btrfs: get next entry in tree_search_offset before doing checks
[linux-block.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
54fde91f 17#include <linux/namei.h>
784352fe 18#include "misc.h"
0b86a832
CM
19#include "ctree.h"
20#include "extent_map.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "print-tree.h"
24#include "volumes.h"
53b381b3 25#include "raid56.h"
8b712842 26#include "async-thread.h"
21adbd5c 27#include "check-integrity.h"
606686ee 28#include "rcu-string.h"
8dabb742 29#include "dev-replace.h"
99994cde 30#include "sysfs.h"
82fc28fb 31#include "tree-checker.h"
8719aaae 32#include "space-info.h"
aac0023c 33#include "block-group.h"
b0643e59 34#include "discard.h"
5b316468 35#include "zoned.h"
0b86a832 36
af902047
ZL
37const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 [BTRFS_RAID_RAID10] = {
39 .sub_stripes = 2,
40 .dev_stripes = 1,
41 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 42 .devs_min = 2,
8789f4fe 43 .tolerated_failures = 1,
af902047
ZL
44 .devs_increment = 2,
45 .ncopies = 2,
b50836ed 46 .nparity = 0,
ed23467b 47 .raid_name = "raid10",
41a6e891 48 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 49 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
50 },
51 [BTRFS_RAID_RAID1] = {
52 .sub_stripes = 1,
53 .dev_stripes = 1,
54 .devs_max = 2,
55 .devs_min = 2,
8789f4fe 56 .tolerated_failures = 1,
af902047
ZL
57 .devs_increment = 2,
58 .ncopies = 2,
b50836ed 59 .nparity = 0,
ed23467b 60 .raid_name = "raid1",
41a6e891 61 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 62 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 63 },
47e6f742
DS
64 [BTRFS_RAID_RAID1C3] = {
65 .sub_stripes = 1,
66 .dev_stripes = 1,
cf93e15e 67 .devs_max = 3,
47e6f742
DS
68 .devs_min = 3,
69 .tolerated_failures = 2,
70 .devs_increment = 3,
71 .ncopies = 3,
db26a024 72 .nparity = 0,
47e6f742
DS
73 .raid_name = "raid1c3",
74 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
75 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 },
8d6fac00
DS
77 [BTRFS_RAID_RAID1C4] = {
78 .sub_stripes = 1,
79 .dev_stripes = 1,
cf93e15e 80 .devs_max = 4,
8d6fac00
DS
81 .devs_min = 4,
82 .tolerated_failures = 3,
83 .devs_increment = 4,
84 .ncopies = 4,
db26a024 85 .nparity = 0,
8d6fac00
DS
86 .raid_name = "raid1c4",
87 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
88 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89 },
af902047
ZL
90 [BTRFS_RAID_DUP] = {
91 .sub_stripes = 1,
92 .dev_stripes = 2,
93 .devs_max = 1,
94 .devs_min = 1,
8789f4fe 95 .tolerated_failures = 0,
af902047
ZL
96 .devs_increment = 1,
97 .ncopies = 2,
b50836ed 98 .nparity = 0,
ed23467b 99 .raid_name = "dup",
41a6e891 100 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 101 .mindev_error = 0,
af902047
ZL
102 },
103 [BTRFS_RAID_RAID0] = {
104 .sub_stripes = 1,
105 .dev_stripes = 1,
106 .devs_max = 0,
b2f78e88 107 .devs_min = 1,
8789f4fe 108 .tolerated_failures = 0,
af902047
ZL
109 .devs_increment = 1,
110 .ncopies = 1,
b50836ed 111 .nparity = 0,
ed23467b 112 .raid_name = "raid0",
41a6e891 113 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 114 .mindev_error = 0,
af902047
ZL
115 },
116 [BTRFS_RAID_SINGLE] = {
117 .sub_stripes = 1,
118 .dev_stripes = 1,
119 .devs_max = 1,
120 .devs_min = 1,
8789f4fe 121 .tolerated_failures = 0,
af902047
ZL
122 .devs_increment = 1,
123 .ncopies = 1,
b50836ed 124 .nparity = 0,
ed23467b 125 .raid_name = "single",
41a6e891 126 .bg_flag = 0,
f9fbcaa2 127 .mindev_error = 0,
af902047
ZL
128 },
129 [BTRFS_RAID_RAID5] = {
130 .sub_stripes = 1,
131 .dev_stripes = 1,
132 .devs_max = 0,
133 .devs_min = 2,
8789f4fe 134 .tolerated_failures = 1,
af902047 135 .devs_increment = 1,
da612e31 136 .ncopies = 1,
b50836ed 137 .nparity = 1,
ed23467b 138 .raid_name = "raid5",
41a6e891 139 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 140 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
141 },
142 [BTRFS_RAID_RAID6] = {
143 .sub_stripes = 1,
144 .dev_stripes = 1,
145 .devs_max = 0,
146 .devs_min = 3,
8789f4fe 147 .tolerated_failures = 2,
af902047 148 .devs_increment = 1,
da612e31 149 .ncopies = 1,
b50836ed 150 .nparity = 2,
ed23467b 151 .raid_name = "raid6",
41a6e891 152 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 153 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
154 },
155};
156
500a44c9
DS
157/*
158 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159 * can be used as index to access btrfs_raid_array[].
160 */
161enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162{
163 if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 return BTRFS_RAID_RAID10;
165 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 return BTRFS_RAID_RAID1;
167 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 return BTRFS_RAID_RAID1C3;
169 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 return BTRFS_RAID_RAID1C4;
171 else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 return BTRFS_RAID_DUP;
173 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 return BTRFS_RAID_RAID0;
175 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 return BTRFS_RAID_RAID5;
177 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 return BTRFS_RAID_RAID6;
179
180 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181}
182
158da513 183const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 184{
158da513
DS
185 const int index = btrfs_bg_flags_to_raid_index(flags);
186
187 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
188 return NULL;
189
158da513 190 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
191}
192
f89e09cf
AJ
193/*
194 * Fill @buf with textual description of @bg_flags, no more than @size_buf
195 * bytes including terminating null byte.
196 */
197void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198{
199 int i;
200 int ret;
201 char *bp = buf;
202 u64 flags = bg_flags;
203 u32 size_bp = size_buf;
204
205 if (!flags) {
206 strcpy(bp, "NONE");
207 return;
208 }
209
210#define DESCRIBE_FLAG(flag, desc) \
211 do { \
212 if (flags & (flag)) { \
213 ret = snprintf(bp, size_bp, "%s|", (desc)); \
214 if (ret < 0 || ret >= size_bp) \
215 goto out_overflow; \
216 size_bp -= ret; \
217 bp += ret; \
218 flags &= ~(flag); \
219 } \
220 } while (0)
221
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225
226 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 btrfs_raid_array[i].raid_name);
230#undef DESCRIBE_FLAG
231
232 if (flags) {
233 ret = snprintf(bp, size_bp, "0x%llx|", flags);
234 size_bp -= ret;
235 }
236
237 if (size_bp < size_buf)
238 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239
240 /*
241 * The text is trimmed, it's up to the caller to provide sufficiently
242 * large buffer
243 */
244out_overflow:;
245}
246
6f8e0fc7 247static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 248static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 249static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
251static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 enum btrfs_map_op op,
253 u64 logical, u64 *length,
4c664611 254 struct btrfs_io_context **bioc_ret,
5ab56090 255 int mirror_num, int need_raid_map);
2b82032c 256
9c6b1c4d
DS
257/*
258 * Device locking
259 * ==============
260 *
261 * There are several mutexes that protect manipulation of devices and low-level
262 * structures like chunks but not block groups, extents or files
263 *
264 * uuid_mutex (global lock)
265 * ------------------------
266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268 * device) or requested by the device= mount option
269 *
270 * the mutex can be very coarse and can cover long-running operations
271 *
272 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 273 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
274 *
275 * global::fs_devs - add, remove, updates to the global list
276 *
18c850fd
JB
277 * does not protect: manipulation of the fs_devices::devices list in general
278 * but in mount context it could be used to exclude list modifications by eg.
279 * scan ioctl
9c6b1c4d
DS
280 *
281 * btrfs_device::name - renames (write side), read is RCU
282 *
283 * fs_devices::device_list_mutex (per-fs, with RCU)
284 * ------------------------------------------------
285 * protects updates to fs_devices::devices, ie. adding and deleting
286 *
287 * simple list traversal with read-only actions can be done with RCU protection
288 *
289 * may be used to exclude some operations from running concurrently without any
290 * modifications to the list (see write_all_supers)
291 *
18c850fd
JB
292 * Is not required at mount and close times, because our device list is
293 * protected by the uuid_mutex at that point.
294 *
9c6b1c4d
DS
295 * balance_mutex
296 * -------------
297 * protects balance structures (status, state) and context accessed from
298 * several places (internally, ioctl)
299 *
300 * chunk_mutex
301 * -----------
302 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
303 * device is added/removed. Additionally it also protects post_commit_list of
304 * individual devices, since they can be added to the transaction's
305 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
306 *
307 * cleaner_mutex
308 * -------------
309 * a big lock that is held by the cleaner thread and prevents running subvolume
310 * cleaning together with relocation or delayed iputs
311 *
312 *
313 * Lock nesting
314 * ============
315 *
316 * uuid_mutex
ae3e715f
AJ
317 * device_list_mutex
318 * chunk_mutex
319 * balance_mutex
89595e80
AJ
320 *
321 *
c3e1f96c
GR
322 * Exclusive operations
323 * ====================
89595e80
AJ
324 *
325 * Maintains the exclusivity of the following operations that apply to the
326 * whole filesystem and cannot run in parallel.
327 *
328 * - Balance (*)
329 * - Device add
330 * - Device remove
331 * - Device replace (*)
332 * - Resize
333 *
334 * The device operations (as above) can be in one of the following states:
335 *
336 * - Running state
337 * - Paused state
338 * - Completed state
339 *
340 * Only device operations marked with (*) can go into the Paused state for the
341 * following reasons:
342 *
343 * - ioctl (only Balance can be Paused through ioctl)
344 * - filesystem remounted as read-only
345 * - filesystem unmounted and mounted as read-only
346 * - system power-cycle and filesystem mounted as read-only
347 * - filesystem or device errors leading to forced read-only
348 *
c3e1f96c
GR
349 * The status of exclusive operation is set and cleared atomically.
350 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
351 * A device operation in Paused or Running state can be canceled or resumed
352 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 353 * The exclusive status is cleared when the device operation is canceled or
89595e80 354 * completed.
9c6b1c4d
DS
355 */
356
67a2c45e 357DEFINE_MUTEX(uuid_mutex);
8a4b83cc 358static LIST_HEAD(fs_uuids);
4143cb8b 359struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
360{
361 return &fs_uuids;
362}
8a4b83cc 363
2dfeca9b
DS
364/*
365 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
368 *
369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370 * The returned struct is not linked onto any lists and can be destroyed with
371 * kfree() right away.
372 */
7239ff4b
NB
373static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 const u8 *metadata_fsid)
2208a378
ID
375{
376 struct btrfs_fs_devices *fs_devs;
377
78f2c9e6 378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
379 if (!fs_devs)
380 return ERR_PTR(-ENOMEM);
381
382 mutex_init(&fs_devs->device_list_mutex);
383
384 INIT_LIST_HEAD(&fs_devs->devices);
385 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 386 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 387 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
388 if (fsid)
389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 390
7239ff4b
NB
391 if (metadata_fsid)
392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 else if (fsid)
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
2208a378
ID
396 return fs_devs;
397}
398
a425f9d4 399void btrfs_free_device(struct btrfs_device *device)
48dae9cf 400{
bbbf7243 401 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 402 rcu_string_free(device->name);
1c11b63e 403 extent_io_tree_release(&device->alloc_state);
48dae9cf 404 bio_put(device->flush_bio);
5b316468 405 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
406 kfree(device);
407}
408
e4404d6e
YZ
409static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410{
411 struct btrfs_device *device;
412 WARN_ON(fs_devices->opened);
413 while (!list_empty(&fs_devices->devices)) {
414 device = list_entry(fs_devices->devices.next,
415 struct btrfs_device, dev_list);
416 list_del(&device->dev_list);
a425f9d4 417 btrfs_free_device(device);
e4404d6e
YZ
418 }
419 kfree(fs_devices);
420}
421
ffc5a379 422void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
423{
424 struct btrfs_fs_devices *fs_devices;
8a4b83cc 425
2b82032c
YZ
426 while (!list_empty(&fs_uuids)) {
427 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
428 struct btrfs_fs_devices, fs_list);
429 list_del(&fs_devices->fs_list);
e4404d6e 430 free_fs_devices(fs_devices);
8a4b83cc 431 }
8a4b83cc
CM
432}
433
7239ff4b
NB
434static noinline struct btrfs_fs_devices *find_fsid(
435 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 436{
8a4b83cc
CM
437 struct btrfs_fs_devices *fs_devices;
438
7239ff4b
NB
439 ASSERT(fsid);
440
7a62d0f0 441 /* Handle non-split brain cases */
c4babc5e 442 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
443 if (metadata_fsid) {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0)
447 return fs_devices;
448 } else {
449 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450 return fs_devices;
451 }
8a4b83cc
CM
452 }
453 return NULL;
454}
455
c6730a0e
SY
456static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 struct btrfs_super_block *disk_super)
458{
459
460 struct btrfs_fs_devices *fs_devices;
461
462 /*
463 * Handle scanned device having completed its fsid change but
464 * belonging to a fs_devices that was created by first scanning
465 * a device which didn't have its fsid/metadata_uuid changed
466 * at all and the CHANGING_FSID_V2 flag set.
467 */
468 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 if (fs_devices->fsid_change &&
470 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 BTRFS_FSID_SIZE) == 0 &&
472 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 BTRFS_FSID_SIZE) == 0) {
474 return fs_devices;
475 }
476 }
477 /*
478 * Handle scanned device having completed its fsid change but
479 * belonging to a fs_devices that was created by a device that
480 * has an outdated pair of fsid/metadata_uuid and
481 * CHANGING_FSID_V2 flag set.
482 */
483 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 if (fs_devices->fsid_change &&
485 memcmp(fs_devices->metadata_uuid,
486 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 BTRFS_FSID_SIZE) == 0) {
489 return fs_devices;
490 }
491 }
492
493 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494}
495
496
beaf8ab3
SB
497static int
498btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 int flush, struct block_device **bdev,
8f32380d 500 struct btrfs_super_block **disk_super)
beaf8ab3
SB
501{
502 int ret;
503
504 *bdev = blkdev_get_by_path(device_path, flags, holder);
505
506 if (IS_ERR(*bdev)) {
507 ret = PTR_ERR(*bdev);
beaf8ab3
SB
508 goto error;
509 }
510
511 if (flush)
1226dfff 512 sync_blockdev(*bdev);
9f6d2510 513 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
514 if (ret) {
515 blkdev_put(*bdev, flags);
516 goto error;
517 }
518 invalidate_bdev(*bdev);
8f32380d
JT
519 *disk_super = btrfs_read_dev_super(*bdev);
520 if (IS_ERR(*disk_super)) {
521 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
522 blkdev_put(*bdev, flags);
523 goto error;
524 }
525
526 return 0;
527
528error:
529 *bdev = NULL;
beaf8ab3
SB
530 return ret;
531}
532
70bc7088
AJ
533static bool device_path_matched(const char *path, struct btrfs_device *device)
534{
535 int found;
536
537 rcu_read_lock();
538 found = strcmp(rcu_str_deref(device->name), path);
539 rcu_read_unlock();
540
541 return found == 0;
542}
543
d8367db3
AJ
544/*
545 * Search and remove all stale (devices which are not mounted) devices.
546 * When both inputs are NULL, it will search and release all stale devices.
547 * path: Optional. When provided will it release all unmounted devices
548 * matching this path only.
549 * skip_dev: Optional. Will skip this device when searching for the stale
550 * devices.
70bc7088
AJ
551 * Return: 0 for success or if @path is NULL.
552 * -EBUSY if @path is a mounted device.
553 * -ENOENT if @path does not match any device in the list.
d8367db3 554 */
70bc7088 555static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 556 struct btrfs_device *skip_device)
4fde46f0 557{
fa6d2ae5
AJ
558 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
560 int ret = 0;
561
c1247069
AJ
562 lockdep_assert_held(&uuid_mutex);
563
70bc7088
AJ
564 if (path)
565 ret = -ENOENT;
4fde46f0 566
fa6d2ae5 567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 568
70bc7088 569 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
570 list_for_each_entry_safe(device, tmp_device,
571 &fs_devices->devices, dev_list) {
fa6d2ae5 572 if (skip_device && skip_device == device)
d8367db3 573 continue;
fa6d2ae5 574 if (path && !device->name)
4fde46f0 575 continue;
70bc7088 576 if (path && !device_path_matched(path, device))
38cf665d 577 continue;
70bc7088
AJ
578 if (fs_devices->opened) {
579 /* for an already deleted device return 0 */
580 if (path && ret != 0)
581 ret = -EBUSY;
582 break;
583 }
4fde46f0 584
4fde46f0 585 /* delete the stale device */
7bcb8164
AJ
586 fs_devices->num_devices--;
587 list_del(&device->dev_list);
588 btrfs_free_device(device);
589
70bc7088 590 ret = 0;
7bcb8164
AJ
591 }
592 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 593
7bcb8164
AJ
594 if (fs_devices->num_devices == 0) {
595 btrfs_sysfs_remove_fsid(fs_devices);
596 list_del(&fs_devices->fs_list);
597 free_fs_devices(fs_devices);
4fde46f0
AJ
598 }
599 }
70bc7088
AJ
600
601 return ret;
4fde46f0
AJ
602}
603
18c850fd
JB
604/*
605 * This is only used on mount, and we are protected from competing things
606 * messing with our fs_devices by the uuid_mutex, thus we do not need the
607 * fs_devices->device_list_mutex here.
608 */
0fb08bcc
AJ
609static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 struct btrfs_device *device, fmode_t flags,
611 void *holder)
612{
613 struct request_queue *q;
614 struct block_device *bdev;
0fb08bcc
AJ
615 struct btrfs_super_block *disk_super;
616 u64 devid;
617 int ret;
618
619 if (device->bdev)
620 return -EINVAL;
621 if (!device->name)
622 return -EINVAL;
623
624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 625 &bdev, &disk_super);
0fb08bcc
AJ
626 if (ret)
627 return ret;
628
0fb08bcc
AJ
629 devid = btrfs_stack_device_id(&disk_super->dev_item);
630 if (devid != device->devid)
8f32380d 631 goto error_free_page;
0fb08bcc
AJ
632
633 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 634 goto error_free_page;
0fb08bcc
AJ
635
636 device->generation = btrfs_super_generation(disk_super);
637
638 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
639 if (btrfs_super_incompat_flags(disk_super) &
640 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 pr_err(
642 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 643 goto error_free_page;
7239ff4b
NB
644 }
645
ebbede42 646 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 647 fs_devices->seeding = true;
0fb08bcc 648 } else {
ebbede42
AJ
649 if (bdev_read_only(bdev))
650 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 else
652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
653 }
654
655 q = bdev_get_queue(bdev);
0fb08bcc 656 if (!blk_queue_nonrot(q))
7f0432d0 657 fs_devices->rotating = true;
0fb08bcc
AJ
658
659 device->bdev = bdev;
e12c9621 660 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
661 device->mode = flags;
662
663 fs_devices->open_devices++;
ebbede42
AJ
664 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 666 fs_devices->rw_devices++;
b1b8e386 667 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 668 }
8f32380d 669 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
670
671 return 0;
672
8f32380d
JT
673error_free_page:
674 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
675 blkdev_put(bdev, flags);
676
677 return -EINVAL;
678}
679
7a62d0f0
NB
680/*
681 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
682 * being created with a disk that has already completed its fsid change. Such
683 * disk can belong to an fs which has its FSID changed or to one which doesn't.
684 * Handle both cases here.
7a62d0f0
NB
685 */
686static struct btrfs_fs_devices *find_fsid_inprogress(
687 struct btrfs_super_block *disk_super)
688{
689 struct btrfs_fs_devices *fs_devices;
690
691 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 BTRFS_FSID_SIZE) != 0 &&
694 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696 return fs_devices;
697 }
698 }
699
c0d81c7c 700 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
701}
702
cc5de4e7
NB
703
704static struct btrfs_fs_devices *find_fsid_changed(
705 struct btrfs_super_block *disk_super)
706{
707 struct btrfs_fs_devices *fs_devices;
708
709 /*
710 * Handles the case where scanned device is part of an fs that had
1a9fd417 711 * multiple successful changes of FSID but currently device didn't
05840710
NB
712 * observe it. Meaning our fsid will be different than theirs. We need
713 * to handle two subcases :
714 * 1 - The fs still continues to have different METADATA/FSID uuids.
715 * 2 - The fs is switched back to its original FSID (METADATA/FSID
716 * are equal).
cc5de4e7
NB
717 */
718 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 719 /* Changed UUIDs */
cc5de4e7
NB
720 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 BTRFS_FSID_SIZE) != 0 &&
722 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 BTRFS_FSID_SIZE) == 0 &&
724 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
725 BTRFS_FSID_SIZE) != 0)
726 return fs_devices;
727
728 /* Unchanged UUIDs */
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0)
cc5de4e7 733 return fs_devices;
cc5de4e7
NB
734 }
735
736 return NULL;
737}
1362089d
NB
738
739static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 struct btrfs_super_block *disk_super)
741{
742 struct btrfs_fs_devices *fs_devices;
743
744 /*
745 * Handle the case where the scanned device is part of an fs whose last
746 * metadata UUID change reverted it to the original FSID. At the same
747 * time * fs_devices was first created by another constitutent device
748 * which didn't fully observe the operation. This results in an
749 * btrfs_fs_devices created with metadata/fsid different AND
750 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 * fs_devices equal to the FSID of the disk.
752 */
753 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 BTRFS_FSID_SIZE) != 0 &&
756 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 BTRFS_FSID_SIZE) == 0 &&
758 fs_devices->fsid_change)
759 return fs_devices;
760 }
761
762 return NULL;
763}
60999ca4
DS
764/*
765 * Add new device to list of registered devices
766 *
767 * Returns:
e124ece5
AJ
768 * device pointer which was just added or updated when successful
769 * error pointer when failed
60999ca4 770 */
e124ece5 771static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
772 struct btrfs_super_block *disk_super,
773 bool *new_device_added)
8a4b83cc
CM
774{
775 struct btrfs_device *device;
7a62d0f0 776 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 777 struct rcu_string *name;
8a4b83cc 778 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 779 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 784
cc5de4e7 785 if (fsid_change_in_progress) {
c0d81c7c 786 if (!has_metadata_uuid)
cc5de4e7 787 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 788 else
cc5de4e7 789 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 790 } else if (has_metadata_uuid) {
c6730a0e 791 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 792 } else {
1362089d
NB
793 fs_devices = find_fsid_reverted_metadata(disk_super);
794 if (!fs_devices)
795 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
796 }
797
8a4b83cc 798
8a4b83cc 799 if (!fs_devices) {
7239ff4b
NB
800 if (has_metadata_uuid)
801 fs_devices = alloc_fs_devices(disk_super->fsid,
802 disk_super->metadata_uuid);
803 else
804 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805
2208a378 806 if (IS_ERR(fs_devices))
e124ece5 807 return ERR_CAST(fs_devices);
2208a378 808
92900e51
AV
809 fs_devices->fsid_change = fsid_change_in_progress;
810
9c6d173e 811 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 812 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 813
8a4b83cc
CM
814 device = NULL;
815 } else {
562d7b15
JB
816 struct btrfs_dev_lookup_args args = {
817 .devid = devid,
818 .uuid = disk_super->dev_item.uuid,
819 };
820
9c6d173e 821 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 822 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
823
824 /*
825 * If this disk has been pulled into an fs devices created by
826 * a device which had the CHANGING_FSID_V2 flag then replace the
827 * metadata_uuid/fsid values of the fs_devices.
