btrfs: take an fs_info directly when the root is not used otherwise
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
2ff7e61e 137 struct btrfs_fs_info *fs_info,
2b82032c 138 struct btrfs_device *device);
2ff7e61e 139static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 143
67a2c45e 144DEFINE_MUTEX(uuid_mutex);
8a4b83cc 145static LIST_HEAD(fs_uuids);
c73eccf7
AJ
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
8a4b83cc 150
2208a378
ID
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
78f2c9e6 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 162 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
e4404d6e
YZ
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
606686ee 202 rcu_string_free(device->name);
e4404d6e
YZ
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
b8b8ff59
LC
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
efe120a0 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
143bede5 221void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
222{
223 struct btrfs_fs_devices *fs_devices;
8a4b83cc 224
2b82032c
YZ
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
e4404d6e 229 free_fs_devices(fs_devices);
8a4b83cc 230 }
8a4b83cc
CM
231}
232
12bd2fc0
ID
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
78f2c9e6 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
d0164adc
MG
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59
CM
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
8a4b83cc
CM
259{
260 struct btrfs_device *dev;
8a4b83cc 261
c6e30871 262 list_for_each_entry(dev, head, dev_list) {
a443755f 263 if (dev->devid == devid &&
8f18cf13 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 265 return dev;
a443755f 266 }
8a4b83cc
CM
267 }
268 return NULL;
269}
270
a1b32a59 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 272{
8a4b83cc
CM
273 struct btrfs_fs_devices *fs_devices;
274
c6e30871 275 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
beaf8ab3
SB
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
beaf8ab3
SB
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
beaf8ab3
SB
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
ffbd517d
CM
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
8b712842
CM
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
143bede5 344static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 345{
0b246afa 346 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
347 struct bio *pending;
348 struct backing_dev_info *bdi;
ffbd517d 349 struct btrfs_pending_bios *pending_bios;
8b712842
CM
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
ffbd517d 353 unsigned long num_run;
d644d8a1 354 unsigned long batch_run = 0;
b64a2851 355 unsigned long limit;
b765ead5 356 unsigned long last_waited = 0;
d84275c9 357 int force_reg = 0;
0e588859 358 int sync_pending = 0;
211588ad
CM
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
8b712842 368
bedf762b 369 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
370 limit = btrfs_async_submit_limit(fs_info);
371 limit = limit * 2 / 3;
372
8b712842
CM
373loop:
374 spin_lock(&device->io_lock);
375
a6837051 376loop_lock:
d84275c9 377 num_run = 0;
ffbd517d 378
8b712842
CM
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
383 */
d84275c9 384 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 385 pending_bios = &device->pending_sync_bios;
d84275c9
CM
386 force_reg = 1;
387 } else {
ffbd517d 388 pending_bios = &device->pending_bios;
d84275c9
CM
389 force_reg = 0;
390 }
ffbd517d
CM
391
392 pending = pending_bios->head;
393 tail = pending_bios->tail;
8b712842 394 WARN_ON(pending && !tail);
8b712842
CM
395
396 /*
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
400 *
401 * device->running_pending is used to synchronize with the
402 * schedule_bio code.
403 */
ffbd517d
CM
404 if (device->pending_sync_bios.head == NULL &&
405 device->pending_bios.head == NULL) {
8b712842
CM
406 again = 0;
407 device->running_pending = 0;
ffbd517d
CM
408 } else {
409 again = 1;
410 device->running_pending = 1;
8b712842 411 }
ffbd517d
CM
412
413 pending_bios->head = NULL;
414 pending_bios->tail = NULL;
415
8b712842
CM
416 spin_unlock(&device->io_lock);
417
d397712b 418 while (pending) {
ffbd517d
CM
419
420 rmb();
d84275c9
CM
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
423 */
424 if ((num_run > 32 &&
425 pending_bios != &device->pending_sync_bios &&
426 device->pending_sync_bios.head) ||
427 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
428 device->pending_bios.head)) {
ffbd517d
CM
429 spin_lock(&device->io_lock);
430 requeue_list(pending_bios, pending, tail);
431 goto loop_lock;
432 }
433
8b712842
CM
434 cur = pending;
435 pending = pending->bi_next;
436 cur->bi_next = NULL;
b64a2851 437
ee863954
DS
438 /*
439 * atomic_dec_return implies a barrier for waitqueue_active
440 */
66657b31 441 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
442 waitqueue_active(&fs_info->async_submit_wait))
443 wake_up(&fs_info->async_submit_wait);
492bb6de 444
dac56212 445 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 446
2ab1ba68
CM
447 /*
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
450 *
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
453 * we add more
454 */
455 if (pending_bios == &device->pending_sync_bios) {
456 sync_pending = 1;
457 } else if (sync_pending) {
458 blk_finish_plug(&plug);
459 blk_start_plug(&plug);
460 sync_pending = 0;
461 }
462
4e49ea4a 463 btrfsic_submit_bio(cur);
5ff7ba3a
CM
464 num_run++;
465 batch_run++;
853d8ec4
DS
466
467 cond_resched();
8b712842
CM
468
469 /*
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
472 * run instead
473 */
57fd5a5f 474 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 475 fs_info->fs_devices->open_devices > 1) {
b765ead5 476 struct io_context *ioc;
8b712842 477
b765ead5
CM
478 ioc = current->io_context;
479
480 /*
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
484 *
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
488 */
489 if (ioc && ioc->nr_batch_requests > 0 &&
490 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
491 (last_waited == 0 ||
492 ioc->last_waited == last_waited)) {
493 /*
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
498 */
499 last_waited = ioc->last_waited;
853d8ec4 500 cond_resched();
b765ead5
CM
501 continue;
502 }
8b712842 503 spin_lock(&device->io_lock);
ffbd517d 504 requeue_list(pending_bios, pending, tail);
a6837051 505 device->running_pending = 1;
8b712842
CM
506
507 spin_unlock(&device->io_lock);
a8c93d4e
QW
508 btrfs_queue_work(fs_info->submit_workers,
509 &device->work);
8b712842
CM
510 goto done;
511 }
d85c8a6f
CM
512 /* unplug every 64 requests just for good measure */
513 if (batch_run % 64 == 0) {
514 blk_finish_plug(&plug);
515 blk_start_plug(&plug);
516 sync_pending = 0;
517 }
8b712842 518 }
ffbd517d 519
51684082
CM
520 cond_resched();
521 if (again)
522 goto loop;
523
524 spin_lock(&device->io_lock);
525 if (device->pending_bios.head || device->pending_sync_bios.head)
526 goto loop_lock;
527 spin_unlock(&device->io_lock);
528
8b712842 529done:
211588ad 530 blk_finish_plug(&plug);
8b712842
CM
531}
532
b2950863 533static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
534{
535 struct btrfs_device *device;
536
537 device = container_of(work, struct btrfs_device, work);
538 run_scheduled_bios(device);
539}
540
4fde46f0
AJ
541
542void btrfs_free_stale_device(struct btrfs_device *cur_dev)
543{
544 struct btrfs_fs_devices *fs_devs;
545 struct btrfs_device *dev;
546
547 if (!cur_dev->name)
548 return;
549
550 list_for_each_entry(fs_devs, &fs_uuids, list) {
551 int del = 1;
552
553 if (fs_devs->opened)
554 continue;
555 if (fs_devs->seeding)
556 continue;
557
558 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
559
560 if (dev == cur_dev)
561 continue;
562 if (!dev->name)
563 continue;
564
565 /*
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
570 */
571 rcu_read_lock();
572 del = strcmp(rcu_str_deref(dev->name),
573 rcu_str_deref(cur_dev->name));
574 rcu_read_unlock();
575 if (!del)
576 break;
577 }
578
579 if (!del) {
580 /* delete the stale device */
581 if (fs_devs->num_devices == 1) {
582 btrfs_sysfs_remove_fsid(fs_devs);
583 list_del(&fs_devs->list);
584 free_fs_devices(fs_devs);
585 } else {
586 fs_devs->num_devices--;
587 list_del(&dev->dev_list);
588 rcu_string_free(dev->name);
589 kfree(dev);
590 }
591 break;
592 }
593 }
594}
595
60999ca4
DS
596/*
597 * Add new device to list of registered devices
598 *
599 * Returns:
600 * 1 - first time device is seen
601 * 0 - device already known
602 * < 0 - error
603 */
a1b32a59 604static noinline int device_list_add(const char *path,
8a4b83cc
CM
605 struct btrfs_super_block *disk_super,
606 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
607{
608 struct btrfs_device *device;
609 struct btrfs_fs_devices *fs_devices;
606686ee 610 struct rcu_string *name;
60999ca4 611 int ret = 0;
8a4b83cc
CM
612 u64 found_transid = btrfs_super_generation(disk_super);
613
614 fs_devices = find_fsid(disk_super->fsid);
615 if (!fs_devices) {
2208a378
ID
616 fs_devices = alloc_fs_devices(disk_super->fsid);
617 if (IS_ERR(fs_devices))
618 return PTR_ERR(fs_devices);
619
8a4b83cc 620 list_add(&fs_devices->list, &fs_uuids);
2208a378 621
8a4b83cc
CM
622 device = NULL;
623 } else {
a443755f
CM
624 device = __find_device(&fs_devices->devices, devid,
625 disk_super->dev_item.uuid);
8a4b83cc 626 }
443f24fe 627
8a4b83cc 628 if (!device) {
2b82032c
YZ
629 if (fs_devices->opened)
630 return -EBUSY;
631
12bd2fc0
ID
632 device = btrfs_alloc_device(NULL, &devid,
633 disk_super->dev_item.uuid);
634 if (IS_ERR(device)) {
8a4b83cc 635 /* we can safely leave the fs_devices entry around */
12bd2fc0 636 return PTR_ERR(device);
8a4b83cc 637 }
606686ee
JB
638
639 name = rcu_string_strdup(path, GFP_NOFS);
640 if (!name) {
8a4b83cc
CM
641 kfree(device);
642 return -ENOMEM;
643 }
606686ee 644 rcu_assign_pointer(device->name, name);
90519d66 645
e5e9a520 646 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 647 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 648 fs_devices->num_devices++;
e5e9a520
CM
649 mutex_unlock(&fs_devices->device_list_mutex);
650
60999ca4 651 ret = 1;
2b82032c 652 device->fs_devices = fs_devices;
606686ee 653 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
654 /*
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
661 * different name. or
662 * b. The missing-disk-which-was-replaced, has
663 * reappeared now.
664 *
665 * We must allow 1 and 2a above. But 2b would be a spurious
666 * and unintentional.
667 *
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
672 */
673
674 /*
0f23ae74
CM
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
b96de000 679 */
0f23ae74 680 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
681 /*
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
687 */
0f23ae74 688 return -EEXIST;
77bdae4d 689 }
b96de000 690
606686ee 691 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
692 if (!name)
693 return -ENOMEM;
606686ee
JB
694 rcu_string_free(device->name);
695 rcu_assign_pointer(device->name, name);
cd02dca5
CM
696 if (device->missing) {
697 fs_devices->missing_devices--;
698 device->missing = 0;
699 }
8a4b83cc
CM
700 }
701
77bdae4d
AJ
702 /*
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
706 * (as above).
707 */
708 if (!fs_devices->opened)
709 device->generation = found_transid;
710
4fde46f0
AJ
711 /*
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
714 */
02feae3c
AJ
715 if (ret > 0)
716 btrfs_free_stale_device(device);
4fde46f0 717
8a4b83cc 718 *fs_devices_ret = fs_devices;
60999ca4
DS
719
720 return ret;
8a4b83cc
CM
721}
722
e4404d6e
YZ
723static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
724{
725 struct btrfs_fs_devices *fs_devices;
726 struct btrfs_device *device;
727 struct btrfs_device *orig_dev;
728
2208a378
ID
729 fs_devices = alloc_fs_devices(orig->fsid);
730 if (IS_ERR(fs_devices))
731 return fs_devices;
e4404d6e 732
adbbb863 733 mutex_lock(&orig->device_list_mutex);
02db0844 734 fs_devices->total_devices = orig->total_devices;
e4404d6e 735
46224705 736 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 737 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
738 struct rcu_string *name;
739
12bd2fc0
ID
740 device = btrfs_alloc_device(NULL, &orig_dev->devid,
741 orig_dev->uuid);
742 if (IS_ERR(device))
e4404d6e
YZ
743 goto error;
744
606686ee
JB
745 /*
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
748 */
e755f780 749 if (orig_dev->name) {
78f2c9e6
DS
750 name = rcu_string_strdup(orig_dev->name->str,
751 GFP_KERNEL);
e755f780
AJ
752 if (!name) {
753 kfree(device);
754 goto error;
755 }
756 rcu_assign_pointer(device->name, name);
fd2696f3 757 }
e4404d6e 758
e4404d6e
YZ
759 list_add(&device->dev_list, &fs_devices->devices);
760 device->fs_devices = fs_devices;
761 fs_devices->num_devices++;
762 }
adbbb863 763 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
764 return fs_devices;
765error:
adbbb863 766 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
767 free_fs_devices(fs_devices);
768 return ERR_PTR(-ENOMEM);
769}
770
9eaed21e 771void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 772{
c6e30871 773 struct btrfs_device *device, *next;
443f24fe 774 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 775
dfe25020
CM
776 mutex_lock(&uuid_mutex);
777again:
46224705 778 /* This is the initialized path, it is safe to release the devices. */
c6e30871 779 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 780 if (device->in_fs_metadata) {
63a212ab 781 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
782 (!latest_dev ||
783 device->generation > latest_dev->generation)) {
784 latest_dev = device;
a6b0d5c8 785 }
2b82032c 786 continue;
a6b0d5c8 787 }
2b82032c 788
8dabb742
SB
789 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
790 /*
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
799 */
800 if (step == 0 || device->is_tgtdev_for_dev_replace) {
801 continue;
802 }
803 }
2b82032c 804 if (device->bdev) {
d4d77629 805 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
806 device->bdev = NULL;
807 fs_devices->open_devices--;
808 }
809 if (device->writeable) {
810 list_del_init(&device->dev_alloc_list);
811 device->writeable = 0;
8dabb742
SB
812 if (!device->is_tgtdev_for_dev_replace)
813 fs_devices->rw_devices--;
2b82032c 814 }
e4404d6e
YZ
815 list_del_init(&device->dev_list);
816 fs_devices->num_devices--;
606686ee 817 rcu_string_free(device->name);
e4404d6e 818 kfree(device);
dfe25020 819 }
2b82032c
YZ
820
821 if (fs_devices->seed) {
822 fs_devices = fs_devices->seed;
2b82032c
YZ
823 goto again;
824 }
825
443f24fe 826 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 827
dfe25020 828 mutex_unlock(&uuid_mutex);
dfe25020 829}
a0af469b 830
1f78160c
XG
831static void __free_device(struct work_struct *work)
832{
833 struct btrfs_device *device;
834
835 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 836 rcu_string_free(device->name);
1f78160c
XG
837 kfree(device);
838}
839
840static void free_device(struct rcu_head *head)
841{
842 struct btrfs_device *device;
843
844 device = container_of(head, struct btrfs_device, rcu);
845
846 INIT_WORK(&device->rcu_work, __free_device);
847 schedule_work(&device->rcu_work);
848}
849
14238819
AJ
850static void btrfs_close_bdev(struct btrfs_device *device)
851{
852 if (device->bdev && device->writeable) {
853 sync_blockdev(device->bdev);
854 invalidate_bdev(device->bdev);
855 }
856
857 if (device->bdev)
858 blkdev_put(device->bdev, device->mode);
859}
860
0ccd0528 861static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
862{
863 struct btrfs_fs_devices *fs_devices = device->fs_devices;
864 struct btrfs_device *new_device;
865 struct rcu_string *name;
866
867 if (device->bdev)
868 fs_devices->open_devices--;
869
870 if (device->writeable &&
871 device->devid != BTRFS_DEV_REPLACE_DEVID) {
872 list_del_init(&device->dev_alloc_list);
873 fs_devices->rw_devices--;
874 }
875
876 if (device->missing)
877 fs_devices->missing_devices--;
878
879 new_device = btrfs_alloc_device(NULL, &device->devid,
880 device->uuid);
881 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882
883 /* Safe because we are under uuid_mutex */
884 if (device->name) {
885 name = rcu_string_strdup(device->name->str, GFP_NOFS);
886 BUG_ON(!name); /* -ENOMEM */
887 rcu_assign_pointer(new_device->name, name);
888 }
889
890 list_replace_rcu(&device->dev_list, &new_device->dev_list);
891 new_device->fs_devices = device->fs_devices;
f448341a
AJ
892}
893
2b82032c 894static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 895{
2037a093 896 struct btrfs_device *device, *tmp;
0ccd0528
AJ
897 struct list_head pending_put;
898
899 INIT_LIST_HEAD(&pending_put);
e4404d6e 900
2b82032c
YZ
901 if (--fs_devices->opened > 0)
902 return 0;
8a4b83cc 903
c9513edb 904 mutex_lock(&fs_devices->device_list_mutex);
2037a093 905 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
906 btrfs_prepare_close_one_device(device);
907 list_add(&device->dev_list, &pending_put);
8a4b83cc 908 }
c9513edb
XG
909 mutex_unlock(&fs_devices->device_list_mutex);
910
0ccd0528
AJ
911 /*
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
915 * as of now.
916 */
917 while (!list_empty(&pending_put)) {
918 device = list_first_entry(&pending_put,
919 struct btrfs_device, dev_list);
920 list_del(&device->dev_list);
921 btrfs_close_bdev(device);
922 call_rcu(&device->rcu, free_device);
923 }
924
e4404d6e
YZ
925 WARN_ON(fs_devices->open_devices);
926 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
927 fs_devices->opened = 0;
928 fs_devices->seeding = 0;
2b82032c 929
8a4b83cc
CM
930 return 0;
931}
932
2b82032c
YZ
933int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
934{
e4404d6e 935 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
936 int ret;
937
938 mutex_lock(&uuid_mutex);
939 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
940 if (!fs_devices->opened) {
941 seed_devices = fs_devices->seed;
942 fs_devices->seed = NULL;
943 }
2b82032c 944 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
945
946 while (seed_devices) {
947 fs_devices = seed_devices;
948 seed_devices = fs_devices->seed;
949 __btrfs_close_devices(fs_devices);
950 free_fs_devices(fs_devices);
951 }
bc178622
ES
952 /*
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
956 */
957 rcu_barrier();
2b82032c
YZ
958 return ret;
959}
960
e4404d6e
YZ
961static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
962 fmode_t flags, void *holder)
8a4b83cc 963{
d5e2003c 964 struct request_queue *q;
8a4b83cc
CM
965 struct block_device *bdev;
966 struct list_head *head = &fs_devices->devices;
8a4b83cc 967 struct btrfs_device *device;
443f24fe 968 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
969 struct buffer_head *bh;
970 struct btrfs_super_block *disk_super;
a0af469b 971 u64 devid;
2b82032c 972 int seeding = 1;
a0af469b 973 int ret = 0;
8a4b83cc 974
d4d77629
TH
975 flags |= FMODE_EXCL;
976
c6e30871 977 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
978 if (device->bdev)
979 continue;
dfe25020
CM
980 if (!device->name)
981 continue;
982
f63e0cca
ES
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
985 &bdev, &bh))
beaf8ab3 986 continue;
a0af469b
CM
987
988 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 989 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
990 if (devid != device->devid)
991 goto error_brelse;
992
2b82032c
YZ
993 if (memcmp(device->uuid, disk_super->dev_item.uuid,
994 BTRFS_UUID_SIZE))
995 goto error_brelse;
996
997 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
998 if (!latest_dev ||
999 device->generation > latest_dev->generation)
1000 latest_dev = device;
a0af469b 1001
2b82032c
YZ
1002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1003 device->writeable = 0;
1004 } else {
1005 device->writeable = !bdev_read_only(bdev);
1006 seeding = 0;
1007 }
1008
d5e2003c 1009 q = bdev_get_queue(bdev);
90180da4 1010 if (blk_queue_discard(q))
d5e2003c 1011 device->can_discard = 1;
d5e2003c 1012
8a4b83cc 1013 device->bdev = bdev;
dfe25020 1014 device->in_fs_metadata = 0;
15916de8
CM
1015 device->mode = flags;
1016
c289811c
CM
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1018 fs_devices->rotating = 1;
1019
a0af469b 1020 fs_devices->open_devices++;
55e50e45
ID
1021 if (device->writeable &&
1022 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1023 fs_devices->rw_devices++;
1024 list_add(&device->dev_alloc_list,
1025 &fs_devices->alloc_list);
1026 }
4f6c9328 1027 brelse(bh);
a0af469b 1028 continue;
a061fc8d 1029
a0af469b
CM
1030error_brelse:
1031 brelse(bh);
d4d77629 1032 blkdev_put(bdev, flags);
a0af469b 1033 continue;
8a4b83cc 1034 }
a0af469b 1035 if (fs_devices->open_devices == 0) {
20bcd649 1036 ret = -EINVAL;
a0af469b
CM
1037 goto out;
1038 }
2b82032c
YZ
1039 fs_devices->seeding = seeding;
1040 fs_devices->opened = 1;
443f24fe 1041 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1042 fs_devices->total_rw_bytes = 0;
a0af469b 1043out:
2b82032c
YZ
1044 return ret;
1045}
1046
1047int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1048 fmode_t flags, void *holder)
2b82032c
YZ
1049{
1050 int ret;
1051
1052 mutex_lock(&uuid_mutex);
1053 if (fs_devices->opened) {
e4404d6e
YZ
1054 fs_devices->opened++;
1055 ret = 0;
2b82032c 1056 } else {
15916de8 1057 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1058 }
8a4b83cc 1059 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1060 return ret;
1061}
1062
6cf86a00
AJ
1063void btrfs_release_disk_super(struct page *page)
1064{
1065 kunmap(page);
1066 put_page(page);
1067}
1068
1069int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1070 struct page **page, struct btrfs_super_block **disk_super)
1071{
1072 void *p;
1073 pgoff_t index;
1074
1075 /* make sure our super fits in the device */
1076 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1077 return 1;
1078
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super) > PAGE_SIZE)
1081 return 1;
1082
1083 /* make sure our super doesn't straddle pages on disk */
1084 index = bytenr >> PAGE_SHIFT;
1085 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1086 return 1;
1087
1088 /* pull in the page with our super */
1089 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1090 index, GFP_KERNEL);
1091
1092 if (IS_ERR_OR_NULL(*page))
1093 return 1;
1094
1095 p = kmap(*page);
1096
1097 /* align our pointer to the offset of the super block */
1098 *disk_super = p + (bytenr & ~PAGE_MASK);
1099
1100 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1101 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1102 btrfs_release_disk_super(*page);
1103 return 1;
1104 }
1105
1106 if ((*disk_super)->label[0] &&
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1108 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1109
1110 return 0;
1111}
1112
6f60cbd3
DS
1113/*
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1117 */
97288f2c 1118int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1119 struct btrfs_fs_devices **fs_devices_ret)
1120{
1121 struct btrfs_super_block *disk_super;
1122 struct block_device *bdev;
6f60cbd3 1123 struct page *page;
6f60cbd3 1124 int ret = -EINVAL;
8a4b83cc 1125 u64 devid;
f2984462 1126 u64 transid;
02db0844 1127 u64 total_devices;
6f60cbd3 1128 u64 bytenr;
8a4b83cc 1129
6f60cbd3
DS
1130 /*
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 */
1136 bytenr = btrfs_sb_offset(0);
d4d77629 1137 flags |= FMODE_EXCL;
10f6327b 1138 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1139
1140 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
beaf8ab3 1143 goto error;
6f60cbd3
DS
1144 }
1145
6cf86a00 1146 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1147 goto error_bdev_put;
1148
a343832f 1149 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1150 transid = btrfs_super_generation(disk_super);
02db0844 1151 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1152
8a4b83cc 1153 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1154 if (ret > 0) {
1155 if (disk_super->label[0]) {
62e85577 1156 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1157 } else {
62e85577 1158 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1159 }
1160
62e85577 1161 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1162 ret = 0;
1163 }
02db0844
JB
1164 if (!ret && fs_devices_ret)
1165 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1166
6cf86a00 1167 btrfs_release_disk_super(page);
