Btrfs: remove redundant btrfs_balance_delayed_items
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2dfeca9b
DS
155/*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
164{
165 struct btrfs_fs_devices *fs_devs;
166
78f2c9e6 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 174 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
2208a378
ID
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
179
180 return fs_devs;
181}
182
e4404d6e
YZ
183static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184{
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
606686ee 191 rcu_string_free(device->name);
3065ae5b 192 bio_put(device->flush_bio);
e4404d6e
YZ
193 kfree(device);
194 }
195 kfree(fs_devices);
196}
197
b8b8ff59
LC
198static void btrfs_kobject_uevent(struct block_device *bdev,
199 enum kobject_action action)
200{
201 int ret;
202
203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 if (ret)
efe120a0 205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
206 action,
207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 &disk_to_dev(bdev->bd_disk)->kobj);
209}
210
143bede5 211void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
212{
213 struct btrfs_fs_devices *fs_devices;
8a4b83cc 214
2b82032c
YZ
215 while (!list_empty(&fs_uuids)) {
216 fs_devices = list_entry(fs_uuids.next,
217 struct btrfs_fs_devices, list);
218 list_del(&fs_devices->list);
e4404d6e 219 free_fs_devices(fs_devices);
8a4b83cc 220 }
8a4b83cc
CM
221}
222
12bd2fc0
ID
223static struct btrfs_device *__alloc_device(void)
224{
225 struct btrfs_device *dev;
226
78f2c9e6 227 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
228 if (!dev)
229 return ERR_PTR(-ENOMEM);
230
e0ae9994
DS
231 /*
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
234 */
235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 if (!dev->flush_bio) {
237 kfree(dev);
238 return ERR_PTR(-ENOMEM);
239 }
e0ae9994 240
12bd2fc0
ID
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
9bcaaea7 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
35c70103
DS
257/*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
8a4b83cc 266{
35c70103 267 struct list_head *head = &fs_devices->devices;
8a4b83cc 268 struct btrfs_device *dev;
8a4b83cc 269
c6e30871 270 list_for_each_entry(dev, head, dev_list) {
a443755f 271 if (dev->devid == devid &&
8f18cf13 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 273 return dev;
a443755f 274 }
8a4b83cc
CM
275 }
276 return NULL;
277}
278
a1b32a59 279static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 280{
8a4b83cc
CM
281 struct btrfs_fs_devices *fs_devices;
282
c6e30871 283 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288}
289
beaf8ab3
SB
290static int
291btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294{
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
beaf8ab3
SB
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
beaf8ab3
SB
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325}
326
ffbd517d
CM
327static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329{
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339}
340
8b712842
CM
341/*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
143bede5 352static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 353{
0b246afa 354 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
355 struct bio *pending;
356 struct backing_dev_info *bdi;
ffbd517d 357 struct btrfs_pending_bios *pending_bios;
8b712842
CM
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
ffbd517d 361 unsigned long num_run;
d644d8a1 362 unsigned long batch_run = 0;
b765ead5 363 unsigned long last_waited = 0;
d84275c9 364 int force_reg = 0;
0e588859 365 int sync_pending = 0;
211588ad
CM
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
8b712842 375
efa7c9f9 376 bdi = device->bdev->bd_bdi;
b64a2851 377
8b712842
CM
378loop:
379 spin_lock(&device->io_lock);
380
a6837051 381loop_lock:
d84275c9 382 num_run = 0;
ffbd517d 383
8b712842
CM
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
388 */
d84275c9 389 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 390 pending_bios = &device->pending_sync_bios;
d84275c9
CM
391 force_reg = 1;
392 } else {
ffbd517d 393 pending_bios = &device->pending_bios;
d84275c9
CM
394 force_reg = 0;
395 }
ffbd517d
CM
396
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
8b712842 399 WARN_ON(pending && !tail);
8b712842
CM
400
401 /*
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
405 *
406 * device->running_pending is used to synchronize with the
407 * schedule_bio code.
408 */
ffbd517d
CM
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
8b712842
CM
411 again = 0;
412 device->running_pending = 0;
ffbd517d
CM
413 } else {
414 again = 1;
415 device->running_pending = 1;
8b712842 416 }
ffbd517d
CM
417
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
420
8b712842
CM
421 spin_unlock(&device->io_lock);
422
d397712b 423 while (pending) {
ffbd517d
CM
424
425 rmb();
d84275c9
CM
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
428 */
429 if ((num_run > 32 &&
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
ffbd517d
CM
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
436 goto loop_lock;
437 }
438
8b712842
CM
439 cur = pending;
440 pending = pending->bi_next;
441 cur->bi_next = NULL;
b64a2851 442
dac56212 443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 444
2ab1ba68
CM
445 /*
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
448 *
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
451 * we add more
452 */
453 if (pending_bios == &device->pending_sync_bios) {
454 sync_pending = 1;
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
458 sync_pending = 0;
459 }
460
4e49ea4a 461 btrfsic_submit_bio(cur);
5ff7ba3a
CM
462 num_run++;
463 batch_run++;
853d8ec4
DS
464
465 cond_resched();
8b712842
CM
466
467 /*
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
470 * run instead
471 */
57fd5a5f 472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 473 fs_info->fs_devices->open_devices > 1) {
b765ead5 474 struct io_context *ioc;
8b712842 475
b765ead5
CM
476 ioc = current->io_context;
477
478 /*
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
482 *
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
486 */
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 (last_waited == 0 ||
490 ioc->last_waited == last_waited)) {
491 /*
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
496 */
497 last_waited = ioc->last_waited;
853d8ec4 498 cond_resched();
b765ead5
CM
499 continue;
500 }
8b712842 501 spin_lock(&device->io_lock);
ffbd517d 502 requeue_list(pending_bios, pending, tail);
a6837051 503 device->running_pending = 1;
8b712842
CM
504
505 spin_unlock(&device->io_lock);
a8c93d4e
QW
506 btrfs_queue_work(fs_info->submit_workers,
507 &device->work);
8b712842
CM
508 goto done;
509 }
510 }
ffbd517d 511
51684082
CM
512 cond_resched();
513 if (again)
514 goto loop;
515
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
518 goto loop_lock;
519 spin_unlock(&device->io_lock);
520
8b712842 521done:
211588ad 522 blk_finish_plug(&plug);
8b712842
CM
523}
524
b2950863 525static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
526{
527 struct btrfs_device *device;
528
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
531}
532
4fde46f0 533
c9162bdf 534static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
4fde46f0
AJ
535{
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
538
539 if (!cur_dev->name)
540 return;
541
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
543 int del = 1;
544
545 if (fs_devs->opened)
546 continue;
547 if (fs_devs->seeding)
548 continue;
549
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552 if (dev == cur_dev)
553 continue;
554 if (!dev->name)
555 continue;
556
557 /*
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
562 */
563 rcu_read_lock();
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
566 rcu_read_unlock();
567 if (!del)
568 break;
569 }
570
571 if (!del) {
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
577 } else {
578 fs_devs->num_devices--;
579 list_del(&dev->dev_list);
580 rcu_string_free(dev->name);
3065ae5b 581 bio_put(dev->flush_bio);
4fde46f0
AJ
582 kfree(dev);
583 }
584 break;
585 }
586 }
587}
588
60999ca4
DS
589/*
590 * Add new device to list of registered devices
591 *
592 * Returns:
593 * 1 - first time device is seen
594 * 0 - device already known
595 * < 0 - error
596 */
a1b32a59 597static noinline int device_list_add(const char *path,
8a4b83cc
CM
598 struct btrfs_super_block *disk_super,
599 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
600{
601 struct btrfs_device *device;
602 struct btrfs_fs_devices *fs_devices;
606686ee 603 struct rcu_string *name;
60999ca4 604 int ret = 0;
8a4b83cc
CM
605 u64 found_transid = btrfs_super_generation(disk_super);
606
607 fs_devices = find_fsid(disk_super->fsid);
608 if (!fs_devices) {
2208a378
ID
609 fs_devices = alloc_fs_devices(disk_super->fsid);
610 if (IS_ERR(fs_devices))
611 return PTR_ERR(fs_devices);
612
8a4b83cc 613 list_add(&fs_devices->list, &fs_uuids);
2208a378 614
8a4b83cc
CM
615 device = NULL;
616 } else {
35c70103
DS
617 device = find_device(fs_devices, devid,
618 disk_super->dev_item.uuid);
8a4b83cc 619 }
443f24fe 620
8a4b83cc 621 if (!device) {
2b82032c
YZ
622 if (fs_devices->opened)
623 return -EBUSY;
624
12bd2fc0
ID
625 device = btrfs_alloc_device(NULL, &devid,
626 disk_super->dev_item.uuid);
627 if (IS_ERR(device)) {
8a4b83cc 628 /* we can safely leave the fs_devices entry around */
12bd2fc0 629 return PTR_ERR(device);
8a4b83cc 630 }
606686ee
JB
631
632 name = rcu_string_strdup(path, GFP_NOFS);
633 if (!name) {
3065ae5b 634 bio_put(device->flush_bio);
8a4b83cc
CM
635 kfree(device);
636 return -ENOMEM;
637 }
606686ee 638 rcu_assign_pointer(device->name, name);
90519d66 639
e5e9a520 640 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 641 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 642 fs_devices->num_devices++;
e5e9a520
CM
643 mutex_unlock(&fs_devices->device_list_mutex);
644
60999ca4 645 ret = 1;
2b82032c 646 device->fs_devices = fs_devices;
606686ee 647 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
648 /*
649 * When FS is already mounted.
650 * 1. If you are here and if the device->name is NULL that
651 * means this device was missing at time of FS mount.
652 * 2. If you are here and if the device->name is different
653 * from 'path' that means either
654 * a. The same device disappeared and reappeared with
655 * different name. or
656 * b. The missing-disk-which-was-replaced, has
657 * reappeared now.
658 *
659 * We must allow 1 and 2a above. But 2b would be a spurious
660 * and unintentional.
661 *
662 * Further in case of 1 and 2a above, the disk at 'path'
663 * would have missed some transaction when it was away and
664 * in case of 2a the stale bdev has to be updated as well.
665 * 2b must not be allowed at all time.
666 */
667
668 /*
0f23ae74
CM
669 * For now, we do allow update to btrfs_fs_device through the
670 * btrfs dev scan cli after FS has been mounted. We're still
671 * tracking a problem where systems fail mount by subvolume id
672 * when we reject replacement on a mounted FS.
b96de000 673 */
0f23ae74 674 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
675 /*
676 * That is if the FS is _not_ mounted and if you
677 * are here, that means there is more than one
678 * disk with same uuid and devid.We keep the one
679 * with larger generation number or the last-in if
680 * generation are equal.
681 */
0f23ae74 682 return -EEXIST;
77bdae4d 683 }
b96de000 684
606686ee 685 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
686 if (!name)
687 return -ENOMEM;
606686ee
JB
688 rcu_string_free(device->name);
689 rcu_assign_pointer(device->name, name);
cd02dca5
CM
690 if (device->missing) {
691 fs_devices->missing_devices--;
692 device->missing = 0;
693 }
8a4b83cc
CM
694 }
695
77bdae4d
AJ
696 /*
697 * Unmount does not free the btrfs_device struct but would zero
698 * generation along with most of the other members. So just update
699 * it back. We need it to pick the disk with largest generation
700 * (as above).
701 */
702 if (!fs_devices->opened)
703 device->generation = found_transid;
704
4fde46f0
AJ
705 /*
706 * if there is new btrfs on an already registered device,
707 * then remove the stale device entry.
708 */
02feae3c
AJ
709 if (ret > 0)
710 btrfs_free_stale_device(device);
4fde46f0 711
8a4b83cc 712 *fs_devices_ret = fs_devices;
60999ca4
DS
713
714 return ret;
8a4b83cc
CM
715}
716
e4404d6e
YZ
717static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
718{
719 struct btrfs_fs_devices *fs_devices;
720 struct btrfs_device *device;
721 struct btrfs_device *orig_dev;
722
2208a378
ID
723 fs_devices = alloc_fs_devices(orig->fsid);
724 if (IS_ERR(fs_devices))
725 return fs_devices;
e4404d6e 726
adbbb863 727 mutex_lock(&orig->device_list_mutex);
02db0844 728 fs_devices->total_devices = orig->total_devices;
e4404d6e 729
46224705 730 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 731 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
732 struct rcu_string *name;
733
12bd2fc0
ID
734 device = btrfs_alloc_device(NULL, &orig_dev->devid,
735 orig_dev->uuid);
736 if (IS_ERR(device))
e4404d6e
YZ
737 goto error;
738
606686ee
JB
739 /*
740 * This is ok to do without rcu read locked because we hold the
741 * uuid mutex so nothing we touch in here is going to disappear.
742 */
e755f780 743 if (orig_dev->name) {
78f2c9e6
DS
744 name = rcu_string_strdup(orig_dev->name->str,
745 GFP_KERNEL);
e755f780 746 if (!name) {
3065ae5b 747 bio_put(device->flush_bio);
e755f780
AJ
748 kfree(device);
749 goto error;
750 }
751 rcu_assign_pointer(device->name, name);
fd2696f3 752 }
e4404d6e 753
e4404d6e
YZ
754 list_add(&device->dev_list, &fs_devices->devices);
755 device->fs_devices = fs_devices;
756 fs_devices->num_devices++;
757 }
adbbb863 758 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
759 return fs_devices;
760error:
adbbb863 761 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
762 free_fs_devices(fs_devices);
763 return ERR_PTR(-ENOMEM);
764}
765
9eaed21e 766void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 767{
c6e30871 768 struct btrfs_device *device, *next;
443f24fe 769 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 770
dfe25020
CM
771 mutex_lock(&uuid_mutex);
772again:
46224705 773 /* This is the initialized path, it is safe to release the devices. */
c6e30871 774 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 775 if (device->in_fs_metadata) {
63a212ab 776 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
777 (!latest_dev ||
778 device->generation > latest_dev->generation)) {
779 latest_dev = device;
a6b0d5c8 780 }
2b82032c 781 continue;
a6b0d5c8 782 }
2b82032c 783
8dabb742
SB
784 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
785 /*
786 * In the first step, keep the device which has
787 * the correct fsid and the devid that is used
788 * for the dev_replace procedure.
789 * In the second step, the dev_replace state is
790 * read from the device tree and it is known
791 * whether the procedure is really active or
792 * not, which means whether this device is
793 * used or whether it should be removed.
794 */
795 if (step == 0 || device->is_tgtdev_for_dev_replace) {
796 continue;
797 }
798 }
2b82032c 799 if (device->bdev) {
d4d77629 800 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
801 device->bdev = NULL;
802 fs_devices->open_devices--;
803 }
804 if (device->writeable) {
805 list_del_init(&device->dev_alloc_list);
806 device->writeable = 0;
8dabb742
SB
807 if (!device->is_tgtdev_for_dev_replace)
808 fs_devices->rw_devices--;
2b82032c 809 }
e4404d6e
YZ
810 list_del_init(&device->dev_list);
811 fs_devices->num_devices--;
606686ee 812 rcu_string_free(device->name);
3065ae5b 813 bio_put(device->flush_bio);
e4404d6e 814 kfree(device);
dfe25020 815 }
2b82032c
YZ
816
817 if (fs_devices->seed) {
818 fs_devices = fs_devices->seed;
2b82032c
YZ
819 goto again;
820 }
821
443f24fe 822 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 823
dfe25020 824 mutex_unlock(&uuid_mutex);
dfe25020 825}
a0af469b 826
1f78160c
XG
827static void __free_device(struct work_struct *work)
828{
829 struct btrfs_device *device;
830
831 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 832 rcu_string_free(device->name);
e0ae9994 833 bio_put(device->flush_bio);
1f78160c
XG
834 kfree(device);
835}
836
837static void free_device(struct rcu_head *head)
838{
839 struct btrfs_device *device;
840
841 device = container_of(head, struct btrfs_device, rcu);
842
843 INIT_WORK(&device->rcu_work, __free_device);
844 schedule_work(&device->rcu_work);
845}
846
14238819
AJ
847static void btrfs_close_bdev(struct btrfs_device *device)
848{
849 if (device->bdev && device->writeable) {
850 sync_blockdev(device->bdev);
851 invalidate_bdev(device->bdev);
852 }
853
854 if (device->bdev)
855 blkdev_put(device->bdev, device->mode);
856}
857
0ccd0528 858static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
859{
860 struct btrfs_fs_devices *fs_devices = device->fs_devices;
861 struct btrfs_device *new_device;
862 struct rcu_string *name;
863
864 if (device->bdev)
865 fs_devices->open_devices--;
866
867 if (device->writeable &&
868 device->devid != BTRFS_DEV_REPLACE_DEVID) {
869 list_del_init(&device->dev_alloc_list);
870 fs_devices->rw_devices--;
871 }
872
873 if (device->missing)
874 fs_devices->missing_devices--;
875
876 new_device = btrfs_alloc_device(NULL, &device->devid,
877 device->uuid);
878 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
879
880 /* Safe because we are under uuid_mutex */
881 if (device->name) {
882 name = rcu_string_strdup(device->name->str, GFP_NOFS);
883 BUG_ON(!name); /* -ENOMEM */
884 rcu_assign_pointer(new_device->name, name);
885 }
886
887 list_replace_rcu(&device->dev_list, &new_device->dev_list);
888 new_device->fs_devices = device->fs_devices;
f448341a
AJ
889}
890
2b82032c 891static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 892{
2037a093 893 struct btrfs_device *device, *tmp;
0ccd0528
AJ
894 struct list_head pending_put;
895
896 INIT_LIST_HEAD(&pending_put);
e4404d6e 897
2b82032c
YZ
898 if (--fs_devices->opened > 0)
899 return 0;
8a4b83cc 900
c9513edb 901 mutex_lock(&fs_devices->device_list_mutex);
2037a093 902 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
903 btrfs_prepare_close_one_device(device);
904 list_add(&device->dev_list, &pending_put);
8a4b83cc 905 }
c9513edb
XG
906 mutex_unlock(&fs_devices->device_list_mutex);
907
0ccd0528
AJ
908 /*
909 * btrfs_show_devname() is using the device_list_mutex,
910 * sometimes call to blkdev_put() leads vfs calling
911 * into this func. So do put outside of device_list_mutex,
912 * as of now.
913 */
914 while (!list_empty(&pending_put)) {
915 device = list_first_entry(&pending_put,
916 struct btrfs_device, dev_list);
917 list_del(&device->dev_list);
918 btrfs_close_bdev(device);
919 call_rcu(&device->rcu, free_device);
920 }
921
e4404d6e
YZ
922 WARN_ON(fs_devices->open_devices);
923 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
924 fs_devices->opened = 0;
925 fs_devices->seeding = 0;
2b82032c 926
8a4b83cc
CM
927 return 0;
928}
929
2b82032c
YZ
930int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
931{
e4404d6e 932 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
933 int ret;
934
935 mutex_lock(&uuid_mutex);
936 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
937 if (!fs_devices->opened) {
938 seed_devices = fs_devices->seed;
939 fs_devices->seed = NULL;
940 }
2b82032c 941 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
942
943 while (seed_devices) {
944 fs_devices = seed_devices;
945 seed_devices = fs_devices->seed;
946 __btrfs_close_devices(fs_devices);
947 free_fs_devices(fs_devices);
948 }
bc178622
ES
949 /*
950 * Wait for rcu kworkers under __btrfs_close_devices
951 * to finish all blkdev_puts so device is really
952 * free when umount is done.
953 */
954 rcu_barrier();
2b82032c
YZ
955 return ret;
956}
957
e4404d6e
YZ
958static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
959 fmode_t flags, void *holder)
8a4b83cc 960{
d5e2003c 961 struct request_queue *q;
8a4b83cc
CM
962 struct block_device *bdev;
963 struct list_head *head = &fs_devices->devices;
8a4b83cc 964 struct btrfs_device *device;
443f24fe 965 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
966 struct buffer_head *bh;
967 struct btrfs_super_block *disk_super;
a0af469b 968 u64 devid;
2b82032c 969 int seeding = 1;
a0af469b 970 int ret = 0;
8a4b83cc 971
d4d77629
TH
972 flags |= FMODE_EXCL;
973
c6e30871 974 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
975 if (device->bdev)
976 continue;
dfe25020
CM
977 if (!device->name)
978 continue;
979
f63e0cca
ES
980 /* Just open everything we can; ignore failures here */
981 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
982 &bdev, &bh))
beaf8ab3 983 continue;
a0af469b
CM
984
985 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 986 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
987 if (devid != device->devid)
988 goto error_brelse;
989
2b82032c
YZ
990 if (memcmp(device->uuid, disk_super->dev_item.uuid,
991 BTRFS_UUID_SIZE))
992 goto error_brelse;
993
994 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
995 if (!latest_dev ||
996 device->generation > latest_dev->generation)
997 latest_dev = device;
a0af469b 998
2b82032c
YZ
999 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1000 device->writeable = 0;
1001 } else {
1002 device->writeable = !bdev_read_only(bdev);
1003 seeding = 0;
1004 }
1005
d5e2003c 1006 q = bdev_get_queue(bdev);
90180da4 1007 if (blk_queue_discard(q))
d5e2003c 1008 device->can_discard = 1;
e884f4f0
AJ
1009 if (!blk_queue_nonrot(q))
1010 fs_devices->rotating = 1;
d5e2003c 1011
8a4b83cc 1012 device->bdev = bdev;
dfe25020 1013 device->in_fs_metadata = 0;
15916de8
CM
1014 device->mode = flags;
1015
a0af469b 1016 fs_devices->open_devices++;
55e50e45
ID
1017 if (device->writeable &&
1018 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1019 fs_devices->rw_devices++;
1020 list_add(&device->dev_alloc_list,
1021 &fs_devices->alloc_list);
1022 }
4f6c9328 1023 brelse(bh);
a0af469b 1024 continue;
a061fc8d 1025
a0af469b
CM
1026error_brelse:
1027 brelse(bh);
d4d77629 1028 blkdev_put(bdev, flags);
a0af469b 1029 continue;
8a4b83cc 1030 }
a0af469b 1031 if (fs_devices->open_devices == 0) {
20bcd649 1032 ret = -EINVAL;
a0af469b
CM
1033 goto out;
1034 }
2b82032c
YZ
1035 fs_devices->seeding = seeding;
1036 fs_devices->opened = 1;
443f24fe 1037 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1038 fs_devices->total_rw_bytes = 0;
a0af469b 1039out:
2b82032c
YZ
1040 return ret;
1041}
1042
1043int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1044 fmode_t flags, void *holder)
2b82032c
YZ
1045{
1046 int ret;
1047
1048 mutex_lock(&uuid_mutex);
1049 if (fs_devices->opened) {
e4404d6e
YZ
1050 fs_devices->opened++;
1051 ret = 0;
2b82032c 1052 } else {
15916de8 1053 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1054 }
8a4b83cc 1055 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1056 return ret;
1057}
1058
c9162bdf 1059static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1060{
1061 kunmap(page);
1062 put_page(page);
1063}
1064
c9162bdf
OS
1065static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1066 struct page **page,
1067 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1068{
1069 void *p;
1070 pgoff_t index;
1071
1072 /* make sure our super fits in the device */
1073 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1074 return 1;
1075
1076 /* make sure our super fits in the page */
1077 if (sizeof(**disk_super) > PAGE_SIZE)
1078 return 1;
1079
1080 /* make sure our super doesn't straddle pages on disk */
1081 index = bytenr >> PAGE_SHIFT;
1082 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1083 return 1;
1084
1085 /* pull in the page with our super */
1086 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1087 index, GFP_KERNEL);
1088
1089 if (IS_ERR_OR_NULL(*page))
1090 return 1;
1091
1092 p = kmap(*page);
1093
1094 /* align our pointer to the offset of the super block */
1095 *disk_super = p + (bytenr & ~PAGE_MASK);
1096
1097 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1098 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1099 btrfs_release_disk_super(*page);
1100 return 1;
1101 }
1102
1103 if ((*disk_super)->label[0] &&
1104 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1105 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1106
1107 return 0;
1108}
1109
6f60cbd3
DS
1110/*
1111 * Look for a btrfs signature on a device. This may be called out of the mount path
1112 * and we are not allowed to call set_blocksize during the scan. The superblock
1113 * is read via pagecache
1114 */
97288f2c 1115int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1116 struct btrfs_fs_devices **fs_devices_ret)
1117{
1118 struct btrfs_super_block *disk_super;
1119 struct block_device *bdev;
6f60cbd3 1120 struct page *page;
6f60cbd3 1121 int ret = -EINVAL;
8a4b83cc 1122 u64 devid;
f2984462 1123 u64 transid;
02db0844 1124 u64 total_devices;
6f60cbd3 1125 u64 bytenr;
8a4b83cc 1126
6f60cbd3
DS
1127 /*
1128 * we would like to check all the supers, but that would make
1129 * a btrfs mount succeed after a mkfs from a different FS.