828 */
1362089d 829 if (fs_devices->fsid_change &&
7a62d0f0
NB
830 found_transid > fs_devices->latest_generation) {
831 memcpy(fs_devices->fsid, disk_super->fsid,
832 BTRFS_FSID_SIZE);
1362089d
NB
833
834 if (has_metadata_uuid)
835 memcpy(fs_devices->metadata_uuid,
836 disk_super->metadata_uuid,
837 BTRFS_FSID_SIZE);
838 else
839 memcpy(fs_devices->metadata_uuid,
840 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
841
842 fs_devices->fsid_change = false;
843 }
8a4b83cc 844 }
443f24fe 845
8a4b83cc 846 if (!device) {
9c6d173e
AJ
847 if (fs_devices->opened) {
848 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 849 return ERR_PTR(-EBUSY);
9c6d173e 850 }
2b82032c 851
12bd2fc0
ID
852 device = btrfs_alloc_device(NULL, &devid,
853 disk_super->dev_item.uuid);
854 if (IS_ERR(device)) {
9c6d173e 855 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 856 /* we can safely leave the fs_devices entry around */
e124ece5 857 return device;
8a4b83cc 858 }
606686ee
JB
859
860 name = rcu_string_strdup(path, GFP_NOFS);
861 if (!name) {
a425f9d4 862 btrfs_free_device(device);
9c6d173e 863 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 864 return ERR_PTR(-ENOMEM);
8a4b83cc 865 }
606686ee 866 rcu_assign_pointer(device->name, name);
90519d66 867
1f78160c 868 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 869 fs_devices->num_devices++;
e5e9a520 870
2b82032c 871 device->fs_devices = fs_devices;
4306a974 872 *new_device_added = true;
327f18cc
AJ
873
874 if (disk_super->label[0])
aa6c0df7
AJ
875 pr_info(
876 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->label, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
327f18cc 879 else
aa6c0df7
AJ
880 pr_info(
881 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->fsid, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
327f18cc 884
606686ee 885 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
886 /*
887 * When FS is already mounted.
888 * 1. If you are here and if the device->name is NULL that
889 * means this device was missing at time of FS mount.
890 * 2. If you are here and if the device->name is different
891 * from 'path' that means either
892 * a. The same device disappeared and reappeared with
893 * different name. or
894 * b. The missing-disk-which-was-replaced, has
895 * reappeared now.
896 *
897 * We must allow 1 and 2a above. But 2b would be a spurious
898 * and unintentional.
899 *
900 * Further in case of 1 and 2a above, the disk at 'path'
901 * would have missed some transaction when it was away and
902 * in case of 2a the stale bdev has to be updated as well.
903 * 2b must not be allowed at all time.
904 */
905
906 /*
0f23ae74
CM
907 * For now, we do allow update to btrfs_fs_device through the
908 * btrfs dev scan cli after FS has been mounted. We're still
909 * tracking a problem where systems fail mount by subvolume id
910 * when we reject replacement on a mounted FS.
b96de000 911 */
0f23ae74 912 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
913 /*
914 * That is if the FS is _not_ mounted and if you
915 * are here, that means there is more than one
916 * disk with same uuid and devid.We keep the one
917 * with larger generation number or the last-in if
918 * generation are equal.
919 */
9c6d173e 920 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 921 return ERR_PTR(-EEXIST);
77bdae4d 922 }
b96de000 923
a9261d41
AJ
924 /*
925 * We are going to replace the device path for a given devid,
926 * make sure it's the same device if the device is mounted
927 */
928 if (device->bdev) {
4e7b5671
CH
929 int error;
930 dev_t path_dev;
a9261d41 931
4e7b5671
CH
932 error = lookup_bdev(path, &path_dev);
933 if (error) {
a9261d41 934 mutex_unlock(&fs_devices->device_list_mutex);
4e7b5671 935 return ERR_PTR(error);
a9261d41
AJ
936 }
937
4e7b5671 938 if (device->bdev->bd_dev != path_dev) {
a9261d41 939 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6
JT
940 /*
941 * device->fs_info may not be reliable here, so
942 * pass in a NULL instead. This avoids a
943 * possible use-after-free when the fs_info and
944 * fs_info->sb are already torn down.
945 */
946 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 path, devid, found_transid,
949 current->comm,
950 task_pid_nr(current));
a9261d41
AJ
951 return ERR_PTR(-EEXIST);
952 }
a9261d41 953 btrfs_info_in_rcu(device->fs_info,
79dae17d
AJ
954 "devid %llu device path %s changed to %s scanned by %s (%d)",
955 devid, rcu_str_deref(device->name),
956 path, current->comm,
957 task_pid_nr(current));
a9261d41
AJ
958 }
959
606686ee 960 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
961 if (!name) {
962 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 963 return ERR_PTR(-ENOMEM);
9c6d173e 964 }
606686ee
JB
965 rcu_string_free(device->name);
966 rcu_assign_pointer(device->name, name);
e6e674bd 967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 968 fs_devices->missing_devices--;
e6e674bd 969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 970 }
8a4b83cc
CM
971 }
972
77bdae4d
AJ
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
d1a63002 979 if (!fs_devices->opened) {
77bdae4d 980 device->generation = found_transid;
d1a63002
NB
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
77bdae4d 984
f2788d2f
AJ
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
9c6d173e 987 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 988 return device;
8a4b83cc
CM
989}
990
e4404d6e
YZ
991static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992{
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
d2979aa2 996 int ret = 0;
e4404d6e 997
c1247069
AJ
998 lockdep_assert_held(&uuid_mutex);
999
7239ff4b 1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
e4404d6e 1003
02db0844 1004 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
1007 struct rcu_string *name;
1008
12bd2fc0
ID
1009 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1010 orig_dev->uuid);
d2979aa2
AJ
1011 if (IS_ERR(device)) {
1012 ret = PTR_ERR(device);
e4404d6e 1013 goto error;
d2979aa2 1014 }
e4404d6e 1015
606686ee
JB
1016 /*
1017 * This is ok to do without rcu read locked because we hold the
1018 * uuid mutex so nothing we touch in here is going to disappear.
1019 */
e755f780 1020 if (orig_dev->name) {
78f2c9e6
DS
1021 name = rcu_string_strdup(orig_dev->name->str,
1022 GFP_KERNEL);
e755f780 1023 if (!name) {
a425f9d4 1024 btrfs_free_device(device);
d2979aa2 1025 ret = -ENOMEM;
e755f780
AJ
1026 goto error;
1027 }
1028 rcu_assign_pointer(device->name, name);
fd2696f3 1029 }
e4404d6e 1030
e4404d6e
YZ
1031 list_add(&device->dev_list, &fs_devices->devices);
1032 device->fs_devices = fs_devices;
1033 fs_devices->num_devices++;
1034 }
1035 return fs_devices;
1036error:
1037 free_fs_devices(fs_devices);
d2979aa2 1038 return ERR_PTR(ret);
e4404d6e
YZ
1039}
1040
3712ccb7 1041static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1042 struct btrfs_device **latest_dev)
dfe25020 1043{
c6e30871 1044 struct btrfs_device *device, *next;
a6b0d5c8 1045
46224705 1046 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1047 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1048 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1049 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1050 &device->dev_state) &&
998a0671
AJ
1051 !test_bit(BTRFS_DEV_STATE_MISSING,
1052 &device->dev_state) &&
3712ccb7
NB
1053 (!*latest_dev ||
1054 device->generation > (*latest_dev)->generation)) {
1055 *latest_dev = device;
a6b0d5c8 1056 }
2b82032c 1057 continue;
a6b0d5c8 1058 }
2b82032c 1059
cf89af14
AJ
1060 /*
1061 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 * in btrfs_init_dev_replace() so just continue.
1063 */
1064 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1065 continue;
1066
2b82032c 1067 if (device->bdev) {
d4d77629 1068 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1069 device->bdev = NULL;
1070 fs_devices->open_devices--;
1071 }
ebbede42 1072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1073 list_del_init(&device->dev_alloc_list);
ebbede42 1074 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1075 fs_devices->rw_devices--;
2b82032c 1076 }
e4404d6e
YZ
1077 list_del_init(&device->dev_list);
1078 fs_devices->num_devices--;
a425f9d4 1079 btrfs_free_device(device);
dfe25020 1080 }
2b82032c 1081
3712ccb7
NB
1082}
1083
1084/*
1085 * After we have read the system tree and know devids belonging to this
1086 * filesystem, remove the device which does not belong there.
1087 */
bacce86a 1088void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1089{
1090 struct btrfs_device *latest_dev = NULL;
944d3f9f 1091 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1092
1093 mutex_lock(&uuid_mutex);
bacce86a 1094 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1095
1096 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1097 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1098
d24fa5c1 1099 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1100
dfe25020 1101 mutex_unlock(&uuid_mutex);
dfe25020 1102}
a0af469b 1103
14238819
AJ
1104static void btrfs_close_bdev(struct btrfs_device *device)
1105{
08ffcae8
DS
1106 if (!device->bdev)
1107 return;
1108
ebbede42 1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1110 sync_blockdev(device->bdev);
1111 invalidate_bdev(device->bdev);
1112 }
1113
08ffcae8 1114 blkdev_put(device->bdev, device->mode);
14238819
AJ
1115}
1116
959b1c04 1117static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1118{
1119 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1120
ebbede42 1121 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1122 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 list_del_init(&device->dev_alloc_list);
1124 fs_devices->rw_devices--;
1125 }
1126
0d977e0e
DCZX
1127 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1129
5d03dbeb
LZ
1130 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1132 fs_devices->missing_devices--;
5d03dbeb 1133 }
f448341a 1134
959b1c04 1135 btrfs_close_bdev(device);
321f69f8 1136 if (device->bdev) {
3fff3975 1137 fs_devices->open_devices--;
321f69f8 1138 device->bdev = NULL;
f448341a 1139 }
321f69f8 1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1141 btrfs_destroy_dev_zone_info(device);
f448341a 1142
321f69f8
JT
1143 device->fs_info = NULL;
1144 atomic_set(&device->dev_stats_ccnt, 0);
1145 extent_io_tree_release(&device->alloc_state);
959b1c04 1146
6b225baa
FM
1147 /*
1148 * Reset the flush error record. We might have a transient flush error
1149 * in this mount, and if so we aborted the current transaction and set
1150 * the fs to an error state, guaranteeing no super blocks can be further
1151 * committed. However that error might be transient and if we unmount the
1152 * filesystem and mount it again, we should allow the mount to succeed
1153 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 * filesystem again we still get flush errors, then we will again abort
1155 * any transaction and set the error state, guaranteeing no commits of
1156 * unsafe super blocks.
1157 */
1158 device->last_flush_error = 0;
1159
321f69f8
JT
1160 /* Verify the device is back in a pristine state */
1161 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 ASSERT(list_empty(&device->dev_alloc_list));
1164 ASSERT(list_empty(&device->post_commit_list));
1165 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1166}
1167
54eed6ae 1168static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1169{
2037a093 1170 struct btrfs_device *device, *tmp;
e4404d6e 1171
425c6ed6
JB
1172 lockdep_assert_held(&uuid_mutex);
1173
2b82032c 1174 if (--fs_devices->opened > 0)
54eed6ae 1175 return;
8a4b83cc 1176
425c6ed6 1177 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1178 btrfs_close_one_device(device);
c9513edb 1179
e4404d6e
YZ
1180 WARN_ON(fs_devices->open_devices);
1181 WARN_ON(fs_devices->rw_devices);
2b82032c 1182 fs_devices->opened = 0;
0395d84f 1183 fs_devices->seeding = false;
c4989c2f 1184 fs_devices->fs_info = NULL;
8a4b83cc
CM
1185}
1186
54eed6ae 1187void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1188{
944d3f9f
NB
1189 LIST_HEAD(list);
1190 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1191
1192 mutex_lock(&uuid_mutex);
54eed6ae 1193 close_fs_devices(fs_devices);
944d3f9f
NB
1194 if (!fs_devices->opened)
1195 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1196
944d3f9f 1197 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1198 close_fs_devices(fs_devices);
944d3f9f 1199 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1200 free_fs_devices(fs_devices);
1201 }
425c6ed6 1202 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1203}
1204
897fb573 1205static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1206 fmode_t flags, void *holder)
8a4b83cc 1207{
8a4b83cc 1208 struct btrfs_device *device;
443f24fe 1209 struct btrfs_device *latest_dev = NULL;
96c2e067 1210 struct btrfs_device *tmp_device;
8a4b83cc 1211
d4d77629
TH
1212 flags |= FMODE_EXCL;
1213
96c2e067
AJ
1214 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1215 dev_list) {
1216 int ret;
a0af469b 1217
96c2e067
AJ
1218 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1219 if (ret == 0 &&
1220 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1221 latest_dev = device;
96c2e067
AJ
1222 } else if (ret == -ENODATA) {
1223 fs_devices->num_devices--;
1224 list_del(&device->dev_list);
1225 btrfs_free_device(device);
1226 }
8a4b83cc 1227 }
1ed802c9
AJ
1228 if (fs_devices->open_devices == 0)
1229 return -EINVAL;
1230
2b82032c 1231 fs_devices->opened = 1;
d24fa5c1 1232 fs_devices->latest_dev = latest_dev;
2b82032c 1233 fs_devices->total_rw_bytes = 0;
c4a816c6 1234 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1235 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1236
1237 return 0;
2b82032c
YZ
1238}
1239
4f0f586b
ST
1240static int devid_cmp(void *priv, const struct list_head *a,
1241 const struct list_head *b)
f8e10cd3 1242{
214cc184 1243 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1244
1245 dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 dev2 = list_entry(b, struct btrfs_device, dev_list);
1247
1248 if (dev1->devid < dev2->devid)
1249 return -1;
1250 else if (dev1->devid > dev2->devid)
1251 return 1;
1252 return 0;
1253}
1254
2b82032c 1255int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1256 fmode_t flags, void *holder)
2b82032c
YZ
1257{
1258 int ret;
1259
f5194e34 1260 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1261 /*
1262 * The device_list_mutex cannot be taken here in case opening the
a8698707 1263 * underlying device takes further locks like open_mutex.
18c850fd
JB
1264 *
1265 * We also don't need the lock here as this is called during mount and
1266 * exclusion is provided by uuid_mutex
1267 */
f5194e34 1268
2b82032c 1269 if (fs_devices->opened) {
e4404d6e
YZ
1270 fs_devices->opened++;
1271 ret = 0;
2b82032c 1272 } else {
f8e10cd3 1273 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1274 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1275 }
542c5908 1276
8a4b83cc
CM
1277 return ret;
1278}
1279
8f32380d 1280void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1281{
8f32380d
JT
1282 struct page *page = virt_to_page(super);
1283
6cf86a00
AJ
1284 put_page(page);
1285}
1286
b335eab8 1287static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1288 u64 bytenr, u64 bytenr_orig)
6cf86a00 1289{
b335eab8
NB
1290 struct btrfs_super_block *disk_super;
1291 struct page *page;
6cf86a00
AJ
1292 void *p;
1293 pgoff_t index;
1294
1295 /* make sure our super fits in the device */
cda00eba 1296 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1297 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1298
1299 /* make sure our super fits in the page */
b335eab8
NB
1300 if (sizeof(*disk_super) > PAGE_SIZE)
1301 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1302
1303 /* make sure our super doesn't straddle pages on disk */
1304 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1305 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1307
1308 /* pull in the page with our super */
b335eab8 1309 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1310
b335eab8
NB
1311 if (IS_ERR(page))
1312 return ERR_CAST(page);
6cf86a00 1313
b335eab8 1314 p = page_address(page);
6cf86a00
AJ
1315
1316 /* align our pointer to the offset of the super block */
b335eab8 1317 disk_super = p + offset_in_page(bytenr);
6cf86a00 1318
12659251 1319 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1320 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1321 btrfs_release_disk_super(p);
b335eab8 1322 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1323 }
1324
b335eab8
NB
1325 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1327
b335eab8 1328 return disk_super;
6cf86a00
AJ
1329}
1330
228a73ab
AJ
1331int btrfs_forget_devices(const char *path)
1332{
1333 int ret;
1334
1335 mutex_lock(&uuid_mutex);
1336 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 mutex_unlock(&uuid_mutex);
1338
1339 return ret;
1340}
1341
6f60cbd3
DS
1342/*
1343 * Look for a btrfs signature on a device. This may be called out of the mount path
1344 * and we are not allowed to call set_blocksize during the scan. The superblock
1345 * is read via pagecache
1346 */
36350e95
GJ
1347struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1348 void *holder)
8a4b83cc
CM
1349{
1350 struct btrfs_super_block *disk_super;
4306a974 1351 bool new_device_added = false;
36350e95 1352 struct btrfs_device *device = NULL;
8a4b83cc 1353 struct block_device *bdev;
12659251
NA
1354 u64 bytenr, bytenr_orig;
1355 int ret;
8a4b83cc 1356
899f9307
DS
1357 lockdep_assert_held(&uuid_mutex);
1358
6f60cbd3
DS
1359 /*
1360 * we would like to check all the supers, but that would make
1361 * a btrfs mount succeed after a mkfs from a different FS.
1362 * So, we need to add a special mount option to scan for
1363 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1364 */
d4d77629 1365 flags |= FMODE_EXCL;
6f60cbd3
DS
1366
1367 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1368 if (IS_ERR(bdev))
36350e95 1369 return ERR_CAST(bdev);
6f60cbd3 1370
12659251
NA
1371 bytenr_orig = btrfs_sb_offset(0);
1372 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1373 if (ret) {
1374 device = ERR_PTR(ret);
1375 goto error_bdev_put;
1376 }
12659251
NA
1377
1378 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1379 if (IS_ERR(disk_super)) {
1380 device = ERR_CAST(disk_super);
6f60cbd3 1381 goto error_bdev_put;
05a5c55d 1382 }
6f60cbd3 1383
4306a974 1384 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1385 if (!IS_ERR(device)) {
4306a974
AJ
1386 if (new_device_added)
1387 btrfs_free_stale_devices(path, device);
1388 }
6f60cbd3 1389
8f32380d 1390 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1391
1392error_bdev_put:
d4d77629 1393 blkdev_put(bdev, flags);
b6ed73bc 1394
36350e95 1395 return device;
8a4b83cc 1396}
0b86a832 1397
1c11b63e
JM
1398/*
1399 * Try to find a chunk that intersects [start, start + len] range and when one
1400 * such is found, record the end of it in *start
1401 */
1c11b63e
JM
1402static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1403 u64 len)
6df9a95e 1404{
1c11b63e 1405 u64 physical_start, physical_end;
6df9a95e 1406
1c11b63e 1407 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1408
1c11b63e
JM
1409 if (!find_first_extent_bit(&device->alloc_state, *start,
1410 &physical_start, &physical_end,
1411 CHUNK_ALLOCATED, NULL)) {
c152b63e 1412
1c11b63e
JM
1413 if (in_range(physical_start, *start, len) ||
1414 in_range(*start, physical_start,
1415 physical_end - physical_start)) {
1416 *start = physical_end + 1;
1417 return true;
6df9a95e
JB
1418 }
1419 }
1c11b63e 1420 return false;
6df9a95e
JB
1421}
1422
3b4ffa40
NA
1423static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1424{
1425 switch (device->fs_devices->chunk_alloc_policy) {
1426 case BTRFS_CHUNK_ALLOC_REGULAR:
1427 /*
1428 * We don't want to overwrite the superblock on the drive nor
1429 * any area used by the boot loader (grub for example), so we
1430 * make sure to start at an offset of at least 1MB.
1431 */
1432 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1433 case BTRFS_CHUNK_ALLOC_ZONED:
1434 /*
1435 * We don't care about the starting region like regular
1436 * allocator, because we anyway use/reserve the first two zones
1437 * for superblock logging.
1438 */
1439 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1440 default:
1441 BUG();
1442 }
1443}
1444
1cd6121f
NA
1445static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1446 u64 *hole_start, u64 *hole_size,
1447 u64 num_bytes)
1448{
1449 u64 zone_size = device->zone_info->zone_size;
1450 u64 pos;
1451 int ret;
1452 bool changed = false;
1453
1454 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1455
1456 while (*hole_size > 0) {
1457 pos = btrfs_find_allocatable_zones(device, *hole_start,
1458 *hole_start + *hole_size,
1459 num_bytes);
1460 if (pos != *hole_start) {
1461 *hole_size = *hole_start + *hole_size - pos;
1462 *hole_start = pos;
1463 changed = true;
1464 if (*hole_size < num_bytes)
1465 break;
1466 }
1467
1468 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1469
1470 /* Range is ensured to be empty */
1471 if (!ret)
1472 return changed;
1473
1474 /* Given hole range was invalid (outside of device) */
1475 if (ret == -ERANGE) {
1476 *hole_start += *hole_size;
d6f67afb 1477 *hole_size = 0;
7000babd 1478 return true;
1cd6121f
NA
1479 }
1480
1481 *hole_start += zone_size;
1482 *hole_size -= zone_size;
1483 changed = true;
1484 }
1485
1486 return changed;
1487}
1488
3b4ffa40
NA
1489/**
1490 * dev_extent_hole_check - check if specified hole is suitable for allocation
1491 * @device: the device which we have the hole
1492 * @hole_start: starting position of the hole
1493 * @hole_size: the size of the hole
1494 * @num_bytes: the size of the free space that we need
1495 *
1cd6121f 1496 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1497 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1498 */
1499static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1500 u64 *hole_size, u64 num_bytes)
1501{
1502 bool changed = false;
1503 u64 hole_end = *hole_start + *hole_size;
1504
1cd6121f
NA
1505 for (;;) {
1506 /*
1507 * Check before we set max_hole_start, otherwise we could end up
1508 * sending back this offset anyway.
1509 */
1510 if (contains_pending_extent(device, hole_start, *hole_size)) {
1511 if (hole_end >= *hole_start)
1512 *hole_size = hole_end - *hole_start;
1513 else
1514 *hole_size = 0;
1515 changed = true;
1516 }
1517
1518 switch (device->fs_devices->chunk_alloc_policy) {
1519 case BTRFS_CHUNK_ALLOC_REGULAR:
1520 /* No extra check */
1521 break;
1522 case BTRFS_CHUNK_ALLOC_ZONED:
1523 if (dev_extent_hole_check_zoned(device, hole_start,
1524 hole_size, num_bytes)) {
1525 changed = true;
1526 /*
1527 * The changed hole can contain pending extent.
