3063 goto out;
3064
3065 leaf = path->nodes[0];
3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067
b159fa28 3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3069
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076
3077 btrfs_set_balance_flags(leaf, item, bctl->flags);
3078
3079 btrfs_mark_buffer_dirty(leaf);
3080out:
3081 btrfs_free_path(path);
3a45bb20 3082 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3083 if (err && !ret)
3084 ret = err;
3085 return ret;
3086}
3087
6bccf3ab 3088static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3089{
6bccf3ab 3090 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3091 struct btrfs_trans_handle *trans;
3092 struct btrfs_path *path;
3093 struct btrfs_key key;
3094 int ret, err;
3095
3096 path = btrfs_alloc_path();
3097 if (!path)
3098 return -ENOMEM;
3099
3100 trans = btrfs_start_transaction(root, 0);
3101 if (IS_ERR(trans)) {
3102 btrfs_free_path(path);
3103 return PTR_ERR(trans);
3104 }
3105
3106 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3107 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3108 key.offset = 0;
3109
3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111 if (ret < 0)
3112 goto out;
3113 if (ret > 0) {
3114 ret = -ENOENT;
3115 goto out;
3116 }
3117
3118 ret = btrfs_del_item(trans, root, path);
3119out:
3120 btrfs_free_path(path);
3a45bb20 3121 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3122 if (err && !ret)
3123 ret = err;
3124 return ret;
3125}
3126
59641015
ID
3127/*
3128 * This is a heuristic used to reduce the number of chunks balanced on
3129 * resume after balance was interrupted.
3130 */
3131static void update_balance_args(struct btrfs_balance_control *bctl)
3132{
3133 /*
3134 * Turn on soft mode for chunk types that were being converted.
3135 */
3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142
3143 /*
3144 * Turn on usage filter if is not already used. The idea is
3145 * that chunks that we have already balanced should be
3146 * reasonably full. Don't do it for chunks that are being
3147 * converted - that will keep us from relocating unconverted
3148 * (albeit full) chunks.
3149 */
3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->data.usage = 90;
3155 }
3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->sys.usage = 90;
3161 }
3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->meta.usage = 90;
3167 }
3168}
3169
149196a2
DS
3170/*
3171 * Clear the balance status in fs_info and delete the balance item from disk.
3172 */
3173static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3174{
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3176 int ret;
c9e9f97b
ID
3177
3178 BUG_ON(!fs_info->balance_ctl);
3179
3180 spin_lock(&fs_info->balance_lock);
3181 fs_info->balance_ctl = NULL;
3182 spin_unlock(&fs_info->balance_lock);
3183
3184 kfree(bctl);
149196a2
DS
3185 ret = del_balance_item(fs_info);
3186 if (ret)
3187 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3188}
3189
ed25e9b2
ID
3190/*
3191 * Balance filters. Return 1 if chunk should be filtered out
3192 * (should not be balanced).
3193 */
899c81ea 3194static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3195 struct btrfs_balance_args *bargs)
3196{
899c81ea
ID
3197 chunk_type = chunk_to_extended(chunk_type) &
3198 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3199
899c81ea 3200 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3201 return 0;
3202
3203 return 1;
3204}
3205
dba72cb3 3206static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3207 struct btrfs_balance_args *bargs)
bc309467 3208{
32da5386 3209 struct btrfs_block_group *cache;
bc309467
DS
3210 u64 chunk_used;
3211 u64 user_thresh_min;
3212 u64 user_thresh_max;
3213 int ret = 1;
3214
3215 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3216 chunk_used = cache->used;
bc309467
DS
3217
3218 if (bargs->usage_min == 0)
3219 user_thresh_min = 0;
3220 else
b3470b5d
DS
3221 user_thresh_min = div_factor_fine(cache->length,
3222 bargs->usage_min);
bc309467
DS
3223
3224 if (bargs->usage_max == 0)
3225 user_thresh_max = 1;
3226 else if (bargs->usage_max > 100)
b3470b5d 3227 user_thresh_max = cache->length;
bc309467 3228 else
b3470b5d
DS
3229 user_thresh_max = div_factor_fine(cache->length,
3230 bargs->usage_max);
bc309467
DS
3231
3232 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3233 ret = 0;
3234
3235 btrfs_put_block_group(cache);
3236 return ret;
3237}
3238
dba72cb3 3239static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3240 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3241{
32da5386 3242 struct btrfs_block_group *cache;
5ce5b3c0
ID
3243 u64 chunk_used, user_thresh;
3244 int ret = 1;
3245
3246 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3247 chunk_used = cache->used;
5ce5b3c0 3248
bc309467 3249 if (bargs->usage_min == 0)
3e39cea6 3250 user_thresh = 1;
a105bb88 3251 else if (bargs->usage > 100)
b3470b5d 3252 user_thresh = cache->length;
a105bb88 3253 else
b3470b5d 3254 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3255
5ce5b3c0
ID
3256 if (chunk_used < user_thresh)
3257 ret = 0;
3258
3259 btrfs_put_block_group(cache);
3260 return ret;
3261}
3262
409d404b
ID
3263static int chunk_devid_filter(struct extent_buffer *leaf,
3264 struct btrfs_chunk *chunk,
3265 struct btrfs_balance_args *bargs)
3266{
3267 struct btrfs_stripe *stripe;
3268 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3269 int i;
3270
3271 for (i = 0; i < num_stripes; i++) {
3272 stripe = btrfs_stripe_nr(chunk, i);
3273 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3274 return 0;
3275 }
3276
3277 return 1;
3278}
3279
946c9256
DS
3280static u64 calc_data_stripes(u64 type, int num_stripes)
3281{
3282 const int index = btrfs_bg_flags_to_raid_index(type);
3283 const int ncopies = btrfs_raid_array[index].ncopies;
3284 const int nparity = btrfs_raid_array[index].nparity;
3285
3286 if (nparity)
3287 return num_stripes - nparity;
3288 else
3289 return num_stripes / ncopies;
3290}
3291
94e60d5a
ID
3292/* [pstart, pend) */
3293static int chunk_drange_filter(struct extent_buffer *leaf,
3294 struct btrfs_chunk *chunk,
94e60d5a
ID
3295 struct btrfs_balance_args *bargs)
3296{
3297 struct btrfs_stripe *stripe;
3298 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3299 u64 stripe_offset;
3300 u64 stripe_length;
946c9256 3301 u64 type;
94e60d5a
ID
3302 int factor;
3303 int i;
3304
3305 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3306 return 0;
3307
946c9256
DS
3308 type = btrfs_chunk_type(leaf, chunk);
3309 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3310
3311 for (i = 0; i < num_stripes; i++) {
3312 stripe = btrfs_stripe_nr(chunk, i);
3313 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3314 continue;
3315
3316 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3317 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3318 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3319
3320 if (stripe_offset < bargs->pend &&
3321 stripe_offset + stripe_length > bargs->pstart)
3322 return 0;
3323 }
3324
3325 return 1;
3326}
3327
ea67176a
ID
3328/* [vstart, vend) */
3329static int chunk_vrange_filter(struct extent_buffer *leaf,
3330 struct btrfs_chunk *chunk,
3331 u64 chunk_offset,
3332 struct btrfs_balance_args *bargs)
3333{
3334 if (chunk_offset < bargs->vend &&
3335 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3336 /* at least part of the chunk is inside this vrange */
3337 return 0;
3338
3339 return 1;
3340}
3341
dee32d0a
GAP
3342static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3343 struct btrfs_chunk *chunk,
3344 struct btrfs_balance_args *bargs)
3345{
3346 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347
3348 if (bargs->stripes_min <= num_stripes
3349 && num_stripes <= bargs->stripes_max)
3350 return 0;
3351
3352 return 1;
3353}
3354
899c81ea 3355static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3356 struct btrfs_balance_args *bargs)
3357{
3358 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3359 return 0;
3360
899c81ea
ID
3361 chunk_type = chunk_to_extended(chunk_type) &
3362 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3363
899c81ea 3364 if (bargs->target == chunk_type)
cfa4c961
ID
3365 return 1;
3366
3367 return 0;
3368}
3369
6ec0896c 3370static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3371 struct btrfs_chunk *chunk, u64 chunk_offset)
3372{
6ec0896c 3373 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3374 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3375 struct btrfs_balance_args *bargs = NULL;
3376 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3377
3378 /* type filter */
3379 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3380 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3381 return 0;
3382 }
3383
3384 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3385 bargs = &bctl->data;
3386 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3387 bargs = &bctl->sys;
3388 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3389 bargs = &bctl->meta;
3390
ed25e9b2
ID
3391 /* profiles filter */
3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3393 chunk_profiles_filter(chunk_type, bargs)) {
3394 return 0;
5ce5b3c0
ID
3395 }
3396
3397 /* usage filter */
3398 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3399 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3400 return 0;
bc309467 3401 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3402 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3403 return 0;
409d404b
ID
3404 }
3405
3406 /* devid filter */
3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3408 chunk_devid_filter(leaf, chunk, bargs)) {
3409 return 0;
94e60d5a
ID
3410 }
3411
3412 /* drange filter, makes sense only with devid filter */
3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3414 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3415 return 0;
ea67176a
ID
3416 }
3417
3418 /* vrange filter */
3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3420 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3421 return 0;
ed25e9b2
ID
3422 }
3423
dee32d0a
GAP
3424 /* stripes filter */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3426 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3427 return 0;
3428 }
3429
cfa4c961
ID
3430 /* soft profile changing mode */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3432 chunk_soft_convert_filter(chunk_type, bargs)) {
3433 return 0;
3434 }
3435
7d824b6f
DS
3436 /*
3437 * limited by count, must be the last filter
3438 */
3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3440 if (bargs->limit == 0)
3441 return 0;
3442 else
3443 bargs->limit--;
12907fc7
DS
3444 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3445 /*
3446 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3447 * determined here because we do not have the global information
12907fc7
DS
3448 * about the count of all chunks that satisfy the filters.
3449 */
3450 if (bargs->limit_max == 0)
3451 return 0;
3452 else
3453 bargs->limit_max--;
7d824b6f
DS
3454 }
3455
f43ffb60
ID
3456 return 1;
3457}
3458
c9e9f97b 3459static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3460{
19a39dce 3461 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3462 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3463 u64 chunk_type;
f43ffb60 3464 struct btrfs_chunk *chunk;
5a488b9d 3465 struct btrfs_path *path = NULL;
ec44a35c 3466 struct btrfs_key key;
ec44a35c 3467 struct btrfs_key found_key;
f43ffb60
ID
3468 struct extent_buffer *leaf;
3469 int slot;
c9e9f97b
ID
3470 int ret;
3471 int enospc_errors = 0;
19a39dce 3472 bool counting = true;
12907fc7 3473 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3474 u64 limit_data = bctl->data.limit;
3475 u64 limit_meta = bctl->meta.limit;
3476 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3477 u32 count_data = 0;
3478 u32 count_meta = 0;
3479 u32 count_sys = 0;
2c9fe835 3480 int chunk_reserved = 0;
ec44a35c 3481
ec44a35c 3482 path = btrfs_alloc_path();
17e9f796
MF
3483 if (!path) {
3484 ret = -ENOMEM;
3485 goto error;
3486 }
19a39dce
ID
3487
3488 /* zero out stat counters */
3489 spin_lock(&fs_info->balance_lock);
3490 memset(&bctl->stat, 0, sizeof(bctl->stat));
3491 spin_unlock(&fs_info->balance_lock);
3492again:
7d824b6f 3493 if (!counting) {
12907fc7
DS
3494 /*
3495 * The single value limit and min/max limits use the same bytes
3496 * in the
3497 */
7d824b6f
DS
3498 bctl->data.limit = limit_data;
3499 bctl->meta.limit = limit_meta;
3500 bctl->sys.limit = limit_sys;
3501 }
ec44a35c
CM
3502 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3503 key.offset = (u64)-1;
3504 key.type = BTRFS_CHUNK_ITEM_KEY;
3505
d397712b 3506 while (1) {
19a39dce 3507 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3508 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3509 ret = -ECANCELED;
3510 goto error;
3511 }
3512
67c5e7d4 3513 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3514 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3515 if (ret < 0) {
3516 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3517 goto error;
67c5e7d4 3518 }
ec44a35c
CM
3519
3520 /*
3521 * this shouldn't happen, it means the last relocate
3522 * failed
3523 */
3524 if (ret == 0)
c9e9f97b 3525 BUG(); /* FIXME break ? */
ec44a35c
CM
3526
3527 ret = btrfs_previous_item(chunk_root, path, 0,
3528 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3529 if (ret) {
67c5e7d4 3530 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3531 ret = 0;
ec44a35c 3532 break;
c9e9f97b 3533 }
7d9eb12c 3534
f43ffb60
ID
3535 leaf = path->nodes[0];
3536 slot = path->slots[0];
3537 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3538
67c5e7d4
FM
3539 if (found_key.objectid != key.objectid) {
3540 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3541 break;
67c5e7d4 3542 }
7d9eb12c 3543
f43ffb60 3544 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3545 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3546
19a39dce
ID
3547 if (!counting) {
3548 spin_lock(&fs_info->balance_lock);
3549 bctl->stat.considered++;
3550 spin_unlock(&fs_info->balance_lock);
3551 }
3552
6ec0896c 3553 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3554
b3b4aa74 3555 btrfs_release_path(path);
67c5e7d4
FM
3556 if (!ret) {
3557 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3558 goto loop;
67c5e7d4 3559 }
f43ffb60 3560
19a39dce 3561 if (counting) {
67c5e7d4 3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3563 spin_lock(&fs_info->balance_lock);
3564 bctl->stat.expected++;
3565 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3566
3567 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3568 count_data++;
3569 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3570 count_sys++;
3571 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3572 count_meta++;
3573
3574 goto loop;
3575 }
3576
3577 /*
3578 * Apply limit_min filter, no need to check if the LIMITS
3579 * filter is used, limit_min is 0 by default
3580 */
3581 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3582 count_data < bctl->data.limit_min)
3583 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3584 count_meta < bctl->meta.limit_min)
3585 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3586 count_sys < bctl->sys.limit_min)) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3588 goto loop;
3589 }
3590
a6f93c71
LB
3591 if (!chunk_reserved) {
3592 /*
3593 * We may be relocating the only data chunk we have,
3594 * which could potentially end up with losing data's
3595 * raid profile, so lets allocate an empty one in
3596 * advance.
3597 */
3598 ret = btrfs_may_alloc_data_chunk(fs_info,
3599 found_key.offset);
2c9fe835
ZL
3600 if (ret < 0) {
3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 goto error;
a6f93c71
LB
3603 } else if (ret == 1) {
3604 chunk_reserved = 1;
2c9fe835 3605 }
2c9fe835
ZL
3606 }
3607
5b4aacef 3608 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3609 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce 3610 if (ret == -ENOSPC) {
c9e9f97b 3611 enospc_errors++;
eede2bf3
OS
3612 } else if (ret == -ETXTBSY) {
3613 btrfs_info(fs_info,
3614 "skipping relocation of block group %llu due to active swapfile",
3615 found_key.offset);
3616 ret = 0;
3617 } else if (ret) {
3618 goto error;
19a39dce
ID
3619 } else {
3620 spin_lock(&fs_info->balance_lock);
3621 bctl->stat.completed++;
3622 spin_unlock(&fs_info->balance_lock);
3623 }
f43ffb60 3624loop:
795a3321
ID
3625 if (found_key.offset == 0)
3626 break;
ba1bf481 3627 key.offset = found_key.offset - 1;
ec44a35c 3628 }
c9e9f97b 3629
19a39dce
ID
3630 if (counting) {
3631 btrfs_release_path(path);
3632 counting = false;
3633 goto again;
3634 }
ec44a35c
CM
3635error:
3636 btrfs_free_path(path);
c9e9f97b 3637 if (enospc_errors) {
efe120a0 3638 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3639 enospc_errors);
c9e9f97b
ID
3640 if (!ret)
3641 ret = -ENOSPC;
3642 }
3643
ec44a35c
CM
3644 return ret;
3645}
3646
0c460c0d
ID
3647/**
3648 * alloc_profile_is_valid - see if a given profile is valid and reduced
3649 * @flags: profile to validate
3650 * @extended: if true @flags is treated as an extended profile
3651 */
3652static int alloc_profile_is_valid(u64 flags, int extended)
3653{
3654 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3655 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3656
3657 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3658
3659 /* 1) check that all other bits are zeroed */
3660 if (flags & ~mask)
3661 return 0;
3662
3663 /* 2) see if profile is reduced */
3664 if (flags == 0)
3665 return !extended; /* "0" is valid for usual profiles */
3666
c1499166 3667 return has_single_bit_set(flags);
0c460c0d
ID
3668}
3669
837d5b6e
ID
3670static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3671{
a7e99c69
ID
3672 /* cancel requested || normal exit path */
3673 return atomic_read(&fs_info->balance_cancel_req) ||
3674 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3675 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3676}
3677
bdcd3c97
AM
3678/* Non-zero return value signifies invalidity */
3679static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3680 u64 allowed)
3681{
3682 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3683 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3684 (bctl_arg->target & ~allowed)));
3685}
3686
56fc37d9
AJ
3687/*
3688 * Fill @buf with textual description of balance filter flags @bargs, up to
3689 * @size_buf including the terminating null. The output may be trimmed if it
3690 * does not fit into the provided buffer.