6f60cbd3
DS
1168
1169error_bdev_put:
d4d77629 1170 blkdev_put(bdev, flags);
8a4b83cc 1171error:
beaf8ab3 1172 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1173 return ret;
1174}
0b86a832 1175
6d07bcec
MX
1176/* helper to account the used device space in the range */
1177int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1178 u64 end, u64 *length)
1179{
1180 struct btrfs_key key;
fb456252 1181 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1182 struct btrfs_dev_extent *dev_extent;
1183 struct btrfs_path *path;
1184 u64 extent_end;
1185 int ret;
1186 int slot;
1187 struct extent_buffer *l;
1188
1189 *length = 0;
1190
63a212ab 1191 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1192 return 0;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
e4058b54 1197 path->reada = READA_FORWARD;
6d07bcec
MX
1198
1199 key.objectid = device->devid;
1200 key.offset = start;
1201 key.type = BTRFS_DEV_EXTENT_KEY;
1202
1203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1204 if (ret < 0)
1205 goto out;
1206 if (ret > 0) {
1207 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1208 if (ret < 0)
1209 goto out;
1210 }
1211
1212 while (1) {
1213 l = path->nodes[0];
1214 slot = path->slots[0];
1215 if (slot >= btrfs_header_nritems(l)) {
1216 ret = btrfs_next_leaf(root, path);
1217 if (ret == 0)
1218 continue;
1219 if (ret < 0)
1220 goto out;
1221
1222 break;
1223 }
1224 btrfs_item_key_to_cpu(l, &key, slot);
1225
1226 if (key.objectid < device->devid)
1227 goto next;
1228
1229 if (key.objectid > device->devid)
1230 break;
1231
962a298f 1232 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1233 goto next;
1234
1235 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1236 extent_end = key.offset + btrfs_dev_extent_length(l,
1237 dev_extent);
1238 if (key.offset <= start && extent_end > end) {
1239 *length = end - start + 1;
1240 break;
1241 } else if (key.offset <= start && extent_end > start)
1242 *length += extent_end - start;
1243 else if (key.offset > start && extent_end <= end)
1244 *length += extent_end - key.offset;
1245 else if (key.offset > start && key.offset <= end) {
1246 *length += end - key.offset + 1;
1247 break;
1248 } else if (key.offset > end)
1249 break;
1250
1251next:
1252 path->slots[0]++;
1253 }
1254 ret = 0;
1255out:
1256 btrfs_free_path(path);
1257 return ret;
1258}
1259
499f377f 1260static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263{
fb456252 1264 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1265 struct extent_map *em;
499f377f 1266 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1267 int ret = 0;
1b984508 1268 u64 physical_start = *start;
6df9a95e 1269
499f377f
JM
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
04216820
FM
1272again:
1273 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1274 struct map_lookup *map;
1275 int i;
1276
95617d69 1277 map = em->map_lookup;
6df9a95e 1278 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1279 u64 end;
1280
6df9a95e
JB
1281 if (map->stripes[i].dev != device)
1282 continue;
1b984508 1283 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1284 map->stripes[i].physical + em->orig_block_len <=
1b984508 1285 physical_start)
6df9a95e 1286 continue;
c152b63e
FM
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
6df9a95e
JB
1304 }
1305 }
499f377f
JM
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
04216820
FM
1308 goto again;
1309 }
6df9a95e
JB
1310
1311 return ret;
1312}
1313
1314
0b86a832 1315/*
499f377f
JM
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
7bfc837d 1323 *
0b86a832
CM
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
7bfc837d
MX
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
0b86a832 1335 */
499f377f
JM
1336int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
0b86a832 1339{
0b246afa
JM
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1342 struct btrfs_key key;
7bfc837d 1343 struct btrfs_dev_extent *dev_extent;
2b82032c 1344 struct btrfs_path *path;
7bfc837d
MX
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
0b86a832
CM
1349 u64 search_end = device->total_bytes;
1350 int ret;
7bfc837d 1351 int slot;
0b86a832 1352 struct extent_buffer *l;
8cdc7c5b
FM
1353 u64 min_search_start;
1354
1355 /*
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1359 */
0b246afa 1360 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
8cdc7c5b 1361 search_start = max(search_start, min_search_start);
0b86a832 1362
6df9a95e
JB
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
f2ab7618 1366
7bfc837d
MX
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
f2ab7618 1370again:
63a212ab 1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1372 ret = -ENOSPC;
6df9a95e 1373 goto out;
7bfc837d
MX
1374 }
1375
e4058b54 1376 path->reada = READA_FORWARD;
6df9a95e
JB
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
7bfc837d 1379
0b86a832
CM
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1383
125ccb0a 1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1385 if (ret < 0)
7bfc837d 1386 goto out;
1fcbac58
YZ
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
7bfc837d 1390 goto out;
1fcbac58 1391 }
7bfc837d 1392
0b86a832
CM
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
7bfc837d
MX
1401 goto out;
1402
1403 break;
0b86a832
CM
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
7bfc837d 1411 break;
0b86a832 1412
962a298f 1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1414 goto next;
9779b72f 1415
7bfc837d
MX
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
9779b72f 1418
6df9a95e
JB
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
499f377f 1423 if (contains_pending_extent(transaction, device,
6df9a95e 1424 &search_start,
1b984508
FL
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
6df9a95e 1433
7bfc837d
MX
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
9779b72f 1438
7bfc837d
MX
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
0b86a832
CM
1451 }
1452 }
0b86a832 1453
0b86a832 1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
0b86a832
CM
1459next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
0b86a832 1463
38c01b96 1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
f2ab7618 1469 if (search_end > search_start) {
38c01b96 1470 hole_size = search_end - search_start;
1471
499f377f 1472 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
0b86a832 1477
f2ab7618
ZL
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
6df9a95e
JB
1482 }
1483
7bfc837d 1484 /* See above. */
f2ab7618 1485 if (max_hole_size < num_bytes)
7bfc837d
MX
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490out:
2b82032c 1491 btrfs_free_path(path);
7bfc837d 1492 *start = max_hole_start;
b2117a39 1493 if (len)
7bfc837d 1494 *len = max_hole_size;
0b86a832
CM
1495 return ret;
1496}
1497
499f377f
JM
1498int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501{
499f377f 1502 /* FIXME use last free of some kind */
499f377f 1503 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1504 num_bytes, 0, start, len);
499f377f
JM
1505}
1506
b2950863 1507static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1508 struct btrfs_device *device,
2196d6e8 1509 u64 start, u64 *dev_extent_len)
8f18cf13 1510{
0b246afa
JM
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1513 int ret;
1514 struct btrfs_path *path;
8f18cf13 1515 struct btrfs_key key;
a061fc8d
CM
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1527again:
8f18cf13 1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1532 if (ret)
1533 goto out;
a061fc8d
CM
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
a061fc8d
CM
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
79787eaa 1547 } else {
0b246afa 1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1549 goto out;
a061fc8d 1550 }
8f18cf13 1551
2196d6e8
MX
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
8f18cf13 1554 ret = btrfs_del_item(trans, root, path);
79787eaa 1555 if (ret) {
0b246afa
JM
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
13212b54 1558 } else {
3204d33c 1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1560 }
b0b802d7 1561out:
8f18cf13
CM
1562 btrfs_free_path(path);
1563 return ret;
1564}
1565
48a3b636
ES
1566static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1570{
1571 int ret;
1572 struct btrfs_path *path;
0b246afa
JM
1573 struct btrfs_fs_info *fs_info = device->fs_info;
1574 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1575 struct btrfs_dev_extent *extent;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key key;
1578
dfe25020 1579 WARN_ON(!device->in_fs_metadata);
63a212ab 1580 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
0b86a832 1585 key.objectid = device->devid;
2b82032c 1586 key.offset = start;
0b86a832
CM
1587 key.type = BTRFS_DEV_EXTENT_KEY;
1588 ret = btrfs_insert_empty_item(trans, root, path, &key,
1589 sizeof(*extent));
2cdcecbc
MF
1590 if (ret)
1591 goto out;
0b86a832
CM
1592
1593 leaf = path->nodes[0];
1594 extent = btrfs_item_ptr(leaf, path->slots[0],
1595 struct btrfs_dev_extent);
e17cade2
CM
1596 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
0b246afa 1600 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1601
0b86a832
CM
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1604out:
0b86a832
CM
1605 btrfs_free_path(path);
1606 return ret;
1607}
1608
6df9a95e 1609static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1610{
6df9a95e
JB
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
0b86a832 1615
6df9a95e
JB
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
0b86a832 1622 }
6df9a95e
JB
1623 read_unlock(&em_tree->lock);
1624
0b86a832
CM
1625 return ret;
1626}
1627
53f10659
ID
1628static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
0b86a832
CM
1630{
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
2b82032c
YZ
1634 struct btrfs_path *path;
1635
2b82032c
YZ
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
0b86a832
CM
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
53f10659 1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1645 if (ret < 0)
1646 goto error;
1647
79787eaa 1648 BUG_ON(ret == 0); /* Corruption */
0b86a832 1649
53f10659
ID
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
53f10659 1654 *devid_ret = 1;
0b86a832
CM
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
53f10659 1658 *devid_ret = found_key.offset + 1;
0b86a832
CM
1659 }
1660 ret = 0;
1661error:
2b82032c 1662 btrfs_free_path(path);
0b86a832
CM
1663 return ret;
1664}
1665
1666/*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
48a3b636 1670static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1671 struct btrfs_fs_info *fs_info,
48a3b636 1672 struct btrfs_device *device)
0b86a832 1673{
5b4aacef 1674 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1675 int ret;
1676 struct btrfs_path *path;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680 unsigned long ptr;
0b86a832 1681
0b86a832
CM
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1685
0b86a832
CM
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1688 key.offset = device->devid;
0b86a832
CM
1689
1690 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1691 sizeof(*dev_item));
0b86a832
CM
1692 if (ret)
1693 goto out;
1694
1695 leaf = path->nodes[0];
1696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1699 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1700 btrfs_set_device_type(leaf, dev_item, device->type);
1701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1704 btrfs_set_device_total_bytes(leaf, dev_item,
1705 btrfs_device_get_disk_total_bytes(device));
1706 btrfs_set_device_bytes_used(leaf, dev_item,
1707 btrfs_device_get_bytes_used(device));
e17cade2
CM
1708 btrfs_set_device_group(leaf, dev_item, 0);
1709 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1711 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1712
410ba3a2 1713 ptr = btrfs_device_uuid(dev_item);
e17cade2 1714 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1715 ptr = btrfs_device_fsid(dev_item);
0b246afa 1716 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1717 btrfs_mark_buffer_dirty(leaf);
0b86a832 1718
2b82032c 1719 ret = 0;
0b86a832
CM
1720out:
1721 btrfs_free_path(path);
1722 return ret;
1723}
8f18cf13 1724
5a1972bd
QW
1725/*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729static void update_dev_time(char *path_name)
1730{
1731 struct file *filp;
1732
1733 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1734 if (IS_ERR(filp))
5a1972bd
QW
1735 return;
1736 file_update_time(filp);
1737 filp_close(filp, NULL);
5a1972bd
QW
1738}
1739
5b4aacef 1740static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1741 struct btrfs_device *device)
1742{
5b4aacef 1743 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1744 int ret;
1745 struct btrfs_path *path;
a061fc8d 1746 struct btrfs_key key;
a061fc8d
CM
1747 struct btrfs_trans_handle *trans;
1748
a061fc8d
CM
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
a22285a6 1753 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1754 if (IS_ERR(trans)) {
1755 btrfs_free_path(path);
1756 return PTR_ERR(trans);
1757 }
a061fc8d
CM
1758 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1759 key.type = BTRFS_DEV_ITEM_KEY;
1760 key.offset = device->devid;
1761
1762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (ret > 0) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret)
1773 goto out;
a061fc8d
CM
1774out:
1775 btrfs_free_path(path);
1776 btrfs_commit_transaction(trans, root);
1777 return ret;
1778}
1779
3cc31a0d
DS
1780/*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
a061fc8d 1787{
a061fc8d 1788 u64 all_avail;
de98ced9 1789 unsigned seq;
418775a2 1790 int i;
a061fc8d 1791
de98ced9 1792 do {
bd45ffbc 1793 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1794
bd45ffbc
AJ
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1799
418775a2
DS
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_group[i]))
1802 continue;
a061fc8d 1803
418775a2
DS
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1806
418775a2
DS
1807 if (ret)
1808 return ret;
1809 }
53b381b3
DW
1810 }
1811
bd45ffbc 1812 return 0;
f1fa7f26
AJ
1813}
1814
88acff64
AJ
1815struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1816 struct btrfs_device *device)
a061fc8d 1817{
2b82032c 1818 struct btrfs_device *next_device;
88acff64
AJ
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !next_device->missing && next_device->bdev)
1823 return next_device;
1824 }
1825
1826 return NULL;
1827}
1828
1829/*
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1834 */
1835void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1836 struct btrfs_device *device, struct btrfs_device *this_dev)
1837{
1838 struct btrfs_device *next_device;
1839
1840 if (this_dev)
1841 next_device = this_dev;
1842 else
1843 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1844 device);
1845 ASSERT(next_device);
1846
1847 if (fs_info->sb->s_bdev &&
1848 (fs_info->sb->s_bdev == device->bdev))
1849 fs_info->sb->s_bdev = next_device->bdev;
1850
1851 if (fs_info->fs_devices->latest_bdev == device->bdev)
1852 fs_info->fs_devices->latest_bdev = next_device->bdev;
1853}
1854
2ff7e61e 1855int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid)
f1fa7f26
AJ
1856{
1857 struct btrfs_device *device;
1f78160c 1858 struct btrfs_fs_devices *cur_devices;
2b82032c 1859 u64 num_devices;
a061fc8d 1860 int ret = 0;
1f78160c 1861 bool clear_super = false;
a061fc8d 1862
a061fc8d
CM
1863 mutex_lock(&uuid_mutex);
1864
0b246afa
JM
1865 num_devices = fs_info->fs_devices->num_devices;
1866 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1868 WARN_ON(num_devices < 1);
1869 num_devices--;
1870 }
0b246afa 1871 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1872
0b246afa 1873 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1874 if (ret)
a061fc8d 1875 goto out;
a061fc8d 1876
2ff7e61e
JM
1877 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1878 &device);
24fc572f 1879 if (ret)
53b381b3 1880 goto out;
dfe25020 1881
63a212ab 1882 if (device->is_tgtdev_for_dev_replace) {
183860f6 1883 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1884 goto out;
63a212ab
SB
1885 }
1886
0b246afa 1887 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1888 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1889 goto out;
2b82032c
YZ
1890 }
1891
1892 if (device->writeable) {
0b246afa 1893 lock_chunks(fs_info);
2b82032c 1894 list_del_init(&device->dev_alloc_list);
c3929c36 1895 device->fs_devices->rw_devices--;
0b246afa 1896 unlock_chunks(fs_info);
1f78160c 1897 clear_super = true;
dfe25020 1898 }
a061fc8d 1899
d7901554 1900 mutex_unlock(&uuid_mutex);
a061fc8d 1901 ret = btrfs_shrink_device(device, 0);
d7901554 1902 mutex_lock(&uuid_mutex);
a061fc8d 1903 if (ret)
9b3517e9 1904 goto error_undo;
a061fc8d 1905
63a212ab
SB
1906 /*
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1910 */
0b246afa 1911 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1912 if (ret)
9b3517e9 1913 goto error_undo;
a061fc8d 1914
2b82032c 1915 device->in_fs_metadata = 0;
0b246afa 1916 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1917
1918 /*
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
d7306801
FDBM
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
e5e9a520 1926 */
1f78160c
XG
1927
1928 cur_devices = device->fs_devices;
0b246afa 1929 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1930 list_del_rcu(&device->dev_list);
e5e9a520 1931
e4404d6e 1932 device->fs_devices->num_devices--;
02db0844 1933 device->fs_devices->total_devices--;
2b82032c 1934
cd02dca5 1935 if (device->missing)
3a7d55c8 1936 device->fs_devices->missing_devices--;
cd02dca5 1937
0b246afa 1938 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1939
0bfaa9c5 1940 if (device->bdev) {
e4404d6e 1941 device->fs_devices->open_devices--;
0bfaa9c5 1942 /* remove sysfs entry */
0b246afa 1943 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1944 }
99994cde 1945
0b246afa
JM
1946 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1947 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1949
cea67ab9
JM
1950 /*
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1954 */
1955 if (device->writeable)
1956 btrfs_scratch_superblocks(device->bdev, device->name->str);
1957
1958 btrfs_close_bdev(device);
1959 call_rcu(&device->rcu, free_device);
1960
1f78160c 1961 if (cur_devices->open_devices == 0) {
e4404d6e 1962 struct btrfs_fs_devices *fs_devices;
0b246afa 1963 fs_devices = fs_info->fs_devices;
e4404d6e 1964 while (fs_devices) {
8321cf25
RS
1965 if (fs_devices->seed == cur_devices) {
1966 fs_devices->seed = cur_devices->seed;
e4404d6e 1967 break;
8321cf25 1968 }
e4404d6e 1969 fs_devices = fs_devices->seed;
2b82032c 1970 }
1f78160c 1971 cur_devices->seed = NULL;
1f78160c 1972 __btrfs_close_devices(cur_devices);
1f78160c 1973 free_fs_devices(cur_devices);
2b82032c
YZ
1974 }
1975
0b246afa
JM
1976 fs_info->num_tolerated_disk_barrier_failures =
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1978
a061fc8d
CM
1979out:
1980 mutex_unlock(&uuid_mutex);
a061fc8d 1981 return ret;
24fc572f 1982
9b3517e9
ID
1983error_undo:
1984 if (device->writeable) {
0b246afa 1985 lock_chunks(fs_info);
9b3517e9 1986 list_add(&device->dev_alloc_list,
0b246afa 1987 &fs_info->fs_devices->alloc_list);
c3929c36 1988 device->fs_devices->rw_devices++;
0b246afa 1989 unlock_chunks(fs_info);
9b3517e9 1990 }
24fc572f 1991 goto out;
a061fc8d
CM
1992}
1993
084b6e7c
QW
1994void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995 struct btrfs_device *srcdev)
e93c89c1 1996{
d51908ce
AJ
1997 struct btrfs_fs_devices *fs_devices;
1998
e93c89c1 1999 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2000
25e8e911
AJ
2001 /*
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2006 */
2007 fs_devices = srcdev->fs_devices;
d51908ce 2008
e93c89c1
SB
2009 list_del_rcu(&srcdev->dev_list);
2010 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2011 fs_devices->num_devices--;
82372bc8 2012 if (srcdev->missing)
d51908ce 2013 fs_devices->missing_devices--;
e93c89c1 2014
48b3b9d4 2015 if (srcdev->writeable)
82372bc8 2016 fs_devices->rw_devices--;
1357272f 2017
82372bc8 2018 if (srcdev->bdev)
d51908ce 2019 fs_devices->open_devices--;
084b6e7c
QW
2020}
2021
2022void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023 struct btrfs_device *srcdev)
2024{
2025 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2026
48b3b9d4
AJ
2027 if (srcdev->writeable) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030 }
14238819
AJ
2031
2032 btrfs_close_bdev(srcdev);
2033
e93c89c1 2034 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2035
2036 /*
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2038 * zero
2039 */
2040 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices->num_devices) {
2044 struct btrfs_fs_devices *tmp_fs_devices;
2045
2046 tmp_fs_devices = fs_info->fs_devices;
2047 while (tmp_fs_devices) {
2048 if (tmp_fs_devices->seed == fs_devices) {
2049 tmp_fs_devices->seed = fs_devices->seed;
2050 break;
2051 }
2052 tmp_fs_devices = tmp_fs_devices->seed;
2053 }
2054 fs_devices->seed = NULL;
8bef8401
AJ
2055 __btrfs_close_devices(fs_devices);
2056 free_fs_devices(fs_devices);
94d5f0c2 2057 }
e93c89c1
SB
2058}
2059
2060void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061 struct btrfs_device *tgtdev)
2062{
67a2c45e 2063 mutex_lock(&uuid_mutex);
e93c89c1
SB
2064 WARN_ON(!tgtdev);
2065 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2066
32576040 2067 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2068
779bf3fe 2069 if (tgtdev->bdev)
e93c89c1 2070 fs_info->fs_devices->open_devices--;
779bf3fe 2071
e93c89c1 2072 fs_info->fs_devices->num_devices--;
e93c89c1 2073
88acff64 2074 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2075
e93c89c1 2076 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2077
2078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2079 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2080
2081 /*
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2087 */
2088 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2089
2090 btrfs_close_bdev(tgtdev);
779bf3fe 2091 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2092}
2093
2ff7e61e
JM
2094static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2095 char *device_path,
48a3b636 2096 struct btrfs_device **device)
7ba15b7d
SB
2097{
2098 int ret = 0;
2099 struct btrfs_super_block *disk_super;
2100 u64 devid;
2101 u8 *dev_uuid;
2102 struct block_device *bdev;
2103 struct buffer_head *bh;
2104
2105 *device = NULL;
2106 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2107 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2108 if (ret)
2109 return ret;
2110 disk_super = (struct btrfs_super_block *)bh->b_data;
2111 devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2113 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2114 brelse(bh);
2115 if (!*device)
2116 ret = -ENOENT;
2117 blkdev_put(bdev, FMODE_READ);
2118 return ret;
2119}
2120
2ff7e61e 2121int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
7ba15b7d
SB
2122 char *device_path,
2123 struct btrfs_device **device)
2124{
2125 *device = NULL;
2126 if (strcmp(device_path, "missing") == 0) {
2127 struct list_head *devices;
2128 struct btrfs_device *tmp;
2129
0b246afa 2130 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2131 /*
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2134 */
2135 list_for_each_entry(tmp, devices, dev_list) {
2136 if (tmp->in_fs_metadata && !tmp->bdev) {
2137 *device = tmp;
2138 break;
2139 }
2140 }
2141
d74a6259
AJ
2142 if (!*device)
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2144
2145 return 0;
2146 } else {
2ff7e61e 2147 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2148 }
2149}
2150
5c5c0df0
DS
2151/*
2152 * Lookup a device given by device id, or the path if the id is 0.
2153 */
2ff7e61e
JM
2154int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2155 char *devpath, struct btrfs_device **device)
24e0474b
AJ
2156{
2157 int ret;
2158
5c5c0df0 2159 if (devid) {
24e0474b 2160 ret = 0;
0b246afa 2161 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2162 if (!*device)
2163 ret = -ENOENT;
2164 } else {
5c5c0df0 2165 if (!devpath || !devpath[0])
b3d1b153
AJ
2166 return -EINVAL;
2167
2ff7e61e 2168 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2169 device);
2170 }
2171 return ret;
2172}
2173
2b82032c
YZ
2174/*
2175 * does all the dirty work required for changing file system's UUID.