1528 * Loop again to check that.
1529 */
1530 continue;
1531 }
1532 break;
1533 default:
1534 BUG();
1535 }
3b4ffa40 1536
3b4ffa40 1537 break;
3b4ffa40
NA
1538 }
1539
1540 return changed;
1541}
6df9a95e 1542
0b86a832 1543/*
499f377f
JM
1544 * find_free_dev_extent_start - find free space in the specified device
1545 * @device: the device which we search the free space in
1546 * @num_bytes: the size of the free space that we need
1547 * @search_start: the position from which to begin the search
1548 * @start: store the start of the free space.
1549 * @len: the size of the free space. that we find, or the size
1550 * of the max free space if we don't find suitable free space
7bfc837d 1551 *
0b86a832
CM
1552 * this uses a pretty simple search, the expectation is that it is
1553 * called very infrequently and that a given device has a small number
1554 * of extents
7bfc837d
MX
1555 *
1556 * @start is used to store the start of the free space if we find. But if we
1557 * don't find suitable free space, it will be used to store the start position
1558 * of the max free space.
1559 *
1560 * @len is used to store the size of the free space that we find.
1561 * But if we don't find suitable free space, it is used to store the size of
1562 * the max free space.
135da976
QW
1563 *
1564 * NOTE: This function will search *commit* root of device tree, and does extra
1565 * check to ensure dev extents are not double allocated.
1566 * This makes the function safe to allocate dev extents but may not report
1567 * correct usable device space, as device extent freed in current transaction
1a9fd417 1568 * is not reported as available.
0b86a832 1569 */
9e3246a5
QW
1570static int find_free_dev_extent_start(struct btrfs_device *device,
1571 u64 num_bytes, u64 search_start, u64 *start,
1572 u64 *len)
0b86a832 1573{
0b246afa
JM
1574 struct btrfs_fs_info *fs_info = device->fs_info;
1575 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1576 struct btrfs_key key;
7bfc837d 1577 struct btrfs_dev_extent *dev_extent;
2b82032c 1578 struct btrfs_path *path;
7bfc837d
MX
1579 u64 hole_size;
1580 u64 max_hole_start;
1581 u64 max_hole_size;
1582 u64 extent_end;
0b86a832
CM
1583 u64 search_end = device->total_bytes;
1584 int ret;
7bfc837d 1585 int slot;
0b86a832 1586 struct extent_buffer *l;
8cdc7c5b 1587
3b4ffa40 1588 search_start = dev_extent_search_start(device, search_start);
0b86a832 1589
1cd6121f
NA
1590 WARN_ON(device->zone_info &&
1591 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1592
6df9a95e
JB
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
f2ab7618 1596
7bfc837d
MX
1597 max_hole_start = search_start;
1598 max_hole_size = 0;
1599
f2ab7618 1600again:
401e29c1
AJ
1601 if (search_start >= search_end ||
1602 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1603 ret = -ENOSPC;
6df9a95e 1604 goto out;
7bfc837d
MX
1605 }
1606
e4058b54 1607 path->reada = READA_FORWARD;
6df9a95e
JB
1608 path->search_commit_root = 1;
1609 path->skip_locking = 1;
7bfc837d 1610
0b86a832
CM
1611 key.objectid = device->devid;
1612 key.offset = search_start;
1613 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1614
0ff40a91 1615 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1616 if (ret < 0)
7bfc837d 1617 goto out;
7bfc837d 1618
0b86a832
CM
1619 while (1) {
1620 l = path->nodes[0];
1621 slot = path->slots[0];
1622 if (slot >= btrfs_header_nritems(l)) {
1623 ret = btrfs_next_leaf(root, path);
1624 if (ret == 0)
1625 continue;
1626 if (ret < 0)
7bfc837d
MX
1627 goto out;
1628
1629 break;
0b86a832
CM
1630 }
1631 btrfs_item_key_to_cpu(l, &key, slot);
1632
1633 if (key.objectid < device->devid)
1634 goto next;
1635
1636 if (key.objectid > device->devid)
7bfc837d 1637 break;
0b86a832 1638
962a298f 1639 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1640 goto next;
9779b72f 1641
7bfc837d
MX
1642 if (key.offset > search_start) {
1643 hole_size = key.offset - search_start;
3b4ffa40
NA
1644 dev_extent_hole_check(device, &search_start, &hole_size,
1645 num_bytes);
6df9a95e 1646
7bfc837d
MX
1647 if (hole_size > max_hole_size) {
1648 max_hole_start = search_start;
1649 max_hole_size = hole_size;
1650 }
9779b72f 1651
7bfc837d
MX
1652 /*
1653 * If this free space is greater than which we need,
1654 * it must be the max free space that we have found
1655 * until now, so max_hole_start must point to the start
1656 * of this free space and the length of this free space
1657 * is stored in max_hole_size. Thus, we return
1658 * max_hole_start and max_hole_size and go back to the
1659 * caller.
1660 */
1661 if (hole_size >= num_bytes) {
1662 ret = 0;
1663 goto out;
0b86a832
CM
1664 }
1665 }
0b86a832 1666
0b86a832 1667 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1668 extent_end = key.offset + btrfs_dev_extent_length(l,
1669 dev_extent);
1670 if (extent_end > search_start)
1671 search_start = extent_end;
0b86a832
CM
1672next:
1673 path->slots[0]++;
1674 cond_resched();
1675 }
0b86a832 1676
38c01b96 1677 /*
1678 * At this point, search_start should be the end of
1679 * allocated dev extents, and when shrinking the device,
1680 * search_end may be smaller than search_start.
1681 */
f2ab7618 1682 if (search_end > search_start) {
38c01b96 1683 hole_size = search_end - search_start;
3b4ffa40
NA
1684 if (dev_extent_hole_check(device, &search_start, &hole_size,
1685 num_bytes)) {
f2ab7618
ZL
1686 btrfs_release_path(path);
1687 goto again;
1688 }
0b86a832 1689
f2ab7618
ZL
1690 if (hole_size > max_hole_size) {
1691 max_hole_start = search_start;
1692 max_hole_size = hole_size;
1693 }
6df9a95e
JB
1694 }
1695
7bfc837d 1696 /* See above. */
f2ab7618 1697 if (max_hole_size < num_bytes)
7bfc837d
MX
1698 ret = -ENOSPC;
1699 else
1700 ret = 0;
1701
1702out:
2b82032c 1703 btrfs_free_path(path);
7bfc837d 1704 *start = max_hole_start;
b2117a39 1705 if (len)
7bfc837d 1706 *len = max_hole_size;
0b86a832
CM
1707 return ret;
1708}
1709
60dfdf25 1710int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1711 u64 *start, u64 *len)
1712{
499f377f 1713 /* FIXME use last free of some kind */
60dfdf25 1714 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1715}
1716
b2950863 1717static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1718 struct btrfs_device *device,
2196d6e8 1719 u64 start, u64 *dev_extent_len)
8f18cf13 1720{
0b246afa
JM
1721 struct btrfs_fs_info *fs_info = device->fs_info;
1722 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1723 int ret;
1724 struct btrfs_path *path;
8f18cf13 1725 struct btrfs_key key;
a061fc8d
CM
1726 struct btrfs_key found_key;
1727 struct extent_buffer *leaf = NULL;
1728 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1729
1730 path = btrfs_alloc_path();
1731 if (!path)
1732 return -ENOMEM;
1733
1734 key.objectid = device->devid;
1735 key.offset = start;
1736 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1737again:
8f18cf13 1738 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1739 if (ret > 0) {
1740 ret = btrfs_previous_item(root, path, key.objectid,
1741 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1742 if (ret)
1743 goto out;
a061fc8d
CM
1744 leaf = path->nodes[0];
1745 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1746 extent = btrfs_item_ptr(leaf, path->slots[0],
1747 struct btrfs_dev_extent);
1748 BUG_ON(found_key.offset > start || found_key.offset +
1749 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1750 key = found_key;
1751 btrfs_release_path(path);
1752 goto again;
a061fc8d
CM
1753 } else if (ret == 0) {
1754 leaf = path->nodes[0];
1755 extent = btrfs_item_ptr(leaf, path->slots[0],
1756 struct btrfs_dev_extent);
79787eaa 1757 } else {
79787eaa 1758 goto out;
a061fc8d 1759 }
8f18cf13 1760
2196d6e8
MX
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
8f18cf13 1763 ret = btrfs_del_item(trans, root, path);
79bd3712 1764 if (ret == 0)
3204d33c 1765 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1766out:
8f18cf13
CM
1767 btrfs_free_path(path);
1768 return ret;
1769}
1770
6df9a95e 1771static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1772{
6df9a95e
JB
1773 struct extent_map_tree *em_tree;
1774 struct extent_map *em;
1775 struct rb_node *n;
1776 u64 ret = 0;
0b86a832 1777
c8bf1b67 1778 em_tree = &fs_info->mapping_tree;
6df9a95e 1779 read_lock(&em_tree->lock);
07e1ce09 1780 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1781 if (n) {
1782 em = rb_entry(n, struct extent_map, rb_node);
1783 ret = em->start + em->len;
0b86a832 1784 }
6df9a95e
JB
1785 read_unlock(&em_tree->lock);
1786
0b86a832
CM
1787 return ret;
1788}
1789
53f10659
ID
1790static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1791 u64 *devid_ret)
0b86a832
CM
1792{
1793 int ret;
1794 struct btrfs_key key;
1795 struct btrfs_key found_key;
2b82032c
YZ
1796 struct btrfs_path *path;
1797
2b82032c
YZ
1798 path = btrfs_alloc_path();
1799 if (!path)
1800 return -ENOMEM;
0b86a832
CM
1801
1802 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1803 key.type = BTRFS_DEV_ITEM_KEY;
1804 key.offset = (u64)-1;
1805
53f10659 1806 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1807 if (ret < 0)
1808 goto error;
1809
a06dee4d
AJ
1810 if (ret == 0) {
1811 /* Corruption */
1812 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1813 ret = -EUCLEAN;
1814 goto error;
1815 }
0b86a832 1816
53f10659
ID
1817 ret = btrfs_previous_item(fs_info->chunk_root, path,
1818 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1819 BTRFS_DEV_ITEM_KEY);
1820 if (ret) {
53f10659 1821 *devid_ret = 1;
0b86a832
CM
1822 } else {
1823 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1824 path->slots[0]);
53f10659 1825 *devid_ret = found_key.offset + 1;
0b86a832
CM
1826 }
1827 ret = 0;
1828error:
2b82032c 1829 btrfs_free_path(path);
0b86a832
CM
1830 return ret;
1831}
1832
1833/*
1834 * the device information is stored in the chunk root
1835 * the btrfs_device struct should be fully filled in
1836 */
c74a0b02 1837static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1838 struct btrfs_device *device)
0b86a832
CM
1839{
1840 int ret;
1841 struct btrfs_path *path;
1842 struct btrfs_dev_item *dev_item;
1843 struct extent_buffer *leaf;
1844 struct btrfs_key key;
1845 unsigned long ptr;
0b86a832 1846
0b86a832
CM
1847 path = btrfs_alloc_path();
1848 if (!path)
1849 return -ENOMEM;
1850
0b86a832
CM
1851 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1852 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1853 key.offset = device->devid;
0b86a832 1854
2bb2e00e 1855 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1856 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1857 &key, sizeof(*dev_item));
2bb2e00e 1858 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1859 if (ret)
1860 goto out;
1861
1862 leaf = path->nodes[0];
1863 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1864
1865 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1866 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1867 btrfs_set_device_type(leaf, dev_item, device->type);
1868 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1869 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1870 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1871 btrfs_set_device_total_bytes(leaf, dev_item,
1872 btrfs_device_get_disk_total_bytes(device));
1873 btrfs_set_device_bytes_used(leaf, dev_item,
1874 btrfs_device_get_bytes_used(device));
e17cade2
CM
1875 btrfs_set_device_group(leaf, dev_item, 0);
1876 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1877 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1878 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1879
410ba3a2 1880 ptr = btrfs_device_uuid(dev_item);
e17cade2 1881 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1882 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1883 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1884 ptr, BTRFS_FSID_SIZE);
0b86a832 1885 btrfs_mark_buffer_dirty(leaf);
0b86a832 1886
2b82032c 1887 ret = 0;
0b86a832
CM
1888out:
1889 btrfs_free_path(path);
1890 return ret;
1891}
8f18cf13 1892
5a1972bd
QW
1893/*
1894 * Function to update ctime/mtime for a given device path.
1895 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1896 *
1897 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1898 */
54fde91f 1899static void update_dev_time(const char *device_path)
5a1972bd 1900{
54fde91f 1901 struct path path;
8f96a5bf 1902 struct timespec64 now;
54fde91f 1903 int ret;
5a1972bd 1904
54fde91f
JB
1905 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1906 if (ret)
5a1972bd 1907 return;
8f96a5bf 1908
54fde91f
JB
1909 now = current_time(d_inode(path.dentry));
1910 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1911 path_put(&path);
5a1972bd
QW
1912}
1913
f331a952 1914static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1915{
f331a952 1916 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1917 int ret;
1918 struct btrfs_path *path;
a061fc8d 1919 struct btrfs_key key;
a061fc8d
CM
1920 struct btrfs_trans_handle *trans;
1921
a061fc8d
CM
1922 path = btrfs_alloc_path();
1923 if (!path)
1924 return -ENOMEM;
1925
a22285a6 1926 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1927 if (IS_ERR(trans)) {
1928 btrfs_free_path(path);
1929 return PTR_ERR(trans);
1930 }
a061fc8d
CM
1931 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1932 key.type = BTRFS_DEV_ITEM_KEY;
1933 key.offset = device->devid;
1934
2bb2e00e 1935 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1936 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1937 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1938 if (ret) {
1939 if (ret > 0)
1940 ret = -ENOENT;
1941 btrfs_abort_transaction(trans, ret);
1942 btrfs_end_transaction(trans);
a061fc8d
CM
1943 goto out;
1944 }
1945
1946 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1947 if (ret) {
1948 btrfs_abort_transaction(trans, ret);
1949 btrfs_end_transaction(trans);
1950 }
1951
a061fc8d
CM
1952out:
1953 btrfs_free_path(path);
5e9f2ad5
NB
1954 if (!ret)
1955 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1956 return ret;
1957}
1958
3cc31a0d
DS
1959/*
1960 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1961 * filesystem. It's up to the caller to adjust that number regarding eg. device
1962 * replace.
1963 */
1964static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1965 u64 num_devices)
a061fc8d 1966{
a061fc8d 1967 u64 all_avail;
de98ced9 1968 unsigned seq;
418775a2 1969 int i;
a061fc8d 1970
de98ced9 1971 do {
bd45ffbc 1972 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1973
bd45ffbc
AJ
1974 all_avail = fs_info->avail_data_alloc_bits |
1975 fs_info->avail_system_alloc_bits |
1976 fs_info->avail_metadata_alloc_bits;
1977 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1978
418775a2 1979 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1980 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1981 continue;
a061fc8d 1982
efc222f8
AJ
1983 if (num_devices < btrfs_raid_array[i].devs_min)
1984 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1985 }
1986
bd45ffbc 1987 return 0;
f1fa7f26
AJ
1988}
1989
c9162bdf
OS
1990static struct btrfs_device * btrfs_find_next_active_device(
1991 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1992{
2b82032c 1993 struct btrfs_device *next_device;
88acff64
AJ
1994
1995 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1996 if (next_device != device &&
e6e674bd
AJ
1997 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1998 && next_device->bdev)
88acff64
AJ
1999 return next_device;
2000 }
2001
2002 return NULL;
2003}
2004
2005/*
d24fa5c1 2006 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
2007 * and replace it with the provided or the next active device, in the context
2008 * where this function called, there should be always be another device (or
2009 * this_dev) which is active.
2010 */
b105e927 2011void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 2012 struct btrfs_device *next_device)
88acff64 2013{
d6507cf1 2014 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 2015
e493e8f9 2016 if (!next_device)
88acff64 2017 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2018 device);
88acff64
AJ
2019 ASSERT(next_device);
2020
2021 if (fs_info->sb->s_bdev &&
2022 (fs_info->sb->s_bdev == device->bdev))
2023 fs_info->sb->s_bdev = next_device->bdev;
2024
d24fa5c1
AJ
2025 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2026 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
2027}
2028
1da73967
AJ
2029/*
2030 * Return btrfs_fs_devices::num_devices excluding the device that's being
2031 * currently replaced.
2032 */
2033static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2034{
2035 u64 num_devices = fs_info->fs_devices->num_devices;
2036
cb5583dd 2037 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2038 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2039 ASSERT(num_devices > 1);
2040 num_devices--;
2041 }
cb5583dd 2042 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2043
2044 return num_devices;
2045}
2046
313b0858
JB
2047void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2048 struct block_device *bdev,
2049 const char *device_path)
6fbceb9f 2050{
6fbceb9f
JT
2051 struct btrfs_super_block *disk_super;
2052 int copy_num;
2053
2054 if (!bdev)
2055 return;
2056
2057 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2058 struct page *page;
2059 int ret;
6fbceb9f 2060
8f32380d
JT
2061 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2062 if (IS_ERR(disk_super))
2063 continue;
6fbceb9f 2064
12659251
NA
2065 if (bdev_is_zoned(bdev)) {
2066 btrfs_reset_sb_log_zones(bdev, copy_num);
2067 continue;
2068 }
2069
6fbceb9f 2070 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2071
2072 page = virt_to_page(disk_super);
2073 set_page_dirty(page);
2074 lock_page(page);
2075 /* write_on_page() unlocks the page */
2076 ret = write_one_page(page);
2077 if (ret)
2078 btrfs_warn(fs_info,
2079 "error clearing superblock number %d (%d)",
2080 copy_num, ret);
2081 btrfs_release_disk_super(disk_super);
2082
6fbceb9f
JT
2083 }
2084
2085 /* Notify udev that device has changed */
2086 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2087
2088 /* Update ctime/mtime for device path for libblkid */
54fde91f 2089 update_dev_time(device_path);
6fbceb9f
JT
2090}
2091
1a15eb72
JB
2092int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2093 struct btrfs_dev_lookup_args *args,
2094 struct block_device **bdev, fmode_t *mode)
f1fa7f26
AJ
2095{
2096 struct btrfs_device *device;
1f78160c 2097 struct btrfs_fs_devices *cur_devices;
b5185197 2098 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2099 u64 num_devices;
a061fc8d
CM
2100 int ret = 0;
2101
8ef9dc0f
JB
2102 /*
2103 * The device list in fs_devices is accessed without locks (neither
2104 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2105 * filesystem and another device rm cannot run.
2106 */
1da73967 2107 num_devices = btrfs_num_devices(fs_info);
8dabb742 2108
0b246afa 2109 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2110 if (ret)
a061fc8d 2111 goto out;
a061fc8d 2112
1a15eb72
JB
2113 device = btrfs_find_device(fs_info->fs_devices, args);
2114 if (!device) {
2115 if (args->missing)
a27a94c2
NB
2116 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2117 else
1a15eb72 2118 ret = -ENOENT;
53b381b3 2119 goto out;
a27a94c2 2120 }
dfe25020 2121
eede2bf3
OS
2122 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2123 btrfs_warn_in_rcu(fs_info,
2124 "cannot remove device %s (devid %llu) due to active swapfile",
2125 rcu_str_deref(device->name), device->devid);
2126 ret = -ETXTBSY;
2127 goto out;
2128 }
2129
401e29c1 2130 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2131 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2132 goto out;
63a212ab
SB
2133 }
2134
ebbede42
AJ
2135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2136 fs_info->fs_devices->rw_devices == 1) {
183860f6 2137 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2138 goto out;
2b82032c
YZ
2139 }
2140
ebbede42 2141 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2142 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2143 list_del_init(&device->dev_alloc_list);
c3929c36 2144 device->fs_devices->rw_devices--;
34441361 2145 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2146 }
a061fc8d
CM
2147
2148 ret = btrfs_shrink_device(device, 0);
66d204a1
FM
2149 if (!ret)
2150 btrfs_reada_remove_dev(device);
a061fc8d 2151 if (ret)
9b3517e9 2152 goto error_undo;
a061fc8d 2153
63a212ab
SB
2154 /*
2155 * TODO: the superblock still includes this device in its num_devices
2156 * counter although write_all_supers() is not locked out. This
2157 * could give a filesystem state which requires a degraded mount.
2158 */
f331a952 2159 ret = btrfs_rm_dev_item(device);
a061fc8d 2160 if (ret)
9b3517e9 2161 goto error_undo;
a061fc8d 2162
e12c9621 2163 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2164 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2165
2166 /*
2167 * the device list mutex makes sure that we don't change
2168 * the device list while someone else is writing out all
d7306801
FDBM
2169 * the device supers. Whoever is writing all supers, should
2170 * lock the device list mutex before getting the number of
2171 * devices in the super block (super_copy). Conversely,
2172 * whoever updates the number of devices in the super block
2173 * (super_copy) should hold the device list mutex.
e5e9a520 2174 */
1f78160c 2175
41a52a0f
AJ
2176 /*
2177 * In normal cases the cur_devices == fs_devices. But in case
2178 * of deleting a seed device, the cur_devices should point to
9675ea8c 2179 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2180 */
1f78160c 2181 cur_devices = device->fs_devices;
b5185197 2182 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2183 list_del_rcu(&device->dev_list);
e5e9a520 2184
41a52a0f
AJ
2185 cur_devices->num_devices--;
2186 cur_devices->total_devices--;
b4993e64
AJ
2187 /* Update total_devices of the parent fs_devices if it's seed */
2188 if (cur_devices != fs_devices)
2189 fs_devices->total_devices--;
2b82032c 2190
e6e674bd 2191 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2192 cur_devices->missing_devices--;
cd02dca5 2193
d6507cf1 2194 btrfs_assign_next_active_device(device, NULL);
2b82032c 2195
0bfaa9c5 2196 if (device->bdev) {
41a52a0f 2197 cur_devices->open_devices--;
0bfaa9c5 2198 /* remove sysfs entry */
53f8a74c 2199 btrfs_sysfs_remove_device(device);
0bfaa9c5 2200 }
99994cde 2201
0b246afa
JM
2202 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2203 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2204 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2205
cea67ab9 2206 /*
3fa421de
JB
2207 * At this point, the device is zero sized and detached from the
2208 * devices list. All that's left is to zero out the old supers and
2209 * free the device.