3691 */
3692static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3693 u32 size_buf)
3694{
3695 int ret;
3696 u32 size_bp = size_buf;
3697 char *bp = buf;
3698 u64 flags = bargs->flags;
3699 char tmp_buf[128] = {'\0'};
3700
3701 if (!flags)
3702 return;
3703
3704#define CHECK_APPEND_NOARG(a) \
3705 do { \
3706 ret = snprintf(bp, size_bp, (a)); \
3707 if (ret < 0 || ret >= size_bp) \
3708 goto out_overflow; \
3709 size_bp -= ret; \
3710 bp += ret; \
3711 } while (0)
3712
3713#define CHECK_APPEND_1ARG(a, v1) \
3714 do { \
3715 ret = snprintf(bp, size_bp, (a), (v1)); \
3716 if (ret < 0 || ret >= size_bp) \
3717 goto out_overflow; \
3718 size_bp -= ret; \
3719 bp += ret; \
3720 } while (0)
3721
3722#define CHECK_APPEND_2ARG(a, v1, v2) \
3723 do { \
3724 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3725 if (ret < 0 || ret >= size_bp) \
3726 goto out_overflow; \
3727 size_bp -= ret; \
3728 bp += ret; \
3729 } while (0)
3730
158da513
DS
3731 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3732 CHECK_APPEND_1ARG("convert=%s,",
3733 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
3734
3735 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3736 CHECK_APPEND_NOARG("soft,");
3737
3738 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3739 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3740 sizeof(tmp_buf));
3741 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3742 }
3743
3744 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3745 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3746
3747 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3748 CHECK_APPEND_2ARG("usage=%u..%u,",
3749 bargs->usage_min, bargs->usage_max);
3750
3751 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3752 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3753
3754 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3755 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3756 bargs->pstart, bargs->pend);
3757
3758 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3759 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3760 bargs->vstart, bargs->vend);
3761
3762 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3763 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3764
3765 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3766 CHECK_APPEND_2ARG("limit=%u..%u,",
3767 bargs->limit_min, bargs->limit_max);
3768
3769 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3770 CHECK_APPEND_2ARG("stripes=%u..%u,",
3771 bargs->stripes_min, bargs->stripes_max);
3772
3773#undef CHECK_APPEND_2ARG
3774#undef CHECK_APPEND_1ARG
3775#undef CHECK_APPEND_NOARG
3776
3777out_overflow:
3778
3779 if (size_bp < size_buf)
3780 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3781 else
3782 buf[0] = '\0';
3783}
3784
3785static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3786{
3787 u32 size_buf = 1024;
3788 char tmp_buf[192] = {'\0'};
3789 char *buf;
3790 char *bp;
3791 u32 size_bp = size_buf;
3792 int ret;
3793 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3794
3795 buf = kzalloc(size_buf, GFP_KERNEL);
3796 if (!buf)
3797 return;
3798
3799 bp = buf;
3800
3801#define CHECK_APPEND_1ARG(a, v1) \
3802 do { \
3803 ret = snprintf(bp, size_bp, (a), (v1)); \
3804 if (ret < 0 || ret >= size_bp) \
3805 goto out_overflow; \
3806 size_bp -= ret; \
3807 bp += ret; \
3808 } while (0)
3809
3810 if (bctl->flags & BTRFS_BALANCE_FORCE)
3811 CHECK_APPEND_1ARG("%s", "-f ");
3812
3813 if (bctl->flags & BTRFS_BALANCE_DATA) {
3814 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3815 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3816 }
3817
3818 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3819 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3820 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3821 }
3822
3823 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3824 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3825 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3826 }
3827
3828#undef CHECK_APPEND_1ARG
3829
3830out_overflow:
3831
3832 if (size_bp < size_buf)
3833 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3834 btrfs_info(fs_info, "balance: %s %s",
3835 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3836 "resume" : "start", buf);
3837
3838 kfree(buf);
3839}
3840
c9e9f97b 3841/*
dccdb07b 3842 * Should be called with balance mutexe held
c9e9f97b 3843 */
6fcf6e2b
DS
3844int btrfs_balance(struct btrfs_fs_info *fs_info,
3845 struct btrfs_balance_control *bctl,
c9e9f97b
ID
3846 struct btrfs_ioctl_balance_args *bargs)
3847{
14506127 3848 u64 meta_target, data_target;
f43ffb60 3849 u64 allowed;
e4837f8f 3850 int mixed = 0;
c9e9f97b 3851 int ret;
8dabb742 3852 u64 num_devices;
de98ced9 3853 unsigned seq;
e62869be 3854 bool reducing_redundancy;
081db89b 3855 int i;
c9e9f97b 3856
837d5b6e 3857 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3858 atomic_read(&fs_info->balance_pause_req) ||
3859 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3860 ret = -EINVAL;
3861 goto out;
3862 }
3863
e4837f8f
ID
3864 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3865 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3866 mixed = 1;
3867
f43ffb60
ID
3868 /*
3869 * In case of mixed groups both data and meta should be picked,
3870 * and identical options should be given for both of them.
3871 */
e4837f8f
ID
3872 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3873 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3874 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3875 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3876 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 3877 btrfs_err(fs_info,
6dac13f8 3878 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
3879 ret = -EINVAL;
3880 goto out;
3881 }
3882 }
3883
b35cf1f0
JB
3884 /*
3885 * rw_devices will not change at the moment, device add/delete/replace
3886 * are excluded by EXCL_OP
3887 */
3888 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
3889
3890 /*
3891 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3892 * special bit for it, to make it easier to distinguish. Thus we need
3893 * to set it manually, or balance would refuse the profile.
3894 */
3895 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
3896 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3897 if (num_devices >= btrfs_raid_array[i].devs_min)
3898 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 3899
bdcd3c97 3900 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e 3901 btrfs_err(fs_info,
6dac13f8 3902 "balance: invalid convert data profile %s",
158da513 3903 btrfs_bg_type_to_raid_name(bctl->data.target));
e4d8ec0f
ID
3904 ret = -EINVAL;
3905 goto out;
3906 }
bdcd3c97 3907 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3908 btrfs_err(fs_info,
6dac13f8 3909 "balance: invalid convert metadata profile %s",
158da513 3910 btrfs_bg_type_to_raid_name(bctl->meta.target));
e4d8ec0f
ID
3911 ret = -EINVAL;
3912 goto out;
3913 }
bdcd3c97 3914 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3915 btrfs_err(fs_info,
6dac13f8 3916 "balance: invalid convert system profile %s",
158da513 3917 btrfs_bg_type_to_raid_name(bctl->sys.target));
e4d8ec0f
ID
3918 ret = -EINVAL;
3919 goto out;
3920 }
3921
6079e12c
DS
3922 /*
3923 * Allow to reduce metadata or system integrity only if force set for
3924 * profiles with redundancy (copies, parity)
3925 */
3926 allowed = 0;
3927 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3928 if (btrfs_raid_array[i].ncopies >= 2 ||
3929 btrfs_raid_array[i].tolerated_failures >= 1)
3930 allowed |= btrfs_raid_array[i].bg_flag;
3931 }
de98ced9
MX
3932 do {
3933 seq = read_seqbegin(&fs_info->profiles_lock);
3934
3935 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3936 (fs_info->avail_system_alloc_bits & allowed) &&
3937 !(bctl->sys.target & allowed)) ||
3938 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3939 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 3940 !(bctl->meta.target & allowed)))
e62869be 3941 reducing_redundancy = true;
5a8067c0 3942 else
e62869be 3943 reducing_redundancy = false;
5a8067c0
FM
3944
3945 /* if we're not converting, the target field is uninitialized */
3946 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3947 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3948 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3949 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 3950 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3951
e62869be 3952 if (reducing_redundancy) {
5a8067c0
FM
3953 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3954 btrfs_info(fs_info,
e62869be 3955 "balance: force reducing metadata redundancy");
5a8067c0
FM
3956 } else {
3957 btrfs_err(fs_info,
e62869be 3958 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
3959 ret = -EINVAL;
3960 goto out;
3961 }
3962 }
3963
14506127
AB
3964 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3965 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3966 btrfs_warn(fs_info,
6dac13f8 3967 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
3968 btrfs_bg_type_to_raid_name(meta_target),
3969 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
3970 }
3971
9e967495
FM
3972 if (fs_info->send_in_progress) {
3973 btrfs_warn_rl(fs_info,
3974"cannot run balance while send operations are in progress (%d in progress)",
3975 fs_info->send_in_progress);
3976 ret = -EAGAIN;
3977 goto out;
3978 }
3979
6bccf3ab 3980 ret = insert_balance_item(fs_info, bctl);
59641015 3981 if (ret && ret != -EEXIST)
0940ebf6
ID
3982 goto out;
3983
59641015
ID
3984 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3985 BUG_ON(ret == -EEXIST);
833aae18
DS
3986 BUG_ON(fs_info->balance_ctl);
3987 spin_lock(&fs_info->balance_lock);
3988 fs_info->balance_ctl = bctl;
3989 spin_unlock(&fs_info->balance_lock);
59641015
ID
3990 } else {
3991 BUG_ON(ret != -EEXIST);
3992 spin_lock(&fs_info->balance_lock);
3993 update_balance_args(bctl);
3994 spin_unlock(&fs_info->balance_lock);
3995 }
c9e9f97b 3996
3009a62f
DS
3997 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3998 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 3999 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4000 mutex_unlock(&fs_info->balance_mutex);
4001
4002 ret = __btrfs_balance(fs_info);
4003
4004 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4005 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4006 btrfs_info(fs_info, "balance: paused");
4007 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4008 btrfs_info(fs_info, "balance: canceled");
4009 else
4010 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4011
3009a62f 4012 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4013
4014 if (bargs) {
4015 memset(bargs, 0, sizeof(*bargs));
008ef096 4016 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4017 }
4018
3a01aa7a
ID
4019 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4020 balance_need_close(fs_info)) {
149196a2 4021 reset_balance_state(fs_info);
a17c95df 4022 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
4023 }
4024
837d5b6e 4025 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4026
4027 return ret;
4028out:
59641015 4029 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4030 reset_balance_state(fs_info);
a17c95df 4031 else
59641015 4032 kfree(bctl);
a17c95df
DS
4033 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4034
59641015
ID
4035 return ret;
4036}
4037
4038static int balance_kthread(void *data)
4039{
2b6ba629 4040 struct btrfs_fs_info *fs_info = data;
9555c6c1 4041 int ret = 0;
59641015 4042
59641015 4043 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4044 if (fs_info->balance_ctl)
6fcf6e2b 4045 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4046 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4047
59641015
ID
4048 return ret;
4049}
4050
2b6ba629
ID
4051int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4052{
4053 struct task_struct *tsk;
4054
1354e1a1 4055 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4056 if (!fs_info->balance_ctl) {
1354e1a1 4057 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4058 return 0;
4059 }
1354e1a1 4060 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4061
3cdde224 4062 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4063 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4064 return 0;
4065 }
4066
02ee654d
AJ
4067 /*
4068 * A ro->rw remount sequence should continue with the paused balance
4069 * regardless of who pauses it, system or the user as of now, so set
4070 * the resume flag.
4071 */
4072 spin_lock(&fs_info->balance_lock);
4073 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4074 spin_unlock(&fs_info->balance_lock);
4075
2b6ba629 4076 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4077 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4078}
4079
68310a5e 4080int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4081{
59641015
ID
4082 struct btrfs_balance_control *bctl;
4083 struct btrfs_balance_item *item;
4084 struct btrfs_disk_balance_args disk_bargs;
4085 struct btrfs_path *path;
4086 struct extent_buffer *leaf;
4087 struct btrfs_key key;
4088 int ret;
4089
4090 path = btrfs_alloc_path();
4091 if (!path)
4092 return -ENOMEM;
4093
59641015 4094 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4095 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4096 key.offset = 0;
4097
68310a5e 4098 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4099 if (ret < 0)
68310a5e 4100 goto out;
59641015
ID
4101 if (ret > 0) { /* ret = -ENOENT; */
4102 ret = 0;
68310a5e
ID
4103 goto out;
4104 }
4105
4106 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4107 if (!bctl) {
4108 ret = -ENOMEM;
4109 goto out;
59641015
ID
4110 }
4111
4112 leaf = path->nodes[0];
4113 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4114
68310a5e
ID
4115 bctl->flags = btrfs_balance_flags(leaf, item);
4116 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4117
4118 btrfs_balance_data(leaf, item, &disk_bargs);
4119 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4120 btrfs_balance_meta(leaf, item, &disk_bargs);
4121 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4122 btrfs_balance_sys(leaf, item, &disk_bargs);
4123 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4124
eee95e3f
DS
4125 /*
4126 * This should never happen, as the paused balance state is recovered
4127 * during mount without any chance of other exclusive ops to collide.
4128 *
4129 * This gives the exclusive op status to balance and keeps in paused
4130 * state until user intervention (cancel or umount). If the ownership
4131 * cannot be assigned, show a message but do not fail. The balance
4132 * is in a paused state and must have fs_info::balance_ctl properly
4133 * set up.
4134 */
4135 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4136 btrfs_warn(fs_info,
6dac13f8 4137 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4138
68310a5e 4139 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4140 BUG_ON(fs_info->balance_ctl);
4141 spin_lock(&fs_info->balance_lock);
4142 fs_info->balance_ctl = bctl;
4143 spin_unlock(&fs_info->balance_lock);
68310a5e 4144 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4145out:
4146 btrfs_free_path(path);
ec44a35c
CM
4147 return ret;
4148}
4149
837d5b6e
ID
4150int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4151{
4152 int ret = 0;
4153
4154 mutex_lock(&fs_info->balance_mutex);
4155 if (!fs_info->balance_ctl) {
4156 mutex_unlock(&fs_info->balance_mutex);
4157 return -ENOTCONN;
4158 }
4159
3009a62f 4160 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4161 atomic_inc(&fs_info->balance_pause_req);
4162 mutex_unlock(&fs_info->balance_mutex);
4163
4164 wait_event(fs_info->balance_wait_q,
3009a62f 4165 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4166
4167 mutex_lock(&fs_info->balance_mutex);
4168 /* we are good with balance_ctl ripped off from under us */
3009a62f 4169 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4170 atomic_dec(&fs_info->balance_pause_req);
4171 } else {
4172 ret = -ENOTCONN;
4173 }
4174
4175 mutex_unlock(&fs_info->balance_mutex);
4176 return ret;
4177}
4178
a7e99c69
ID
4179int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4180{
4181 mutex_lock(&fs_info->balance_mutex);
4182 if (!fs_info->balance_ctl) {
4183 mutex_unlock(&fs_info->balance_mutex);
4184 return -ENOTCONN;
4185 }
4186
cf7d20f4
DS
4187 /*
4188 * A paused balance with the item stored on disk can be resumed at
4189 * mount time if the mount is read-write. Otherwise it's still paused
4190 * and we must not allow cancelling as it deletes the item.
4191 */
4192 if (sb_rdonly(fs_info->sb)) {
4193 mutex_unlock(&fs_info->balance_mutex);
4194 return -EROFS;
4195 }
4196
a7e99c69
ID
4197 atomic_inc(&fs_info->balance_cancel_req);
4198 /*
4199 * if we are running just wait and return, balance item is
4200 * deleted in btrfs_balance in this case
4201 */
3009a62f 4202 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4203 mutex_unlock(&fs_info->balance_mutex);
4204 wait_event(fs_info->balance_wait_q,
3009a62f 4205 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4206 mutex_lock(&fs_info->balance_mutex);
4207 } else {
a7e99c69 4208 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4209 /*
4210 * Lock released to allow other waiters to continue, we'll
4211 * reexamine the status again.
4212 */
a7e99c69
ID
4213 mutex_lock(&fs_info->balance_mutex);
4214
a17c95df 4215 if (fs_info->balance_ctl) {
149196a2 4216 reset_balance_state(fs_info);
a17c95df 4217 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4218 btrfs_info(fs_info, "balance: canceled");
a17c95df 4219 }
a7e99c69
ID
4220 }
4221
3009a62f
DS
4222 BUG_ON(fs_info->balance_ctl ||
4223 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4224 atomic_dec(&fs_info->balance_cancel_req);
4225 mutex_unlock(&fs_info->balance_mutex);
4226 return 0;
4227}
4228
803b2f54
SB
4229static int btrfs_uuid_scan_kthread(void *data)
4230{
4231 struct btrfs_fs_info *fs_info = data;
4232 struct btrfs_root *root = fs_info->tree_root;
4233 struct btrfs_key key;
803b2f54
SB
4234 struct btrfs_path *path = NULL;
4235 int ret = 0;
4236 struct extent_buffer *eb;
4237 int slot;
4238 struct btrfs_root_item root_item;
4239 u32 item_size;
f45388f3 4240 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4241
4242 path = btrfs_alloc_path();
4243 if (!path) {
4244 ret = -ENOMEM;
4245 goto out;
4246 }
4247
4248 key.objectid = 0;
4249 key.type = BTRFS_ROOT_ITEM_KEY;
4250 key.offset = 0;
4251
803b2f54 4252 while (1) {
7c829b72
AJ
4253 ret = btrfs_search_forward(root, &key, path,
4254 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4255 if (ret) {
4256 if (ret > 0)
4257 ret = 0;
4258 break;
4259 }
4260
4261 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4262 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4263 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4264 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4265 goto skip;
4266
4267 eb = path->nodes[0];
4268 slot = path->slots[0];
4269 item_size = btrfs_item_size_nr(eb, slot);
4270 if (item_size < sizeof(root_item))
4271 goto skip;
4272
803b2f54
SB
4273 read_extent_buffer(eb, &root_item,
4274 btrfs_item_ptr_offset(eb, slot),
4275 (int)sizeof(root_item));
4276 if (btrfs_root_refs(&root_item) == 0)
4277 goto skip;
f45388f3
FDBM
4278
4279 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4280 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4281 if (trans)
4282 goto update_tree;
4283
4284 btrfs_release_path(path);
803b2f54
SB
4285 /*
4286 * 1 - subvol uuid item
4287 * 1 - received_subvol uuid item
4288 */
4289 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4290 if (IS_ERR(trans)) {
4291 ret = PTR_ERR(trans);
4292 break;
4293 }
f45388f3
FDBM
4294 continue;
4295 } else {
4296 goto skip;
4297 }
4298update_tree:
4299 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4300 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4301 BTRFS_UUID_KEY_SUBVOL,
4302 key.objectid);
4303 if (ret < 0) {
efe120a0 4304 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4305 ret);
803b2f54
SB
4306 break;
4307 }
4308 }
4309
4310 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4311 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4312 root_item.received_uuid,
4313 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4314 key.objectid);
4315 if (ret < 0) {
efe120a0 4316 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4317 ret);
803b2f54
SB
4318 break;
4319 }
4320 }
4321
f45388f3 4322skip:
803b2f54 4323 if (trans) {
3a45bb20 4324 ret = btrfs_end_transaction(trans);
f45388f3 4325 trans = NULL;
803b2f54
SB
4326 if (ret)
4327 break;
4328 }
4329
803b2f54
SB
4330 btrfs_release_path(path);
4331 if (key.offset < (u64)-1) {
4332 key.offset++;
4333 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4334 key.offset = 0;
4335 key.type = BTRFS_ROOT_ITEM_KEY;
4336 } else if (key.objectid < (u64)-1) {
4337 key.offset = 0;
4338 key.type = BTRFS_ROOT_ITEM_KEY;
4339 key.objectid++;
4340 } else {
4341 break;
4342 }
4343 cond_resched();
4344 }
4345
4346out:
4347 btrfs_free_path(path);
f45388f3 4348 if (trans && !IS_ERR(trans))
3a45bb20 4349 btrfs_end_transaction(trans);
803b2f54 4350 if (ret)
efe120a0 4351 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4352 else
afcdd129 4353 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4354 up(&fs_info->uuid_tree_rescan_sem);
4355 return 0;
4356}
4357
70f80175
SB
4358/*
4359 * Callback for btrfs_uuid_tree_iterate().