1130 * So, we need to add a special mount option to scan for
1131 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1132 */
1133 bytenr = btrfs_sb_offset(0);
d4d77629 1134 flags |= FMODE_EXCL;
10f6327b 1135 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1136
1137 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1138 if (IS_ERR(bdev)) {
1139 ret = PTR_ERR(bdev);
beaf8ab3 1140 goto error;
6f60cbd3
DS
1141 }
1142
6cf86a00 1143 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1144 goto error_bdev_put;
1145
a343832f 1146 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1147 transid = btrfs_super_generation(disk_super);
02db0844 1148 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1149
8a4b83cc 1150 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1151 if (ret > 0) {
1152 if (disk_super->label[0]) {
62e85577 1153 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1154 } else {
62e85577 1155 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1156 }
1157
62e85577 1158 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1159 ret = 0;
1160 }
02db0844
JB
1161 if (!ret && fs_devices_ret)
1162 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1163
6cf86a00 1164 btrfs_release_disk_super(page);
6f60cbd3
DS
1165
1166error_bdev_put:
d4d77629 1167 blkdev_put(bdev, flags);
8a4b83cc 1168error:
beaf8ab3 1169 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1170 return ret;
1171}
0b86a832 1172
6d07bcec
MX
1173/* helper to account the used device space in the range */
1174int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1175 u64 end, u64 *length)
1176{
1177 struct btrfs_key key;
fb456252 1178 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1179 struct btrfs_dev_extent *dev_extent;
1180 struct btrfs_path *path;
1181 u64 extent_end;
1182 int ret;
1183 int slot;
1184 struct extent_buffer *l;
1185
1186 *length = 0;
1187
63a212ab 1188 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1189 return 0;
1190
1191 path = btrfs_alloc_path();
1192 if (!path)
1193 return -ENOMEM;
e4058b54 1194 path->reada = READA_FORWARD;
6d07bcec
MX
1195
1196 key.objectid = device->devid;
1197 key.offset = start;
1198 key.type = BTRFS_DEV_EXTENT_KEY;
1199
1200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201 if (ret < 0)
1202 goto out;
1203 if (ret > 0) {
1204 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1205 if (ret < 0)
1206 goto out;
1207 }
1208
1209 while (1) {
1210 l = path->nodes[0];
1211 slot = path->slots[0];
1212 if (slot >= btrfs_header_nritems(l)) {
1213 ret = btrfs_next_leaf(root, path);
1214 if (ret == 0)
1215 continue;
1216 if (ret < 0)
1217 goto out;
1218
1219 break;
1220 }
1221 btrfs_item_key_to_cpu(l, &key, slot);
1222
1223 if (key.objectid < device->devid)
1224 goto next;
1225
1226 if (key.objectid > device->devid)
1227 break;
1228
962a298f 1229 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1230 goto next;
1231
1232 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1233 extent_end = key.offset + btrfs_dev_extent_length(l,
1234 dev_extent);
1235 if (key.offset <= start && extent_end > end) {
1236 *length = end - start + 1;
1237 break;
1238 } else if (key.offset <= start && extent_end > start)
1239 *length += extent_end - start;
1240 else if (key.offset > start && extent_end <= end)
1241 *length += extent_end - key.offset;
1242 else if (key.offset > start && key.offset <= end) {
1243 *length += end - key.offset + 1;
1244 break;
1245 } else if (key.offset > end)
1246 break;
1247
1248next:
1249 path->slots[0]++;
1250 }
1251 ret = 0;
1252out:
1253 btrfs_free_path(path);
1254 return ret;
1255}
1256
499f377f 1257static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1258 struct btrfs_device *device,
1259 u64 *start, u64 len)
1260{
fb456252 1261 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1262 struct extent_map *em;
499f377f 1263 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1264 int ret = 0;
1b984508 1265 u64 physical_start = *start;
6df9a95e 1266
499f377f
JM
1267 if (transaction)
1268 search_list = &transaction->pending_chunks;
04216820
FM
1269again:
1270 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1271 struct map_lookup *map;
1272 int i;
1273
95617d69 1274 map = em->map_lookup;
6df9a95e 1275 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1276 u64 end;
1277
6df9a95e
JB
1278 if (map->stripes[i].dev != device)
1279 continue;
1b984508 1280 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1281 map->stripes[i].physical + em->orig_block_len <=
1b984508 1282 physical_start)
6df9a95e 1283 continue;
c152b63e
FM
1284 /*
1285 * Make sure that while processing the pinned list we do
1286 * not override our *start with a lower value, because
1287 * we can have pinned chunks that fall within this
1288 * device hole and that have lower physical addresses
1289 * than the pending chunks we processed before. If we
1290 * do not take this special care we can end up getting
1291 * 2 pending chunks that start at the same physical
1292 * device offsets because the end offset of a pinned
1293 * chunk can be equal to the start offset of some
1294 * pending chunk.
1295 */
1296 end = map->stripes[i].physical + em->orig_block_len;
1297 if (end > *start) {
1298 *start = end;
1299 ret = 1;
1300 }
6df9a95e
JB
1301 }
1302 }
499f377f
JM
1303 if (search_list != &fs_info->pinned_chunks) {
1304 search_list = &fs_info->pinned_chunks;
04216820
FM
1305 goto again;
1306 }
6df9a95e
JB
1307
1308 return ret;
1309}
1310
1311
0b86a832 1312/*
499f377f
JM
1313 * find_free_dev_extent_start - find free space in the specified device
1314 * @device: the device which we search the free space in
1315 * @num_bytes: the size of the free space that we need
1316 * @search_start: the position from which to begin the search
1317 * @start: store the start of the free space.
1318 * @len: the size of the free space. that we find, or the size
1319 * of the max free space if we don't find suitable free space
7bfc837d 1320 *
0b86a832
CM
1321 * this uses a pretty simple search, the expectation is that it is
1322 * called very infrequently and that a given device has a small number
1323 * of extents
7bfc837d
MX
1324 *
1325 * @start is used to store the start of the free space if we find. But if we
1326 * don't find suitable free space, it will be used to store the start position
1327 * of the max free space.
1328 *
1329 * @len is used to store the size of the free space that we find.
1330 * But if we don't find suitable free space, it is used to store the size of
1331 * the max free space.
0b86a832 1332 */
499f377f
JM
1333int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1334 struct btrfs_device *device, u64 num_bytes,
1335 u64 search_start, u64 *start, u64 *len)
0b86a832 1336{
0b246afa
JM
1337 struct btrfs_fs_info *fs_info = device->fs_info;
1338 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1339 struct btrfs_key key;
7bfc837d 1340 struct btrfs_dev_extent *dev_extent;
2b82032c 1341 struct btrfs_path *path;
7bfc837d
MX
1342 u64 hole_size;
1343 u64 max_hole_start;
1344 u64 max_hole_size;
1345 u64 extent_end;
0b86a832
CM
1346 u64 search_end = device->total_bytes;
1347 int ret;
7bfc837d 1348 int slot;
0b86a832 1349 struct extent_buffer *l;
8cdc7c5b
FM
1350
1351 /*
1352 * We don't want to overwrite the superblock on the drive nor any area
1353 * used by the boot loader (grub for example), so we make sure to start
1354 * at an offset of at least 1MB.
1355 */
0d0c71b3 1356 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1357
6df9a95e
JB
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
f2ab7618 1361
7bfc837d
MX
1362 max_hole_start = search_start;
1363 max_hole_size = 0;
1364
f2ab7618 1365again:
63a212ab 1366 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1367 ret = -ENOSPC;
6df9a95e 1368 goto out;
7bfc837d
MX
1369 }
1370
e4058b54 1371 path->reada = READA_FORWARD;
6df9a95e
JB
1372 path->search_commit_root = 1;
1373 path->skip_locking = 1;
7bfc837d 1374
0b86a832
CM
1375 key.objectid = device->devid;
1376 key.offset = search_start;
1377 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1378
125ccb0a 1379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1380 if (ret < 0)
7bfc837d 1381 goto out;
1fcbac58
YZ
1382 if (ret > 0) {
1383 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1384 if (ret < 0)
7bfc837d 1385 goto out;
1fcbac58 1386 }
7bfc837d 1387
0b86a832
CM
1388 while (1) {
1389 l = path->nodes[0];
1390 slot = path->slots[0];
1391 if (slot >= btrfs_header_nritems(l)) {
1392 ret = btrfs_next_leaf(root, path);
1393 if (ret == 0)
1394 continue;
1395 if (ret < 0)
7bfc837d
MX
1396 goto out;
1397
1398 break;
0b86a832
CM
1399 }
1400 btrfs_item_key_to_cpu(l, &key, slot);
1401
1402 if (key.objectid < device->devid)
1403 goto next;
1404
1405 if (key.objectid > device->devid)
7bfc837d 1406 break;
0b86a832 1407
962a298f 1408 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1409 goto next;
9779b72f 1410
7bfc837d
MX
1411 if (key.offset > search_start) {
1412 hole_size = key.offset - search_start;
9779b72f 1413
6df9a95e
JB
1414 /*
1415 * Have to check before we set max_hole_start, otherwise
1416 * we could end up sending back this offset anyway.
1417 */
499f377f 1418 if (contains_pending_extent(transaction, device,
6df9a95e 1419 &search_start,
1b984508
FL
1420 hole_size)) {
1421 if (key.offset >= search_start) {
1422 hole_size = key.offset - search_start;
1423 } else {
1424 WARN_ON_ONCE(1);
1425 hole_size = 0;
1426 }
1427 }
6df9a95e 1428
7bfc837d
MX
1429 if (hole_size > max_hole_size) {
1430 max_hole_start = search_start;
1431 max_hole_size = hole_size;
1432 }
9779b72f 1433
7bfc837d
MX
1434 /*
1435 * If this free space is greater than which we need,
1436 * it must be the max free space that we have found
1437 * until now, so max_hole_start must point to the start
1438 * of this free space and the length of this free space
1439 * is stored in max_hole_size. Thus, we return
1440 * max_hole_start and max_hole_size and go back to the
1441 * caller.
1442 */
1443 if (hole_size >= num_bytes) {
1444 ret = 0;
1445 goto out;
0b86a832
CM
1446 }
1447 }
0b86a832 1448
0b86a832 1449 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1450 extent_end = key.offset + btrfs_dev_extent_length(l,
1451 dev_extent);
1452 if (extent_end > search_start)
1453 search_start = extent_end;
0b86a832
CM
1454next:
1455 path->slots[0]++;
1456 cond_resched();
1457 }
0b86a832 1458
38c01b96 1459 /*
1460 * At this point, search_start should be the end of
1461 * allocated dev extents, and when shrinking the device,
1462 * search_end may be smaller than search_start.
1463 */
f2ab7618 1464 if (search_end > search_start) {
38c01b96 1465 hole_size = search_end - search_start;
1466
499f377f 1467 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1468 hole_size)) {
1469 btrfs_release_path(path);
1470 goto again;
1471 }
0b86a832 1472
f2ab7618
ZL
1473 if (hole_size > max_hole_size) {
1474 max_hole_start = search_start;
1475 max_hole_size = hole_size;
1476 }
6df9a95e
JB
1477 }
1478
7bfc837d 1479 /* See above. */
f2ab7618 1480 if (max_hole_size < num_bytes)
7bfc837d
MX
1481 ret = -ENOSPC;
1482 else
1483 ret = 0;
1484
1485out:
2b82032c 1486 btrfs_free_path(path);
7bfc837d 1487 *start = max_hole_start;
b2117a39 1488 if (len)
7bfc837d 1489 *len = max_hole_size;
0b86a832
CM
1490 return ret;
1491}
1492
499f377f
JM
1493int find_free_dev_extent(struct btrfs_trans_handle *trans,
1494 struct btrfs_device *device, u64 num_bytes,
1495 u64 *start, u64 *len)
1496{
499f377f 1497 /* FIXME use last free of some kind */
499f377f 1498 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1499 num_bytes, 0, start, len);
499f377f
JM
1500}
1501
b2950863 1502static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1503 struct btrfs_device *device,
2196d6e8 1504 u64 start, u64 *dev_extent_len)
8f18cf13 1505{
0b246afa
JM
1506 struct btrfs_fs_info *fs_info = device->fs_info;
1507 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1508 int ret;
1509 struct btrfs_path *path;
8f18cf13 1510 struct btrfs_key key;
a061fc8d
CM
1511 struct btrfs_key found_key;
1512 struct extent_buffer *leaf = NULL;
1513 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1514
1515 path = btrfs_alloc_path();
1516 if (!path)
1517 return -ENOMEM;
1518
1519 key.objectid = device->devid;
1520 key.offset = start;
1521 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1522again:
8f18cf13 1523 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1524 if (ret > 0) {
1525 ret = btrfs_previous_item(root, path, key.objectid,
1526 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1527 if (ret)
1528 goto out;
a061fc8d
CM
1529 leaf = path->nodes[0];
1530 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1531 extent = btrfs_item_ptr(leaf, path->slots[0],
1532 struct btrfs_dev_extent);
1533 BUG_ON(found_key.offset > start || found_key.offset +
1534 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1535 key = found_key;
1536 btrfs_release_path(path);
1537 goto again;
a061fc8d
CM
1538 } else if (ret == 0) {
1539 leaf = path->nodes[0];
1540 extent = btrfs_item_ptr(leaf, path->slots[0],
1541 struct btrfs_dev_extent);
79787eaa 1542 } else {
0b246afa 1543 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1544 goto out;
a061fc8d 1545 }
8f18cf13 1546
2196d6e8
MX
1547 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1548
8f18cf13 1549 ret = btrfs_del_item(trans, root, path);
79787eaa 1550 if (ret) {
0b246afa
JM
1551 btrfs_handle_fs_error(fs_info, ret,
1552 "Failed to remove dev extent item");
13212b54 1553 } else {
3204d33c 1554 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1555 }
b0b802d7 1556out:
8f18cf13
CM
1557 btrfs_free_path(path);
1558 return ret;
1559}
1560
48a3b636
ES
1561static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1562 struct btrfs_device *device,
48a3b636 1563 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1564{
1565 int ret;
1566 struct btrfs_path *path;
0b246afa
JM
1567 struct btrfs_fs_info *fs_info = device->fs_info;
1568 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1569 struct btrfs_dev_extent *extent;
1570 struct extent_buffer *leaf;
1571 struct btrfs_key key;
1572
dfe25020 1573 WARN_ON(!device->in_fs_metadata);
63a212ab 1574 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1575 path = btrfs_alloc_path();
1576 if (!path)
1577 return -ENOMEM;
1578
0b86a832 1579 key.objectid = device->devid;
2b82032c 1580 key.offset = start;
0b86a832
CM
1581 key.type = BTRFS_DEV_EXTENT_KEY;
1582 ret = btrfs_insert_empty_item(trans, root, path, &key,
1583 sizeof(*extent));
2cdcecbc
MF
1584 if (ret)
1585 goto out;
0b86a832
CM
1586
1587 leaf = path->nodes[0];
1588 extent = btrfs_item_ptr(leaf, path->slots[0],
1589 struct btrfs_dev_extent);
b5d9071c
NB
1590 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1591 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1592 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1593 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1594 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1595
0b86a832
CM
1596 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1597 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1598out:
0b86a832
CM
1599 btrfs_free_path(path);
1600 return ret;
1601}
1602
6df9a95e 1603static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1604{
6df9a95e
JB
1605 struct extent_map_tree *em_tree;
1606 struct extent_map *em;
1607 struct rb_node *n;
1608 u64 ret = 0;
0b86a832 1609
6df9a95e
JB
1610 em_tree = &fs_info->mapping_tree.map_tree;
1611 read_lock(&em_tree->lock);
1612 n = rb_last(&em_tree->map);
1613 if (n) {
1614 em = rb_entry(n, struct extent_map, rb_node);
1615 ret = em->start + em->len;
0b86a832 1616 }
6df9a95e
JB
1617 read_unlock(&em_tree->lock);
1618
0b86a832
CM
1619 return ret;
1620}
1621
53f10659
ID
1622static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1623 u64 *devid_ret)
0b86a832
CM
1624{
1625 int ret;
1626 struct btrfs_key key;
1627 struct btrfs_key found_key;
2b82032c
YZ
1628 struct btrfs_path *path;
1629
2b82032c
YZ
1630 path = btrfs_alloc_path();
1631 if (!path)
1632 return -ENOMEM;
0b86a832
CM
1633
1634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1635 key.type = BTRFS_DEV_ITEM_KEY;
1636 key.offset = (u64)-1;
1637
53f10659 1638 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1639 if (ret < 0)
1640 goto error;
1641
79787eaa 1642 BUG_ON(ret == 0); /* Corruption */
0b86a832 1643
53f10659
ID
1644 ret = btrfs_previous_item(fs_info->chunk_root, path,
1645 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1646 BTRFS_DEV_ITEM_KEY);
1647 if (ret) {
53f10659 1648 *devid_ret = 1;
0b86a832
CM
1649 } else {
1650 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1651 path->slots[0]);
53f10659 1652 *devid_ret = found_key.offset + 1;
0b86a832
CM
1653 }
1654 ret = 0;
1655error:
2b82032c 1656 btrfs_free_path(path);
0b86a832
CM
1657 return ret;
1658}
1659
1660/*
1661 * the device information is stored in the chunk root
1662 * the btrfs_device struct should be fully filled in
1663 */
48a3b636 1664static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1665 struct btrfs_fs_info *fs_info,
48a3b636 1666 struct btrfs_device *device)
0b86a832 1667{
5b4aacef 1668 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1669 int ret;
1670 struct btrfs_path *path;
1671 struct btrfs_dev_item *dev_item;
1672 struct extent_buffer *leaf;
1673 struct btrfs_key key;
1674 unsigned long ptr;
0b86a832 1675
0b86a832
CM
1676 path = btrfs_alloc_path();
1677 if (!path)
1678 return -ENOMEM;
1679
0b86a832
CM
1680 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1681 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1682 key.offset = device->devid;
0b86a832
CM
1683
1684 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1685 sizeof(*dev_item));
0b86a832
CM
1686 if (ret)
1687 goto out;
1688
1689 leaf = path->nodes[0];
1690 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1691
1692 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1693 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1694 btrfs_set_device_type(leaf, dev_item, device->type);
1695 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1696 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1697 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1698 btrfs_set_device_total_bytes(leaf, dev_item,
1699 btrfs_device_get_disk_total_bytes(device));
1700 btrfs_set_device_bytes_used(leaf, dev_item,
1701 btrfs_device_get_bytes_used(device));
e17cade2
CM
1702 btrfs_set_device_group(leaf, dev_item, 0);
1703 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1704 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1705 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1706
410ba3a2 1707 ptr = btrfs_device_uuid(dev_item);
e17cade2 1708 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1709 ptr = btrfs_device_fsid(dev_item);
44880fdc 1710 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1711 btrfs_mark_buffer_dirty(leaf);
0b86a832 1712
2b82032c 1713 ret = 0;
0b86a832
CM
1714out:
1715 btrfs_free_path(path);
1716 return ret;
1717}
8f18cf13 1718
5a1972bd
QW
1719/*
1720 * Function to update ctime/mtime for a given device path.
1721 * Mainly used for ctime/mtime based probe like libblkid.
1722 */
da353f6b 1723static void update_dev_time(const char *path_name)
5a1972bd
QW
1724{
1725 struct file *filp;
1726
1727 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1728 if (IS_ERR(filp))
5a1972bd
QW
1729 return;
1730 file_update_time(filp);
1731 filp_close(filp, NULL);
5a1972bd
QW
1732}
1733
5b4aacef 1734static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1735 struct btrfs_device *device)
1736{
5b4aacef 1737 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1738 int ret;
1739 struct btrfs_path *path;
a061fc8d 1740 struct btrfs_key key;
a061fc8d
CM
1741 struct btrfs_trans_handle *trans;
1742
a061fc8d
CM
1743 path = btrfs_alloc_path();
1744 if (!path)
1745 return -ENOMEM;
1746
a22285a6 1747 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1748 if (IS_ERR(trans)) {
1749 btrfs_free_path(path);
1750 return PTR_ERR(trans);
1751 }
a061fc8d
CM
1752 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1753 key.type = BTRFS_DEV_ITEM_KEY;
1754 key.offset = device->devid;
1755
1756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1757 if (ret) {
1758 if (ret > 0)
1759 ret = -ENOENT;
1760 btrfs_abort_transaction(trans, ret);
1761 btrfs_end_transaction(trans);
a061fc8d
CM
1762 goto out;
1763 }
1764
1765 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1766 if (ret) {
1767 btrfs_abort_transaction(trans, ret);
1768 btrfs_end_transaction(trans);
1769 }
1770
a061fc8d
CM
1771out:
1772 btrfs_free_path(path);
5e9f2ad5
NB
1773 if (!ret)
1774 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1775 return ret;
1776}
1777
3cc31a0d
DS
1778/*
1779 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1780 * filesystem. It's up to the caller to adjust that number regarding eg. device
1781 * replace.
1782 */
1783static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1784 u64 num_devices)
a061fc8d 1785{
a061fc8d 1786 u64 all_avail;
de98ced9 1787 unsigned seq;
418775a2 1788 int i;
a061fc8d 1789
de98ced9 1790 do {
bd45ffbc 1791 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1792
bd45ffbc
AJ
1793 all_avail = fs_info->avail_data_alloc_bits |
1794 fs_info->avail_system_alloc_bits |
1795 fs_info->avail_metadata_alloc_bits;
1796 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1797
418775a2
DS
1798 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1799 if (!(all_avail & btrfs_raid_group[i]))
1800 continue;
a061fc8d 1801
418775a2
DS
1802 if (num_devices < btrfs_raid_array[i].devs_min) {
1803 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1804
418775a2
DS
1805 if (ret)
1806 return ret;
1807 }
53b381b3
DW
1808 }
1809
bd45ffbc 1810 return 0;
f1fa7f26
AJ
1811}
1812
c9162bdf
OS
1813static struct btrfs_device * btrfs_find_next_active_device(
1814 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1815{
2b82032c 1816 struct btrfs_device *next_device;
88acff64
AJ
1817
1818 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1819 if (next_device != device &&
1820 !next_device->missing && next_device->bdev)
1821 return next_device;
1822 }
1823
1824 return NULL;
1825}
1826
1827/*
1828 * Helper function to check if the given device is part of s_bdev / latest_bdev
1829 * and replace it with the provided or the next active device, in the context
1830 * where this function called, there should be always be another device (or
1831 * this_dev) which is active.
1832 */
1833void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1834 struct btrfs_device *device, struct btrfs_device *this_dev)
1835{
1836 struct btrfs_device *next_device;
1837
1838 if (this_dev)
1839 next_device = this_dev;
1840 else
1841 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1842 device);
1843 ASSERT(next_device);
1844
1845 if (fs_info->sb->s_bdev &&
1846 (fs_info->sb->s_bdev == device->bdev))
1847 fs_info->sb->s_bdev = next_device->bdev;
1848
1849 if (fs_info->fs_devices->latest_bdev == device->bdev)
1850 fs_info->fs_devices->latest_bdev = next_device->bdev;
1851}
1852
da353f6b
DS
1853int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1854 u64 devid)
f1fa7f26
AJ
1855{
1856 struct btrfs_device *device;
1f78160c 1857 struct btrfs_fs_devices *cur_devices;
2b82032c 1858 u64 num_devices;
a061fc8d
CM
1859 int ret = 0;
1860
a061fc8d
CM
1861 mutex_lock(&uuid_mutex);
1862
0b246afa
JM
1863 num_devices = fs_info->fs_devices->num_devices;
1864 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1865 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1866 WARN_ON(num_devices < 1);
1867 num_devices--;
1868 }
0b246afa 1869 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1870
0b246afa 1871 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1872 if (ret)
a061fc8d 1873 goto out;
a061fc8d 1874
2ff7e61e
JM
1875 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1876 &device);
24fc572f 1877 if (ret)
53b381b3 1878 goto out;
dfe25020 1879
63a212ab 1880 if (device->is_tgtdev_for_dev_replace) {
183860f6 1881 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1882 goto out;
63a212ab
SB
1883 }
1884
0b246afa 1885 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1886 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1887 goto out;
2b82032c
YZ
1888 }
1889
1890 if (device->writeable) {
34441361 1891 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1892 list_del_init(&device->dev_alloc_list);
c3929c36 1893 device->fs_devices->rw_devices--;
34441361 1894 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1895 }
a061fc8d 1896
d7901554 1897 mutex_unlock(&uuid_mutex);
a061fc8d 1898 ret = btrfs_shrink_device(device, 0);
d7901554 1899 mutex_lock(&uuid_mutex);
a061fc8d 1900 if (ret)
9b3517e9 1901 goto error_undo;
a061fc8d 1902
63a212ab
SB
1903 /*
1904 * TODO: the superblock still includes this device in its num_devices
1905 * counter although write_all_supers() is not locked out. This
1906 * could give a filesystem state which requires a degraded mount.
1907 */
0b246afa 1908 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1909 if (ret)
9b3517e9 1910 goto error_undo;
a061fc8d 1911
2b82032c 1912 device->in_fs_metadata = 0;
0b246afa 1913 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1914
1915 /*
1916 * the device list mutex makes sure that we don't change
1917 * the device list while someone else is writing out all
d7306801
FDBM
1918 * the device supers. Whoever is writing all supers, should
1919 * lock the device list mutex before getting the number of
1920 * devices in the super block (super_copy). Conversely,
1921 * whoever updates the number of devices in the super block
1922 * (super_copy) should hold the device list mutex.
e5e9a520 1923 */
1f78160c
XG
1924
1925 cur_devices = device->fs_devices;
0b246afa 1926 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1927 list_del_rcu(&device->dev_list);
e5e9a520 1928
e4404d6e 1929 device->fs_devices->num_devices--;
02db0844 1930 device->fs_devices->total_devices--;
2b82032c 1931
cd02dca5 1932 if (device->missing)
3a7d55c8 1933 device->fs_devices->missing_devices--;
cd02dca5 1934
0b246afa 1935 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1936
0bfaa9c5 1937 if (device->bdev) {
e4404d6e 1938 device->fs_devices->open_devices--;
0bfaa9c5 1939 /* remove sysfs entry */
0b246afa 1940 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1941 }
99994cde 1942
0b246afa
JM
1943 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1944 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1945 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1946
cea67ab9
JM
1947 /*
1948 * at this point, the device is zero sized and detached from
1949 * the devices list. All that's left is to zero out the old
1950 * supers and free the device.
1951 */
1952 if (device->writeable)
1953 btrfs_scratch_superblocks(device->bdev, device->name->str);
1954
1955 btrfs_close_bdev(device);
1956 call_rcu(&device->rcu, free_device);
1957
1f78160c 1958 if (cur_devices->open_devices == 0) {
e4404d6e 1959 struct btrfs_fs_devices *fs_devices;
0b246afa 1960 fs_devices = fs_info->fs_devices;
e4404d6e 1961 while (fs_devices) {
8321cf25
RS
1962 if (fs_devices->seed == cur_devices) {
1963 fs_devices->seed = cur_devices->seed;
e4404d6e 1964 break;
8321cf25 1965 }
e4404d6e 1966 fs_devices = fs_devices->seed;
2b82032c 1967 }
1f78160c 1968 cur_devices->seed = NULL;
1f78160c 1969 __btrfs_close_devices(cur_devices);
1f78160c 1970 free_fs_devices(cur_devices);
2b82032c
YZ
1971 }
1972
a061fc8d
CM
1973out:
1974 mutex_unlock(&uuid_mutex);
a061fc8d 1975 return ret;
24fc572f 1976
9b3517e9
ID
1977error_undo:
1978 if (device->writeable) {
34441361 1979 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1980 list_add(&device->dev_alloc_list,
0b246afa 1981 &fs_info->fs_devices->alloc_list);
c3929c36 1982 device->fs_devices->rw_devices++;
34441361 1983 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1984 }
24fc572f 1985 goto out;
a061fc8d
CM
1986}
1987
084b6e7c
QW
1988void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1989 struct btrfs_device *srcdev)
e93c89c1 1990{
d51908ce
AJ
1991 struct btrfs_fs_devices *fs_devices;
1992
e93c89c1 1993 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1994
25e8e911
AJ
1995 /*
1996 * in case of fs with no seed, srcdev->fs_devices will point
1997 * to fs_devices of fs_info. However when the dev being replaced is
1998 * a seed dev it will point to the seed's local fs_devices. In short
1999 * srcdev will have its correct fs_devices in both the cases.
2000 */
2001 fs_devices = srcdev->fs_devices;
d51908ce 2002
e93c89c1 2003 list_del_rcu(&srcdev->dev_list);
619c47f3 2004 list_del(&srcdev->dev_alloc_list);
d51908ce 2005 fs_devices->num_devices--;
82372bc8 2006 if (srcdev->missing)
d51908ce 2007 fs_devices->missing_devices--;
e93c89c1 2008
48b3b9d4 2009 if (srcdev->writeable)
82372bc8 2010 fs_devices->rw_devices--;
1357272f 2011
82372bc8 2012 if (srcdev->bdev)
d51908ce 2013 fs_devices->open_devices--;
084b6e7c
QW
2014}
2015
2016void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *srcdev)
2018{
2019 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2020
48b3b9d4
AJ
2021 if (srcdev->writeable) {
2022 /* zero out the old super if it is writable */
2023 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2024 }
14238819
AJ
2025
2026 btrfs_close_bdev(srcdev);
e93c89c1 2027 call_rcu(&srcdev->rcu, free_device);
94d5f0c2 2028
94d5f0c2
AJ
2029 /* if this is no devs we rather delete the fs_devices */
2030 if (!fs_devices->num_devices) {
2031 struct btrfs_fs_devices *tmp_fs_devices;
2032
6dd38f81
AJ
2033 /*
2034 * On a mounted FS, num_devices can't be zero unless it's a
2035 * seed. In case of a seed device being replaced, the replace
2036 * target added to the sprout FS, so there will be no more
2037 * device left under the seed FS.