2210 *
2211 * We cannot call btrfs_close_bdev() here because we're holding the sb
2212 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2213 * block device and it's dependencies. Instead just flush the device
2214 * and let the caller do the final blkdev_put.
cea67ab9 2215 */
3fa421de 2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2217 btrfs_scratch_superblocks(fs_info, device->bdev,
2218 device->name->str);
3fa421de
JB
2219 if (device->bdev) {
2220 sync_blockdev(device->bdev);
2221 invalidate_bdev(device->bdev);
2222 }
2223 }
cea67ab9 2224
3fa421de
JB
2225 *bdev = device->bdev;
2226 *mode = device->mode;
8e75fd89
NB
2227 synchronize_rcu();
2228 btrfs_free_device(device);
cea67ab9 2229
8b41393f
JB
2230 /*
2231 * This can happen if cur_devices is the private seed devices list. We
2232 * cannot call close_fs_devices() here because it expects the uuid_mutex
2233 * to be held, but in fact we don't need that for the private
2234 * seed_devices, we can simply decrement cur_devices->opened and then
2235 * remove it from our list and free the fs_devices.
2236 */
8e906945 2237 if (cur_devices->num_devices == 0) {
944d3f9f 2238 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2239 ASSERT(cur_devices->opened == 1);
2240 cur_devices->opened--;
1f78160c 2241 free_fs_devices(cur_devices);
2b82032c
YZ
2242 }
2243
a061fc8d 2244out:
a061fc8d 2245 return ret;
24fc572f 2246
9b3517e9 2247error_undo:
66d204a1 2248 btrfs_reada_undo_remove_dev(device);
ebbede42 2249 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2250 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2251 list_add(&device->dev_alloc_list,
b5185197 2252 &fs_devices->alloc_list);
c3929c36 2253 device->fs_devices->rw_devices++;
34441361 2254 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2255 }
24fc572f 2256 goto out;
a061fc8d
CM
2257}
2258
68a9db5f 2259void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2260{
d51908ce
AJ
2261 struct btrfs_fs_devices *fs_devices;
2262
68a9db5f 2263 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2264
25e8e911
AJ
2265 /*
2266 * in case of fs with no seed, srcdev->fs_devices will point
2267 * to fs_devices of fs_info. However when the dev being replaced is
2268 * a seed dev it will point to the seed's local fs_devices. In short
2269 * srcdev will have its correct fs_devices in both the cases.
2270 */
2271 fs_devices = srcdev->fs_devices;
d51908ce 2272
e93c89c1 2273 list_del_rcu(&srcdev->dev_list);
619c47f3 2274 list_del(&srcdev->dev_alloc_list);
d51908ce 2275 fs_devices->num_devices--;
e6e674bd 2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2277 fs_devices->missing_devices--;
e93c89c1 2278
ebbede42 2279 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2280 fs_devices->rw_devices--;
1357272f 2281
82372bc8 2282 if (srcdev->bdev)
d51908ce 2283 fs_devices->open_devices--;
084b6e7c
QW
2284}
2285
65237ee3 2286void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2287{
2288 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2289
a466c85e
JB
2290 mutex_lock(&uuid_mutex);
2291
14238819 2292 btrfs_close_bdev(srcdev);
8e75fd89
NB
2293 synchronize_rcu();
2294 btrfs_free_device(srcdev);
94d5f0c2 2295
94d5f0c2
AJ
2296 /* if this is no devs we rather delete the fs_devices */
2297 if (!fs_devices->num_devices) {
6dd38f81
AJ
2298 /*
2299 * On a mounted FS, num_devices can't be zero unless it's a
2300 * seed. In case of a seed device being replaced, the replace
2301 * target added to the sprout FS, so there will be no more
2302 * device left under the seed FS.
2303 */
2304 ASSERT(fs_devices->seeding);
2305
944d3f9f 2306 list_del_init(&fs_devices->seed_list);
0226e0eb 2307 close_fs_devices(fs_devices);
8bef8401 2308 free_fs_devices(fs_devices);
94d5f0c2 2309 }
a466c85e 2310 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2311}
2312
4f5ad7bd 2313void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2314{
4f5ad7bd 2315 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2316
d9a071f0 2317 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2318
53f8a74c 2319 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2320
779bf3fe 2321 if (tgtdev->bdev)
d9a071f0 2322 fs_devices->open_devices--;
779bf3fe 2323
d9a071f0 2324 fs_devices->num_devices--;
e93c89c1 2325
d6507cf1 2326 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2327
e93c89c1 2328 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2329
d9a071f0 2330 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2331
8f32380d
JT
2332 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 tgtdev->name->str);
14238819
AJ
2334
2335 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2336 synchronize_rcu();
2337 btrfs_free_device(tgtdev);
e93c89c1
SB
2338}
2339
faa775c4
JB
2340/**
2341 * Populate args from device at path
2342 *
2343 * @fs_info: the filesystem
2344 * @args: the args to populate
2345 * @path: the path to the device
2346 *
2347 * This will read the super block of the device at @path and populate @args with
2348 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2349 * lookup a device to operate on, but need to do it before we take any locks.
2350 * This properly handles the special case of "missing" that a user may pass in,
2351 * and does some basic sanity checks. The caller must make sure that @path is
2352 * properly NUL terminated before calling in, and must call
2353 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354 * uuid buffers.
2355 *
2356 * Return: 0 for success, -errno for failure
2357 */
2358int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2359 struct btrfs_dev_lookup_args *args,
2360 const char *path)
7ba15b7d 2361{
7ba15b7d 2362 struct btrfs_super_block *disk_super;
7ba15b7d 2363 struct block_device *bdev;
faa775c4 2364 int ret;
7ba15b7d 2365
faa775c4
JB
2366 if (!path || !path[0])
2367 return -EINVAL;
2368 if (!strcmp(path, "missing")) {
2369 args->missing = true;
2370 return 0;
2371 }
8f32380d 2372
faa775c4
JB
2373 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2374 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2375 if (!args->uuid || !args->fsid) {
2376 btrfs_put_dev_args_from_path(args);
2377 return -ENOMEM;
2378 }
8f32380d 2379
faa775c4
JB
2380 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2381 &bdev, &disk_super);
2382 if (ret)
2383 return ret;
2384 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2385 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2386 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2387 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2388 else
faa775c4 2389 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2390 btrfs_release_disk_super(disk_super);
7ba15b7d 2391 blkdev_put(bdev, FMODE_READ);
faa775c4 2392 return 0;
7ba15b7d
SB
2393}
2394
5c5c0df0 2395/*
faa775c4
JB
2396 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2397 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2398 * that don't need to be freed.
5c5c0df0 2399 */
faa775c4
JB
2400void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2401{
2402 kfree(args->uuid);
2403 kfree(args->fsid);
2404 args->uuid = NULL;
2405 args->fsid = NULL;
2406}
2407
a27a94c2 2408struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2409 struct btrfs_fs_info *fs_info, u64 devid,
2410 const char *device_path)
24e0474b 2411{
562d7b15 2412 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2413 struct btrfs_device *device;
faa775c4 2414 int ret;
24e0474b 2415
5c5c0df0 2416 if (devid) {
562d7b15
JB
2417 args.devid = devid;
2418 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2419 if (!device)
2420 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2421 return device;
2422 }
2423
faa775c4
JB
2424 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2425 if (ret)
2426 return ERR_PTR(ret);
2427 device = btrfs_find_device(fs_info->fs_devices, &args);
2428 btrfs_put_dev_args_from_path(&args);
2429 if (!device)
6e927ceb 2430 return ERR_PTR(-ENOENT);
faa775c4 2431 return device;
24e0474b
AJ
2432}
2433
849eae5e 2434static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2435{
0b246afa 2436 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2437 struct btrfs_fs_devices *old_devices;
e4404d6e 2438 struct btrfs_fs_devices *seed_devices;
2b82032c 2439
a32bf9a3 2440 lockdep_assert_held(&uuid_mutex);
e4404d6e 2441 if (!fs_devices->seeding)
849eae5e 2442 return ERR_PTR(-EINVAL);
2b82032c 2443
427c8fdd
NB
2444 /*
2445 * Private copy of the seed devices, anchored at
2446 * fs_info->fs_devices->seed_list
2447 */
7239ff4b 2448 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378 2449 if (IS_ERR(seed_devices))
849eae5e 2450 return seed_devices;
2b82032c 2451
427c8fdd
NB
2452 /*
2453 * It's necessary to retain a copy of the original seed fs_devices in
2454 * fs_uuids so that filesystems which have been seeded can successfully
2455 * reference the seed device from open_seed_devices. This also supports
2456 * multiple fs seed.
2457 */
e4404d6e
YZ
2458 old_devices = clone_fs_devices(fs_devices);
2459 if (IS_ERR(old_devices)) {
2460 kfree(seed_devices);
849eae5e 2461 return old_devices;
2b82032c 2462 }
e4404d6e 2463
c4babc5e 2464 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2465
e4404d6e
YZ
2466 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2467 seed_devices->opened = 1;
2468 INIT_LIST_HEAD(&seed_devices->devices);
2469 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2470 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2471
849eae5e
AJ
2472 return seed_devices;
2473}
2474
2475/*
2476 * Splice seed devices into the sprout fs_devices.
2477 * Generate a new fsid for the sprouted read-write filesystem.
2478 */
2479static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2480 struct btrfs_fs_devices *seed_devices)
2481{
2482 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2483 struct btrfs_super_block *disk_super = fs_info->super_copy;
2484 struct btrfs_device *device;
2485 u64 super_flags;
2486
2487 /*
2488 * We are updating the fsid, the thread leading to device_list_add()
2489 * could race, so uuid_mutex is needed.
2490 */
2491 lockdep_assert_held(&uuid_mutex);
2492
2493 /*
2494 * The threads listed below may traverse dev_list but can do that without
2495 * device_list_mutex:
2496 * - All device ops and balance - as we are in btrfs_exclop_start.
2497 * - Various dev_list readers - are using RCU.
2498 * - btrfs_ioctl_fitrim() - is using RCU.
2499 *
2500 * For-read threads as below are using device_list_mutex:
2501 * - Readonly scrub btrfs_scrub_dev()
2502 * - Readonly scrub btrfs_scrub_progress()
2503 * - btrfs_get_dev_stats()
2504 */
2505 lockdep_assert_held(&fs_devices->device_list_mutex);
2506
1f78160c
XG
2507 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2508 synchronize_rcu);
2196d6e8
MX
2509 list_for_each_entry(device, &seed_devices->devices, dev_list)
2510 device->fs_devices = seed_devices;
c9513edb 2511
0395d84f 2512 fs_devices->seeding = false;
2b82032c
YZ
2513 fs_devices->num_devices = 0;
2514 fs_devices->open_devices = 0;
69611ac8 2515 fs_devices->missing_devices = 0;
7f0432d0 2516 fs_devices->rotating = false;
944d3f9f 2517 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2518
2519 generate_random_uuid(fs_devices->fsid);
7239ff4b 2520 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2521 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2522
2b82032c
YZ
2523 super_flags = btrfs_super_flags(disk_super) &
2524 ~BTRFS_SUPER_FLAG_SEEDING;
2525 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2526}
2527
2528/*
01327610 2529 * Store the expected generation for seed devices in device items.
2b82032c 2530 */
5c466629 2531static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2532{
562d7b15 2533 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2534 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2535 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2536 struct btrfs_path *path;
2537 struct extent_buffer *leaf;
2538 struct btrfs_dev_item *dev_item;
2539 struct btrfs_device *device;
2540 struct btrfs_key key;
44880fdc 2541 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2542 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2543 int ret;
2544
2545 path = btrfs_alloc_path();
2546 if (!path)
2547 return -ENOMEM;
2548
2b82032c
YZ
2549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2550 key.offset = 0;
2551 key.type = BTRFS_DEV_ITEM_KEY;
2552
2553 while (1) {
2bb2e00e 2554 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2555 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2556 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2557 if (ret < 0)
2558 goto error;
2559
2560 leaf = path->nodes[0];
2561next_slot:
2562 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2563 ret = btrfs_next_leaf(root, path);
2564 if (ret > 0)
2565 break;
2566 if (ret < 0)
2567 goto error;
2568 leaf = path->nodes[0];
2569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2570 btrfs_release_path(path);
2b82032c
YZ
2571 continue;
2572 }
2573
2574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2575 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2576 key.type != BTRFS_DEV_ITEM_KEY)
2577 break;
2578
2579 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2580 struct btrfs_dev_item);
562d7b15 2581 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2582 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2583 BTRFS_UUID_SIZE);
1473b24e 2584 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2585 BTRFS_FSID_SIZE);
562d7b15
JB
2586 args.uuid = dev_uuid;
2587 args.fsid = fs_uuid;
2588 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2589 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2590
2591 if (device->fs_devices->seeding) {
2592 btrfs_set_device_generation(leaf, dev_item,
2593 device->generation);
2594 btrfs_mark_buffer_dirty(leaf);
2595 }
2596
2597 path->slots[0]++;
2598 goto next_slot;
2599 }
2600 ret = 0;
2601error:
2602 btrfs_free_path(path);
2603 return ret;
2604}
2605
da353f6b 2606int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2607{
5112febb 2608 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2609 struct request_queue *q;
788f20eb
CM
2610 struct btrfs_trans_handle *trans;
2611 struct btrfs_device *device;
2612 struct block_device *bdev;
0b246afa 2613 struct super_block *sb = fs_info->sb;
606686ee 2614 struct rcu_string *name;
5da54bc1 2615 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
849eae5e 2616 struct btrfs_fs_devices *seed_devices;
39379faa
NA
2617 u64 orig_super_total_bytes;
2618 u64 orig_super_num_devices;
788f20eb 2619 int ret = 0;
fd880809 2620 bool seeding_dev = false;
44cab9ba 2621 bool locked = false;
788f20eb 2622
5da54bc1 2623 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2624 return -EROFS;
788f20eb 2625
a5d16333 2626 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2627 fs_info->bdev_holder);
7f59203a
JB
2628 if (IS_ERR(bdev))
2629 return PTR_ERR(bdev);
a2135011 2630
b70f5097
NA
2631 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2632 ret = -EINVAL;
2633 goto error;
2634 }
2635
5da54bc1 2636 if (fs_devices->seeding) {
fd880809 2637 seeding_dev = true;
2b82032c
YZ
2638 down_write(&sb->s_umount);
2639 mutex_lock(&uuid_mutex);
44cab9ba 2640 locked = true;
2b82032c
YZ
2641 }
2642
b9ba017f 2643 sync_blockdev(bdev);
a2135011 2644
f4cfa9bd
NB
2645 rcu_read_lock();
2646 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2647 if (device->bdev == bdev) {
2648 ret = -EEXIST;
f4cfa9bd 2649 rcu_read_unlock();
2b82032c 2650 goto error;
788f20eb
CM
2651 }
2652 }
f4cfa9bd 2653 rcu_read_unlock();
788f20eb 2654
0b246afa 2655 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2656 if (IS_ERR(device)) {
788f20eb 2657 /* we can safely leave the fs_devices entry around */
12bd2fc0 2658 ret = PTR_ERR(device);
2b82032c 2659 goto error;
788f20eb
CM
2660 }
2661
78f2c9e6 2662 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2663 if (!name) {
2b82032c 2664 ret = -ENOMEM;
5c4cf6c9 2665 goto error_free_device;
788f20eb 2666 }
606686ee 2667 rcu_assign_pointer(device->name, name);
2b82032c 2668
5b316468
NA
2669 device->fs_info = fs_info;
2670 device->bdev = bdev;
2671
16beac87 2672 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2673 if (ret)
2674 goto error_free_device;
2675
a22285a6 2676 trans = btrfs_start_transaction(root, 0);
98d5dc13 2677 if (IS_ERR(trans)) {
98d5dc13 2678 ret = PTR_ERR(trans);
5b316468 2679 goto error_free_zone;
98d5dc13
TI
2680 }
2681
d5e2003c 2682 q = bdev_get_queue(bdev);
ebbede42 2683 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2684 device->generation = trans->transid;
0b246afa
JM
2685 device->io_width = fs_info->sectorsize;
2686 device->io_align = fs_info->sectorsize;
2687 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2688 device->total_bytes =
2689 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2690 device->disk_total_bytes = device->total_bytes;
935e5cc9 2691 device->commit_total_bytes = device->total_bytes;
e12c9621 2692 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2693 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2694 device->mode = FMODE_EXCL;
27087f37 2695 device->dev_stats_valid = 1;
9f6d2510 2696 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2697
2b82032c 2698 if (seeding_dev) {
a0a1db70 2699 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2700
2701 /* GFP_KERNEL allocation must not be under device_list_mutex */
2702 seed_devices = btrfs_init_sprout(fs_info);
2703 if (IS_ERR(seed_devices)) {
2704 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2705 btrfs_abort_transaction(trans, ret);
2706 goto error_trans;
2707 }
849eae5e
AJ
2708 }
2709
2710 mutex_lock(&fs_devices->device_list_mutex);
2711 if (seeding_dev) {
2712 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2713 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2714 device);
2b82032c 2715 }
788f20eb 2716
5da54bc1 2717 device->fs_devices = fs_devices;
e5e9a520 2718
34441361 2719 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2720 list_add_rcu(&device->dev_list, &fs_devices->devices);
2721 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2722 fs_devices->num_devices++;
2723 fs_devices->open_devices++;
2724 fs_devices->rw_devices++;
2725 fs_devices->total_devices++;
2726 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2727
a5ed45f8 2728 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2729
e884f4f0 2730 if (!blk_queue_nonrot(q))
7f0432d0 2731 fs_devices->rotating = true;
c289811c 2732
39379faa 2733 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2734 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2735 round_down(orig_super_total_bytes + device->total_bytes,
2736 fs_info->sectorsize));
788f20eb 2737
39379faa
NA
2738 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2739 btrfs_set_super_num_devices(fs_info->super_copy,
2740 orig_super_num_devices + 1);
0d39376a 2741
2196d6e8
MX
2742 /*
2743 * we've got more storage, clear any full flags on the space
2744 * infos
2745 */
0b246afa 2746 btrfs_clear_space_info_full(fs_info);
2196d6e8 2747
34441361 2748 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2749
2750 /* Add sysfs device entry */
cd36da2e 2751 btrfs_sysfs_add_device(device);
ca10845a 2752
5da54bc1 2753 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2754
2b82032c 2755 if (seeding_dev) {
34441361 2756 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2757 ret = init_first_rw_device(trans);
34441361 2758 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2759 if (ret) {
66642832 2760 btrfs_abort_transaction(trans, ret);
d31c32f6 2761 goto error_sysfs;
005d6427 2762 }
2196d6e8
MX
2763 }
2764
8e87e856 2765 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2766 if (ret) {
66642832 2767 btrfs_abort_transaction(trans, ret);
d31c32f6 2768 goto error_sysfs;
2196d6e8
MX
2769 }
2770
2771 if (seeding_dev) {
5c466629 2772 ret = btrfs_finish_sprout(trans);
005d6427 2773 if (ret) {
66642832 2774 btrfs_abort_transaction(trans, ret);
d31c32f6 2775 goto error_sysfs;
005d6427 2776 }
b2373f25 2777
8e560081
NB
2778 /*
2779 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2780 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2781 */
2782 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2783 }
2784
3a45bb20 2785 ret = btrfs_commit_transaction(trans);
a2135011 2786
2b82032c
YZ
2787 if (seeding_dev) {
2788 mutex_unlock(&uuid_mutex);
2789 up_write(&sb->s_umount);
44cab9ba 2790 locked = false;
788f20eb 2791
79787eaa
JM
2792 if (ret) /* transaction commit */
2793 return ret;
2794
2ff7e61e 2795 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2796 if (ret < 0)
0b246afa 2797 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2798 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2799 trans = btrfs_attach_transaction(root);
2800 if (IS_ERR(trans)) {
2801 if (PTR_ERR(trans) == -ENOENT)
2802 return 0;
7132a262
AJ
2803 ret = PTR_ERR(trans);
2804 trans = NULL;
2805 goto error_sysfs;
671415b7 2806 }
3a45bb20 2807 ret = btrfs_commit_transaction(trans);
2b82032c 2808 }
c9e9f97b 2809
7f551d96
AJ
2810 /*
2811 * Now that we have written a new super block to this device, check all
2812 * other fs_devices list if device_path alienates any other scanned
2813 * device.
2814 * We can ignore the return value as it typically returns -EINVAL and
2815 * only succeeds if the device was an alien.