4360 * returns:
4361 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4362 * < 0 if an error occurred.
70f80175
SB
4363 * > 0 if the check failed, which means the caller shall remove the entry.
4364 */
4365static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4366 u8 *uuid, u8 type, u64 subid)
4367{
4368 struct btrfs_key key;
4369 int ret = 0;
4370 struct btrfs_root *subvol_root;
4371
4372 if (type != BTRFS_UUID_KEY_SUBVOL &&
4373 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4374 goto out;
4375
4376 key.objectid = subid;
4377 key.type = BTRFS_ROOT_ITEM_KEY;
4378 key.offset = (u64)-1;
4379 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4380 if (IS_ERR(subvol_root)) {
4381 ret = PTR_ERR(subvol_root);
4382 if (ret == -ENOENT)
4383 ret = 1;
4384 goto out;
4385 }
4386
4387 switch (type) {
4388 case BTRFS_UUID_KEY_SUBVOL:
4389 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4390 ret = 1;
4391 break;
4392 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4393 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4394 BTRFS_UUID_SIZE))
4395 ret = 1;
4396 break;
4397 }
4398
4399out:
4400 return ret;
4401}
4402
4403static int btrfs_uuid_rescan_kthread(void *data)
4404{
4405 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4406 int ret;
4407
4408 /*
4409 * 1st step is to iterate through the existing UUID tree and
4410 * to delete all entries that contain outdated data.
4411 * 2nd step is to add all missing entries to the UUID tree.
4412 */
4413 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4414 if (ret < 0) {
efe120a0 4415 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4416 up(&fs_info->uuid_tree_rescan_sem);
4417 return ret;
4418 }
4419 return btrfs_uuid_scan_kthread(data);
4420}
4421
f7a81ea4
SB
4422int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4423{
4424 struct btrfs_trans_handle *trans;
4425 struct btrfs_root *tree_root = fs_info->tree_root;
4426 struct btrfs_root *uuid_root;
803b2f54
SB
4427 struct task_struct *task;
4428 int ret;
f7a81ea4
SB
4429
4430 /*
4431 * 1 - root node
4432 * 1 - root item
4433 */
4434 trans = btrfs_start_transaction(tree_root, 2);
4435 if (IS_ERR(trans))
4436 return PTR_ERR(trans);
4437
9b7a2440 4438 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4439 if (IS_ERR(uuid_root)) {
6d13f549 4440 ret = PTR_ERR(uuid_root);
66642832 4441 btrfs_abort_transaction(trans, ret);
3a45bb20 4442 btrfs_end_transaction(trans);
6d13f549 4443 return ret;
f7a81ea4
SB
4444 }
4445
4446 fs_info->uuid_root = uuid_root;
4447
3a45bb20 4448 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4449 if (ret)
4450 return ret;
4451
4452 down(&fs_info->uuid_tree_rescan_sem);
4453 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4454 if (IS_ERR(task)) {
70f80175 4455 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4456 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4457 up(&fs_info->uuid_tree_rescan_sem);
4458 return PTR_ERR(task);
4459 }
4460
4461 return 0;
f7a81ea4 4462}
803b2f54 4463
70f80175
SB
4464int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4465{
4466 struct task_struct *task;
4467
4468 down(&fs_info->uuid_tree_rescan_sem);
4469 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4470 if (IS_ERR(task)) {
4471 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4472 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4473 up(&fs_info->uuid_tree_rescan_sem);
4474 return PTR_ERR(task);
4475 }
4476
4477 return 0;
4478}
4479
8f18cf13
CM
4480/*
4481 * shrinking a device means finding all of the device extents past
4482 * the new size, and then following the back refs to the chunks.
4483 * The chunk relocation code actually frees the device extent
4484 */
4485int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4486{
0b246afa
JM
4487 struct btrfs_fs_info *fs_info = device->fs_info;
4488 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4489 struct btrfs_trans_handle *trans;
8f18cf13
CM
4490 struct btrfs_dev_extent *dev_extent = NULL;
4491 struct btrfs_path *path;
4492 u64 length;
8f18cf13
CM
4493 u64 chunk_offset;
4494 int ret;
4495 int slot;
ba1bf481
JB
4496 int failed = 0;
4497 bool retried = false;
8f18cf13
CM
4498 struct extent_buffer *l;
4499 struct btrfs_key key;
0b246afa 4500 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4501 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4502 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4503 u64 diff;
61d0d0d2 4504 u64 start;
7dfb8be1
NB
4505
4506 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4507 start = new_size;
0e4324a4 4508 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4509
401e29c1 4510 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4511 return -EINVAL;
4512
8f18cf13
CM
4513 path = btrfs_alloc_path();
4514 if (!path)
4515 return -ENOMEM;
4516
0338dff6 4517 path->reada = READA_BACK;
8f18cf13 4518
61d0d0d2
NB
4519 trans = btrfs_start_transaction(root, 0);
4520 if (IS_ERR(trans)) {
4521 btrfs_free_path(path);
4522 return PTR_ERR(trans);
4523 }
4524
34441361 4525 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4526
7cc8e58d 4527 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4528 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4529 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4530 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4531 }
61d0d0d2
NB
4532
4533 /*
4534 * Once the device's size has been set to the new size, ensure all
4535 * in-memory chunks are synced to disk so that the loop below sees them
4536 * and relocates them accordingly.
4537 */
1c11b63e 4538 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4539 mutex_unlock(&fs_info->chunk_mutex);
4540 ret = btrfs_commit_transaction(trans);
4541 if (ret)
4542 goto done;
4543 } else {
4544 mutex_unlock(&fs_info->chunk_mutex);
4545 btrfs_end_transaction(trans);
4546 }
8f18cf13 4547
ba1bf481 4548again:
8f18cf13
CM
4549 key.objectid = device->devid;
4550 key.offset = (u64)-1;
4551 key.type = BTRFS_DEV_EXTENT_KEY;
4552
213e64da 4553 do {
0b246afa 4554 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4556 if (ret < 0) {
0b246afa 4557 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4558 goto done;
67c5e7d4 4559 }
8f18cf13
CM
4560
4561 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4562 if (ret)
0b246afa 4563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4564 if (ret < 0)
4565 goto done;
4566 if (ret) {
4567 ret = 0;
b3b4aa74 4568 btrfs_release_path(path);
bf1fb512 4569 break;
8f18cf13
CM
4570 }
4571
4572 l = path->nodes[0];
4573 slot = path->slots[0];
4574 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4575
ba1bf481 4576 if (key.objectid != device->devid) {
0b246afa 4577 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4578 btrfs_release_path(path);
bf1fb512 4579 break;
ba1bf481 4580 }
8f18cf13
CM
4581
4582 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4583 length = btrfs_dev_extent_length(l, dev_extent);
4584
ba1bf481 4585 if (key.offset + length <= new_size) {
0b246afa 4586 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4587 btrfs_release_path(path);
d6397bae 4588 break;
ba1bf481 4589 }
8f18cf13 4590
8f18cf13 4591 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4592 btrfs_release_path(path);
8f18cf13 4593
a6f93c71
LB
4594 /*
4595 * We may be relocating the only data chunk we have,
4596 * which could potentially end up with losing data's
4597 * raid profile, so lets allocate an empty one in
4598 * advance.
4599 */
4600 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4601 if (ret < 0) {
4602 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4603 goto done;
4604 }
4605
0b246afa
JM
4606 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4607 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
eede2bf3 4608 if (ret == -ENOSPC) {
ba1bf481 4609 failed++;
eede2bf3
OS
4610 } else if (ret) {
4611 if (ret == -ETXTBSY) {
4612 btrfs_warn(fs_info,
4613 "could not shrink block group %llu due to active swapfile",
4614 chunk_offset);
4615 }
4616 goto done;
4617 }
213e64da 4618 } while (key.offset-- > 0);
ba1bf481
JB
4619
4620 if (failed && !retried) {
4621 failed = 0;
4622 retried = true;
4623 goto again;
4624 } else if (failed && retried) {
4625 ret = -ENOSPC;
ba1bf481 4626 goto done;
8f18cf13
CM
4627 }
4628
d6397bae 4629 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4630 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4631 if (IS_ERR(trans)) {
4632 ret = PTR_ERR(trans);
4633 goto done;
4634 }
4635
34441361 4636 mutex_lock(&fs_info->chunk_mutex);
7cc8e58d 4637 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4638 if (list_empty(&device->post_commit_list))
4639 list_add_tail(&device->post_commit_list,
4640 &trans->transaction->dev_update_list);
d6397bae 4641
d6397bae 4642 WARN_ON(diff > old_total);
7dfb8be1
NB
4643 btrfs_set_super_total_bytes(super_copy,
4644 round_down(old_total - diff, fs_info->sectorsize));
34441361 4645 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4646
4647 /* Now btrfs_update_device() will change the on-disk size. */
4648 ret = btrfs_update_device(trans, device);
801660b0
AJ
4649 if (ret < 0) {
4650 btrfs_abort_transaction(trans, ret);
4651 btrfs_end_transaction(trans);
4652 } else {
4653 ret = btrfs_commit_transaction(trans);
4654 }
8f18cf13
CM
4655done:
4656 btrfs_free_path(path);
53e489bc 4657 if (ret) {
34441361 4658 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4659 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4660 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4661 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4662 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4663 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4664 }
8f18cf13
CM
4665 return ret;
4666}
4667
2ff7e61e 4668static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4669 struct btrfs_key *key,
4670 struct btrfs_chunk *chunk, int item_size)
4671{
0b246afa 4672 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4673 struct btrfs_disk_key disk_key;
4674 u32 array_size;
4675 u8 *ptr;
4676
34441361 4677 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4678 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4679 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4680 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4681 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4682 return -EFBIG;
fe48a5c0 4683 }
0b86a832
CM
4684
4685 ptr = super_copy->sys_chunk_array + array_size;
4686 btrfs_cpu_key_to_disk(&disk_key, key);
4687 memcpy(ptr, &disk_key, sizeof(disk_key));
4688 ptr += sizeof(disk_key);
4689 memcpy(ptr, chunk, item_size);
4690 item_size += sizeof(disk_key);
4691 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4692 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4693
0b86a832
CM
4694 return 0;
4695}
4696
73c5de00
AJ
4697/*
4698 * sort the devices in descending order by max_avail, total_avail
4699 */
4700static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4701{
73c5de00
AJ
4702 const struct btrfs_device_info *di_a = a;
4703 const struct btrfs_device_info *di_b = b;
9b3f68b9 4704
73c5de00 4705 if (di_a->max_avail > di_b->max_avail)
b2117a39 4706 return -1;
73c5de00 4707 if (di_a->max_avail < di_b->max_avail)
b2117a39 4708 return 1;
73c5de00
AJ
4709 if (di_a->total_avail > di_b->total_avail)
4710 return -1;
4711 if (di_a->total_avail < di_b->total_avail)
4712 return 1;
4713 return 0;
b2117a39 4714}
0b86a832 4715
53b381b3
DW
4716static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4717{
ffe2d203 4718 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4719 return;
4720
ceda0864 4721 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4722}
4723
cfbb825c
DS
4724static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4725{
4726 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4727 return;
4728
4729 btrfs_set_fs_incompat(info, RAID1C34);
4730}
4731
73c5de00 4732static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4733 u64 start, u64 type)
b2117a39 4734{
2ff7e61e 4735 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4736 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4737 struct btrfs_device *device;
73c5de00
AJ
4738 struct map_lookup *map = NULL;
4739 struct extent_map_tree *em_tree;
4740 struct extent_map *em;
4741 struct btrfs_device_info *devices_info = NULL;
4742 u64 total_avail;
4743 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4744 int data_stripes; /* number of stripes that count for
4745 block group size */
73c5de00
AJ
4746 int sub_stripes; /* sub_stripes info for map */
4747 int dev_stripes; /* stripes per dev */
4748 int devs_max; /* max devs to use */
4749 int devs_min; /* min devs needed */
4750 int devs_increment; /* ndevs has to be a multiple of this */
4751 int ncopies; /* how many copies to data has */
b50836ed
HK
4752 int nparity; /* number of stripes worth of bytes to
4753 store parity information */
73c5de00
AJ
4754 int ret;
4755 u64 max_stripe_size;
4756 u64 max_chunk_size;
4757 u64 stripe_size;
23f0ff1e 4758 u64 chunk_size;
73c5de00
AJ
4759 int ndevs;
4760 int i;
4761 int j;
31e50229 4762 int index;
593060d7 4763
0c460c0d 4764 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4765
4117f207
QW
4766 if (list_empty(&fs_devices->alloc_list)) {
4767 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4768 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4769 return -ENOSPC;
4117f207 4770 }
b2117a39 4771
3e72ee88 4772 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4773
31e50229
LB
4774 sub_stripes = btrfs_raid_array[index].sub_stripes;
4775 dev_stripes = btrfs_raid_array[index].dev_stripes;
4776 devs_max = btrfs_raid_array[index].devs_max;
e3ecdb3f
DS
4777 if (!devs_max)
4778 devs_max = BTRFS_MAX_DEVS(info);
31e50229
LB
4779 devs_min = btrfs_raid_array[index].devs_min;
4780 devs_increment = btrfs_raid_array[index].devs_increment;
4781 ncopies = btrfs_raid_array[index].ncopies;
b50836ed 4782 nparity = btrfs_raid_array[index].nparity;
b2117a39 4783
9b3f68b9 4784 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4785 max_stripe_size = SZ_1G;
fce466ea 4786 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
9b3f68b9 4787 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4788 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4789 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4790 max_stripe_size = SZ_1G;
1100373f 4791 else
ee22184b 4792 max_stripe_size = SZ_256M;
73c5de00 4793 max_chunk_size = max_stripe_size;
a40a90a0 4794 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4795 max_stripe_size = SZ_32M;
73c5de00 4796 max_chunk_size = 2 * max_stripe_size;
c17add7a 4797 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
73c5de00 4798 } else {
351fd353 4799 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00 4800 type);
290342f6 4801 BUG();
9b3f68b9
CM
4802 }
4803
52042d8e 4804 /* We don't want a chunk larger than 10% of writable space */
2b82032c
YZ
4805 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4806 max_chunk_size);
9b3f68b9 4807
31e818fe 4808 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4809 GFP_NOFS);
4810 if (!devices_info)
4811 return -ENOMEM;
0cad8a11 4812
9f680ce0 4813 /*
73c5de00
AJ
4814 * in the first pass through the devices list, we gather information
4815 * about the available holes on each device.
9f680ce0 4816 */
73c5de00 4817 ndevs = 0;
ebcc9301 4818 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4819 u64 max_avail;
4820 u64 dev_offset;
b2117a39 4821
ebbede42 4822 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4823 WARN(1, KERN_ERR
efe120a0 4824 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4825 continue;
4826 }
b2117a39 4827
e12c9621
AJ
4828 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4829 &device->dev_state) ||
401e29c1 4830 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4831 continue;
b2117a39 4832
73c5de00
AJ
4833 if (device->total_bytes > device->bytes_used)
4834 total_avail = device->total_bytes - device->bytes_used;
4835 else
4836 total_avail = 0;
38c01b96 4837
4838 /* If there is no space on this device, skip it. */
4839 if (total_avail == 0)
4840 continue;
b2117a39 4841
60dfdf25 4842 ret = find_free_dev_extent(device,
73c5de00
AJ
4843 max_stripe_size * dev_stripes,
4844 &dev_offset, &max_avail);
4845 if (ret && ret != -ENOSPC)
4846 goto error;
b2117a39 4847
73c5de00
AJ
4848 if (ret == 0)
4849 max_avail = max_stripe_size * dev_stripes;
b2117a39 4850
4117f207
QW
4851 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4852 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4853 btrfs_debug(info,
4854 "%s: devid %llu has no free space, have=%llu want=%u",
4855 __func__, device->devid, max_avail,
4856 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 4857 continue;
4117f207 4858 }
b2117a39 4859
063d006f
ES
4860 if (ndevs == fs_devices->rw_devices) {
4861 WARN(1, "%s: found more than %llu devices\n",
4862 __func__, fs_devices->rw_devices);
4863 break;
4864 }
73c5de00
AJ
4865 devices_info[ndevs].dev_offset = dev_offset;
4866 devices_info[ndevs].max_avail = max_avail;
4867 devices_info[ndevs].total_avail = total_avail;
4868 devices_info[ndevs].dev = device;
4869 ++ndevs;
4870 }
b2117a39 4871
73c5de00
AJ
4872 /*
4873 * now sort the devices by hole size / available space
4874 */
4875 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4876 btrfs_cmp_device_info, NULL);
b2117a39 4877
47e6f742
DS
4878 /*
4879 * Round down to number of usable stripes, devs_increment can be any
4880 * number so we can't use round_down()
4881 */
4882 ndevs -= ndevs % devs_increment;
b2117a39 4883
ba89b802 4884 if (ndevs < devs_min) {
73c5de00 4885 ret = -ENOSPC;
4117f207
QW
4886 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4887 btrfs_debug(info,
4888 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 4889 __func__, ndevs, devs_min);
4117f207 4890 }
73c5de00 4891 goto error;
b2117a39 4892 }
9f680ce0 4893
f148ef4d
NB
4894 ndevs = min(ndevs, devs_max);
4895
73c5de00 4896 /*
92e222df
HK
4897 * The primary goal is to maximize the number of stripes, so use as
4898 * many devices as possible, even if the stripes are not maximum sized.