2176 */
2ff7e61e 2177static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2178{
0b246afa 2179 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2180 struct btrfs_fs_devices *old_devices;
e4404d6e 2181 struct btrfs_fs_devices *seed_devices;
0b246afa 2182 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2183 struct btrfs_device *device;
2184 u64 super_flags;
2185
2186 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2187 if (!fs_devices->seeding)
2b82032c
YZ
2188 return -EINVAL;
2189
2208a378
ID
2190 seed_devices = __alloc_fs_devices();
2191 if (IS_ERR(seed_devices))
2192 return PTR_ERR(seed_devices);
2b82032c 2193
e4404d6e
YZ
2194 old_devices = clone_fs_devices(fs_devices);
2195 if (IS_ERR(old_devices)) {
2196 kfree(seed_devices);
2197 return PTR_ERR(old_devices);
2b82032c 2198 }
e4404d6e 2199
2b82032c
YZ
2200 list_add(&old_devices->list, &fs_uuids);
2201
e4404d6e
YZ
2202 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2203 seed_devices->opened = 1;
2204 INIT_LIST_HEAD(&seed_devices->devices);
2205 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2206 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2207
0b246afa 2208 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2209 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2210 synchronize_rcu);
2196d6e8
MX
2211 list_for_each_entry(device, &seed_devices->devices, dev_list)
2212 device->fs_devices = seed_devices;
c9513edb 2213
0b246afa 2214 lock_chunks(fs_info);
e4404d6e 2215 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
0b246afa 2216 unlock_chunks(fs_info);
e4404d6e 2217
2b82032c
YZ
2218 fs_devices->seeding = 0;
2219 fs_devices->num_devices = 0;
2220 fs_devices->open_devices = 0;
69611ac8 2221 fs_devices->missing_devices = 0;
69611ac8 2222 fs_devices->rotating = 0;
e4404d6e 2223 fs_devices->seed = seed_devices;
2b82032c
YZ
2224
2225 generate_random_uuid(fs_devices->fsid);
0b246afa 2226 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2227 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2229
2b82032c
YZ
2230 super_flags = btrfs_super_flags(disk_super) &
2231 ~BTRFS_SUPER_FLAG_SEEDING;
2232 btrfs_set_super_flags(disk_super, super_flags);
2233
2234 return 0;
2235}
2236
2237/*
01327610 2238 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2239 */
2240static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2241 struct btrfs_fs_info *fs_info)
2b82032c 2242{
5b4aacef 2243 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2244 struct btrfs_path *path;
2245 struct extent_buffer *leaf;
2246 struct btrfs_dev_item *dev_item;
2247 struct btrfs_device *device;
2248 struct btrfs_key key;
2249 u8 fs_uuid[BTRFS_UUID_SIZE];
2250 u8 dev_uuid[BTRFS_UUID_SIZE];
2251 u64 devid;
2252 int ret;
2253
2254 path = btrfs_alloc_path();
2255 if (!path)
2256 return -ENOMEM;
2257
2b82032c
YZ
2258 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2259 key.offset = 0;
2260 key.type = BTRFS_DEV_ITEM_KEY;
2261
2262 while (1) {
2263 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2264 if (ret < 0)
2265 goto error;
2266
2267 leaf = path->nodes[0];
2268next_slot:
2269 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2270 ret = btrfs_next_leaf(root, path);
2271 if (ret > 0)
2272 break;
2273 if (ret < 0)
2274 goto error;
2275 leaf = path->nodes[0];
2276 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2277 btrfs_release_path(path);
2b82032c
YZ
2278 continue;
2279 }
2280
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2283 key.type != BTRFS_DEV_ITEM_KEY)
2284 break;
2285
2286 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2287 struct btrfs_dev_item);
2288 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2289 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2290 BTRFS_UUID_SIZE);
1473b24e 2291 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2292 BTRFS_UUID_SIZE);
0b246afa 2293 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2294 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2295
2296 if (device->fs_devices->seeding) {
2297 btrfs_set_device_generation(leaf, dev_item,
2298 device->generation);
2299 btrfs_mark_buffer_dirty(leaf);
2300 }
2301
2302 path->slots[0]++;
2303 goto next_slot;
2304 }
2305 ret = 0;
2306error:
2307 btrfs_free_path(path);
2308 return ret;
2309}
2310
5112febb 2311int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
788f20eb 2312{
5112febb 2313 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2314 struct request_queue *q;
788f20eb
CM
2315 struct btrfs_trans_handle *trans;
2316 struct btrfs_device *device;
2317 struct block_device *bdev;
788f20eb 2318 struct list_head *devices;
0b246afa 2319 struct super_block *sb = fs_info->sb;
606686ee 2320 struct rcu_string *name;
3c1dbdf5 2321 u64 tmp;
2b82032c 2322 int seeding_dev = 0;
788f20eb
CM
2323 int ret = 0;
2324
0b246afa 2325 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2326 return -EROFS;
788f20eb 2327
a5d16333 2328 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2329 fs_info->bdev_holder);
7f59203a
JB
2330 if (IS_ERR(bdev))
2331 return PTR_ERR(bdev);
a2135011 2332
0b246afa 2333 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2334 seeding_dev = 1;
2335 down_write(&sb->s_umount);
2336 mutex_lock(&uuid_mutex);
2337 }
2338
8c8bee1d 2339 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2340
0b246afa 2341 devices = &fs_info->fs_devices->devices;
d25628bd 2342
0b246afa 2343 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2344 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2345 if (device->bdev == bdev) {
2346 ret = -EEXIST;
d25628bd 2347 mutex_unlock(
0b246afa 2348 &fs_info->fs_devices->device_list_mutex);
2b82032c 2349 goto error;
788f20eb
CM
2350 }
2351 }
0b246afa 2352 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2353
0b246afa 2354 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2355 if (IS_ERR(device)) {
788f20eb 2356 /* we can safely leave the fs_devices entry around */
12bd2fc0 2357 ret = PTR_ERR(device);
2b82032c 2358 goto error;
788f20eb
CM
2359 }
2360
78f2c9e6 2361 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2362 if (!name) {
788f20eb 2363 kfree(device);
2b82032c
YZ
2364 ret = -ENOMEM;
2365 goto error;
788f20eb 2366 }
606686ee 2367 rcu_assign_pointer(device->name, name);
2b82032c 2368
a22285a6 2369 trans = btrfs_start_transaction(root, 0);
98d5dc13 2370 if (IS_ERR(trans)) {
606686ee 2371 rcu_string_free(device->name);
98d5dc13
TI
2372 kfree(device);
2373 ret = PTR_ERR(trans);
2374 goto error;
2375 }
2376
d5e2003c
JB
2377 q = bdev_get_queue(bdev);
2378 if (blk_queue_discard(q))
2379 device->can_discard = 1;
2b82032c 2380 device->writeable = 1;
2b82032c 2381 device->generation = trans->transid;
0b246afa
JM
2382 device->io_width = fs_info->sectorsize;
2383 device->io_align = fs_info->sectorsize;
2384 device->sector_size = fs_info->sectorsize;
788f20eb 2385 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2386 device->disk_total_bytes = device->total_bytes;
935e5cc9 2387 device->commit_total_bytes = device->total_bytes;
fb456252 2388 device->fs_info = fs_info;
788f20eb 2389 device->bdev = bdev;
dfe25020 2390 device->in_fs_metadata = 1;
63a212ab 2391 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2392 device->mode = FMODE_EXCL;
27087f37 2393 device->dev_stats_valid = 1;
2b82032c 2394 set_blocksize(device->bdev, 4096);
788f20eb 2395
2b82032c
YZ
2396 if (seeding_dev) {
2397 sb->s_flags &= ~MS_RDONLY;
2ff7e61e 2398 ret = btrfs_prepare_sprout(fs_info);
79787eaa 2399 BUG_ON(ret); /* -ENOMEM */
2b82032c 2400 }
788f20eb 2401
0b246afa 2402 device->fs_devices = fs_info->fs_devices;
e5e9a520 2403
0b246afa
JM
2404 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2405 lock_chunks(fs_info);
2406 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2407 list_add(&device->dev_alloc_list,
0b246afa
JM
2408 &fs_info->fs_devices->alloc_list);
2409 fs_info->fs_devices->num_devices++;
2410 fs_info->fs_devices->open_devices++;
2411 fs_info->fs_devices->rw_devices++;
2412 fs_info->fs_devices->total_devices++;
2413 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2414
0b246afa
JM
2415 spin_lock(&fs_info->free_chunk_lock);
2416 fs_info->free_chunk_space += device->total_bytes;
2417 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 2418
c289811c 2419 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
0b246afa 2420 fs_info->fs_devices->rotating = 1;
c289811c 2421
0b246afa
JM
2422 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2423 btrfs_set_super_total_bytes(fs_info->super_copy,
3c1dbdf5 2424 tmp + device->total_bytes);
788f20eb 2425
0b246afa
JM
2426 tmp = btrfs_super_num_devices(fs_info->super_copy);
2427 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2428
2429 /* add sysfs device entry */
0b246afa 2430 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2431
2196d6e8
MX
2432 /*
2433 * we've got more storage, clear any full flags on the space
2434 * infos
2435 */
0b246afa 2436 btrfs_clear_space_info_full(fs_info);
2196d6e8 2437
0b246afa
JM
2438 unlock_chunks(fs_info);
2439 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2440
2b82032c 2441 if (seeding_dev) {
0b246afa 2442 lock_chunks(fs_info);
2ff7e61e 2443 ret = init_first_rw_device(trans, fs_info, device);
0b246afa 2444 unlock_chunks(fs_info);
005d6427 2445 if (ret) {
66642832 2446 btrfs_abort_transaction(trans, ret);
79787eaa 2447 goto error_trans;
005d6427 2448 }
2196d6e8
MX
2449 }
2450
0b246afa 2451 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2452 if (ret) {
66642832 2453 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2454 goto error_trans;
2455 }
2456
2457 if (seeding_dev) {
2458 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2459
0b246afa 2460 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2461 if (ret) {
66642832 2462 btrfs_abort_transaction(trans, ret);
79787eaa 2463 goto error_trans;
005d6427 2464 }
b2373f25
AJ
2465
2466 /* Sprouting would change fsid of the mounted root,
2467 * so rename the fsid on the sysfs
2468 */
2469 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2470 fs_info->fsid);
2471 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2472 btrfs_warn(fs_info,
2473 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2474 }
2475
0b246afa
JM
2476 fs_info->num_tolerated_disk_barrier_failures =
2477 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
79787eaa 2478 ret = btrfs_commit_transaction(trans, root);
a2135011 2479
2b82032c
YZ
2480 if (seeding_dev) {
2481 mutex_unlock(&uuid_mutex);
2482 up_write(&sb->s_umount);
788f20eb 2483
79787eaa
JM
2484 if (ret) /* transaction commit */
2485 return ret;
2486
2ff7e61e 2487 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2488 if (ret < 0)
0b246afa 2489 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2491 trans = btrfs_attach_transaction(root);
2492 if (IS_ERR(trans)) {
2493 if (PTR_ERR(trans) == -ENOENT)
2494 return 0;
2495 return PTR_ERR(trans);
2496 }
2497 ret = btrfs_commit_transaction(trans, root);
2b82032c 2498 }
c9e9f97b 2499
5a1972bd
QW
2500 /* Update ctime/mtime for libblkid */
2501 update_dev_time(device_path);
2b82032c 2502 return ret;
79787eaa
JM
2503
2504error_trans:
79787eaa 2505 btrfs_end_transaction(trans, root);
606686ee 2506 rcu_string_free(device->name);
0b246afa 2507 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2508 kfree(device);
2b82032c 2509error:
e525fd89 2510 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2511 if (seeding_dev) {
2512 mutex_unlock(&uuid_mutex);
2513 up_write(&sb->s_umount);
2514 }
c9e9f97b 2515 return ret;
788f20eb
CM
2516}
2517
2ff7e61e
JM
2518int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2519 char *device_path,
1c43366d 2520 struct btrfs_device *srcdev,
e93c89c1
SB
2521 struct btrfs_device **device_out)
2522{
2523 struct request_queue *q;
2524 struct btrfs_device *device;
2525 struct block_device *bdev;
e93c89c1
SB
2526 struct list_head *devices;
2527 struct rcu_string *name;
12bd2fc0 2528 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2529 int ret = 0;
2530
2531 *device_out = NULL;
1c43366d
MX
2532 if (fs_info->fs_devices->seeding) {
2533 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2534 return -EINVAL;
1c43366d 2535 }
e93c89c1
SB
2536
2537 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2538 fs_info->bdev_holder);
1c43366d
MX
2539 if (IS_ERR(bdev)) {
2540 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2541 return PTR_ERR(bdev);
1c43366d 2542 }
e93c89c1
SB
2543
2544 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2545
2546 devices = &fs_info->fs_devices->devices;
2547 list_for_each_entry(device, devices, dev_list) {
2548 if (device->bdev == bdev) {
5d163e0e
JM
2549 btrfs_err(fs_info,
2550 "target device is in the filesystem!");
e93c89c1
SB
2551 ret = -EEXIST;
2552 goto error;
2553 }
2554 }
2555
1c43366d 2556
7cc8e58d
MX
2557 if (i_size_read(bdev->bd_inode) <
2558 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2559 btrfs_err(fs_info,
2560 "target device is smaller than source device!");
1c43366d
MX
2561 ret = -EINVAL;
2562 goto error;
2563 }
2564
2565
12bd2fc0
ID
2566 device = btrfs_alloc_device(NULL, &devid, NULL);
2567 if (IS_ERR(device)) {
2568 ret = PTR_ERR(device);
e93c89c1
SB
2569 goto error;
2570 }
2571
2572 name = rcu_string_strdup(device_path, GFP_NOFS);
2573 if (!name) {
2574 kfree(device);
2575 ret = -ENOMEM;
2576 goto error;
2577 }
2578 rcu_assign_pointer(device->name, name);
2579
2580 q = bdev_get_queue(bdev);
2581 if (blk_queue_discard(q))
2582 device->can_discard = 1;
0b246afa 2583 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2584 device->writeable = 1;
e93c89c1 2585 device->generation = 0;
0b246afa
JM
2586 device->io_width = fs_info->sectorsize;
2587 device->io_align = fs_info->sectorsize;
2588 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2589 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2590 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2591 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2592 ASSERT(list_empty(&srcdev->resized_list));
2593 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2594 device->commit_bytes_used = device->bytes_used;
fb456252 2595 device->fs_info = fs_info;
e93c89c1
SB
2596 device->bdev = bdev;
2597 device->in_fs_metadata = 1;
2598 device->is_tgtdev_for_dev_replace = 1;
2599 device->mode = FMODE_EXCL;
27087f37 2600 device->dev_stats_valid = 1;
e93c89c1
SB
2601 set_blocksize(device->bdev, 4096);
2602 device->fs_devices = fs_info->fs_devices;
2603 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2604 fs_info->fs_devices->num_devices++;
2605 fs_info->fs_devices->open_devices++;
0b246afa 2606 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2607
2608 *device_out = device;
2609 return ret;
2610
2611error:
2612 blkdev_put(bdev, FMODE_EXCL);
2613 return ret;
2614}
2615
2616void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2617 struct btrfs_device *tgtdev)
2618{
da17066c
JM
2619 u32 sectorsize = fs_info->sectorsize;
2620
e93c89c1 2621 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2622 tgtdev->io_width = sectorsize;
2623 tgtdev->io_align = sectorsize;
2624 tgtdev->sector_size = sectorsize;
fb456252 2625 tgtdev->fs_info = fs_info;
e93c89c1
SB
2626 tgtdev->in_fs_metadata = 1;
2627}
2628
d397712b
CM
2629static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2630 struct btrfs_device *device)
0b86a832
CM
2631{
2632 int ret;
2633 struct btrfs_path *path;
0b246afa 2634 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2635 struct btrfs_dev_item *dev_item;
2636 struct extent_buffer *leaf;
2637 struct btrfs_key key;
2638
0b86a832
CM
2639 path = btrfs_alloc_path();
2640 if (!path)
2641 return -ENOMEM;
2642
2643 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2644 key.type = BTRFS_DEV_ITEM_KEY;
2645 key.offset = device->devid;
2646
2647 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2648 if (ret < 0)
2649 goto out;
2650
2651 if (ret > 0) {
2652 ret = -ENOENT;
2653 goto out;
2654 }
2655
2656 leaf = path->nodes[0];
2657 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2658
2659 btrfs_set_device_id(leaf, dev_item, device->devid);
2660 btrfs_set_device_type(leaf, dev_item, device->type);
2661 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2662 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2663 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2664 btrfs_set_device_total_bytes(leaf, dev_item,
2665 btrfs_device_get_disk_total_bytes(device));
2666 btrfs_set_device_bytes_used(leaf, dev_item,
2667 btrfs_device_get_bytes_used(device));
0b86a832
CM
2668 btrfs_mark_buffer_dirty(leaf);
2669
2670out:
2671 btrfs_free_path(path);
2672 return ret;
2673}
2674
2196d6e8 2675int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2676 struct btrfs_device *device, u64 new_size)
2677{
0b246afa
JM
2678 struct btrfs_fs_info *fs_info = device->fs_info;
2679 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2680 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2681 u64 old_total;
2682 u64 diff;
8f18cf13 2683
2b82032c
YZ
2684 if (!device->writeable)
2685 return -EACCES;
2196d6e8 2686
0b246afa 2687 lock_chunks(fs_info);
2196d6e8
MX
2688 old_total = btrfs_super_total_bytes(super_copy);
2689 diff = new_size - device->total_bytes;
2690
63a212ab 2691 if (new_size <= device->total_bytes ||
2196d6e8 2692 device->is_tgtdev_for_dev_replace) {
0b246afa 2693 unlock_chunks(fs_info);
2b82032c 2694 return -EINVAL;
2196d6e8 2695 }
2b82032c 2696
0b246afa 2697 fs_devices = fs_info->fs_devices;
2b82032c 2698
8f18cf13 2699 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2700 device->fs_devices->total_rw_bytes += diff;
2701
7cc8e58d
MX
2702 btrfs_device_set_total_bytes(device, new_size);
2703 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2704 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2705 if (list_empty(&device->resized_list))
2706 list_add_tail(&device->resized_list,
2707 &fs_devices->resized_devices);
0b246afa 2708 unlock_chunks(fs_info);
4184ea7f 2709
8f18cf13
CM
2710 return btrfs_update_device(trans, device);
2711}
2712
2713static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2714 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2715 u64 chunk_offset)
2716{
5b4aacef 2717 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2718 int ret;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
2721
8f18cf13
CM
2722 path = btrfs_alloc_path();
2723 if (!path)
2724 return -ENOMEM;
2725
2726 key.objectid = chunk_objectid;
2727 key.offset = chunk_offset;
2728 key.type = BTRFS_CHUNK_ITEM_KEY;
2729
2730 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2731 if (ret < 0)
2732 goto out;
2733 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2734 btrfs_handle_fs_error(fs_info, -ENOENT,
2735 "Failed lookup while freeing chunk.");
79787eaa
JM
2736 ret = -ENOENT;
2737 goto out;
2738 }
8f18cf13
CM
2739
2740 ret = btrfs_del_item(trans, root, path);
79787eaa 2741 if (ret < 0)
0b246afa
JM
2742 btrfs_handle_fs_error(fs_info, ret,
2743 "Failed to delete chunk item.");
79787eaa 2744out:
8f18cf13 2745 btrfs_free_path(path);
65a246c5 2746 return ret;
8f18cf13
CM
2747}
2748
6bccf3ab
JM
2749static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2750 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2751{
0b246afa 2752 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2753 struct btrfs_disk_key *disk_key;
2754 struct btrfs_chunk *chunk;
2755 u8 *ptr;
2756 int ret = 0;
2757 u32 num_stripes;
2758 u32 array_size;
2759 u32 len = 0;
2760 u32 cur;
2761 struct btrfs_key key;
2762
0b246afa 2763 lock_chunks(fs_info);
8f18cf13
CM
2764 array_size = btrfs_super_sys_array_size(super_copy);
2765
2766 ptr = super_copy->sys_chunk_array;
2767 cur = 0;
2768
2769 while (cur < array_size) {
2770 disk_key = (struct btrfs_disk_key *)ptr;
2771 btrfs_disk_key_to_cpu(&key, disk_key);
2772
2773 len = sizeof(*disk_key);
2774
2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 chunk = (struct btrfs_chunk *)(ptr + len);
2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 len += btrfs_chunk_item_size(num_stripes);
2779 } else {
2780 ret = -EIO;
2781 break;
2782 }
2783 if (key.objectid == chunk_objectid &&
2784 key.offset == chunk_offset) {
2785 memmove(ptr, ptr + len, array_size - (cur + len));
2786 array_size -= len;
2787 btrfs_set_super_sys_array_size(super_copy, array_size);
2788 } else {
2789 ptr += len;
2790 cur += len;
2791 }
2792 }
0b246afa 2793 unlock_chunks(fs_info);
8f18cf13
CM
2794 return ret;
2795}
2796
47ab2a6c 2797int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2798 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13
CM
2799{
2800 struct extent_map_tree *em_tree;
8f18cf13
CM
2801 struct extent_map *em;
2802 struct map_lookup *map;
2196d6e8 2803 u64 dev_extent_len = 0;
47ab2a6c 2804 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2805 int i, ret = 0;
0b246afa 2806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2807
5b4aacef 2808 em_tree = &fs_info->mapping_tree.map_tree;
8f18cf13 2809
890871be 2810 read_lock(&em_tree->lock);
8f18cf13 2811 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2812 read_unlock(&em_tree->lock);
8f18cf13 2813
47ab2a6c
JB
2814 if (!em || em->start > chunk_offset ||
2815 em->start + em->len < chunk_offset) {
2816 /*
2817 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2818 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2819 * do anything we still error out.
2820 */
2821 ASSERT(0);
2822 if (em)
2823 free_extent_map(em);
2824 return -EINVAL;
2825 }
95617d69 2826 map = em->map_lookup;
3796d335 2827 lock_chunks(fs_info);
2ff7e61e 2828 check_system_chunk(trans, fs_info, map->type);
3796d335 2829 unlock_chunks(fs_info);
8f18cf13 2830
57ba4cb8
FM
2831 /*
2832 * Take the device list mutex to prevent races with the final phase of
2833 * a device replace operation that replaces the device object associated
2834 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2835 */
2836 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2837 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2838 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2839 ret = btrfs_free_dev_extent(trans, device,
2840 map->stripes[i].physical,
2841 &dev_extent_len);
47ab2a6c 2842 if (ret) {
57ba4cb8 2843 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2844 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2845 goto out;
2846 }
a061fc8d 2847
2196d6e8 2848 if (device->bytes_used > 0) {
0b246afa 2849 lock_chunks(fs_info);
2196d6e8
MX
2850 btrfs_device_set_bytes_used(device,
2851 device->bytes_used - dev_extent_len);
0b246afa
JM
2852 spin_lock(&fs_info->free_chunk_lock);
2853 fs_info->free_chunk_space += dev_extent_len;
2854 spin_unlock(&fs_info->free_chunk_lock);
2855 btrfs_clear_space_info_full(fs_info);
2856 unlock_chunks(fs_info);
2196d6e8 2857 }
a061fc8d 2858
dfe25020
CM
2859 if (map->stripes[i].dev) {
2860 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2861 if (ret) {
57ba4cb8 2862 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2863 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2864 goto out;
2865 }
dfe25020 2866 }
8f18cf13 2867 }
57ba4cb8
FM
2868 mutex_unlock(&fs_devices->device_list_mutex);
2869
0b246afa 2870 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2871 if (ret) {
66642832 2872 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2873 goto out;
2874 }
8f18cf13 2875
6bccf3ab 2876 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2877
8f18cf13 2878 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2879 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2880 chunk_offset);
47ab2a6c 2881 if (ret) {
66642832 2882 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2883 goto out;
2884 }
8f18cf13
CM
2885 }
2886
6bccf3ab 2887 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2888 if (ret) {
66642832 2889 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2890 goto out;
2891 }
2b82032c 2892
47ab2a6c 2893out:
2b82032c
YZ
2894 /* once for us */
2895 free_extent_map(em);
47ab2a6c
JB
2896 return ret;
2897}
2b82032c 2898
5b4aacef 2899static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2900{
5b4aacef
JM
2901 struct btrfs_root *root = fs_info->chunk_root;
2902 struct btrfs_root *extent_root = fs_info->extent_root;
19c4d2f9 2903 struct btrfs_trans_handle *trans;
47ab2a6c 2904 int ret;
2b82032c 2905
67c5e7d4
FM
2906 /*
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 *
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2917 */
0b246afa 2918 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2919
0b246afa 2920 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2921 if (ret)
2922 return -ENOSPC;
2923
2924 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2925 btrfs_scrub_pause(fs_info);
0b246afa 2926 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2927 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2928 if (ret)
2929 return ret;
2930
19c4d2f9
CM
2931 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932 chunk_offset);
2933 if (IS_ERR(trans)) {
2934 ret = PTR_ERR(trans);
2935 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2936 return ret;
2937 }
2938
47ab2a6c 2939 /*
19c4d2f9
CM
2940 * step two, delete the device extents and the
2941 * chunk tree entries
47ab2a6c 2942 */
5b4aacef 2943 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
19c4d2f9
CM
2944 btrfs_end_transaction(trans, extent_root);
2945 return ret;
2b82032c
YZ
2946}
2947
2ff7e61e 2948static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2949{
0b246afa 2950 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2951 struct btrfs_path *path;
2952 struct extent_buffer *leaf;
2953 struct btrfs_chunk *chunk;
2954 struct btrfs_key key;
2955 struct btrfs_key found_key;
2b82032c 2956 u64 chunk_type;
ba1bf481
JB
2957 bool retried = false;
2958 int failed = 0;
2b82032c
YZ
2959 int ret;
2960
2961 path = btrfs_alloc_path();
2962 if (!path)
2963 return -ENOMEM;
2964
ba1bf481 2965again:
2b82032c
YZ
2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 key.offset = (u64)-1;
2968 key.type = BTRFS_CHUNK_ITEM_KEY;
2969
2970 while (1) {
0b246afa 2971 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2973 if (ret < 0) {
0b246afa 2974 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2975 goto error;
67c5e7d4 2976 }
79787eaa 2977 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2978
2979 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980 key.type);
67c5e7d4 2981 if (ret)
0b246afa 2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2983 if (ret < 0)
2984 goto error;
2985 if (ret > 0)
2986 break;
1a40e23b 2987
2b82032c
YZ
2988 leaf = path->nodes[0];
2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2990
2b82032c
YZ
2991 chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 struct btrfs_chunk);
2993 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2994 btrfs_release_path(path);
8f18cf13 2995
2b82032c 2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 2997 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
2998 if (ret == -ENOSPC)
2999 failed++;
14586651
HS
3000 else
3001 BUG_ON(ret);
2b82032c 3002 }
0b246afa 3003 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3004
2b82032c
YZ
3005 if (found_key.offset == 0)
3006 break;
3007 key.offset = found_key.offset - 1;
3008 }
3009 ret = 0;
ba1bf481
JB
3010 if (failed && !retried) {
3011 failed = 0;
3012 retried = true;
3013 goto again;
fae7f21c 3014 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3015 ret = -ENOSPC;
3016 }
2b82032c
YZ
3017error:
3018 btrfs_free_path(path);
3019 return ret;
8f18cf13
CM
3020}
3021
6bccf3ab 3022static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3023 struct btrfs_balance_control *bctl)
3024{
6bccf3ab 3025 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_balance_item *item;
3028 struct btrfs_disk_balance_args disk_bargs;
3029 struct btrfs_path *path;
3030 struct extent_buffer *leaf;
3031 struct btrfs_key key;
3032 int ret, err;
3033
3034 path = btrfs_alloc_path();
3035 if (!path)
3036 return -ENOMEM;
3037
3038 trans = btrfs_start_transaction(root, 0);
3039 if (IS_ERR(trans)) {
3040 btrfs_free_path(path);
3041 return PTR_ERR(trans);
3042 }
3043
3044 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3045 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3046 key.offset = 0;
3047
3048 ret = btrfs_insert_empty_item(trans, root, path, &key,
3049 sizeof(*item));
3050 if (ret)
3051 goto out;
3052
3053 leaf = path->nodes[0];
3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3055
b159fa28 3056 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3057
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3064
3065 btrfs_set_balance_flags(leaf, item, bctl->flags);
3066
3067 btrfs_mark_buffer_dirty(leaf);
3068out:
3069 btrfs_free_path(path);
3070 err = btrfs_commit_transaction(trans, root);
3071 if (err && !ret)
3072 ret = err;
3073 return ret;
3074}
3075
6bccf3ab 3076static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3077{
6bccf3ab 3078 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3079 struct btrfs_trans_handle *trans;
3080 struct btrfs_path *path;
3081 struct btrfs_key key;
3082 int ret, err;
3083
3084 path = btrfs_alloc_path();
3085 if (!path)
3086 return -ENOMEM;
3087
3088 trans = btrfs_start_transaction(root, 0);
3089 if (IS_ERR(trans)) {
3090 btrfs_free_path(path);
3091 return PTR_ERR(trans);
3092 }
3093
3094 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3095 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3096 key.offset = 0;
3097
3098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099 if (ret < 0)
3100 goto out;
3101 if (ret > 0) {
3102 ret = -ENOENT;
3103 goto out;
3104 }
3105
3106 ret = btrfs_del_item(trans, root, path);
3107out:
3108 btrfs_free_path(path);
3109 err = btrfs_commit_transaction(trans, root);
3110 if (err && !ret)
3111 ret = err;
3112 return ret;
3113}
3114
59641015
ID
3115/*
3116 * This is a heuristic used to reduce the number of chunks balanced on
3117 * resume after balance was interrupted.
3118 */
3119static void update_balance_args(struct btrfs_balance_control *bctl)
3120{
3121 /*
3122 * Turn on soft mode for chunk types that were being converted.
3123 */
3124 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3125 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3127 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3128 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3129 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3130
3131 /*
3132 * Turn on usage filter if is not already used. The idea is
3133 * that chunks that we have already balanced should be
3134 * reasonably full. Don't do it for chunks that are being
3135 * converted - that will keep us from relocating unconverted
3136 * (albeit full) chunks.