2816 */
2817 btrfs_forget_devices(device_path);
2818
2819 /* Update ctime/mtime for blkid or udev */
54fde91f 2820 update_dev_time(device_path);
7f551d96 2821
2b82032c 2822 return ret;
79787eaa 2823
d31c32f6 2824error_sysfs:
53f8a74c 2825 btrfs_sysfs_remove_device(device);
39379faa
NA
2826 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2827 mutex_lock(&fs_info->chunk_mutex);
2828 list_del_rcu(&device->dev_list);
2829 list_del(&device->dev_alloc_list);
2830 fs_info->fs_devices->num_devices--;
2831 fs_info->fs_devices->open_devices--;
2832 fs_info->fs_devices->rw_devices--;
2833 fs_info->fs_devices->total_devices--;
2834 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2835 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2836 btrfs_set_super_total_bytes(fs_info->super_copy,
2837 orig_super_total_bytes);
2838 btrfs_set_super_num_devices(fs_info->super_copy,
2839 orig_super_num_devices);
2840 mutex_unlock(&fs_info->chunk_mutex);
2841 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2842error_trans:
0af2c4bf 2843 if (seeding_dev)
a0a1db70 2844 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2845 if (trans)
2846 btrfs_end_transaction(trans);
5b316468
NA
2847error_free_zone:
2848 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2849error_free_device:
a425f9d4 2850 btrfs_free_device(device);
2b82032c 2851error:
e525fd89 2852 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2853 if (locked) {
2b82032c
YZ
2854 mutex_unlock(&uuid_mutex);
2855 up_write(&sb->s_umount);
2856 }
c9e9f97b 2857 return ret;
788f20eb
CM
2858}
2859
d397712b
CM
2860static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2861 struct btrfs_device *device)
0b86a832
CM
2862{
2863 int ret;
2864 struct btrfs_path *path;
0b246afa 2865 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2866 struct btrfs_dev_item *dev_item;
2867 struct extent_buffer *leaf;
2868 struct btrfs_key key;
2869
0b86a832
CM
2870 path = btrfs_alloc_path();
2871 if (!path)
2872 return -ENOMEM;
2873
2874 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2875 key.type = BTRFS_DEV_ITEM_KEY;
2876 key.offset = device->devid;
2877
2878 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2879 if (ret < 0)
2880 goto out;
2881
2882 if (ret > 0) {
2883 ret = -ENOENT;
2884 goto out;
2885 }
2886
2887 leaf = path->nodes[0];
2888 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2889
2890 btrfs_set_device_id(leaf, dev_item, device->devid);
2891 btrfs_set_device_type(leaf, dev_item, device->type);
2892 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2893 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2894 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2895 btrfs_set_device_total_bytes(leaf, dev_item,
2896 btrfs_device_get_disk_total_bytes(device));
2897 btrfs_set_device_bytes_used(leaf, dev_item,
2898 btrfs_device_get_bytes_used(device));
0b86a832
CM
2899 btrfs_mark_buffer_dirty(leaf);
2900
2901out:
2902 btrfs_free_path(path);
2903 return ret;
2904}
2905
2196d6e8 2906int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2907 struct btrfs_device *device, u64 new_size)
2908{
0b246afa
JM
2909 struct btrfs_fs_info *fs_info = device->fs_info;
2910 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2911 u64 old_total;
2912 u64 diff;
2bb2e00e 2913 int ret;
8f18cf13 2914
ebbede42 2915 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2916 return -EACCES;
2196d6e8 2917
7dfb8be1
NB
2918 new_size = round_down(new_size, fs_info->sectorsize);
2919
34441361 2920 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2921 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2922 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2923
63a212ab 2924 if (new_size <= device->total_bytes ||
401e29c1 2925 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2926 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2927 return -EINVAL;
2196d6e8 2928 }
2b82032c 2929
7dfb8be1
NB
2930 btrfs_set_super_total_bytes(super_copy,
2931 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2932 device->fs_devices->total_rw_bytes += diff;
2933
7cc8e58d
MX
2934 btrfs_device_set_total_bytes(device, new_size);
2935 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2936 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2937 if (list_empty(&device->post_commit_list))
2938 list_add_tail(&device->post_commit_list,
2939 &trans->transaction->dev_update_list);
34441361 2940 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2941
2bb2e00e
FM
2942 btrfs_reserve_chunk_metadata(trans, false);
2943 ret = btrfs_update_device(trans, device);
2944 btrfs_trans_release_chunk_metadata(trans);
2945
2946 return ret;
8f18cf13
CM
2947}
2948
f4208794 2949static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2950{
f4208794 2951 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2952 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2953 int ret;
2954 struct btrfs_path *path;
2955 struct btrfs_key key;
2956
8f18cf13
CM
2957 path = btrfs_alloc_path();
2958 if (!path)
2959 return -ENOMEM;
2960
408fbf19 2961 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2962 key.offset = chunk_offset;
2963 key.type = BTRFS_CHUNK_ITEM_KEY;
2964
2965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2966 if (ret < 0)
2967 goto out;
2968 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2969 btrfs_handle_fs_error(fs_info, -ENOENT,
2970 "Failed lookup while freeing chunk.");
79787eaa
JM
2971 ret = -ENOENT;
2972 goto out;
2973 }
8f18cf13
CM
2974
2975 ret = btrfs_del_item(trans, root, path);
79787eaa 2976 if (ret < 0)
0b246afa
JM
2977 btrfs_handle_fs_error(fs_info, ret,
2978 "Failed to delete chunk item.");
79787eaa 2979out:
8f18cf13 2980 btrfs_free_path(path);
65a246c5 2981 return ret;
8f18cf13
CM
2982}
2983
408fbf19 2984static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2985{
0b246afa 2986 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2987 struct btrfs_disk_key *disk_key;
2988 struct btrfs_chunk *chunk;
2989 u8 *ptr;
2990 int ret = 0;
2991 u32 num_stripes;
2992 u32 array_size;
2993 u32 len = 0;
2994 u32 cur;
2995 struct btrfs_key key;
2996
79bd3712 2997 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2998 array_size = btrfs_super_sys_array_size(super_copy);
2999
3000 ptr = super_copy->sys_chunk_array;
3001 cur = 0;
3002
3003 while (cur < array_size) {
3004 disk_key = (struct btrfs_disk_key *)ptr;
3005 btrfs_disk_key_to_cpu(&key, disk_key);
3006
3007 len = sizeof(*disk_key);
3008
3009 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3010 chunk = (struct btrfs_chunk *)(ptr + len);
3011 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3012 len += btrfs_chunk_item_size(num_stripes);
3013 } else {
3014 ret = -EIO;
3015 break;
3016 }
408fbf19 3017 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
3018 key.offset == chunk_offset) {
3019 memmove(ptr, ptr + len, array_size - (cur + len));
3020 array_size -= len;
3021 btrfs_set_super_sys_array_size(super_copy, array_size);
3022 } else {
3023 ptr += len;
3024 cur += len;
3025 }
3026 }
3027 return ret;
3028}
3029
60ca842e
OS
3030/*
3031 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3032 * @logical: Logical block offset in bytes.
3033 * @length: Length of extent in bytes.
3034 *
3035 * Return: Chunk mapping or ERR_PTR.
3036 */
3037struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3038 u64 logical, u64 length)
592d92ee
LB
3039{
3040 struct extent_map_tree *em_tree;
3041 struct extent_map *em;
3042
c8bf1b67 3043 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3044 read_lock(&em_tree->lock);
3045 em = lookup_extent_mapping(em_tree, logical, length);
3046 read_unlock(&em_tree->lock);
3047
3048 if (!em) {
3049 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3050 logical, length);
3051 return ERR_PTR(-EINVAL);
3052 }
3053
3054 if (em->start > logical || em->start + em->len < logical) {
3055 btrfs_crit(fs_info,
3056 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3057 logical, length, em->start, em->start + em->len);
3058 free_extent_map(em);
3059 return ERR_PTR(-EINVAL);
3060 }
3061
3062 /* callers are responsible for dropping em's ref. */
3063 return em;
3064}
3065
79bd3712
FM
3066static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067 struct map_lookup *map, u64 chunk_offset)
3068{
3069 int i;
3070
3071 /*
3072 * Removing chunk items and updating the device items in the chunks btree
3073 * requires holding the chunk_mutex.
3074 * See the comment at btrfs_chunk_alloc() for the details.
3075 */
3076 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077
3078 for (i = 0; i < map->num_stripes; i++) {
3079 int ret;
3080
3081 ret = btrfs_update_device(trans, map->stripes[i].dev);
3082 if (ret)
3083 return ret;
3084 }
3085
3086 return btrfs_free_chunk(trans, chunk_offset);
3087}
3088
97aff912 3089int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3090{
97aff912 3091 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3092 struct extent_map *em;
3093 struct map_lookup *map;
2196d6e8 3094 u64 dev_extent_len = 0;
47ab2a6c 3095 int i, ret = 0;
0b246afa 3096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3097
60ca842e 3098 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3099 if (IS_ERR(em)) {
47ab2a6c
JB
3100 /*
3101 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3102 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3103 * do anything we still error out.
3104 */
3105 ASSERT(0);
592d92ee 3106 return PTR_ERR(em);
47ab2a6c 3107 }
95617d69 3108 map = em->map_lookup;
8f18cf13 3109
57ba4cb8 3110 /*
79bd3712
FM
3111 * First delete the device extent items from the devices btree.
3112 * We take the device_list_mutex to avoid racing with the finishing phase
3113 * of a device replace operation. See the comment below before acquiring
3114 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115 * because that can result in a deadlock when deleting the device extent
3116 * items from the devices btree - COWing an extent buffer from the btree
3117 * may result in allocating a new metadata chunk, which would attempt to
3118 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3119 */
3120 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3121 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3122 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3123 ret = btrfs_free_dev_extent(trans, device,
3124 map->stripes[i].physical,
3125 &dev_extent_len);
47ab2a6c 3126 if (ret) {
57ba4cb8 3127 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3128 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3129 goto out;
3130 }
a061fc8d 3131
2196d6e8 3132 if (device->bytes_used > 0) {
34441361 3133 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3134 btrfs_device_set_bytes_used(device,
3135 device->bytes_used - dev_extent_len);
a5ed45f8 3136 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3137 btrfs_clear_space_info_full(fs_info);
34441361 3138 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3139 }
79bd3712
FM
3140 }
3141 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3142
79bd3712
FM
3143 /*
3144 * We acquire fs_info->chunk_mutex for 2 reasons:
3145 *
3146 * 1) Just like with the first phase of the chunk allocation, we must
3147 * reserve system space, do all chunk btree updates and deletions, and
3148 * update the system chunk array in the superblock while holding this
3149 * mutex. This is for similar reasons as explained on the comment at
3150 * the top of btrfs_chunk_alloc();
3151 *
3152 * 2) Prevent races with the final phase of a device replace operation
3153 * that replaces the device object associated with the map's stripes,
3154 * because the device object's id can change at any time during that
3155 * final phase of the device replace operation
3156 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157 * replaced device and then see it with an ID of
3158 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159 * the device item, which does not exists on the chunk btree.
3160 * The finishing phase of device replace acquires both the
3161 * device_list_mutex and the chunk_mutex, in that order, so we are
3162 * safe by just acquiring the chunk_mutex.
3163 */
3164 trans->removing_chunk = true;
3165 mutex_lock(&fs_info->chunk_mutex);
3166
3167 check_system_chunk(trans, map->type);
3168
3169 ret = remove_chunk_item(trans, map, chunk_offset);
3170 /*
3171 * Normally we should not get -ENOSPC since we reserved space before
3172 * through the call to check_system_chunk().
3173 *
3174 * Despite our system space_info having enough free space, we may not
3175 * be able to allocate extents from its block groups, because all have
3176 * an incompatible profile, which will force us to allocate a new system
3177 * block group with the right profile, or right after we called
3178 * check_system_space() above, a scrub turned the only system block group
3179 * with enough free space into RO mode.
3180 * This is explained with more detail at do_chunk_alloc().
3181 *
3182 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183 */
3184 if (ret == -ENOSPC) {
3185 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186 struct btrfs_block_group *sys_bg;
3187
f6f39f7a 3188 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3189 if (IS_ERR(sys_bg)) {
3190 ret = PTR_ERR(sys_bg);
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194
3195 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3196 if (ret) {
64bc6c2a
NB
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
dfe25020 3199 }
57ba4cb8 3200
79bd3712
FM
3201 ret = remove_chunk_item(trans, map, chunk_offset);
3202 if (ret) {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206 } else if (ret) {
66642832 3207 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3208 goto out;
3209 }
8f18cf13 3210
6bccf3ab 3211 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3212
8f18cf13 3213 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3214 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3215 if (ret) {
66642832 3216 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3217 goto out;
3218 }
8f18cf13
CM
3219 }
3220
79bd3712
FM
3221 mutex_unlock(&fs_info->chunk_mutex);
3222 trans->removing_chunk = false;
3223
3224 /*
3225 * We are done with chunk btree updates and deletions, so release the
3226 * system space we previously reserved (with check_system_chunk()).
3227 */
3228 btrfs_trans_release_chunk_metadata(trans);
3229
5a98ec01 3230 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3231 if (ret) {
66642832 3232 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3233 goto out;
3234 }
2b82032c 3235
47ab2a6c 3236out:
79bd3712
FM
3237 if (trans->removing_chunk) {
3238 mutex_unlock(&fs_info->chunk_mutex);
3239 trans->removing_chunk = false;
3240 }
2b82032c
YZ
3241 /* once for us */
3242 free_extent_map(em);
47ab2a6c
JB
3243 return ret;
3244}
2b82032c 3245
18bb8bbf 3246int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3247{
5b4aacef 3248 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3249 struct btrfs_trans_handle *trans;
b0643e59 3250 struct btrfs_block_group *block_group;
01e86008 3251 u64 length;
47ab2a6c 3252 int ret;
2b82032c 3253
67c5e7d4
FM
3254 /*
3255 * Prevent races with automatic removal of unused block groups.
3256 * After we relocate and before we remove the chunk with offset
3257 * chunk_offset, automatic removal of the block group can kick in,
3258 * resulting in a failure when calling btrfs_remove_chunk() below.
3259 *
3260 * Make sure to acquire this mutex before doing a tree search (dev
3261 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3262 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3263 * we release the path used to search the chunk/dev tree and before
3264 * the current task acquires this mutex and calls us.
3265 */
f3372065 3266 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3267
47ab2a6c 3268 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3269 btrfs_scrub_pause(fs_info);
0b246afa 3270 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3271 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3272 if (ret)
3273 return ret;
3274
b0643e59
DZ
3275 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3276 if (!block_group)
3277 return -ENOENT;
3278 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3279 length = block_group->length;
b0643e59
DZ
3280 btrfs_put_block_group(block_group);
3281
01e86008
JT
3282 /*
3283 * On a zoned file system, discard the whole block group, this will
3284 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3285 * resetting the zone fails, don't treat it as a fatal problem from the
3286 * filesystem's point of view.
3287 */
3288 if (btrfs_is_zoned(fs_info)) {
3289 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3290 if (ret)
3291 btrfs_info(fs_info,
3292 "failed to reset zone %llu after relocation",
3293 chunk_offset);
3294 }
3295
19c4d2f9
CM
3296 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3297 chunk_offset);
3298 if (IS_ERR(trans)) {
3299 ret = PTR_ERR(trans);
3300 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3301 return ret;
3302 }
3303
47ab2a6c 3304 /*
19c4d2f9
CM
3305 * step two, delete the device extents and the
3306 * chunk tree entries
47ab2a6c 3307 */
97aff912 3308 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3309 btrfs_end_transaction(trans);
19c4d2f9 3310 return ret;
2b82032c
YZ
3311}
3312
2ff7e61e 3313static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3314{
0b246afa 3315 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3316 struct btrfs_path *path;
3317 struct extent_buffer *leaf;
3318 struct btrfs_chunk *chunk;
3319 struct btrfs_key key;
3320 struct btrfs_key found_key;
2b82032c 3321 u64 chunk_type;
ba1bf481
JB
3322 bool retried = false;
3323 int failed = 0;
2b82032c
YZ
3324 int ret;
3325
3326 path = btrfs_alloc_path();
3327 if (!path)
3328 return -ENOMEM;
3329
ba1bf481 3330again:
2b82032c
YZ
3331 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3332 key.offset = (u64)-1;
3333 key.type = BTRFS_CHUNK_ITEM_KEY;
3334
3335 while (1) {
f3372065 3336 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3337 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3338 if (ret < 0) {
f3372065 3339 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3340 goto error;
67c5e7d4 3341 }
79787eaa 3342 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3343
3344 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3345 key.type);
67c5e7d4 3346 if (ret)
f3372065 3347 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3348 if (ret < 0)
3349 goto error;
3350 if (ret > 0)
3351 break;
1a40e23b 3352
2b82032c
YZ
3353 leaf = path->nodes[0];
3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3355
2b82032c
YZ
3356 chunk = btrfs_item_ptr(leaf, path->slots[0],
3357 struct btrfs_chunk);
3358 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3359 btrfs_release_path(path);
8f18cf13 3360
2b82032c 3361 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3362 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3363 if (ret == -ENOSPC)
3364 failed++;
14586651
HS
3365 else
3366 BUG_ON(ret);
2b82032c 3367 }
f3372065 3368 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3369
2b82032c
YZ
3370 if (found_key.offset == 0)
3371 break;
3372 key.offset = found_key.offset - 1;
3373 }
3374 ret = 0;
ba1bf481
JB
3375 if (failed && !retried) {
3376 failed = 0;
3377 retried = true;
3378 goto again;
fae7f21c 3379 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3380 ret = -ENOSPC;
3381 }
2b82032c
YZ
3382error:
3383 btrfs_free_path(path);
3384 return ret;
8f18cf13
CM
3385}
3386
a6f93c71
LB
3387/*
3388 * return 1 : allocate a data chunk successfully,
3389 * return <0: errors during allocating a data chunk,
3390 * return 0 : no need to allocate a data chunk.
3391 */
3392static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3393 u64 chunk_offset)
3394{
32da5386 3395 struct btrfs_block_group *cache;
a6f93c71
LB
3396 u64 bytes_used;
3397 u64 chunk_type;
3398
3399 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3400 ASSERT(cache);
3401 chunk_type = cache->flags;
3402 btrfs_put_block_group(cache);
3403
5ae21692
JT
3404 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3405 return 0;
3406
3407 spin_lock(&fs_info->data_sinfo->lock);
3408 bytes_used = fs_info->data_sinfo->bytes_used;
3409 spin_unlock(&fs_info->data_sinfo->lock);
3410
3411 if (!bytes_used) {
3412 struct btrfs_trans_handle *trans;
3413 int ret;
3414
3415 trans = btrfs_join_transaction(fs_info->tree_root);
3416 if (IS_ERR(trans))
3417 return PTR_ERR(trans);
3418
3419 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3420 btrfs_end_transaction(trans);
3421 if (ret < 0)
3422 return ret;
3423 return 1;
a6f93c71 3424 }
5ae21692 3425
a6f93c71
LB
3426 return 0;
3427}
3428
6bccf3ab 3429static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3430 struct btrfs_balance_control *bctl)
3431{
6bccf3ab 3432 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3433 struct btrfs_trans_handle *trans;
3434 struct btrfs_balance_item *item;
3435 struct btrfs_disk_balance_args disk_bargs;
3436 struct btrfs_path *path;
3437 struct extent_buffer *leaf;
3438 struct btrfs_key key;
3439 int ret, err;
3440
3441 path = btrfs_alloc_path();
3442 if (!path)
3443 return -ENOMEM;
3444
3445 trans = btrfs_start_transaction(root, 0);
3446 if (IS_ERR(trans)) {
3447 btrfs_free_path(path);
3448 return PTR_ERR(trans);
3449 }
3450
3451 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3452 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3453 key.offset = 0;
3454
3455 ret = btrfs_insert_empty_item(trans, root, path, &key,
3456 sizeof(*item));
3457 if (ret)
3458 goto out;
3459
3460 leaf = path->nodes[0];
3461 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3462
b159fa28 3463 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3464
3465 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3466 btrfs_set_balance_data(leaf, item, &disk_bargs);
3467 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3468 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3469 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3470 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3471
3472 btrfs_set_balance_flags(leaf, item, bctl->flags);
3473
3474 btrfs_mark_buffer_dirty(leaf);
3475out:
3476 btrfs_free_path(path);
3a45bb20 3477 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3478 if (err && !ret)
3479 ret = err;
3480 return ret;
3481}
3482
6bccf3ab 3483static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3484{
6bccf3ab 3485 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3486 struct btrfs_trans_handle *trans;
3487 struct btrfs_path *path;
3488 struct btrfs_key key;
3489 int ret, err;
3490
3491 path = btrfs_alloc_path();
3492 if (!path)
3493 return -ENOMEM;
3494
3502a8c0 3495 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3496 if (IS_ERR(trans)) {
3497 btrfs_free_path(path);
3498 return PTR_ERR(trans);
3499 }
3500
3501 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3502 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3503 key.offset = 0;
3504
3505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3506 if (ret < 0)
3507 goto out;
3508 if (ret > 0) {
3509 ret = -ENOENT;
3510 goto out;
3511 }
3512
3513 ret = btrfs_del_item(trans, root, path);
3514out:
3515 btrfs_free_path(path);
3a45bb20 3516 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3517 if (err && !ret)
3518 ret = err;
3519 return ret;
3520}
3521
59641015
ID
3522/*
3523 * This is a heuristic used to reduce the number of chunks balanced on
3524 * resume after balance was interrupted.
3525 */
3526static void update_balance_args(struct btrfs_balance_control *bctl)
3527{
3528 /*
3529 * Turn on soft mode for chunk types that were being converted.
3530 */
3531 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3532 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3533 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3534 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3535 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3536 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3537
3538 /*
3539 * Turn on usage filter if is not already used. The idea is
3540 * that chunks that we have already balanced should be
3541 * reasonably full. Don't do it for chunks that are being
3542 * converted - that will keep us from relocating unconverted
3543 * (albeit full) chunks.
3544 */
3545 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3546 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3547 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3548 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3549 bctl->data.usage = 90;
3550 }
3551 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3552 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3553 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3554 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3555 bctl->sys.usage = 90;
3556 }
3557 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3558 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3559 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 bctl->meta.usage = 90;
3562 }
3563}
3564
149196a2
DS
3565/*
3566 * Clear the balance status in fs_info and delete the balance item from disk.
3567 */
3568static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3569{
3570 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3571 int ret;
c9e9f97b
ID
3572
3573 BUG_ON(!fs_info->balance_ctl);
3574
3575 spin_lock(&fs_info->balance_lock);
3576 fs_info->balance_ctl = NULL;
3577 spin_unlock(&fs_info->balance_lock);
3578
3579 kfree(bctl);
149196a2
DS
3580 ret = del_balance_item(fs_info);
3581 if (ret)
3582 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3583}
3584
ed25e9b2
ID
3585/*
3586 * Balance filters. Return 1 if chunk should be filtered out
3587 * (should not be balanced).