4899 *
4900 * The DUP profile stores more than one stripe per device, the
4901 * max_avail is the total size so we have to adjust.
73c5de00 4902 */
92e222df 4903 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4904 num_stripes = ndevs * dev_stripes;
b2117a39 4905
53b381b3
DW
4906 /*
4907 * this will have to be fixed for RAID1 and RAID10 over
4908 * more drives
4909 */
b50836ed 4910 data_stripes = (num_stripes - nparity) / ncopies;
86db2578
CM
4911
4912 /*
4913 * Use the number of data stripes to figure out how big this chunk
4914 * is really going to be in terms of logical address space,
baf92114
HK
4915 * and compare that answer with the max chunk size. If it's higher,
4916 * we try to reduce stripe_size.
86db2578
CM
4917 */
4918 if (stripe_size * data_stripes > max_chunk_size) {
793ff2c8 4919 /*
baf92114
HK
4920 * Reduce stripe_size, round it up to a 16MB boundary again and
4921 * then use it, unless it ends up being even bigger than the
4922 * previous value we had already.
86db2578 4923 */
baf92114
HK
4924 stripe_size = min(round_up(div_u64(max_chunk_size,
4925 data_stripes), SZ_16M),
793ff2c8 4926 stripe_size);
86db2578
CM
4927 }
4928
37db63a4 4929 /* align to BTRFS_STRIPE_LEN */
500ceed8 4930 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4931
4932 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4933 if (!map) {
4934 ret = -ENOMEM;
4935 goto error;
4936 }
4937 map->num_stripes = num_stripes;
9b3f68b9 4938
73c5de00
AJ
4939 for (i = 0; i < ndevs; ++i) {
4940 for (j = 0; j < dev_stripes; ++j) {
4941 int s = i * dev_stripes + j;
4942 map->stripes[s].dev = devices_info[i].dev;
4943 map->stripes[s].physical = devices_info[i].dev_offset +
4944 j * stripe_size;
6324fbf3 4945 }
6324fbf3 4946 }
500ceed8
NB
4947 map->stripe_len = BTRFS_STRIPE_LEN;
4948 map->io_align = BTRFS_STRIPE_LEN;
4949 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4950 map->type = type;
2b82032c 4951 map->sub_stripes = sub_stripes;
0b86a832 4952
23f0ff1e 4953 chunk_size = stripe_size * data_stripes;
0b86a832 4954
23f0ff1e 4955 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
1abe9b8a 4956
172ddd60 4957 em = alloc_extent_map();
2b82032c 4958 if (!em) {
298a8f9c 4959 kfree(map);
b2117a39
MX
4960 ret = -ENOMEM;
4961 goto error;
593060d7 4962 }
298a8f9c 4963 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4964 em->map_lookup = map;
2b82032c 4965 em->start = start;
23f0ff1e 4966 em->len = chunk_size;
2b82032c
YZ
4967 em->block_start = 0;
4968 em->block_len = em->len;
6df9a95e 4969 em->orig_block_len = stripe_size;
593060d7 4970
c8bf1b67 4971 em_tree = &info->mapping_tree;
890871be 4972 write_lock(&em_tree->lock);
09a2a8f9 4973 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4974 if (ret) {
1efb72a3 4975 write_unlock(&em_tree->lock);
0f5d42b2 4976 free_extent_map(em);
1dd4602f 4977 goto error;
0f5d42b2 4978 }
1efb72a3
NB
4979 write_unlock(&em_tree->lock);
4980
23f0ff1e 4981 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
6df9a95e
JB
4982 if (ret)
4983 goto error_del_extent;
2b82032c 4984
bbbf7243
NB
4985 for (i = 0; i < map->num_stripes; i++) {
4986 struct btrfs_device *dev = map->stripes[i].dev;
4987
4988 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
4989 if (list_empty(&dev->post_commit_list))
4990 list_add_tail(&dev->post_commit_list,
4991 &trans->transaction->dev_update_list);
4992 }
43530c46 4993
a5ed45f8 4994 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4995
0f5d42b2 4996 free_extent_map(em);
0b246afa 4997 check_raid56_incompat_flag(info, type);
cfbb825c 4998 check_raid1c34_incompat_flag(info, type);
53b381b3 4999
b2117a39 5000 kfree(devices_info);
2b82032c 5001 return 0;
b2117a39 5002
6df9a95e 5003error_del_extent:
0f5d42b2
JB
5004 write_lock(&em_tree->lock);
5005 remove_extent_mapping(em_tree, em);
5006 write_unlock(&em_tree->lock);
5007
5008 /* One for our allocation */
5009 free_extent_map(em);
5010 /* One for the tree reference */
5011 free_extent_map(em);
b2117a39 5012error:
b2117a39
MX
5013 kfree(devices_info);
5014 return ret;
2b82032c
YZ
5015}
5016
6df9a95e 5017int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
97aff912 5018 u64 chunk_offset, u64 chunk_size)
2b82032c 5019{
97aff912 5020 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab
JM
5021 struct btrfs_root *extent_root = fs_info->extent_root;
5022 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 5023 struct btrfs_key key;
2b82032c
YZ
5024 struct btrfs_device *device;
5025 struct btrfs_chunk *chunk;
5026 struct btrfs_stripe *stripe;
6df9a95e
JB
5027 struct extent_map *em;
5028 struct map_lookup *map;
5029 size_t item_size;
5030 u64 dev_offset;
5031 u64 stripe_size;
5032 int i = 0;
140e639f 5033 int ret = 0;
2b82032c 5034
60ca842e 5035 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
592d92ee
LB
5036 if (IS_ERR(em))
5037 return PTR_ERR(em);
6df9a95e 5038
95617d69 5039 map = em->map_lookup;
6df9a95e
JB
5040 item_size = btrfs_chunk_item_size(map->num_stripes);
5041 stripe_size = em->orig_block_len;
5042
2b82032c 5043 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
5044 if (!chunk) {
5045 ret = -ENOMEM;
5046 goto out;
5047 }
5048
50460e37
FM
5049 /*
5050 * Take the device list mutex to prevent races with the final phase of
5051 * a device replace operation that replaces the device object associated
5052 * with the map's stripes, because the device object's id can change
5053 * at any time during that final phase of the device replace operation
5054 * (dev-replace.c:btrfs_dev_replace_finishing()).
5055 */
0b246afa 5056 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5057 for (i = 0; i < map->num_stripes; i++) {
5058 device = map->stripes[i].dev;
5059 dev_offset = map->stripes[i].physical;
2b82032c 5060
0b86a832 5061 ret = btrfs_update_device(trans, device);
3acd3953 5062 if (ret)
50460e37 5063 break;
b5d9071c
NB
5064 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5065 dev_offset, stripe_size);
6df9a95e 5066 if (ret)
50460e37
FM
5067 break;
5068 }
5069 if (ret) {
0b246afa 5070 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5071 goto out;
2b82032c
YZ
5072 }
5073
2b82032c 5074 stripe = &chunk->stripe;
6df9a95e
JB
5075 for (i = 0; i < map->num_stripes; i++) {
5076 device = map->stripes[i].dev;
5077 dev_offset = map->stripes[i].physical;
0b86a832 5078
e17cade2
CM
5079 btrfs_set_stack_stripe_devid(stripe, device->devid);
5080 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5081 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5082 stripe++;
0b86a832 5083 }
0b246afa 5084 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5085
2b82032c 5086 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5087 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5088 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5089 btrfs_set_stack_chunk_type(chunk, map->type);
5090 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5091 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5092 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5093 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5094 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5095
2b82032c
YZ
5096 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5097 key.type = BTRFS_CHUNK_ITEM_KEY;
5098 key.offset = chunk_offset;
0b86a832 5099
2b82032c 5100 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5101 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5102 /*
5103 * TODO: Cleanup of inserted chunk root in case of
5104 * failure.
5105 */
2ff7e61e 5106 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5107 }
1abe9b8a 5108
6df9a95e 5109out:
0b86a832 5110 kfree(chunk);
6df9a95e 5111 free_extent_map(em);
4ed1d16e 5112 return ret;
2b82032c 5113}
0b86a832 5114
2b82032c 5115/*
52042d8e
AG
5116 * Chunk allocation falls into two parts. The first part does work
5117 * that makes the new allocated chunk usable, but does not do any operation
5118 * that modifies the chunk tree. The second part does the work that
5119 * requires modifying the chunk tree. This division is important for the
2b82032c
YZ
5120 * bootstrap process of adding storage to a seed btrfs.
5121 */
c216b203 5122int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5123{
5124 u64 chunk_offset;
2b82032c 5125
c216b203
NB
5126 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5127 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5128 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5129}
5130
6f8e0fc7 5131static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5132{
6f8e0fc7 5133 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c
YZ
5134 u64 chunk_offset;
5135 u64 sys_chunk_offset;
2b82032c 5136 u64 alloc_profile;
2b82032c
YZ
5137 int ret;
5138
6df9a95e 5139 chunk_offset = find_next_chunk(fs_info);
1b86826d 5140 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5141 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5142 if (ret)
5143 return ret;
2b82032c 5144
0b246afa 5145 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5146 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5147 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5148 return ret;
2b82032c
YZ
5149}
5150
d20983b4
MX
5151static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5152{
fc9a2ac7 5153 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5154
fc9a2ac7 5155 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5156}
5157
2ff7e61e 5158int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5159{
5160 struct extent_map *em;
5161 struct map_lookup *map;
2b82032c 5162 int readonly = 0;
d20983b4 5163 int miss_ndevs = 0;
2b82032c
YZ
5164 int i;
5165
60ca842e 5166 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5167 if (IS_ERR(em))
2b82032c
YZ
5168 return 1;
5169
95617d69 5170 map = em->map_lookup;
2b82032c 5171 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5172 if (test_bit(BTRFS_DEV_STATE_MISSING,
5173 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5174 miss_ndevs++;
5175 continue;
5176 }
ebbede42
AJ
5177 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5178 &map->stripes[i].dev->dev_state)) {
2b82032c 5179 readonly = 1;
d20983b4 5180 goto end;
2b82032c
YZ
5181 }
5182 }
d20983b4
MX
5183
5184 /*
5185 * If the number of missing devices is larger than max errors,
5186 * we can not write the data into that chunk successfully, so
5187 * set it readonly.
5188 */
5189 if (miss_ndevs > btrfs_chunk_max_errors(map))
5190 readonly = 1;
5191end:
0b86a832 5192 free_extent_map(em);
2b82032c 5193 return readonly;
0b86a832
CM
5194}
5195
c8bf1b67 5196void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5197{
5198 struct extent_map *em;
5199
d397712b 5200 while (1) {
c8bf1b67
DS
5201 write_lock(&tree->lock);
5202 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5203 if (em)
c8bf1b67
DS
5204 remove_extent_mapping(tree, em);
5205 write_unlock(&tree->lock);
0b86a832
CM
5206 if (!em)
5207 break;
0b86a832
CM
5208 /* once for us */
5209 free_extent_map(em);
5210 /* once for the tree */
5211 free_extent_map(em);
5212 }
5213}
5214
5d964051 5215int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5216{
5217 struct extent_map *em;
5218 struct map_lookup *map;
f188591e
CM
5219 int ret;
5220
60ca842e 5221 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5222 if (IS_ERR(em))
5223 /*
5224 * We could return errors for these cases, but that could get
5225 * ugly and we'd probably do the same thing which is just not do
5226 * anything else and exit, so return 1 so the callers don't try
5227 * to use other copies.
5228 */
fb7669b5 5229 return 1;
fb7669b5 5230
95617d69 5231 map = em->map_lookup;
c7369b3f 5232 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5233 ret = map->num_stripes;
321aecc6
CM
5234 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5235 ret = map->sub_stripes;
53b381b3
DW
5236 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5237 ret = 2;
5238 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5239 /*
5240 * There could be two corrupted data stripes, we need
5241 * to loop retry in order to rebuild the correct data.
e7e02096 5242 *
8810f751
LB
5243 * Fail a stripe at a time on every retry except the
5244 * stripe under reconstruction.
5245 */
5246 ret = map->num_stripes;
f188591e
CM
5247 else
5248 ret = 1;
5249 free_extent_map(em);
ad6d620e 5250
cb5583dd 5251 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5252 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5253 fs_info->dev_replace.tgtdev)
ad6d620e 5254 ret++;
cb5583dd 5255 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5256
f188591e
CM
5257 return ret;
5258}
5259
2ff7e61e 5260unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5261 u64 logical)
5262{
5263 struct extent_map *em;
5264 struct map_lookup *map;
0b246afa 5265 unsigned long len = fs_info->sectorsize;
53b381b3 5266
60ca842e 5267 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5268
69f03f13
NB
5269 if (!WARN_ON(IS_ERR(em))) {
5270 map = em->map_lookup;
5271 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5272 len = map->stripe_len * nr_data_stripes(map);
5273 free_extent_map(em);
5274 }
53b381b3
DW
5275 return len;
5276}
5277
e4ff5fb5 5278int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5279{
5280 struct extent_map *em;
5281 struct map_lookup *map;
53b381b3
DW
5282 int ret = 0;
5283
60ca842e 5284 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5285
69f03f13
NB
5286 if(!WARN_ON(IS_ERR(em))) {
5287 map = em->map_lookup;
5288 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5289 ret = 1;
5290 free_extent_map(em);
5291 }
53b381b3
DW
5292 return ret;
5293}
5294
30d9861f 5295static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5296 struct map_lookup *map, int first,
8ba0ae78 5297 int dev_replace_is_ongoing)
dfe25020
CM
5298{
5299 int i;
99f92a7c 5300 int num_stripes;
8ba0ae78 5301 int preferred_mirror;
30d9861f
SB
5302 int tolerance;
5303 struct btrfs_device *srcdev;
5304
99f92a7c 5305 ASSERT((map->type &
c7369b3f 5306 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5307
5308 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5309 num_stripes = map->sub_stripes;
5310 else
5311 num_stripes = map->num_stripes;
5312
8ba0ae78
AJ
5313 preferred_mirror = first + current->pid % num_stripes;
5314
30d9861f
SB
5315 if (dev_replace_is_ongoing &&
5316 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5317 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5318 srcdev = fs_info->dev_replace.srcdev;
5319 else
5320 srcdev = NULL;
5321
5322 /*
5323 * try to avoid the drive that is the source drive for a
5324 * dev-replace procedure, only choose it if no other non-missing
5325 * mirror is available
5326 */
5327 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5328 if (map->stripes[preferred_mirror].dev->bdev &&
5329 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5330 return preferred_mirror;
99f92a7c 5331 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5332 if (map->stripes[i].dev->bdev &&
5333 (tolerance || map->stripes[i].dev != srcdev))
5334 return i;
5335 }
dfe25020 5336 }
30d9861f 5337
dfe25020
CM
5338 /* we couldn't find one that doesn't fail. Just return something
5339 * and the io error handling code will clean up eventually
5340 */
8ba0ae78 5341 return preferred_mirror;
dfe25020
CM
5342}
5343
53b381b3
DW
5344static inline int parity_smaller(u64 a, u64 b)
5345{
5346 return a > b;
5347}
5348
5349/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5350static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5351{
5352 struct btrfs_bio_stripe s;
5353 int i;
5354 u64 l;
5355 int again = 1;
5356
5357 while (again) {
5358 again = 0;
cc7539ed 5359 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5360 if (parity_smaller(bbio->raid_map[i],
5361 bbio->raid_map[i+1])) {
53b381b3 5362 s = bbio->stripes[i];
8e5cfb55 5363 l = bbio->raid_map[i];
53b381b3 5364 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5365 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5366 bbio->stripes[i+1] = s;
8e5cfb55 5367 bbio->raid_map[i+1] = l;
2c8cdd6e 5368
53b381b3
DW
5369 again = 1;
5370 }
5371 }
5372 }
5373}
5374
6e9606d2
ZL
5375static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5376{
5377 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5378 /* the size of the btrfs_bio */
6e9606d2 5379 sizeof(struct btrfs_bio) +
e57cf21e 5380 /* plus the variable array for the stripes */
6e9606d2 5381 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5382 /* plus the variable array for the tgt dev */
6e9606d2 5383 sizeof(int) * (real_stripes) +
e57cf21e
CM
5384 /*
5385 * plus the raid_map, which includes both the tgt dev
5386 * and the stripes
5387 */
5388 sizeof(u64) * (total_stripes),
277fb5fc 5389 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5390
5391 atomic_set(&bbio->error, 0);
140475ae 5392 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5393
5394 return bbio;
5395}
5396
5397void btrfs_get_bbio(struct btrfs_bio *bbio)
5398{
140475ae
ER
5399 WARN_ON(!refcount_read(&bbio->refs));
5400 refcount_inc(&bbio->refs);
6e9606d2
ZL
5401}
5402
5403void btrfs_put_bbio(struct btrfs_bio *bbio)
5404{
5405 if (!bbio)
5406 return;
140475ae 5407 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5408 kfree(bbio);
5409}
5410
0b3d4cd3
LB
5411/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5412/*
5413 * Please note that, discard won't be sent to target device of device
5414 * replace.