3137 */
3138 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3140 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3141 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3142 bctl->data.usage = 90;
3143 }
3144 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3146 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 bctl->sys.usage = 90;
3149 }
3150 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3152 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->meta.usage = 90;
3155 }
3156}
3157
c9e9f97b
ID
3158/*
3159 * Should be called with both balance and volume mutexes held to
3160 * serialize other volume operations (add_dev/rm_dev/resize) with
3161 * restriper. Same goes for unset_balance_control.
3162 */
3163static void set_balance_control(struct btrfs_balance_control *bctl)
3164{
3165 struct btrfs_fs_info *fs_info = bctl->fs_info;
3166
3167 BUG_ON(fs_info->balance_ctl);
3168
3169 spin_lock(&fs_info->balance_lock);
3170 fs_info->balance_ctl = bctl;
3171 spin_unlock(&fs_info->balance_lock);
3172}
3173
3174static void unset_balance_control(struct btrfs_fs_info *fs_info)
3175{
3176 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3177
3178 BUG_ON(!fs_info->balance_ctl);
3179
3180 spin_lock(&fs_info->balance_lock);
3181 fs_info->balance_ctl = NULL;
3182 spin_unlock(&fs_info->balance_lock);
3183
3184 kfree(bctl);
3185}
3186
ed25e9b2
ID
3187/*
3188 * Balance filters. Return 1 if chunk should be filtered out
3189 * (should not be balanced).
3190 */
899c81ea 3191static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3192 struct btrfs_balance_args *bargs)
3193{
899c81ea
ID
3194 chunk_type = chunk_to_extended(chunk_type) &
3195 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3196
899c81ea 3197 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3198 return 0;
3199
3200 return 1;
3201}
3202
dba72cb3 3203static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3204 struct btrfs_balance_args *bargs)
bc309467
DS
3205{
3206 struct btrfs_block_group_cache *cache;
3207 u64 chunk_used;
3208 u64 user_thresh_min;
3209 u64 user_thresh_max;
3210 int ret = 1;
3211
3212 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3213 chunk_used = btrfs_block_group_used(&cache->item);
3214
3215 if (bargs->usage_min == 0)
3216 user_thresh_min = 0;
3217 else
3218 user_thresh_min = div_factor_fine(cache->key.offset,
3219 bargs->usage_min);
3220
3221 if (bargs->usage_max == 0)
3222 user_thresh_max = 1;
3223 else if (bargs->usage_max > 100)
3224 user_thresh_max = cache->key.offset;
3225 else
3226 user_thresh_max = div_factor_fine(cache->key.offset,
3227 bargs->usage_max);
3228
3229 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3230 ret = 0;
3231
3232 btrfs_put_block_group(cache);
3233 return ret;
3234}
3235
dba72cb3 3236static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3237 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3238{
3239 struct btrfs_block_group_cache *cache;
3240 u64 chunk_used, user_thresh;
3241 int ret = 1;
3242
3243 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3244 chunk_used = btrfs_block_group_used(&cache->item);
3245
bc309467 3246 if (bargs->usage_min == 0)
3e39cea6 3247 user_thresh = 1;
a105bb88
ID
3248 else if (bargs->usage > 100)
3249 user_thresh = cache->key.offset;
3250 else
3251 user_thresh = div_factor_fine(cache->key.offset,
3252 bargs->usage);
3253
5ce5b3c0
ID
3254 if (chunk_used < user_thresh)
3255 ret = 0;
3256
3257 btrfs_put_block_group(cache);
3258 return ret;
3259}
3260
409d404b
ID
3261static int chunk_devid_filter(struct extent_buffer *leaf,
3262 struct btrfs_chunk *chunk,
3263 struct btrfs_balance_args *bargs)
3264{
3265 struct btrfs_stripe *stripe;
3266 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3267 int i;
3268
3269 for (i = 0; i < num_stripes; i++) {
3270 stripe = btrfs_stripe_nr(chunk, i);
3271 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3272 return 0;
3273 }
3274
3275 return 1;
3276}
3277
94e60d5a
ID
3278/* [pstart, pend) */
3279static int chunk_drange_filter(struct extent_buffer *leaf,
3280 struct btrfs_chunk *chunk,
3281 u64 chunk_offset,
3282 struct btrfs_balance_args *bargs)
3283{
3284 struct btrfs_stripe *stripe;
3285 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3286 u64 stripe_offset;
3287 u64 stripe_length;
3288 int factor;
3289 int i;
3290
3291 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3292 return 0;
3293
3294 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3295 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3296 factor = num_stripes / 2;
3297 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3298 factor = num_stripes - 1;
3299 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3300 factor = num_stripes - 2;
3301 } else {
3302 factor = num_stripes;
3303 }
94e60d5a
ID
3304
3305 for (i = 0; i < num_stripes; i++) {
3306 stripe = btrfs_stripe_nr(chunk, i);
3307 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3308 continue;
3309
3310 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3311 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3312 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3313
3314 if (stripe_offset < bargs->pend &&
3315 stripe_offset + stripe_length > bargs->pstart)
3316 return 0;
3317 }
3318
3319 return 1;
3320}
3321
ea67176a
ID
3322/* [vstart, vend) */
3323static int chunk_vrange_filter(struct extent_buffer *leaf,
3324 struct btrfs_chunk *chunk,
3325 u64 chunk_offset,
3326 struct btrfs_balance_args *bargs)
3327{
3328 if (chunk_offset < bargs->vend &&
3329 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3330 /* at least part of the chunk is inside this vrange */
3331 return 0;
3332
3333 return 1;
3334}
3335
dee32d0a
GAP
3336static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3337 struct btrfs_chunk *chunk,
3338 struct btrfs_balance_args *bargs)
3339{
3340 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3341
3342 if (bargs->stripes_min <= num_stripes
3343 && num_stripes <= bargs->stripes_max)
3344 return 0;
3345
3346 return 1;
3347}
3348
899c81ea 3349static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3350 struct btrfs_balance_args *bargs)
3351{
3352 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3353 return 0;
3354
899c81ea
ID
3355 chunk_type = chunk_to_extended(chunk_type) &
3356 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3357
899c81ea 3358 if (bargs->target == chunk_type)
cfa4c961
ID
3359 return 1;
3360
3361 return 0;
3362}
3363
2ff7e61e 3364static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3365 struct extent_buffer *leaf,
3366 struct btrfs_chunk *chunk, u64 chunk_offset)
3367{
0b246afa 3368 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3369 struct btrfs_balance_args *bargs = NULL;
3370 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3371
3372 /* type filter */
3373 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3374 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3375 return 0;
3376 }
3377
3378 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3379 bargs = &bctl->data;
3380 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3381 bargs = &bctl->sys;
3382 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3383 bargs = &bctl->meta;
3384
ed25e9b2
ID
3385 /* profiles filter */
3386 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3387 chunk_profiles_filter(chunk_type, bargs)) {
3388 return 0;
5ce5b3c0
ID
3389 }
3390
3391 /* usage filter */
3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3393 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3394 return 0;
bc309467 3395 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3396 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3397 return 0;
409d404b
ID
3398 }
3399
3400 /* devid filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3402 chunk_devid_filter(leaf, chunk, bargs)) {
3403 return 0;
94e60d5a
ID
3404 }
3405
3406 /* drange filter, makes sense only with devid filter */
3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3408 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3409 return 0;
ea67176a
ID
3410 }
3411
3412 /* vrange filter */
3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3414 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3415 return 0;
ed25e9b2
ID
3416 }
3417
dee32d0a
GAP
3418 /* stripes filter */
3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3420 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3421 return 0;
3422 }
3423
cfa4c961
ID
3424 /* soft profile changing mode */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3426 chunk_soft_convert_filter(chunk_type, bargs)) {
3427 return 0;
3428 }
3429
7d824b6f
DS
3430 /*
3431 * limited by count, must be the last filter
3432 */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3434 if (bargs->limit == 0)
3435 return 0;
3436 else
3437 bargs->limit--;
12907fc7
DS
3438 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3439 /*
3440 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3441 * determined here because we do not have the global information
12907fc7
DS
3442 * about the count of all chunks that satisfy the filters.
3443 */
3444 if (bargs->limit_max == 0)
3445 return 0;
3446 else
3447 bargs->limit_max--;
7d824b6f
DS
3448 }
3449
f43ffb60
ID
3450 return 1;
3451}
3452
c9e9f97b 3453static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3454{
19a39dce 3455 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3456 struct btrfs_root *chunk_root = fs_info->chunk_root;
3457 struct btrfs_root *dev_root = fs_info->dev_root;
3458 struct list_head *devices;
ec44a35c
CM
3459 struct btrfs_device *device;
3460 u64 old_size;
3461 u64 size_to_free;
12907fc7 3462 u64 chunk_type;
f43ffb60 3463 struct btrfs_chunk *chunk;
5a488b9d 3464 struct btrfs_path *path = NULL;
ec44a35c 3465 struct btrfs_key key;
ec44a35c 3466 struct btrfs_key found_key;
c9e9f97b 3467 struct btrfs_trans_handle *trans;
f43ffb60
ID
3468 struct extent_buffer *leaf;
3469 int slot;
c9e9f97b
ID
3470 int ret;
3471 int enospc_errors = 0;
19a39dce 3472 bool counting = true;
12907fc7 3473 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3474 u64 limit_data = bctl->data.limit;
3475 u64 limit_meta = bctl->meta.limit;
3476 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3477 u32 count_data = 0;
3478 u32 count_meta = 0;
3479 u32 count_sys = 0;
2c9fe835 3480 int chunk_reserved = 0;
cf25ce51 3481 u64 bytes_used = 0;
ec44a35c 3482
ec44a35c 3483 /* step one make some room on all the devices */
c9e9f97b 3484 devices = &fs_info->fs_devices->devices;
c6e30871 3485 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3486 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3487 size_to_free = div_factor(old_size, 1);
ee22184b 3488 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3489 if (!device->writeable ||
7cc8e58d
MX
3490 btrfs_device_get_total_bytes(device) -
3491 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3492 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3493 continue;
3494
3495 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3496 if (ret == -ENOSPC)
3497 break;
5a488b9d
LB
3498 if (ret) {
3499 /* btrfs_shrink_device never returns ret > 0 */
3500 WARN_ON(ret > 0);
3501 goto error;
3502 }
ec44a35c 3503
a22285a6 3504 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3505 if (IS_ERR(trans)) {
3506 ret = PTR_ERR(trans);
3507 btrfs_info_in_rcu(fs_info,
3508 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3509 rcu_str_deref(device->name), ret,
3510 old_size, old_size - size_to_free);
3511 goto error;
3512 }
ec44a35c
CM
3513
3514 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d
LB
3515 if (ret) {
3516 btrfs_end_transaction(trans, dev_root);
3517 /* btrfs_grow_device never returns ret > 0 */
3518 WARN_ON(ret > 0);
3519 btrfs_info_in_rcu(fs_info,
3520 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3521 rcu_str_deref(device->name), ret,
3522 old_size, old_size - size_to_free);
3523 goto error;
3524 }
ec44a35c
CM
3525
3526 btrfs_end_transaction(trans, dev_root);
3527 }
3528
3529 /* step two, relocate all the chunks */
3530 path = btrfs_alloc_path();
17e9f796
MF
3531 if (!path) {
3532 ret = -ENOMEM;
3533 goto error;
3534 }
19a39dce
ID
3535
3536 /* zero out stat counters */
3537 spin_lock(&fs_info->balance_lock);
3538 memset(&bctl->stat, 0, sizeof(bctl->stat));
3539 spin_unlock(&fs_info->balance_lock);
3540again:
7d824b6f 3541 if (!counting) {
12907fc7
DS
3542 /*
3543 * The single value limit and min/max limits use the same bytes
3544 * in the
3545 */
7d824b6f
DS
3546 bctl->data.limit = limit_data;
3547 bctl->meta.limit = limit_meta;
3548 bctl->sys.limit = limit_sys;
3549 }
ec44a35c
CM
3550 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551 key.offset = (u64)-1;
3552 key.type = BTRFS_CHUNK_ITEM_KEY;
3553
d397712b 3554 while (1) {
19a39dce 3555 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3556 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3557 ret = -ECANCELED;
3558 goto error;
3559 }
3560
67c5e7d4 3561 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3562 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3563 if (ret < 0) {
3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3565 goto error;
67c5e7d4 3566 }
ec44a35c
CM
3567
3568 /*
3569 * this shouldn't happen, it means the last relocate
3570 * failed
3571 */
3572 if (ret == 0)
c9e9f97b 3573 BUG(); /* FIXME break ? */
ec44a35c
CM
3574
3575 ret = btrfs_previous_item(chunk_root, path, 0,
3576 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3577 if (ret) {
67c5e7d4 3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3579 ret = 0;
ec44a35c 3580 break;
c9e9f97b 3581 }
7d9eb12c 3582
f43ffb60
ID
3583 leaf = path->nodes[0];
3584 slot = path->slots[0];
3585 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3586
67c5e7d4
FM
3587 if (found_key.objectid != key.objectid) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3589 break;
67c5e7d4 3590 }
7d9eb12c 3591
f43ffb60 3592 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3593 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3594
19a39dce
ID
3595 if (!counting) {
3596 spin_lock(&fs_info->balance_lock);
3597 bctl->stat.considered++;
3598 spin_unlock(&fs_info->balance_lock);
3599 }
3600
2ff7e61e 3601 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3602 found_key.offset);
2c9fe835 3603
b3b4aa74 3604 btrfs_release_path(path);
67c5e7d4
FM
3605 if (!ret) {
3606 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3607 goto loop;
67c5e7d4 3608 }
f43ffb60 3609
19a39dce 3610 if (counting) {
67c5e7d4 3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3612 spin_lock(&fs_info->balance_lock);
3613 bctl->stat.expected++;
3614 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3615
3616 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3617 count_data++;
3618 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3619 count_sys++;
3620 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3621 count_meta++;
3622
3623 goto loop;
3624 }
3625
3626 /*
3627 * Apply limit_min filter, no need to check if the LIMITS
3628 * filter is used, limit_min is 0 by default
3629 */
3630 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3631 count_data < bctl->data.limit_min)
3632 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3633 count_meta < bctl->meta.limit_min)
3634 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3635 count_sys < bctl->sys.limit_min)) {
3636 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3637 goto loop;
3638 }
3639
cf25ce51
LB
3640 ASSERT(fs_info->data_sinfo);
3641 spin_lock(&fs_info->data_sinfo->lock);
3642 bytes_used = fs_info->data_sinfo->bytes_used;
3643 spin_unlock(&fs_info->data_sinfo->lock);
3644
3645 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3646 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3647 trans = btrfs_start_transaction(chunk_root, 0);
3648 if (IS_ERR(trans)) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 ret = PTR_ERR(trans);
3651 goto error;
3652 }
3653
2ff7e61e 3654 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3655 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3656 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3657 if (ret < 0) {
3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 goto error;
3660 }
2c9fe835
ZL
3661 chunk_reserved = 1;
3662 }
3663
5b4aacef 3664 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3665 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3666 if (ret && ret != -ENOSPC)
3667 goto error;
19a39dce 3668 if (ret == -ENOSPC) {
c9e9f97b 3669 enospc_errors++;
19a39dce
ID
3670 } else {
3671 spin_lock(&fs_info->balance_lock);
3672 bctl->stat.completed++;
3673 spin_unlock(&fs_info->balance_lock);
3674 }
f43ffb60 3675loop:
795a3321
ID
3676 if (found_key.offset == 0)
3677 break;
ba1bf481 3678 key.offset = found_key.offset - 1;
ec44a35c 3679 }
c9e9f97b 3680
19a39dce
ID
3681 if (counting) {
3682 btrfs_release_path(path);
3683 counting = false;
3684 goto again;
3685 }
ec44a35c
CM
3686error:
3687 btrfs_free_path(path);
c9e9f97b 3688 if (enospc_errors) {
efe120a0 3689 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3690 enospc_errors);
c9e9f97b
ID
3691 if (!ret)
3692 ret = -ENOSPC;
3693 }
3694
ec44a35c
CM
3695 return ret;
3696}
3697
0c460c0d
ID
3698/**
3699 * alloc_profile_is_valid - see if a given profile is valid and reduced
3700 * @flags: profile to validate
3701 * @extended: if true @flags is treated as an extended profile
3702 */
3703static int alloc_profile_is_valid(u64 flags, int extended)
3704{
3705 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3706 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3707
3708 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3709
3710 /* 1) check that all other bits are zeroed */
3711 if (flags & ~mask)
3712 return 0;
3713
3714 /* 2) see if profile is reduced */
3715 if (flags == 0)
3716 return !extended; /* "0" is valid for usual profiles */
3717
3718 /* true if exactly one bit set */
3719 return (flags & (flags - 1)) == 0;
3720}
3721
837d5b6e
ID
3722static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3723{
a7e99c69
ID
3724 /* cancel requested || normal exit path */
3725 return atomic_read(&fs_info->balance_cancel_req) ||
3726 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3727 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3728}
3729
c9e9f97b
ID
3730static void __cancel_balance(struct btrfs_fs_info *fs_info)
3731{
0940ebf6
ID
3732 int ret;
3733
c9e9f97b 3734 unset_balance_control(fs_info);
6bccf3ab 3735 ret = del_balance_item(fs_info);
0f788c58 3736 if (ret)
34d97007 3737 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3738
3739 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3740}
3741
bdcd3c97
AM
3742/* Non-zero return value signifies invalidity */
3743static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3744 u64 allowed)
3745{
3746 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3747 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3748 (bctl_arg->target & ~allowed)));
3749}
3750
c9e9f97b
ID
3751/*
3752 * Should be called with both balance and volume mutexes held
3753 */
3754int btrfs_balance(struct btrfs_balance_control *bctl,
3755 struct btrfs_ioctl_balance_args *bargs)
3756{
3757 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3758 u64 allowed;
e4837f8f 3759 int mixed = 0;
c9e9f97b 3760 int ret;
8dabb742 3761 u64 num_devices;
de98ced9 3762 unsigned seq;
c9e9f97b 3763
837d5b6e 3764 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3765 atomic_read(&fs_info->balance_pause_req) ||
3766 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3767 ret = -EINVAL;
3768 goto out;
3769 }
3770
e4837f8f
ID
3771 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3772 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3773 mixed = 1;
3774
f43ffb60
ID
3775 /*
3776 * In case of mixed groups both data and meta should be picked,
3777 * and identical options should be given for both of them.
3778 */
e4837f8f
ID
3779 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3780 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3781 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3782 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3783 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3784 btrfs_err(fs_info,
3785 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3786 ret = -EINVAL;
3787 goto out;
3788 }
3789 }
3790
8dabb742 3791 num_devices = fs_info->fs_devices->num_devices;
73beece9 3792 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3793 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3794 BUG_ON(num_devices < 1);
3795 num_devices--;
3796 }
73beece9 3797 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3798 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3799 if (num_devices > 1)
e4d8ec0f 3800 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3801 if (num_devices > 2)
3802 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3803 if (num_devices > 3)
3804 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3805 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3806 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3807 btrfs_err(fs_info,
3808 "unable to start balance with target data profile %llu",
3809 bctl->data.target);
e4d8ec0f
ID
3810 ret = -EINVAL;
3811 goto out;
3812 }
bdcd3c97 3813 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3814 btrfs_err(fs_info,
5d163e0e
JM
3815 "unable to start balance with target metadata profile %llu",
3816 bctl->meta.target);
e4d8ec0f
ID
3817 ret = -EINVAL;
3818 goto out;
3819 }
bdcd3c97 3820 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3821 btrfs_err(fs_info,
5d163e0e
JM
3822 "unable to start balance with target system profile %llu",
3823 bctl->sys.target);
e4d8ec0f
ID
3824 ret = -EINVAL;
3825 goto out;
3826 }
3827
e4d8ec0f
ID
3828 /* allow to reduce meta or sys integrity only if force set */
3829 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3830 BTRFS_BLOCK_GROUP_RAID10 |
3831 BTRFS_BLOCK_GROUP_RAID5 |
3832 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3833 do {
3834 seq = read_seqbegin(&fs_info->profiles_lock);
3835
3836 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3837 (fs_info->avail_system_alloc_bits & allowed) &&
3838 !(bctl->sys.target & allowed)) ||
3839 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3840 (fs_info->avail_metadata_alloc_bits & allowed) &&
3841 !(bctl->meta.target & allowed))) {
3842 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3843 btrfs_info(fs_info,
3844 "force reducing metadata integrity");
de98ced9 3845 } else {
5d163e0e
JM
3846 btrfs_err(fs_info,
3847 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3848 ret = -EINVAL;
3849 goto out;
3850 }
e4d8ec0f 3851 }
de98ced9 3852 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3853
ee592d07
ST
3854 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3855 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3856 btrfs_warn(fs_info,
5d163e0e
JM
3857 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3858 bctl->meta.target, bctl->data.target);
ee592d07
ST
3859 }
3860
5af3e8cc 3861 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3862 fs_info->num_tolerated_disk_barrier_failures = min(
3863 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3864 btrfs_get_num_tolerated_disk_barrier_failures(
3865 bctl->sys.target));
5af3e8cc
SB
3866 }
3867
6bccf3ab 3868 ret = insert_balance_item(fs_info, bctl);
59641015 3869 if (ret && ret != -EEXIST)
0940ebf6
ID
3870 goto out;
3871
59641015
ID
3872 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3873 BUG_ON(ret == -EEXIST);
3874 set_balance_control(bctl);
3875 } else {
3876 BUG_ON(ret != -EEXIST);
3877 spin_lock(&fs_info->balance_lock);
3878 update_balance_args(bctl);
3879 spin_unlock(&fs_info->balance_lock);
3880 }
c9e9f97b 3881
837d5b6e 3882 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3883 mutex_unlock(&fs_info->balance_mutex);
3884
3885 ret = __btrfs_balance(fs_info);
3886
3887 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3888 atomic_dec(&fs_info->balance_running);
c9e9f97b 3889
bf023ecf
ID
3890 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3891 fs_info->num_tolerated_disk_barrier_failures =
3892 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3893 }
3894
c9e9f97b
ID
3895 if (bargs) {
3896 memset(bargs, 0, sizeof(*bargs));
19a39dce 3897 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3898 }
3899
3a01aa7a
ID
3900 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3901 balance_need_close(fs_info)) {
3902 __cancel_balance(fs_info);
3903 }
3904
837d5b6e 3905 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3906
3907 return ret;
3908out:
59641015
ID
3909 if (bctl->flags & BTRFS_BALANCE_RESUME)
3910 __cancel_balance(fs_info);
ed0fb78f 3911 else {
59641015 3912 kfree(bctl);
ed0fb78f
ID
3913 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3914 }
59641015
ID
3915 return ret;
3916}
3917
3918static int balance_kthread(void *data)
3919{
2b6ba629 3920 struct btrfs_fs_info *fs_info = data;
9555c6c1 3921 int ret = 0;
59641015
ID
3922
3923 mutex_lock(&fs_info->volume_mutex);
3924 mutex_lock(&fs_info->balance_mutex);
3925
2b6ba629 3926 if (fs_info->balance_ctl) {
efe120a0 3927 btrfs_info(fs_info, "continuing balance");
2b6ba629 3928 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3929 }
59641015
ID
3930
3931 mutex_unlock(&fs_info->balance_mutex);
3932 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3933
59641015
ID
3934 return ret;
3935}
3936
2b6ba629
ID
3937int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3938{
3939 struct task_struct *tsk;
3940
3941 spin_lock(&fs_info->balance_lock);
3942 if (!fs_info->balance_ctl) {
3943 spin_unlock(&fs_info->balance_lock);
3944 return 0;
3945 }
3946 spin_unlock(&fs_info->balance_lock);
3947
3cdde224 3948 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3949 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3950 return 0;
3951 }
3952
3953 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3954 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3955}
3956
68310a5e 3957int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3958{
59641015
ID
3959 struct btrfs_balance_control *bctl;
3960 struct btrfs_balance_item *item;
3961 struct btrfs_disk_balance_args disk_bargs;
3962 struct btrfs_path *path;
3963 struct extent_buffer *leaf;
3964 struct btrfs_key key;
3965 int ret;
3966
3967 path = btrfs_alloc_path();
3968 if (!path)
3969 return -ENOMEM;
3970
59641015 3971 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3972 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3973 key.offset = 0;
3974
68310a5e 3975 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3976 if (ret < 0)
68310a5e 3977 goto out;
59641015
ID
3978 if (ret > 0) { /* ret = -ENOENT; */
3979 ret = 0;
68310a5e
ID
3980 goto out;
3981 }
3982
3983 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3984 if (!bctl) {
3985 ret = -ENOMEM;
3986 goto out;
59641015
ID
3987 }
3988
3989 leaf = path->nodes[0];
3990 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3991
68310a5e
ID
3992 bctl->fs_info = fs_info;
3993 bctl->flags = btrfs_balance_flags(leaf, item);
3994 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3995
3996 btrfs_balance_data(leaf, item, &disk_bargs);
3997 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3998 btrfs_balance_meta(leaf, item, &disk_bargs);
3999 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4000 btrfs_balance_sys(leaf, item, &disk_bargs);
4001 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4002
ed0fb78f
ID
4003 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4004
68310a5e
ID
4005 mutex_lock(&fs_info->volume_mutex);
4006 mutex_lock(&fs_info->balance_mutex);
59641015 4007
68310a5e
ID
4008 set_balance_control(bctl);
4009
4010 mutex_unlock(&fs_info->balance_mutex);
4011 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4012out:
4013 btrfs_free_path(path);
ec44a35c
CM
4014 return ret;
4015}
4016
837d5b6e
ID
4017int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4018{
4019 int ret = 0;
4020
4021 mutex_lock(&fs_info->balance_mutex);
4022 if (!fs_info->balance_ctl) {
4023 mutex_unlock(&fs_info->balance_mutex);
4024 return -ENOTCONN;
4025 }
4026
4027 if (atomic_read(&fs_info->balance_running)) {
4028 atomic_inc(&fs_info->balance_pause_req);
4029 mutex_unlock(&fs_info->balance_mutex);
4030
4031 wait_event(fs_info->balance_wait_q,
4032 atomic_read(&fs_info->balance_running) == 0);
4033
4034 mutex_lock(&fs_info->balance_mutex);
4035 /* we are good with balance_ctl ripped off from under us */
4036 BUG_ON(atomic_read(&fs_info->balance_running));
4037 atomic_dec(&fs_info->balance_pause_req);
4038 } else {
4039 ret = -ENOTCONN;
4040 }
4041
4042 mutex_unlock(&fs_info->balance_mutex);
4043 return ret;
4044}
4045
a7e99c69
ID
4046int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4047{
e649e587
ID
4048 if (fs_info->sb->s_flags & MS_RDONLY)
4049 return -EROFS;
4050
a7e99c69
ID
4051 mutex_lock(&fs_info->balance_mutex);
4052 if (!fs_info->balance_ctl) {
4053 mutex_unlock(&fs_info->balance_mutex);
4054 return -ENOTCONN;
4055 }
4056
4057 atomic_inc(&fs_info->balance_cancel_req);
4058 /*
4059 * if we are running just wait and return, balance item is
4060 * deleted in btrfs_balance in this case
4061 */
4062 if (atomic_read(&fs_info->balance_running)) {
4063 mutex_unlock(&fs_info->balance_mutex);
4064 wait_event(fs_info->balance_wait_q,
4065 atomic_read(&fs_info->balance_running) == 0);
4066 mutex_lock(&fs_info->balance_mutex);
4067 } else {
4068 /* __cancel_balance needs volume_mutex */
4069 mutex_unlock(&fs_info->balance_mutex);
4070 mutex_lock(&fs_info->volume_mutex);
4071 mutex_lock(&fs_info->balance_mutex);
4072
4073 if (fs_info->balance_ctl)
4074 __cancel_balance(fs_info);
4075
4076 mutex_unlock(&fs_info->volume_mutex);
4077 }
4078
4079 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4080 atomic_dec(&fs_info->balance_cancel_req);
4081 mutex_unlock(&fs_info->balance_mutex);
4082 return 0;
4083}
4084
803b2f54
SB
4085static int btrfs_uuid_scan_kthread(void *data)
4086{
4087 struct btrfs_fs_info *fs_info = data;
4088 struct btrfs_root *root = fs_info->tree_root;
4089 struct btrfs_key key;
4090 struct btrfs_key max_key;
4091 struct btrfs_path *path = NULL;
4092 int ret = 0;
4093 struct extent_buffer *eb;
4094 int slot;
4095 struct btrfs_root_item root_item;
4096 u32 item_size;
f45388f3 4097 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4098
4099 path = btrfs_alloc_path();
4100 if (!path) {
4101 ret = -ENOMEM;
4102 goto out;
4103 }
4104
4105 key.objectid = 0;
4106 key.type = BTRFS_ROOT_ITEM_KEY;
4107 key.offset = 0;
4108
4109 max_key.objectid = (u64)-1;
4110 max_key.type = BTRFS_ROOT_ITEM_KEY;
4111 max_key.offset = (u64)-1;
4112
803b2f54 4113 while (1) {
6174d3cb 4114 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4115 if (ret) {
4116 if (ret > 0)
4117 ret = 0;
4118 break;
4119 }
4120
4121 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125 goto skip;
4126
4127 eb = path->nodes[0];
4128 slot = path->slots[0];
4129 item_size = btrfs_item_size_nr(eb, slot);
4130 if (item_size < sizeof(root_item))
4131 goto skip;
4132
803b2f54
SB
4133 read_extent_buffer(eb, &root_item,
4134 btrfs_item_ptr_offset(eb, slot),
4135 (int)sizeof(root_item));
4136 if (btrfs_root_refs(&root_item) == 0)
4137 goto skip;
f45388f3
FDBM
4138
4139 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141 if (trans)
4142 goto update_tree;
4143
4144 btrfs_release_path(path);
803b2f54
SB
4145 /*
4146 * 1 - subvol uuid item
4147 * 1 - received_subvol uuid item
4148 */
4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 if (IS_ERR(trans)) {
4151 ret = PTR_ERR(trans);
4152 break;
4153 }
f45388f3
FDBM
4154 continue;
4155 } else {
4156 goto skip;
4157 }
4158update_tree:
4159 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4160 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4161 root_item.uuid,
4162 BTRFS_UUID_KEY_SUBVOL,
4163 key.objectid);
4164 if (ret < 0) {
efe120a0 4165 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4166 ret);
803b2f54
SB
4167 break;
4168 }
4169 }
4170
4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4172 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4173 root_item.received_uuid,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 key.objectid);
4176 if (ret < 0) {
efe120a0 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4178 ret);
803b2f54
SB
4179 break;
4180 }
4181 }
4182
f45388f3 4183skip:
803b2f54
SB
4184 if (trans) {
4185 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4186 trans = NULL;
803b2f54
SB
4187 if (ret)
4188 break;
4189 }
4190
803b2f54
SB
4191 btrfs_release_path(path);
4192 if (key.offset < (u64)-1) {
4193 key.offset++;
4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 key.offset = 0;
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 } else if (key.objectid < (u64)-1) {
4198 key.offset = 0;
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4200 key.objectid++;
4201 } else {
4202 break;
4203 }
4204 cond_resched();
4205 }
4206
4207out:
4208 btrfs_free_path(path);
f45388f3
FDBM
4209 if (trans && !IS_ERR(trans))
4210 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4211 if (ret)
efe120a0 4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4213 else
afcdd129 4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4215 up(&fs_info->uuid_tree_rescan_sem);
4216 return 0;
4217}
4218
70f80175
SB
4219/*
4220 * Callback for btrfs_uuid_tree_iterate().