2038 */
2039 ASSERT(fs_devices->seeding);
2040
94d5f0c2
AJ
2041 tmp_fs_devices = fs_info->fs_devices;
2042 while (tmp_fs_devices) {
2043 if (tmp_fs_devices->seed == fs_devices) {
2044 tmp_fs_devices->seed = fs_devices->seed;
2045 break;
2046 }
2047 tmp_fs_devices = tmp_fs_devices->seed;
2048 }
2049 fs_devices->seed = NULL;
8bef8401
AJ
2050 __btrfs_close_devices(fs_devices);
2051 free_fs_devices(fs_devices);
94d5f0c2 2052 }
e93c89c1
SB
2053}
2054
2055void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2056 struct btrfs_device *tgtdev)
2057{
67a2c45e 2058 mutex_lock(&uuid_mutex);
e93c89c1
SB
2059 WARN_ON(!tgtdev);
2060 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2061
32576040 2062 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2063
779bf3fe 2064 if (tgtdev->bdev)
e93c89c1 2065 fs_info->fs_devices->open_devices--;
779bf3fe 2066
e93c89c1 2067 fs_info->fs_devices->num_devices--;
e93c89c1 2068
88acff64 2069 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2070
e93c89c1 2071 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2072
2073 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2074 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2075
2076 /*
2077 * The update_dev_time() with in btrfs_scratch_superblocks()
2078 * may lead to a call to btrfs_show_devname() which will try
2079 * to hold device_list_mutex. And here this device
2080 * is already out of device list, so we don't have to hold
2081 * the device_list_mutex lock.
2082 */
2083 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2084
2085 btrfs_close_bdev(tgtdev);
779bf3fe 2086 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2087}
2088
2ff7e61e 2089static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2090 const char *device_path,
48a3b636 2091 struct btrfs_device **device)
7ba15b7d
SB
2092{
2093 int ret = 0;
2094 struct btrfs_super_block *disk_super;
2095 u64 devid;
2096 u8 *dev_uuid;
2097 struct block_device *bdev;
2098 struct buffer_head *bh;
2099
2100 *device = NULL;
2101 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2102 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2103 if (ret)
2104 return ret;
2105 disk_super = (struct btrfs_super_block *)bh->b_data;
2106 devid = btrfs_stack_device_id(&disk_super->dev_item);
2107 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2108 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2109 brelse(bh);
2110 if (!*device)
2111 ret = -ENOENT;
2112 blkdev_put(bdev, FMODE_READ);
2113 return ret;
2114}
2115
2ff7e61e 2116int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2117 const char *device_path,
7ba15b7d
SB
2118 struct btrfs_device **device)
2119{
2120 *device = NULL;
2121 if (strcmp(device_path, "missing") == 0) {
2122 struct list_head *devices;
2123 struct btrfs_device *tmp;
2124
0b246afa 2125 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2126 /*
2127 * It is safe to read the devices since the volume_mutex
2128 * is held by the caller.
2129 */
2130 list_for_each_entry(tmp, devices, dev_list) {
2131 if (tmp->in_fs_metadata && !tmp->bdev) {
2132 *device = tmp;
2133 break;
2134 }
2135 }
2136
d74a6259
AJ
2137 if (!*device)
2138 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2139
2140 return 0;
2141 } else {
2ff7e61e 2142 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2143 }
2144}
2145
5c5c0df0
DS
2146/*
2147 * Lookup a device given by device id, or the path if the id is 0.
2148 */
2ff7e61e 2149int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2150 const char *devpath,
2151 struct btrfs_device **device)
24e0474b
AJ
2152{
2153 int ret;
2154
5c5c0df0 2155 if (devid) {
24e0474b 2156 ret = 0;
0b246afa 2157 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2158 if (!*device)
2159 ret = -ENOENT;
2160 } else {
5c5c0df0 2161 if (!devpath || !devpath[0])
b3d1b153
AJ
2162 return -EINVAL;
2163
2ff7e61e 2164 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2165 device);
2166 }
2167 return ret;
2168}
2169
2b82032c
YZ
2170/*
2171 * does all the dirty work required for changing file system's UUID.
2172 */
2ff7e61e 2173static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2174{
0b246afa 2175 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2176 struct btrfs_fs_devices *old_devices;
e4404d6e 2177 struct btrfs_fs_devices *seed_devices;
0b246afa 2178 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2179 struct btrfs_device *device;
2180 u64 super_flags;
2181
2182 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2183 if (!fs_devices->seeding)
2b82032c
YZ
2184 return -EINVAL;
2185
2dfeca9b 2186 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2187 if (IS_ERR(seed_devices))
2188 return PTR_ERR(seed_devices);
2b82032c 2189
e4404d6e
YZ
2190 old_devices = clone_fs_devices(fs_devices);
2191 if (IS_ERR(old_devices)) {
2192 kfree(seed_devices);
2193 return PTR_ERR(old_devices);
2b82032c 2194 }
e4404d6e 2195
2b82032c
YZ
2196 list_add(&old_devices->list, &fs_uuids);
2197
e4404d6e
YZ
2198 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2199 seed_devices->opened = 1;
2200 INIT_LIST_HEAD(&seed_devices->devices);
2201 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2202 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2203
0b246afa 2204 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2205 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2206 synchronize_rcu);
2196d6e8
MX
2207 list_for_each_entry(device, &seed_devices->devices, dev_list)
2208 device->fs_devices = seed_devices;
c9513edb 2209
34441361 2210 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2211 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2212 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2213
2b82032c
YZ
2214 fs_devices->seeding = 0;
2215 fs_devices->num_devices = 0;
2216 fs_devices->open_devices = 0;
69611ac8 2217 fs_devices->missing_devices = 0;
69611ac8 2218 fs_devices->rotating = 0;
e4404d6e 2219 fs_devices->seed = seed_devices;
2b82032c
YZ
2220
2221 generate_random_uuid(fs_devices->fsid);
0b246afa 2222 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2223 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2224 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2225
2b82032c
YZ
2226 super_flags = btrfs_super_flags(disk_super) &
2227 ~BTRFS_SUPER_FLAG_SEEDING;
2228 btrfs_set_super_flags(disk_super, super_flags);
2229
2230 return 0;
2231}
2232
2233/*
01327610 2234 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2235 */
2236static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2237 struct btrfs_fs_info *fs_info)
2b82032c 2238{
5b4aacef 2239 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2240 struct btrfs_path *path;
2241 struct extent_buffer *leaf;
2242 struct btrfs_dev_item *dev_item;
2243 struct btrfs_device *device;
2244 struct btrfs_key key;
44880fdc 2245 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2246 u8 dev_uuid[BTRFS_UUID_SIZE];
2247 u64 devid;
2248 int ret;
2249
2250 path = btrfs_alloc_path();
2251 if (!path)
2252 return -ENOMEM;
2253
2b82032c
YZ
2254 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2255 key.offset = 0;
2256 key.type = BTRFS_DEV_ITEM_KEY;
2257
2258 while (1) {
2259 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2260 if (ret < 0)
2261 goto error;
2262
2263 leaf = path->nodes[0];
2264next_slot:
2265 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 break;
2269 if (ret < 0)
2270 goto error;
2271 leaf = path->nodes[0];
2272 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2273 btrfs_release_path(path);
2b82032c
YZ
2274 continue;
2275 }
2276
2277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2279 key.type != BTRFS_DEV_ITEM_KEY)
2280 break;
2281
2282 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2283 struct btrfs_dev_item);
2284 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2285 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2286 BTRFS_UUID_SIZE);
1473b24e 2287 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2288 BTRFS_FSID_SIZE);
0b246afa 2289 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2290 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2291
2292 if (device->fs_devices->seeding) {
2293 btrfs_set_device_generation(leaf, dev_item,
2294 device->generation);
2295 btrfs_mark_buffer_dirty(leaf);
2296 }
2297
2298 path->slots[0]++;
2299 goto next_slot;
2300 }
2301 ret = 0;
2302error:
2303 btrfs_free_path(path);
2304 return ret;
2305}
2306
da353f6b 2307int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2308{
5112febb 2309 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2310 struct request_queue *q;
788f20eb
CM
2311 struct btrfs_trans_handle *trans;
2312 struct btrfs_device *device;
2313 struct block_device *bdev;
788f20eb 2314 struct list_head *devices;
0b246afa 2315 struct super_block *sb = fs_info->sb;
606686ee 2316 struct rcu_string *name;
3c1dbdf5 2317 u64 tmp;
2b82032c 2318 int seeding_dev = 0;
788f20eb 2319 int ret = 0;
7132a262 2320 bool unlocked = false;
788f20eb 2321
bc98a42c 2322 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
f8c5d0b4 2323 return -EROFS;
788f20eb 2324
a5d16333 2325 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2326 fs_info->bdev_holder);
7f59203a
JB
2327 if (IS_ERR(bdev))
2328 return PTR_ERR(bdev);
a2135011 2329
0b246afa 2330 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2331 seeding_dev = 1;
2332 down_write(&sb->s_umount);
2333 mutex_lock(&uuid_mutex);
2334 }
2335
8c8bee1d 2336 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2337
0b246afa 2338 devices = &fs_info->fs_devices->devices;
d25628bd 2339
0b246afa 2340 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2341 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2342 if (device->bdev == bdev) {
2343 ret = -EEXIST;
d25628bd 2344 mutex_unlock(
0b246afa 2345 &fs_info->fs_devices->device_list_mutex);
2b82032c 2346 goto error;
788f20eb
CM
2347 }
2348 }
0b246afa 2349 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2350
0b246afa 2351 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2352 if (IS_ERR(device)) {
788f20eb 2353 /* we can safely leave the fs_devices entry around */
12bd2fc0 2354 ret = PTR_ERR(device);
2b82032c 2355 goto error;
788f20eb
CM
2356 }
2357
78f2c9e6 2358 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2359 if (!name) {
3065ae5b 2360 bio_put(device->flush_bio);
788f20eb 2361 kfree(device);
2b82032c
YZ
2362 ret = -ENOMEM;
2363 goto error;
788f20eb 2364 }
606686ee 2365 rcu_assign_pointer(device->name, name);
2b82032c 2366
a22285a6 2367 trans = btrfs_start_transaction(root, 0);
98d5dc13 2368 if (IS_ERR(trans)) {
606686ee 2369 rcu_string_free(device->name);
3065ae5b 2370 bio_put(device->flush_bio);
98d5dc13
TI
2371 kfree(device);
2372 ret = PTR_ERR(trans);
2373 goto error;
2374 }
2375
d5e2003c
JB
2376 q = bdev_get_queue(bdev);
2377 if (blk_queue_discard(q))
2378 device->can_discard = 1;
2b82032c 2379 device->writeable = 1;
2b82032c 2380 device->generation = trans->transid;
0b246afa
JM
2381 device->io_width = fs_info->sectorsize;
2382 device->io_align = fs_info->sectorsize;
2383 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2384 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2385 fs_info->sectorsize);
2cc3c559 2386 device->disk_total_bytes = device->total_bytes;
935e5cc9 2387 device->commit_total_bytes = device->total_bytes;
fb456252 2388 device->fs_info = fs_info;
788f20eb 2389 device->bdev = bdev;
dfe25020 2390 device->in_fs_metadata = 1;
63a212ab 2391 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2392 device->mode = FMODE_EXCL;
27087f37 2393 device->dev_stats_valid = 1;
9f6d2510 2394 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2395
2b82032c 2396 if (seeding_dev) {
1751e8a6 2397 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2398 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2399 if (ret) {
2400 btrfs_abort_transaction(trans, ret);
2401 goto error_trans;
2402 }
2b82032c 2403 }
788f20eb 2404
0b246afa 2405 device->fs_devices = fs_info->fs_devices;
e5e9a520 2406
0b246afa 2407 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2408 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2409 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2410 list_add(&device->dev_alloc_list,
0b246afa
JM
2411 &fs_info->fs_devices->alloc_list);
2412 fs_info->fs_devices->num_devices++;
2413 fs_info->fs_devices->open_devices++;
2414 fs_info->fs_devices->rw_devices++;
2415 fs_info->fs_devices->total_devices++;
2416 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2417
a5ed45f8 2418 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2419
e884f4f0 2420 if (!blk_queue_nonrot(q))
0b246afa 2421 fs_info->fs_devices->rotating = 1;
c289811c 2422
0b246afa
JM
2423 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2425 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2426
0b246afa
JM
2427 tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2429
2430 /* add sysfs device entry */
0b246afa 2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2432
2196d6e8
MX
2433 /*
2434 * we've got more storage, clear any full flags on the space
2435 * infos
2436 */
0b246afa 2437 btrfs_clear_space_info_full(fs_info);
2196d6e8 2438
34441361 2439 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2441
2b82032c 2442 if (seeding_dev) {
34441361 2443 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2444 ret = init_first_rw_device(trans, fs_info);
34441361 2445 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2446 if (ret) {
66642832 2447 btrfs_abort_transaction(trans, ret);
d31c32f6 2448 goto error_sysfs;
005d6427 2449 }
2196d6e8
MX
2450 }
2451
0b246afa 2452 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2453 if (ret) {
66642832 2454 btrfs_abort_transaction(trans, ret);
d31c32f6 2455 goto error_sysfs;
2196d6e8
MX
2456 }
2457
2458 if (seeding_dev) {
2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460
0b246afa 2461 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2462 if (ret) {
66642832 2463 btrfs_abort_transaction(trans, ret);
d31c32f6 2464 goto error_sysfs;
005d6427 2465 }
b2373f25
AJ
2466
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2469 */
2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2471 fs_info->fsid);
2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 btrfs_warn(fs_info,
2474 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2475 }
2476
3a45bb20 2477 ret = btrfs_commit_transaction(trans);
a2135011 2478
2b82032c
YZ
2479 if (seeding_dev) {
2480 mutex_unlock(&uuid_mutex);
2481 up_write(&sb->s_umount);
7132a262 2482 unlocked = true;
788f20eb 2483
79787eaa
JM
2484 if (ret) /* transaction commit */
2485 return ret;
2486
2ff7e61e 2487 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2488 if (ret < 0)
0b246afa 2489 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2491 trans = btrfs_attach_transaction(root);
2492 if (IS_ERR(trans)) {
2493 if (PTR_ERR(trans) == -ENOENT)
2494 return 0;
7132a262
AJ
2495 ret = PTR_ERR(trans);
2496 trans = NULL;
2497 goto error_sysfs;
671415b7 2498 }
3a45bb20 2499 ret = btrfs_commit_transaction(trans);
2b82032c 2500 }
c9e9f97b 2501
5a1972bd
QW
2502 /* Update ctime/mtime for libblkid */
2503 update_dev_time(device_path);
2b82032c 2504 return ret;
79787eaa 2505
d31c32f6
AJ
2506error_sysfs:
2507 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2508error_trans:
0af2c4bf 2509 if (seeding_dev)
1751e8a6 2510 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2511 if (trans)
2512 btrfs_end_transaction(trans);
606686ee 2513 rcu_string_free(device->name);
3065ae5b 2514 bio_put(device->flush_bio);
79787eaa 2515 kfree(device);
2b82032c 2516error:
e525fd89 2517 blkdev_put(bdev, FMODE_EXCL);
7132a262 2518 if (seeding_dev && !unlocked) {
2b82032c
YZ
2519 mutex_unlock(&uuid_mutex);
2520 up_write(&sb->s_umount);
2521 }
c9e9f97b 2522 return ret;
788f20eb
CM
2523}
2524
2ff7e61e 2525int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2526 const char *device_path,
1c43366d 2527 struct btrfs_device *srcdev,
e93c89c1
SB
2528 struct btrfs_device **device_out)
2529{
2530 struct request_queue *q;
2531 struct btrfs_device *device;
2532 struct block_device *bdev;
e93c89c1
SB
2533 struct list_head *devices;
2534 struct rcu_string *name;
12bd2fc0 2535 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2536 int ret = 0;
2537
2538 *device_out = NULL;
1c43366d
MX
2539 if (fs_info->fs_devices->seeding) {
2540 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2541 return -EINVAL;
1c43366d 2542 }
e93c89c1
SB
2543
2544 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2545 fs_info->bdev_holder);
1c43366d
MX
2546 if (IS_ERR(bdev)) {
2547 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2548 return PTR_ERR(bdev);
1c43366d 2549 }
e93c89c1
SB
2550
2551 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2552
2553 devices = &fs_info->fs_devices->devices;
2554 list_for_each_entry(device, devices, dev_list) {
2555 if (device->bdev == bdev) {
5d163e0e
JM
2556 btrfs_err(fs_info,
2557 "target device is in the filesystem!");
e93c89c1
SB
2558 ret = -EEXIST;
2559 goto error;
2560 }
2561 }
2562
1c43366d 2563
7cc8e58d
MX
2564 if (i_size_read(bdev->bd_inode) <
2565 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2566 btrfs_err(fs_info,
2567 "target device is smaller than source device!");
1c43366d
MX
2568 ret = -EINVAL;
2569 goto error;
2570 }
2571
2572
12bd2fc0
ID
2573 device = btrfs_alloc_device(NULL, &devid, NULL);
2574 if (IS_ERR(device)) {
2575 ret = PTR_ERR(device);
e93c89c1
SB
2576 goto error;
2577 }
2578
6165572c 2579 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1 2580 if (!name) {
3065ae5b 2581 bio_put(device->flush_bio);
e93c89c1
SB
2582 kfree(device);
2583 ret = -ENOMEM;
2584 goto error;
2585 }
2586 rcu_assign_pointer(device->name, name);
2587
2588 q = bdev_get_queue(bdev);
2589 if (blk_queue_discard(q))
2590 device->can_discard = 1;
0b246afa 2591 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2592 device->writeable = 1;
e93c89c1 2593 device->generation = 0;
0b246afa
JM
2594 device->io_width = fs_info->sectorsize;
2595 device->io_align = fs_info->sectorsize;
2596 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2597 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2598 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2599 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2600 ASSERT(list_empty(&srcdev->resized_list));
2601 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2602 device->commit_bytes_used = device->bytes_used;
fb456252 2603 device->fs_info = fs_info;
e93c89c1
SB
2604 device->bdev = bdev;
2605 device->in_fs_metadata = 1;
2606 device->is_tgtdev_for_dev_replace = 1;
2607 device->mode = FMODE_EXCL;
27087f37 2608 device->dev_stats_valid = 1;
9f6d2510 2609 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
e93c89c1
SB
2610 device->fs_devices = fs_info->fs_devices;
2611 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2612 fs_info->fs_devices->num_devices++;
2613 fs_info->fs_devices->open_devices++;
0b246afa 2614 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2615
2616 *device_out = device;
2617 return ret;
2618
2619error:
2620 blkdev_put(bdev, FMODE_EXCL);
2621 return ret;
2622}
2623
2624void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2625 struct btrfs_device *tgtdev)
2626{
da17066c
JM
2627 u32 sectorsize = fs_info->sectorsize;
2628
e93c89c1 2629 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2630 tgtdev->io_width = sectorsize;
2631 tgtdev->io_align = sectorsize;
2632 tgtdev->sector_size = sectorsize;
fb456252 2633 tgtdev->fs_info = fs_info;
e93c89c1
SB
2634 tgtdev->in_fs_metadata = 1;
2635}
2636
d397712b
CM
2637static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2638 struct btrfs_device *device)
0b86a832
CM
2639{
2640 int ret;
2641 struct btrfs_path *path;
0b246afa 2642 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2643 struct btrfs_dev_item *dev_item;
2644 struct extent_buffer *leaf;
2645 struct btrfs_key key;
2646
0b86a832
CM
2647 path = btrfs_alloc_path();
2648 if (!path)
2649 return -ENOMEM;
2650
2651 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2652 key.type = BTRFS_DEV_ITEM_KEY;
2653 key.offset = device->devid;
2654
2655 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2656 if (ret < 0)
2657 goto out;
2658
2659 if (ret > 0) {
2660 ret = -ENOENT;
2661 goto out;
2662 }
2663
2664 leaf = path->nodes[0];
2665 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2666
2667 btrfs_set_device_id(leaf, dev_item, device->devid);
2668 btrfs_set_device_type(leaf, dev_item, device->type);
2669 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2670 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2671 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2672 btrfs_set_device_total_bytes(leaf, dev_item,
2673 btrfs_device_get_disk_total_bytes(device));
2674 btrfs_set_device_bytes_used(leaf, dev_item,
2675 btrfs_device_get_bytes_used(device));
0b86a832
CM
2676 btrfs_mark_buffer_dirty(leaf);
2677
2678out:
2679 btrfs_free_path(path);
2680 return ret;
2681}
2682
2196d6e8 2683int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2684 struct btrfs_device *device, u64 new_size)
2685{
0b246afa
JM
2686 struct btrfs_fs_info *fs_info = device->fs_info;
2687 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2688 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2689 u64 old_total;
2690 u64 diff;
8f18cf13 2691
2b82032c
YZ
2692 if (!device->writeable)
2693 return -EACCES;
2196d6e8 2694
7dfb8be1
NB
2695 new_size = round_down(new_size, fs_info->sectorsize);
2696
34441361 2697 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2698 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2699 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2700
63a212ab 2701 if (new_size <= device->total_bytes ||
2196d6e8 2702 device->is_tgtdev_for_dev_replace) {
34441361 2703 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2704 return -EINVAL;
2196d6e8 2705 }
2b82032c 2706
0b246afa 2707 fs_devices = fs_info->fs_devices;
2b82032c 2708
7dfb8be1
NB
2709 btrfs_set_super_total_bytes(super_copy,
2710 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2711 device->fs_devices->total_rw_bytes += diff;
2712
7cc8e58d
MX
2713 btrfs_device_set_total_bytes(device, new_size);
2714 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2715 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2716 if (list_empty(&device->resized_list))
2717 list_add_tail(&device->resized_list,
2718 &fs_devices->resized_devices);
34441361 2719 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2720
8f18cf13
CM
2721 return btrfs_update_device(trans, device);
2722}
2723
2724static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2725 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2726{
5b4aacef 2727 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2728 int ret;
2729 struct btrfs_path *path;
2730 struct btrfs_key key;
2731
8f18cf13
CM
2732 path = btrfs_alloc_path();
2733 if (!path)
2734 return -ENOMEM;
2735
408fbf19 2736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2737 key.offset = chunk_offset;
2738 key.type = BTRFS_CHUNK_ITEM_KEY;
2739
2740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2741 if (ret < 0)
2742 goto out;
2743 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2744 btrfs_handle_fs_error(fs_info, -ENOENT,
2745 "Failed lookup while freeing chunk.");
79787eaa
JM
2746 ret = -ENOENT;
2747 goto out;
2748 }
8f18cf13
CM
2749
2750 ret = btrfs_del_item(trans, root, path);
79787eaa 2751 if (ret < 0)
0b246afa
JM
2752 btrfs_handle_fs_error(fs_info, ret,
2753 "Failed to delete chunk item.");
79787eaa 2754out:
8f18cf13 2755 btrfs_free_path(path);
65a246c5 2756 return ret;
8f18cf13
CM
2757}
2758
408fbf19 2759static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2760{
0b246afa 2761 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2762 struct btrfs_disk_key *disk_key;
2763 struct btrfs_chunk *chunk;
2764 u8 *ptr;
2765 int ret = 0;
2766 u32 num_stripes;
2767 u32 array_size;
2768 u32 len = 0;
2769 u32 cur;
2770 struct btrfs_key key;
2771
34441361 2772 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2773 array_size = btrfs_super_sys_array_size(super_copy);
2774
2775 ptr = super_copy->sys_chunk_array;
2776 cur = 0;
2777
2778 while (cur < array_size) {
2779 disk_key = (struct btrfs_disk_key *)ptr;
2780 btrfs_disk_key_to_cpu(&key, disk_key);
2781
2782 len = sizeof(*disk_key);
2783
2784 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2785 chunk = (struct btrfs_chunk *)(ptr + len);
2786 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2787 len += btrfs_chunk_item_size(num_stripes);
2788 } else {
2789 ret = -EIO;
2790 break;
2791 }
408fbf19 2792 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2793 key.offset == chunk_offset) {
2794 memmove(ptr, ptr + len, array_size - (cur + len));
2795 array_size -= len;
2796 btrfs_set_super_sys_array_size(super_copy, array_size);
2797 } else {
2798 ptr += len;
2799 cur += len;
2800 }
2801 }
34441361 2802 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2803 return ret;
2804}
2805
592d92ee
LB
2806static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2807 u64 logical, u64 length)
2808{
2809 struct extent_map_tree *em_tree;
2810 struct extent_map *em;
2811
2812 em_tree = &fs_info->mapping_tree.map_tree;
2813 read_lock(&em_tree->lock);
2814 em = lookup_extent_mapping(em_tree, logical, length);
2815 read_unlock(&em_tree->lock);
2816
2817 if (!em) {
2818 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2819 logical, length);
2820 return ERR_PTR(-EINVAL);
2821 }
2822
2823 if (em->start > logical || em->start + em->len < logical) {
2824 btrfs_crit(fs_info,
2825 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2826 logical, length, em->start, em->start + em->len);
2827 free_extent_map(em);
2828 return ERR_PTR(-EINVAL);
2829 }
2830
2831 /* callers are responsible for dropping em's ref. */
2832 return em;
2833}
2834
47ab2a6c 2835int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2836 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2837{
8f18cf13
CM
2838 struct extent_map *em;
2839 struct map_lookup *map;
2196d6e8 2840 u64 dev_extent_len = 0;
47ab2a6c 2841 int i, ret = 0;
0b246afa 2842 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2843
592d92ee
LB
2844 em = get_chunk_map(fs_info, chunk_offset, 1);
2845 if (IS_ERR(em)) {
47ab2a6c
JB
2846 /*
2847 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2848 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2849 * do anything we still error out.