5415 */
5416static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5417 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5418 struct btrfs_bio **bbio_ret)
5419{
5420 struct extent_map *em;
5421 struct map_lookup *map;
5422 struct btrfs_bio *bbio;
6b7faadd 5423 u64 length = *length_ret;
0b3d4cd3
LB
5424 u64 offset;
5425 u64 stripe_nr;
5426 u64 stripe_nr_end;
5427 u64 stripe_end_offset;
5428 u64 stripe_cnt;
5429 u64 stripe_len;
5430 u64 stripe_offset;
5431 u64 num_stripes;
5432 u32 stripe_index;
5433 u32 factor = 0;
5434 u32 sub_stripes = 0;
5435 u64 stripes_per_dev = 0;
5436 u32 remaining_stripes = 0;
5437 u32 last_stripe = 0;
5438 int ret = 0;
5439 int i;
5440
5441 /* discard always return a bbio */
5442 ASSERT(bbio_ret);
5443
60ca842e 5444 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5445 if (IS_ERR(em))
5446 return PTR_ERR(em);
5447
5448 map = em->map_lookup;
5449 /* we don't discard raid56 yet */
5450 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5451 ret = -EOPNOTSUPP;
5452 goto out;
5453 }
5454
5455 offset = logical - em->start;
2d974619 5456 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5457 *length_ret = length;
0b3d4cd3
LB
5458
5459 stripe_len = map->stripe_len;
5460 /*
5461 * stripe_nr counts the total number of stripes we have to stride
5462 * to get to this block
5463 */
5464 stripe_nr = div64_u64(offset, stripe_len);
5465
5466 /* stripe_offset is the offset of this block in its stripe */
5467 stripe_offset = offset - stripe_nr * stripe_len;
5468
5469 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5470 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5471 stripe_cnt = stripe_nr_end - stripe_nr;
5472 stripe_end_offset = stripe_nr_end * map->stripe_len -
5473 (offset + length);
5474 /*
5475 * after this, stripe_nr is the number of stripes on this
5476 * device we have to walk to find the data, and stripe_index is
5477 * the number of our device in the stripe array
5478 */
5479 num_stripes = 1;
5480 stripe_index = 0;
5481 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5482 BTRFS_BLOCK_GROUP_RAID10)) {
5483 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5484 sub_stripes = 1;
5485 else
5486 sub_stripes = map->sub_stripes;
5487
5488 factor = map->num_stripes / sub_stripes;
5489 num_stripes = min_t(u64, map->num_stripes,
5490 sub_stripes * stripe_cnt);
5491 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5492 stripe_index *= sub_stripes;
5493 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5494 &remaining_stripes);
5495 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5496 last_stripe *= sub_stripes;
c7369b3f 5497 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5498 BTRFS_BLOCK_GROUP_DUP)) {
5499 num_stripes = map->num_stripes;
5500 } else {
5501 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5502 &stripe_index);
5503 }
5504
5505 bbio = alloc_btrfs_bio(num_stripes, 0);
5506 if (!bbio) {
5507 ret = -ENOMEM;
5508 goto out;
5509 }
5510
5511 for (i = 0; i < num_stripes; i++) {
5512 bbio->stripes[i].physical =
5513 map->stripes[stripe_index].physical +
5514 stripe_offset + stripe_nr * map->stripe_len;
5515 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5516
5517 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5518 BTRFS_BLOCK_GROUP_RAID10)) {
5519 bbio->stripes[i].length = stripes_per_dev *
5520 map->stripe_len;
5521
5522 if (i / sub_stripes < remaining_stripes)
5523 bbio->stripes[i].length +=
5524 map->stripe_len;
5525
5526 /*
5527 * Special for the first stripe and
5528 * the last stripe:
5529 *
5530 * |-------|...|-------|
5531 * |----------|
5532 * off end_off
5533 */
5534 if (i < sub_stripes)
5535 bbio->stripes[i].length -=
5536 stripe_offset;
5537
5538 if (stripe_index >= last_stripe &&
5539 stripe_index <= (last_stripe +
5540 sub_stripes - 1))
5541 bbio->stripes[i].length -=
5542 stripe_end_offset;
5543
5544 if (i == sub_stripes - 1)
5545 stripe_offset = 0;
5546 } else {
5547 bbio->stripes[i].length = length;
5548 }
5549
5550 stripe_index++;
5551 if (stripe_index == map->num_stripes) {
5552 stripe_index = 0;
5553 stripe_nr++;
5554 }
5555 }
5556
5557 *bbio_ret = bbio;
5558 bbio->map_type = map->type;
5559 bbio->num_stripes = num_stripes;
5560out:
5561 free_extent_map(em);
5562 return ret;
5563}
5564
5ab56090
LB
5565/*
5566 * In dev-replace case, for repair case (that's the only case where the mirror
5567 * is selected explicitly when calling btrfs_map_block), blocks left of the
5568 * left cursor can also be read from the target drive.
5569 *
5570 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5571 * array of stripes.
5572 * For READ, it also needs to be supported using the same mirror number.
5573 *
5574 * If the requested block is not left of the left cursor, EIO is returned. This
5575 * can happen because btrfs_num_copies() returns one more in the dev-replace
5576 * case.
5577 */
5578static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5579 u64 logical, u64 length,
5580 u64 srcdev_devid, int *mirror_num,
5581 u64 *physical)
5582{
5583 struct btrfs_bio *bbio = NULL;
5584 int num_stripes;
5585 int index_srcdev = 0;
5586 int found = 0;
5587 u64 physical_of_found = 0;
5588 int i;
5589 int ret = 0;
5590
5591 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5592 logical, &length, &bbio, 0, 0);
5593 if (ret) {
5594 ASSERT(bbio == NULL);
5595 return ret;
5596 }
5597
5598 num_stripes = bbio->num_stripes;
5599 if (*mirror_num > num_stripes) {
5600 /*
5601 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5602 * that means that the requested area is not left of the left
5603 * cursor
5604 */
5605 btrfs_put_bbio(bbio);
5606 return -EIO;
5607 }
5608
5609 /*
5610 * process the rest of the function using the mirror_num of the source
5611 * drive. Therefore look it up first. At the end, patch the device
5612 * pointer to the one of the target drive.
5613 */
5614 for (i = 0; i < num_stripes; i++) {
5615 if (bbio->stripes[i].dev->devid != srcdev_devid)
5616 continue;
5617
5618 /*
5619 * In case of DUP, in order to keep it simple, only add the
5620 * mirror with the lowest physical address
5621 */
5622 if (found &&
5623 physical_of_found <= bbio->stripes[i].physical)
5624 continue;
5625
5626 index_srcdev = i;
5627 found = 1;
5628 physical_of_found = bbio->stripes[i].physical;
5629 }
5630
5631 btrfs_put_bbio(bbio);
5632
5633 ASSERT(found);
5634 if (!found)
5635 return -EIO;
5636
5637 *mirror_num = index_srcdev + 1;
5638 *physical = physical_of_found;
5639 return ret;
5640}
5641
73c0f228
LB
5642static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5643 struct btrfs_bio **bbio_ret,
5644 struct btrfs_dev_replace *dev_replace,
5645 int *num_stripes_ret, int *max_errors_ret)
5646{
5647 struct btrfs_bio *bbio = *bbio_ret;
5648 u64 srcdev_devid = dev_replace->srcdev->devid;
5649 int tgtdev_indexes = 0;
5650 int num_stripes = *num_stripes_ret;
5651 int max_errors = *max_errors_ret;
5652 int i;
5653
5654 if (op == BTRFS_MAP_WRITE) {
5655 int index_where_to_add;
5656
5657 /*
5658 * duplicate the write operations while the dev replace
5659 * procedure is running. Since the copying of the old disk to
5660 * the new disk takes place at run time while the filesystem is
5661 * mounted writable, the regular write operations to the old
5662 * disk have to be duplicated to go to the new disk as well.
5663 *
5664 * Note that device->missing is handled by the caller, and that
5665 * the write to the old disk is already set up in the stripes
5666 * array.
5667 */
5668 index_where_to_add = num_stripes;
5669 for (i = 0; i < num_stripes; i++) {
5670 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5671 /* write to new disk, too */
5672 struct btrfs_bio_stripe *new =
5673 bbio->stripes + index_where_to_add;
5674 struct btrfs_bio_stripe *old =
5675 bbio->stripes + i;
5676
5677 new->physical = old->physical;
5678 new->length = old->length;
5679 new->dev = dev_replace->tgtdev;
5680 bbio->tgtdev_map[i] = index_where_to_add;
5681 index_where_to_add++;
5682 max_errors++;
5683 tgtdev_indexes++;
5684 }
5685 }
5686 num_stripes = index_where_to_add;
5687 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5688 int index_srcdev = 0;
5689 int found = 0;
5690 u64 physical_of_found = 0;
5691
5692 /*
5693 * During the dev-replace procedure, the target drive can also
5694 * be used to read data in case it is needed to repair a corrupt
5695 * block elsewhere. This is possible if the requested area is
5696 * left of the left cursor. In this area, the target drive is a
5697 * full copy of the source drive.
5698 */
5699 for (i = 0; i < num_stripes; i++) {
5700 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5701 /*
5702 * In case of DUP, in order to keep it simple,
5703 * only add the mirror with the lowest physical
5704 * address
5705 */
5706 if (found &&
5707 physical_of_found <=
5708 bbio->stripes[i].physical)
5709 continue;
5710 index_srcdev = i;
5711 found = 1;
5712 physical_of_found = bbio->stripes[i].physical;
5713 }
5714 }
5715 if (found) {
5716 struct btrfs_bio_stripe *tgtdev_stripe =
5717 bbio->stripes + num_stripes;
5718
5719 tgtdev_stripe->physical = physical_of_found;
5720 tgtdev_stripe->length =
5721 bbio->stripes[index_srcdev].length;
5722 tgtdev_stripe->dev = dev_replace->tgtdev;
5723 bbio->tgtdev_map[index_srcdev] = num_stripes;
5724
5725 tgtdev_indexes++;
5726 num_stripes++;
5727 }
5728 }
5729
5730 *num_stripes_ret = num_stripes;
5731 *max_errors_ret = max_errors;
5732 bbio->num_tgtdevs = tgtdev_indexes;
5733 *bbio_ret = bbio;
5734}
5735
2b19a1fe
LB
5736static bool need_full_stripe(enum btrfs_map_op op)
5737{
5738 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5739}
5740
5f141126
NB
5741/*
5742 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5743 * tuple. This information is used to calculate how big a
5744 * particular bio can get before it straddles a stripe.
5745 *
5746 * @fs_info - the filesystem
5747 * @logical - address that we want to figure out the geometry of
5748 * @len - the length of IO we are going to perform, starting at @logical
5749 * @op - type of operation - write or read
5750 * @io_geom - pointer used to return values
5751 *
5752 * Returns < 0 in case a chunk for the given logical address cannot be found,
5753 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5754 */
5755int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
89b798ad 5756 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5f141126
NB
5757{
5758 struct extent_map *em;
5759 struct map_lookup *map;
5760 u64 offset;
5761 u64 stripe_offset;
5762 u64 stripe_nr;
5763 u64 stripe_len;
5764 u64 raid56_full_stripe_start = (u64)-1;
5765 int data_stripes;
373c3b80 5766 int ret = 0;
5f141126
NB
5767
5768 ASSERT(op != BTRFS_MAP_DISCARD);
5769
5770 em = btrfs_get_chunk_map(fs_info, logical, len);
5771 if (IS_ERR(em))
5772 return PTR_ERR(em);
5773
5774 map = em->map_lookup;
5775 /* Offset of this logical address in the chunk */
5776 offset = logical - em->start;
5777 /* Len of a stripe in a chunk */
5778 stripe_len = map->stripe_len;
5779 /* Stripe wher this block falls in */
5780 stripe_nr = div64_u64(offset, stripe_len);
5781 /* Offset of stripe in the chunk */
5782 stripe_offset = stripe_nr * stripe_len;
5783 if (offset < stripe_offset) {
5784 btrfs_crit(fs_info,
5785"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5786 stripe_offset, offset, em->start, logical, stripe_len);
373c3b80
JT
5787 ret = -EINVAL;
5788 goto out;
5f141126
NB
5789 }
5790
5791 /* stripe_offset is the offset of this block in its stripe */
5792 stripe_offset = offset - stripe_offset;
5793 data_stripes = nr_data_stripes(map);
5794
5795 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5796 u64 max_len = stripe_len - stripe_offset;
5797
5798 /*
5799 * In case of raid56, we need to know the stripe aligned start
5800 */
5801 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5802 unsigned long full_stripe_len = stripe_len * data_stripes;
5803 raid56_full_stripe_start = offset;
5804
5805 /*
5806 * Allow a write of a full stripe, but make sure we
5807 * don't allow straddling of stripes
5808 */
5809 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5810 full_stripe_len);
5811 raid56_full_stripe_start *= full_stripe_len;
5812
5813 /*
5814 * For writes to RAID[56], allow a full stripeset across
5815 * all disks. For other RAID types and for RAID[56]
5816 * reads, just allow a single stripe (on a single disk).
5817 */
5818 if (op == BTRFS_MAP_WRITE) {
5819 max_len = stripe_len * data_stripes -
5820 (offset - raid56_full_stripe_start);
5821 }
5822 }
5823 len = min_t(u64, em->len - offset, max_len);
5824 } else {
5825 len = em->len - offset;
5826 }
5827
5828 io_geom->len = len;
5829 io_geom->offset = offset;
5830 io_geom->stripe_len = stripe_len;
5831 io_geom->stripe_nr = stripe_nr;
5832 io_geom->stripe_offset = stripe_offset;
5833 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5834
373c3b80
JT
5835out:
5836 /* once for us */
5837 free_extent_map(em);
5838 return ret;
5f141126
NB
5839}
5840
cf8cddd3
CH
5841static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5842 enum btrfs_map_op op,
f2d8d74d 5843 u64 logical, u64 *length,
a1d3c478 5844 struct btrfs_bio **bbio_ret,
8e5cfb55 5845 int mirror_num, int need_raid_map)
0b86a832
CM
5846{
5847 struct extent_map *em;
5848 struct map_lookup *map;
593060d7
CM
5849 u64 stripe_offset;
5850 u64 stripe_nr;
53b381b3 5851 u64 stripe_len;
9d644a62 5852 u32 stripe_index;
cff82672 5853 int data_stripes;
cea9e445 5854 int i;
de11cc12 5855 int ret = 0;
f2d8d74d 5856 int num_stripes;
a236aed1 5857 int max_errors = 0;
2c8cdd6e 5858 int tgtdev_indexes = 0;
a1d3c478 5859 struct btrfs_bio *bbio = NULL;
472262f3
SB
5860 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5861 int dev_replace_is_ongoing = 0;
5862 int num_alloc_stripes;
ad6d620e
SB
5863 int patch_the_first_stripe_for_dev_replace = 0;
5864 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5865 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
5866 struct btrfs_io_geometry geom;
5867
5868 ASSERT(bbio_ret);
0b86a832 5869
0b3d4cd3
LB
5870 if (op == BTRFS_MAP_DISCARD)
5871 return __btrfs_map_block_for_discard(fs_info, logical,
6b7faadd 5872 length, bbio_ret);
0b3d4cd3 5873
89b798ad
NB
5874 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5875 if (ret < 0)
5876 return ret;
0b86a832 5877
89b798ad 5878 em = btrfs_get_chunk_map(fs_info, logical, *length);
f1136989 5879 ASSERT(!IS_ERR(em));
95617d69 5880 map = em->map_lookup;
593060d7 5881
89b798ad 5882 *length = geom.len;
89b798ad
NB
5883 stripe_len = geom.stripe_len;
5884 stripe_nr = geom.stripe_nr;
5885 stripe_offset = geom.stripe_offset;
5886 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 5887 data_stripes = nr_data_stripes(map);
593060d7 5888
cb5583dd 5889 down_read(&dev_replace->rwsem);
472262f3 5890 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
5891 /*
5892 * Hold the semaphore for read during the whole operation, write is
5893 * requested at commit time but must wait.
5894 */
472262f3 5895 if (!dev_replace_is_ongoing)
cb5583dd 5896 up_read(&dev_replace->rwsem);
472262f3 5897
ad6d620e 5898 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5899 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5900 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5901 dev_replace->srcdev->devid,
5902 &mirror_num,
5903 &physical_to_patch_in_first_stripe);
5904 if (ret)
ad6d620e 5905 goto out;
5ab56090
LB
5906 else
5907 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5908 } else if (mirror_num > map->num_stripes) {
5909 mirror_num = 0;
5910 }
5911
f2d8d74d 5912 num_stripes = 1;
cea9e445 5913 stripe_index = 0;
fce3bb9a 5914 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5915 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5916 &stripe_index);
de483734 5917 if (!need_full_stripe(op))
28e1cc7d 5918 mirror_num = 1;
c7369b3f 5919 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 5920 if (need_full_stripe(op))
f2d8d74d 5921 num_stripes = map->num_stripes;
2fff734f 5922 else if (mirror_num)
f188591e 5923 stripe_index = mirror_num - 1;
dfe25020 5924 else {
30d9861f 5925 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 5926 dev_replace_is_ongoing);
a1d3c478 5927 mirror_num = stripe_index + 1;
dfe25020 5928 }
2fff734f 5929
611f0e00 5930 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5931 if (need_full_stripe(op)) {
f2d8d74d 5932 num_stripes = map->num_stripes;
a1d3c478 5933 } else if (mirror_num) {
f188591e 5934 stripe_index = mirror_num - 1;
a1d3c478
JS
5935 } else {
5936 mirror_num = 1;
5937 }
2fff734f 5938
321aecc6 5939 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5940 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5941
47c5713f 5942 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5943 stripe_index *= map->sub_stripes;
5944
de483734 5945 if (need_full_stripe(op))
f2d8d74d 5946 num_stripes = map->sub_stripes;
321aecc6
CM
5947 else if (mirror_num)
5948 stripe_index += mirror_num - 1;
dfe25020 5949 else {
3e74317a 5950 int old_stripe_index = stripe_index;
30d9861f
SB
5951 stripe_index = find_live_mirror(fs_info, map,
5952 stripe_index,
30d9861f 5953 dev_replace_is_ongoing);
3e74317a 5954 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5955 }
53b381b3 5956
ffe2d203 5957 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5958 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5959 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5960 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 5961 stripe_len * data_stripes);
53b381b3
DW
5962
5963 /* RAID[56] write or recovery. Return all stripes */
5964 num_stripes = map->num_stripes;
5965 max_errors = nr_parity_stripes(map);
5966
53b381b3
DW
5967 *length = map->stripe_len;
5968 stripe_index = 0;
5969 stripe_offset = 0;
5970 } else {
5971 /*
5972 * Mirror #0 or #1 means the original data block.