3588 */
899c81ea 3589static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3590 struct btrfs_balance_args *bargs)
3591{
899c81ea
ID
3592 chunk_type = chunk_to_extended(chunk_type) &
3593 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3594
899c81ea 3595 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3596 return 0;
3597
3598 return 1;
3599}
3600
dba72cb3 3601static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3602 struct btrfs_balance_args *bargs)
bc309467 3603{
32da5386 3604 struct btrfs_block_group *cache;
bc309467
DS
3605 u64 chunk_used;
3606 u64 user_thresh_min;
3607 u64 user_thresh_max;
3608 int ret = 1;
3609
3610 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3611 chunk_used = cache->used;
bc309467
DS
3612
3613 if (bargs->usage_min == 0)
3614 user_thresh_min = 0;
3615 else
b3470b5d
DS
3616 user_thresh_min = div_factor_fine(cache->length,
3617 bargs->usage_min);
bc309467
DS
3618
3619 if (bargs->usage_max == 0)
3620 user_thresh_max = 1;
3621 else if (bargs->usage_max > 100)
b3470b5d 3622 user_thresh_max = cache->length;
bc309467 3623 else
b3470b5d
DS
3624 user_thresh_max = div_factor_fine(cache->length,
3625 bargs->usage_max);
bc309467
DS
3626
3627 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3628 ret = 0;
3629
3630 btrfs_put_block_group(cache);
3631 return ret;
3632}
3633
dba72cb3 3634static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3635 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3636{
32da5386 3637 struct btrfs_block_group *cache;
5ce5b3c0
ID
3638 u64 chunk_used, user_thresh;
3639 int ret = 1;
3640
3641 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3642 chunk_used = cache->used;
5ce5b3c0 3643
bc309467 3644 if (bargs->usage_min == 0)
3e39cea6 3645 user_thresh = 1;
a105bb88 3646 else if (bargs->usage > 100)
b3470b5d 3647 user_thresh = cache->length;
a105bb88 3648 else
b3470b5d 3649 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3650
5ce5b3c0
ID
3651 if (chunk_used < user_thresh)
3652 ret = 0;
3653
3654 btrfs_put_block_group(cache);
3655 return ret;
3656}
3657
409d404b
ID
3658static int chunk_devid_filter(struct extent_buffer *leaf,
3659 struct btrfs_chunk *chunk,
3660 struct btrfs_balance_args *bargs)
3661{
3662 struct btrfs_stripe *stripe;
3663 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3664 int i;
3665
3666 for (i = 0; i < num_stripes; i++) {
3667 stripe = btrfs_stripe_nr(chunk, i);
3668 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3669 return 0;
3670 }
3671
3672 return 1;
3673}
3674
946c9256
DS
3675static u64 calc_data_stripes(u64 type, int num_stripes)
3676{
3677 const int index = btrfs_bg_flags_to_raid_index(type);
3678 const int ncopies = btrfs_raid_array[index].ncopies;
3679 const int nparity = btrfs_raid_array[index].nparity;
3680
d58ede8d 3681 return (num_stripes - nparity) / ncopies;
946c9256
DS
3682}
3683
94e60d5a
ID
3684/* [pstart, pend) */
3685static int chunk_drange_filter(struct extent_buffer *leaf,
3686 struct btrfs_chunk *chunk,
94e60d5a
ID
3687 struct btrfs_balance_args *bargs)
3688{
3689 struct btrfs_stripe *stripe;
3690 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3691 u64 stripe_offset;
3692 u64 stripe_length;
946c9256 3693 u64 type;
94e60d5a
ID
3694 int factor;
3695 int i;
3696
3697 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3698 return 0;
3699
946c9256
DS
3700 type = btrfs_chunk_type(leaf, chunk);
3701 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3702
3703 for (i = 0; i < num_stripes; i++) {
3704 stripe = btrfs_stripe_nr(chunk, i);
3705 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3706 continue;
3707
3708 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3709 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3710 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3711
3712 if (stripe_offset < bargs->pend &&
3713 stripe_offset + stripe_length > bargs->pstart)
3714 return 0;
3715 }
3716
3717 return 1;
3718}
3719
ea67176a
ID
3720/* [vstart, vend) */
3721static int chunk_vrange_filter(struct extent_buffer *leaf,
3722 struct btrfs_chunk *chunk,
3723 u64 chunk_offset,
3724 struct btrfs_balance_args *bargs)
3725{
3726 if (chunk_offset < bargs->vend &&
3727 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3728 /* at least part of the chunk is inside this vrange */
3729 return 0;
3730
3731 return 1;
3732}
3733
dee32d0a
GAP
3734static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3735 struct btrfs_chunk *chunk,
3736 struct btrfs_balance_args *bargs)
3737{
3738 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3739
3740 if (bargs->stripes_min <= num_stripes
3741 && num_stripes <= bargs->stripes_max)
3742 return 0;
3743
3744 return 1;
3745}
3746
899c81ea 3747static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3748 struct btrfs_balance_args *bargs)
3749{
3750 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3751 return 0;
3752
899c81ea
ID
3753 chunk_type = chunk_to_extended(chunk_type) &
3754 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3755
899c81ea 3756 if (bargs->target == chunk_type)
cfa4c961
ID
3757 return 1;
3758
3759 return 0;
3760}
3761
6ec0896c 3762static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3763 struct btrfs_chunk *chunk, u64 chunk_offset)
3764{
6ec0896c 3765 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3766 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3767 struct btrfs_balance_args *bargs = NULL;
3768 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3769
3770 /* type filter */
3771 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3772 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3773 return 0;
3774 }
3775
3776 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3777 bargs = &bctl->data;
3778 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3779 bargs = &bctl->sys;
3780 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3781 bargs = &bctl->meta;
3782
ed25e9b2
ID
3783 /* profiles filter */
3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3785 chunk_profiles_filter(chunk_type, bargs)) {
3786 return 0;
5ce5b3c0
ID
3787 }
3788
3789 /* usage filter */
3790 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3791 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3792 return 0;
bc309467 3793 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3794 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3795 return 0;
409d404b
ID
3796 }
3797
3798 /* devid filter */
3799 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3800 chunk_devid_filter(leaf, chunk, bargs)) {
3801 return 0;
94e60d5a
ID
3802 }
3803
3804 /* drange filter, makes sense only with devid filter */
3805 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3806 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3807 return 0;
ea67176a
ID
3808 }
3809
3810 /* vrange filter */
3811 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3812 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3813 return 0;
ed25e9b2
ID
3814 }
3815
dee32d0a
GAP
3816 /* stripes filter */
3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3818 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3819 return 0;
3820 }
3821
cfa4c961
ID
3822 /* soft profile changing mode */
3823 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3824 chunk_soft_convert_filter(chunk_type, bargs)) {
3825 return 0;
3826 }
3827
7d824b6f
DS
3828 /*
3829 * limited by count, must be the last filter
3830 */
3831 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3832 if (bargs->limit == 0)
3833 return 0;
3834 else
3835 bargs->limit--;
12907fc7
DS
3836 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3837 /*
3838 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3839 * determined here because we do not have the global information
12907fc7
DS
3840 * about the count of all chunks that satisfy the filters.
3841 */
3842 if (bargs->limit_max == 0)
3843 return 0;
3844 else
3845 bargs->limit_max--;
7d824b6f
DS
3846 }
3847
f43ffb60
ID
3848 return 1;
3849}
3850
c9e9f97b 3851static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3852{
19a39dce 3853 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3854 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3855 u64 chunk_type;
f43ffb60 3856 struct btrfs_chunk *chunk;
5a488b9d 3857 struct btrfs_path *path = NULL;
ec44a35c 3858 struct btrfs_key key;
ec44a35c 3859 struct btrfs_key found_key;
f43ffb60
ID
3860 struct extent_buffer *leaf;
3861 int slot;
c9e9f97b
ID
3862 int ret;
3863 int enospc_errors = 0;
19a39dce 3864 bool counting = true;
12907fc7 3865 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3866 u64 limit_data = bctl->data.limit;
3867 u64 limit_meta = bctl->meta.limit;
3868 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3869 u32 count_data = 0;
3870 u32 count_meta = 0;
3871 u32 count_sys = 0;
2c9fe835 3872 int chunk_reserved = 0;
ec44a35c 3873
ec44a35c 3874 path = btrfs_alloc_path();
17e9f796
MF
3875 if (!path) {
3876 ret = -ENOMEM;
3877 goto error;
3878 }
19a39dce
ID
3879
3880 /* zero out stat counters */
3881 spin_lock(&fs_info->balance_lock);
3882 memset(&bctl->stat, 0, sizeof(bctl->stat));
3883 spin_unlock(&fs_info->balance_lock);
3884again:
7d824b6f 3885 if (!counting) {
12907fc7
DS
3886 /*
3887 * The single value limit and min/max limits use the same bytes
3888 * in the
3889 */
7d824b6f
DS
3890 bctl->data.limit = limit_data;
3891 bctl->meta.limit = limit_meta;
3892 bctl->sys.limit = limit_sys;
3893 }
ec44a35c
CM
3894 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3895 key.offset = (u64)-1;
3896 key.type = BTRFS_CHUNK_ITEM_KEY;
3897
d397712b 3898 while (1) {
19a39dce 3899 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3900 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3901 ret = -ECANCELED;
3902 goto error;
3903 }
3904
f3372065 3905 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3906 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3907 if (ret < 0) {
f3372065 3908 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3909 goto error;
67c5e7d4 3910 }
ec44a35c
CM
3911
3912 /*
3913 * this shouldn't happen, it means the last relocate
3914 * failed
3915 */
3916 if (ret == 0)
c9e9f97b 3917 BUG(); /* FIXME break ? */
ec44a35c
CM
3918
3919 ret = btrfs_previous_item(chunk_root, path, 0,
3920 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3921 if (ret) {
f3372065 3922 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3923 ret = 0;
ec44a35c 3924 break;
c9e9f97b 3925 }
7d9eb12c 3926
f43ffb60
ID
3927 leaf = path->nodes[0];
3928 slot = path->slots[0];
3929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3930
67c5e7d4 3931 if (found_key.objectid != key.objectid) {
f3372065 3932 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3933 break;
67c5e7d4 3934 }
7d9eb12c 3935
f43ffb60 3936 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3937 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3938
19a39dce
ID
3939 if (!counting) {
3940 spin_lock(&fs_info->balance_lock);
3941 bctl->stat.considered++;
3942 spin_unlock(&fs_info->balance_lock);
3943 }
3944
6ec0896c 3945 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3946
b3b4aa74 3947 btrfs_release_path(path);
67c5e7d4 3948 if (!ret) {
f3372065 3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3950 goto loop;
67c5e7d4 3951 }
f43ffb60 3952
19a39dce 3953 if (counting) {
f3372065 3954 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3955 spin_lock(&fs_info->balance_lock);
3956 bctl->stat.expected++;
3957 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3958
3959 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3960 count_data++;
3961 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3962 count_sys++;
3963 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3964 count_meta++;
3965
3966 goto loop;
3967 }
3968
3969 /*
3970 * Apply limit_min filter, no need to check if the LIMITS
3971 * filter is used, limit_min is 0 by default
3972 */
3973 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3974 count_data < bctl->data.limit_min)
3975 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3976 count_meta < bctl->meta.limit_min)
3977 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3978 count_sys < bctl->sys.limit_min)) {
f3372065 3979 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3980 goto loop;
3981 }
3982
a6f93c71
LB
3983 if (!chunk_reserved) {
3984 /*
3985 * We may be relocating the only data chunk we have,
3986 * which could potentially end up with losing data's
3987 * raid profile, so lets allocate an empty one in
3988 * advance.
3989 */
3990 ret = btrfs_may_alloc_data_chunk(fs_info,
3991 found_key.offset);
2c9fe835 3992 if (ret < 0) {
f3372065 3993 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3994 goto error;
a6f93c71
LB
3995 } else if (ret == 1) {
3996 chunk_reserved = 1;
2c9fe835 3997 }
2c9fe835
ZL
3998 }
3999
5b4aacef 4000 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 4002 if (ret == -ENOSPC) {
c9e9f97b 4003 enospc_errors++;
eede2bf3
OS
4004 } else if (ret == -ETXTBSY) {
4005 btrfs_info(fs_info,
4006 "skipping relocation of block group %llu due to active swapfile",
4007 found_key.offset);
4008 ret = 0;
4009 } else if (ret) {
4010 goto error;
19a39dce
ID
4011 } else {
4012 spin_lock(&fs_info->balance_lock);
4013 bctl->stat.completed++;
4014 spin_unlock(&fs_info->balance_lock);
4015 }
f43ffb60 4016loop:
795a3321
ID
4017 if (found_key.offset == 0)
4018 break;
ba1bf481 4019 key.offset = found_key.offset - 1;
ec44a35c 4020 }
c9e9f97b 4021
19a39dce
ID
4022 if (counting) {
4023 btrfs_release_path(path);
4024 counting = false;
4025 goto again;
4026 }
ec44a35c
CM
4027error:
4028 btrfs_free_path(path);
c9e9f97b 4029 if (enospc_errors) {
efe120a0 4030 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4031 enospc_errors);
c9e9f97b
ID
4032 if (!ret)
4033 ret = -ENOSPC;
4034 }
4035
ec44a35c
CM
4036 return ret;
4037}
4038
0c460c0d
ID
4039/**
4040 * alloc_profile_is_valid - see if a given profile is valid and reduced
4041 * @flags: profile to validate
4042 * @extended: if true @flags is treated as an extended profile
4043 */
4044static int alloc_profile_is_valid(u64 flags, int extended)
4045{
4046 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4047 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4048
4049 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4050
4051 /* 1) check that all other bits are zeroed */
4052 if (flags & ~mask)
4053 return 0;
4054
4055 /* 2) see if profile is reduced */
4056 if (flags == 0)
4057 return !extended; /* "0" is valid for usual profiles */
4058
c1499166 4059 return has_single_bit_set(flags);
0c460c0d
ID
4060}
4061
837d5b6e
ID
4062static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4063{
a7e99c69
ID
4064 /* cancel requested || normal exit path */
4065 return atomic_read(&fs_info->balance_cancel_req) ||
4066 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4067 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
4068}
4069
5ba366c3
DS
4070/*
4071 * Validate target profile against allowed profiles and return true if it's OK.
4072 * Otherwise print the error message and return false.
4073 */
4074static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4075 const struct btrfs_balance_args *bargs,
4076 u64 allowed, const char *type)
bdcd3c97 4077{
5ba366c3
DS
4078 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4079 return true;
4080
c8050b3b
QW
4081 if (fs_info->sectorsize < PAGE_SIZE &&
4082 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4083 btrfs_err(fs_info,
4084 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4085 fs_info->sectorsize, PAGE_SIZE);
4086 return false;
4087 }
5ba366c3
DS
4088 /* Profile is valid and does not have bits outside of the allowed set */
4089 if (alloc_profile_is_valid(bargs->target, 1) &&
4090 (bargs->target & ~allowed) == 0)
4091 return true;
4092
4093 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4094 type, btrfs_bg_type_to_raid_name(bargs->target));
4095 return false;
bdcd3c97
AM
4096}
4097
56fc37d9
AJ
4098/*
4099 * Fill @buf with textual description of balance filter flags @bargs, up to
4100 * @size_buf including the terminating null. The output may be trimmed if it
4101 * does not fit into the provided buffer.
4102 */
4103static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4104 u32 size_buf)
4105{
4106 int ret;
4107 u32 size_bp = size_buf;
4108 char *bp = buf;
4109 u64 flags = bargs->flags;
4110 char tmp_buf[128] = {'\0'};
4111
4112 if (!flags)
4113 return;
4114
4115#define CHECK_APPEND_NOARG(a) \
4116 do { \
4117 ret = snprintf(bp, size_bp, (a)); \
4118 if (ret < 0 || ret >= size_bp) \
4119 goto out_overflow; \
4120 size_bp -= ret; \
4121 bp += ret; \
4122 } while (0)
4123
4124#define CHECK_APPEND_1ARG(a, v1) \
4125 do { \
4126 ret = snprintf(bp, size_bp, (a), (v1)); \
4127 if (ret < 0 || ret >= size_bp) \
4128 goto out_overflow; \
4129 size_bp -= ret; \
4130 bp += ret; \
4131 } while (0)
4132
4133#define CHECK_APPEND_2ARG(a, v1, v2) \
4134 do { \
4135 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4136 if (ret < 0 || ret >= size_bp) \
4137 goto out_overflow; \
4138 size_bp -= ret; \
4139 bp += ret; \
4140 } while (0)
4141
158da513
DS
4142 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4143 CHECK_APPEND_1ARG("convert=%s,",
4144 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4145
4146 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4147 CHECK_APPEND_NOARG("soft,");
4148
4149 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4150 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4151 sizeof(tmp_buf));
4152 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4153 }
4154
4155 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4156 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4159 CHECK_APPEND_2ARG("usage=%u..%u,",
4160 bargs->usage_min, bargs->usage_max);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4163 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4166 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4167 bargs->pstart, bargs->pend);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4170 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4171 bargs->vstart, bargs->vend);
4172
4173 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4174 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4175
4176 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4177 CHECK_APPEND_2ARG("limit=%u..%u,",
4178 bargs->limit_min, bargs->limit_max);
4179
4180 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4181 CHECK_APPEND_2ARG("stripes=%u..%u,",
4182 bargs->stripes_min, bargs->stripes_max);
4183
4184#undef CHECK_APPEND_2ARG
4185#undef CHECK_APPEND_1ARG
4186#undef CHECK_APPEND_NOARG
4187
4188out_overflow:
4189
4190 if (size_bp < size_buf)
4191 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4192 else
4193 buf[0] = '\0';
4194}
4195
4196static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4197{
4198 u32 size_buf = 1024;
4199 char tmp_buf[192] = {'\0'};
4200 char *buf;
4201 char *bp;
4202 u32 size_bp = size_buf;
4203 int ret;
4204 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4205
4206 buf = kzalloc(size_buf, GFP_KERNEL);
4207 if (!buf)
4208 return;
4209
4210 bp = buf;
4211
4212#define CHECK_APPEND_1ARG(a, v1) \
4213 do { \
4214 ret = snprintf(bp, size_bp, (a), (v1)); \
4215 if (ret < 0 || ret >= size_bp) \
4216 goto out_overflow; \
4217 size_bp -= ret; \
4218 bp += ret; \
4219 } while (0)
4220
4221 if (bctl->flags & BTRFS_BALANCE_FORCE)
4222 CHECK_APPEND_1ARG("%s", "-f ");
4223
4224 if (bctl->flags & BTRFS_BALANCE_DATA) {
4225 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4226 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4227 }
4228
4229 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4230 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4231 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4232 }
4233
4234 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4235 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4236 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4237 }
4238
4239#undef CHECK_APPEND_1ARG
4240
4241out_overflow:
4242
4243 if (size_bp < size_buf)
4244 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4245 btrfs_info(fs_info, "balance: %s %s",
4246 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4247 "resume" : "start", buf);
4248
4249 kfree(buf);
4250}
4251
c9e9f97b 4252/*
dccdb07b 4253 * Should be called with balance mutexe held
c9e9f97b 4254 */
6fcf6e2b
DS
4255int btrfs_balance(struct btrfs_fs_info *fs_info,
4256 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4257 struct btrfs_ioctl_balance_args *bargs)
4258{
14506127 4259 u64 meta_target, data_target;
f43ffb60 4260 u64 allowed;
e4837f8f 4261 int mixed = 0;
c9e9f97b 4262 int ret;
8dabb742 4263 u64 num_devices;
de98ced9 4264 unsigned seq;
e62869be 4265 bool reducing_redundancy;
081db89b 4266 int i;
c9e9f97b 4267
837d5b6e 4268 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4269 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4270 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4271 ret = -EINVAL;
4272 goto out;
4273 }
4274
e4837f8f
ID
4275 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4276 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4277 mixed = 1;
4278
f43ffb60
ID
4279 /*
4280 * In case of mixed groups both data and meta should be picked,
4281 * and identical options should be given for both of them.
4282 */
e4837f8f
ID
4283 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4284 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4285 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4286 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4287 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4288 btrfs_err(fs_info,
6dac13f8 4289 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4290 ret = -EINVAL;
4291 goto out;
4292 }
4293 }
4294
b35cf1f0
JB
4295 /*
4296 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4297 * are exclusive
b35cf1f0
JB
4298 */
4299 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4300
4301 /*
4302 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4303 * special bit for it, to make it easier to distinguish. Thus we need
4304 * to set it manually, or balance would refuse the profile.
4305 */
4306 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4307 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4308 if (num_devices >= btrfs_raid_array[i].devs_min)
4309 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4310
5ba366c3
DS
4311 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4312 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4313 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4314 ret = -EINVAL;
4315 goto out;
4316 }
4317
6079e12c
DS
4318 /*
4319 * Allow to reduce metadata or system integrity only if force set for
4320 * profiles with redundancy (copies, parity)
4321 */
4322 allowed = 0;
4323 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4324 if (btrfs_raid_array[i].ncopies >= 2 ||
4325 btrfs_raid_array[i].tolerated_failures >= 1)
4326 allowed |= btrfs_raid_array[i].bg_flag;
4327 }
de98ced9
MX
4328 do {
4329 seq = read_seqbegin(&fs_info->profiles_lock);
4330
4331 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4332 (fs_info->avail_system_alloc_bits & allowed) &&
4333 !(bctl->sys.target & allowed)) ||
4334 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4335 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4336 !(bctl->meta.target & allowed)))
e62869be 4337 reducing_redundancy = true;
5a8067c0 4338 else
e62869be 4339 reducing_redundancy = false;
5a8067c0
FM
4340
4341 /* if we're not converting, the target field is uninitialized */
4342 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4343 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4344 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4345 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4346 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4347
e62869be 4348 if (reducing_redundancy) {
5a8067c0
FM
4349 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4350 btrfs_info(fs_info,
e62869be 4351 "balance: force reducing metadata redundancy");
5a8067c0
FM
4352 } else {
4353 btrfs_err(fs_info,
e62869be 4354 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4355 ret = -EINVAL;
4356 goto out;
4357 }
4358 }
4359
14506127
AB
4360 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4361 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4362 btrfs_warn(fs_info,
6dac13f8 4363 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4364 btrfs_bg_type_to_raid_name(meta_target),
4365 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4366 }
4367
6bccf3ab 4368 ret = insert_balance_item(fs_info, bctl);
59641015 4369 if (ret && ret != -EEXIST)
0940ebf6
ID
4370 goto out;
4371
59641015
ID
4372 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4373 BUG_ON(ret == -EEXIST);
833aae18
DS
4374 BUG_ON(fs_info->balance_ctl);
4375 spin_lock(&fs_info->balance_lock);
4376 fs_info->balance_ctl = bctl;
4377 spin_unlock(&fs_info->balance_lock);
59641015
ID
4378 } else {
4379 BUG_ON(ret != -EEXIST);
4380 spin_lock(&fs_info->balance_lock);
4381 update_balance_args(bctl);
4382 spin_unlock(&fs_info->balance_lock);
4383 }
c9e9f97b 4384
3009a62f
DS
4385 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4387 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4388 mutex_unlock(&fs_info->balance_mutex);
4389
4390 ret = __btrfs_balance(fs_info);
4391
4392 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4393 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4394 btrfs_info(fs_info, "balance: paused");
44d354ab
QW
4395 /*
4396 * Balance can be canceled by:
4397 *
4398 * - Regular cancel request
4399 * Then ret == -ECANCELED and balance_cancel_req > 0
4400 *
4401 * - Fatal signal to "btrfs" process
4402 * Either the signal caught by wait_reserve_ticket() and callers
4403 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4404 * got -ECANCELED.
4405 * Either way, in this case balance_cancel_req = 0, and
4406 * ret == -EINTR or ret == -ECANCELED.
4407 *
4408 * So here we only check the return value to catch canceled balance.
4409 */
4410 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4411 btrfs_info(fs_info, "balance: canceled");
4412 else
4413 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4414
3009a62f 4415 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4416
4417 if (bargs) {
4418 memset(bargs, 0, sizeof(*bargs));
008ef096 4419 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4420 }
4421
3a01aa7a
ID
4422 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4423 balance_need_close(fs_info)) {
149196a2 4424 reset_balance_state(fs_info);
c3e1f96c 4425 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4426 }
4427
837d5b6e 4428 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4429
4430 return ret;
4431out:
59641015 4432 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4433 reset_balance_state(fs_info);
a17c95df 4434 else
59641015 4435 kfree(bctl);
c3e1f96c 4436 btrfs_exclop_finish(fs_info);
a17c95df 4437
59641015
ID
4438 return ret;
4439}
4440
4441static int balance_kthread(void *data)
4442{
2b6ba629 4443 struct btrfs_fs_info *fs_info = data;
9555c6c1 4444 int ret = 0;
59641015 4445
59641015 4446 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4447 if (fs_info->balance_ctl)
6fcf6e2b 4448 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4449 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4450
59641015
ID
4451 return ret;
4452}
4453
2b6ba629
ID
4454int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4455{
4456 struct task_struct *tsk;
4457
1354e1a1 4458 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4459 if (!fs_info->balance_ctl) {
1354e1a1 4460 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4461 return 0;
4462 }
1354e1a1 4463 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4464
3cdde224 4465 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4466 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4467 return 0;
4468 }
4469
02ee654d
AJ
4470 /*
4471 * A ro->rw remount sequence should continue with the paused balance
4472 * regardless of who pauses it, system or the user as of now, so set
4473 * the resume flag.