4221 * returns:
4222 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4223 * < 0 if an error occurred.
70f80175
SB
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4225 */
4226static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 u8 *uuid, u8 type, u64 subid)
4228{
4229 struct btrfs_key key;
4230 int ret = 0;
4231 struct btrfs_root *subvol_root;
4232
4233 if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 goto out;
4236
4237 key.objectid = subid;
4238 key.type = BTRFS_ROOT_ITEM_KEY;
4239 key.offset = (u64)-1;
4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 if (IS_ERR(subvol_root)) {
4242 ret = PTR_ERR(subvol_root);
4243 if (ret == -ENOENT)
4244 ret = 1;
4245 goto out;
4246 }
4247
4248 switch (type) {
4249 case BTRFS_UUID_KEY_SUBVOL:
4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 ret = 1;
4252 break;
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 BTRFS_UUID_SIZE))
4256 ret = 1;
4257 break;
4258 }
4259
4260out:
4261 return ret;
4262}
4263
4264static int btrfs_uuid_rescan_kthread(void *data)
4265{
4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 int ret;
4268
4269 /*
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4273 */
4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 if (ret < 0) {
efe120a0 4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4277 up(&fs_info->uuid_tree_rescan_sem);
4278 return ret;
4279 }
4280 return btrfs_uuid_scan_kthread(data);
4281}
4282
f7a81ea4
SB
4283int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284{
4285 struct btrfs_trans_handle *trans;
4286 struct btrfs_root *tree_root = fs_info->tree_root;
4287 struct btrfs_root *uuid_root;
803b2f54
SB
4288 struct task_struct *task;
4289 int ret;
f7a81ea4
SB
4290
4291 /*
4292 * 1 - root node
4293 * 1 - root item
4294 */
4295 trans = btrfs_start_transaction(tree_root, 2);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4298
4299 uuid_root = btrfs_create_tree(trans, fs_info,
4300 BTRFS_UUID_TREE_OBJECTID);
4301 if (IS_ERR(uuid_root)) {
6d13f549 4302 ret = PTR_ERR(uuid_root);
66642832 4303 btrfs_abort_transaction(trans, ret);
65d4f4c1 4304 btrfs_end_transaction(trans, tree_root);
6d13f549 4305 return ret;
f7a81ea4
SB
4306 }
4307
4308 fs_info->uuid_root = uuid_root;
4309
803b2f54
SB
4310 ret = btrfs_commit_transaction(trans, tree_root);
4311 if (ret)
4312 return ret;
4313
4314 down(&fs_info->uuid_tree_rescan_sem);
4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 if (IS_ERR(task)) {
70f80175 4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4318 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4319 up(&fs_info->uuid_tree_rescan_sem);
4320 return PTR_ERR(task);
4321 }
4322
4323 return 0;
f7a81ea4 4324}
803b2f54 4325
70f80175
SB
4326int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327{
4328 struct task_struct *task;
4329
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 if (IS_ERR(task)) {
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4334 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4337 }
4338
4339 return 0;
4340}
4341
8f18cf13
CM
4342/*
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4346 */
4347int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348{
0b246afa
JM
4349 struct btrfs_fs_info *fs_info = device->fs_info;
4350 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4351 struct btrfs_trans_handle *trans;
8f18cf13
CM
4352 struct btrfs_dev_extent *dev_extent = NULL;
4353 struct btrfs_path *path;
4354 u64 length;
8f18cf13
CM
4355 u64 chunk_offset;
4356 int ret;
4357 int slot;
ba1bf481
JB
4358 int failed = 0;
4359 bool retried = false;
53e489bc 4360 bool checked_pending_chunks = false;
8f18cf13
CM
4361 struct extent_buffer *l;
4362 struct btrfs_key key;
0b246afa 4363 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4364 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4365 u64 old_size = btrfs_device_get_total_bytes(device);
4366 u64 diff = old_size - new_size;
8f18cf13 4367
63a212ab
SB
4368 if (device->is_tgtdev_for_dev_replace)
4369 return -EINVAL;
4370
8f18cf13
CM
4371 path = btrfs_alloc_path();
4372 if (!path)
4373 return -ENOMEM;
4374
e4058b54 4375 path->reada = READA_FORWARD;
8f18cf13 4376
0b246afa 4377 lock_chunks(fs_info);
7d9eb12c 4378
7cc8e58d 4379 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4380 if (device->writeable) {
2b82032c 4381 device->fs_devices->total_rw_bytes -= diff;
0b246afa
JM
4382 spin_lock(&fs_info->free_chunk_lock);
4383 fs_info->free_chunk_space -= diff;
4384 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 4385 }
0b246afa 4386 unlock_chunks(fs_info);
8f18cf13 4387
ba1bf481 4388again:
8f18cf13
CM
4389 key.objectid = device->devid;
4390 key.offset = (u64)-1;
4391 key.type = BTRFS_DEV_EXTENT_KEY;
4392
213e64da 4393 do {
0b246afa 4394 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4396 if (ret < 0) {
0b246afa 4397 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4398 goto done;
67c5e7d4 4399 }
8f18cf13
CM
4400
4401 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4402 if (ret)
0b246afa 4403 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4404 if (ret < 0)
4405 goto done;
4406 if (ret) {
4407 ret = 0;
b3b4aa74 4408 btrfs_release_path(path);
bf1fb512 4409 break;
8f18cf13
CM
4410 }
4411
4412 l = path->nodes[0];
4413 slot = path->slots[0];
4414 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4415
ba1bf481 4416 if (key.objectid != device->devid) {
0b246afa 4417 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4418 btrfs_release_path(path);
bf1fb512 4419 break;
ba1bf481 4420 }
8f18cf13
CM
4421
4422 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4423 length = btrfs_dev_extent_length(l, dev_extent);
4424
ba1bf481 4425 if (key.offset + length <= new_size) {
0b246afa 4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4427 btrfs_release_path(path);
d6397bae 4428 break;
ba1bf481 4429 }
8f18cf13 4430
8f18cf13 4431 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4432 btrfs_release_path(path);
8f18cf13 4433
0b246afa
JM
4434 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4436 if (ret && ret != -ENOSPC)
8f18cf13 4437 goto done;
ba1bf481
JB
4438 if (ret == -ENOSPC)
4439 failed++;
213e64da 4440 } while (key.offset-- > 0);
ba1bf481
JB
4441
4442 if (failed && !retried) {
4443 failed = 0;
4444 retried = true;
4445 goto again;
4446 } else if (failed && retried) {
4447 ret = -ENOSPC;
ba1bf481 4448 goto done;
8f18cf13
CM
4449 }
4450
d6397bae 4451 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4452 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4453 if (IS_ERR(trans)) {
4454 ret = PTR_ERR(trans);
4455 goto done;
4456 }
4457
0b246afa 4458 lock_chunks(fs_info);
53e489bc
FM
4459
4460 /*
4461 * We checked in the above loop all device extents that were already in
4462 * the device tree. However before we have updated the device's
4463 * total_bytes to the new size, we might have had chunk allocations that
4464 * have not complete yet (new block groups attached to transaction
4465 * handles), and therefore their device extents were not yet in the
4466 * device tree and we missed them in the loop above. So if we have any
4467 * pending chunk using a device extent that overlaps the device range
4468 * that we can not use anymore, commit the current transaction and
4469 * repeat the search on the device tree - this way we guarantee we will
4470 * not have chunks using device extents that end beyond 'new_size'.
4471 */
4472 if (!checked_pending_chunks) {
4473 u64 start = new_size;
4474 u64 len = old_size - new_size;
4475
499f377f
JM
4476 if (contains_pending_extent(trans->transaction, device,
4477 &start, len)) {
0b246afa 4478 unlock_chunks(fs_info);
53e489bc
FM
4479 checked_pending_chunks = true;
4480 failed = 0;
4481 retried = false;
4482 ret = btrfs_commit_transaction(trans, root);
4483 if (ret)
4484 goto done;
4485 goto again;
4486 }
4487 }
4488
7cc8e58d 4489 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4490 if (list_empty(&device->resized_list))
4491 list_add_tail(&device->resized_list,
0b246afa 4492 &fs_info->fs_devices->resized_devices);
d6397bae 4493
d6397bae
CB
4494 WARN_ON(diff > old_total);
4495 btrfs_set_super_total_bytes(super_copy, old_total - diff);
0b246afa 4496 unlock_chunks(fs_info);
2196d6e8
MX
4497
4498 /* Now btrfs_update_device() will change the on-disk size. */
4499 ret = btrfs_update_device(trans, device);
d6397bae 4500 btrfs_end_transaction(trans, root);
8f18cf13
CM
4501done:
4502 btrfs_free_path(path);
53e489bc 4503 if (ret) {
0b246afa 4504 lock_chunks(fs_info);
53e489bc
FM
4505 btrfs_device_set_total_bytes(device, old_size);
4506 if (device->writeable)
4507 device->fs_devices->total_rw_bytes += diff;
0b246afa
JM
4508 spin_lock(&fs_info->free_chunk_lock);
4509 fs_info->free_chunk_space += diff;
4510 spin_unlock(&fs_info->free_chunk_lock);
4511 unlock_chunks(fs_info);
53e489bc 4512 }
8f18cf13
CM
4513 return ret;
4514}
4515
2ff7e61e 4516static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4517 struct btrfs_key *key,
4518 struct btrfs_chunk *chunk, int item_size)
4519{
0b246afa 4520 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4521 struct btrfs_disk_key disk_key;
4522 u32 array_size;
4523 u8 *ptr;
4524
0b246afa 4525 lock_chunks(fs_info);
0b86a832 4526 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4527 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
0b246afa 4529 unlock_chunks(fs_info);
0b86a832 4530 return -EFBIG;
fe48a5c0 4531 }
0b86a832
CM
4532
4533 ptr = super_copy->sys_chunk_array + array_size;
4534 btrfs_cpu_key_to_disk(&disk_key, key);
4535 memcpy(ptr, &disk_key, sizeof(disk_key));
4536 ptr += sizeof(disk_key);
4537 memcpy(ptr, chunk, item_size);
4538 item_size += sizeof(disk_key);
4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
0b246afa 4540 unlock_chunks(fs_info);
fe48a5c0 4541
0b86a832
CM
4542 return 0;
4543}
4544
73c5de00
AJ
4545/*
4546 * sort the devices in descending order by max_avail, total_avail
4547 */
4548static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4549{
73c5de00
AJ
4550 const struct btrfs_device_info *di_a = a;
4551 const struct btrfs_device_info *di_b = b;
9b3f68b9 4552
73c5de00 4553 if (di_a->max_avail > di_b->max_avail)
b2117a39 4554 return -1;
73c5de00 4555 if (di_a->max_avail < di_b->max_avail)
b2117a39 4556 return 1;
73c5de00
AJ
4557 if (di_a->total_avail > di_b->total_avail)
4558 return -1;
4559 if (di_a->total_avail < di_b->total_avail)
4560 return 1;
4561 return 0;
b2117a39 4562}
0b86a832 4563
53b381b3
DW
4564static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4565{
4566 /* TODO allow them to set a preferred stripe size */
ee22184b 4567 return SZ_64K;
53b381b3
DW
4568}
4569
4570static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4571{
ffe2d203 4572 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4573 return;
4574
ceda0864 4575 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4576}
4577
da17066c 4578#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4579 - sizeof(struct btrfs_chunk)) \
4580 / sizeof(struct btrfs_stripe) + 1)
4581
4582#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4583 - 2 * sizeof(struct btrfs_disk_key) \
4584 - 2 * sizeof(struct btrfs_chunk)) \
4585 / sizeof(struct btrfs_stripe) + 1)
4586
73c5de00 4587static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4588 struct btrfs_fs_info *fs_info, u64 start,
6df9a95e 4589 u64 type)
b2117a39 4590{
2ff7e61e 4591 struct btrfs_fs_info *info = trans->fs_info;
73c5de00
AJ
4592 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4593 struct list_head *cur;
4594 struct map_lookup *map = NULL;
4595 struct extent_map_tree *em_tree;
4596 struct extent_map *em;
4597 struct btrfs_device_info *devices_info = NULL;
4598 u64 total_avail;
4599 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4600 int data_stripes; /* number of stripes that count for
4601 block group size */
73c5de00
AJ
4602 int sub_stripes; /* sub_stripes info for map */
4603 int dev_stripes; /* stripes per dev */
4604 int devs_max; /* max devs to use */
4605 int devs_min; /* min devs needed */
4606 int devs_increment; /* ndevs has to be a multiple of this */
4607 int ncopies; /* how many copies to data has */
4608 int ret;
4609 u64 max_stripe_size;
4610 u64 max_chunk_size;
4611 u64 stripe_size;
4612 u64 num_bytes;
53b381b3 4613 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4614 int ndevs;
4615 int i;
4616 int j;
31e50229 4617 int index;
593060d7 4618
0c460c0d 4619 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4620
73c5de00
AJ
4621 if (list_empty(&fs_devices->alloc_list))
4622 return -ENOSPC;
b2117a39 4623
31e50229 4624 index = __get_raid_index(type);
73c5de00 4625
31e50229
LB
4626 sub_stripes = btrfs_raid_array[index].sub_stripes;
4627 dev_stripes = btrfs_raid_array[index].dev_stripes;
4628 devs_max = btrfs_raid_array[index].devs_max;
4629 devs_min = btrfs_raid_array[index].devs_min;
4630 devs_increment = btrfs_raid_array[index].devs_increment;
4631 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4632
9b3f68b9 4633 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4634 max_stripe_size = SZ_1G;
73c5de00 4635 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4636 if (!devs_max)
4637 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4638 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4639 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4640 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4641 max_stripe_size = SZ_1G;
1100373f 4642 else
ee22184b 4643 max_stripe_size = SZ_256M;
73c5de00 4644 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4645 if (!devs_max)
4646 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4647 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4648 max_stripe_size = SZ_32M;
73c5de00 4649 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4650 if (!devs_max)
4651 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4652 } else {
351fd353 4653 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4654 type);
4655 BUG_ON(1);
9b3f68b9
CM
4656 }
4657
2b82032c
YZ
4658 /* we don't want a chunk larger than 10% of writeable space */
4659 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4660 max_chunk_size);
9b3f68b9 4661
31e818fe 4662 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4663 GFP_NOFS);
4664 if (!devices_info)
4665 return -ENOMEM;
0cad8a11 4666
73c5de00 4667 cur = fs_devices->alloc_list.next;
9b3f68b9 4668
9f680ce0 4669 /*
73c5de00
AJ
4670 * in the first pass through the devices list, we gather information
4671 * about the available holes on each device.
9f680ce0 4672 */
73c5de00
AJ
4673 ndevs = 0;
4674 while (cur != &fs_devices->alloc_list) {
4675 struct btrfs_device *device;
4676 u64 max_avail;
4677 u64 dev_offset;
b2117a39 4678
73c5de00 4679 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4680
73c5de00 4681 cur = cur->next;
b2117a39 4682
73c5de00 4683 if (!device->writeable) {
31b1a2bd 4684 WARN(1, KERN_ERR
efe120a0 4685 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4686 continue;
4687 }
b2117a39 4688
63a212ab
SB
4689 if (!device->in_fs_metadata ||
4690 device->is_tgtdev_for_dev_replace)
73c5de00 4691 continue;
b2117a39 4692
73c5de00
AJ
4693 if (device->total_bytes > device->bytes_used)
4694 total_avail = device->total_bytes - device->bytes_used;
4695 else
4696 total_avail = 0;
38c01b96 4697
4698 /* If there is no space on this device, skip it. */
4699 if (total_avail == 0)
4700 continue;
b2117a39 4701
6df9a95e 4702 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4703 max_stripe_size * dev_stripes,
4704 &dev_offset, &max_avail);
4705 if (ret && ret != -ENOSPC)
4706 goto error;
b2117a39 4707
73c5de00
AJ
4708 if (ret == 0)
4709 max_avail = max_stripe_size * dev_stripes;
b2117a39 4710
73c5de00
AJ
4711 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4712 continue;
b2117a39 4713
063d006f
ES
4714 if (ndevs == fs_devices->rw_devices) {
4715 WARN(1, "%s: found more than %llu devices\n",
4716 __func__, fs_devices->rw_devices);
4717 break;
4718 }
73c5de00
AJ
4719 devices_info[ndevs].dev_offset = dev_offset;
4720 devices_info[ndevs].max_avail = max_avail;
4721 devices_info[ndevs].total_avail = total_avail;
4722 devices_info[ndevs].dev = device;
4723 ++ndevs;
4724 }
b2117a39 4725
73c5de00
AJ
4726 /*
4727 * now sort the devices by hole size / available space
4728 */
4729 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4730 btrfs_cmp_device_info, NULL);
b2117a39 4731
73c5de00
AJ
4732 /* round down to number of usable stripes */
4733 ndevs -= ndevs % devs_increment;
b2117a39 4734
73c5de00
AJ
4735 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4736 ret = -ENOSPC;
4737 goto error;
b2117a39 4738 }
9f680ce0 4739
73c5de00
AJ
4740 if (devs_max && ndevs > devs_max)
4741 ndevs = devs_max;
4742 /*
4743 * the primary goal is to maximize the number of stripes, so use as many
4744 * devices as possible, even if the stripes are not maximum sized.