5973 * Mirror #2 is RAID5 parity block.
5974 * Mirror #3 is RAID6 Q block.
5975 */
47c5713f 5976 stripe_nr = div_u64_rem(stripe_nr,
cff82672 5977 data_stripes, &stripe_index);
53b381b3 5978 if (mirror_num > 1)
cff82672 5979 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
5980
5981 /* We distribute the parity blocks across stripes */
47c5713f
DS
5982 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5983 &stripe_index);
de483734 5984 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5985 mirror_num = 1;
53b381b3 5986 }
8790d502
CM
5987 } else {
5988 /*
47c5713f
DS
5989 * after this, stripe_nr is the number of stripes on this
5990 * device we have to walk to find the data, and stripe_index is
5991 * the number of our device in the stripe array
8790d502 5992 */
47c5713f
DS
5993 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5994 &stripe_index);
a1d3c478 5995 mirror_num = stripe_index + 1;
8790d502 5996 }
e042d1ec 5997 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5998 btrfs_crit(fs_info,
5999 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6000 stripe_index, map->num_stripes);
6001 ret = -EINVAL;
6002 goto out;
6003 }
cea9e445 6004
472262f3 6005 num_alloc_stripes = num_stripes;
6fad823f 6006 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6007 if (op == BTRFS_MAP_WRITE)
ad6d620e 6008 num_alloc_stripes <<= 1;
cf8cddd3 6009 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6010 num_alloc_stripes++;
2c8cdd6e 6011 tgtdev_indexes = num_stripes;
ad6d620e 6012 }
2c8cdd6e 6013
6e9606d2 6014 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6015 if (!bbio) {
6016 ret = -ENOMEM;
6017 goto out;
6018 }
6fad823f 6019 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 6020 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 6021
8e5cfb55 6022 /* build raid_map */
2b19a1fe
LB
6023 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6024 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6025 u64 tmp;
9d644a62 6026 unsigned rot;
8e5cfb55
ZL
6027
6028 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6029 sizeof(struct btrfs_bio_stripe) *
6030 num_alloc_stripes +
6031 sizeof(int) * tgtdev_indexes);
6032
6033 /* Work out the disk rotation on this stripe-set */
47c5713f 6034 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6035
6036 /* Fill in the logical address of each stripe */
cff82672
DS
6037 tmp = stripe_nr * data_stripes;
6038 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6039 bbio->raid_map[(i+rot) % num_stripes] =
6040 em->start + (tmp + i) * map->stripe_len;
6041
6042 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6043 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6044 bbio->raid_map[(i+rot+1) % num_stripes] =
6045 RAID6_Q_STRIPE;
6046 }
6047
b89203f7 6048
0b3d4cd3
LB
6049 for (i = 0; i < num_stripes; i++) {
6050 bbio->stripes[i].physical =
6051 map->stripes[stripe_index].physical +
6052 stripe_offset +
6053 stripe_nr * map->stripe_len;
6054 bbio->stripes[i].dev =
6055 map->stripes[stripe_index].dev;
6056 stripe_index++;
593060d7 6057 }
de11cc12 6058
2b19a1fe 6059 if (need_full_stripe(op))
d20983b4 6060 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6061
8e5cfb55
ZL
6062 if (bbio->raid_map)
6063 sort_parity_stripes(bbio, num_stripes);
cc7539ed 6064
73c0f228 6065 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6066 need_full_stripe(op)) {
73c0f228
LB
6067 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6068 &max_errors);
472262f3
SB
6069 }
6070
de11cc12 6071 *bbio_ret = bbio;
10f11900 6072 bbio->map_type = map->type;
de11cc12
LZ
6073 bbio->num_stripes = num_stripes;
6074 bbio->max_errors = max_errors;
6075 bbio->mirror_num = mirror_num;
ad6d620e
SB
6076
6077 /*
6078 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6079 * mirror_num == num_stripes + 1 && dev_replace target drive is
6080 * available as a mirror
6081 */
6082 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6083 WARN_ON(num_stripes > 1);
6084 bbio->stripes[0].dev = dev_replace->tgtdev;
6085 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6086 bbio->mirror_num = map->num_stripes + 1;
6087 }
cea9e445 6088out:
73beece9 6089 if (dev_replace_is_ongoing) {
53176dde
DS
6090 lockdep_assert_held(&dev_replace->rwsem);
6091 /* Unlock and let waiting writers proceed */
cb5583dd 6092 up_read(&dev_replace->rwsem);
73beece9 6093 }
0b86a832 6094 free_extent_map(em);
de11cc12 6095 return ret;
0b86a832
CM
6096}
6097
cf8cddd3 6098int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6099 u64 logical, u64 *length,
a1d3c478 6100 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6101{
b3d3fa51 6102 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6103 mirror_num, 0);
f2d8d74d
CM
6104}
6105
af8e2d1d 6106/* For Scrub/replace */
cf8cddd3 6107int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6108 u64 logical, u64 *length,
825ad4c9 6109 struct btrfs_bio **bbio_ret)
af8e2d1d 6110{
825ad4c9 6111 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6112}
6113
63a9c7b9
NB
6114int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6115 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 6116{
a512bbf8
YZ
6117 struct extent_map *em;
6118 struct map_lookup *map;
6119 u64 *buf;
6120 u64 bytenr;
6121 u64 length;
6122 u64 stripe_nr;
53b381b3 6123 u64 rmap_len;
a512bbf8
YZ
6124 int i, j, nr = 0;
6125
60ca842e 6126 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
592d92ee 6127 if (IS_ERR(em))
835d974f 6128 return -EIO;
835d974f 6129
95617d69 6130 map = em->map_lookup;
a512bbf8 6131 length = em->len;
53b381b3
DW
6132 rmap_len = map->stripe_len;
6133
a512bbf8 6134 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6135 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6136 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6137 length = div_u64(length, map->num_stripes);
ffe2d203 6138 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6139 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6140 rmap_len = map->stripe_len * nr_data_stripes(map);
6141 }
a512bbf8 6142
31e818fe 6143 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6144 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6145
6146 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6147 if (map->stripes[i].physical > physical ||
6148 map->stripes[i].physical + length <= physical)
6149 continue;
6150
6151 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6152 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6153
6154 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6155 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6156 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6157 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6158 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6159 } /* else if RAID[56], multiply by nr_data_stripes().
6160 * Alternatively, just use rmap_len below instead of
6161 * map->stripe_len */
6162
6163 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6164 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6165 for (j = 0; j < nr; j++) {
6166 if (buf[j] == bytenr)
6167 break;
6168 }
934d375b
CM
6169 if (j == nr) {
6170 WARN_ON(nr >= map->num_stripes);
a512bbf8 6171 buf[nr++] = bytenr;
934d375b 6172 }
a512bbf8
YZ
6173 }
6174
a512bbf8
YZ
6175 *logical = buf;
6176 *naddrs = nr;
53b381b3 6177 *stripe_len = rmap_len;
a512bbf8
YZ
6178
6179 free_extent_map(em);
6180 return 0;
f2d8d74d
CM
6181}
6182
4246a0b6 6183static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6184{
326e1dbb
MS
6185 bio->bi_private = bbio->private;
6186 bio->bi_end_io = bbio->end_io;
4246a0b6 6187 bio_endio(bio);
326e1dbb 6188
6e9606d2 6189 btrfs_put_bbio(bbio);
8408c716
MX
6190}
6191
4246a0b6 6192static void btrfs_end_bio(struct bio *bio)
8790d502 6193{
9be3395b 6194 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6195 int is_orig_bio = 0;
8790d502 6196
4e4cbee9 6197 if (bio->bi_status) {
a1d3c478 6198 atomic_inc(&bbio->error);
4e4cbee9
CH
6199 if (bio->bi_status == BLK_STS_IOERR ||
6200 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6201 unsigned int stripe_index =
9be3395b 6202 btrfs_io_bio(bio)->stripe_index;
65f53338 6203 struct btrfs_device *dev;
442a4f63
SB
6204
6205 BUG_ON(stripe_index >= bbio->num_stripes);
6206 dev = bbio->stripes[stripe_index].dev;
597a60fa 6207 if (dev->bdev) {
37226b21 6208 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6209 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6210 BTRFS_DEV_STAT_WRITE_ERRS);
0cc068e6 6211 else if (!(bio->bi_opf & REQ_RAHEAD))
1cb34c8e 6212 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6213 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6214 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6215 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6216 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6217 }
442a4f63
SB
6218 }
6219 }
8790d502 6220
a1d3c478 6221 if (bio == bbio->orig_bio)
7d2b4daa
CM
6222 is_orig_bio = 1;
6223
c404e0dc
MX
6224 btrfs_bio_counter_dec(bbio->fs_info);
6225
a1d3c478 6226 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6227 if (!is_orig_bio) {
6228 bio_put(bio);
a1d3c478 6229 bio = bbio->orig_bio;
7d2b4daa 6230 }
c7b22bb1 6231
9be3395b 6232 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6233 /* only send an error to the higher layers if it is
53b381b3 6234 * beyond the tolerance of the btrfs bio
a236aed1 6235 */
a1d3c478 6236 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6237 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6238 } else {
1259ab75
CM
6239 /*
6240 * this bio is actually up to date, we didn't
6241 * go over the max number of errors
6242 */
2dbe0c77 6243 bio->bi_status = BLK_STS_OK;
1259ab75 6244 }
c55f1396 6245
4246a0b6 6246 btrfs_end_bbio(bbio, bio);
7d2b4daa 6247 } else if (!is_orig_bio) {
8790d502
CM
6248 bio_put(bio);
6249 }
8790d502
CM
6250}
6251
2ff7e61e 6252static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
08635bae 6253 u64 physical, int dev_nr)
de1ee92a
JB
6254{
6255 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6256 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6257
6258 bio->bi_private = bbio;
9be3395b 6259 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6260 bio->bi_end_io = btrfs_end_bio;
4f024f37 6261 bio->bi_iter.bi_sector = physical >> 9;
672d5990
MT
6262 btrfs_debug_in_rcu(fs_info,
6263 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6264 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6265 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6266 bio->bi_iter.bi_size);
74d46992 6267 bio_set_dev(bio, dev->bdev);
c404e0dc 6268
2ff7e61e 6269 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6270
08635bae 6271 btrfsic_submit_bio(bio);
de1ee92a
JB
6272}
6273
de1ee92a
JB
6274static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6275{
6276 atomic_inc(&bbio->error);
6277 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6278 /* Should be the original bio. */
8408c716
MX
6279 WARN_ON(bio != bbio->orig_bio);
6280
9be3395b 6281 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6282 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6283 if (atomic_read(&bbio->error) > bbio->max_errors)
6284 bio->bi_status = BLK_STS_IOERR;
6285 else
6286 bio->bi_status = BLK_STS_OK;
4246a0b6 6287 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6288 }
6289}
6290
58efbc9f 6291blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6292 int mirror_num)
0b86a832 6293{
0b86a832 6294 struct btrfs_device *dev;
8790d502 6295 struct bio *first_bio = bio;
4f024f37 6296 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6297 u64 length = 0;
6298 u64 map_length;
0b86a832 6299 int ret;
08da757d
ZL
6300 int dev_nr;
6301 int total_devs;
a1d3c478 6302 struct btrfs_bio *bbio = NULL;
0b86a832 6303
4f024f37 6304 length = bio->bi_iter.bi_size;
0b86a832 6305 map_length = length;
cea9e445 6306
0b246afa 6307 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6308 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6309 &map_length, &bbio, mirror_num, 1);
c404e0dc 6310 if (ret) {
0b246afa 6311 btrfs_bio_counter_dec(fs_info);
58efbc9f 6312 return errno_to_blk_status(ret);
c404e0dc 6313 }
cea9e445 6314
a1d3c478 6315 total_devs = bbio->num_stripes;
53b381b3
DW
6316 bbio->orig_bio = first_bio;
6317 bbio->private = first_bio->bi_private;
6318 bbio->end_io = first_bio->bi_end_io;
0b246afa 6319 bbio->fs_info = fs_info;
53b381b3
DW
6320 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6321
ad1ba2a0 6322 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6323 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6324 /* In this case, map_length has been set to the length of
6325 a single stripe; not the whole write */
37226b21 6326 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6327 ret = raid56_parity_write(fs_info, bio, bbio,
6328 map_length);
53b381b3 6329 } else {
2ff7e61e
JM
6330 ret = raid56_parity_recover(fs_info, bio, bbio,
6331 map_length, mirror_num, 1);
53b381b3 6332 }
4245215d 6333
0b246afa 6334 btrfs_bio_counter_dec(fs_info);
58efbc9f 6335 return errno_to_blk_status(ret);
53b381b3
DW
6336 }
6337
cea9e445 6338 if (map_length < length) {
0b246afa 6339 btrfs_crit(fs_info,
5d163e0e
JM
6340 "mapping failed logical %llu bio len %llu len %llu",
6341 logical, length, map_length);
cea9e445
CM
6342 BUG();
6343 }
a1d3c478 6344
08da757d 6345 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6346 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6347 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6348 &dev->dev_state) ||
ebbede42
AJ
6349 (bio_op(first_bio) == REQ_OP_WRITE &&
6350 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6351 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6352 continue;
6353 }
6354
3aa8e074 6355 if (dev_nr < total_devs - 1)
8b6c1d56 6356 bio = btrfs_bio_clone(first_bio);
3aa8e074 6357 else
a1d3c478 6358 bio = first_bio;
de1ee92a 6359
2ff7e61e 6360 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
08635bae 6361 dev_nr);
8790d502 6362 }
0b246afa 6363 btrfs_bio_counter_dec(fs_info);
58efbc9f 6364 return BLK_STS_OK;
0b86a832
CM
6365}
6366
09ba3bc9
AJ
6367/*
6368 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6369 * return NULL.
6370 *
6371 * If devid and uuid are both specified, the match must be exact, otherwise
6372 * only devid is used.
6373 *
6374 * If @seed is true, traverse through the seed devices.
6375 */
e4319cd9 6376struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
09ba3bc9
AJ
6377 u64 devid, u8 *uuid, u8 *fsid,
6378 bool seed)
0b86a832 6379{
2b82032c 6380 struct btrfs_device *device;
2b82032c 6381
e4319cd9 6382 while (fs_devices) {
2b82032c 6383 if (!fsid ||
e4319cd9 6384 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
09ba3bc9
AJ
6385 list_for_each_entry(device, &fs_devices->devices,
6386 dev_list) {
6387 if (device->devid == devid &&
6388 (!uuid || memcmp(device->uuid, uuid,
6389 BTRFS_UUID_SIZE) == 0))
6390 return device;
6391 }
2b82032c 6392 }
09ba3bc9
AJ
6393 if (seed)
6394 fs_devices = fs_devices->seed;
6395 else
6396 return NULL;
2b82032c
YZ
6397 }
6398 return NULL;
0b86a832
CM
6399}
6400
2ff7e61e 6401static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6402 u64 devid, u8 *dev_uuid)
6403{
6404 struct btrfs_device *device;
dfe25020 6405
12bd2fc0
ID
6406 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6407 if (IS_ERR(device))
adfb69af 6408 return device;
12bd2fc0
ID
6409
6410 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6411 device->fs_devices = fs_devices;
dfe25020 6412 fs_devices->num_devices++;
12bd2fc0 6413
e6e674bd 6414 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6415 fs_devices->missing_devices++;
12bd2fc0 6416
dfe25020
CM
6417 return device;
6418}
6419
12bd2fc0
ID
6420/**
6421 * btrfs_alloc_device - allocate struct btrfs_device
6422 * @fs_info: used only for generating a new devid, can be NULL if
6423 * devid is provided (i.e. @devid != NULL).
6424 * @devid: a pointer to devid for this device. If NULL a new devid
6425 * is generated.
6426 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6427 * is generated.
6428 *
6429 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6430 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6431 * destroyed with btrfs_free_device.
12bd2fc0
ID
6432 */
6433struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6434 const u64 *devid,
6435 const u8 *uuid)
6436{
6437 struct btrfs_device *dev;
6438 u64 tmp;
6439
fae7f21c 6440 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6441 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6442
6443 dev = __alloc_device();
6444 if (IS_ERR(dev))
6445 return dev;
6446
6447 if (devid)
6448 tmp = *devid;
6449 else {
6450 int ret;
6451
6452 ret = find_next_devid(fs_info, &tmp);
6453 if (ret) {
a425f9d4 6454 btrfs_free_device(dev);
12bd2fc0
ID
6455 return ERR_PTR(ret);
6456 }
6457 }
6458 dev->devid = tmp;
6459
6460 if (uuid)
6461 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6462 else
6463 generate_random_uuid(dev->uuid);
6464
12bd2fc0
ID
6465 return dev;
6466}
6467
5a2b8e60 6468static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6469 u64 devid, u8 *uuid, bool error)
5a2b8e60 6470{
2b902dfc
AJ
6471 if (error)
6472 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6473 devid, uuid);
6474 else
6475 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6476 devid, uuid);
5a2b8e60
AJ
6477}
6478
39e264a4
NB
6479static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6480{
6481 int index = btrfs_bg_flags_to_raid_index(type);
6482 int ncopies = btrfs_raid_array[index].ncopies;
e4f6c6be 6483 const int nparity = btrfs_raid_array[index].nparity;
39e264a4
NB
6484 int data_stripes;
6485
e4f6c6be
DS
6486 if (nparity)
6487 data_stripes = num_stripes - nparity;
6488 else
39e264a4 6489 data_stripes = num_stripes / ncopies;
e4f6c6be 6490
39e264a4
NB
6491 return div_u64(chunk_len, data_stripes);
6492}
6493
9690ac09 6494static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6495 struct btrfs_chunk *chunk)
6496{
9690ac09 6497 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6498 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6499 struct map_lookup *map;
6500 struct extent_map *em;
6501 u64 logical;
6502 u64 length;
e06cd3dd
LB
6503 u64 devid;
6504 u8 uuid[BTRFS_UUID_SIZE];
6505 int num_stripes;
6506 int ret;
6507 int i;
6508
6509 logical = key->offset;
6510 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6511 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6512
075cb3c7
QW
6513 /*
6514 * Only need to verify chunk item if we're reading from sys chunk array,
6515 * as chunk item in tree block is already verified by tree-checker.