4474 */
4475 spin_lock(&fs_info->balance_lock);
4476 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4477 spin_unlock(&fs_info->balance_lock);
4478
2b6ba629 4479 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4480 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4481}
4482
68310a5e 4483int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4484{
59641015
ID
4485 struct btrfs_balance_control *bctl;
4486 struct btrfs_balance_item *item;
4487 struct btrfs_disk_balance_args disk_bargs;
4488 struct btrfs_path *path;
4489 struct extent_buffer *leaf;
4490 struct btrfs_key key;
4491 int ret;
4492
4493 path = btrfs_alloc_path();
4494 if (!path)
4495 return -ENOMEM;
4496
59641015 4497 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4498 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4499 key.offset = 0;
4500
68310a5e 4501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4502 if (ret < 0)
68310a5e 4503 goto out;
59641015
ID
4504 if (ret > 0) { /* ret = -ENOENT; */
4505 ret = 0;
68310a5e
ID
4506 goto out;
4507 }
4508
4509 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4510 if (!bctl) {
4511 ret = -ENOMEM;
4512 goto out;
59641015
ID
4513 }
4514
4515 leaf = path->nodes[0];
4516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4517
68310a5e
ID
4518 bctl->flags = btrfs_balance_flags(leaf, item);
4519 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4520
4521 btrfs_balance_data(leaf, item, &disk_bargs);
4522 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4523 btrfs_balance_meta(leaf, item, &disk_bargs);
4524 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4525 btrfs_balance_sys(leaf, item, &disk_bargs);
4526 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4527
eee95e3f
DS
4528 /*
4529 * This should never happen, as the paused balance state is recovered
4530 * during mount without any chance of other exclusive ops to collide.
4531 *
4532 * This gives the exclusive op status to balance and keeps in paused
4533 * state until user intervention (cancel or umount). If the ownership
4534 * cannot be assigned, show a message but do not fail. The balance
4535 * is in a paused state and must have fs_info::balance_ctl properly
4536 * set up.
4537 */
c3e1f96c 4538 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
eee95e3f 4539 btrfs_warn(fs_info,
6dac13f8 4540 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4541
fb286100
JB
4542 btrfs_release_path(path);
4543
68310a5e 4544 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4545 BUG_ON(fs_info->balance_ctl);
4546 spin_lock(&fs_info->balance_lock);
4547 fs_info->balance_ctl = bctl;
4548 spin_unlock(&fs_info->balance_lock);
68310a5e 4549 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4550out:
4551 btrfs_free_path(path);
ec44a35c
CM
4552 return ret;
4553}
4554
837d5b6e
ID
4555int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4556{
4557 int ret = 0;
4558
4559 mutex_lock(&fs_info->balance_mutex);
4560 if (!fs_info->balance_ctl) {
4561 mutex_unlock(&fs_info->balance_mutex);
4562 return -ENOTCONN;
4563 }
4564
3009a62f 4565 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4566 atomic_inc(&fs_info->balance_pause_req);
4567 mutex_unlock(&fs_info->balance_mutex);
4568
4569 wait_event(fs_info->balance_wait_q,
3009a62f 4570 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4571
4572 mutex_lock(&fs_info->balance_mutex);
4573 /* we are good with balance_ctl ripped off from under us */
3009a62f 4574 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4575 atomic_dec(&fs_info->balance_pause_req);
4576 } else {
4577 ret = -ENOTCONN;
4578 }
4579
4580 mutex_unlock(&fs_info->balance_mutex);
4581 return ret;
4582}
4583
a7e99c69
ID
4584int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4585{
4586 mutex_lock(&fs_info->balance_mutex);
4587 if (!fs_info->balance_ctl) {
4588 mutex_unlock(&fs_info->balance_mutex);
4589 return -ENOTCONN;
4590 }
4591
cf7d20f4
DS
4592 /*
4593 * A paused balance with the item stored on disk can be resumed at
4594 * mount time if the mount is read-write. Otherwise it's still paused
4595 * and we must not allow cancelling as it deletes the item.
4596 */
4597 if (sb_rdonly(fs_info->sb)) {
4598 mutex_unlock(&fs_info->balance_mutex);
4599 return -EROFS;
4600 }
4601
a7e99c69
ID
4602 atomic_inc(&fs_info->balance_cancel_req);
4603 /*
4604 * if we are running just wait and return, balance item is
4605 * deleted in btrfs_balance in this case
4606 */
3009a62f 4607 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4608 mutex_unlock(&fs_info->balance_mutex);
4609 wait_event(fs_info->balance_wait_q,
3009a62f 4610 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4611 mutex_lock(&fs_info->balance_mutex);
4612 } else {
a7e99c69 4613 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4614 /*
4615 * Lock released to allow other waiters to continue, we'll
4616 * reexamine the status again.
4617 */
a7e99c69
ID
4618 mutex_lock(&fs_info->balance_mutex);
4619
a17c95df 4620 if (fs_info->balance_ctl) {
149196a2 4621 reset_balance_state(fs_info);
c3e1f96c 4622 btrfs_exclop_finish(fs_info);
6dac13f8 4623 btrfs_info(fs_info, "balance: canceled");
a17c95df 4624 }
a7e99c69
ID
4625 }
4626
3009a62f
DS
4627 BUG_ON(fs_info->balance_ctl ||
4628 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4629 atomic_dec(&fs_info->balance_cancel_req);
4630 mutex_unlock(&fs_info->balance_mutex);
4631 return 0;
4632}
4633
97f4dd09 4634int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4635{
4636 struct btrfs_fs_info *fs_info = data;
4637 struct btrfs_root *root = fs_info->tree_root;
4638 struct btrfs_key key;
803b2f54
SB
4639 struct btrfs_path *path = NULL;
4640 int ret = 0;
4641 struct extent_buffer *eb;
4642 int slot;
4643 struct btrfs_root_item root_item;
4644 u32 item_size;
f45388f3 4645 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4646 bool closing = false;
803b2f54
SB
4647
4648 path = btrfs_alloc_path();
4649 if (!path) {
4650 ret = -ENOMEM;
4651 goto out;
4652 }
4653
4654 key.objectid = 0;
4655 key.type = BTRFS_ROOT_ITEM_KEY;
4656 key.offset = 0;
4657
803b2f54 4658 while (1) {
c94bec2c
JB
4659 if (btrfs_fs_closing(fs_info)) {
4660 closing = true;
4661 break;
4662 }
7c829b72
AJ
4663 ret = btrfs_search_forward(root, &key, path,
4664 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4665 if (ret) {
4666 if (ret > 0)
4667 ret = 0;
4668 break;
4669 }
4670
4671 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4672 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4673 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4674 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4675 goto skip;
4676
4677 eb = path->nodes[0];
4678 slot = path->slots[0];
3212fa14 4679 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4680 if (item_size < sizeof(root_item))
4681 goto skip;
4682
803b2f54
SB
4683 read_extent_buffer(eb, &root_item,
4684 btrfs_item_ptr_offset(eb, slot),
4685 (int)sizeof(root_item));
4686 if (btrfs_root_refs(&root_item) == 0)
4687 goto skip;
f45388f3
FDBM
4688
4689 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4690 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4691 if (trans)
4692 goto update_tree;
4693
4694 btrfs_release_path(path);
803b2f54
SB
4695 /*
4696 * 1 - subvol uuid item
4697 * 1 - received_subvol uuid item
4698 */
4699 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4700 if (IS_ERR(trans)) {
4701 ret = PTR_ERR(trans);
4702 break;
4703 }
f45388f3
FDBM
4704 continue;
4705 } else {
4706 goto skip;
4707 }
4708update_tree:
9771a5cf 4709 btrfs_release_path(path);
f45388f3 4710 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4711 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4712 BTRFS_UUID_KEY_SUBVOL,
4713 key.objectid);
4714 if (ret < 0) {
efe120a0 4715 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4716 ret);
803b2f54
SB
4717 break;
4718 }
4719 }
4720
4721 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4722 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4723 root_item.received_uuid,
4724 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4725 key.objectid);
4726 if (ret < 0) {
efe120a0 4727 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4728 ret);
803b2f54
SB
4729 break;
4730 }
4731 }
4732
f45388f3 4733skip:
9771a5cf 4734 btrfs_release_path(path);
803b2f54 4735 if (trans) {
3a45bb20 4736 ret = btrfs_end_transaction(trans);
f45388f3 4737 trans = NULL;
803b2f54
SB
4738 if (ret)
4739 break;
4740 }
4741
803b2f54
SB
4742 if (key.offset < (u64)-1) {
4743 key.offset++;
4744 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 } else if (key.objectid < (u64)-1) {
4748 key.offset = 0;
4749 key.type = BTRFS_ROOT_ITEM_KEY;
4750 key.objectid++;
4751 } else {
4752 break;
4753 }
4754 cond_resched();
4755 }
4756
4757out:
4758 btrfs_free_path(path);
f45388f3 4759 if (trans && !IS_ERR(trans))
3a45bb20 4760 btrfs_end_transaction(trans);
803b2f54 4761 if (ret)
efe120a0 4762 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4763 else if (!closing)
afcdd129 4764 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4765 up(&fs_info->uuid_tree_rescan_sem);
4766 return 0;
4767}
4768
f7a81ea4
SB
4769int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4770{
4771 struct btrfs_trans_handle *trans;
4772 struct btrfs_root *tree_root = fs_info->tree_root;
4773 struct btrfs_root *uuid_root;
803b2f54
SB
4774 struct task_struct *task;
4775 int ret;
f7a81ea4
SB
4776
4777 /*
4778 * 1 - root node
4779 * 1 - root item
4780 */
4781 trans = btrfs_start_transaction(tree_root, 2);
4782 if (IS_ERR(trans))
4783 return PTR_ERR(trans);
4784
9b7a2440 4785 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4786 if (IS_ERR(uuid_root)) {
6d13f549 4787 ret = PTR_ERR(uuid_root);
66642832 4788 btrfs_abort_transaction(trans, ret);
3a45bb20 4789 btrfs_end_transaction(trans);
6d13f549 4790 return ret;
f7a81ea4
SB
4791 }
4792
4793 fs_info->uuid_root = uuid_root;
4794
3a45bb20 4795 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4796 if (ret)
4797 return ret;
4798
4799 down(&fs_info->uuid_tree_rescan_sem);
4800 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4801 if (IS_ERR(task)) {
70f80175 4802 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4803 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4804 up(&fs_info->uuid_tree_rescan_sem);
4805 return PTR_ERR(task);
4806 }
4807
4808 return 0;
f7a81ea4 4809}
803b2f54 4810
8f18cf13
CM
4811/*
4812 * shrinking a device means finding all of the device extents past
4813 * the new size, and then following the back refs to the chunks.
4814 * The chunk relocation code actually frees the device extent
4815 */
4816int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4817{
0b246afa
JM
4818 struct btrfs_fs_info *fs_info = device->fs_info;
4819 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4820 struct btrfs_trans_handle *trans;
8f18cf13
CM
4821 struct btrfs_dev_extent *dev_extent = NULL;
4822 struct btrfs_path *path;
4823 u64 length;
8f18cf13
CM
4824 u64 chunk_offset;
4825 int ret;
4826 int slot;
ba1bf481
JB
4827 int failed = 0;
4828 bool retried = false;
8f18cf13
CM
4829 struct extent_buffer *l;
4830 struct btrfs_key key;
0b246afa 4831 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4832 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4833 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4834 u64 diff;
61d0d0d2 4835 u64 start;
7dfb8be1
NB
4836
4837 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4838 start = new_size;
0e4324a4 4839 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4840
401e29c1 4841 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4842 return -EINVAL;
4843
8f18cf13
CM
4844 path = btrfs_alloc_path();
4845 if (!path)
4846 return -ENOMEM;
4847
0338dff6 4848 path->reada = READA_BACK;
8f18cf13 4849
61d0d0d2
NB
4850 trans = btrfs_start_transaction(root, 0);
4851 if (IS_ERR(trans)) {
4852 btrfs_free_path(path);
4853 return PTR_ERR(trans);
4854 }
4855
34441361 4856 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4857
7cc8e58d 4858 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4859 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4860 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4861 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4862 }
61d0d0d2
NB
4863
4864 /*
4865 * Once the device's size has been set to the new size, ensure all
4866 * in-memory chunks are synced to disk so that the loop below sees them
4867 * and relocates them accordingly.
4868 */
1c11b63e 4869 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4870 mutex_unlock(&fs_info->chunk_mutex);
4871 ret = btrfs_commit_transaction(trans);
4872 if (ret)
4873 goto done;
4874 } else {
4875 mutex_unlock(&fs_info->chunk_mutex);
4876 btrfs_end_transaction(trans);
4877 }
8f18cf13 4878
ba1bf481 4879again:
8f18cf13
CM
4880 key.objectid = device->devid;
4881 key.offset = (u64)-1;
4882 key.type = BTRFS_DEV_EXTENT_KEY;
4883
213e64da 4884 do {
f3372065 4885 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4886 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4887 if (ret < 0) {
f3372065 4888 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4889 goto done;
67c5e7d4 4890 }
8f18cf13
CM
4891
4892 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4893 if (ret) {
f3372065 4894 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4895 if (ret < 0)
4896 goto done;
8f18cf13 4897 ret = 0;
b3b4aa74 4898 btrfs_release_path(path);
bf1fb512 4899 break;
8f18cf13
CM
4900 }
4901
4902 l = path->nodes[0];
4903 slot = path->slots[0];
4904 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4905
ba1bf481 4906 if (key.objectid != device->devid) {
f3372065 4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4908 btrfs_release_path(path);
bf1fb512 4909 break;
ba1bf481 4910 }
8f18cf13
CM
4911
4912 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4913 length = btrfs_dev_extent_length(l, dev_extent);
4914
ba1bf481 4915 if (key.offset + length <= new_size) {
f3372065 4916 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4917 btrfs_release_path(path);
d6397bae 4918 break;
ba1bf481 4919 }
8f18cf13 4920
8f18cf13 4921 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4922 btrfs_release_path(path);
8f18cf13 4923
a6f93c71
LB
4924 /*
4925 * We may be relocating the only data chunk we have,
4926 * which could potentially end up with losing data's
4927 * raid profile, so lets allocate an empty one in
4928 * advance.
4929 */
4930 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4931 if (ret < 0) {
f3372065 4932 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4933 goto done;
4934 }
4935
0b246afa 4936 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4937 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4938 if (ret == -ENOSPC) {
ba1bf481 4939 failed++;
eede2bf3
OS
4940 } else if (ret) {
4941 if (ret == -ETXTBSY) {
4942 btrfs_warn(fs_info,
4943 "could not shrink block group %llu due to active swapfile",
4944 chunk_offset);
4945 }
4946 goto done;
4947 }
213e64da 4948 } while (key.offset-- > 0);
ba1bf481
JB
4949
4950 if (failed && !retried) {
4951 failed = 0;
4952 retried = true;
4953 goto again;
4954 } else if (failed && retried) {
4955 ret = -ENOSPC;
ba1bf481 4956 goto done;
8f18cf13
CM
4957 }
4958
d6397bae 4959 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4960 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4961 if (IS_ERR(trans)) {
4962 ret = PTR_ERR(trans);
4963 goto done;
4964 }
4965
34441361 4966 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4967 /* Clear all state bits beyond the shrunk device size */
4968 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4969 CHUNK_STATE_MASK);
4970
7cc8e58d 4971 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4972 if (list_empty(&device->post_commit_list))
4973 list_add_tail(&device->post_commit_list,
4974 &trans->transaction->dev_update_list);
d6397bae 4975
d6397bae 4976 WARN_ON(diff > old_total);
7dfb8be1
NB
4977 btrfs_set_super_total_bytes(super_copy,
4978 round_down(old_total - diff, fs_info->sectorsize));
34441361 4979 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 4980
2bb2e00e 4981 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
4982 /* Now btrfs_update_device() will change the on-disk size. */
4983 ret = btrfs_update_device(trans, device);
2bb2e00e 4984 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
4985 if (ret < 0) {
4986 btrfs_abort_transaction(trans, ret);
4987 btrfs_end_transaction(trans);
4988 } else {
4989 ret = btrfs_commit_transaction(trans);
4990 }
8f18cf13
CM
4991done:
4992 btrfs_free_path(path);
53e489bc 4993 if (ret) {
34441361 4994 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4995 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4997 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4998 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4999 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 5000 }
8f18cf13
CM
5001 return ret;
5002}
5003
2ff7e61e 5004static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5005 struct btrfs_key *key,
5006 struct btrfs_chunk *chunk, int item_size)
5007{
0b246afa 5008 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5009 struct btrfs_disk_key disk_key;
5010 u32 array_size;
5011 u8 *ptr;
5012
79bd3712
FM
5013 lockdep_assert_held(&fs_info->chunk_mutex);
5014
0b86a832 5015 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5016 if (array_size + item_size + sizeof(disk_key)
79bd3712 5017 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5018 return -EFBIG;
5019
5020 ptr = super_copy->sys_chunk_array + array_size;
5021 btrfs_cpu_key_to_disk(&disk_key, key);
5022 memcpy(ptr, &disk_key, sizeof(disk_key));
5023 ptr += sizeof(disk_key);
5024 memcpy(ptr, chunk, item_size);
5025 item_size += sizeof(disk_key);
5026 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5027
0b86a832
CM
5028 return 0;
5029}
5030
73c5de00
AJ
5031/*
5032 * sort the devices in descending order by max_avail, total_avail
5033 */
5034static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5035{
73c5de00
AJ
5036 const struct btrfs_device_info *di_a = a;
5037 const struct btrfs_device_info *di_b = b;
9b3f68b9 5038
73c5de00 5039 if (di_a->max_avail > di_b->max_avail)
b2117a39 5040 return -1;
73c5de00 5041 if (di_a->max_avail < di_b->max_avail)
b2117a39 5042 return 1;
73c5de00
AJ
5043 if (di_a->total_avail > di_b->total_avail)
5044 return -1;
5045 if (di_a->total_avail < di_b->total_avail)
5046 return 1;
5047 return 0;
b2117a39 5048}
0b86a832 5049
53b381b3
DW
5050static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5051{
ffe2d203 5052 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5053 return;
5054
ceda0864 5055 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5056}
5057
cfbb825c
DS
5058static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5059{
5060 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5061 return;
5062
5063 btrfs_set_fs_incompat(info, RAID1C34);
5064}
5065
4f2bafe8 5066/*
f6f39f7a 5067 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5068 * Wraps needed parameters.
5069 */
5070struct alloc_chunk_ctl {
5071 u64 start;
5072 u64 type;
5073 /* Total number of stripes to allocate */
5074 int num_stripes;
5075 /* sub_stripes info for map */
5076 int sub_stripes;
5077 /* Stripes per device */
5078 int dev_stripes;
5079 /* Maximum number of devices to use */
5080 int devs_max;
5081 /* Minimum number of devices to use */
5082 int devs_min;
5083 /* ndevs has to be a multiple of this */
5084 int devs_increment;
5085 /* Number of copies */
5086 int ncopies;
5087 /* Number of stripes worth of bytes to store parity information */
5088 int nparity;
5089 u64 max_stripe_size;
5090 u64 max_chunk_size;
6aafb303 5091 u64 dev_extent_min;
4f2bafe8
NA
5092 u64 stripe_size;
5093 u64 chunk_size;
5094 int ndevs;
5095};
5096
27c314d5
NA
5097static void init_alloc_chunk_ctl_policy_regular(
5098 struct btrfs_fs_devices *fs_devices,
5099 struct alloc_chunk_ctl *ctl)
5100{
5101 u64 type = ctl->type;
5102
5103 if (type & BTRFS_BLOCK_GROUP_DATA) {
5104 ctl->max_stripe_size = SZ_1G;
5105 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5106 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5107 /* For larger filesystems, use larger metadata chunks */
5108 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5109 ctl->max_stripe_size = SZ_1G;
5110 else
5111 ctl->max_stripe_size = SZ_256M;
5112 ctl->max_chunk_size = ctl->max_stripe_size;
5113 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5114 ctl->max_stripe_size = SZ_32M;
5115 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5116 ctl->devs_max = min_t(int, ctl->devs_max,
5117 BTRFS_MAX_DEVS_SYS_CHUNK);
5118 } else {
5119 BUG();
5120 }
5121
5122 /* We don't want a chunk larger than 10% of writable space */
5123 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5124 ctl->max_chunk_size);
6aafb303 5125 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5126}
5127
1cd6121f
NA
5128static void init_alloc_chunk_ctl_policy_zoned(
5129 struct btrfs_fs_devices *fs_devices,
5130 struct alloc_chunk_ctl *ctl)
5131{
5132 u64 zone_size = fs_devices->fs_info->zone_size;
5133 u64 limit;
5134 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5135 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5136 u64 min_chunk_size = min_data_stripes * zone_size;
5137 u64 type = ctl->type;
5138
5139 ctl->max_stripe_size = zone_size;
5140 if (type & BTRFS_BLOCK_GROUP_DATA) {
5141 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5142 zone_size);
5143 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5144 ctl->max_chunk_size = ctl->max_stripe_size;
5145 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5146 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5147 ctl->devs_max = min_t(int, ctl->devs_max,
5148 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5149 } else {
5150 BUG();
1cd6121f
NA
5151 }
5152
5153 /* We don't want a chunk larger than 10% of writable space */
5154 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5155 zone_size),
5156 min_chunk_size);
5157 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5158 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5159}
5160
27c314d5
NA
5161static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5162 struct alloc_chunk_ctl *ctl)
5163{
5164 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5165
5166 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5167 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5168 ctl->devs_max = btrfs_raid_array[index].devs_max;
5169 if (!ctl->devs_max)
5170 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5171 ctl->devs_min = btrfs_raid_array[index].devs_min;
5172 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5173 ctl->ncopies = btrfs_raid_array[index].ncopies;
5174 ctl->nparity = btrfs_raid_array[index].nparity;
5175 ctl->ndevs = 0;
5176
5177 switch (fs_devices->chunk_alloc_policy) {
5178 case BTRFS_CHUNK_ALLOC_REGULAR:
5179 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5180 break;
1cd6121f
NA
5181 case BTRFS_CHUNK_ALLOC_ZONED:
5182 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5183 break;
27c314d5
NA
5184 default:
5185 BUG();
5186 }
5187}
5188
560156cb
NA
5189static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5190 struct alloc_chunk_ctl *ctl,
5191 struct btrfs_device_info *devices_info)
b2117a39 5192{
560156cb 5193 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5194 struct btrfs_device *device;
73c5de00 5195 u64 total_avail;
560156cb 5196 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5197 int ret;
560156cb
NA
5198 int ndevs = 0;
5199 u64 max_avail;
5200 u64 dev_offset;
0cad8a11 5201
9f680ce0 5202 /*
73c5de00
AJ
5203 * in the first pass through the devices list, we gather information
5204 * about the available holes on each device.