2850 */
2851 ASSERT(0);
592d92ee 2852 return PTR_ERR(em);
47ab2a6c 2853 }
95617d69 2854 map = em->map_lookup;
34441361 2855 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2856 check_system_chunk(trans, fs_info, map->type);
34441361 2857 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2858
57ba4cb8
FM
2859 /*
2860 * Take the device list mutex to prevent races with the final phase of
2861 * a device replace operation that replaces the device object associated
2862 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2863 */
2864 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2865 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2866 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2867 ret = btrfs_free_dev_extent(trans, device,
2868 map->stripes[i].physical,
2869 &dev_extent_len);
47ab2a6c 2870 if (ret) {
57ba4cb8 2871 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2872 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2873 goto out;
2874 }
a061fc8d 2875
2196d6e8 2876 if (device->bytes_used > 0) {
34441361 2877 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2878 btrfs_device_set_bytes_used(device,
2879 device->bytes_used - dev_extent_len);
a5ed45f8 2880 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2881 btrfs_clear_space_info_full(fs_info);
34441361 2882 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2883 }
a061fc8d 2884
dfe25020
CM
2885 if (map->stripes[i].dev) {
2886 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2887 if (ret) {
57ba4cb8 2888 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2889 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2890 goto out;
2891 }
dfe25020 2892 }
8f18cf13 2893 }
57ba4cb8
FM
2894 mutex_unlock(&fs_devices->device_list_mutex);
2895
408fbf19 2896 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2897 if (ret) {
66642832 2898 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2899 goto out;
2900 }
8f18cf13 2901
6bccf3ab 2902 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2903
8f18cf13 2904 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2905 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2906 if (ret) {
66642832 2907 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2908 goto out;
2909 }
8f18cf13
CM
2910 }
2911
6bccf3ab 2912 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2913 if (ret) {
66642832 2914 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2915 goto out;
2916 }
2b82032c 2917
47ab2a6c 2918out:
2b82032c
YZ
2919 /* once for us */
2920 free_extent_map(em);
47ab2a6c
JB
2921 return ret;
2922}
2b82032c 2923
5b4aacef 2924static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2925{
5b4aacef 2926 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2927 struct btrfs_trans_handle *trans;
47ab2a6c 2928 int ret;
2b82032c 2929
67c5e7d4
FM
2930 /*
2931 * Prevent races with automatic removal of unused block groups.
2932 * After we relocate and before we remove the chunk with offset
2933 * chunk_offset, automatic removal of the block group can kick in,
2934 * resulting in a failure when calling btrfs_remove_chunk() below.
2935 *
2936 * Make sure to acquire this mutex before doing a tree search (dev
2937 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2938 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2939 * we release the path used to search the chunk/dev tree and before
2940 * the current task acquires this mutex and calls us.
2941 */
0b246afa 2942 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2943
0b246afa 2944 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2945 if (ret)
2946 return -ENOSPC;
2947
2948 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2949 btrfs_scrub_pause(fs_info);
0b246afa 2950 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2951 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2952 if (ret)
2953 return ret;
2954
19c4d2f9
CM
2955 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2956 chunk_offset);
2957 if (IS_ERR(trans)) {
2958 ret = PTR_ERR(trans);
2959 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2960 return ret;
2961 }
2962
47ab2a6c 2963 /*
19c4d2f9
CM
2964 * step two, delete the device extents and the
2965 * chunk tree entries
47ab2a6c 2966 */
5b4aacef 2967 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2968 btrfs_end_transaction(trans);
19c4d2f9 2969 return ret;
2b82032c
YZ
2970}
2971
2ff7e61e 2972static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2973{
0b246afa 2974 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2975 struct btrfs_path *path;
2976 struct extent_buffer *leaf;
2977 struct btrfs_chunk *chunk;
2978 struct btrfs_key key;
2979 struct btrfs_key found_key;
2b82032c 2980 u64 chunk_type;
ba1bf481
JB
2981 bool retried = false;
2982 int failed = 0;
2b82032c
YZ
2983 int ret;
2984
2985 path = btrfs_alloc_path();
2986 if (!path)
2987 return -ENOMEM;
2988
ba1bf481 2989again:
2b82032c
YZ
2990 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2991 key.offset = (u64)-1;
2992 key.type = BTRFS_CHUNK_ITEM_KEY;
2993
2994 while (1) {
0b246afa 2995 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2997 if (ret < 0) {
0b246afa 2998 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2999 goto error;
67c5e7d4 3000 }
79787eaa 3001 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3002
3003 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3004 key.type);
67c5e7d4 3005 if (ret)
0b246afa 3006 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3007 if (ret < 0)
3008 goto error;
3009 if (ret > 0)
3010 break;
1a40e23b 3011
2b82032c
YZ
3012 leaf = path->nodes[0];
3013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3014
2b82032c
YZ
3015 chunk = btrfs_item_ptr(leaf, path->slots[0],
3016 struct btrfs_chunk);
3017 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3018 btrfs_release_path(path);
8f18cf13 3019
2b82032c 3020 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3021 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3022 if (ret == -ENOSPC)
3023 failed++;
14586651
HS
3024 else
3025 BUG_ON(ret);
2b82032c 3026 }
0b246afa 3027 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3028
2b82032c
YZ
3029 if (found_key.offset == 0)
3030 break;
3031 key.offset = found_key.offset - 1;
3032 }
3033 ret = 0;
ba1bf481
JB
3034 if (failed && !retried) {
3035 failed = 0;
3036 retried = true;
3037 goto again;
fae7f21c 3038 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3039 ret = -ENOSPC;
3040 }
2b82032c
YZ
3041error:
3042 btrfs_free_path(path);
3043 return ret;
8f18cf13
CM
3044}
3045
6bccf3ab 3046static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3047 struct btrfs_balance_control *bctl)
3048{
6bccf3ab 3049 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3050 struct btrfs_trans_handle *trans;
3051 struct btrfs_balance_item *item;
3052 struct btrfs_disk_balance_args disk_bargs;
3053 struct btrfs_path *path;
3054 struct extent_buffer *leaf;
3055 struct btrfs_key key;
3056 int ret, err;
3057
3058 path = btrfs_alloc_path();
3059 if (!path)
3060 return -ENOMEM;
3061
3062 trans = btrfs_start_transaction(root, 0);
3063 if (IS_ERR(trans)) {
3064 btrfs_free_path(path);
3065 return PTR_ERR(trans);
3066 }
3067
3068 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3069 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3070 key.offset = 0;
3071
3072 ret = btrfs_insert_empty_item(trans, root, path, &key,
3073 sizeof(*item));
3074 if (ret)
3075 goto out;
3076
3077 leaf = path->nodes[0];
3078 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3079
b159fa28 3080 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3081
3082 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3083 btrfs_set_balance_data(leaf, item, &disk_bargs);
3084 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3085 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3086 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3087 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3088
3089 btrfs_set_balance_flags(leaf, item, bctl->flags);
3090
3091 btrfs_mark_buffer_dirty(leaf);
3092out:
3093 btrfs_free_path(path);
3a45bb20 3094 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3095 if (err && !ret)
3096 ret = err;
3097 return ret;
3098}
3099
6bccf3ab 3100static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3101{
6bccf3ab 3102 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3103 struct btrfs_trans_handle *trans;
3104 struct btrfs_path *path;
3105 struct btrfs_key key;
3106 int ret, err;
3107
3108 path = btrfs_alloc_path();
3109 if (!path)
3110 return -ENOMEM;
3111
3112 trans = btrfs_start_transaction(root, 0);
3113 if (IS_ERR(trans)) {
3114 btrfs_free_path(path);
3115 return PTR_ERR(trans);
3116 }
3117
3118 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3119 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3120 key.offset = 0;
3121
3122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3123 if (ret < 0)
3124 goto out;
3125 if (ret > 0) {
3126 ret = -ENOENT;
3127 goto out;
3128 }
3129
3130 ret = btrfs_del_item(trans, root, path);
3131out:
3132 btrfs_free_path(path);
3a45bb20 3133 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3134 if (err && !ret)
3135 ret = err;
3136 return ret;
3137}
3138
59641015
ID
3139/*
3140 * This is a heuristic used to reduce the number of chunks balanced on
3141 * resume after balance was interrupted.
3142 */
3143static void update_balance_args(struct btrfs_balance_control *bctl)
3144{
3145 /*
3146 * Turn on soft mode for chunk types that were being converted.
3147 */
3148 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3149 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3150 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3151 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3152 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3154
3155 /*
3156 * Turn on usage filter if is not already used. The idea is
3157 * that chunks that we have already balanced should be
3158 * reasonably full. Don't do it for chunks that are being
3159 * converted - that will keep us from relocating unconverted
3160 * (albeit full) chunks.
3161 */
3162 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3163 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->data.usage = 90;
3167 }
3168 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3169 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172 bctl->sys.usage = 90;
3173 }
3174 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3175 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3177 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3178 bctl->meta.usage = 90;
3179 }
3180}
3181
c9e9f97b
ID
3182/*
3183 * Should be called with both balance and volume mutexes held to
3184 * serialize other volume operations (add_dev/rm_dev/resize) with
3185 * restriper. Same goes for unset_balance_control.
3186 */
3187static void set_balance_control(struct btrfs_balance_control *bctl)
3188{
3189 struct btrfs_fs_info *fs_info = bctl->fs_info;
3190
3191 BUG_ON(fs_info->balance_ctl);
3192
3193 spin_lock(&fs_info->balance_lock);
3194 fs_info->balance_ctl = bctl;
3195 spin_unlock(&fs_info->balance_lock);
3196}
3197
3198static void unset_balance_control(struct btrfs_fs_info *fs_info)
3199{
3200 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3201
3202 BUG_ON(!fs_info->balance_ctl);
3203
3204 spin_lock(&fs_info->balance_lock);
3205 fs_info->balance_ctl = NULL;
3206 spin_unlock(&fs_info->balance_lock);
3207
3208 kfree(bctl);
3209}
3210
ed25e9b2
ID
3211/*
3212 * Balance filters. Return 1 if chunk should be filtered out
3213 * (should not be balanced).
3214 */
899c81ea 3215static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3216 struct btrfs_balance_args *bargs)
3217{
899c81ea
ID
3218 chunk_type = chunk_to_extended(chunk_type) &
3219 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3220
899c81ea 3221 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3222 return 0;
3223
3224 return 1;
3225}
3226
dba72cb3 3227static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3228 struct btrfs_balance_args *bargs)
bc309467
DS
3229{
3230 struct btrfs_block_group_cache *cache;
3231 u64 chunk_used;
3232 u64 user_thresh_min;
3233 u64 user_thresh_max;
3234 int ret = 1;
3235
3236 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3237 chunk_used = btrfs_block_group_used(&cache->item);
3238
3239 if (bargs->usage_min == 0)
3240 user_thresh_min = 0;
3241 else
3242 user_thresh_min = div_factor_fine(cache->key.offset,
3243 bargs->usage_min);
3244
3245 if (bargs->usage_max == 0)
3246 user_thresh_max = 1;
3247 else if (bargs->usage_max > 100)
3248 user_thresh_max = cache->key.offset;
3249 else
3250 user_thresh_max = div_factor_fine(cache->key.offset,
3251 bargs->usage_max);
3252
3253 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3254 ret = 0;
3255
3256 btrfs_put_block_group(cache);
3257 return ret;
3258}
3259
dba72cb3 3260static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3261 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3262{
3263 struct btrfs_block_group_cache *cache;
3264 u64 chunk_used, user_thresh;
3265 int ret = 1;
3266
3267 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3268 chunk_used = btrfs_block_group_used(&cache->item);
3269
bc309467 3270 if (bargs->usage_min == 0)
3e39cea6 3271 user_thresh = 1;
a105bb88
ID
3272 else if (bargs->usage > 100)
3273 user_thresh = cache->key.offset;
3274 else
3275 user_thresh = div_factor_fine(cache->key.offset,
3276 bargs->usage);
3277
5ce5b3c0
ID
3278 if (chunk_used < user_thresh)
3279 ret = 0;
3280
3281 btrfs_put_block_group(cache);
3282 return ret;
3283}
3284
409d404b
ID
3285static int chunk_devid_filter(struct extent_buffer *leaf,
3286 struct btrfs_chunk *chunk,
3287 struct btrfs_balance_args *bargs)
3288{
3289 struct btrfs_stripe *stripe;
3290 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3291 int i;
3292
3293 for (i = 0; i < num_stripes; i++) {
3294 stripe = btrfs_stripe_nr(chunk, i);
3295 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3296 return 0;
3297 }
3298
3299 return 1;
3300}
3301
94e60d5a
ID
3302/* [pstart, pend) */
3303static int chunk_drange_filter(struct extent_buffer *leaf,
3304 struct btrfs_chunk *chunk,
94e60d5a
ID
3305 struct btrfs_balance_args *bargs)
3306{
3307 struct btrfs_stripe *stripe;
3308 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3309 u64 stripe_offset;
3310 u64 stripe_length;
3311 int factor;
3312 int i;
3313
3314 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3315 return 0;
3316
3317 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3318 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3319 factor = num_stripes / 2;
3320 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3321 factor = num_stripes - 1;
3322 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3323 factor = num_stripes - 2;
3324 } else {
3325 factor = num_stripes;
3326 }
94e60d5a
ID
3327
3328 for (i = 0; i < num_stripes; i++) {
3329 stripe = btrfs_stripe_nr(chunk, i);
3330 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3331 continue;
3332
3333 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3334 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3335 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3336
3337 if (stripe_offset < bargs->pend &&
3338 stripe_offset + stripe_length > bargs->pstart)
3339 return 0;
3340 }
3341
3342 return 1;
3343}
3344
ea67176a
ID
3345/* [vstart, vend) */
3346static int chunk_vrange_filter(struct extent_buffer *leaf,
3347 struct btrfs_chunk *chunk,
3348 u64 chunk_offset,
3349 struct btrfs_balance_args *bargs)
3350{
3351 if (chunk_offset < bargs->vend &&
3352 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3353 /* at least part of the chunk is inside this vrange */
3354 return 0;
3355
3356 return 1;
3357}
3358
dee32d0a
GAP
3359static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3360 struct btrfs_chunk *chunk,
3361 struct btrfs_balance_args *bargs)
3362{
3363 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3364
3365 if (bargs->stripes_min <= num_stripes
3366 && num_stripes <= bargs->stripes_max)
3367 return 0;
3368
3369 return 1;
3370}
3371
899c81ea 3372static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3373 struct btrfs_balance_args *bargs)
3374{
3375 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3376 return 0;
3377
899c81ea
ID
3378 chunk_type = chunk_to_extended(chunk_type) &
3379 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3380
899c81ea 3381 if (bargs->target == chunk_type)
cfa4c961
ID
3382 return 1;
3383
3384 return 0;
3385}
3386
2ff7e61e 3387static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3388 struct extent_buffer *leaf,
3389 struct btrfs_chunk *chunk, u64 chunk_offset)
3390{
0b246afa 3391 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3392 struct btrfs_balance_args *bargs = NULL;
3393 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3394
3395 /* type filter */
3396 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3397 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3398 return 0;
3399 }
3400
3401 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3402 bargs = &bctl->data;
3403 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3404 bargs = &bctl->sys;
3405 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3406 bargs = &bctl->meta;
3407
ed25e9b2
ID
3408 /* profiles filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3410 chunk_profiles_filter(chunk_type, bargs)) {
3411 return 0;
5ce5b3c0
ID
3412 }
3413
3414 /* usage filter */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3416 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3417 return 0;
bc309467 3418 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3419 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3420 return 0;
409d404b
ID
3421 }
3422
3423 /* devid filter */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3425 chunk_devid_filter(leaf, chunk, bargs)) {
3426 return 0;
94e60d5a
ID
3427 }
3428
3429 /* drange filter, makes sense only with devid filter */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3431 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3432 return 0;
ea67176a
ID
3433 }
3434
3435 /* vrange filter */
3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3437 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3438 return 0;
ed25e9b2
ID
3439 }
3440
dee32d0a
GAP
3441 /* stripes filter */
3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3443 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3444 return 0;
3445 }
3446
cfa4c961
ID
3447 /* soft profile changing mode */
3448 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3449 chunk_soft_convert_filter(chunk_type, bargs)) {
3450 return 0;
3451 }
3452
7d824b6f
DS
3453 /*
3454 * limited by count, must be the last filter
3455 */
3456 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3457 if (bargs->limit == 0)
3458 return 0;
3459 else
3460 bargs->limit--;
12907fc7
DS
3461 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3462 /*
3463 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3464 * determined here because we do not have the global information
12907fc7
DS
3465 * about the count of all chunks that satisfy the filters.
3466 */
3467 if (bargs->limit_max == 0)
3468 return 0;
3469 else
3470 bargs->limit_max--;
7d824b6f
DS
3471 }
3472
f43ffb60
ID
3473 return 1;
3474}
3475
c9e9f97b 3476static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3477{
19a39dce 3478 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3479 struct btrfs_root *chunk_root = fs_info->chunk_root;
3480 struct btrfs_root *dev_root = fs_info->dev_root;
3481 struct list_head *devices;
ec44a35c
CM
3482 struct btrfs_device *device;
3483 u64 old_size;
3484 u64 size_to_free;
12907fc7 3485 u64 chunk_type;
f43ffb60 3486 struct btrfs_chunk *chunk;
5a488b9d 3487 struct btrfs_path *path = NULL;
ec44a35c 3488 struct btrfs_key key;
ec44a35c 3489 struct btrfs_key found_key;
c9e9f97b 3490 struct btrfs_trans_handle *trans;
f43ffb60
ID
3491 struct extent_buffer *leaf;
3492 int slot;
c9e9f97b
ID
3493 int ret;
3494 int enospc_errors = 0;
19a39dce 3495 bool counting = true;
12907fc7 3496 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3497 u64 limit_data = bctl->data.limit;
3498 u64 limit_meta = bctl->meta.limit;
3499 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3500 u32 count_data = 0;
3501 u32 count_meta = 0;
3502 u32 count_sys = 0;
2c9fe835 3503 int chunk_reserved = 0;
cf25ce51 3504 u64 bytes_used = 0;
ec44a35c 3505
ec44a35c 3506 /* step one make some room on all the devices */
c9e9f97b 3507 devices = &fs_info->fs_devices->devices;
c6e30871 3508 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3509 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3510 size_to_free = div_factor(old_size, 1);
ee22184b 3511 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3512 if (!device->writeable ||
7cc8e58d
MX
3513 btrfs_device_get_total_bytes(device) -
3514 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3515 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3516 continue;
3517
3518 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3519 if (ret == -ENOSPC)
3520 break;
5a488b9d
LB
3521 if (ret) {
3522 /* btrfs_shrink_device never returns ret > 0 */
3523 WARN_ON(ret > 0);
3524 goto error;
3525 }
ec44a35c 3526
a22285a6 3527 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3528 if (IS_ERR(trans)) {
3529 ret = PTR_ERR(trans);
3530 btrfs_info_in_rcu(fs_info,
3531 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3532 rcu_str_deref(device->name), ret,
3533 old_size, old_size - size_to_free);
3534 goto error;
3535 }
ec44a35c
CM
3536
3537 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3538 if (ret) {
3a45bb20 3539 btrfs_end_transaction(trans);
5a488b9d
LB
3540 /* btrfs_grow_device never returns ret > 0 */
3541 WARN_ON(ret > 0);
3542 btrfs_info_in_rcu(fs_info,
3543 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3544 rcu_str_deref(device->name), ret,
3545 old_size, old_size - size_to_free);
3546 goto error;
3547 }
ec44a35c 3548
3a45bb20 3549 btrfs_end_transaction(trans);
ec44a35c
CM
3550 }
3551
3552 /* step two, relocate all the chunks */
3553 path = btrfs_alloc_path();
17e9f796
MF
3554 if (!path) {
3555 ret = -ENOMEM;
3556 goto error;
3557 }
19a39dce
ID
3558
3559 /* zero out stat counters */
3560 spin_lock(&fs_info->balance_lock);
3561 memset(&bctl->stat, 0, sizeof(bctl->stat));
3562 spin_unlock(&fs_info->balance_lock);
3563again:
7d824b6f 3564 if (!counting) {
12907fc7
DS
3565 /*
3566 * The single value limit and min/max limits use the same bytes
3567 * in the
3568 */
7d824b6f
DS
3569 bctl->data.limit = limit_data;
3570 bctl->meta.limit = limit_meta;
3571 bctl->sys.limit = limit_sys;
3572 }
ec44a35c
CM
3573 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3574 key.offset = (u64)-1;
3575 key.type = BTRFS_CHUNK_ITEM_KEY;
3576
d397712b 3577 while (1) {
19a39dce 3578 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3579 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3580 ret = -ECANCELED;
3581 goto error;
3582 }
3583
67c5e7d4 3584 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3585 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3586 if (ret < 0) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3588 goto error;
67c5e7d4 3589 }
ec44a35c
CM
3590
3591 /*
3592 * this shouldn't happen, it means the last relocate
3593 * failed
3594 */
3595 if (ret == 0)
c9e9f97b 3596 BUG(); /* FIXME break ? */
ec44a35c
CM
3597
3598 ret = btrfs_previous_item(chunk_root, path, 0,
3599 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3600 if (ret) {
67c5e7d4 3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3602 ret = 0;
ec44a35c 3603 break;
c9e9f97b 3604 }
7d9eb12c 3605
f43ffb60
ID
3606 leaf = path->nodes[0];
3607 slot = path->slots[0];
3608 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3609
67c5e7d4
FM
3610 if (found_key.objectid != key.objectid) {
3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3612 break;
67c5e7d4 3613 }
7d9eb12c 3614
f43ffb60 3615 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3616 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3617
19a39dce
ID
3618 if (!counting) {
3619 spin_lock(&fs_info->balance_lock);
3620 bctl->stat.considered++;
3621 spin_unlock(&fs_info->balance_lock);
3622 }
3623
2ff7e61e 3624 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3625 found_key.offset);
2c9fe835 3626
b3b4aa74 3627 btrfs_release_path(path);
67c5e7d4
FM
3628 if (!ret) {
3629 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3630 goto loop;
67c5e7d4 3631 }
f43ffb60 3632
19a39dce 3633 if (counting) {
67c5e7d4 3634 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3635 spin_lock(&fs_info->balance_lock);
3636 bctl->stat.expected++;
3637 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3638
3639 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3640 count_data++;
3641 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3642 count_sys++;
3643 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3644 count_meta++;
3645
3646 goto loop;
3647 }
3648
3649 /*
3650 * Apply limit_min filter, no need to check if the LIMITS
3651 * filter is used, limit_min is 0 by default
3652 */
3653 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654 count_data < bctl->data.limit_min)
3655 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3656 count_meta < bctl->meta.limit_min)
3657 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3658 count_sys < bctl->sys.limit_min)) {
3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3660 goto loop;
3661 }
3662
cf25ce51
LB
3663 ASSERT(fs_info->data_sinfo);
3664 spin_lock(&fs_info->data_sinfo->lock);
3665 bytes_used = fs_info->data_sinfo->bytes_used;
3666 spin_unlock(&fs_info->data_sinfo->lock);
3667
3668 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3669 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3670 trans = btrfs_start_transaction(chunk_root, 0);
3671 if (IS_ERR(trans)) {
3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673 ret = PTR_ERR(trans);
3674 goto error;
3675 }
3676
2ff7e61e 3677 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3678 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3679 btrfs_end_transaction(trans);
2c9fe835
ZL
3680 if (ret < 0) {
3681 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3682 goto error;
3683 }
2c9fe835
ZL
3684 chunk_reserved = 1;
3685 }
3686
5b4aacef 3687 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3688 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3689 if (ret && ret != -ENOSPC)
3690 goto error;
19a39dce 3691 if (ret == -ENOSPC) {
c9e9f97b 3692 enospc_errors++;
19a39dce
ID
3693 } else {
3694 spin_lock(&fs_info->balance_lock);
3695 bctl->stat.completed++;
3696 spin_unlock(&fs_info->balance_lock);
3697 }
f43ffb60 3698loop:
795a3321
ID
3699 if (found_key.offset == 0)
3700 break;
ba1bf481 3701 key.offset = found_key.offset - 1;
ec44a35c 3702 }
c9e9f97b 3703
19a39dce
ID
3704 if (counting) {
3705 btrfs_release_path(path);
3706 counting = false;
3707 goto again;
3708 }
ec44a35c
CM
3709error:
3710 btrfs_free_path(path);
c9e9f97b 3711 if (enospc_errors) {
efe120a0 3712 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3713 enospc_errors);
c9e9f97b
ID
3714 if (!ret)
3715 ret = -ENOSPC;
3716 }
3717
ec44a35c
CM
3718 return ret;
3719}
3720
0c460c0d
ID
3721/**
3722 * alloc_profile_is_valid - see if a given profile is valid and reduced
3723 * @flags: profile to validate
3724 * @extended: if true @flags is treated as an extended profile
3725 */
3726static int alloc_profile_is_valid(u64 flags, int extended)
3727{
3728 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3729 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3730
3731 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3732
3733 /* 1) check that all other bits are zeroed */
3734 if (flags & ~mask)
3735 return 0;
3736
3737 /* 2) see if profile is reduced */
3738 if (flags == 0)
3739 return !extended; /* "0" is valid for usual profiles */
3740
3741 /* true if exactly one bit set */
3742 return (flags & (flags - 1)) == 0;
3743}
3744
837d5b6e
ID
3745static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3746{
a7e99c69
ID
3747 /* cancel requested || normal exit path */
3748 return atomic_read(&fs_info->balance_cancel_req) ||
3749 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3750 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3751}
3752
c9e9f97b
ID
3753static void __cancel_balance(struct btrfs_fs_info *fs_info)
3754{
0940ebf6
ID
3755 int ret;
3756
c9e9f97b 3757 unset_balance_control(fs_info);
6bccf3ab 3758 ret = del_balance_item(fs_info);
0f788c58 3759 if (ret)
34d97007 3760 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3761
171938e5 3762 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3763}
3764
bdcd3c97
AM
3765/* Non-zero return value signifies invalidity */
3766static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3767 u64 allowed)
3768{
3769 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3770 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3771 (bctl_arg->target & ~allowed)));
3772}
3773
c9e9f97b
ID
3774/*
3775 * Should be called with both balance and volume mutexes held
3776 */
3777int btrfs_balance(struct btrfs_balance_control *bctl,
3778 struct btrfs_ioctl_balance_args *bargs)
3779{
3780 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3781 u64 meta_target, data_target;
f43ffb60 3782 u64 allowed;
e4837f8f 3783 int mixed = 0;
c9e9f97b 3784 int ret;
8dabb742 3785 u64 num_devices;
de98ced9 3786 unsigned seq;
c9e9f97b 3787
837d5b6e 3788 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3789 atomic_read(&fs_info->balance_pause_req) ||
3790 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3791 ret = -EINVAL;
3792 goto out;
3793 }
3794
e4837f8f
ID
3795 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3796 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3797 mixed = 1;
3798
f43ffb60
ID
3799 /*
3800 * In case of mixed groups both data and meta should be picked,
3801 * and identical options should be given for both of them.