6516 */
6517 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6518 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6519 if (ret)
6520 return ret;
6521 }
a061fc8d 6522
c8bf1b67
DS
6523 read_lock(&map_tree->lock);
6524 em = lookup_extent_mapping(map_tree, logical, 1);
6525 read_unlock(&map_tree->lock);
0b86a832
CM
6526
6527 /* already mapped? */
6528 if (em && em->start <= logical && em->start + em->len > logical) {
6529 free_extent_map(em);
0b86a832
CM
6530 return 0;
6531 } else if (em) {
6532 free_extent_map(em);
6533 }
0b86a832 6534
172ddd60 6535 em = alloc_extent_map();
0b86a832
CM
6536 if (!em)
6537 return -ENOMEM;
593060d7 6538 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6539 if (!map) {
6540 free_extent_map(em);
6541 return -ENOMEM;
6542 }
6543
298a8f9c 6544 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6545 em->map_lookup = map;
0b86a832
CM
6546 em->start = logical;
6547 em->len = length;
70c8a91c 6548 em->orig_start = 0;
0b86a832 6549 em->block_start = 0;
c8b97818 6550 em->block_len = em->len;
0b86a832 6551
593060d7
CM
6552 map->num_stripes = num_stripes;
6553 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6554 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6555 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6556 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6557 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6558 map->verified_stripes = 0;
39e264a4
NB
6559 em->orig_block_len = calc_stripe_length(map->type, em->len,
6560 map->num_stripes);
593060d7
CM
6561 for (i = 0; i < num_stripes; i++) {
6562 map->stripes[i].physical =
6563 btrfs_stripe_offset_nr(leaf, chunk, i);
6564 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6565 read_extent_buffer(leaf, uuid, (unsigned long)
6566 btrfs_stripe_dev_uuid_nr(chunk, i),
6567 BTRFS_UUID_SIZE);
e4319cd9 6568 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
09ba3bc9 6569 devid, uuid, NULL, true);
3cdde224 6570 if (!map->stripes[i].dev &&
0b246afa 6571 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6572 free_extent_map(em);
2b902dfc 6573 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6574 return -ENOENT;
593060d7 6575 }
dfe25020
CM
6576 if (!map->stripes[i].dev) {
6577 map->stripes[i].dev =
2ff7e61e
JM
6578 add_missing_dev(fs_info->fs_devices, devid,
6579 uuid);
adfb69af 6580 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6581 free_extent_map(em);
adfb69af
AJ
6582 btrfs_err(fs_info,
6583 "failed to init missing dev %llu: %ld",
6584 devid, PTR_ERR(map->stripes[i].dev));
6585 return PTR_ERR(map->stripes[i].dev);
dfe25020 6586 }
2b902dfc 6587 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6588 }
e12c9621
AJ
6589 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6590 &(map->stripes[i].dev->dev_state));
6591
0b86a832
CM
6592 }
6593
c8bf1b67
DS
6594 write_lock(&map_tree->lock);
6595 ret = add_extent_mapping(map_tree, em, 0);
6596 write_unlock(&map_tree->lock);
64f64f43
QW
6597 if (ret < 0) {
6598 btrfs_err(fs_info,
6599 "failed to add chunk map, start=%llu len=%llu: %d",
6600 em->start, em->len, ret);
6601 }
0b86a832
CM
6602 free_extent_map(em);
6603
64f64f43 6604 return ret;
0b86a832
CM
6605}
6606
143bede5 6607static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6608 struct btrfs_dev_item *dev_item,
6609 struct btrfs_device *device)
6610{
6611 unsigned long ptr;
0b86a832
CM
6612
6613 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6614 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6615 device->total_bytes = device->disk_total_bytes;
935e5cc9 6616 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6617 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6618 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6619 device->type = btrfs_device_type(leaf, dev_item);
6620 device->io_align = btrfs_device_io_align(leaf, dev_item);
6621 device->io_width = btrfs_device_io_width(leaf, dev_item);
6622 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6623 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6624 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6625
410ba3a2 6626 ptr = btrfs_device_uuid(dev_item);
e17cade2 6627 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6628}
6629
2ff7e61e 6630static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6631 u8 *fsid)
2b82032c
YZ
6632{
6633 struct btrfs_fs_devices *fs_devices;
6634 int ret;
6635
a32bf9a3 6636 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6637 ASSERT(fsid);
2b82032c 6638
0b246afa 6639 fs_devices = fs_info->fs_devices->seed;
2b82032c 6640 while (fs_devices) {
44880fdc 6641 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6642 return fs_devices;
6643
2b82032c
YZ
6644 fs_devices = fs_devices->seed;
6645 }
6646
7239ff4b 6647 fs_devices = find_fsid(fsid, NULL);
2b82032c 6648 if (!fs_devices) {
0b246afa 6649 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6650 return ERR_PTR(-ENOENT);
6651
7239ff4b 6652 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6653 if (IS_ERR(fs_devices))
6654 return fs_devices;
6655
0395d84f 6656 fs_devices->seeding = true;
5f375835
MX
6657 fs_devices->opened = 1;
6658 return fs_devices;
2b82032c 6659 }
e4404d6e
YZ
6660
6661 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6662 if (IS_ERR(fs_devices))
6663 return fs_devices;
2b82032c 6664
897fb573 6665 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6666 if (ret) {
6667 free_fs_devices(fs_devices);
5f375835 6668 fs_devices = ERR_PTR(ret);
2b82032c 6669 goto out;
48d28232 6670 }
2b82032c
YZ
6671
6672 if (!fs_devices->seeding) {
0226e0eb 6673 close_fs_devices(fs_devices);
e4404d6e 6674 free_fs_devices(fs_devices);
5f375835 6675 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6676 goto out;
6677 }
6678
0b246afa
JM
6679 fs_devices->seed = fs_info->fs_devices->seed;
6680 fs_info->fs_devices->seed = fs_devices;
2b82032c 6681out:
5f375835 6682 return fs_devices;
2b82032c
YZ
6683}
6684
17850759 6685static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6686 struct btrfs_dev_item *dev_item)
6687{
17850759 6688 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6689 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6690 struct btrfs_device *device;
6691 u64 devid;
6692 int ret;
44880fdc 6693 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6694 u8 dev_uuid[BTRFS_UUID_SIZE];
6695
0b86a832 6696 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6697 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6698 BTRFS_UUID_SIZE);
1473b24e 6699 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6700 BTRFS_FSID_SIZE);
2b82032c 6701
de37aa51 6702 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6703 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6704 if (IS_ERR(fs_devices))
6705 return PTR_ERR(fs_devices);
2b82032c
YZ
6706 }
6707
e4319cd9 6708 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 6709 fs_uuid, true);
5f375835 6710 if (!device) {
c5502451 6711 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6712 btrfs_report_missing_device(fs_info, devid,
6713 dev_uuid, true);
45dbdbc9 6714 return -ENOENT;
c5502451 6715 }
2b82032c 6716
2ff7e61e 6717 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6718 if (IS_ERR(device)) {
6719 btrfs_err(fs_info,
6720 "failed to add missing dev %llu: %ld",
6721 devid, PTR_ERR(device));
6722 return PTR_ERR(device);
6723 }
2b902dfc 6724 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6725 } else {
c5502451 6726 if (!device->bdev) {
2b902dfc
AJ
6727 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6728 btrfs_report_missing_device(fs_info,
6729 devid, dev_uuid, true);
45dbdbc9 6730 return -ENOENT;
2b902dfc
AJ
6731 }
6732 btrfs_report_missing_device(fs_info, devid,
6733 dev_uuid, false);
c5502451 6734 }
5f375835 6735
e6e674bd
AJ
6736 if (!device->bdev &&
6737 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6738 /*
6739 * this happens when a device that was properly setup
6740 * in the device info lists suddenly goes bad.
6741 * device->bdev is NULL, and so we have to set
6742 * device->missing to one here
6743 */
5f375835 6744 device->fs_devices->missing_devices++;
e6e674bd 6745 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6746 }
5f375835
MX
6747
6748 /* Move the device to its own fs_devices */
6749 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6750 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6751 &device->dev_state));
5f375835
MX
6752
6753 list_move(&device->dev_list, &fs_devices->devices);
6754 device->fs_devices->num_devices--;
6755 fs_devices->num_devices++;
6756
6757 device->fs_devices->missing_devices--;
6758 fs_devices->missing_devices++;
6759
6760 device->fs_devices = fs_devices;
6761 }
2b82032c
YZ
6762 }
6763
0b246afa 6764 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6765 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6766 if (device->generation !=
6767 btrfs_device_generation(leaf, dev_item))
6768 return -EINVAL;
6324fbf3 6769 }
0b86a832
CM
6770
6771 fill_device_from_item(leaf, dev_item, device);
e12c9621 6772 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6773 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6774 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6775 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6776 atomic64_add(device->total_bytes - device->bytes_used,
6777 &fs_info->free_chunk_space);
2bf64758 6778 }
0b86a832 6779 ret = 0;
0b86a832
CM
6780 return ret;
6781}
6782
6bccf3ab 6783int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6784{
6bccf3ab 6785 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6786 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6787 struct extent_buffer *sb;
0b86a832 6788 struct btrfs_disk_key *disk_key;
0b86a832 6789 struct btrfs_chunk *chunk;
1ffb22cf
DS
6790 u8 *array_ptr;
6791 unsigned long sb_array_offset;
84eed90f 6792 int ret = 0;
0b86a832
CM
6793 u32 num_stripes;
6794 u32 array_size;
6795 u32 len = 0;
1ffb22cf 6796 u32 cur_offset;
e06cd3dd 6797 u64 type;
84eed90f 6798 struct btrfs_key key;
0b86a832 6799
0b246afa 6800 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6801 /*
6802 * This will create extent buffer of nodesize, superblock size is
6803 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6804 * overallocate but we can keep it as-is, only the first page is used.
6805 */
2ff7e61e 6806 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6807 if (IS_ERR(sb))
6808 return PTR_ERR(sb);
4db8c528 6809 set_extent_buffer_uptodate(sb);
85d4e461 6810 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6811 /*
01327610 6812 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6813 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6814 * pages up-to-date when the page is larger: extent does not cover the
6815 * whole page and consequently check_page_uptodate does not find all
6816 * the page's extents up-to-date (the hole beyond sb),
6817 * write_extent_buffer then triggers a WARN_ON.
6818 *
6819 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6820 * but sb spans only this function. Add an explicit SetPageUptodate call
6821 * to silence the warning eg. on PowerPC 64.
6822 */
09cbfeaf 6823 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6824 SetPageUptodate(sb->pages[0]);
4008c04a 6825
a061fc8d 6826 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6827 array_size = btrfs_super_sys_array_size(super_copy);
6828
1ffb22cf
DS
6829 array_ptr = super_copy->sys_chunk_array;
6830 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6831 cur_offset = 0;
0b86a832 6832
1ffb22cf
DS
6833 while (cur_offset < array_size) {
6834 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6835 len = sizeof(*disk_key);
6836 if (cur_offset + len > array_size)
6837 goto out_short_read;
6838
0b86a832
CM
6839 btrfs_disk_key_to_cpu(&key, disk_key);
6840
1ffb22cf
DS
6841 array_ptr += len;
6842 sb_array_offset += len;
6843 cur_offset += len;
0b86a832 6844
32ab3d1b
JT
6845 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6846 btrfs_err(fs_info,
6847 "unexpected item type %u in sys_array at offset %u",
6848 (u32)key.type, cur_offset);
6849 ret = -EIO;
6850 break;
6851 }
f5cdedd7 6852
32ab3d1b
JT
6853 chunk = (struct btrfs_chunk *)sb_array_offset;
6854 /*
6855 * At least one btrfs_chunk with one stripe must be present,
6856 * exact stripe count check comes afterwards
6857 */
6858 len = btrfs_chunk_item_size(1);
6859 if (cur_offset + len > array_size)
6860 goto out_short_read;
e06cd3dd 6861
32ab3d1b
JT
6862 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6863 if (!num_stripes) {
6864 btrfs_err(fs_info,
6865 "invalid number of stripes %u in sys_array at offset %u",
6866 num_stripes, cur_offset);
6867 ret = -EIO;
6868 break;
6869 }
e3540eab 6870
32ab3d1b
JT
6871 type = btrfs_chunk_type(sb, chunk);
6872 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6873 btrfs_err(fs_info,
32ab3d1b
JT
6874 "invalid chunk type %llu in sys_array at offset %u",
6875 type, cur_offset);
84eed90f
CM
6876 ret = -EIO;
6877 break;
0b86a832 6878 }
32ab3d1b
JT
6879
6880 len = btrfs_chunk_item_size(num_stripes);
6881 if (cur_offset + len > array_size)
6882 goto out_short_read;
6883
6884 ret = read_one_chunk(&key, sb, chunk);
6885 if (ret)
6886 break;
6887
1ffb22cf
DS
6888 array_ptr += len;
6889 sb_array_offset += len;
6890 cur_offset += len;
0b86a832 6891 }
d865177a 6892 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6893 free_extent_buffer_stale(sb);
84eed90f 6894 return ret;
e3540eab
DS
6895
6896out_short_read:
ab8d0fc4 6897 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6898 len, cur_offset);
d865177a 6899 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6900 free_extent_buffer_stale(sb);
e3540eab 6901 return -EIO;
0b86a832
CM
6902}
6903
21634a19
QW
6904/*
6905 * Check if all chunks in the fs are OK for read-write degraded mount
6906 *
6528b99d
AJ
6907 * If the @failing_dev is specified, it's accounted as missing.
6908 *
21634a19
QW
6909 * Return true if all chunks meet the minimal RW mount requirements.
6910 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6911 */
6528b99d
AJ
6912bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6913 struct btrfs_device *failing_dev)
21634a19 6914{
c8bf1b67 6915 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
6916 struct extent_map *em;
6917 u64 next_start = 0;
6918 bool ret = true;
6919
c8bf1b67
DS
6920 read_lock(&map_tree->lock);
6921 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6922 read_unlock(&map_tree->lock);
21634a19
QW
6923 /* No chunk at all? Return false anyway */
6924 if (!em) {
6925 ret = false;
6926 goto out;
6927 }
6928 while (em) {
6929 struct map_lookup *map;
6930 int missing = 0;
6931 int max_tolerated;
6932 int i;
6933
6934 map = em->map_lookup;
6935 max_tolerated =
6936 btrfs_get_num_tolerated_disk_barrier_failures(
6937 map->type);
6938 for (i = 0; i < map->num_stripes; i++) {
6939 struct btrfs_device *dev = map->stripes[i].dev;
6940
e6e674bd
AJ
6941 if (!dev || !dev->bdev ||
6942 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
6943 dev->last_flush_error)
6944 missing++;
6528b99d
AJ
6945 else if (failing_dev && failing_dev == dev)
6946 missing++;
21634a19
QW
6947 }
6948 if (missing > max_tolerated) {
6528b99d
AJ
6949 if (!failing_dev)
6950 btrfs_warn(fs_info,
52042d8e 6951 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
6952 em->start, missing, max_tolerated);
6953 free_extent_map(em);
6954 ret = false;
6955 goto out;
6956 }
6957 next_start = extent_map_end(em);
6958 free_extent_map(em);
6959
c8bf1b67
DS
6960 read_lock(&map_tree->lock);
6961 em = lookup_extent_mapping(map_tree, next_start,
21634a19 6962 (u64)(-1) - next_start);
c8bf1b67 6963 read_unlock(&map_tree->lock);
21634a19
QW
6964 }
6965out:
6966 return ret;
6967}
6968
5b4aacef 6969int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6970{
5b4aacef 6971 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6972 struct btrfs_path *path;
6973 struct extent_buffer *leaf;
6974 struct btrfs_key key;
6975 struct btrfs_key found_key;
6976 int ret;
6977 int slot;
99e3ecfc 6978 u64 total_dev = 0;
0b86a832 6979
0b86a832
CM
6980 path = btrfs_alloc_path();
6981 if (!path)
6982 return -ENOMEM;
6983
3dd0f7a3
AJ
6984 /*
6985 * uuid_mutex is needed only if we are mounting a sprout FS
6986 * otherwise we don't need it.
6987 */
b367e47f 6988 mutex_lock(&uuid_mutex);
34441361 6989 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6990
395927a9
FDBM
6991 /*
6992 * Read all device items, and then all the chunk items. All
6993 * device items are found before any chunk item (their object id
6994 * is smaller than the lowest possible object id for a chunk
6995 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6996 */
6997 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6998 key.offset = 0;
6999 key.type = 0;
0b86a832 7000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7001 if (ret < 0)
7002 goto error;
d397712b 7003 while (1) {
0b86a832
CM
7004 leaf = path->nodes[0];
7005 slot = path->slots[0];
7006 if (slot >= btrfs_header_nritems(leaf)) {
7007 ret = btrfs_next_leaf(root, path);
7008 if (ret == 0)
7009 continue;
7010 if (ret < 0)
7011 goto error;
7012 break;
7013 }
7014 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7015 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7016 struct btrfs_dev_item *dev_item;
7017 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7018 struct btrfs_dev_item);
17850759 7019 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7020 if (ret)
7021 goto error;
99e3ecfc 7022 total_dev++;
0b86a832
CM
7023 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7024 struct btrfs_chunk *chunk;
7025 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7026 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7027 if (ret)
7028 goto error;
0b86a832
CM
7029 }
7030 path->slots[0]++;
7031 }
99e3ecfc
LB
7032
7033 /*
7034 * After loading chunk tree, we've got all device information,
7035 * do another round of validation checks.