4745 */
4746 stripe_size = devices_info[ndevs-1].max_avail;
4747 num_stripes = ndevs * dev_stripes;
b2117a39 4748
53b381b3
DW
4749 /*
4750 * this will have to be fixed for RAID1 and RAID10 over
4751 * more drives
4752 */
4753 data_stripes = num_stripes / ncopies;
4754
53b381b3
DW
4755 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4756 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4757 info->stripesize);
53b381b3
DW
4758 data_stripes = num_stripes - 1;
4759 }
4760 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4761 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4762 info->stripesize);
53b381b3
DW
4763 data_stripes = num_stripes - 2;
4764 }
86db2578
CM
4765
4766 /*
4767 * Use the number of data stripes to figure out how big this chunk
4768 * is really going to be in terms of logical address space,
4769 * and compare that answer with the max chunk size
4770 */
4771 if (stripe_size * data_stripes > max_chunk_size) {
4772 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4773
4774 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4775
4776 /* bump the answer up to a 16MB boundary */
4777 stripe_size = (stripe_size + mask) & ~mask;
4778
4779 /* but don't go higher than the limits we found
4780 * while searching for free extents
4781 */
4782 if (stripe_size > devices_info[ndevs-1].max_avail)
4783 stripe_size = devices_info[ndevs-1].max_avail;
4784 }
4785
b8b93add 4786 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4787
4788 /* align to BTRFS_STRIPE_LEN */
b8b93add 4789 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4790 stripe_size *= raid_stripe_len;
b2117a39
MX
4791
4792 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4793 if (!map) {
4794 ret = -ENOMEM;
4795 goto error;
4796 }
4797 map->num_stripes = num_stripes;
9b3f68b9 4798
73c5de00
AJ
4799 for (i = 0; i < ndevs; ++i) {
4800 for (j = 0; j < dev_stripes; ++j) {
4801 int s = i * dev_stripes + j;
4802 map->stripes[s].dev = devices_info[i].dev;
4803 map->stripes[s].physical = devices_info[i].dev_offset +
4804 j * stripe_size;
6324fbf3 4805 }
6324fbf3 4806 }
da17066c 4807 map->sector_size = info->sectorsize;
53b381b3
DW
4808 map->stripe_len = raid_stripe_len;
4809 map->io_align = raid_stripe_len;
4810 map->io_width = raid_stripe_len;
2b82032c 4811 map->type = type;
2b82032c 4812 map->sub_stripes = sub_stripes;
0b86a832 4813
53b381b3 4814 num_bytes = stripe_size * data_stripes;
0b86a832 4815
6bccf3ab 4816 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4817
172ddd60 4818 em = alloc_extent_map();
2b82032c 4819 if (!em) {
298a8f9c 4820 kfree(map);
b2117a39
MX
4821 ret = -ENOMEM;
4822 goto error;
593060d7 4823 }
298a8f9c 4824 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4825 em->map_lookup = map;
2b82032c 4826 em->start = start;
73c5de00 4827 em->len = num_bytes;
2b82032c
YZ
4828 em->block_start = 0;
4829 em->block_len = em->len;
6df9a95e 4830 em->orig_block_len = stripe_size;
593060d7 4831
0b246afa 4832 em_tree = &info->mapping_tree.map_tree;
890871be 4833 write_lock(&em_tree->lock);
09a2a8f9 4834 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4835 if (!ret) {
4836 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4837 atomic_inc(&em->refs);
4838 }
890871be 4839 write_unlock(&em_tree->lock);
0f5d42b2
JB
4840 if (ret) {
4841 free_extent_map(em);
1dd4602f 4842 goto error;
0f5d42b2 4843 }
0b86a832 4844
2ff7e61e 4845 ret = btrfs_make_block_group(trans, info, 0, type,
04487488
JB
4846 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4847 start, num_bytes);
6df9a95e
JB
4848 if (ret)
4849 goto error_del_extent;
2b82032c 4850
7cc8e58d
MX
4851 for (i = 0; i < map->num_stripes; i++) {
4852 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4853 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4854 }
43530c46 4855
0b246afa
JM
4856 spin_lock(&info->free_chunk_lock);
4857 info->free_chunk_space -= (stripe_size * map->num_stripes);
4858 spin_unlock(&info->free_chunk_lock);
1c116187 4859
0f5d42b2 4860 free_extent_map(em);
0b246afa 4861 check_raid56_incompat_flag(info, type);
53b381b3 4862
b2117a39 4863 kfree(devices_info);
2b82032c 4864 return 0;
b2117a39 4865
6df9a95e 4866error_del_extent:
0f5d42b2
JB
4867 write_lock(&em_tree->lock);
4868 remove_extent_mapping(em_tree, em);
4869 write_unlock(&em_tree->lock);
4870
4871 /* One for our allocation */
4872 free_extent_map(em);
4873 /* One for the tree reference */
4874 free_extent_map(em);
495e64f4
FM
4875 /* One for the pending_chunks list reference */
4876 free_extent_map(em);
b2117a39 4877error:
b2117a39
MX
4878 kfree(devices_info);
4879 return ret;
2b82032c
YZ
4880}
4881
6df9a95e 4882int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4883 struct btrfs_fs_info *fs_info,
6df9a95e 4884 u64 chunk_offset, u64 chunk_size)
2b82032c 4885{
6bccf3ab
JM
4886 struct btrfs_root *extent_root = fs_info->extent_root;
4887 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4888 struct btrfs_key key;
2b82032c
YZ
4889 struct btrfs_device *device;
4890 struct btrfs_chunk *chunk;
4891 struct btrfs_stripe *stripe;
6df9a95e
JB
4892 struct extent_map_tree *em_tree;
4893 struct extent_map *em;
4894 struct map_lookup *map;
4895 size_t item_size;
4896 u64 dev_offset;
4897 u64 stripe_size;
4898 int i = 0;
140e639f 4899 int ret = 0;
2b82032c 4900
0b246afa 4901 em_tree = &fs_info->mapping_tree.map_tree;
6df9a95e
JB
4902 read_lock(&em_tree->lock);
4903 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4904 read_unlock(&em_tree->lock);
4905
4906 if (!em) {
0b246afa 4907 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
5d163e0e 4908 chunk_offset, chunk_size);
6df9a95e
JB
4909 return -EINVAL;
4910 }
4911
4912 if (em->start != chunk_offset || em->len != chunk_size) {
0b246afa 4913 btrfs_crit(fs_info,
5d163e0e
JM
4914 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4915 chunk_offset, chunk_size, em->start, em->len);
6df9a95e
JB
4916 free_extent_map(em);
4917 return -EINVAL;
4918 }
4919
95617d69 4920 map = em->map_lookup;
6df9a95e
JB
4921 item_size = btrfs_chunk_item_size(map->num_stripes);
4922 stripe_size = em->orig_block_len;
4923
2b82032c 4924 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4925 if (!chunk) {
4926 ret = -ENOMEM;
4927 goto out;
4928 }
4929
50460e37
FM
4930 /*
4931 * Take the device list mutex to prevent races with the final phase of
4932 * a device replace operation that replaces the device object associated
4933 * with the map's stripes, because the device object's id can change
4934 * at any time during that final phase of the device replace operation
4935 * (dev-replace.c:btrfs_dev_replace_finishing()).
4936 */
0b246afa 4937 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4938 for (i = 0; i < map->num_stripes; i++) {
4939 device = map->stripes[i].dev;
4940 dev_offset = map->stripes[i].physical;
2b82032c 4941
0b86a832 4942 ret = btrfs_update_device(trans, device);
3acd3953 4943 if (ret)
50460e37 4944 break;
6df9a95e
JB
4945 ret = btrfs_alloc_dev_extent(trans, device,
4946 chunk_root->root_key.objectid,
4947 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4948 chunk_offset, dev_offset,
4949 stripe_size);
4950 if (ret)
50460e37
FM
4951 break;
4952 }
4953 if (ret) {
0b246afa 4954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4955 goto out;
2b82032c
YZ
4956 }
4957
2b82032c 4958 stripe = &chunk->stripe;
6df9a95e
JB
4959 for (i = 0; i < map->num_stripes; i++) {
4960 device = map->stripes[i].dev;
4961 dev_offset = map->stripes[i].physical;
0b86a832 4962
e17cade2
CM
4963 btrfs_set_stack_stripe_devid(stripe, device->devid);
4964 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4965 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4966 stripe++;
0b86a832 4967 }
0b246afa 4968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4969
2b82032c 4970 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4971 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4972 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4973 btrfs_set_stack_chunk_type(chunk, map->type);
4974 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4975 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4976 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4977 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4978 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4979
2b82032c
YZ
4980 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4981 key.type = BTRFS_CHUNK_ITEM_KEY;
4982 key.offset = chunk_offset;
0b86a832 4983
2b82032c 4984 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4985 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4986 /*
4987 * TODO: Cleanup of inserted chunk root in case of
4988 * failure.
4989 */
2ff7e61e 4990 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4991 }
1abe9b8a 4992
6df9a95e 4993out:
0b86a832 4994 kfree(chunk);
6df9a95e 4995 free_extent_map(em);
4ed1d16e 4996 return ret;
2b82032c 4997}
0b86a832 4998
2b82032c
YZ
4999/*
5000 * Chunk allocation falls into two parts. The first part does works
5001 * that make the new allocated chunk useable, but not do any operation
5002 * that modifies the chunk tree. The second part does the works that
5003 * require modifying the chunk tree. This division is important for the
5004 * bootstrap process of adding storage to a seed btrfs.
5005 */
5006int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5007 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5008{
5009 u64 chunk_offset;
2b82032c 5010
0b246afa
JM
5011 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5012 chunk_offset = find_next_chunk(fs_info);
2ff7e61e 5013 return __btrfs_alloc_chunk(trans, fs_info, chunk_offset, type);
2b82032c
YZ
5014}
5015
d397712b 5016static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2ff7e61e 5017 struct btrfs_fs_info *fs_info,
2b82032c
YZ
5018 struct btrfs_device *device)
5019{
2ff7e61e 5020 struct btrfs_root *extent_root = fs_info->extent_root;
2b82032c
YZ
5021 u64 chunk_offset;
5022 u64 sys_chunk_offset;
2b82032c 5023 u64 alloc_profile;
2b82032c
YZ
5024 int ret;
5025
6df9a95e 5026 chunk_offset = find_next_chunk(fs_info);
de98ced9 5027 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
2ff7e61e 5028 ret = __btrfs_alloc_chunk(trans, fs_info, chunk_offset, alloc_profile);
79787eaa
JM
5029 if (ret)
5030 return ret;
2b82032c 5031
0b246afa 5032 sys_chunk_offset = find_next_chunk(fs_info);
de98ced9 5033 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
2ff7e61e 5034 ret = __btrfs_alloc_chunk(trans, fs_info, sys_chunk_offset,
6df9a95e 5035 alloc_profile);
79787eaa 5036 return ret;
2b82032c
YZ
5037}
5038
d20983b4
MX
5039static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5040{
5041 int max_errors;
5042
5043 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5044 BTRFS_BLOCK_GROUP_RAID10 |
5045 BTRFS_BLOCK_GROUP_RAID5 |
5046 BTRFS_BLOCK_GROUP_DUP)) {
5047 max_errors = 1;
5048 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5049 max_errors = 2;
5050 } else {
5051 max_errors = 0;
005d6427 5052 }
2b82032c 5053
d20983b4 5054 return max_errors;
2b82032c
YZ
5055}
5056
2ff7e61e 5057int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5058{
5059 struct extent_map *em;
5060 struct map_lookup *map;
0b246afa 5061 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2b82032c 5062 int readonly = 0;
d20983b4 5063 int miss_ndevs = 0;
2b82032c
YZ
5064 int i;
5065
890871be 5066 read_lock(&map_tree->map_tree.lock);
2b82032c 5067 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5068 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5069 if (!em)
5070 return 1;
5071
95617d69 5072 map = em->map_lookup;
2b82032c 5073 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5074 if (map->stripes[i].dev->missing) {
5075 miss_ndevs++;
5076 continue;
5077 }
5078
2b82032c
YZ
5079 if (!map->stripes[i].dev->writeable) {
5080 readonly = 1;
d20983b4 5081 goto end;
2b82032c
YZ
5082 }
5083 }
d20983b4
MX
5084
5085 /*
5086 * If the number of missing devices is larger than max errors,
5087 * we can not write the data into that chunk successfully, so
5088 * set it readonly.
5089 */
5090 if (miss_ndevs > btrfs_chunk_max_errors(map))
5091 readonly = 1;
5092end:
0b86a832 5093 free_extent_map(em);
2b82032c 5094 return readonly;
0b86a832
CM
5095}
5096
5097void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5098{
a8067e02 5099 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5100}
5101
5102void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5103{
5104 struct extent_map *em;
5105
d397712b 5106 while (1) {
890871be 5107 write_lock(&tree->map_tree.lock);
0b86a832
CM
5108 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5109 if (em)
5110 remove_extent_mapping(&tree->map_tree, em);
890871be 5111 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5112 if (!em)
5113 break;
0b86a832
CM
5114 /* once for us */
5115 free_extent_map(em);
5116 /* once for the tree */
5117 free_extent_map(em);
5118 }
5119}
5120
5d964051 5121int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5122{
5d964051 5123 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5124 struct extent_map *em;
5125 struct map_lookup *map;
5126 struct extent_map_tree *em_tree = &map_tree->map_tree;
5127 int ret;
5128
890871be 5129 read_lock(&em_tree->lock);
f188591e 5130 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5131 read_unlock(&em_tree->lock);
f188591e 5132
fb7669b5
JB
5133 /*
5134 * We could return errors for these cases, but that could get ugly and
5135 * we'd probably do the same thing which is just not do anything else
5136 * and exit, so return 1 so the callers don't try to use other copies.
5137 */
5138 if (!em) {
351fd353 5139 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5140 logical+len);
5141 return 1;
5142 }
5143
5144 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5145 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5146 logical, logical+len, em->start,
5147 em->start + em->len);
7d3d1744 5148 free_extent_map(em);
fb7669b5
JB
5149 return 1;
5150 }
5151
95617d69 5152 map = em->map_lookup;
f188591e
CM
5153 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5154 ret = map->num_stripes;
321aecc6
CM
5155 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5156 ret = map->sub_stripes;
53b381b3
DW
5157 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5158 ret = 2;
5159 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5160 ret = 3;
f188591e
CM
5161 else
5162 ret = 1;
5163 free_extent_map(em);
ad6d620e 5164
73beece9 5165 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5166 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5167 ret++;
73beece9 5168 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5169
f188591e
CM
5170 return ret;
5171}
5172
2ff7e61e 5173unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5174 struct btrfs_mapping_tree *map_tree,
5175 u64 logical)
5176{
5177 struct extent_map *em;
5178 struct map_lookup *map;
5179 struct extent_map_tree *em_tree = &map_tree->map_tree;
0b246afa 5180 unsigned long len = fs_info->sectorsize;
53b381b3
DW
5181
5182 read_lock(&em_tree->lock);
5183 em = lookup_extent_mapping(em_tree, logical, len);
5184 read_unlock(&em_tree->lock);
5185 BUG_ON(!em);
5186
5187 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5188 map = em->map_lookup;
ffe2d203 5189 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5190 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5191 free_extent_map(em);
5192 return len;
5193}
5194
5195int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5196 u64 logical, u64 len, int mirror_num)
5197{
5198 struct extent_map *em;
5199 struct map_lookup *map;
5200 struct extent_map_tree *em_tree = &map_tree->map_tree;
5201 int ret = 0;
5202
5203 read_lock(&em_tree->lock);
5204 em = lookup_extent_mapping(em_tree, logical, len);
5205 read_unlock(&em_tree->lock);
5206 BUG_ON(!em);
5207
5208 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5209 map = em->map_lookup;
ffe2d203 5210 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5211 ret = 1;
5212 free_extent_map(em);
5213 return ret;
5214}
5215
30d9861f
SB
5216static int find_live_mirror(struct btrfs_fs_info *fs_info,
5217 struct map_lookup *map, int first, int num,
5218 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5219{
5220 int i;
30d9861f
SB
5221 int tolerance;
5222 struct btrfs_device *srcdev;
5223
5224 if (dev_replace_is_ongoing &&
5225 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5226 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5227 srcdev = fs_info->dev_replace.srcdev;
5228 else
5229 srcdev = NULL;
5230
5231 /*
5232 * try to avoid the drive that is the source drive for a
5233 * dev-replace procedure, only choose it if no other non-missing
5234 * mirror is available
5235 */
5236 for (tolerance = 0; tolerance < 2; tolerance++) {
5237 if (map->stripes[optimal].dev->bdev &&
5238 (tolerance || map->stripes[optimal].dev != srcdev))
5239 return optimal;
5240 for (i = first; i < first + num; i++) {
5241 if (map->stripes[i].dev->bdev &&
5242 (tolerance || map->stripes[i].dev != srcdev))
5243 return i;
5244 }
dfe25020 5245 }
30d9861f 5246
dfe25020
CM
5247 /* we couldn't find one that doesn't fail. Just return something
5248 * and the io error handling code will clean up eventually
5249 */
5250 return optimal;
5251}
5252
53b381b3
DW
5253static inline int parity_smaller(u64 a, u64 b)
5254{
5255 return a > b;
5256}
5257
5258/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5259static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5260{
5261 struct btrfs_bio_stripe s;
5262 int i;
5263 u64 l;
5264 int again = 1;
5265
5266 while (again) {
5267 again = 0;
cc7539ed 5268 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5269 if (parity_smaller(bbio->raid_map[i],
5270 bbio->raid_map[i+1])) {
53b381b3 5271 s = bbio->stripes[i];
8e5cfb55 5272 l = bbio->raid_map[i];
53b381b3 5273 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5274 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5275 bbio->stripes[i+1] = s;
8e5cfb55 5276 bbio->raid_map[i+1] = l;
2c8cdd6e 5277
53b381b3
DW
5278 again = 1;
5279 }
5280 }
5281 }
5282}
5283
6e9606d2
ZL
5284static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5285{
5286 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5287 /* the size of the btrfs_bio */
6e9606d2 5288 sizeof(struct btrfs_bio) +
e57cf21e 5289 /* plus the variable array for the stripes */
6e9606d2 5290 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5291 /* plus the variable array for the tgt dev */
6e9606d2 5292 sizeof(int) * (real_stripes) +
e57cf21e
CM
5293 /*
5294 * plus the raid_map, which includes both the tgt dev
5295 * and the stripes
5296 */
5297 sizeof(u64) * (total_stripes),
277fb5fc 5298 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5299
5300 atomic_set(&bbio->error, 0);
5301 atomic_set(&bbio->refs, 1);
5302
5303 return bbio;
5304}
5305
5306void btrfs_get_bbio(struct btrfs_bio *bbio)
5307{
5308 WARN_ON(!atomic_read(&bbio->refs));
5309 atomic_inc(&bbio->refs);
5310}
5311
5312void btrfs_put_bbio(struct btrfs_bio *bbio)
5313{
5314 if (!bbio)
5315 return;
5316 if (atomic_dec_and_test(&bbio->refs))
5317 kfree(bbio);
5318}
5319
cf8cddd3
CH
5320static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5321 enum btrfs_map_op op,
f2d8d74d 5322 u64 logical, u64 *length,
a1d3c478 5323 struct btrfs_bio **bbio_ret,
8e5cfb55 5324 int mirror_num, int need_raid_map)
0b86a832
CM
5325{
5326 struct extent_map *em;
5327 struct map_lookup *map;
3ec706c8 5328 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5329 struct extent_map_tree *em_tree = &map_tree->map_tree;
5330 u64 offset;
593060d7 5331 u64 stripe_offset;
fce3bb9a 5332 u64 stripe_end_offset;
593060d7 5333 u64 stripe_nr;
fce3bb9a
LD
5334 u64 stripe_nr_orig;
5335 u64 stripe_nr_end;
53b381b3 5336 u64 stripe_len;
9d644a62 5337 u32 stripe_index;
cea9e445 5338 int i;
de11cc12 5339 int ret = 0;
f2d8d74d 5340 int num_stripes;
a236aed1 5341 int max_errors = 0;
2c8cdd6e 5342 int tgtdev_indexes = 0;
a1d3c478 5343 struct btrfs_bio *bbio = NULL;
472262f3
SB
5344 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5345 int dev_replace_is_ongoing = 0;
5346 int num_alloc_stripes;
ad6d620e
SB
5347 int patch_the_first_stripe_for_dev_replace = 0;
5348 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5349 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5350
890871be 5351 read_lock(&em_tree->lock);
0b86a832 5352 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5353 read_unlock(&em_tree->lock);
f2d8d74d 5354
3b951516 5355 if (!em) {
c2cf52eb 5356 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5357 logical, *length);
9bb91873
JB
5358 return -EINVAL;
5359 }
5360
5361 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5362 btrfs_crit(fs_info,
5363 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5364 logical, em->start, em->start + em->len);
7d3d1744 5365 free_extent_map(em);
9bb91873 5366 return -EINVAL;
3b951516 5367 }
0b86a832 5368
95617d69 5369 map = em->map_lookup;
0b86a832 5370 offset = logical - em->start;
593060d7 5371
53b381b3 5372 stripe_len = map->stripe_len;
593060d7
CM
5373 stripe_nr = offset;
5374 /*
5375 * stripe_nr counts the total number of stripes we have to stride
5376 * to get to this block
5377 */
47c5713f 5378 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5379
53b381b3 5380 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5381 if (offset < stripe_offset) {
5d163e0e
JM
5382 btrfs_crit(fs_info,
5383 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5384 stripe_offset, offset, em->start, logical,
5385 stripe_len);
5386 free_extent_map(em);
5387 return -EINVAL;
5388 }
593060d7
CM
5389
5390 /* stripe_offset is the offset of this block in its stripe*/
5391 stripe_offset = offset - stripe_offset;
5392
53b381b3 5393 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5394 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5395 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5396 raid56_full_stripe_start = offset;
5397
5398 /* allow a write of a full stripe, but make sure we don't
5399 * allow straddling of stripes
5400 */
47c5713f
DS
5401 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5402 full_stripe_len);
53b381b3
DW
5403 raid56_full_stripe_start *= full_stripe_len;
5404 }
5405
cf8cddd3 5406 if (op == BTRFS_MAP_DISCARD) {
53b381b3 5407 /* we don't discard raid56 yet */
ffe2d203 5408 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5409 ret = -EOPNOTSUPP;
5410 goto out;
5411 }
fce3bb9a 5412 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5413 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5414 u64 max_len;
5415 /* For writes to RAID[56], allow a full stripeset across all disks.
5416 For other RAID types and for RAID[56] reads, just allow a single
5417 stripe (on a single disk). */
ffe2d203 5418 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5419 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5420 max_len = stripe_len * nr_data_stripes(map) -
5421 (offset - raid56_full_stripe_start);
5422 } else {
5423 /* we limit the length of each bio to what fits in a stripe */
5424 max_len = stripe_len - stripe_offset;
5425 }
5426 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5427 } else {
5428 *length = em->len - offset;
5429 }
f2d8d74d 5430
53b381b3
DW
5431 /* This is for when we're called from btrfs_merge_bio_hook() and all
5432 it cares about is the length */
a1d3c478 5433 if (!bbio_ret)
cea9e445
CM
5434 goto out;
5435
73beece9 5436 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5437 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5438 if (!dev_replace_is_ongoing)
73beece9
LB
5439 btrfs_dev_replace_unlock(dev_replace, 0);
5440 else
5441 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5442
ad6d620e 5443 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
cf8cddd3
CH
5444 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5445 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
ad6d620e
SB
5446 /*
5447 * in dev-replace case, for repair case (that's the only
5448 * case where the mirror is selected explicitly when
5449 * calling btrfs_map_block), blocks left of the left cursor
5450 * can also be read from the target drive.
5451 * For REQ_GET_READ_MIRRORS, the target drive is added as
5452 * the last one to the array of stripes. For READ, it also
5453 * needs to be supported using the same mirror number.
5454 * If the requested block is not left of the left cursor,
5455 * EIO is returned. This can happen because btrfs_num_copies()
5456 * returns one more in the dev-replace case.
5457 */
5458 u64 tmp_length = *length;
5459 struct btrfs_bio *tmp_bbio = NULL;
5460 int tmp_num_stripes;
5461 u64 srcdev_devid = dev_replace->srcdev->devid;
5462 int index_srcdev = 0;
5463 int found = 0;
5464 u64 physical_of_found = 0;
5465
cf8cddd3 5466 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
8e5cfb55 5467 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5468 if (ret) {
5469 WARN_ON(tmp_bbio != NULL);
5470 goto out;
5471 }
5472
5473 tmp_num_stripes = tmp_bbio->num_stripes;
5474 if (mirror_num > tmp_num_stripes) {
5475 /*
cf8cddd3 5476 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
ad6d620e
SB
5477 * mirror, that means that the requested area
5478 * is not left of the left cursor
5479 */
5480 ret = -EIO;
6e9606d2 5481 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5482 goto out;
5483 }
5484
5485 /*
5486 * process the rest of the function using the mirror_num
5487 * of the source drive. Therefore look it up first.
5488 * At the end, patch the device pointer to the one of the
5489 * target drive.
5490 */
5491 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5492 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5493 continue;
5494
5495 /*
5496 * In case of DUP, in order to keep it simple, only add
5497 * the mirror with the lowest physical address
5498 */
5499 if (found &&
5500 physical_of_found <= tmp_bbio->stripes[i].physical)
5501 continue;
5502
5503 index_srcdev = i;
5504 found = 1;
5505 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5506 }
5507
94a97dfe
ZL
5508 btrfs_put_bbio(tmp_bbio);
5509
5510 if (!found) {
ad6d620e
SB
5511 WARN_ON(1);
5512 ret = -EIO;
ad6d620e
SB
5513 goto out;
5514 }
5515
94a97dfe
ZL
5516 mirror_num = index_srcdev + 1;
5517 patch_the_first_stripe_for_dev_replace = 1;
5518 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5519 } else if (mirror_num > map->num_stripes) {
5520 mirror_num = 0;
5521 }
5522
f2d8d74d 5523 num_stripes = 1;
cea9e445 5524 stripe_index = 0;
fce3bb9a 5525 stripe_nr_orig = stripe_nr;
fda2832f 5526 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5527 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5528 stripe_end_offset = stripe_nr_end * map->stripe_len -
5529 (offset + *length);
53b381b3 5530
fce3bb9a 5531 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
cf8cddd3 5532 if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5533 num_stripes = min_t(u64, map->num_stripes,
5534 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5535 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5536 &stripe_index);
cf8cddd3
CH
5537 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5538 op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5539 mirror_num = 1;
fce3bb9a 5540 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
cf8cddd3
CH
5541 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5542 op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5543 num_stripes = map->num_stripes;
2fff734f 5544 else if (mirror_num)
f188591e 5545 stripe_index = mirror_num - 1;
dfe25020 5546 else {
30d9861f 5547 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5548 map->num_stripes,
30d9861f
SB
5549 current->pid % map->num_stripes,
5550 dev_replace_is_ongoing);
a1d3c478 5551 mirror_num = stripe_index + 1;
dfe25020 5552 }
2fff734f 5553
611f0e00 5554 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cf8cddd3
CH
5555 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5556 op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5557 num_stripes = map->num_stripes;
a1d3c478 5558 } else if (mirror_num) {
f188591e 5559 stripe_index = mirror_num - 1;
a1d3c478
JS
5560 } else {
5561 mirror_num = 1;
5562 }
2fff734f 5563
321aecc6 5564 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5565 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5566
47c5713f 5567 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5568 stripe_index *= map->sub_stripes;
5569
cf8cddd3 5570 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5571 num_stripes = map->sub_stripes;
cf8cddd3 5572 else if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5573 num_stripes = min_t(u64, map->sub_stripes *
5574 (stripe_nr_end - stripe_nr_orig),
5575 map->num_stripes);
321aecc6
CM
5576 else if (mirror_num)
5577 stripe_index += mirror_num - 1;
dfe25020 5578 else {
3e74317a 5579 int old_stripe_index = stripe_index;
30d9861f
SB
5580 stripe_index = find_live_mirror(fs_info, map,
5581 stripe_index,
dfe25020 5582 map->sub_stripes, stripe_index +
30d9861f
SB
5583 current->pid % map->sub_stripes,
5584 dev_replace_is_ongoing);
3e74317a 5585 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5586 }
53b381b3 5587
ffe2d203 5588 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5589 if (need_raid_map &&
cf8cddd3 5590 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5591 mirror_num > 1)) {
53b381b3 5592 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5593 stripe_nr = div_u64(raid56_full_stripe_start,
5594 stripe_len * nr_data_stripes(map));
53b381b3
DW
5595
5596 /* RAID[56] write or recovery. Return all stripes */
5597 num_stripes = map->num_stripes;
5598 max_errors = nr_parity_stripes(map);
5599
53b381b3
DW
5600 *length = map->stripe_len;
5601 stripe_index = 0;
5602 stripe_offset = 0;
5603 } else {
5604 /*
5605 * Mirror #0 or #1 means the original data block.