3802 */
e4837f8f
ID
3803 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3804 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3805 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3806 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3807 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3808 btrfs_err(fs_info,
3809 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3810 ret = -EINVAL;
3811 goto out;
3812 }
3813 }
3814
8dabb742 3815 num_devices = fs_info->fs_devices->num_devices;
73beece9 3816 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3817 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3818 BUG_ON(num_devices < 1);
3819 num_devices--;
3820 }
73beece9 3821 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3822 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3823 if (num_devices > 1)
e4d8ec0f 3824 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3825 if (num_devices > 2)
3826 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3827 if (num_devices > 3)
3828 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3829 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3830 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3831 btrfs_err(fs_info,
3832 "unable to start balance with target data profile %llu",
3833 bctl->data.target);
e4d8ec0f
ID
3834 ret = -EINVAL;
3835 goto out;
3836 }
bdcd3c97 3837 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3838 btrfs_err(fs_info,
5d163e0e
JM
3839 "unable to start balance with target metadata profile %llu",
3840 bctl->meta.target);
e4d8ec0f
ID
3841 ret = -EINVAL;
3842 goto out;
3843 }
bdcd3c97 3844 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3845 btrfs_err(fs_info,
5d163e0e
JM
3846 "unable to start balance with target system profile %llu",
3847 bctl->sys.target);
e4d8ec0f
ID
3848 ret = -EINVAL;
3849 goto out;
3850 }
3851
e4d8ec0f
ID
3852 /* allow to reduce meta or sys integrity only if force set */
3853 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3854 BTRFS_BLOCK_GROUP_RAID10 |
3855 BTRFS_BLOCK_GROUP_RAID5 |
3856 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3857 do {
3858 seq = read_seqbegin(&fs_info->profiles_lock);
3859
3860 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3861 (fs_info->avail_system_alloc_bits & allowed) &&
3862 !(bctl->sys.target & allowed)) ||
3863 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3864 (fs_info->avail_metadata_alloc_bits & allowed) &&
3865 !(bctl->meta.target & allowed))) {
3866 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3867 btrfs_info(fs_info,
3868 "force reducing metadata integrity");
de98ced9 3869 } else {
5d163e0e
JM
3870 btrfs_err(fs_info,
3871 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3872 ret = -EINVAL;
3873 goto out;
3874 }
e4d8ec0f 3875 }
de98ced9 3876 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3877
14506127
AB
3878 /* if we're not converting, the target field is uninitialized */
3879 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3880 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3881 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3882 bctl->data.target : fs_info->avail_data_alloc_bits;
3883 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3884 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3885 btrfs_warn(fs_info,
5d163e0e 3886 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3887 meta_target, data_target);
ee592d07
ST
3888 }
3889
6bccf3ab 3890 ret = insert_balance_item(fs_info, bctl);
59641015 3891 if (ret && ret != -EEXIST)
0940ebf6
ID
3892 goto out;
3893
59641015
ID
3894 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3895 BUG_ON(ret == -EEXIST);
3896 set_balance_control(bctl);
3897 } else {
3898 BUG_ON(ret != -EEXIST);
3899 spin_lock(&fs_info->balance_lock);
3900 update_balance_args(bctl);
3901 spin_unlock(&fs_info->balance_lock);
3902 }
c9e9f97b 3903
837d5b6e 3904 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3905 mutex_unlock(&fs_info->balance_mutex);
3906
3907 ret = __btrfs_balance(fs_info);
3908
3909 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3910 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3911
3912 if (bargs) {
3913 memset(bargs, 0, sizeof(*bargs));
19a39dce 3914 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3915 }
3916
3a01aa7a
ID
3917 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3918 balance_need_close(fs_info)) {
3919 __cancel_balance(fs_info);
3920 }
3921
837d5b6e 3922 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3923
3924 return ret;
3925out:
59641015
ID
3926 if (bctl->flags & BTRFS_BALANCE_RESUME)
3927 __cancel_balance(fs_info);
ed0fb78f 3928 else {
59641015 3929 kfree(bctl);
171938e5 3930 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3931 }
59641015
ID
3932 return ret;
3933}
3934
3935static int balance_kthread(void *data)
3936{
2b6ba629 3937 struct btrfs_fs_info *fs_info = data;
9555c6c1 3938 int ret = 0;
59641015
ID
3939
3940 mutex_lock(&fs_info->volume_mutex);
3941 mutex_lock(&fs_info->balance_mutex);
3942
2b6ba629 3943 if (fs_info->balance_ctl) {
efe120a0 3944 btrfs_info(fs_info, "continuing balance");
2b6ba629 3945 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3946 }
59641015
ID
3947
3948 mutex_unlock(&fs_info->balance_mutex);
3949 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3950
59641015
ID
3951 return ret;
3952}
3953
2b6ba629
ID
3954int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3955{
3956 struct task_struct *tsk;
3957
3958 spin_lock(&fs_info->balance_lock);
3959 if (!fs_info->balance_ctl) {
3960 spin_unlock(&fs_info->balance_lock);
3961 return 0;
3962 }
3963 spin_unlock(&fs_info->balance_lock);
3964
3cdde224 3965 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3966 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3967 return 0;
3968 }
3969
3970 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3971 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3972}
3973
68310a5e 3974int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3975{
59641015
ID
3976 struct btrfs_balance_control *bctl;
3977 struct btrfs_balance_item *item;
3978 struct btrfs_disk_balance_args disk_bargs;
3979 struct btrfs_path *path;
3980 struct extent_buffer *leaf;
3981 struct btrfs_key key;
3982 int ret;
3983
3984 path = btrfs_alloc_path();
3985 if (!path)
3986 return -ENOMEM;
3987
59641015 3988 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3989 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3990 key.offset = 0;
3991
68310a5e 3992 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3993 if (ret < 0)
68310a5e 3994 goto out;
59641015
ID
3995 if (ret > 0) { /* ret = -ENOENT; */
3996 ret = 0;
68310a5e
ID
3997 goto out;
3998 }
3999
4000 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4001 if (!bctl) {
4002 ret = -ENOMEM;
4003 goto out;
59641015
ID
4004 }
4005
4006 leaf = path->nodes[0];
4007 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4008
68310a5e
ID
4009 bctl->fs_info = fs_info;
4010 bctl->flags = btrfs_balance_flags(leaf, item);
4011 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4012
4013 btrfs_balance_data(leaf, item, &disk_bargs);
4014 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4015 btrfs_balance_meta(leaf, item, &disk_bargs);
4016 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4017 btrfs_balance_sys(leaf, item, &disk_bargs);
4018 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4019
171938e5 4020 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4021
68310a5e
ID
4022 mutex_lock(&fs_info->volume_mutex);
4023 mutex_lock(&fs_info->balance_mutex);
59641015 4024
68310a5e
ID
4025 set_balance_control(bctl);
4026
4027 mutex_unlock(&fs_info->balance_mutex);
4028 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4029out:
4030 btrfs_free_path(path);
ec44a35c
CM
4031 return ret;
4032}
4033
837d5b6e
ID
4034int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4035{
4036 int ret = 0;
4037
4038 mutex_lock(&fs_info->balance_mutex);
4039 if (!fs_info->balance_ctl) {
4040 mutex_unlock(&fs_info->balance_mutex);
4041 return -ENOTCONN;
4042 }
4043
4044 if (atomic_read(&fs_info->balance_running)) {
4045 atomic_inc(&fs_info->balance_pause_req);
4046 mutex_unlock(&fs_info->balance_mutex);
4047
4048 wait_event(fs_info->balance_wait_q,
4049 atomic_read(&fs_info->balance_running) == 0);
4050
4051 mutex_lock(&fs_info->balance_mutex);
4052 /* we are good with balance_ctl ripped off from under us */
4053 BUG_ON(atomic_read(&fs_info->balance_running));
4054 atomic_dec(&fs_info->balance_pause_req);
4055 } else {
4056 ret = -ENOTCONN;
4057 }
4058
4059 mutex_unlock(&fs_info->balance_mutex);
4060 return ret;
4061}
4062
a7e99c69
ID
4063int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4064{
bc98a42c 4065 if (sb_rdonly(fs_info->sb))
e649e587
ID
4066 return -EROFS;
4067
a7e99c69
ID
4068 mutex_lock(&fs_info->balance_mutex);
4069 if (!fs_info->balance_ctl) {
4070 mutex_unlock(&fs_info->balance_mutex);
4071 return -ENOTCONN;
4072 }
4073
4074 atomic_inc(&fs_info->balance_cancel_req);
4075 /*
4076 * if we are running just wait and return, balance item is
4077 * deleted in btrfs_balance in this case
4078 */
4079 if (atomic_read(&fs_info->balance_running)) {
4080 mutex_unlock(&fs_info->balance_mutex);
4081 wait_event(fs_info->balance_wait_q,
4082 atomic_read(&fs_info->balance_running) == 0);
4083 mutex_lock(&fs_info->balance_mutex);
4084 } else {
4085 /* __cancel_balance needs volume_mutex */
4086 mutex_unlock(&fs_info->balance_mutex);
4087 mutex_lock(&fs_info->volume_mutex);
4088 mutex_lock(&fs_info->balance_mutex);
4089
4090 if (fs_info->balance_ctl)
4091 __cancel_balance(fs_info);
4092
4093 mutex_unlock(&fs_info->volume_mutex);
4094 }
4095
4096 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4097 atomic_dec(&fs_info->balance_cancel_req);
4098 mutex_unlock(&fs_info->balance_mutex);
4099 return 0;
4100}
4101
803b2f54
SB
4102static int btrfs_uuid_scan_kthread(void *data)
4103{
4104 struct btrfs_fs_info *fs_info = data;
4105 struct btrfs_root *root = fs_info->tree_root;
4106 struct btrfs_key key;
803b2f54
SB
4107 struct btrfs_path *path = NULL;
4108 int ret = 0;
4109 struct extent_buffer *eb;
4110 int slot;
4111 struct btrfs_root_item root_item;
4112 u32 item_size;
f45388f3 4113 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4114
4115 path = btrfs_alloc_path();
4116 if (!path) {
4117 ret = -ENOMEM;
4118 goto out;
4119 }
4120
4121 key.objectid = 0;
4122 key.type = BTRFS_ROOT_ITEM_KEY;
4123 key.offset = 0;
4124
803b2f54 4125 while (1) {
6174d3cb 4126 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4127 if (ret) {
4128 if (ret > 0)
4129 ret = 0;
4130 break;
4131 }
4132
4133 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4134 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4135 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4136 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4137 goto skip;
4138
4139 eb = path->nodes[0];
4140 slot = path->slots[0];
4141 item_size = btrfs_item_size_nr(eb, slot);
4142 if (item_size < sizeof(root_item))
4143 goto skip;
4144
803b2f54
SB
4145 read_extent_buffer(eb, &root_item,
4146 btrfs_item_ptr_offset(eb, slot),
4147 (int)sizeof(root_item));
4148 if (btrfs_root_refs(&root_item) == 0)
4149 goto skip;
f45388f3
FDBM
4150
4151 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4152 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4153 if (trans)
4154 goto update_tree;
4155
4156 btrfs_release_path(path);
803b2f54
SB
4157 /*
4158 * 1 - subvol uuid item
4159 * 1 - received_subvol uuid item
4160 */
4161 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4162 if (IS_ERR(trans)) {
4163 ret = PTR_ERR(trans);
4164 break;
4165 }
f45388f3
FDBM
4166 continue;
4167 } else {
4168 goto skip;
4169 }
4170update_tree:
4171 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4172 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4173 root_item.uuid,
4174 BTRFS_UUID_KEY_SUBVOL,
4175 key.objectid);
4176 if (ret < 0) {
efe120a0 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4178 ret);
803b2f54
SB
4179 break;
4180 }
4181 }
4182
4183 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4184 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4185 root_item.received_uuid,
4186 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4187 key.objectid);
4188 if (ret < 0) {
efe120a0 4189 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4190 ret);
803b2f54
SB
4191 break;
4192 }
4193 }
4194
f45388f3 4195skip:
803b2f54 4196 if (trans) {
3a45bb20 4197 ret = btrfs_end_transaction(trans);
f45388f3 4198 trans = NULL;
803b2f54
SB
4199 if (ret)
4200 break;
4201 }
4202
803b2f54
SB
4203 btrfs_release_path(path);
4204 if (key.offset < (u64)-1) {
4205 key.offset++;
4206 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4207 key.offset = 0;
4208 key.type = BTRFS_ROOT_ITEM_KEY;
4209 } else if (key.objectid < (u64)-1) {
4210 key.offset = 0;
4211 key.type = BTRFS_ROOT_ITEM_KEY;
4212 key.objectid++;
4213 } else {
4214 break;
4215 }
4216 cond_resched();
4217 }
4218
4219out:
4220 btrfs_free_path(path);
f45388f3 4221 if (trans && !IS_ERR(trans))
3a45bb20 4222 btrfs_end_transaction(trans);
803b2f54 4223 if (ret)
efe120a0 4224 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4225 else
afcdd129 4226 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4227 up(&fs_info->uuid_tree_rescan_sem);
4228 return 0;
4229}
4230
70f80175
SB
4231/*
4232 * Callback for btrfs_uuid_tree_iterate().
4233 * returns:
4234 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4235 * < 0 if an error occurred.
70f80175
SB
4236 * > 0 if the check failed, which means the caller shall remove the entry.
4237 */
4238static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4239 u8 *uuid, u8 type, u64 subid)
4240{
4241 struct btrfs_key key;
4242 int ret = 0;
4243 struct btrfs_root *subvol_root;
4244
4245 if (type != BTRFS_UUID_KEY_SUBVOL &&
4246 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4247 goto out;
4248
4249 key.objectid = subid;
4250 key.type = BTRFS_ROOT_ITEM_KEY;
4251 key.offset = (u64)-1;
4252 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4253 if (IS_ERR(subvol_root)) {
4254 ret = PTR_ERR(subvol_root);
4255 if (ret == -ENOENT)
4256 ret = 1;
4257 goto out;
4258 }
4259
4260 switch (type) {
4261 case BTRFS_UUID_KEY_SUBVOL:
4262 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4263 ret = 1;
4264 break;
4265 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4266 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4267 BTRFS_UUID_SIZE))
4268 ret = 1;
4269 break;
4270 }
4271
4272out:
4273 return ret;
4274}
4275
4276static int btrfs_uuid_rescan_kthread(void *data)
4277{
4278 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4279 int ret;
4280
4281 /*
4282 * 1st step is to iterate through the existing UUID tree and
4283 * to delete all entries that contain outdated data.
4284 * 2nd step is to add all missing entries to the UUID tree.
4285 */
4286 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4287 if (ret < 0) {
efe120a0 4288 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4289 up(&fs_info->uuid_tree_rescan_sem);
4290 return ret;
4291 }
4292 return btrfs_uuid_scan_kthread(data);
4293}
4294
f7a81ea4
SB
4295int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4296{
4297 struct btrfs_trans_handle *trans;
4298 struct btrfs_root *tree_root = fs_info->tree_root;
4299 struct btrfs_root *uuid_root;
803b2f54
SB
4300 struct task_struct *task;
4301 int ret;
f7a81ea4
SB
4302
4303 /*
4304 * 1 - root node
4305 * 1 - root item
4306 */
4307 trans = btrfs_start_transaction(tree_root, 2);
4308 if (IS_ERR(trans))
4309 return PTR_ERR(trans);
4310
4311 uuid_root = btrfs_create_tree(trans, fs_info,
4312 BTRFS_UUID_TREE_OBJECTID);
4313 if (IS_ERR(uuid_root)) {
6d13f549 4314 ret = PTR_ERR(uuid_root);
66642832 4315 btrfs_abort_transaction(trans, ret);
3a45bb20 4316 btrfs_end_transaction(trans);
6d13f549 4317 return ret;
f7a81ea4
SB
4318 }
4319
4320 fs_info->uuid_root = uuid_root;
4321
3a45bb20 4322 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4323 if (ret)
4324 return ret;
4325
4326 down(&fs_info->uuid_tree_rescan_sem);
4327 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4328 if (IS_ERR(task)) {
70f80175 4329 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4330 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4331 up(&fs_info->uuid_tree_rescan_sem);
4332 return PTR_ERR(task);
4333 }
4334
4335 return 0;
f7a81ea4 4336}
803b2f54 4337
70f80175
SB
4338int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4339{
4340 struct task_struct *task;
4341
4342 down(&fs_info->uuid_tree_rescan_sem);
4343 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4344 if (IS_ERR(task)) {
4345 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4346 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4347 up(&fs_info->uuid_tree_rescan_sem);
4348 return PTR_ERR(task);
4349 }
4350
4351 return 0;
4352}
4353
8f18cf13
CM
4354/*
4355 * shrinking a device means finding all of the device extents past
4356 * the new size, and then following the back refs to the chunks.
4357 * The chunk relocation code actually frees the device extent
4358 */
4359int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4360{
0b246afa
JM
4361 struct btrfs_fs_info *fs_info = device->fs_info;
4362 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4363 struct btrfs_trans_handle *trans;
8f18cf13
CM
4364 struct btrfs_dev_extent *dev_extent = NULL;
4365 struct btrfs_path *path;
4366 u64 length;
8f18cf13
CM
4367 u64 chunk_offset;
4368 int ret;
4369 int slot;
ba1bf481
JB
4370 int failed = 0;
4371 bool retried = false;
53e489bc 4372 bool checked_pending_chunks = false;
8f18cf13
CM
4373 struct extent_buffer *l;
4374 struct btrfs_key key;
0b246afa 4375 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4376 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4377 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4378 u64 diff;
4379
4380 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4381 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4382
63a212ab
SB
4383 if (device->is_tgtdev_for_dev_replace)
4384 return -EINVAL;
4385
8f18cf13
CM
4386 path = btrfs_alloc_path();
4387 if (!path)
4388 return -ENOMEM;
4389
e4058b54 4390 path->reada = READA_FORWARD;
8f18cf13 4391
34441361 4392 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4393
7cc8e58d 4394 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4395 if (device->writeable) {
2b82032c 4396 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4397 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4398 }
34441361 4399 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4400
ba1bf481 4401again:
8f18cf13
CM
4402 key.objectid = device->devid;
4403 key.offset = (u64)-1;
4404 key.type = BTRFS_DEV_EXTENT_KEY;
4405
213e64da 4406 do {
0b246afa 4407 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4409 if (ret < 0) {
0b246afa 4410 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4411 goto done;
67c5e7d4 4412 }
8f18cf13
CM
4413
4414 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4415 if (ret)
0b246afa 4416 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4417 if (ret < 0)
4418 goto done;
4419 if (ret) {
4420 ret = 0;
b3b4aa74 4421 btrfs_release_path(path);
bf1fb512 4422 break;
8f18cf13
CM
4423 }
4424
4425 l = path->nodes[0];
4426 slot = path->slots[0];
4427 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4428
ba1bf481 4429 if (key.objectid != device->devid) {
0b246afa 4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4431 btrfs_release_path(path);
bf1fb512 4432 break;
ba1bf481 4433 }
8f18cf13
CM
4434
4435 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4436 length = btrfs_dev_extent_length(l, dev_extent);
4437
ba1bf481 4438 if (key.offset + length <= new_size) {
0b246afa 4439 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4440 btrfs_release_path(path);
d6397bae 4441 break;
ba1bf481 4442 }
8f18cf13 4443
8f18cf13 4444 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4445 btrfs_release_path(path);
8f18cf13 4446
0b246afa
JM
4447 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4448 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4449 if (ret && ret != -ENOSPC)
8f18cf13 4450 goto done;
ba1bf481
JB
4451 if (ret == -ENOSPC)
4452 failed++;
213e64da 4453 } while (key.offset-- > 0);
ba1bf481
JB
4454
4455 if (failed && !retried) {
4456 failed = 0;
4457 retried = true;
4458 goto again;
4459 } else if (failed && retried) {
4460 ret = -ENOSPC;
ba1bf481 4461 goto done;
8f18cf13
CM
4462 }
4463
d6397bae 4464 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4465 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4466 if (IS_ERR(trans)) {
4467 ret = PTR_ERR(trans);
4468 goto done;
4469 }
4470
34441361 4471 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4472
4473 /*
4474 * We checked in the above loop all device extents that were already in
4475 * the device tree. However before we have updated the device's
4476 * total_bytes to the new size, we might have had chunk allocations that
4477 * have not complete yet (new block groups attached to transaction
4478 * handles), and therefore their device extents were not yet in the
4479 * device tree and we missed them in the loop above. So if we have any
4480 * pending chunk using a device extent that overlaps the device range
4481 * that we can not use anymore, commit the current transaction and
4482 * repeat the search on the device tree - this way we guarantee we will
4483 * not have chunks using device extents that end beyond 'new_size'.
4484 */
4485 if (!checked_pending_chunks) {
4486 u64 start = new_size;
4487 u64 len = old_size - new_size;
4488
499f377f
JM
4489 if (contains_pending_extent(trans->transaction, device,
4490 &start, len)) {
34441361 4491 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4492 checked_pending_chunks = true;
4493 failed = 0;
4494 retried = false;
3a45bb20 4495 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4496 if (ret)
4497 goto done;
4498 goto again;
4499 }
4500 }
4501
7cc8e58d 4502 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4503 if (list_empty(&device->resized_list))
4504 list_add_tail(&device->resized_list,
0b246afa 4505 &fs_info->fs_devices->resized_devices);
d6397bae 4506
d6397bae 4507 WARN_ON(diff > old_total);
7dfb8be1
NB
4508 btrfs_set_super_total_bytes(super_copy,
4509 round_down(old_total - diff, fs_info->sectorsize));
34441361 4510 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4511
4512 /* Now btrfs_update_device() will change the on-disk size. */
4513 ret = btrfs_update_device(trans, device);
3a45bb20 4514 btrfs_end_transaction(trans);
8f18cf13
CM
4515done:
4516 btrfs_free_path(path);
53e489bc 4517 if (ret) {
34441361 4518 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4519 btrfs_device_set_total_bytes(device, old_size);
4520 if (device->writeable)
4521 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4522 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4523 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4524 }
8f18cf13
CM
4525 return ret;
4526}
4527
2ff7e61e 4528static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4529 struct btrfs_key *key,
4530 struct btrfs_chunk *chunk, int item_size)
4531{
0b246afa 4532 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4533 struct btrfs_disk_key disk_key;
4534 u32 array_size;
4535 u8 *ptr;
4536
34441361 4537 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4538 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4539 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4540 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4541 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4542 return -EFBIG;
fe48a5c0 4543 }
0b86a832
CM
4544
4545 ptr = super_copy->sys_chunk_array + array_size;
4546 btrfs_cpu_key_to_disk(&disk_key, key);
4547 memcpy(ptr, &disk_key, sizeof(disk_key));
4548 ptr += sizeof(disk_key);
4549 memcpy(ptr, chunk, item_size);
4550 item_size += sizeof(disk_key);
4551 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4552 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4553
0b86a832
CM
4554 return 0;
4555}
4556
73c5de00
AJ
4557/*
4558 * sort the devices in descending order by max_avail, total_avail
4559 */
4560static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4561{
73c5de00
AJ
4562 const struct btrfs_device_info *di_a = a;
4563 const struct btrfs_device_info *di_b = b;
9b3f68b9 4564
73c5de00 4565 if (di_a->max_avail > di_b->max_avail)
b2117a39 4566 return -1;
73c5de00 4567 if (di_a->max_avail < di_b->max_avail)
b2117a39 4568 return 1;
73c5de00
AJ
4569 if (di_a->total_avail > di_b->total_avail)
4570 return -1;
4571 if (di_a->total_avail < di_b->total_avail)
4572 return 1;
4573 return 0;
b2117a39 4574}
0b86a832 4575
53b381b3
DW
4576static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4577{
ffe2d203 4578 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4579 return;
4580
ceda0864 4581 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4582}
4583
da17066c 4584#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4585 - sizeof(struct btrfs_chunk)) \
4586 / sizeof(struct btrfs_stripe) + 1)
4587
4588#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4589 - 2 * sizeof(struct btrfs_disk_key) \
4590 - 2 * sizeof(struct btrfs_chunk)) \
4591 / sizeof(struct btrfs_stripe) + 1)
4592
73c5de00 4593static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4594 u64 start, u64 type)
b2117a39 4595{
2ff7e61e 4596 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4597 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4598 struct btrfs_device *device;
73c5de00
AJ
4599 struct map_lookup *map = NULL;
4600 struct extent_map_tree *em_tree;
4601 struct extent_map *em;
4602 struct btrfs_device_info *devices_info = NULL;
4603 u64 total_avail;
4604 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4605 int data_stripes; /* number of stripes that count for
4606 block group size */
73c5de00
AJ
4607 int sub_stripes; /* sub_stripes info for map */
4608 int dev_stripes; /* stripes per dev */
4609 int devs_max; /* max devs to use */
4610 int devs_min; /* min devs needed */
4611 int devs_increment; /* ndevs has to be a multiple of this */
4612 int ncopies; /* how many copies to data has */
4613 int ret;
4614 u64 max_stripe_size;
4615 u64 max_chunk_size;
4616 u64 stripe_size;
4617 u64 num_bytes;
4618 int ndevs;
4619 int i;
4620 int j;
31e50229 4621 int index;
593060d7 4622
0c460c0d 4623 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4624
73c5de00
AJ
4625 if (list_empty(&fs_devices->alloc_list))
4626 return -ENOSPC;
b2117a39 4627
31e50229 4628 index = __get_raid_index(type);
73c5de00 4629
31e50229
LB
4630 sub_stripes = btrfs_raid_array[index].sub_stripes;
4631 dev_stripes = btrfs_raid_array[index].dev_stripes;
4632 devs_max = btrfs_raid_array[index].devs_max;
4633 devs_min = btrfs_raid_array[index].devs_min;
4634 devs_increment = btrfs_raid_array[index].devs_increment;
4635 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4636
9b3f68b9 4637 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4638 max_stripe_size = SZ_1G;
73c5de00 4639 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4640 if (!devs_max)
4641 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4642 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4643 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4644 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4645 max_stripe_size = SZ_1G;
1100373f 4646 else
ee22184b 4647 max_stripe_size = SZ_256M;
73c5de00 4648 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4649 if (!devs_max)
4650 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4651 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4652 max_stripe_size = SZ_32M;
73c5de00 4653 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4654 if (!devs_max)
4655 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4656 } else {
351fd353 4657 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4658 type);
4659 BUG_ON(1);
9b3f68b9
CM
4660 }
4661
2b82032c
YZ
4662 /* we don't want a chunk larger than 10% of writeable space */
4663 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4664 max_chunk_size);
9b3f68b9 4665
31e818fe 4666 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4667 GFP_NOFS);
4668 if (!devices_info)
4669 return -ENOMEM;
0cad8a11 4670
9f680ce0 4671 /*
73c5de00
AJ
4672 * in the first pass through the devices list, we gather information
4673 * about the available holes on each device.
9f680ce0 4674 */
73c5de00 4675 ndevs = 0;
ebcc9301 4676 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4677 u64 max_avail;
4678 u64 dev_offset;
b2117a39 4679
73c5de00 4680 if (!device->writeable) {
31b1a2bd 4681 WARN(1, KERN_ERR
efe120a0 4682 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4683 continue;
4684 }
b2117a39 4685
63a212ab
SB
4686 if (!device->in_fs_metadata ||
4687 device->is_tgtdev_for_dev_replace)
73c5de00 4688 continue;
b2117a39 4689
73c5de00
AJ
4690 if (device->total_bytes > device->bytes_used)
4691 total_avail = device->total_bytes - device->bytes_used;
4692 else
4693 total_avail = 0;
38c01b96 4694
4695 /* If there is no space on this device, skip it. */
4696 if (total_avail == 0)
4697 continue;
b2117a39 4698
6df9a95e 4699 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4700 max_stripe_size * dev_stripes,
4701 &dev_offset, &max_avail);
4702 if (ret && ret != -ENOSPC)
4703 goto error;
b2117a39 4704
73c5de00
AJ
4705 if (ret == 0)
4706 max_avail = max_stripe_size * dev_stripes;
b2117a39 4707
73c5de00
AJ
4708 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4709 continue;
b2117a39 4710
063d006f
ES
4711 if (ndevs == fs_devices->rw_devices) {
4712 WARN(1, "%s: found more than %llu devices\n",
4713 __func__, fs_devices->rw_devices);
4714 break;
4715 }
73c5de00
AJ
4716 devices_info[ndevs].dev_offset = dev_offset;
4717 devices_info[ndevs].max_avail = max_avail;
4718 devices_info[ndevs].total_avail = total_avail;
4719 devices_info[ndevs].dev = device;
4720 ++ndevs;
4721 }
b2117a39 4722
73c5de00
AJ
4723 /*
4724 * now sort the devices by hole size / available space
4725 */
4726 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4727 btrfs_cmp_device_info, NULL);
b2117a39 4728
73c5de00 4729 /* round down to number of usable stripes */
e5600fd6 4730 ndevs = round_down(ndevs, devs_increment);
b2117a39 4731
73c5de00
AJ
4732 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4733 ret = -ENOSPC;
4734 goto error;
b2117a39 4735 }
9f680ce0 4736
f148ef4d
NB
4737 ndevs = min(ndevs, devs_max);
4738
73c5de00
AJ
4739 /*
4740 * the primary goal is to maximize the number of stripes, so use as many
4741 * devices as possible, even if the stripes are not maximum sized.