7036 */
0b246afa
JM
7037 if (total_dev != fs_info->fs_devices->total_devices) {
7038 btrfs_err(fs_info,
99e3ecfc 7039 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7040 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7041 total_dev);
7042 ret = -EINVAL;
7043 goto error;
7044 }
0b246afa
JM
7045 if (btrfs_super_total_bytes(fs_info->super_copy) <
7046 fs_info->fs_devices->total_rw_bytes) {
7047 btrfs_err(fs_info,
99e3ecfc 7048 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7049 btrfs_super_total_bytes(fs_info->super_copy),
7050 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7051 ret = -EINVAL;
7052 goto error;
7053 }
0b86a832
CM
7054 ret = 0;
7055error:
34441361 7056 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7057 mutex_unlock(&uuid_mutex);
7058
2b82032c 7059 btrfs_free_path(path);
0b86a832
CM
7060 return ret;
7061}
442a4f63 7062
cb517eab
MX
7063void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7064{
7065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7066 struct btrfs_device *device;
7067
29cc83f6
LB
7068 while (fs_devices) {
7069 mutex_lock(&fs_devices->device_list_mutex);
7070 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7071 device->fs_info = fs_info;
29cc83f6
LB
7072 mutex_unlock(&fs_devices->device_list_mutex);
7073
7074 fs_devices = fs_devices->seed;
7075 }
cb517eab
MX
7076}
7077
1dc990df
DS
7078static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7079 const struct btrfs_dev_stats_item *ptr,
7080 int index)
7081{
7082 u64 val;
7083
7084 read_extent_buffer(eb, &val,
7085 offsetof(struct btrfs_dev_stats_item, values) +
7086 ((unsigned long)ptr) + (index * sizeof(u64)),
7087 sizeof(val));
7088 return val;
7089}
7090
7091static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7092 struct btrfs_dev_stats_item *ptr,
7093 int index, u64 val)
7094{
7095 write_extent_buffer(eb, &val,
7096 offsetof(struct btrfs_dev_stats_item, values) +
7097 ((unsigned long)ptr) + (index * sizeof(u64)),
7098 sizeof(val));
7099}
7100
733f4fbb
SB
7101int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7102{
7103 struct btrfs_key key;
733f4fbb
SB
7104 struct btrfs_root *dev_root = fs_info->dev_root;
7105 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7106 struct extent_buffer *eb;
7107 int slot;
7108 int ret = 0;
7109 struct btrfs_device *device;
7110 struct btrfs_path *path = NULL;
7111 int i;
7112
7113 path = btrfs_alloc_path();
3b80a984
AJ
7114 if (!path)
7115 return -ENOMEM;
733f4fbb
SB
7116
7117 mutex_lock(&fs_devices->device_list_mutex);
7118 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7119 int item_size;
7120 struct btrfs_dev_stats_item *ptr;
7121
242e2956
DS
7122 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7123 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7124 key.offset = device->devid;
7125 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7126 if (ret) {
ae4b9b4c
AJ
7127 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7128 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7129 device->dev_stats_valid = 1;
7130 btrfs_release_path(path);
7131 continue;
7132 }
7133 slot = path->slots[0];
7134 eb = path->nodes[0];
733f4fbb
SB
7135 item_size = btrfs_item_size_nr(eb, slot);
7136
7137 ptr = btrfs_item_ptr(eb, slot,
7138 struct btrfs_dev_stats_item);
7139
7140 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7141 if (item_size >= (1 + i) * sizeof(__le64))
7142 btrfs_dev_stat_set(device, i,
7143 btrfs_dev_stats_value(eb, ptr, i));
7144 else
4e411a7d 7145 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7146 }
7147
7148 device->dev_stats_valid = 1;
7149 btrfs_dev_stat_print_on_load(device);
7150 btrfs_release_path(path);
7151 }
7152 mutex_unlock(&fs_devices->device_list_mutex);
7153
733f4fbb
SB
7154 btrfs_free_path(path);
7155 return ret < 0 ? ret : 0;
7156}
7157
7158static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7159 struct btrfs_device *device)
7160{
5495f195 7161 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7162 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7163 struct btrfs_path *path;
7164 struct btrfs_key key;
7165 struct extent_buffer *eb;
7166 struct btrfs_dev_stats_item *ptr;
7167 int ret;
7168 int i;
7169
242e2956
DS
7170 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7171 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7172 key.offset = device->devid;
7173
7174 path = btrfs_alloc_path();
fa252992
DS
7175 if (!path)
7176 return -ENOMEM;
733f4fbb
SB
7177 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7178 if (ret < 0) {
0b246afa 7179 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7180 "error %d while searching for dev_stats item for device %s",
606686ee 7181 ret, rcu_str_deref(device->name));
733f4fbb
SB
7182 goto out;
7183 }
7184
7185 if (ret == 0 &&
7186 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7187 /* need to delete old one and insert a new one */
7188 ret = btrfs_del_item(trans, dev_root, path);
7189 if (ret != 0) {
0b246afa 7190 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7191 "delete too small dev_stats item for device %s failed %d",
606686ee 7192 rcu_str_deref(device->name), ret);
733f4fbb
SB
7193 goto out;
7194 }
7195 ret = 1;
7196 }
7197
7198 if (ret == 1) {
7199 /* need to insert a new item */
7200 btrfs_release_path(path);
7201 ret = btrfs_insert_empty_item(trans, dev_root, path,
7202 &key, sizeof(*ptr));
7203 if (ret < 0) {
0b246afa 7204 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7205 "insert dev_stats item for device %s failed %d",
7206 rcu_str_deref(device->name), ret);
733f4fbb
SB
7207 goto out;
7208 }
7209 }
7210
7211 eb = path->nodes[0];
7212 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7213 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7214 btrfs_set_dev_stats_value(eb, ptr, i,
7215 btrfs_dev_stat_read(device, i));
7216 btrfs_mark_buffer_dirty(eb);
7217
7218out:
7219 btrfs_free_path(path);
7220 return ret;
7221}
7222
7223/*
7224 * called from commit_transaction. Writes all changed device stats to disk.
7225 */
196c9d8d 7226int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7227{
196c9d8d 7228 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7229 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7230 struct btrfs_device *device;
addc3fa7 7231 int stats_cnt;
733f4fbb
SB
7232 int ret = 0;
7233
7234 mutex_lock(&fs_devices->device_list_mutex);
7235 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7236 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7237 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7238 continue;
7239
9deae968
NB
7240
7241 /*
7242 * There is a LOAD-LOAD control dependency between the value of
7243 * dev_stats_ccnt and updating the on-disk values which requires
7244 * reading the in-memory counters. Such control dependencies
7245 * require explicit read memory barriers.
7246 *
7247 * This memory barriers pairs with smp_mb__before_atomic in
7248 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7249 * barrier implied by atomic_xchg in
7250 * btrfs_dev_stats_read_and_reset
7251 */
7252 smp_rmb();
7253
5495f195 7254 ret = update_dev_stat_item(trans, device);
733f4fbb 7255 if (!ret)
addc3fa7 7256 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7257 }
7258 mutex_unlock(&fs_devices->device_list_mutex);
7259
7260 return ret;
7261}
7262
442a4f63
SB
7263void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7264{
7265 btrfs_dev_stat_inc(dev, index);
7266 btrfs_dev_stat_print_on_error(dev);
7267}
7268
48a3b636 7269static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7270{
733f4fbb
SB
7271 if (!dev->dev_stats_valid)
7272 return;
fb456252 7273 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7274 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7275 rcu_str_deref(dev->name),
442a4f63
SB
7276 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7277 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7278 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7280 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7281}
c11d2c23 7282
733f4fbb
SB
7283static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7284{
a98cdb85
SB
7285 int i;
7286
7287 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7288 if (btrfs_dev_stat_read(dev, i) != 0)
7289 break;
7290 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7291 return; /* all values == 0, suppress message */
7292
fb456252 7293 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7294 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7295 rcu_str_deref(dev->name),
733f4fbb
SB
7296 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7297 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7298 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7299 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7300 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7301}
7302
2ff7e61e 7303int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7304 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7305{
7306 struct btrfs_device *dev;
0b246afa 7307 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7308 int i;
7309
7310 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
7311 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7312 true);
c11d2c23
SB
7313 mutex_unlock(&fs_devices->device_list_mutex);
7314
7315 if (!dev) {
0b246afa 7316 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7317 return -ENODEV;
733f4fbb 7318 } else if (!dev->dev_stats_valid) {
0b246afa 7319 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7320 return -ENODEV;
b27f7c0c 7321 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7322 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7323 if (stats->nr_items > i)
7324 stats->values[i] =
7325 btrfs_dev_stat_read_and_reset(dev, i);
7326 else
4e411a7d 7327 btrfs_dev_stat_set(dev, i, 0);
c11d2c23
SB
7328 }
7329 } else {
7330 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7331 if (stats->nr_items > i)
7332 stats->values[i] = btrfs_dev_stat_read(dev, i);
7333 }
7334 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7335 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7336 return 0;
7337}
a8a6dab7 7338
da353f6b 7339void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7340{
7341 struct buffer_head *bh;
7342 struct btrfs_super_block *disk_super;
12b1c263 7343 int copy_num;
a8a6dab7 7344
12b1c263
AJ
7345 if (!bdev)
7346 return;
a8a6dab7 7347
12b1c263
AJ
7348 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7349 copy_num++) {
a8a6dab7 7350
12b1c263
AJ
7351 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7352 continue;
7353
7354 disk_super = (struct btrfs_super_block *)bh->b_data;
7355
7356 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7357 set_buffer_dirty(bh);
7358 sync_dirty_buffer(bh);
7359 brelse(bh);
7360 }
7361
7362 /* Notify udev that device has changed */
7363 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7364
7365 /* Update ctime/mtime for device path for libblkid */
7366 update_dev_time(device_path);
a8a6dab7 7367}
935e5cc9
MX
7368
7369/*
bbbf7243
NB
7370 * Update the size and bytes used for each device where it changed. This is
7371 * delayed since we would otherwise get errors while writing out the
7372 * superblocks.
7373 *
7374 * Must be invoked during transaction commit.
935e5cc9 7375 */
bbbf7243 7376void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7377{
935e5cc9
MX
7378 struct btrfs_device *curr, *next;
7379
bbbf7243 7380 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7381
bbbf7243 7382 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7383 return;
7384
bbbf7243
NB
7385 /*
7386 * We don't need the device_list_mutex here. This list is owned by the
7387 * transaction and the transaction must complete before the device is
7388 * released.
7389 */
7390 mutex_lock(&trans->fs_info->chunk_mutex);
7391 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7392 post_commit_list) {
7393 list_del_init(&curr->post_commit_list);
7394 curr->commit_total_bytes = curr->disk_total_bytes;
7395 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7396 }
bbbf7243 7397 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7398}
5a13f430
AJ
7399
7400void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7401{
7402 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7403 while (fs_devices) {
7404 fs_devices->fs_info = fs_info;
7405 fs_devices = fs_devices->seed;
7406 }
7407}
7408
7409void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7410{
7411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7412 while (fs_devices) {
7413 fs_devices->fs_info = NULL;
7414 fs_devices = fs_devices->seed;
7415 }
7416}
46df06b8
DS
7417
7418/*
7419 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7420 */
7421int btrfs_bg_type_to_factor(u64 flags)
7422{
44b28ada
DS
7423 const int index = btrfs_bg_flags_to_raid_index(flags);
7424
7425 return btrfs_raid_array[index].ncopies;
46df06b8 7426}
cf90d884
QW
7427
7428
cf90d884
QW
7429
7430static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7431 u64 chunk_offset, u64 devid,
7432 u64 physical_offset, u64 physical_len)
7433{
c8bf1b67 7434 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7435 struct extent_map *em;
7436 struct map_lookup *map;
05a37c48 7437 struct btrfs_device *dev;
cf90d884
QW
7438 u64 stripe_len;
7439 bool found = false;
7440 int ret = 0;
7441 int i;
7442
7443 read_lock(&em_tree->lock);
7444 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7445 read_unlock(&em_tree->lock);
7446
7447 if (!em) {
7448 btrfs_err(fs_info,
7449"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7450 physical_offset, devid);
7451 ret = -EUCLEAN;
7452 goto out;
7453 }
7454
7455 map = em->map_lookup;
7456 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7457 if (physical_len != stripe_len) {
7458 btrfs_err(fs_info,
7459"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7460 physical_offset, devid, em->start, physical_len,
7461 stripe_len);
7462 ret = -EUCLEAN;
7463 goto out;
7464 }
7465
7466 for (i = 0; i < map->num_stripes; i++) {
7467 if (map->stripes[i].dev->devid == devid &&
7468 map->stripes[i].physical == physical_offset) {
7469 found = true;
7470 if (map->verified_stripes >= map->num_stripes) {
7471 btrfs_err(fs_info,
7472 "too many dev extents for chunk %llu found",
7473 em->start);
7474 ret = -EUCLEAN;
7475 goto out;
7476 }
7477 map->verified_stripes++;
7478 break;
7479 }
7480 }
7481 if (!found) {
7482 btrfs_err(fs_info,
7483 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7484 physical_offset, devid);
7485 ret = -EUCLEAN;
7486 }
05a37c48
QW
7487
7488 /* Make sure no dev extent is beyond device bondary */
09ba3bc9 7489 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
05a37c48
QW
7490 if (!dev) {
7491 btrfs_err(fs_info, "failed to find devid %llu", devid);
7492 ret = -EUCLEAN;
7493 goto out;
7494 }
1b3922a8
QW
7495
7496 /* It's possible this device is a dummy for seed device */
7497 if (dev->disk_total_bytes == 0) {
09ba3bc9
AJ
7498 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7499 NULL, false);
1b3922a8
QW
7500 if (!dev) {
7501 btrfs_err(fs_info, "failed to find seed devid %llu",
7502 devid);
7503 ret = -EUCLEAN;
7504 goto out;
7505 }
7506 }
7507
05a37c48
QW
7508 if (physical_offset + physical_len > dev->disk_total_bytes) {
7509 btrfs_err(fs_info,
7510"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7511 devid, physical_offset, physical_len,
7512 dev->disk_total_bytes);
7513 ret = -EUCLEAN;
7514 goto out;
7515 }
cf90d884
QW
7516out:
7517 free_extent_map(em);
7518 return ret;
7519}
7520
7521static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7522{
c8bf1b67 7523 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7524 struct extent_map *em;
7525 struct rb_node *node;
7526 int ret = 0;
7527
7528 read_lock(&em_tree->lock);
07e1ce09 7529 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7530 em = rb_entry(node, struct extent_map, rb_node);
7531 if (em->map_lookup->num_stripes !=
7532 em->map_lookup->verified_stripes) {
7533 btrfs_err(fs_info,
7534 "chunk %llu has missing dev extent, have %d expect %d",
7535 em->start, em->map_lookup->verified_stripes,
7536 em->map_lookup->num_stripes);
7537 ret = -EUCLEAN;
7538 goto out;
7539 }
7540 }
7541out:
7542 read_unlock(&em_tree->lock);
7543 return ret;
7544}
7545
7546/*
7547 * Ensure that all dev extents are mapped to correct chunk, otherwise
7548 * later chunk allocation/free would cause unexpected behavior.
7549 *
7550 * NOTE: This will iterate through the whole device tree, which should be of
7551 * the same size level as the chunk tree. This slightly increases mount time.
7552 */
7553int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7554{
7555 struct btrfs_path *path;
7556 struct btrfs_root *root = fs_info->dev_root;
7557 struct btrfs_key key;
5eb19381
QW
7558 u64 prev_devid = 0;
7559 u64 prev_dev_ext_end = 0;
cf90d884
QW
7560 int ret = 0;
7561
7562 key.objectid = 1;
7563 key.type = BTRFS_DEV_EXTENT_KEY;
7564 key.offset = 0;
7565
7566 path = btrfs_alloc_path();
7567 if (!path)
7568 return -ENOMEM;
7569
7570 path->reada = READA_FORWARD;
7571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7572 if (ret < 0)
7573 goto out;
7574
7575 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7576 ret = btrfs_next_item(root, path);
7577 if (ret < 0)
7578 goto out;
7579 /* No dev extents at all? Not good */
7580 if (ret > 0) {
7581 ret = -EUCLEAN;
7582 goto out;
7583 }
7584 }
7585 while (1) {
7586 struct extent_buffer *leaf = path->nodes[0];
7587 struct btrfs_dev_extent *dext;
7588 int slot = path->slots[0];
7589 u64 chunk_offset;
7590 u64 physical_offset;
7591 u64 physical_len;
7592 u64 devid;
7593
7594 btrfs_item_key_to_cpu(leaf, &key, slot);
7595 if (key.type != BTRFS_DEV_EXTENT_KEY)
7596 break;
7597 devid = key.objectid;
7598 physical_offset = key.offset;
7599
7600 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7601 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7602 physical_len = btrfs_dev_extent_length(leaf, dext);
7603
5eb19381
QW
7604 /* Check if this dev extent overlaps with the previous one */
7605 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7606 btrfs_err(fs_info,
7607"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7608 devid, physical_offset, prev_dev_ext_end);
7609 ret = -EUCLEAN;
7610 goto out;
7611 }
7612
cf90d884
QW
7613 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7614 physical_offset, physical_len);
7615 if (ret < 0)
7616 goto out;
5eb19381
QW
7617 prev_devid = devid;
7618 prev_dev_ext_end = physical_offset + physical_len;
7619
cf90d884
QW
7620 ret = btrfs_next_item(root, path);
7621 if (ret < 0)
7622 goto out;
7623 if (ret > 0) {
7624 ret = 0;
7625 break;
7626 }
7627 }
7628
7629 /* Ensure all chunks have corresponding dev extents */
7630 ret = verify_chunk_dev_extent_mapping(fs_info);
7631out:
7632 btrfs_free_path(path);
7633 return ret;
7634}
eede2bf3
OS
7635
7636/*
7637 * Check whether the given block group or device is pinned by any inode being
7638 * used as a swapfile.
7639 */
7640bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7641{
7642 struct btrfs_swapfile_pin *sp;
7643 struct rb_node *node;
7644
7645 spin_lock(&fs_info->swapfile_pins_lock);
7646 node = fs_info->swapfile_pins.rb_node;
7647 while (node) {
7648 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7649 if (ptr < sp->ptr)
7650 node = node->rb_left;
7651 else if (ptr > sp->ptr)
7652 node = node->rb_right;
7653 else
7654 break;
7655 }
7656 spin_unlock(&fs_info->swapfile_pins_lock);
7657 return node != NULL;
7658}