5606 * Mirror #2 is RAID5 parity block.
5607 * Mirror #3 is RAID6 Q block.
5608 */
47c5713f
DS
5609 stripe_nr = div_u64_rem(stripe_nr,
5610 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5611 if (mirror_num > 1)
5612 stripe_index = nr_data_stripes(map) +
5613 mirror_num - 2;
5614
5615 /* We distribute the parity blocks across stripes */
47c5713f
DS
5616 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5617 &stripe_index);
cf8cddd3
CH
5618 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5619 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
28e1cc7d 5620 mirror_num = 1;
53b381b3 5621 }
8790d502
CM
5622 } else {
5623 /*
47c5713f
DS
5624 * after this, stripe_nr is the number of stripes on this
5625 * device we have to walk to find the data, and stripe_index is
5626 * the number of our device in the stripe array
8790d502 5627 */
47c5713f
DS
5628 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5629 &stripe_index);
a1d3c478 5630 mirror_num = stripe_index + 1;
8790d502 5631 }
e042d1ec 5632 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5633 btrfs_crit(fs_info,
5634 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5635 stripe_index, map->num_stripes);
5636 ret = -EINVAL;
5637 goto out;
5638 }
cea9e445 5639
472262f3 5640 num_alloc_stripes = num_stripes;
ad6d620e 5641 if (dev_replace_is_ongoing) {
cf8cddd3 5642 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
ad6d620e 5643 num_alloc_stripes <<= 1;
cf8cddd3 5644 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5645 num_alloc_stripes++;
2c8cdd6e 5646 tgtdev_indexes = num_stripes;
ad6d620e 5647 }
2c8cdd6e 5648
6e9606d2 5649 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5650 if (!bbio) {
5651 ret = -ENOMEM;
5652 goto out;
5653 }
2c8cdd6e
MX
5654 if (dev_replace_is_ongoing)
5655 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5656
8e5cfb55 5657 /* build raid_map */
ffe2d203 5658 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
b3d3fa51 5659 need_raid_map &&
cf8cddd3 5660 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
8e5cfb55
ZL
5661 mirror_num > 1)) {
5662 u64 tmp;
9d644a62 5663 unsigned rot;
8e5cfb55
ZL
5664
5665 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5666 sizeof(struct btrfs_bio_stripe) *
5667 num_alloc_stripes +
5668 sizeof(int) * tgtdev_indexes);
5669
5670 /* Work out the disk rotation on this stripe-set */
47c5713f 5671 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5672
5673 /* Fill in the logical address of each stripe */
5674 tmp = stripe_nr * nr_data_stripes(map);
5675 for (i = 0; i < nr_data_stripes(map); i++)
5676 bbio->raid_map[(i+rot) % num_stripes] =
5677 em->start + (tmp + i) * map->stripe_len;
5678
5679 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5680 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5681 bbio->raid_map[(i+rot+1) % num_stripes] =
5682 RAID6_Q_STRIPE;
5683 }
5684
cf8cddd3 5685 if (op == BTRFS_MAP_DISCARD) {
9d644a62
DS
5686 u32 factor = 0;
5687 u32 sub_stripes = 0;
ec9ef7a1
LZ
5688 u64 stripes_per_dev = 0;
5689 u32 remaining_stripes = 0;
b89203f7 5690 u32 last_stripe = 0;
ec9ef7a1
LZ
5691
5692 if (map->type &
5693 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5694 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5695 sub_stripes = 1;
5696 else
5697 sub_stripes = map->sub_stripes;
5698
5699 factor = map->num_stripes / sub_stripes;
5700 stripes_per_dev = div_u64_rem(stripe_nr_end -
5701 stripe_nr_orig,
5702 factor,
5703 &remaining_stripes);
b89203f7
LB
5704 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5705 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5706 }
5707
fce3bb9a 5708 for (i = 0; i < num_stripes; i++) {
a1d3c478 5709 bbio->stripes[i].physical =
f2d8d74d
CM
5710 map->stripes[stripe_index].physical +
5711 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5712 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5713
ec9ef7a1
LZ
5714 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5715 BTRFS_BLOCK_GROUP_RAID10)) {
5716 bbio->stripes[i].length = stripes_per_dev *
5717 map->stripe_len;
b89203f7 5718
ec9ef7a1
LZ
5719 if (i / sub_stripes < remaining_stripes)
5720 bbio->stripes[i].length +=
5721 map->stripe_len;
b89203f7
LB
5722
5723 /*
5724 * Special for the first stripe and
5725 * the last stripe:
5726 *
5727 * |-------|...|-------|
5728 * |----------|
5729 * off end_off
5730 */
ec9ef7a1 5731 if (i < sub_stripes)
a1d3c478 5732 bbio->stripes[i].length -=
fce3bb9a 5733 stripe_offset;
b89203f7
LB
5734
5735 if (stripe_index >= last_stripe &&
5736 stripe_index <= (last_stripe +
5737 sub_stripes - 1))
a1d3c478 5738 bbio->stripes[i].length -=
fce3bb9a 5739 stripe_end_offset;
b89203f7 5740
ec9ef7a1
LZ
5741 if (i == sub_stripes - 1)
5742 stripe_offset = 0;
fce3bb9a 5743 } else
a1d3c478 5744 bbio->stripes[i].length = *length;
fce3bb9a
LD
5745
5746 stripe_index++;
5747 if (stripe_index == map->num_stripes) {
5748 /* This could only happen for RAID0/10 */
5749 stripe_index = 0;
5750 stripe_nr++;
5751 }
5752 }
5753 } else {
5754 for (i = 0; i < num_stripes; i++) {
a1d3c478 5755 bbio->stripes[i].physical =
212a17ab
LT
5756 map->stripes[stripe_index].physical +
5757 stripe_offset +
5758 stripe_nr * map->stripe_len;
a1d3c478 5759 bbio->stripes[i].dev =
212a17ab 5760 map->stripes[stripe_index].dev;
fce3bb9a 5761 stripe_index++;
f2d8d74d 5762 }
593060d7 5763 }
de11cc12 5764
cf8cddd3 5765 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
d20983b4 5766 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5767
8e5cfb55
ZL
5768 if (bbio->raid_map)
5769 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5770
2c8cdd6e 5771 tgtdev_indexes = 0;
b3d3fa51 5772 if (dev_replace_is_ongoing &&
cf8cddd3 5773 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
472262f3
SB
5774 dev_replace->tgtdev != NULL) {
5775 int index_where_to_add;
5776 u64 srcdev_devid = dev_replace->srcdev->devid;
5777
5778 /*
5779 * duplicate the write operations while the dev replace
5780 * procedure is running. Since the copying of the old disk
5781 * to the new disk takes place at run time while the
5782 * filesystem is mounted writable, the regular write
5783 * operations to the old disk have to be duplicated to go
5784 * to the new disk as well.
5785 * Note that device->missing is handled by the caller, and
5786 * that the write to the old disk is already set up in the
5787 * stripes array.
5788 */
5789 index_where_to_add = num_stripes;
5790 for (i = 0; i < num_stripes; i++) {
5791 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5792 /* write to new disk, too */
5793 struct btrfs_bio_stripe *new =
5794 bbio->stripes + index_where_to_add;
5795 struct btrfs_bio_stripe *old =
5796 bbio->stripes + i;
5797
5798 new->physical = old->physical;
5799 new->length = old->length;
5800 new->dev = dev_replace->tgtdev;
2c8cdd6e 5801 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5802 index_where_to_add++;
5803 max_errors++;
2c8cdd6e 5804 tgtdev_indexes++;
472262f3
SB
5805 }
5806 }
5807 num_stripes = index_where_to_add;
cf8cddd3
CH
5808 } else if (dev_replace_is_ongoing &&
5809 op == BTRFS_MAP_GET_READ_MIRRORS &&
ad6d620e
SB
5810 dev_replace->tgtdev != NULL) {
5811 u64 srcdev_devid = dev_replace->srcdev->devid;
5812 int index_srcdev = 0;
5813 int found = 0;
5814 u64 physical_of_found = 0;
5815
5816 /*
5817 * During the dev-replace procedure, the target drive can
5818 * also be used to read data in case it is needed to repair
5819 * a corrupt block elsewhere. This is possible if the
5820 * requested area is left of the left cursor. In this area,
5821 * the target drive is a full copy of the source drive.
5822 */
5823 for (i = 0; i < num_stripes; i++) {
5824 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5825 /*
5826 * In case of DUP, in order to keep it
5827 * simple, only add the mirror with the
5828 * lowest physical address
5829 */
5830 if (found &&
5831 physical_of_found <=
5832 bbio->stripes[i].physical)
5833 continue;
5834 index_srcdev = i;
5835 found = 1;
5836 physical_of_found = bbio->stripes[i].physical;
5837 }
5838 }
5839 if (found) {
22ab04e8
FM
5840 struct btrfs_bio_stripe *tgtdev_stripe =
5841 bbio->stripes + num_stripes;
ad6d620e 5842
22ab04e8
FM
5843 tgtdev_stripe->physical = physical_of_found;
5844 tgtdev_stripe->length =
5845 bbio->stripes[index_srcdev].length;
5846 tgtdev_stripe->dev = dev_replace->tgtdev;
5847 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5848
22ab04e8
FM
5849 tgtdev_indexes++;
5850 num_stripes++;
ad6d620e 5851 }
472262f3
SB
5852 }
5853
de11cc12 5854 *bbio_ret = bbio;
10f11900 5855 bbio->map_type = map->type;
de11cc12
LZ
5856 bbio->num_stripes = num_stripes;
5857 bbio->max_errors = max_errors;
5858 bbio->mirror_num = mirror_num;
2c8cdd6e 5859 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5860
5861 /*
5862 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5863 * mirror_num == num_stripes + 1 && dev_replace target drive is
5864 * available as a mirror
5865 */
5866 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5867 WARN_ON(num_stripes > 1);
5868 bbio->stripes[0].dev = dev_replace->tgtdev;
5869 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5870 bbio->mirror_num = map->num_stripes + 1;
5871 }
cea9e445 5872out:
73beece9
LB
5873 if (dev_replace_is_ongoing) {
5874 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5875 btrfs_dev_replace_unlock(dev_replace, 0);
5876 }
0b86a832 5877 free_extent_map(em);
de11cc12 5878 return ret;
0b86a832
CM
5879}
5880
cf8cddd3 5881int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5882 u64 logical, u64 *length,
a1d3c478 5883 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5884{
b3d3fa51 5885 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5886 mirror_num, 0);
f2d8d74d
CM
5887}
5888
af8e2d1d 5889/* For Scrub/replace */
cf8cddd3 5890int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d
MX
5891 u64 logical, u64 *length,
5892 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5893 int need_raid_map)
af8e2d1d 5894{
b3d3fa51 5895 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5896 mirror_num, need_raid_map);
af8e2d1d
MX
5897}
5898
ab8d0fc4 5899int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5900 u64 chunk_start, u64 physical, u64 devid,
5901 u64 **logical, int *naddrs, int *stripe_len)
5902{
ab8d0fc4 5903 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a512bbf8
YZ
5904 struct extent_map_tree *em_tree = &map_tree->map_tree;
5905 struct extent_map *em;
5906 struct map_lookup *map;
5907 u64 *buf;
5908 u64 bytenr;
5909 u64 length;
5910 u64 stripe_nr;
53b381b3 5911 u64 rmap_len;
a512bbf8
YZ
5912 int i, j, nr = 0;
5913
890871be 5914 read_lock(&em_tree->lock);
a512bbf8 5915 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5916 read_unlock(&em_tree->lock);
a512bbf8 5917
835d974f 5918 if (!em) {
ab8d0fc4
JM
5919 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5920 chunk_start);
835d974f
JB
5921 return -EIO;
5922 }
5923
5924 if (em->start != chunk_start) {
ab8d0fc4 5925 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
835d974f
JB
5926 em->start, chunk_start);
5927 free_extent_map(em);
5928 return -EIO;
5929 }
95617d69 5930 map = em->map_lookup;
a512bbf8
YZ
5931
5932 length = em->len;
53b381b3
DW
5933 rmap_len = map->stripe_len;
5934
a512bbf8 5935 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5936 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5937 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5938 length = div_u64(length, map->num_stripes);
ffe2d203 5939 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5940 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5941 rmap_len = map->stripe_len * nr_data_stripes(map);
5942 }
a512bbf8 5943
31e818fe 5944 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5945 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5946
5947 for (i = 0; i < map->num_stripes; i++) {
5948 if (devid && map->stripes[i].dev->devid != devid)
5949 continue;
5950 if (map->stripes[i].physical > physical ||
5951 map->stripes[i].physical + length <= physical)
5952 continue;
5953
5954 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5955 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5956
5957 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5958 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5959 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5960 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5961 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5962 } /* else if RAID[56], multiply by nr_data_stripes().
5963 * Alternatively, just use rmap_len below instead of
5964 * map->stripe_len */
5965
5966 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5967 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5968 for (j = 0; j < nr; j++) {
5969 if (buf[j] == bytenr)
5970 break;
5971 }
934d375b
CM
5972 if (j == nr) {
5973 WARN_ON(nr >= map->num_stripes);
a512bbf8 5974 buf[nr++] = bytenr;
934d375b 5975 }
a512bbf8
YZ
5976 }
5977
a512bbf8
YZ
5978 *logical = buf;
5979 *naddrs = nr;
53b381b3 5980 *stripe_len = rmap_len;
a512bbf8
YZ
5981
5982 free_extent_map(em);
5983 return 0;
f2d8d74d
CM
5984}
5985
4246a0b6 5986static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5987{
326e1dbb
MS
5988 bio->bi_private = bbio->private;
5989 bio->bi_end_io = bbio->end_io;
4246a0b6 5990 bio_endio(bio);
326e1dbb 5991
6e9606d2 5992 btrfs_put_bbio(bbio);
8408c716
MX
5993}
5994
4246a0b6 5995static void btrfs_end_bio(struct bio *bio)
8790d502 5996{
9be3395b 5997 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5998 int is_orig_bio = 0;
8790d502 5999
4246a0b6 6000 if (bio->bi_error) {
a1d3c478 6001 atomic_inc(&bbio->error);
4246a0b6 6002 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6003 unsigned int stripe_index =
9be3395b 6004 btrfs_io_bio(bio)->stripe_index;
65f53338 6005 struct btrfs_device *dev;
442a4f63
SB
6006
6007 BUG_ON(stripe_index >= bbio->num_stripes);
6008 dev = bbio->stripes[stripe_index].dev;
597a60fa 6009 if (dev->bdev) {
37226b21 6010 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6011 btrfs_dev_stat_inc(dev,
6012 BTRFS_DEV_STAT_WRITE_ERRS);
6013 else
6014 btrfs_dev_stat_inc(dev,
6015 BTRFS_DEV_STAT_READ_ERRS);
1eff9d32 6016 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
597a60fa
SB
6017 btrfs_dev_stat_inc(dev,
6018 BTRFS_DEV_STAT_FLUSH_ERRS);
6019 btrfs_dev_stat_print_on_error(dev);
6020 }
442a4f63
SB
6021 }
6022 }
8790d502 6023
a1d3c478 6024 if (bio == bbio->orig_bio)
7d2b4daa
CM
6025 is_orig_bio = 1;
6026
c404e0dc
MX
6027 btrfs_bio_counter_dec(bbio->fs_info);
6028
a1d3c478 6029 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6030 if (!is_orig_bio) {
6031 bio_put(bio);
a1d3c478 6032 bio = bbio->orig_bio;
7d2b4daa 6033 }
c7b22bb1 6034
9be3395b 6035 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6036 /* only send an error to the higher layers if it is
53b381b3 6037 * beyond the tolerance of the btrfs bio
a236aed1 6038 */
a1d3c478 6039 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6040 bio->bi_error = -EIO;
5dbc8fca 6041 } else {
1259ab75
CM
6042 /*
6043 * this bio is actually up to date, we didn't
6044 * go over the max number of errors
6045 */
4246a0b6 6046 bio->bi_error = 0;
1259ab75 6047 }
c55f1396 6048
4246a0b6 6049 btrfs_end_bbio(bbio, bio);
7d2b4daa 6050 } else if (!is_orig_bio) {
8790d502
CM
6051 bio_put(bio);
6052 }
8790d502
CM
6053}
6054
8b712842
CM
6055/*
6056 * see run_scheduled_bios for a description of why bios are collected for
6057 * async submit.
6058 *
6059 * This will add one bio to the pending list for a device and make sure
6060 * the work struct is scheduled.
6061 */
2ff7e61e 6062static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6063 struct bio *bio)
8b712842 6064{
0b246afa 6065 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6066 int should_queue = 1;
ffbd517d 6067 struct btrfs_pending_bios *pending_bios;
8b712842 6068
53b381b3 6069 if (device->missing || !device->bdev) {
4246a0b6 6070 bio_io_error(bio);
53b381b3
DW
6071 return;
6072 }
6073
8b712842 6074 /* don't bother with additional async steps for reads, right now */
37226b21 6075 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6076 bio_get(bio);
4e49ea4a 6077 btrfsic_submit_bio(bio);
492bb6de 6078 bio_put(bio);
143bede5 6079 return;
8b712842
CM
6080 }
6081
6082 /*
0986fe9e 6083 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6084 * higher layers. Otherwise, the async bio makes it appear we have
6085 * made progress against dirty pages when we've really just put it
6086 * on a queue for later
6087 */
0b246afa 6088 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6089 WARN_ON(bio->bi_next);
8b712842 6090 bio->bi_next = NULL;
8b712842
CM
6091
6092 spin_lock(&device->io_lock);
1eff9d32 6093 if (bio->bi_opf & REQ_SYNC)
ffbd517d
CM
6094 pending_bios = &device->pending_sync_bios;
6095 else
6096 pending_bios = &device->pending_bios;
8b712842 6097
ffbd517d
CM
6098 if (pending_bios->tail)
6099 pending_bios->tail->bi_next = bio;
8b712842 6100
ffbd517d
CM
6101 pending_bios->tail = bio;
6102 if (!pending_bios->head)
6103 pending_bios->head = bio;
8b712842
CM
6104 if (device->running_pending)
6105 should_queue = 0;
6106
6107 spin_unlock(&device->io_lock);
6108
6109 if (should_queue)
0b246afa 6110 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6111}
6112
2ff7e61e
JM
6113static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6114 u64 physical, int dev_nr, int async)
de1ee92a
JB
6115{
6116 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6117 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6118
6119 bio->bi_private = bbio;
9be3395b 6120 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6121 bio->bi_end_io = btrfs_end_bio;
4f024f37 6122 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6123#ifdef DEBUG
6124 {
6125 struct rcu_string *name;
6126
6127 rcu_read_lock();
6128 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6129 btrfs_debug(fs_info,
6130 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6131 bio_op(bio), bio->bi_opf,
6132 (u64)bio->bi_iter.bi_sector,
6133 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6134 bio->bi_iter.bi_size);
de1ee92a
JB
6135 rcu_read_unlock();
6136 }
6137#endif
6138 bio->bi_bdev = dev->bdev;
c404e0dc 6139
2ff7e61e 6140 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6141
de1ee92a 6142 if (async)
2ff7e61e 6143 btrfs_schedule_bio(dev, bio);
de1ee92a 6144 else
4e49ea4a 6145 btrfsic_submit_bio(bio);
de1ee92a
JB
6146}
6147
de1ee92a
JB
6148static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6149{
6150 atomic_inc(&bbio->error);
6151 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6152 /* Should be the original bio. */
8408c716
MX
6153 WARN_ON(bio != bbio->orig_bio);
6154
9be3395b 6155 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6156 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6157 bio->bi_error = -EIO;
6158 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6159 }
6160}
6161
2ff7e61e 6162int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
8b712842 6163 int mirror_num, int async_submit)
0b86a832 6164{
0b86a832 6165 struct btrfs_device *dev;
8790d502 6166 struct bio *first_bio = bio;
4f024f37 6167 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6168 u64 length = 0;
6169 u64 map_length;
0b86a832 6170 int ret;
08da757d
ZL
6171 int dev_nr;
6172 int total_devs;
a1d3c478 6173 struct btrfs_bio *bbio = NULL;
0b86a832 6174
4f024f37 6175 length = bio->bi_iter.bi_size;
0b86a832 6176 map_length = length;
cea9e445 6177
0b246afa
JM
6178 btrfs_bio_counter_inc_blocked(fs_info);
6179 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6180 &map_length, &bbio, mirror_num, 1);
c404e0dc 6181 if (ret) {
0b246afa 6182 btrfs_bio_counter_dec(fs_info);
79787eaa 6183 return ret;
c404e0dc 6184 }
cea9e445 6185
a1d3c478 6186 total_devs = bbio->num_stripes;
53b381b3
DW
6187 bbio->orig_bio = first_bio;
6188 bbio->private = first_bio->bi_private;
6189 bbio->end_io = first_bio->bi_end_io;
0b246afa 6190 bbio->fs_info = fs_info;
53b381b3
DW
6191 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6192
ad1ba2a0 6193 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6194 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6195 /* In this case, map_length has been set to the length of
6196 a single stripe; not the whole write */
37226b21 6197 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6198 ret = raid56_parity_write(fs_info, bio, bbio,
6199 map_length);
53b381b3 6200 } else {
2ff7e61e
JM
6201 ret = raid56_parity_recover(fs_info, bio, bbio,
6202 map_length, mirror_num, 1);
53b381b3 6203 }
4245215d 6204
0b246afa 6205 btrfs_bio_counter_dec(fs_info);
c404e0dc 6206 return ret;
53b381b3
DW
6207 }
6208
cea9e445 6209 if (map_length < length) {
0b246afa 6210 btrfs_crit(fs_info,
5d163e0e
JM
6211 "mapping failed logical %llu bio len %llu len %llu",
6212 logical, length, map_length);
cea9e445
CM
6213 BUG();
6214 }
a1d3c478 6215
08da757d 6216 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6217 dev = bbio->stripes[dev_nr].dev;
37226b21
MC
6218 if (!dev || !dev->bdev ||
6219 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6220 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6221 continue;
6222 }
6223
a1d3c478 6224 if (dev_nr < total_devs - 1) {
9be3395b 6225 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6226 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6227 } else
a1d3c478 6228 bio = first_bio;
de1ee92a 6229
2ff7e61e
JM
6230 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6231 dev_nr, async_submit);
8790d502 6232 }
0b246afa 6233 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6234 return 0;
6235}
6236
aa1b8cd4 6237struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6238 u8 *uuid, u8 *fsid)
0b86a832 6239{
2b82032c
YZ
6240 struct btrfs_device *device;
6241 struct btrfs_fs_devices *cur_devices;
6242
aa1b8cd4 6243 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6244 while (cur_devices) {
6245 if (!fsid ||
6246 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6247 device = __find_device(&cur_devices->devices,
6248 devid, uuid);
6249 if (device)
6250 return device;
6251 }
6252 cur_devices = cur_devices->seed;
6253 }
6254 return NULL;
0b86a832
CM
6255}
6256
2ff7e61e 6257static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6258 u64 devid, u8 *dev_uuid)
6259{
6260 struct btrfs_device *device;
dfe25020 6261
12bd2fc0
ID
6262 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6263 if (IS_ERR(device))
7cbd8a83 6264 return NULL;
12bd2fc0
ID
6265
6266 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6267 device->fs_devices = fs_devices;
dfe25020 6268 fs_devices->num_devices++;
12bd2fc0
ID
6269
6270 device->missing = 1;
cd02dca5 6271 fs_devices->missing_devices++;
12bd2fc0 6272
dfe25020
CM
6273 return device;
6274}
6275
12bd2fc0
ID
6276/**
6277 * btrfs_alloc_device - allocate struct btrfs_device
6278 * @fs_info: used only for generating a new devid, can be NULL if
6279 * devid is provided (i.e. @devid != NULL).
6280 * @devid: a pointer to devid for this device. If NULL a new devid
6281 * is generated.
6282 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6283 * is generated.
6284 *
6285 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6286 * on error. Returned struct is not linked onto any lists and can be
6287 * destroyed with kfree() right away.