4742 */
4743 stripe_size = devices_info[ndevs-1].max_avail;
4744 num_stripes = ndevs * dev_stripes;
b2117a39 4745
53b381b3
DW
4746 /*
4747 * this will have to be fixed for RAID1 and RAID10 over
4748 * more drives
4749 */
4750 data_stripes = num_stripes / ncopies;
4751
500ceed8 4752 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4753 data_stripes = num_stripes - 1;
500ceed8
NB
4754
4755 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4756 data_stripes = num_stripes - 2;
86db2578
CM
4757
4758 /*
4759 * Use the number of data stripes to figure out how big this chunk
4760 * is really going to be in terms of logical address space,
4761 * and compare that answer with the max chunk size
4762 */
4763 if (stripe_size * data_stripes > max_chunk_size) {
4764 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4765
4766 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4767
4768 /* bump the answer up to a 16MB boundary */
4769 stripe_size = (stripe_size + mask) & ~mask;
4770
4771 /* but don't go higher than the limits we found
4772 * while searching for free extents
4773 */
4774 if (stripe_size > devices_info[ndevs-1].max_avail)
4775 stripe_size = devices_info[ndevs-1].max_avail;
4776 }
4777
b8b93add 4778 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4779
4780 /* align to BTRFS_STRIPE_LEN */
500ceed8 4781 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4782
4783 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4784 if (!map) {
4785 ret = -ENOMEM;
4786 goto error;
4787 }
4788 map->num_stripes = num_stripes;
9b3f68b9 4789
73c5de00
AJ
4790 for (i = 0; i < ndevs; ++i) {
4791 for (j = 0; j < dev_stripes; ++j) {
4792 int s = i * dev_stripes + j;
4793 map->stripes[s].dev = devices_info[i].dev;
4794 map->stripes[s].physical = devices_info[i].dev_offset +
4795 j * stripe_size;
6324fbf3 4796 }
6324fbf3 4797 }
500ceed8
NB
4798 map->stripe_len = BTRFS_STRIPE_LEN;
4799 map->io_align = BTRFS_STRIPE_LEN;
4800 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4801 map->type = type;
2b82032c 4802 map->sub_stripes = sub_stripes;
0b86a832 4803
53b381b3 4804 num_bytes = stripe_size * data_stripes;
0b86a832 4805
6bccf3ab 4806 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4807
172ddd60 4808 em = alloc_extent_map();
2b82032c 4809 if (!em) {
298a8f9c 4810 kfree(map);
b2117a39
MX
4811 ret = -ENOMEM;
4812 goto error;
593060d7 4813 }
298a8f9c 4814 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4815 em->map_lookup = map;
2b82032c 4816 em->start = start;
73c5de00 4817 em->len = num_bytes;
2b82032c
YZ
4818 em->block_start = 0;
4819 em->block_len = em->len;
6df9a95e 4820 em->orig_block_len = stripe_size;
593060d7 4821
0b246afa 4822 em_tree = &info->mapping_tree.map_tree;
890871be 4823 write_lock(&em_tree->lock);
09a2a8f9 4824 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4825 if (ret) {
1efb72a3 4826 write_unlock(&em_tree->lock);
0f5d42b2 4827 free_extent_map(em);
1dd4602f 4828 goto error;
0f5d42b2 4829 }
0b86a832 4830
1efb72a3
NB
4831 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4832 refcount_inc(&em->refs);
4833 write_unlock(&em_tree->lock);
4834
0174484d 4835 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
6df9a95e
JB
4836 if (ret)
4837 goto error_del_extent;
2b82032c 4838
7cc8e58d
MX
4839 for (i = 0; i < map->num_stripes; i++) {
4840 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4841 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4842 }
43530c46 4843
a5ed45f8 4844 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4845
0f5d42b2 4846 free_extent_map(em);
0b246afa 4847 check_raid56_incompat_flag(info, type);
53b381b3 4848
b2117a39 4849 kfree(devices_info);
2b82032c 4850 return 0;
b2117a39 4851
6df9a95e 4852error_del_extent:
0f5d42b2
JB
4853 write_lock(&em_tree->lock);
4854 remove_extent_mapping(em_tree, em);
4855 write_unlock(&em_tree->lock);
4856
4857 /* One for our allocation */
4858 free_extent_map(em);
4859 /* One for the tree reference */
4860 free_extent_map(em);
495e64f4
FM
4861 /* One for the pending_chunks list reference */
4862 free_extent_map(em);
b2117a39 4863error:
b2117a39
MX
4864 kfree(devices_info);
4865 return ret;
2b82032c
YZ
4866}
4867
6df9a95e 4868int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4869 struct btrfs_fs_info *fs_info,
6df9a95e 4870 u64 chunk_offset, u64 chunk_size)
2b82032c 4871{
6bccf3ab
JM
4872 struct btrfs_root *extent_root = fs_info->extent_root;
4873 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4874 struct btrfs_key key;
2b82032c
YZ
4875 struct btrfs_device *device;
4876 struct btrfs_chunk *chunk;
4877 struct btrfs_stripe *stripe;
6df9a95e
JB
4878 struct extent_map *em;
4879 struct map_lookup *map;
4880 size_t item_size;
4881 u64 dev_offset;
4882 u64 stripe_size;
4883 int i = 0;
140e639f 4884 int ret = 0;
2b82032c 4885
592d92ee
LB
4886 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4887 if (IS_ERR(em))
4888 return PTR_ERR(em);
6df9a95e 4889
95617d69 4890 map = em->map_lookup;
6df9a95e
JB
4891 item_size = btrfs_chunk_item_size(map->num_stripes);
4892 stripe_size = em->orig_block_len;
4893
2b82032c 4894 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4895 if (!chunk) {
4896 ret = -ENOMEM;
4897 goto out;
4898 }
4899
50460e37
FM
4900 /*
4901 * Take the device list mutex to prevent races with the final phase of
4902 * a device replace operation that replaces the device object associated
4903 * with the map's stripes, because the device object's id can change
4904 * at any time during that final phase of the device replace operation
4905 * (dev-replace.c:btrfs_dev_replace_finishing()).
4906 */
0b246afa 4907 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4908 for (i = 0; i < map->num_stripes; i++) {
4909 device = map->stripes[i].dev;
4910 dev_offset = map->stripes[i].physical;
2b82032c 4911
0b86a832 4912 ret = btrfs_update_device(trans, device);
3acd3953 4913 if (ret)
50460e37 4914 break;
b5d9071c
NB
4915 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4916 dev_offset, stripe_size);
6df9a95e 4917 if (ret)
50460e37
FM
4918 break;
4919 }
4920 if (ret) {
0b246afa 4921 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4922 goto out;
2b82032c
YZ
4923 }
4924
2b82032c 4925 stripe = &chunk->stripe;
6df9a95e
JB
4926 for (i = 0; i < map->num_stripes; i++) {
4927 device = map->stripes[i].dev;
4928 dev_offset = map->stripes[i].physical;
0b86a832 4929
e17cade2
CM
4930 btrfs_set_stack_stripe_devid(stripe, device->devid);
4931 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4932 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4933 stripe++;
0b86a832 4934 }
0b246afa 4935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4936
2b82032c 4937 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4938 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4939 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4940 btrfs_set_stack_chunk_type(chunk, map->type);
4941 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4942 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4943 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4944 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4945 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4946
2b82032c
YZ
4947 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4948 key.type = BTRFS_CHUNK_ITEM_KEY;
4949 key.offset = chunk_offset;
0b86a832 4950
2b82032c 4951 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4952 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4953 /*
4954 * TODO: Cleanup of inserted chunk root in case of
4955 * failure.
4956 */
2ff7e61e 4957 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4958 }
1abe9b8a 4959
6df9a95e 4960out:
0b86a832 4961 kfree(chunk);
6df9a95e 4962 free_extent_map(em);
4ed1d16e 4963 return ret;
2b82032c 4964}
0b86a832 4965
2b82032c
YZ
4966/*
4967 * Chunk allocation falls into two parts. The first part does works
4968 * that make the new allocated chunk useable, but not do any operation
4969 * that modifies the chunk tree. The second part does the works that
4970 * require modifying the chunk tree. This division is important for the
4971 * bootstrap process of adding storage to a seed btrfs.
4972 */
4973int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4974 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
4975{
4976 u64 chunk_offset;
2b82032c 4977
0b246afa
JM
4978 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4979 chunk_offset = find_next_chunk(fs_info);
72b468c8 4980 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
4981}
4982
d397712b 4983static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 4984 struct btrfs_fs_info *fs_info)
2b82032c
YZ
4985{
4986 u64 chunk_offset;
4987 u64 sys_chunk_offset;
2b82032c 4988 u64 alloc_profile;
2b82032c
YZ
4989 int ret;
4990
6df9a95e 4991 chunk_offset = find_next_chunk(fs_info);
1b86826d 4992 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 4993 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
4994 if (ret)
4995 return ret;
2b82032c 4996
0b246afa 4997 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 4998 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 4999 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5000 return ret;
2b82032c
YZ
5001}
5002
d20983b4
MX
5003static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5004{
5005 int max_errors;
5006
5007 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5008 BTRFS_BLOCK_GROUP_RAID10 |
5009 BTRFS_BLOCK_GROUP_RAID5 |
5010 BTRFS_BLOCK_GROUP_DUP)) {
5011 max_errors = 1;
5012 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5013 max_errors = 2;
5014 } else {
5015 max_errors = 0;
005d6427 5016 }
2b82032c 5017
d20983b4 5018 return max_errors;
2b82032c
YZ
5019}
5020
2ff7e61e 5021int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5022{
5023 struct extent_map *em;
5024 struct map_lookup *map;
2b82032c 5025 int readonly = 0;
d20983b4 5026 int miss_ndevs = 0;
2b82032c
YZ
5027 int i;
5028
592d92ee
LB
5029 em = get_chunk_map(fs_info, chunk_offset, 1);
5030 if (IS_ERR(em))
2b82032c
YZ
5031 return 1;
5032
95617d69 5033 map = em->map_lookup;
2b82032c 5034 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5035 if (map->stripes[i].dev->missing) {
5036 miss_ndevs++;
5037 continue;
5038 }
5039
2b82032c
YZ
5040 if (!map->stripes[i].dev->writeable) {
5041 readonly = 1;
d20983b4 5042 goto end;
2b82032c
YZ
5043 }
5044 }
d20983b4
MX
5045
5046 /*
5047 * If the number of missing devices is larger than max errors,
5048 * we can not write the data into that chunk successfully, so
5049 * set it readonly.
5050 */
5051 if (miss_ndevs > btrfs_chunk_max_errors(map))
5052 readonly = 1;
5053end:
0b86a832 5054 free_extent_map(em);
2b82032c 5055 return readonly;
0b86a832
CM
5056}
5057
5058void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5059{
a8067e02 5060 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5061}
5062
5063void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5064{
5065 struct extent_map *em;
5066
d397712b 5067 while (1) {
890871be 5068 write_lock(&tree->map_tree.lock);
0b86a832
CM
5069 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5070 if (em)
5071 remove_extent_mapping(&tree->map_tree, em);
890871be 5072 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5073 if (!em)
5074 break;
0b86a832
CM
5075 /* once for us */
5076 free_extent_map(em);
5077 /* once for the tree */
5078 free_extent_map(em);
5079 }
5080}
5081
5d964051 5082int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5083{
5084 struct extent_map *em;
5085 struct map_lookup *map;
f188591e
CM
5086 int ret;
5087
592d92ee
LB
5088 em = get_chunk_map(fs_info, logical, len);
5089 if (IS_ERR(em))
5090 /*
5091 * We could return errors for these cases, but that could get
5092 * ugly and we'd probably do the same thing which is just not do
5093 * anything else and exit, so return 1 so the callers don't try
5094 * to use other copies.
5095 */
fb7669b5 5096 return 1;
fb7669b5 5097
95617d69 5098 map = em->map_lookup;
f188591e
CM
5099 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5100 ret = map->num_stripes;
321aecc6
CM
5101 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5102 ret = map->sub_stripes;
53b381b3
DW
5103 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5104 ret = 2;
5105 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5106 ret = 3;
f188591e
CM
5107 else
5108 ret = 1;
5109 free_extent_map(em);
ad6d620e 5110
73beece9 5111 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5112 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5113 fs_info->dev_replace.tgtdev)
ad6d620e 5114 ret++;
73beece9 5115 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5116
f188591e
CM
5117 return ret;
5118}
5119
2ff7e61e 5120unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5121 u64 logical)
5122{
5123 struct extent_map *em;
5124 struct map_lookup *map;
0b246afa 5125 unsigned long len = fs_info->sectorsize;
53b381b3 5126
592d92ee 5127 em = get_chunk_map(fs_info, logical, len);
53b381b3 5128
69f03f13
NB
5129 if (!WARN_ON(IS_ERR(em))) {
5130 map = em->map_lookup;
5131 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5132 len = map->stripe_len * nr_data_stripes(map);
5133 free_extent_map(em);
5134 }
53b381b3
DW
5135 return len;
5136}
5137
e4ff5fb5 5138int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5139{
5140 struct extent_map *em;
5141 struct map_lookup *map;
53b381b3
DW
5142 int ret = 0;
5143
592d92ee 5144 em = get_chunk_map(fs_info, logical, len);
53b381b3 5145
69f03f13
NB
5146 if(!WARN_ON(IS_ERR(em))) {
5147 map = em->map_lookup;
5148 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5149 ret = 1;
5150 free_extent_map(em);
5151 }
53b381b3
DW
5152 return ret;
5153}
5154
30d9861f
SB
5155static int find_live_mirror(struct btrfs_fs_info *fs_info,
5156 struct map_lookup *map, int first, int num,
5157 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5158{
5159 int i;
30d9861f
SB
5160 int tolerance;
5161 struct btrfs_device *srcdev;
5162
5163 if (dev_replace_is_ongoing &&
5164 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5165 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5166 srcdev = fs_info->dev_replace.srcdev;
5167 else
5168 srcdev = NULL;
5169
5170 /*
5171 * try to avoid the drive that is the source drive for a
5172 * dev-replace procedure, only choose it if no other non-missing
5173 * mirror is available
5174 */
5175 for (tolerance = 0; tolerance < 2; tolerance++) {
5176 if (map->stripes[optimal].dev->bdev &&
5177 (tolerance || map->stripes[optimal].dev != srcdev))
5178 return optimal;
5179 for (i = first; i < first + num; i++) {
5180 if (map->stripes[i].dev->bdev &&
5181 (tolerance || map->stripes[i].dev != srcdev))
5182 return i;
5183 }
dfe25020 5184 }
30d9861f 5185
dfe25020
CM
5186 /* we couldn't find one that doesn't fail. Just return something
5187 * and the io error handling code will clean up eventually
5188 */
5189 return optimal;
5190}
5191
53b381b3
DW
5192static inline int parity_smaller(u64 a, u64 b)
5193{
5194 return a > b;
5195}
5196
5197/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5198static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5199{
5200 struct btrfs_bio_stripe s;
5201 int i;
5202 u64 l;
5203 int again = 1;
5204
5205 while (again) {
5206 again = 0;
cc7539ed 5207 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5208 if (parity_smaller(bbio->raid_map[i],
5209 bbio->raid_map[i+1])) {
53b381b3 5210 s = bbio->stripes[i];
8e5cfb55 5211 l = bbio->raid_map[i];
53b381b3 5212 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5213 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5214 bbio->stripes[i+1] = s;
8e5cfb55 5215 bbio->raid_map[i+1] = l;
2c8cdd6e 5216
53b381b3
DW
5217 again = 1;
5218 }
5219 }
5220 }
5221}
5222
6e9606d2
ZL
5223static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5224{
5225 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5226 /* the size of the btrfs_bio */
6e9606d2 5227 sizeof(struct btrfs_bio) +
e57cf21e 5228 /* plus the variable array for the stripes */
6e9606d2 5229 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5230 /* plus the variable array for the tgt dev */
6e9606d2 5231 sizeof(int) * (real_stripes) +
e57cf21e
CM
5232 /*
5233 * plus the raid_map, which includes both the tgt dev
5234 * and the stripes
5235 */
5236 sizeof(u64) * (total_stripes),
277fb5fc 5237 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5238
5239 atomic_set(&bbio->error, 0);
140475ae 5240 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5241
5242 return bbio;
5243}
5244
5245void btrfs_get_bbio(struct btrfs_bio *bbio)
5246{
140475ae
ER
5247 WARN_ON(!refcount_read(&bbio->refs));
5248 refcount_inc(&bbio->refs);
6e9606d2
ZL
5249}
5250
5251void btrfs_put_bbio(struct btrfs_bio *bbio)
5252{
5253 if (!bbio)
5254 return;
140475ae 5255 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5256 kfree(bbio);
5257}
5258
0b3d4cd3
LB
5259/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5260/*
5261 * Please note that, discard won't be sent to target device of device
5262 * replace.
5263 */
5264static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5265 u64 logical, u64 length,
5266 struct btrfs_bio **bbio_ret)
5267{
5268 struct extent_map *em;
5269 struct map_lookup *map;
5270 struct btrfs_bio *bbio;
5271 u64 offset;
5272 u64 stripe_nr;
5273 u64 stripe_nr_end;
5274 u64 stripe_end_offset;
5275 u64 stripe_cnt;
5276 u64 stripe_len;
5277 u64 stripe_offset;
5278 u64 num_stripes;
5279 u32 stripe_index;
5280 u32 factor = 0;
5281 u32 sub_stripes = 0;
5282 u64 stripes_per_dev = 0;
5283 u32 remaining_stripes = 0;
5284 u32 last_stripe = 0;
5285 int ret = 0;
5286 int i;
5287
5288 /* discard always return a bbio */
5289 ASSERT(bbio_ret);
5290
5291 em = get_chunk_map(fs_info, logical, length);
5292 if (IS_ERR(em))
5293 return PTR_ERR(em);
5294
5295 map = em->map_lookup;
5296 /* we don't discard raid56 yet */
5297 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5298 ret = -EOPNOTSUPP;
5299 goto out;
5300 }
5301
5302 offset = logical - em->start;
5303 length = min_t(u64, em->len - offset, length);
5304
5305 stripe_len = map->stripe_len;
5306 /*
5307 * stripe_nr counts the total number of stripes we have to stride
5308 * to get to this block
5309 */
5310 stripe_nr = div64_u64(offset, stripe_len);
5311
5312 /* stripe_offset is the offset of this block in its stripe */
5313 stripe_offset = offset - stripe_nr * stripe_len;
5314
5315 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5316 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5317 stripe_cnt = stripe_nr_end - stripe_nr;
5318 stripe_end_offset = stripe_nr_end * map->stripe_len -
5319 (offset + length);
5320 /*
5321 * after this, stripe_nr is the number of stripes on this
5322 * device we have to walk to find the data, and stripe_index is
5323 * the number of our device in the stripe array
5324 */
5325 num_stripes = 1;
5326 stripe_index = 0;
5327 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5328 BTRFS_BLOCK_GROUP_RAID10)) {
5329 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5330 sub_stripes = 1;
5331 else
5332 sub_stripes = map->sub_stripes;
5333
5334 factor = map->num_stripes / sub_stripes;
5335 num_stripes = min_t(u64, map->num_stripes,
5336 sub_stripes * stripe_cnt);
5337 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5338 stripe_index *= sub_stripes;
5339 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5340 &remaining_stripes);
5341 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5342 last_stripe *= sub_stripes;
5343 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5344 BTRFS_BLOCK_GROUP_DUP)) {
5345 num_stripes = map->num_stripes;
5346 } else {
5347 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5348 &stripe_index);
5349 }
5350
5351 bbio = alloc_btrfs_bio(num_stripes, 0);
5352 if (!bbio) {
5353 ret = -ENOMEM;
5354 goto out;
5355 }
5356
5357 for (i = 0; i < num_stripes; i++) {
5358 bbio->stripes[i].physical =
5359 map->stripes[stripe_index].physical +
5360 stripe_offset + stripe_nr * map->stripe_len;
5361 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5362
5363 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5364 BTRFS_BLOCK_GROUP_RAID10)) {
5365 bbio->stripes[i].length = stripes_per_dev *
5366 map->stripe_len;
5367
5368 if (i / sub_stripes < remaining_stripes)
5369 bbio->stripes[i].length +=
5370 map->stripe_len;
5371
5372 /*
5373 * Special for the first stripe and
5374 * the last stripe:
5375 *
5376 * |-------|...|-------|
5377 * |----------|
5378 * off end_off
5379 */
5380 if (i < sub_stripes)
5381 bbio->stripes[i].length -=
5382 stripe_offset;
5383
5384 if (stripe_index >= last_stripe &&
5385 stripe_index <= (last_stripe +
5386 sub_stripes - 1))
5387 bbio->stripes[i].length -=
5388 stripe_end_offset;
5389
5390 if (i == sub_stripes - 1)
5391 stripe_offset = 0;
5392 } else {
5393 bbio->stripes[i].length = length;
5394 }
5395
5396 stripe_index++;
5397 if (stripe_index == map->num_stripes) {
5398 stripe_index = 0;
5399 stripe_nr++;
5400 }
5401 }
5402
5403 *bbio_ret = bbio;
5404 bbio->map_type = map->type;
5405 bbio->num_stripes = num_stripes;
5406out:
5407 free_extent_map(em);
5408 return ret;
5409}
5410
5ab56090
LB
5411/*
5412 * In dev-replace case, for repair case (that's the only case where the mirror
5413 * is selected explicitly when calling btrfs_map_block), blocks left of the
5414 * left cursor can also be read from the target drive.
5415 *
5416 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5417 * array of stripes.
5418 * For READ, it also needs to be supported using the same mirror number.
5419 *
5420 * If the requested block is not left of the left cursor, EIO is returned. This
5421 * can happen because btrfs_num_copies() returns one more in the dev-replace
5422 * case.
5423 */
5424static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5425 u64 logical, u64 length,
5426 u64 srcdev_devid, int *mirror_num,
5427 u64 *physical)
5428{
5429 struct btrfs_bio *bbio = NULL;
5430 int num_stripes;
5431 int index_srcdev = 0;
5432 int found = 0;
5433 u64 physical_of_found = 0;
5434 int i;
5435 int ret = 0;
5436
5437 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5438 logical, &length, &bbio, 0, 0);
5439 if (ret) {
5440 ASSERT(bbio == NULL);
5441 return ret;
5442 }
5443
5444 num_stripes = bbio->num_stripes;
5445 if (*mirror_num > num_stripes) {
5446 /*
5447 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5448 * that means that the requested area is not left of the left
5449 * cursor
5450 */
5451 btrfs_put_bbio(bbio);
5452 return -EIO;
5453 }
5454
5455 /*
5456 * process the rest of the function using the mirror_num of the source
5457 * drive. Therefore look it up first. At the end, patch the device
5458 * pointer to the one of the target drive.
5459 */
5460 for (i = 0; i < num_stripes; i++) {
5461 if (bbio->stripes[i].dev->devid != srcdev_devid)
5462 continue;
5463
5464 /*
5465 * In case of DUP, in order to keep it simple, only add the
5466 * mirror with the lowest physical address
5467 */
5468 if (found &&
5469 physical_of_found <= bbio->stripes[i].physical)
5470 continue;
5471
5472 index_srcdev = i;
5473 found = 1;
5474 physical_of_found = bbio->stripes[i].physical;
5475 }
5476
5477 btrfs_put_bbio(bbio);
5478
5479 ASSERT(found);
5480 if (!found)
5481 return -EIO;
5482
5483 *mirror_num = index_srcdev + 1;
5484 *physical = physical_of_found;
5485 return ret;
5486}
5487
73c0f228
LB
5488static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5489 struct btrfs_bio **bbio_ret,
5490 struct btrfs_dev_replace *dev_replace,
5491 int *num_stripes_ret, int *max_errors_ret)
5492{
5493 struct btrfs_bio *bbio = *bbio_ret;
5494 u64 srcdev_devid = dev_replace->srcdev->devid;
5495 int tgtdev_indexes = 0;
5496 int num_stripes = *num_stripes_ret;
5497 int max_errors = *max_errors_ret;
5498 int i;
5499
5500 if (op == BTRFS_MAP_WRITE) {
5501 int index_where_to_add;
5502
5503 /*
5504 * duplicate the write operations while the dev replace
5505 * procedure is running. Since the copying of the old disk to
5506 * the new disk takes place at run time while the filesystem is
5507 * mounted writable, the regular write operations to the old
5508 * disk have to be duplicated to go to the new disk as well.
5509 *
5510 * Note that device->missing is handled by the caller, and that
5511 * the write to the old disk is already set up in the stripes
5512 * array.
5513 */
5514 index_where_to_add = num_stripes;
5515 for (i = 0; i < num_stripes; i++) {
5516 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5517 /* write to new disk, too */
5518 struct btrfs_bio_stripe *new =
5519 bbio->stripes + index_where_to_add;
5520 struct btrfs_bio_stripe *old =
5521 bbio->stripes + i;
5522
5523 new->physical = old->physical;
5524 new->length = old->length;
5525 new->dev = dev_replace->tgtdev;
5526 bbio->tgtdev_map[i] = index_where_to_add;
5527 index_where_to_add++;
5528 max_errors++;
5529 tgtdev_indexes++;
5530 }
5531 }
5532 num_stripes = index_where_to_add;
5533 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5534 int index_srcdev = 0;
5535 int found = 0;
5536 u64 physical_of_found = 0;
5537
5538 /*
5539 * During the dev-replace procedure, the target drive can also
5540 * be used to read data in case it is needed to repair a corrupt
5541 * block elsewhere. This is possible if the requested area is
5542 * left of the left cursor. In this area, the target drive is a
5543 * full copy of the source drive.
5544 */
5545 for (i = 0; i < num_stripes; i++) {
5546 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547 /*
5548 * In case of DUP, in order to keep it simple,
5549 * only add the mirror with the lowest physical
5550 * address
5551 */
5552 if (found &&
5553 physical_of_found <=
5554 bbio->stripes[i].physical)
5555 continue;
5556 index_srcdev = i;
5557 found = 1;
5558 physical_of_found = bbio->stripes[i].physical;
5559 }
5560 }
5561 if (found) {
5562 struct btrfs_bio_stripe *tgtdev_stripe =
5563 bbio->stripes + num_stripes;
5564
5565 tgtdev_stripe->physical = physical_of_found;
5566 tgtdev_stripe->length =
5567 bbio->stripes[index_srcdev].length;
5568 tgtdev_stripe->dev = dev_replace->tgtdev;
5569 bbio->tgtdev_map[index_srcdev] = num_stripes;
5570
5571 tgtdev_indexes++;
5572 num_stripes++;
5573 }
5574 }
5575
5576 *num_stripes_ret = num_stripes;
5577 *max_errors_ret = max_errors;
5578 bbio->num_tgtdevs = tgtdev_indexes;
5579 *bbio_ret = bbio;
5580}
5581
2b19a1fe
LB
5582static bool need_full_stripe(enum btrfs_map_op op)
5583{
5584 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5585}
5586
cf8cddd3
CH
5587static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5588 enum btrfs_map_op op,
f2d8d74d 5589 u64 logical, u64 *length,
a1d3c478 5590 struct btrfs_bio **bbio_ret,
8e5cfb55 5591 int mirror_num, int need_raid_map)
0b86a832
CM
5592{
5593 struct extent_map *em;
5594 struct map_lookup *map;
0b86a832 5595 u64 offset;
593060d7
CM
5596 u64 stripe_offset;
5597 u64 stripe_nr;
53b381b3 5598 u64 stripe_len;
9d644a62 5599 u32 stripe_index;
cea9e445 5600 int i;
de11cc12 5601 int ret = 0;
f2d8d74d 5602 int num_stripes;
a236aed1 5603 int max_errors = 0;
2c8cdd6e 5604 int tgtdev_indexes = 0;
a1d3c478 5605 struct btrfs_bio *bbio = NULL;
472262f3
SB
5606 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5607 int dev_replace_is_ongoing = 0;
5608 int num_alloc_stripes;
ad6d620e
SB
5609 int patch_the_first_stripe_for_dev_replace = 0;
5610 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5611 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5612
0b3d4cd3
LB
5613 if (op == BTRFS_MAP_DISCARD)
5614 return __btrfs_map_block_for_discard(fs_info, logical,
5615 *length, bbio_ret);
5616
592d92ee
LB
5617 em = get_chunk_map(fs_info, logical, *length);
5618 if (IS_ERR(em))
5619 return PTR_ERR(em);
0b86a832 5620
95617d69 5621 map = em->map_lookup;
0b86a832 5622 offset = logical - em->start;
593060d7 5623
53b381b3 5624 stripe_len = map->stripe_len;
593060d7
CM
5625 stripe_nr = offset;
5626 /*
5627 * stripe_nr counts the total number of stripes we have to stride
5628 * to get to this block
5629 */
47c5713f 5630 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5631
53b381b3 5632 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5633 if (offset < stripe_offset) {
5d163e0e
JM
5634 btrfs_crit(fs_info,
5635 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5636 stripe_offset, offset, em->start, logical,
5637 stripe_len);
5638 free_extent_map(em);
5639 return -EINVAL;
5640 }
593060d7
CM
5641
5642 /* stripe_offset is the offset of this block in its stripe*/
5643 stripe_offset = offset - stripe_offset;
5644
53b381b3 5645 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5646 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5647 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5648 raid56_full_stripe_start = offset;
5649
5650 /* allow a write of a full stripe, but make sure we don't
5651 * allow straddling of stripes
5652 */
47c5713f
DS
5653 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5654 full_stripe_len);
53b381b3
DW
5655 raid56_full_stripe_start *= full_stripe_len;
5656 }
5657
0b3d4cd3 5658 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5659 u64 max_len;
5660 /* For writes to RAID[56], allow a full stripeset across all disks.
5661 For other RAID types and for RAID[56] reads, just allow a single
5662 stripe (on a single disk). */
ffe2d203 5663 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5664 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5665 max_len = stripe_len * nr_data_stripes(map) -
5666 (offset - raid56_full_stripe_start);
5667 } else {
5668 /* we limit the length of each bio to what fits in a stripe */
5669 max_len = stripe_len - stripe_offset;
5670 }
5671 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5672 } else {
5673 *length = em->len - offset;
5674 }
f2d8d74d 5675
53b381b3
DW
5676 /* This is for when we're called from btrfs_merge_bio_hook() and all
5677 it cares about is the length */
a1d3c478 5678 if (!bbio_ret)
cea9e445
CM
5679 goto out;
5680
73beece9 5681 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5682 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5683 if (!dev_replace_is_ongoing)
73beece9
LB
5684 btrfs_dev_replace_unlock(dev_replace, 0);
5685 else
5686 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5687
ad6d620e 5688 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5689 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5690 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5691 dev_replace->srcdev->devid,
5692 &mirror_num,
5693 &physical_to_patch_in_first_stripe);
5694 if (ret)
ad6d620e 5695 goto out;
5ab56090
LB
5696 else
5697 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5698 } else if (mirror_num > map->num_stripes) {
5699 mirror_num = 0;
5700 }
5701
f2d8d74d 5702 num_stripes = 1;
cea9e445 5703 stripe_index = 0;
fce3bb9a 5704 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5705 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5706 &stripe_index);
de483734 5707 if (!need_full_stripe(op))
28e1cc7d 5708 mirror_num = 1;
fce3bb9a 5709 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5710 if (need_full_stripe(op))
f2d8d74d 5711 num_stripes = map->num_stripes;
2fff734f 5712 else if (mirror_num)
f188591e 5713 stripe_index = mirror_num - 1;
dfe25020 5714 else {
30d9861f 5715 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5716 map->num_stripes,
30d9861f
SB
5717 current->pid % map->num_stripes,
5718 dev_replace_is_ongoing);
a1d3c478 5719 mirror_num = stripe_index + 1;
dfe25020 5720 }
2fff734f 5721
611f0e00 5722 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5723 if (need_full_stripe(op)) {
f2d8d74d 5724 num_stripes = map->num_stripes;
a1d3c478 5725 } else if (mirror_num) {
f188591e 5726 stripe_index = mirror_num - 1;
a1d3c478
JS
5727 } else {
5728 mirror_num = 1;
5729 }
2fff734f 5730
321aecc6 5731 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5732 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5733
47c5713f 5734 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5735 stripe_index *= map->sub_stripes;
5736
de483734 5737 if (need_full_stripe(op))
f2d8d74d 5738 num_stripes = map->sub_stripes;
321aecc6
CM
5739 else if (mirror_num)
5740 stripe_index += mirror_num - 1;
dfe25020 5741 else {
3e74317a 5742 int old_stripe_index = stripe_index;
30d9861f
SB
5743 stripe_index = find_live_mirror(fs_info, map,
5744 stripe_index,
dfe25020 5745 map->sub_stripes, stripe_index +
30d9861f
SB
5746 current->pid % map->sub_stripes,
5747 dev_replace_is_ongoing);
3e74317a 5748 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5749 }
53b381b3 5750
ffe2d203 5751 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5752 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5753 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5754 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5755 stripe_len * nr_data_stripes(map));
53b381b3
DW
5756
5757 /* RAID[56] write or recovery. Return all stripes */
5758 num_stripes = map->num_stripes;
5759 max_errors = nr_parity_stripes(map);
5760
53b381b3
DW
5761 *length = map->stripe_len;
5762 stripe_index = 0;
5763 stripe_offset = 0;
5764 } else {
5765 /*
5766 * Mirror #0 or #1 means the original data block.
5767 * Mirror #2 is RAID5 parity block.
5768 * Mirror #3 is RAID6 Q block.
5769 */
47c5713f
DS
5770 stripe_nr = div_u64_rem(stripe_nr,
5771 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5772 if (mirror_num > 1)
5773 stripe_index = nr_data_stripes(map) +
5774 mirror_num - 2;
5775
5776 /* We distribute the parity blocks across stripes */
47c5713f
DS
5777 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5778 &stripe_index);
de483734 5779 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5780 mirror_num = 1;
53b381b3 5781 }
8790d502
CM
5782 } else {
5783 /*
47c5713f
DS
5784 * after this, stripe_nr is the number of stripes on this
5785 * device we have to walk to find the data, and stripe_index is
5786 * the number of our device in the stripe array
8790d502 5787 */
47c5713f
DS
5788 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5789 &stripe_index);
a1d3c478 5790 mirror_num = stripe_index + 1;
8790d502 5791 }
e042d1ec 5792 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5793 btrfs_crit(fs_info,
5794 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5795 stripe_index, map->num_stripes);
5796 ret = -EINVAL;
5797 goto out;
5798 }
cea9e445 5799
472262f3 5800 num_alloc_stripes = num_stripes;
6fad823f 5801 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5802 if (op == BTRFS_MAP_WRITE)
ad6d620e 5803 num_alloc_stripes <<= 1;
cf8cddd3 5804 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5805 num_alloc_stripes++;
2c8cdd6e 5806 tgtdev_indexes = num_stripes;
ad6d620e 5807 }
2c8cdd6e 5808
6e9606d2 5809 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5810 if (!bbio) {
5811 ret = -ENOMEM;
5812 goto out;
5813 }
6fad823f 5814 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5815 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5816
8e5cfb55 5817 /* build raid_map */
2b19a1fe
LB
5818 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5819 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5820 u64 tmp;
9d644a62 5821 unsigned rot;
8e5cfb55
ZL
5822
5823 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5824 sizeof(struct btrfs_bio_stripe) *
5825 num_alloc_stripes +
5826 sizeof(int) * tgtdev_indexes);
5827
5828 /* Work out the disk rotation on this stripe-set */
47c5713f 5829 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5830
5831 /* Fill in the logical address of each stripe */
5832 tmp = stripe_nr * nr_data_stripes(map);
5833 for (i = 0; i < nr_data_stripes(map); i++)
5834 bbio->raid_map[(i+rot) % num_stripes] =
5835 em->start + (tmp + i) * map->stripe_len;
5836
5837 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5838 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5839 bbio->raid_map[(i+rot+1) % num_stripes] =
5840 RAID6_Q_STRIPE;
5841 }
5842
b89203f7 5843
0b3d4cd3
LB
5844 for (i = 0; i < num_stripes; i++) {
5845 bbio->stripes[i].physical =
5846 map->stripes[stripe_index].physical +
5847 stripe_offset +
5848 stripe_nr * map->stripe_len;
5849 bbio->stripes[i].dev =
5850 map->stripes[stripe_index].dev;
5851 stripe_index++;
593060d7 5852 }
de11cc12 5853
2b19a1fe 5854 if (need_full_stripe(op))
d20983b4 5855 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5856
8e5cfb55
ZL
5857 if (bbio->raid_map)
5858 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5859
73c0f228 5860 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5861 need_full_stripe(op)) {
73c0f228
LB
5862 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5863 &max_errors);
472262f3
SB
5864 }
5865
de11cc12 5866 *bbio_ret = bbio;
10f11900 5867 bbio->map_type = map->type;
de11cc12
LZ
5868 bbio->num_stripes = num_stripes;
5869 bbio->max_errors = max_errors;
5870 bbio->mirror_num = mirror_num;
ad6d620e
SB
5871
5872 /*
5873 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5874 * mirror_num == num_stripes + 1 && dev_replace target drive is
5875 * available as a mirror
5876 */
5877 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5878 WARN_ON(num_stripes > 1);
5879 bbio->stripes[0].dev = dev_replace->tgtdev;
5880 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5881 bbio->mirror_num = map->num_stripes + 1;
5882 }
cea9e445 5883out:
73beece9
LB
5884 if (dev_replace_is_ongoing) {
5885 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5886 btrfs_dev_replace_unlock(dev_replace, 0);
5887 }
0b86a832 5888 free_extent_map(em);
de11cc12 5889 return ret;
0b86a832
CM
5890}
5891
cf8cddd3 5892int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5893 u64 logical, u64 *length,
a1d3c478 5894 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5895{
b3d3fa51 5896 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5897 mirror_num, 0);
f2d8d74d
CM
5898}
5899
af8e2d1d 5900/* For Scrub/replace */
cf8cddd3 5901int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5902 u64 logical, u64 *length,
825ad4c9 5903 struct btrfs_bio **bbio_ret)
af8e2d1d 5904{
825ad4c9 5905 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5906}
5907
ab8d0fc4 5908int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5909 u64 chunk_start, u64 physical, u64 devid,
5910 u64 **logical, int *naddrs, int *stripe_len)
5911{
a512bbf8
YZ
5912 struct extent_map *em;
5913 struct map_lookup *map;
5914 u64 *buf;
5915 u64 bytenr;
5916 u64 length;
5917 u64 stripe_nr;
53b381b3 5918 u64 rmap_len;
a512bbf8
YZ
5919 int i, j, nr = 0;
5920
592d92ee
LB
5921 em = get_chunk_map(fs_info, chunk_start, 1);
5922 if (IS_ERR(em))
835d974f 5923 return -EIO;
835d974f 5924
95617d69 5925 map = em->map_lookup;
a512bbf8 5926 length = em->len;
53b381b3
DW
5927 rmap_len = map->stripe_len;
5928
a512bbf8 5929 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5930 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5931 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5932 length = div_u64(length, map->num_stripes);
ffe2d203 5933 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5934 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5935 rmap_len = map->stripe_len * nr_data_stripes(map);
5936 }
a512bbf8 5937
31e818fe 5938 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5939 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5940
5941 for (i = 0; i < map->num_stripes; i++) {
5942 if (devid && map->stripes[i].dev->devid != devid)
5943 continue;
5944 if (map->stripes[i].physical > physical ||
5945 map->stripes[i].physical + length <= physical)
5946 continue;
5947
5948 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 5949 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5950
5951 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5952 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5953 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5954 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5955 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5956 } /* else if RAID[56], multiply by nr_data_stripes().
5957 * Alternatively, just use rmap_len below instead of
5958 * map->stripe_len */
5959
5960 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5961 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5962 for (j = 0; j < nr; j++) {
5963 if (buf[j] == bytenr)
5964 break;
5965 }
934d375b
CM
5966 if (j == nr) {
5967 WARN_ON(nr >= map->num_stripes);
a512bbf8 5968 buf[nr++] = bytenr;
934d375b 5969 }
a512bbf8
YZ
5970 }
5971
a512bbf8
YZ
5972 *logical = buf;
5973 *naddrs = nr;
53b381b3 5974 *stripe_len = rmap_len;
a512bbf8
YZ
5975
5976 free_extent_map(em);
5977 return 0;
f2d8d74d
CM
5978}
5979
4246a0b6 5980static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5981{
326e1dbb
MS
5982 bio->bi_private = bbio->private;
5983 bio->bi_end_io = bbio->end_io;
4246a0b6 5984 bio_endio(bio);
326e1dbb 5985
6e9606d2 5986 btrfs_put_bbio(bbio);
8408c716
MX
5987}
5988
4246a0b6 5989static void btrfs_end_bio(struct bio *bio)
8790d502 5990{
9be3395b 5991 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5992 int is_orig_bio = 0;
8790d502 5993
4e4cbee9 5994 if (bio->bi_status) {
a1d3c478 5995 atomic_inc(&bbio->error);
4e4cbee9
CH
5996 if (bio->bi_status == BLK_STS_IOERR ||
5997 bio->bi_status == BLK_STS_TARGET) {
442a4f63 5998 unsigned int stripe_index =
9be3395b 5999 btrfs_io_bio(bio)->stripe_index;
65f53338 6000 struct btrfs_device *dev;
442a4f63
SB
6001
6002 BUG_ON(stripe_index >= bbio->num_stripes);
6003 dev = bbio->stripes[stripe_index].dev;
597a60fa 6004 if (dev->bdev) {
37226b21 6005 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6006 btrfs_dev_stat_inc(dev,
6007 BTRFS_DEV_STAT_WRITE_ERRS);
6008 else
6009 btrfs_dev_stat_inc(dev,
6010 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6011 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6012 btrfs_dev_stat_inc(dev,
6013 BTRFS_DEV_STAT_FLUSH_ERRS);
6014 btrfs_dev_stat_print_on_error(dev);
6015 }
442a4f63
SB
6016 }
6017 }
8790d502 6018
a1d3c478 6019 if (bio == bbio->orig_bio)
7d2b4daa
CM
6020 is_orig_bio = 1;
6021
c404e0dc
MX
6022 btrfs_bio_counter_dec(bbio->fs_info);
6023
a1d3c478 6024 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6025 if (!is_orig_bio) {
6026 bio_put(bio);
a1d3c478 6027 bio = bbio->orig_bio;
7d2b4daa 6028 }
c7b22bb1 6029
9be3395b 6030 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6031 /* only send an error to the higher layers if it is
53b381b3 6032 * beyond the tolerance of the btrfs bio
a236aed1 6033 */
a1d3c478 6034 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6035 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6036 } else {
1259ab75
CM
6037 /*
6038 * this bio is actually up to date, we didn't
6039 * go over the max number of errors
6040 */
2dbe0c77 6041 bio->bi_status = BLK_STS_OK;
1259ab75 6042 }
c55f1396 6043
4246a0b6 6044 btrfs_end_bbio(bbio, bio);
7d2b4daa 6045 } else if (!is_orig_bio) {
8790d502
CM
6046 bio_put(bio);
6047 }
8790d502
CM
6048}
6049
8b712842
CM
6050/*
6051 * see run_scheduled_bios for a description of why bios are collected for
6052 * async submit.
6053 *
6054 * This will add one bio to the pending list for a device and make sure
6055 * the work struct is scheduled.
6056 */
2ff7e61e 6057static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6058 struct bio *bio)
8b712842 6059{
0b246afa 6060 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6061 int should_queue = 1;
ffbd517d 6062 struct btrfs_pending_bios *pending_bios;
8b712842 6063
53b381b3 6064 if (device->missing || !device->bdev) {
4246a0b6 6065 bio_io_error(bio);
53b381b3
DW
6066 return;
6067 }
6068
8b712842 6069 /* don't bother with additional async steps for reads, right now */
37226b21 6070 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6071 bio_get(bio);
4e49ea4a 6072 btrfsic_submit_bio(bio);
492bb6de 6073 bio_put(bio);
143bede5 6074 return;
8b712842
CM
6075 }
6076
492bb6de 6077 WARN_ON(bio->bi_next);
8b712842 6078 bio->bi_next = NULL;
8b712842
CM
6079
6080 spin_lock(&device->io_lock);
67f055c7 6081 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6082 pending_bios = &device->pending_sync_bios;
6083 else
6084 pending_bios = &device->pending_bios;
8b712842 6085
ffbd517d
CM
6086 if (pending_bios->tail)
6087 pending_bios->tail->bi_next = bio;
8b712842 6088
ffbd517d
CM
6089 pending_bios->tail = bio;
6090 if (!pending_bios->head)
6091 pending_bios->head = bio;
8b712842
CM
6092 if (device->running_pending)
6093 should_queue = 0;
6094
6095 spin_unlock(&device->io_lock);
6096
6097 if (should_queue)
0b246afa 6098 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6099}
6100
2ff7e61e
JM
6101static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6102 u64 physical, int dev_nr, int async)
de1ee92a
JB
6103{
6104 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6105 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6106
6107 bio->bi_private = bbio;
9be3395b 6108 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6109 bio->bi_end_io = btrfs_end_bio;
4f024f37 6110 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6111#ifdef DEBUG
6112 {
6113 struct rcu_string *name;
6114
6115 rcu_read_lock();
6116 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6117 btrfs_debug(fs_info,
6118 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6119 bio_op(bio), bio->bi_opf,
6120 (u64)bio->bi_iter.bi_sector,
6121 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6122 bio->bi_iter.bi_size);
de1ee92a
JB
6123 rcu_read_unlock();
6124 }
6125#endif
74d46992 6126 bio_set_dev(bio, dev->bdev);
c404e0dc 6127
2ff7e61e 6128 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6129
de1ee92a 6130 if (async)
2ff7e61e 6131 btrfs_schedule_bio(dev, bio);
de1ee92a 6132 else
4e49ea4a 6133 btrfsic_submit_bio(bio);
de1ee92a
JB
6134}
6135
de1ee92a
JB
6136static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6137{
6138 atomic_inc(&bbio->error);
6139 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6140 /* Should be the original bio. */
8408c716
MX
6141 WARN_ON(bio != bbio->orig_bio);
6142
9be3395b 6143 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6144 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6145 if (atomic_read(&bbio->error) > bbio->max_errors)
6146 bio->bi_status = BLK_STS_IOERR;
6147 else
6148 bio->bi_status = BLK_STS_OK;
4246a0b6 6149 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6150 }
6151}
6152
58efbc9f
OS
6153blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6154 int mirror_num, int async_submit)
0b86a832 6155{
0b86a832 6156 struct btrfs_device *dev;
8790d502 6157 struct bio *first_bio = bio;
4f024f37 6158 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6159 u64 length = 0;
6160 u64 map_length;
0b86a832 6161 int ret;
08da757d
ZL
6162 int dev_nr;
6163 int total_devs;
a1d3c478 6164 struct btrfs_bio *bbio = NULL;
0b86a832 6165
4f024f37 6166 length = bio->bi_iter.bi_size;
0b86a832 6167 map_length = length;
cea9e445 6168
0b246afa 6169 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6170 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6171 &map_length, &bbio, mirror_num, 1);
c404e0dc 6172 if (ret) {
0b246afa 6173 btrfs_bio_counter_dec(fs_info);
58efbc9f 6174 return errno_to_blk_status(ret);
c404e0dc 6175 }
cea9e445 6176
a1d3c478 6177 total_devs = bbio->num_stripes;
53b381b3
DW
6178 bbio->orig_bio = first_bio;
6179 bbio->private = first_bio->bi_private;
6180 bbio->end_io = first_bio->bi_end_io;
0b246afa 6181 bbio->fs_info = fs_info;
53b381b3
DW
6182 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6183
ad1ba2a0 6184 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6185 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6186 /* In this case, map_length has been set to the length of
6187 a single stripe; not the whole write */
37226b21 6188 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6189 ret = raid56_parity_write(fs_info, bio, bbio,
6190 map_length);
53b381b3 6191 } else {
2ff7e61e
JM
6192 ret = raid56_parity_recover(fs_info, bio, bbio,
6193 map_length, mirror_num, 1);
53b381b3 6194 }
4245215d 6195
0b246afa 6196 btrfs_bio_counter_dec(fs_info);
58efbc9f 6197 return errno_to_blk_status(ret);
53b381b3
DW
6198 }
6199
cea9e445 6200 if (map_length < length) {
0b246afa 6201 btrfs_crit(fs_info,
5d163e0e
JM
6202 "mapping failed logical %llu bio len %llu len %llu",
6203 logical, length, map_length);
cea9e445
CM
6204 BUG();
6205 }
a1d3c478 6206
08da757d 6207 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6208 dev = bbio->stripes[dev_nr].dev;
37226b21 6209 if (!dev || !dev->bdev ||
a967efb3 6210 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6211 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6212 continue;
6213 }
6214
3aa8e074 6215 if (dev_nr < total_devs - 1)
8b6c1d56 6216 bio = btrfs_bio_clone(first_bio);
3aa8e074 6217 else
a1d3c478 6218 bio = first_bio;
de1ee92a 6219
2ff7e61e
JM
6220 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6221 dev_nr, async_submit);
8790d502 6222 }
0b246afa 6223 btrfs_bio_counter_dec(fs_info);
58efbc9f 6224 return BLK_STS_OK;
0b86a832
CM
6225}
6226
aa1b8cd4 6227struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6228 u8 *uuid, u8 *fsid)
0b86a832 6229{
2b82032c
YZ
6230 struct btrfs_device *device;
6231 struct btrfs_fs_devices *cur_devices;
6232
aa1b8cd4 6233 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6234 while (cur_devices) {
6235 if (!fsid ||
44880fdc 6236 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
35c70103 6237 device = find_device(cur_devices, devid, uuid);
2b82032c
YZ
6238 if (device)
6239 return device;
6240 }
6241 cur_devices = cur_devices->seed;
6242 }
6243 return NULL;
0b86a832
CM
6244}
6245
2ff7e61e 6246static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6247 u64 devid, u8 *dev_uuid)
6248{
6249 struct btrfs_device *device;
dfe25020 6250
12bd2fc0
ID
6251 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6252 if (IS_ERR(device))
adfb69af 6253 return device;
12bd2fc0
ID
6254
6255 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6256 device->fs_devices = fs_devices;
dfe25020 6257 fs_devices->num_devices++;
12bd2fc0
ID
6258
6259 device->missing = 1;
cd02dca5 6260 fs_devices->missing_devices++;
12bd2fc0 6261
dfe25020
CM
6262 return device;
6263}
6264
12bd2fc0
ID
6265/**
6266 * btrfs_alloc_device - allocate struct btrfs_device
6267 * @fs_info: used only for generating a new devid, can be NULL if
6268 * devid is provided (i.e. @devid != NULL).
6269 * @devid: a pointer to devid for this device. If NULL a new devid
6270 * is generated.
6271 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6272 * is generated.
6273 *
6274 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6275 * on error. Returned struct is not linked onto any lists and can be
6276 * destroyed with kfree() right away.