6288 */
6289struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6290 const u64 *devid,
6291 const u8 *uuid)
6292{
6293 struct btrfs_device *dev;
6294 u64 tmp;
6295
fae7f21c 6296 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6297 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6298
6299 dev = __alloc_device();
6300 if (IS_ERR(dev))
6301 return dev;
6302
6303 if (devid)
6304 tmp = *devid;
6305 else {
6306 int ret;
6307
6308 ret = find_next_devid(fs_info, &tmp);
6309 if (ret) {
6310 kfree(dev);
6311 return ERR_PTR(ret);
6312 }
6313 }
6314 dev->devid = tmp;
6315
6316 if (uuid)
6317 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6318 else
6319 generate_random_uuid(dev->uuid);
6320
9e0af237
LB
6321 btrfs_init_work(&dev->work, btrfs_submit_helper,
6322 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6323
6324 return dev;
6325}
6326
e06cd3dd 6327/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6328static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6329 struct extent_buffer *leaf,
6330 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6331{
0b86a832 6332 u64 length;
f04b772b 6333 u64 stripe_len;
e06cd3dd
LB
6334 u16 num_stripes;
6335 u16 sub_stripes;
6336 u64 type;
0b86a832 6337
e17cade2 6338 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6339 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6340 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6341 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6342 type = btrfs_chunk_type(leaf, chunk);
6343
f04b772b 6344 if (!num_stripes) {
0b246afa 6345 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6346 num_stripes);
6347 return -EIO;
6348 }
0b246afa
JM
6349 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6350 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6351 return -EIO;
6352 }
0b246afa
JM
6353 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6354 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6355 btrfs_chunk_sector_size(leaf, chunk));
6356 return -EIO;
6357 }
0b246afa
JM
6358 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6359 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6360 return -EIO;
6361 }
3d8da678 6362 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6363 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6364 stripe_len);
6365 return -EIO;
6366 }
6367 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6368 type) {
0b246afa 6369 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6370 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6371 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6372 btrfs_chunk_type(leaf, chunk));
6373 return -EIO;
6374 }
e06cd3dd
LB
6375 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6376 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6377 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6378 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6379 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6380 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6381 num_stripes != 1)) {
0b246afa 6382 btrfs_err(fs_info,
e06cd3dd
LB
6383 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6384 num_stripes, sub_stripes,
6385 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6386 return -EIO;
6387 }
6388
6389 return 0;
6390}
6391
2ff7e61e 6392static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6393 struct extent_buffer *leaf,
6394 struct btrfs_chunk *chunk)
6395{
0b246afa 6396 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6397 struct map_lookup *map;
6398 struct extent_map *em;
6399 u64 logical;
6400 u64 length;
6401 u64 stripe_len;
6402 u64 devid;
6403 u8 uuid[BTRFS_UUID_SIZE];
6404 int num_stripes;
6405 int ret;
6406 int i;
6407
6408 logical = key->offset;
6409 length = btrfs_chunk_length(leaf, chunk);
6410 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6411 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6412
2ff7e61e 6413 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6414 if (ret)
6415 return ret;
a061fc8d 6416
890871be 6417 read_lock(&map_tree->map_tree.lock);
0b86a832 6418 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6419 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6420
6421 /* already mapped? */
6422 if (em && em->start <= logical && em->start + em->len > logical) {
6423 free_extent_map(em);
0b86a832
CM
6424 return 0;
6425 } else if (em) {
6426 free_extent_map(em);
6427 }
0b86a832 6428
172ddd60 6429 em = alloc_extent_map();
0b86a832
CM
6430 if (!em)
6431 return -ENOMEM;
593060d7 6432 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6433 if (!map) {
6434 free_extent_map(em);
6435 return -ENOMEM;
6436 }
6437
298a8f9c 6438 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6439 em->map_lookup = map;
0b86a832
CM
6440 em->start = logical;
6441 em->len = length;
70c8a91c 6442 em->orig_start = 0;
0b86a832 6443 em->block_start = 0;
c8b97818 6444 em->block_len = em->len;
0b86a832 6445
593060d7
CM
6446 map->num_stripes = num_stripes;
6447 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6448 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6449 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6450 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6451 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6452 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6453 for (i = 0; i < num_stripes; i++) {
6454 map->stripes[i].physical =
6455 btrfs_stripe_offset_nr(leaf, chunk, i);
6456 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6457 read_extent_buffer(leaf, uuid, (unsigned long)
6458 btrfs_stripe_dev_uuid_nr(chunk, i),
6459 BTRFS_UUID_SIZE);
0b246afa 6460 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6461 uuid, NULL);
3cdde224 6462 if (!map->stripes[i].dev &&
0b246afa 6463 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6464 free_extent_map(em);
6465 return -EIO;
6466 }
dfe25020
CM
6467 if (!map->stripes[i].dev) {
6468 map->stripes[i].dev =
2ff7e61e
JM
6469 add_missing_dev(fs_info->fs_devices, devid,
6470 uuid);
dfe25020 6471 if (!map->stripes[i].dev) {
dfe25020
CM
6472 free_extent_map(em);
6473 return -EIO;
6474 }
0b246afa 6475 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6476 devid, uuid);
dfe25020
CM
6477 }
6478 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6479 }
6480
890871be 6481 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6482 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6483 write_unlock(&map_tree->map_tree.lock);
79787eaa 6484 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6485 free_extent_map(em);
6486
6487 return 0;
6488}
6489
143bede5 6490static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6491 struct btrfs_dev_item *dev_item,
6492 struct btrfs_device *device)
6493{
6494 unsigned long ptr;
0b86a832
CM
6495
6496 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6497 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6498 device->total_bytes = device->disk_total_bytes;
935e5cc9 6499 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6500 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6501 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6502 device->type = btrfs_device_type(leaf, dev_item);
6503 device->io_align = btrfs_device_io_align(leaf, dev_item);
6504 device->io_width = btrfs_device_io_width(leaf, dev_item);
6505 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6506 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6507 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6508
410ba3a2 6509 ptr = btrfs_device_uuid(dev_item);
e17cade2 6510 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6511}
6512
2ff7e61e 6513static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6514 u8 *fsid)
2b82032c
YZ
6515{
6516 struct btrfs_fs_devices *fs_devices;
6517 int ret;
6518
b367e47f 6519 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6520
0b246afa 6521 fs_devices = fs_info->fs_devices->seed;
2b82032c 6522 while (fs_devices) {
5f375835
MX
6523 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6524 return fs_devices;
6525
2b82032c
YZ
6526 fs_devices = fs_devices->seed;
6527 }
6528
6529 fs_devices = find_fsid(fsid);
6530 if (!fs_devices) {
0b246afa 6531 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6532 return ERR_PTR(-ENOENT);
6533
6534 fs_devices = alloc_fs_devices(fsid);
6535 if (IS_ERR(fs_devices))
6536 return fs_devices;
6537
6538 fs_devices->seeding = 1;
6539 fs_devices->opened = 1;
6540 return fs_devices;
2b82032c 6541 }
e4404d6e
YZ
6542
6543 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6544 if (IS_ERR(fs_devices))
6545 return fs_devices;
2b82032c 6546
97288f2c 6547 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6548 fs_info->bdev_holder);
48d28232
JL
6549 if (ret) {
6550 free_fs_devices(fs_devices);
5f375835 6551 fs_devices = ERR_PTR(ret);
2b82032c 6552 goto out;
48d28232 6553 }
2b82032c
YZ
6554
6555 if (!fs_devices->seeding) {
6556 __btrfs_close_devices(fs_devices);
e4404d6e 6557 free_fs_devices(fs_devices);
5f375835 6558 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6559 goto out;
6560 }
6561
0b246afa
JM
6562 fs_devices->seed = fs_info->fs_devices->seed;
6563 fs_info->fs_devices->seed = fs_devices;
2b82032c 6564out:
5f375835 6565 return fs_devices;
2b82032c
YZ
6566}
6567
2ff7e61e 6568static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6569 struct extent_buffer *leaf,
6570 struct btrfs_dev_item *dev_item)
6571{
0b246afa 6572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6573 struct btrfs_device *device;
6574 u64 devid;
6575 int ret;
2b82032c 6576 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6577 u8 dev_uuid[BTRFS_UUID_SIZE];
6578
0b86a832 6579 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6581 BTRFS_UUID_SIZE);
1473b24e 6582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6583 BTRFS_UUID_SIZE);
6584
0b246afa 6585 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2ff7e61e 6586 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6587 if (IS_ERR(fs_devices))
6588 return PTR_ERR(fs_devices);
2b82032c
YZ
6589 }
6590
0b246afa 6591 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6592 if (!device) {
0b246afa 6593 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6594 return -EIO;
6595
2ff7e61e 6596 device = add_missing_dev(fs_devices, devid, dev_uuid);
5f375835
MX
6597 if (!device)
6598 return -ENOMEM;
0b246afa 6599 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6600 devid, dev_uuid);
5f375835 6601 } else {
0b246afa 6602 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6603 return -EIO;
6604
6605 if(!device->bdev && !device->missing) {
cd02dca5
CM
6606 /*
6607 * this happens when a device that was properly setup
6608 * in the device info lists suddenly goes bad.
6609 * device->bdev is NULL, and so we have to set
6610 * device->missing to one here
6611 */
5f375835 6612 device->fs_devices->missing_devices++;
cd02dca5 6613 device->missing = 1;
2b82032c 6614 }
5f375835
MX
6615
6616 /* Move the device to its own fs_devices */
6617 if (device->fs_devices != fs_devices) {
6618 ASSERT(device->missing);
6619
6620 list_move(&device->dev_list, &fs_devices->devices);
6621 device->fs_devices->num_devices--;
6622 fs_devices->num_devices++;
6623
6624 device->fs_devices->missing_devices--;
6625 fs_devices->missing_devices++;
6626
6627 device->fs_devices = fs_devices;
6628 }
2b82032c
YZ
6629 }
6630
0b246afa 6631 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6632 BUG_ON(device->writeable);
6633 if (device->generation !=
6634 btrfs_device_generation(leaf, dev_item))
6635 return -EINVAL;
6324fbf3 6636 }
0b86a832
CM
6637
6638 fill_device_from_item(leaf, dev_item, device);
dfe25020 6639 device->in_fs_metadata = 1;
63a212ab 6640 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6641 device->fs_devices->total_rw_bytes += device->total_bytes;
0b246afa
JM
6642 spin_lock(&fs_info->free_chunk_lock);
6643 fs_info->free_chunk_space += device->total_bytes -
2bf64758 6644 device->bytes_used;
0b246afa 6645 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 6646 }
0b86a832 6647 ret = 0;
0b86a832
CM
6648 return ret;
6649}
6650
6bccf3ab 6651int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6652{
6bccf3ab 6653 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6654 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6655 struct extent_buffer *sb;
0b86a832 6656 struct btrfs_disk_key *disk_key;
0b86a832 6657 struct btrfs_chunk *chunk;
1ffb22cf
DS
6658 u8 *array_ptr;
6659 unsigned long sb_array_offset;
84eed90f 6660 int ret = 0;
0b86a832
CM
6661 u32 num_stripes;
6662 u32 array_size;
6663 u32 len = 0;
1ffb22cf 6664 u32 cur_offset;
e06cd3dd 6665 u64 type;
84eed90f 6666 struct btrfs_key key;
0b86a832 6667
0b246afa 6668 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6669 /*
6670 * This will create extent buffer of nodesize, superblock size is
6671 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6672 * overallocate but we can keep it as-is, only the first page is used.
6673 */
2ff7e61e 6674 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6675 if (IS_ERR(sb))
6676 return PTR_ERR(sb);
4db8c528 6677 set_extent_buffer_uptodate(sb);
85d4e461 6678 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6679 /*
01327610 6680 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6681 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6682 * pages up-to-date when the page is larger: extent does not cover the
6683 * whole page and consequently check_page_uptodate does not find all
6684 * the page's extents up-to-date (the hole beyond sb),
6685 * write_extent_buffer then triggers a WARN_ON.
6686 *
6687 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6688 * but sb spans only this function. Add an explicit SetPageUptodate call
6689 * to silence the warning eg. on PowerPC 64.
6690 */
09cbfeaf 6691 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6692 SetPageUptodate(sb->pages[0]);
4008c04a 6693
a061fc8d 6694 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6695 array_size = btrfs_super_sys_array_size(super_copy);
6696
1ffb22cf
DS
6697 array_ptr = super_copy->sys_chunk_array;
6698 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6699 cur_offset = 0;
0b86a832 6700
1ffb22cf
DS
6701 while (cur_offset < array_size) {
6702 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6703 len = sizeof(*disk_key);
6704 if (cur_offset + len > array_size)
6705 goto out_short_read;
6706
0b86a832
CM
6707 btrfs_disk_key_to_cpu(&key, disk_key);
6708
1ffb22cf
DS
6709 array_ptr += len;
6710 sb_array_offset += len;
6711 cur_offset += len;
0b86a832 6712
0d81ba5d 6713 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6714 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6715 /*
6716 * At least one btrfs_chunk with one stripe must be
6717 * present, exact stripe count check comes afterwards
6718 */
6719 len = btrfs_chunk_item_size(1);
6720 if (cur_offset + len > array_size)
6721 goto out_short_read;
6722
6723 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6724 if (!num_stripes) {
ab8d0fc4
JM
6725 btrfs_err(fs_info,
6726 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6727 num_stripes, cur_offset);
6728 ret = -EIO;
6729 break;
6730 }
6731
e06cd3dd
LB
6732 type = btrfs_chunk_type(sb, chunk);
6733 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6734 btrfs_err(fs_info,
e06cd3dd
LB
6735 "invalid chunk type %llu in sys_array at offset %u",
6736 type, cur_offset);
6737 ret = -EIO;
6738 break;
6739 }
6740
e3540eab
DS
6741 len = btrfs_chunk_item_size(num_stripes);
6742 if (cur_offset + len > array_size)
6743 goto out_short_read;
6744
2ff7e61e 6745 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6746 if (ret)
6747 break;
0b86a832 6748 } else {
ab8d0fc4
JM
6749 btrfs_err(fs_info,
6750 "unexpected item type %u in sys_array at offset %u",
6751 (u32)key.type, cur_offset);
84eed90f
CM
6752 ret = -EIO;
6753 break;
0b86a832 6754 }
1ffb22cf
DS
6755 array_ptr += len;
6756 sb_array_offset += len;
6757 cur_offset += len;
0b86a832 6758 }
d865177a 6759 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6760 free_extent_buffer_stale(sb);
84eed90f 6761 return ret;
e3540eab
DS
6762
6763out_short_read:
ab8d0fc4 6764 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6765 len, cur_offset);
d865177a 6766 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6767 free_extent_buffer_stale(sb);
e3540eab 6768 return -EIO;
0b86a832
CM
6769}
6770
5b4aacef 6771int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6772{
5b4aacef 6773 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6774 struct btrfs_path *path;
6775 struct extent_buffer *leaf;
6776 struct btrfs_key key;
6777 struct btrfs_key found_key;
6778 int ret;
6779 int slot;
99e3ecfc 6780 u64 total_dev = 0;
0b86a832 6781
0b86a832
CM
6782 path = btrfs_alloc_path();
6783 if (!path)
6784 return -ENOMEM;
6785
b367e47f 6786 mutex_lock(&uuid_mutex);
0b246afa 6787 lock_chunks(fs_info);
b367e47f 6788
395927a9
FDBM
6789 /*
6790 * Read all device items, and then all the chunk items. All
6791 * device items are found before any chunk item (their object id
6792 * is smaller than the lowest possible object id for a chunk
6793 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6794 */
6795 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6796 key.offset = 0;
6797 key.type = 0;
0b86a832 6798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6799 if (ret < 0)
6800 goto error;
d397712b 6801 while (1) {
0b86a832
CM
6802 leaf = path->nodes[0];
6803 slot = path->slots[0];
6804 if (slot >= btrfs_header_nritems(leaf)) {
6805 ret = btrfs_next_leaf(root, path);
6806 if (ret == 0)
6807 continue;
6808 if (ret < 0)
6809 goto error;
6810 break;
6811 }
6812 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6813 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6814 struct btrfs_dev_item *dev_item;
6815 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6816 struct btrfs_dev_item);
2ff7e61e 6817 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6818 if (ret)
6819 goto error;
99e3ecfc 6820 total_dev++;
0b86a832
CM
6821 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6822 struct btrfs_chunk *chunk;
6823 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6824 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6825 if (ret)
6826 goto error;
0b86a832
CM
6827 }
6828 path->slots[0]++;
6829 }
99e3ecfc
LB
6830
6831 /*
6832 * After loading chunk tree, we've got all device information,
6833 * do another round of validation checks.
6834 */
0b246afa
JM
6835 if (total_dev != fs_info->fs_devices->total_devices) {
6836 btrfs_err(fs_info,
99e3ecfc 6837 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6838 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6839 total_dev);
6840 ret = -EINVAL;
6841 goto error;
6842 }
0b246afa
JM
6843 if (btrfs_super_total_bytes(fs_info->super_copy) <
6844 fs_info->fs_devices->total_rw_bytes) {
6845 btrfs_err(fs_info,
99e3ecfc 6846 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6847 btrfs_super_total_bytes(fs_info->super_copy),
6848 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6849 ret = -EINVAL;
6850 goto error;
6851 }
0b86a832
CM
6852 ret = 0;
6853error:
0b246afa 6854 unlock_chunks(fs_info);
b367e47f
LZ
6855 mutex_unlock(&uuid_mutex);
6856
2b82032c 6857 btrfs_free_path(path);
0b86a832
CM
6858 return ret;
6859}
442a4f63 6860
cb517eab
MX
6861void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6862{
6863 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6864 struct btrfs_device *device;
6865
29cc83f6
LB
6866 while (fs_devices) {
6867 mutex_lock(&fs_devices->device_list_mutex);
6868 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6869 device->fs_info = fs_info;
29cc83f6
LB
6870 mutex_unlock(&fs_devices->device_list_mutex);
6871
6872 fs_devices = fs_devices->seed;
6873 }
cb517eab
MX
6874}
6875
733f4fbb
SB
6876static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6877{
6878 int i;
6879
6880 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6881 btrfs_dev_stat_reset(dev, i);
6882}
6883
6884int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6885{
6886 struct btrfs_key key;
6887 struct btrfs_key found_key;
6888 struct btrfs_root *dev_root = fs_info->dev_root;
6889 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6890 struct extent_buffer *eb;
6891 int slot;
6892 int ret = 0;
6893 struct btrfs_device *device;
6894 struct btrfs_path *path = NULL;
6895 int i;
6896
6897 path = btrfs_alloc_path();
6898 if (!path) {
6899 ret = -ENOMEM;
6900 goto out;
6901 }
6902
6903 mutex_lock(&fs_devices->device_list_mutex);
6904 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6905 int item_size;
6906 struct btrfs_dev_stats_item *ptr;
6907
242e2956
DS
6908 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6909 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6910 key.offset = device->devid;
6911 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6912 if (ret) {
733f4fbb
SB
6913 __btrfs_reset_dev_stats(device);
6914 device->dev_stats_valid = 1;
6915 btrfs_release_path(path);
6916 continue;
6917 }
6918 slot = path->slots[0];
6919 eb = path->nodes[0];
6920 btrfs_item_key_to_cpu(eb, &found_key, slot);
6921 item_size = btrfs_item_size_nr(eb, slot);
6922
6923 ptr = btrfs_item_ptr(eb, slot,
6924 struct btrfs_dev_stats_item);
6925
6926 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6927 if (item_size >= (1 + i) * sizeof(__le64))
6928 btrfs_dev_stat_set(device, i,
6929 btrfs_dev_stats_value(eb, ptr, i));
6930 else
6931 btrfs_dev_stat_reset(device, i);
6932 }
6933
6934 device->dev_stats_valid = 1;
6935 btrfs_dev_stat_print_on_load(device);
6936 btrfs_release_path(path);
6937 }
6938 mutex_unlock(&fs_devices->device_list_mutex);
6939
6940out:
6941 btrfs_free_path(path);
6942 return ret < 0 ? ret : 0;
6943}
6944
6945static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6946 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6947 struct btrfs_device *device)
6948{
6bccf3ab 6949 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6950 struct btrfs_path *path;
6951 struct btrfs_key key;
6952 struct extent_buffer *eb;
6953 struct btrfs_dev_stats_item *ptr;
6954 int ret;
6955 int i;
6956
242e2956
DS
6957 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6958 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6959 key.offset = device->devid;
6960
6961 path = btrfs_alloc_path();
6962 BUG_ON(!path);
6963 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6964 if (ret < 0) {
0b246afa 6965 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6966 "error %d while searching for dev_stats item for device %s",
606686ee 6967 ret, rcu_str_deref(device->name));
733f4fbb
SB
6968 goto out;
6969 }
6970
6971 if (ret == 0 &&
6972 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6973 /* need to delete old one and insert a new one */
6974 ret = btrfs_del_item(trans, dev_root, path);
6975 if (ret != 0) {
0b246afa 6976 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6977 "delete too small dev_stats item for device %s failed %d",
606686ee 6978 rcu_str_deref(device->name), ret);
733f4fbb
SB
6979 goto out;
6980 }
6981 ret = 1;
6982 }
6983
6984 if (ret == 1) {
6985 /* need to insert a new item */
6986 btrfs_release_path(path);
6987 ret = btrfs_insert_empty_item(trans, dev_root, path,
6988 &key, sizeof(*ptr));
6989 if (ret < 0) {
0b246afa 6990 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
6991 "insert dev_stats item for device %s failed %d",
6992 rcu_str_deref(device->name), ret);
733f4fbb
SB
6993 goto out;
6994 }
6995 }
6996
6997 eb = path->nodes[0];
6998 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6999 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7000 btrfs_set_dev_stats_value(eb, ptr, i,
7001 btrfs_dev_stat_read(device, i));
7002 btrfs_mark_buffer_dirty(eb);
7003
7004out:
7005 btrfs_free_path(path);
7006 return ret;
7007}
7008
7009/*
7010 * called from commit_transaction. Writes all changed device stats to disk.
7011 */
7012int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7013 struct btrfs_fs_info *fs_info)
7014{
733f4fbb
SB
7015 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7016 struct btrfs_device *device;
addc3fa7 7017 int stats_cnt;
733f4fbb
SB
7018 int ret = 0;
7019
7020 mutex_lock(&fs_devices->device_list_mutex);
7021 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7022 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7023 continue;
7024
addc3fa7 7025 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7026 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7027 if (!ret)
addc3fa7 7028 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7029 }
7030 mutex_unlock(&fs_devices->device_list_mutex);
7031
7032 return ret;
7033}
7034
442a4f63
SB
7035void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7036{
7037 btrfs_dev_stat_inc(dev, index);
7038 btrfs_dev_stat_print_on_error(dev);
7039}
7040
48a3b636 7041static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7042{
733f4fbb
SB
7043 if (!dev->dev_stats_valid)
7044 return;
fb456252 7045 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7046 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7047 rcu_str_deref(dev->name),
442a4f63
SB
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7051 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7052 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7053}
c11d2c23 7054
733f4fbb
SB
7055static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7056{
a98cdb85
SB
7057 int i;
7058
7059 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7060 if (btrfs_dev_stat_read(dev, i) != 0)
7061 break;
7062 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7063 return; /* all values == 0, suppress message */
7064
fb456252 7065 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7066 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7067 rcu_str_deref(dev->name),
733f4fbb
SB
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7071 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7072 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7073}
7074
2ff7e61e 7075int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7076 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7077{
7078 struct btrfs_device *dev;
0b246afa 7079 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7080 int i;
7081
7082 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7083 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7084 mutex_unlock(&fs_devices->device_list_mutex);
7085
7086 if (!dev) {
0b246afa 7087 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7088 return -ENODEV;
733f4fbb 7089 } else if (!dev->dev_stats_valid) {
0b246afa 7090 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7091 return -ENODEV;
b27f7c0c 7092 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7094 if (stats->nr_items > i)
7095 stats->values[i] =
7096 btrfs_dev_stat_read_and_reset(dev, i);
7097 else
7098 btrfs_dev_stat_reset(dev, i);
7099 }
7100 } else {
7101 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7102 if (stats->nr_items > i)
7103 stats->values[i] = btrfs_dev_stat_read(dev, i);
7104 }
7105 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7106 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7107 return 0;
7108}
a8a6dab7 7109
12b1c263 7110void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
7111{
7112 struct buffer_head *bh;
7113 struct btrfs_super_block *disk_super;
12b1c263 7114 int copy_num;
a8a6dab7 7115
12b1c263
AJ
7116 if (!bdev)
7117 return;
a8a6dab7 7118
12b1c263
AJ
7119 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7120 copy_num++) {
a8a6dab7 7121
12b1c263
AJ
7122 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7123 continue;
7124
7125 disk_super = (struct btrfs_super_block *)bh->b_data;
7126
7127 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7128 set_buffer_dirty(bh);
7129 sync_dirty_buffer(bh);
7130 brelse(bh);
7131 }
7132
7133 /* Notify udev that device has changed */
7134 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7135
7136 /* Update ctime/mtime for device path for libblkid */
7137 update_dev_time(device_path);
a8a6dab7 7138}
935e5cc9
MX
7139
7140/*
7141 * Update the size of all devices, which is used for writing out the
7142 * super blocks.
7143 */
7144void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7145{
7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 struct btrfs_device *curr, *next;
7148
7149 if (list_empty(&fs_devices->resized_devices))
7150 return;
7151
7152 mutex_lock(&fs_devices->device_list_mutex);
3796d335 7153 lock_chunks(fs_info);
935e5cc9
MX
7154 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7155 resized_list) {
7156 list_del_init(&curr->resized_list);
7157 curr->commit_total_bytes = curr->disk_total_bytes;
7158 }
3796d335 7159 unlock_chunks(fs_info);
935e5cc9
MX
7160 mutex_unlock(&fs_devices->device_list_mutex);
7161}
ce7213c7
MX
7162
7163/* Must be invoked during the transaction commit */
2ff7e61e 7164void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7165 struct btrfs_transaction *transaction)
7166{
7167 struct extent_map *em;
7168 struct map_lookup *map;
7169 struct btrfs_device *dev;
7170 int i;
7171
7172 if (list_empty(&transaction->pending_chunks))
7173 return;
7174
7175 /* In order to kick the device replace finish process */
0b246afa 7176 lock_chunks(fs_info);
ce7213c7 7177 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7178 map = em->map_lookup;
ce7213c7
MX
7179
7180 for (i = 0; i < map->num_stripes; i++) {
7181 dev = map->stripes[i].dev;
7182 dev->commit_bytes_used = dev->bytes_used;
7183 }
7184 }
0b246afa 7185 unlock_chunks(fs_info);
ce7213c7 7186}
5a13f430
AJ
7187
7188void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7189{
7190 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7191 while (fs_devices) {
7192 fs_devices->fs_info = fs_info;
7193 fs_devices = fs_devices->seed;
7194 }
7195}
7196
7197void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7198{
7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 while (fs_devices) {
7201 fs_devices->fs_info = NULL;
7202 fs_devices = fs_devices->seed;
7203 }
7204}