6277 */
6278struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6279 const u64 *devid,
6280 const u8 *uuid)
6281{
6282 struct btrfs_device *dev;
6283 u64 tmp;
6284
fae7f21c 6285 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6286 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6287
6288 dev = __alloc_device();
6289 if (IS_ERR(dev))
6290 return dev;
6291
6292 if (devid)
6293 tmp = *devid;
6294 else {
6295 int ret;
6296
6297 ret = find_next_devid(fs_info, &tmp);
6298 if (ret) {
3065ae5b 6299 bio_put(dev->flush_bio);
12bd2fc0
ID
6300 kfree(dev);
6301 return ERR_PTR(ret);
6302 }
6303 }
6304 dev->devid = tmp;
6305
6306 if (uuid)
6307 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6308 else
6309 generate_random_uuid(dev->uuid);
6310
9e0af237
LB
6311 btrfs_init_work(&dev->work, btrfs_submit_helper,
6312 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6313
6314 return dev;
6315}
6316
e06cd3dd 6317/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6318static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6319 struct extent_buffer *leaf,
6320 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6321{
0b86a832 6322 u64 length;
f04b772b 6323 u64 stripe_len;
e06cd3dd
LB
6324 u16 num_stripes;
6325 u16 sub_stripes;
6326 u64 type;
0b86a832 6327
e17cade2 6328 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6329 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6330 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6331 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6332 type = btrfs_chunk_type(leaf, chunk);
6333
f04b772b 6334 if (!num_stripes) {
0b246afa 6335 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6336 num_stripes);
6337 return -EIO;
6338 }
0b246afa
JM
6339 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6340 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6341 return -EIO;
6342 }
0b246afa
JM
6343 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6344 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6345 btrfs_chunk_sector_size(leaf, chunk));
6346 return -EIO;
6347 }
0b246afa
JM
6348 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6349 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6350 return -EIO;
6351 }
3d8da678 6352 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6353 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6354 stripe_len);
6355 return -EIO;
6356 }
6357 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6358 type) {
0b246afa 6359 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6360 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6361 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6362 btrfs_chunk_type(leaf, chunk));
6363 return -EIO;
6364 }
e06cd3dd
LB
6365 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6366 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6367 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6368 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6369 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6370 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6371 num_stripes != 1)) {
0b246afa 6372 btrfs_err(fs_info,
e06cd3dd
LB
6373 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6374 num_stripes, sub_stripes,
6375 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6376 return -EIO;
6377 }
6378
6379 return 0;
6380}
6381
5a2b8e60 6382static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6383 u64 devid, u8 *uuid, bool error)
5a2b8e60 6384{
2b902dfc
AJ
6385 if (error)
6386 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6387 devid, uuid);
6388 else
6389 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6390 devid, uuid);
5a2b8e60
AJ
6391}
6392
2ff7e61e 6393static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6394 struct extent_buffer *leaf,
6395 struct btrfs_chunk *chunk)
6396{
0b246afa 6397 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6398 struct map_lookup *map;
6399 struct extent_map *em;
6400 u64 logical;
6401 u64 length;
e06cd3dd
LB
6402 u64 devid;
6403 u8 uuid[BTRFS_UUID_SIZE];
6404 int num_stripes;
6405 int ret;
6406 int i;
6407
6408 logical = key->offset;
6409 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6410 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6411
2ff7e61e 6412 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6413 if (ret)
6414 return ret;
a061fc8d 6415
890871be 6416 read_lock(&map_tree->map_tree.lock);
0b86a832 6417 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6418 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6419
6420 /* already mapped? */
6421 if (em && em->start <= logical && em->start + em->len > logical) {
6422 free_extent_map(em);
0b86a832
CM
6423 return 0;
6424 } else if (em) {
6425 free_extent_map(em);
6426 }
0b86a832 6427
172ddd60 6428 em = alloc_extent_map();
0b86a832
CM
6429 if (!em)
6430 return -ENOMEM;
593060d7 6431 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6432 if (!map) {
6433 free_extent_map(em);
6434 return -ENOMEM;
6435 }
6436
298a8f9c 6437 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6438 em->map_lookup = map;
0b86a832
CM
6439 em->start = logical;
6440 em->len = length;
70c8a91c 6441 em->orig_start = 0;
0b86a832 6442 em->block_start = 0;
c8b97818 6443 em->block_len = em->len;
0b86a832 6444
593060d7
CM
6445 map->num_stripes = num_stripes;
6446 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6447 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6448 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6449 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6450 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6451 for (i = 0; i < num_stripes; i++) {
6452 map->stripes[i].physical =
6453 btrfs_stripe_offset_nr(leaf, chunk, i);
6454 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6455 read_extent_buffer(leaf, uuid, (unsigned long)
6456 btrfs_stripe_dev_uuid_nr(chunk, i),
6457 BTRFS_UUID_SIZE);
0b246afa 6458 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6459 uuid, NULL);
3cdde224 6460 if (!map->stripes[i].dev &&
0b246afa 6461 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6462 free_extent_map(em);
2b902dfc 6463 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6464 return -ENOENT;
593060d7 6465 }
dfe25020
CM
6466 if (!map->stripes[i].dev) {
6467 map->stripes[i].dev =
2ff7e61e
JM
6468 add_missing_dev(fs_info->fs_devices, devid,
6469 uuid);
adfb69af 6470 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6471 free_extent_map(em);
adfb69af
AJ
6472 btrfs_err(fs_info,
6473 "failed to init missing dev %llu: %ld",
6474 devid, PTR_ERR(map->stripes[i].dev));
6475 return PTR_ERR(map->stripes[i].dev);
dfe25020 6476 }
2b902dfc 6477 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020
CM
6478 }
6479 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6480 }
6481
890871be 6482 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6483 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6484 write_unlock(&map_tree->map_tree.lock);
79787eaa 6485 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6486 free_extent_map(em);
6487
6488 return 0;
6489}
6490
143bede5 6491static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6492 struct btrfs_dev_item *dev_item,
6493 struct btrfs_device *device)
6494{
6495 unsigned long ptr;
0b86a832
CM
6496
6497 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6498 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6499 device->total_bytes = device->disk_total_bytes;
935e5cc9 6500 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6501 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6502 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6503 device->type = btrfs_device_type(leaf, dev_item);
6504 device->io_align = btrfs_device_io_align(leaf, dev_item);
6505 device->io_width = btrfs_device_io_width(leaf, dev_item);
6506 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6507 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6508 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6509
410ba3a2 6510 ptr = btrfs_device_uuid(dev_item);
e17cade2 6511 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6512}
6513
2ff7e61e 6514static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6515 u8 *fsid)
2b82032c
YZ
6516{
6517 struct btrfs_fs_devices *fs_devices;
6518 int ret;
6519
b367e47f 6520 BUG_ON(!mutex_is_locked(&uuid_mutex));
2dfeca9b 6521 ASSERT(fsid);
2b82032c 6522
0b246afa 6523 fs_devices = fs_info->fs_devices->seed;
2b82032c 6524 while (fs_devices) {
44880fdc 6525 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6526 return fs_devices;
6527
2b82032c
YZ
6528 fs_devices = fs_devices->seed;
6529 }
6530
6531 fs_devices = find_fsid(fsid);
6532 if (!fs_devices) {
0b246afa 6533 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6534 return ERR_PTR(-ENOENT);
6535
6536 fs_devices = alloc_fs_devices(fsid);
6537 if (IS_ERR(fs_devices))
6538 return fs_devices;
6539
6540 fs_devices->seeding = 1;
6541 fs_devices->opened = 1;
6542 return fs_devices;
2b82032c 6543 }
e4404d6e
YZ
6544
6545 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6546 if (IS_ERR(fs_devices))
6547 return fs_devices;
2b82032c 6548
97288f2c 6549 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6550 fs_info->bdev_holder);
48d28232
JL
6551 if (ret) {
6552 free_fs_devices(fs_devices);
5f375835 6553 fs_devices = ERR_PTR(ret);
2b82032c 6554 goto out;
48d28232 6555 }
2b82032c
YZ
6556
6557 if (!fs_devices->seeding) {
6558 __btrfs_close_devices(fs_devices);
e4404d6e 6559 free_fs_devices(fs_devices);
5f375835 6560 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6561 goto out;
6562 }
6563
0b246afa
JM
6564 fs_devices->seed = fs_info->fs_devices->seed;
6565 fs_info->fs_devices->seed = fs_devices;
2b82032c 6566out:
5f375835 6567 return fs_devices;
2b82032c
YZ
6568}
6569
2ff7e61e 6570static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6571 struct extent_buffer *leaf,
6572 struct btrfs_dev_item *dev_item)
6573{
0b246afa 6574 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6575 struct btrfs_device *device;
6576 u64 devid;
6577 int ret;
44880fdc 6578 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6579 u8 dev_uuid[BTRFS_UUID_SIZE];
6580
0b86a832 6581 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6582 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6583 BTRFS_UUID_SIZE);
1473b24e 6584 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6585 BTRFS_FSID_SIZE);
2b82032c 6586
44880fdc 6587 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6588 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6589 if (IS_ERR(fs_devices))
6590 return PTR_ERR(fs_devices);
2b82032c
YZ
6591 }
6592
0b246afa 6593 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6594 if (!device) {
c5502451 6595 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6596 btrfs_report_missing_device(fs_info, devid,
6597 dev_uuid, true);
45dbdbc9 6598 return -ENOENT;
c5502451 6599 }
2b82032c 6600
2ff7e61e 6601 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6602 if (IS_ERR(device)) {
6603 btrfs_err(fs_info,
6604 "failed to add missing dev %llu: %ld",
6605 devid, PTR_ERR(device));
6606 return PTR_ERR(device);
6607 }
2b902dfc 6608 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6609 } else {
c5502451 6610 if (!device->bdev) {
2b902dfc
AJ
6611 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6612 btrfs_report_missing_device(fs_info,
6613 devid, dev_uuid, true);
45dbdbc9 6614 return -ENOENT;
2b902dfc
AJ
6615 }
6616 btrfs_report_missing_device(fs_info, devid,
6617 dev_uuid, false);
c5502451 6618 }
5f375835
MX
6619
6620 if(!device->bdev && !device->missing) {
cd02dca5
CM
6621 /*
6622 * this happens when a device that was properly setup
6623 * in the device info lists suddenly goes bad.
6624 * device->bdev is NULL, and so we have to set
6625 * device->missing to one here
6626 */
5f375835 6627 device->fs_devices->missing_devices++;
cd02dca5 6628 device->missing = 1;
2b82032c 6629 }
5f375835
MX
6630
6631 /* Move the device to its own fs_devices */
6632 if (device->fs_devices != fs_devices) {
6633 ASSERT(device->missing);
6634
6635 list_move(&device->dev_list, &fs_devices->devices);
6636 device->fs_devices->num_devices--;
6637 fs_devices->num_devices++;
6638
6639 device->fs_devices->missing_devices--;
6640 fs_devices->missing_devices++;
6641
6642 device->fs_devices = fs_devices;
6643 }
2b82032c
YZ
6644 }
6645
0b246afa 6646 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6647 BUG_ON(device->writeable);
6648 if (device->generation !=
6649 btrfs_device_generation(leaf, dev_item))
6650 return -EINVAL;
6324fbf3 6651 }
0b86a832
CM
6652
6653 fill_device_from_item(leaf, dev_item, device);
dfe25020 6654 device->in_fs_metadata = 1;
63a212ab 6655 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6656 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6657 atomic64_add(device->total_bytes - device->bytes_used,
6658 &fs_info->free_chunk_space);
2bf64758 6659 }
0b86a832 6660 ret = 0;
0b86a832
CM
6661 return ret;
6662}
6663
6bccf3ab 6664int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6665{
6bccf3ab 6666 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6667 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6668 struct extent_buffer *sb;
0b86a832 6669 struct btrfs_disk_key *disk_key;
0b86a832 6670 struct btrfs_chunk *chunk;
1ffb22cf
DS
6671 u8 *array_ptr;
6672 unsigned long sb_array_offset;
84eed90f 6673 int ret = 0;
0b86a832
CM
6674 u32 num_stripes;
6675 u32 array_size;
6676 u32 len = 0;
1ffb22cf 6677 u32 cur_offset;
e06cd3dd 6678 u64 type;
84eed90f 6679 struct btrfs_key key;
0b86a832 6680
0b246afa 6681 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6682 /*
6683 * This will create extent buffer of nodesize, superblock size is
6684 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6685 * overallocate but we can keep it as-is, only the first page is used.
6686 */
2ff7e61e 6687 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6688 if (IS_ERR(sb))
6689 return PTR_ERR(sb);
4db8c528 6690 set_extent_buffer_uptodate(sb);
85d4e461 6691 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6692 /*
01327610 6693 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6694 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6695 * pages up-to-date when the page is larger: extent does not cover the
6696 * whole page and consequently check_page_uptodate does not find all
6697 * the page's extents up-to-date (the hole beyond sb),
6698 * write_extent_buffer then triggers a WARN_ON.
6699 *
6700 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6701 * but sb spans only this function. Add an explicit SetPageUptodate call
6702 * to silence the warning eg. on PowerPC 64.
6703 */
09cbfeaf 6704 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6705 SetPageUptodate(sb->pages[0]);
4008c04a 6706
a061fc8d 6707 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6708 array_size = btrfs_super_sys_array_size(super_copy);
6709
1ffb22cf
DS
6710 array_ptr = super_copy->sys_chunk_array;
6711 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6712 cur_offset = 0;
0b86a832 6713
1ffb22cf
DS
6714 while (cur_offset < array_size) {
6715 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6716 len = sizeof(*disk_key);
6717 if (cur_offset + len > array_size)
6718 goto out_short_read;
6719
0b86a832
CM
6720 btrfs_disk_key_to_cpu(&key, disk_key);
6721
1ffb22cf
DS
6722 array_ptr += len;
6723 sb_array_offset += len;
6724 cur_offset += len;
0b86a832 6725
0d81ba5d 6726 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6727 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6728 /*
6729 * At least one btrfs_chunk with one stripe must be
6730 * present, exact stripe count check comes afterwards
6731 */
6732 len = btrfs_chunk_item_size(1);
6733 if (cur_offset + len > array_size)
6734 goto out_short_read;
6735
6736 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6737 if (!num_stripes) {
ab8d0fc4
JM
6738 btrfs_err(fs_info,
6739 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6740 num_stripes, cur_offset);
6741 ret = -EIO;
6742 break;
6743 }
6744
e06cd3dd
LB
6745 type = btrfs_chunk_type(sb, chunk);
6746 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6747 btrfs_err(fs_info,
e06cd3dd
LB
6748 "invalid chunk type %llu in sys_array at offset %u",
6749 type, cur_offset);
6750 ret = -EIO;
6751 break;
6752 }
6753
e3540eab
DS
6754 len = btrfs_chunk_item_size(num_stripes);
6755 if (cur_offset + len > array_size)
6756 goto out_short_read;
6757
2ff7e61e 6758 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6759 if (ret)
6760 break;
0b86a832 6761 } else {
ab8d0fc4
JM
6762 btrfs_err(fs_info,
6763 "unexpected item type %u in sys_array at offset %u",
6764 (u32)key.type, cur_offset);
84eed90f
CM
6765 ret = -EIO;
6766 break;
0b86a832 6767 }
1ffb22cf
DS
6768 array_ptr += len;
6769 sb_array_offset += len;
6770 cur_offset += len;
0b86a832 6771 }
d865177a 6772 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6773 free_extent_buffer_stale(sb);
84eed90f 6774 return ret;
e3540eab
DS
6775
6776out_short_read:
ab8d0fc4 6777 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6778 len, cur_offset);
d865177a 6779 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6780 free_extent_buffer_stale(sb);
e3540eab 6781 return -EIO;
0b86a832
CM
6782}
6783
21634a19
QW
6784/*
6785 * Check if all chunks in the fs are OK for read-write degraded mount
6786 *
6787 * Return true if all chunks meet the minimal RW mount requirements.
6788 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6789 */
6790bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6791{
6792 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6793 struct extent_map *em;
6794 u64 next_start = 0;
6795 bool ret = true;
6796
6797 read_lock(&map_tree->map_tree.lock);
6798 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6799 read_unlock(&map_tree->map_tree.lock);
6800 /* No chunk at all? Return false anyway */
6801 if (!em) {
6802 ret = false;
6803 goto out;
6804 }
6805 while (em) {
6806 struct map_lookup *map;
6807 int missing = 0;
6808 int max_tolerated;
6809 int i;
6810
6811 map = em->map_lookup;
6812 max_tolerated =
6813 btrfs_get_num_tolerated_disk_barrier_failures(
6814 map->type);
6815 for (i = 0; i < map->num_stripes; i++) {
6816 struct btrfs_device *dev = map->stripes[i].dev;
6817
6818 if (!dev || !dev->bdev || dev->missing ||
6819 dev->last_flush_error)
6820 missing++;
6821 }
6822 if (missing > max_tolerated) {
6823 btrfs_warn(fs_info,
6824 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6825 em->start, missing, max_tolerated);
6826 free_extent_map(em);
6827 ret = false;
6828 goto out;
6829 }
6830 next_start = extent_map_end(em);
6831 free_extent_map(em);
6832
6833 read_lock(&map_tree->map_tree.lock);
6834 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6835 (u64)(-1) - next_start);
6836 read_unlock(&map_tree->map_tree.lock);
6837 }
6838out:
6839 return ret;
6840}
6841
5b4aacef 6842int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6843{
5b4aacef 6844 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6845 struct btrfs_path *path;
6846 struct extent_buffer *leaf;
6847 struct btrfs_key key;
6848 struct btrfs_key found_key;
6849 int ret;
6850 int slot;
99e3ecfc 6851 u64 total_dev = 0;
0b86a832 6852
0b86a832
CM
6853 path = btrfs_alloc_path();
6854 if (!path)
6855 return -ENOMEM;
6856
b367e47f 6857 mutex_lock(&uuid_mutex);
34441361 6858 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6859
395927a9
FDBM
6860 /*
6861 * Read all device items, and then all the chunk items. All
6862 * device items are found before any chunk item (their object id
6863 * is smaller than the lowest possible object id for a chunk
6864 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6865 */
6866 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6867 key.offset = 0;
6868 key.type = 0;
0b86a832 6869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6870 if (ret < 0)
6871 goto error;
d397712b 6872 while (1) {
0b86a832
CM
6873 leaf = path->nodes[0];
6874 slot = path->slots[0];
6875 if (slot >= btrfs_header_nritems(leaf)) {
6876 ret = btrfs_next_leaf(root, path);
6877 if (ret == 0)
6878 continue;
6879 if (ret < 0)
6880 goto error;
6881 break;
6882 }
6883 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6884 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6885 struct btrfs_dev_item *dev_item;
6886 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6887 struct btrfs_dev_item);
2ff7e61e 6888 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6889 if (ret)
6890 goto error;
99e3ecfc 6891 total_dev++;
0b86a832
CM
6892 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6893 struct btrfs_chunk *chunk;
6894 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6895 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6896 if (ret)
6897 goto error;
0b86a832
CM
6898 }
6899 path->slots[0]++;
6900 }
99e3ecfc
LB
6901
6902 /*
6903 * After loading chunk tree, we've got all device information,
6904 * do another round of validation checks.
6905 */
0b246afa
JM
6906 if (total_dev != fs_info->fs_devices->total_devices) {
6907 btrfs_err(fs_info,
99e3ecfc 6908 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6909 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6910 total_dev);
6911 ret = -EINVAL;
6912 goto error;
6913 }
0b246afa
JM
6914 if (btrfs_super_total_bytes(fs_info->super_copy) <
6915 fs_info->fs_devices->total_rw_bytes) {
6916 btrfs_err(fs_info,
99e3ecfc 6917 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6918 btrfs_super_total_bytes(fs_info->super_copy),
6919 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6920 ret = -EINVAL;
6921 goto error;
6922 }
0b86a832
CM
6923 ret = 0;
6924error:
34441361 6925 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6926 mutex_unlock(&uuid_mutex);
6927
2b82032c 6928 btrfs_free_path(path);
0b86a832
CM
6929 return ret;
6930}
442a4f63 6931
cb517eab
MX
6932void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6933{
6934 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6935 struct btrfs_device *device;
6936
29cc83f6
LB
6937 while (fs_devices) {
6938 mutex_lock(&fs_devices->device_list_mutex);
6939 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6940 device->fs_info = fs_info;
29cc83f6
LB
6941 mutex_unlock(&fs_devices->device_list_mutex);
6942
6943 fs_devices = fs_devices->seed;
6944 }
cb517eab
MX
6945}
6946
733f4fbb
SB
6947static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6948{
6949 int i;
6950
6951 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6952 btrfs_dev_stat_reset(dev, i);
6953}
6954
6955int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6956{
6957 struct btrfs_key key;
6958 struct btrfs_key found_key;
6959 struct btrfs_root *dev_root = fs_info->dev_root;
6960 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6961 struct extent_buffer *eb;
6962 int slot;
6963 int ret = 0;
6964 struct btrfs_device *device;
6965 struct btrfs_path *path = NULL;
6966 int i;
6967
6968 path = btrfs_alloc_path();
6969 if (!path) {
6970 ret = -ENOMEM;
6971 goto out;
6972 }
6973
6974 mutex_lock(&fs_devices->device_list_mutex);
6975 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6976 int item_size;
6977 struct btrfs_dev_stats_item *ptr;
6978
242e2956
DS
6979 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6980 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6981 key.offset = device->devid;
6982 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6983 if (ret) {
733f4fbb
SB
6984 __btrfs_reset_dev_stats(device);
6985 device->dev_stats_valid = 1;
6986 btrfs_release_path(path);
6987 continue;
6988 }
6989 slot = path->slots[0];
6990 eb = path->nodes[0];
6991 btrfs_item_key_to_cpu(eb, &found_key, slot);
6992 item_size = btrfs_item_size_nr(eb, slot);
6993
6994 ptr = btrfs_item_ptr(eb, slot,
6995 struct btrfs_dev_stats_item);
6996
6997 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6998 if (item_size >= (1 + i) * sizeof(__le64))
6999 btrfs_dev_stat_set(device, i,
7000 btrfs_dev_stats_value(eb, ptr, i));
7001 else
7002 btrfs_dev_stat_reset(device, i);
7003 }
7004
7005 device->dev_stats_valid = 1;
7006 btrfs_dev_stat_print_on_load(device);
7007 btrfs_release_path(path);
7008 }
7009 mutex_unlock(&fs_devices->device_list_mutex);
7010
7011out:
7012 btrfs_free_path(path);
7013 return ret < 0 ? ret : 0;
7014}
7015
7016static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7017 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7018 struct btrfs_device *device)
7019{
6bccf3ab 7020 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7021 struct btrfs_path *path;
7022 struct btrfs_key key;
7023 struct extent_buffer *eb;
7024 struct btrfs_dev_stats_item *ptr;
7025 int ret;
7026 int i;
7027
242e2956
DS
7028 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7029 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7030 key.offset = device->devid;
7031
7032 path = btrfs_alloc_path();
fa252992
DS
7033 if (!path)
7034 return -ENOMEM;
733f4fbb
SB
7035 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7036 if (ret < 0) {
0b246afa 7037 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7038 "error %d while searching for dev_stats item for device %s",
606686ee 7039 ret, rcu_str_deref(device->name));
733f4fbb
SB
7040 goto out;
7041 }
7042
7043 if (ret == 0 &&
7044 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7045 /* need to delete old one and insert a new one */
7046 ret = btrfs_del_item(trans, dev_root, path);
7047 if (ret != 0) {
0b246afa 7048 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7049 "delete too small dev_stats item for device %s failed %d",
606686ee 7050 rcu_str_deref(device->name), ret);
733f4fbb
SB
7051 goto out;
7052 }
7053 ret = 1;
7054 }
7055
7056 if (ret == 1) {
7057 /* need to insert a new item */
7058 btrfs_release_path(path);
7059 ret = btrfs_insert_empty_item(trans, dev_root, path,
7060 &key, sizeof(*ptr));
7061 if (ret < 0) {
0b246afa 7062 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7063 "insert dev_stats item for device %s failed %d",
7064 rcu_str_deref(device->name), ret);
733f4fbb
SB
7065 goto out;
7066 }
7067 }
7068
7069 eb = path->nodes[0];
7070 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7071 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7072 btrfs_set_dev_stats_value(eb, ptr, i,
7073 btrfs_dev_stat_read(device, i));
7074 btrfs_mark_buffer_dirty(eb);
7075
7076out:
7077 btrfs_free_path(path);
7078 return ret;
7079}
7080
7081/*
7082 * called from commit_transaction. Writes all changed device stats to disk.
7083 */
7084int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7085 struct btrfs_fs_info *fs_info)
7086{
733f4fbb
SB
7087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7088 struct btrfs_device *device;
addc3fa7 7089 int stats_cnt;
733f4fbb
SB
7090 int ret = 0;
7091
7092 mutex_lock(&fs_devices->device_list_mutex);
7093 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7094 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7095 continue;
7096
addc3fa7 7097 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7098 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7099 if (!ret)
addc3fa7 7100 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7101 }
7102 mutex_unlock(&fs_devices->device_list_mutex);
7103
7104 return ret;
7105}
7106
442a4f63
SB
7107void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7108{
7109 btrfs_dev_stat_inc(dev, index);
7110 btrfs_dev_stat_print_on_error(dev);
7111}
7112
48a3b636 7113static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7114{
733f4fbb
SB
7115 if (!dev->dev_stats_valid)
7116 return;
fb456252 7117 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7118 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7119 rcu_str_deref(dev->name),
442a4f63
SB
7120 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7125}
c11d2c23 7126
733f4fbb
SB
7127static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7128{
a98cdb85
SB
7129 int i;
7130
7131 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7132 if (btrfs_dev_stat_read(dev, i) != 0)
7133 break;
7134 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7135 return; /* all values == 0, suppress message */
7136
fb456252 7137 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7138 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7139 rcu_str_deref(dev->name),
733f4fbb
SB
7140 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7141 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7142 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7143 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7144 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7145}
7146
2ff7e61e 7147int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7148 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7149{
7150 struct btrfs_device *dev;
0b246afa 7151 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7152 int i;
7153
7154 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7155 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7156 mutex_unlock(&fs_devices->device_list_mutex);
7157
7158 if (!dev) {
0b246afa 7159 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7160 return -ENODEV;
733f4fbb 7161 } else if (!dev->dev_stats_valid) {
0b246afa 7162 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7163 return -ENODEV;
b27f7c0c 7164 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7165 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7166 if (stats->nr_items > i)
7167 stats->values[i] =
7168 btrfs_dev_stat_read_and_reset(dev, i);
7169 else
7170 btrfs_dev_stat_reset(dev, i);
7171 }
7172 } else {
7173 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7174 if (stats->nr_items > i)
7175 stats->values[i] = btrfs_dev_stat_read(dev, i);
7176 }
7177 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7178 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7179 return 0;
7180}
a8a6dab7 7181
da353f6b 7182void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7183{
7184 struct buffer_head *bh;
7185 struct btrfs_super_block *disk_super;
12b1c263 7186 int copy_num;
a8a6dab7 7187
12b1c263
AJ
7188 if (!bdev)
7189 return;
a8a6dab7 7190
12b1c263
AJ
7191 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7192 copy_num++) {
a8a6dab7 7193
12b1c263
AJ
7194 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7195 continue;
7196
7197 disk_super = (struct btrfs_super_block *)bh->b_data;
7198
7199 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7200 set_buffer_dirty(bh);
7201 sync_dirty_buffer(bh);
7202 brelse(bh);
7203 }
7204
7205 /* Notify udev that device has changed */
7206 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7207
7208 /* Update ctime/mtime for device path for libblkid */
7209 update_dev_time(device_path);
a8a6dab7 7210}
935e5cc9
MX
7211
7212/*
7213 * Update the size of all devices, which is used for writing out the
7214 * super blocks.
7215 */
7216void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7217{
7218 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7219 struct btrfs_device *curr, *next;
7220
7221 if (list_empty(&fs_devices->resized_devices))
7222 return;
7223
7224 mutex_lock(&fs_devices->device_list_mutex);
34441361 7225 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7226 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7227 resized_list) {
7228 list_del_init(&curr->resized_list);
7229 curr->commit_total_bytes = curr->disk_total_bytes;
7230 }
34441361 7231 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7232 mutex_unlock(&fs_devices->device_list_mutex);
7233}
ce7213c7
MX
7234
7235/* Must be invoked during the transaction commit */
2ff7e61e 7236void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7237 struct btrfs_transaction *transaction)
7238{
7239 struct extent_map *em;
7240 struct map_lookup *map;
7241 struct btrfs_device *dev;
7242 int i;
7243
7244 if (list_empty(&transaction->pending_chunks))
7245 return;
7246
7247 /* In order to kick the device replace finish process */
34441361 7248 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7249 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7250 map = em->map_lookup;
ce7213c7
MX
7251
7252 for (i = 0; i < map->num_stripes; i++) {
7253 dev = map->stripes[i].dev;
7254 dev->commit_bytes_used = dev->bytes_used;
7255 }
7256 }
34441361 7257 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7258}
5a13f430
AJ
7259
7260void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7261{
7262 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7263 while (fs_devices) {
7264 fs_devices->fs_info = fs_info;
7265 fs_devices = fs_devices->seed;
7266 }
7267}
7268
7269void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7270{
7271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7272 while (fs_devices) {
7273 fs_devices->fs_info = NULL;
7274 fs_devices = fs_devices->seed;
7275 }
7276}