9f680ce0 5205 */
ebcc9301 5206 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5207 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5208 WARN(1, KERN_ERR
efe120a0 5209 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5210 continue;
5211 }
b2117a39 5212
e12c9621
AJ
5213 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5214 &device->dev_state) ||
401e29c1 5215 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5216 continue;
b2117a39 5217
73c5de00
AJ
5218 if (device->total_bytes > device->bytes_used)
5219 total_avail = device->total_bytes - device->bytes_used;
5220 else
5221 total_avail = 0;
38c01b96 5222
5223 /* If there is no space on this device, skip it. */
6aafb303 5224 if (total_avail < ctl->dev_extent_min)
38c01b96 5225 continue;
b2117a39 5226
560156cb
NA
5227 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5228 &max_avail);
73c5de00 5229 if (ret && ret != -ENOSPC)
560156cb 5230 return ret;
b2117a39 5231
73c5de00 5232 if (ret == 0)
560156cb 5233 max_avail = dev_extent_want;
b2117a39 5234
6aafb303 5235 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5236 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5237 btrfs_debug(info,
560156cb 5238 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5239 __func__, device->devid, max_avail,
6aafb303 5240 ctl->dev_extent_min);
73c5de00 5241 continue;
4117f207 5242 }
b2117a39 5243
063d006f
ES
5244 if (ndevs == fs_devices->rw_devices) {
5245 WARN(1, "%s: found more than %llu devices\n",
5246 __func__, fs_devices->rw_devices);
5247 break;
5248 }
73c5de00
AJ
5249 devices_info[ndevs].dev_offset = dev_offset;
5250 devices_info[ndevs].max_avail = max_avail;
5251 devices_info[ndevs].total_avail = total_avail;
5252 devices_info[ndevs].dev = device;
5253 ++ndevs;
5254 }
560156cb 5255 ctl->ndevs = ndevs;
b2117a39 5256
73c5de00
AJ
5257 /*
5258 * now sort the devices by hole size / available space
5259 */
560156cb 5260 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5261 btrfs_cmp_device_info, NULL);
b2117a39 5262
560156cb
NA
5263 return 0;
5264}
5265
5badf512
NA
5266static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5267 struct btrfs_device_info *devices_info)
5268{
5269 /* Number of stripes that count for block group size */
5270 int data_stripes;
5271
5272 /*
5273 * The primary goal is to maximize the number of stripes, so use as
5274 * many devices as possible, even if the stripes are not maximum sized.
5275 *
5276 * The DUP profile stores more than one stripe per device, the
5277 * max_avail is the total size so we have to adjust.
5278 */
5279 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5280 ctl->dev_stripes);
5281 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5282
5283 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5284 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5285
5286 /*
5287 * Use the number of data stripes to figure out how big this chunk is
5288 * really going to be in terms of logical address space, and compare
5289 * that answer with the max chunk size. If it's higher, we try to
5290 * reduce stripe_size.
5291 */
5292 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5293 /*
5294 * Reduce stripe_size, round it up to a 16MB boundary again and
5295 * then use it, unless it ends up being even bigger than the
5296 * previous value we had already.
5297 */
5298 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5299 data_stripes), SZ_16M),
5300 ctl->stripe_size);
5301 }
5302
5303 /* Align to BTRFS_STRIPE_LEN */
5304 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5305 ctl->chunk_size = ctl->stripe_size * data_stripes;
5306
5307 return 0;
5308}
5309
1cd6121f
NA
5310static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5311 struct btrfs_device_info *devices_info)
5312{
5313 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5314 /* Number of stripes that count for block group size */
5315 int data_stripes;
5316
5317 /*
5318 * It should hold because:
5319 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5320 */
5321 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5322
5323 ctl->stripe_size = zone_size;
5324 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5325 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5326
5327 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5328 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5329 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5330 ctl->stripe_size) + ctl->nparity,
5331 ctl->dev_stripes);
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5334 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5335 }
5336
5337 ctl->chunk_size = ctl->stripe_size * data_stripes;
5338
5339 return 0;
5340}
5341
5badf512
NA
5342static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5343 struct alloc_chunk_ctl *ctl,
5344 struct btrfs_device_info *devices_info)
5345{
5346 struct btrfs_fs_info *info = fs_devices->fs_info;
5347
5348 /*
5349 * Round down to number of usable stripes, devs_increment can be any
5350 * number so we can't use round_down() that requires power of 2, while
5351 * rounddown is safe.
5352 */
5353 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5354
5355 if (ctl->ndevs < ctl->devs_min) {
5356 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5357 btrfs_debug(info,
5358 "%s: not enough devices with free space: have=%d minimum required=%d",
5359 __func__, ctl->ndevs, ctl->devs_min);
5360 }
5361 return -ENOSPC;
5362 }
5363
5364 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5365
5366 switch (fs_devices->chunk_alloc_policy) {
5367 case BTRFS_CHUNK_ALLOC_REGULAR:
5368 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5369 case BTRFS_CHUNK_ALLOC_ZONED:
5370 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5371 default:
5372 BUG();
5373 }
5374}
5375
79bd3712 5376static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5377 struct alloc_chunk_ctl *ctl,
5378 struct btrfs_device_info *devices_info)
560156cb
NA
5379{
5380 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5381 struct map_lookup *map = NULL;
5382 struct extent_map_tree *em_tree;
79bd3712 5383 struct btrfs_block_group *block_group;
560156cb 5384 struct extent_map *em;
dce580ca
NA
5385 u64 start = ctl->start;
5386 u64 type = ctl->type;
560156cb
NA
5387 int ret;
5388 int i;
5389 int j;
5390
dce580ca
NA
5391 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5392 if (!map)
79bd3712 5393 return ERR_PTR(-ENOMEM);
dce580ca 5394 map->num_stripes = ctl->num_stripes;
560156cb 5395
dce580ca
NA
5396 for (i = 0; i < ctl->ndevs; ++i) {
5397 for (j = 0; j < ctl->dev_stripes; ++j) {
5398 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5399 map->stripes[s].dev = devices_info[i].dev;
5400 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5401 j * ctl->stripe_size;
6324fbf3 5402 }
6324fbf3 5403 }
500ceed8
NB
5404 map->stripe_len = BTRFS_STRIPE_LEN;
5405 map->io_align = BTRFS_STRIPE_LEN;
5406 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5407 map->type = type;
dce580ca 5408 map->sub_stripes = ctl->sub_stripes;
0b86a832 5409
dce580ca 5410 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5411
172ddd60 5412 em = alloc_extent_map();
2b82032c 5413 if (!em) {
298a8f9c 5414 kfree(map);
79bd3712 5415 return ERR_PTR(-ENOMEM);
593060d7 5416 }
298a8f9c 5417 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5418 em->map_lookup = map;
2b82032c 5419 em->start = start;
dce580ca 5420 em->len = ctl->chunk_size;
2b82032c
YZ
5421 em->block_start = 0;
5422 em->block_len = em->len;
dce580ca 5423 em->orig_block_len = ctl->stripe_size;
593060d7 5424
c8bf1b67 5425 em_tree = &info->mapping_tree;
890871be 5426 write_lock(&em_tree->lock);
09a2a8f9 5427 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5428 if (ret) {
1efb72a3 5429 write_unlock(&em_tree->lock);
0f5d42b2 5430 free_extent_map(em);
79bd3712 5431 return ERR_PTR(ret);
0f5d42b2 5432 }
1efb72a3
NB
5433 write_unlock(&em_tree->lock);
5434
79bd3712
FM
5435 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5436 if (IS_ERR(block_group))
6df9a95e 5437 goto error_del_extent;
2b82032c 5438
bbbf7243
NB
5439 for (i = 0; i < map->num_stripes; i++) {
5440 struct btrfs_device *dev = map->stripes[i].dev;
5441
4f2bafe8 5442 btrfs_device_set_bytes_used(dev,
dce580ca 5443 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5444 if (list_empty(&dev->post_commit_list))
5445 list_add_tail(&dev->post_commit_list,
5446 &trans->transaction->dev_update_list);
5447 }
43530c46 5448
dce580ca 5449 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5450 &info->free_chunk_space);
1c116187 5451
0f5d42b2 5452 free_extent_map(em);
0b246afa 5453 check_raid56_incompat_flag(info, type);
cfbb825c 5454 check_raid1c34_incompat_flag(info, type);
53b381b3 5455
79bd3712 5456 return block_group;
b2117a39 5457
6df9a95e 5458error_del_extent:
0f5d42b2
JB
5459 write_lock(&em_tree->lock);
5460 remove_extent_mapping(em_tree, em);
5461 write_unlock(&em_tree->lock);
5462
5463 /* One for our allocation */
5464 free_extent_map(em);
5465 /* One for the tree reference */
5466 free_extent_map(em);
dce580ca 5467
79bd3712 5468 return block_group;
dce580ca
NA
5469}
5470
f6f39f7a 5471struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5472 u64 type)
dce580ca
NA
5473{
5474 struct btrfs_fs_info *info = trans->fs_info;
5475 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5476 struct btrfs_device_info *devices_info = NULL;
5477 struct alloc_chunk_ctl ctl;
79bd3712 5478 struct btrfs_block_group *block_group;
dce580ca
NA
5479 int ret;
5480
11c67b1a
NB
5481 lockdep_assert_held(&info->chunk_mutex);
5482
dce580ca
NA
5483 if (!alloc_profile_is_valid(type, 0)) {
5484 ASSERT(0);
79bd3712 5485 return ERR_PTR(-EINVAL);
dce580ca
NA
5486 }
5487
5488 if (list_empty(&fs_devices->alloc_list)) {
5489 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5490 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5491 return ERR_PTR(-ENOSPC);
dce580ca
NA
5492 }
5493
5494 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5495 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5496 ASSERT(0);
79bd3712 5497 return ERR_PTR(-EINVAL);
dce580ca
NA
5498 }
5499
11c67b1a 5500 ctl.start = find_next_chunk(info);
dce580ca
NA
5501 ctl.type = type;
5502 init_alloc_chunk_ctl(fs_devices, &ctl);
5503
5504 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5505 GFP_NOFS);
5506 if (!devices_info)
79bd3712 5507 return ERR_PTR(-ENOMEM);
dce580ca
NA
5508
5509 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5510 if (ret < 0) {
5511 block_group = ERR_PTR(ret);
dce580ca 5512 goto out;
79bd3712 5513 }
dce580ca
NA
5514
5515 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5516 if (ret < 0) {
5517 block_group = ERR_PTR(ret);
dce580ca 5518 goto out;
79bd3712 5519 }
dce580ca 5520
79bd3712 5521 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5522
5523out:
b2117a39 5524 kfree(devices_info);
79bd3712 5525 return block_group;
2b82032c
YZ
5526}
5527
79bd3712
FM
5528/*
5529 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5530 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5531 * chunks.
5532 *
5533 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5534 * phases.
5535 */
5536int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5537 struct btrfs_block_group *bg)
5538{
5539 struct btrfs_fs_info *fs_info = trans->fs_info;
5540 struct btrfs_root *extent_root = fs_info->extent_root;
5541 struct btrfs_root *chunk_root = fs_info->chunk_root;
5542 struct btrfs_key key;
5543 struct btrfs_chunk *chunk;
5544 struct btrfs_stripe *stripe;
5545 struct extent_map *em;
5546 struct map_lookup *map;
5547 size_t item_size;
5548 int i;
5549 int ret;
5550
5551 /*
5552 * We take the chunk_mutex for 2 reasons:
5553 *
5554 * 1) Updates and insertions in the chunk btree must be done while holding
5555 * the chunk_mutex, as well as updating the system chunk array in the
5556 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5557 * details;
5558 *
5559 * 2) To prevent races with the final phase of a device replace operation
5560 * that replaces the device object associated with the map's stripes,
5561 * because the device object's id can change at any time during that
5562 * final phase of the device replace operation
5563 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5564 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5565 * which would cause a failure when updating the device item, which does
5566 * not exists, or persisting a stripe of the chunk item with such ID.
5567 * Here we can't use the device_list_mutex because our caller already
5568 * has locked the chunk_mutex, and the final phase of device replace
5569 * acquires both mutexes - first the device_list_mutex and then the
5570 * chunk_mutex. Using any of those two mutexes protects us from a
5571 * concurrent device replace.
5572 */
5573 lockdep_assert_held(&fs_info->chunk_mutex);
5574
5575 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5576 if (IS_ERR(em)) {
5577 ret = PTR_ERR(em);
5578 btrfs_abort_transaction(trans, ret);
5579 return ret;
5580 }
5581
5582 map = em->map_lookup;
5583 item_size = btrfs_chunk_item_size(map->num_stripes);
5584
5585 chunk = kzalloc(item_size, GFP_NOFS);
5586 if (!chunk) {
5587 ret = -ENOMEM;
5588 btrfs_abort_transaction(trans, ret);
50460e37 5589 goto out;
2b82032c
YZ
5590 }
5591
79bd3712
FM
5592 for (i = 0; i < map->num_stripes; i++) {
5593 struct btrfs_device *device = map->stripes[i].dev;
5594
5595 ret = btrfs_update_device(trans, device);
5596 if (ret)
5597 goto out;
5598 }
5599
2b82032c 5600 stripe = &chunk->stripe;
6df9a95e 5601 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5602 struct btrfs_device *device = map->stripes[i].dev;
5603 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5604
e17cade2
CM
5605 btrfs_set_stack_stripe_devid(stripe, device->devid);
5606 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5607 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5608 stripe++;
0b86a832
CM
5609 }
5610
79bd3712 5611 btrfs_set_stack_chunk_length(chunk, bg->length);
0b86a832 5612 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5613 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5614 btrfs_set_stack_chunk_type(chunk, map->type);
5615 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5616 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5617 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5618 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5619 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5620
2b82032c
YZ
5621 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5622 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5623 key.offset = bg->start;
0b86a832 5624
2b82032c 5625 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5626 if (ret)
5627 goto out;
5628
5629 bg->chunk_item_inserted = 1;
5630
5631 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5632 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5633 if (ret)
5634 goto out;
8f18cf13 5635 }
1abe9b8a 5636
6df9a95e 5637out:
0b86a832 5638 kfree(chunk);
6df9a95e 5639 free_extent_map(em);
4ed1d16e 5640 return ret;
2b82032c 5641}
0b86a832 5642
6f8e0fc7 5643static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5644{
6f8e0fc7 5645 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5646 u64 alloc_profile;
79bd3712
FM
5647 struct btrfs_block_group *meta_bg;
5648 struct btrfs_block_group *sys_bg;
5649
5650 /*
5651 * When adding a new device for sprouting, the seed device is read-only
5652 * so we must first allocate a metadata and a system chunk. But before
5653 * adding the block group items to the extent, device and chunk btrees,
5654 * we must first:
5655 *
5656 * 1) Create both chunks without doing any changes to the btrees, as
5657 * otherwise we would get -ENOSPC since the block groups from the
5658 * seed device are read-only;
5659 *
5660 * 2) Add the device item for the new sprout device - finishing the setup
5661 * of a new block group requires updating the device item in the chunk
5662 * btree, so it must exist when we attempt to do it. The previous step
5663 * ensures this does not fail with -ENOSPC.
5664 *
5665 * After that we can add the block group items to their btrees:
5666 * update existing device item in the chunk btree, add a new block group
5667 * item to the extent btree, add a new chunk item to the chunk btree and
5668 * finally add the new device extent items to the devices btree.
5669 */
2b82032c 5670
1b86826d 5671 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5672 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5673 if (IS_ERR(meta_bg))
5674 return PTR_ERR(meta_bg);
2b82032c 5675
1b86826d 5676 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5677 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5678 if (IS_ERR(sys_bg))
5679 return PTR_ERR(sys_bg);
5680
5681 return 0;
2b82032c
YZ
5682}
5683
d20983b4
MX
5684static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5685{
fc9a2ac7 5686 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5687
fc9a2ac7 5688 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5689}
5690
a09f23c3 5691bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5692{
5693 struct extent_map *em;
5694 struct map_lookup *map;
d20983b4 5695 int miss_ndevs = 0;
2b82032c 5696 int i;
a09f23c3 5697 bool ret = true;
2b82032c 5698
60ca842e 5699 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5700 if (IS_ERR(em))
a09f23c3 5701 return false;
2b82032c 5702
95617d69 5703 map = em->map_lookup;
2b82032c 5704 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5705 if (test_bit(BTRFS_DEV_STATE_MISSING,
5706 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5707 miss_ndevs++;
5708 continue;
5709 }
ebbede42
AJ
5710 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5711 &map->stripes[i].dev->dev_state)) {
a09f23c3 5712 ret = false;
d20983b4 5713 goto end;
2b82032c
YZ
5714 }
5715 }
d20983b4
MX
5716
5717 /*
a09f23c3
AJ
5718 * If the number of missing devices is larger than max errors, we can
5719 * not write the data into that chunk successfully.
d20983b4
MX
5720 */
5721 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5722 ret = false;
d20983b4 5723end:
0b86a832 5724 free_extent_map(em);
a09f23c3 5725 return ret;
0b86a832
CM
5726}
5727
c8bf1b67 5728void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5729{
5730 struct extent_map *em;
5731
d397712b 5732 while (1) {
c8bf1b67
DS
5733 write_lock(&tree->lock);
5734 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5735 if (em)
c8bf1b67
DS
5736 remove_extent_mapping(tree, em);
5737 write_unlock(&tree->lock);
0b86a832
CM
5738 if (!em)
5739 break;
0b86a832
CM
5740 /* once for us */
5741 free_extent_map(em);
5742 /* once for the tree */
5743 free_extent_map(em);
5744 }
5745}
5746
5d964051 5747int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5748{
5749 struct extent_map *em;
5750 struct map_lookup *map;
f188591e
CM
5751 int ret;
5752
60ca842e 5753 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5754 if (IS_ERR(em))
5755 /*
5756 * We could return errors for these cases, but that could get
5757 * ugly and we'd probably do the same thing which is just not do
5758 * anything else and exit, so return 1 so the callers don't try
5759 * to use other copies.
5760 */
fb7669b5 5761 return 1;
fb7669b5 5762
95617d69 5763 map = em->map_lookup;
c7369b3f 5764 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5765 ret = map->num_stripes;
321aecc6
CM
5766 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5767 ret = map->sub_stripes;
53b381b3
DW
5768 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5769 ret = 2;
5770 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5771 /*
5772 * There could be two corrupted data stripes, we need
5773 * to loop retry in order to rebuild the correct data.
e7e02096 5774 *
8810f751
LB
5775 * Fail a stripe at a time on every retry except the
5776 * stripe under reconstruction.
5777 */
5778 ret = map->num_stripes;
f188591e
CM
5779 else
5780 ret = 1;
5781 free_extent_map(em);
ad6d620e 5782
cb5583dd 5783 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5784 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5785 fs_info->dev_replace.tgtdev)
ad6d620e 5786 ret++;
cb5583dd 5787 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5788
f188591e
CM
5789 return ret;
5790}
5791
2ff7e61e 5792unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5793 u64 logical)
5794{
5795 struct extent_map *em;
5796 struct map_lookup *map;
0b246afa 5797 unsigned long len = fs_info->sectorsize;
53b381b3 5798
60ca842e 5799 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5800
69f03f13
NB
5801 if (!WARN_ON(IS_ERR(em))) {
5802 map = em->map_lookup;
5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5804 len = map->stripe_len * nr_data_stripes(map);
5805 free_extent_map(em);
5806 }
53b381b3
DW
5807 return len;
5808}
5809
e4ff5fb5 5810int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5811{
5812 struct extent_map *em;
5813 struct map_lookup *map;
53b381b3
DW
5814 int ret = 0;
5815
60ca842e 5816 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5817
69f03f13
NB
5818 if(!WARN_ON(IS_ERR(em))) {
5819 map = em->map_lookup;
5820 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5821 ret = 1;
5822 free_extent_map(em);
5823 }
53b381b3
DW
5824 return ret;
5825}
5826
30d9861f 5827static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5828 struct map_lookup *map, int first,
8ba0ae78 5829 int dev_replace_is_ongoing)
dfe25020
CM
5830{
5831 int i;
99f92a7c 5832 int num_stripes;
8ba0ae78 5833 int preferred_mirror;
30d9861f
SB
5834 int tolerance;
5835 struct btrfs_device *srcdev;
5836
99f92a7c 5837 ASSERT((map->type &
c7369b3f 5838 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5839
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5841 num_stripes = map->sub_stripes;
5842 else
5843 num_stripes = map->num_stripes;
5844
33fd2f71
AJ
5845 switch (fs_info->fs_devices->read_policy) {
5846 default:
5847 /* Shouldn't happen, just warn and use pid instead of failing */
5848 btrfs_warn_rl(fs_info,
5849 "unknown read_policy type %u, reset to pid",
5850 fs_info->fs_devices->read_policy);
5851 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5852 fallthrough;
5853 case BTRFS_READ_POLICY_PID:
5854 preferred_mirror = first + (current->pid % num_stripes);
5855 break;
5856 }
8ba0ae78 5857
30d9861f
SB
5858 if (dev_replace_is_ongoing &&
5859 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5860 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5861 srcdev = fs_info->dev_replace.srcdev;
5862 else
5863 srcdev = NULL;
5864
5865 /*
5866 * try to avoid the drive that is the source drive for a
5867 * dev-replace procedure, only choose it if no other non-missing
5868 * mirror is available
5869 */
5870 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5871 if (map->stripes[preferred_mirror].dev->bdev &&
5872 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5873 return preferred_mirror;
99f92a7c 5874 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5875 if (map->stripes[i].dev->bdev &&
5876 (tolerance || map->stripes[i].dev != srcdev))
5877 return i;
5878 }
dfe25020 5879 }
30d9861f 5880
dfe25020
CM
5881 /* we couldn't find one that doesn't fail. Just return something
5882 * and the io error handling code will clean up eventually
5883 */
8ba0ae78 5884 return preferred_mirror;
dfe25020
CM
5885}
5886
53b381b3 5887/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4c664611 5888static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
53b381b3 5889{
53b381b3 5890 int i;
53b381b3
DW
5891 int again = 1;
5892
5893 while (again) {
5894 again = 0;
cc7539ed 5895 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172 5896 /* Swap if parity is on a smaller index */
4c664611
QW
5897 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5898 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5899 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
53b381b3
DW
5900 again = 1;
5901 }
5902 }
5903 }
5904}
5905
731ccf15
QW
5906static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5907 int total_stripes,
4c664611 5908 int real_stripes)
6e9606d2 5909{
4c664611
QW
5910 struct btrfs_io_context *bioc = kzalloc(
5911 /* The size of btrfs_io_context */
5912 sizeof(struct btrfs_io_context) +
5913 /* Plus the variable array for the stripes */
5914 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5915 /* Plus the variable array for the tgt dev */
6e9606d2 5916 sizeof(int) * (real_stripes) +
e57cf21e 5917 /*
4c664611
QW
5918 * Plus the raid_map, which includes both the tgt dev
5919 * and the stripes.
e57cf21e
CM
5920 */
5921 sizeof(u64) * (total_stripes),
277fb5fc 5922 GFP_NOFS|__GFP_NOFAIL);
6e9606d2 5923
4c664611
QW
5924 atomic_set(&bioc->error, 0);
5925 refcount_set(&bioc->refs, 1);
6e9606d2 5926
731ccf15 5927 bioc->fs_info = fs_info;
4c664611
QW
5928 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5929 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
608769a4 5930
4c664611 5931 return bioc;
6e9606d2
ZL
5932}
5933
4c664611 5934void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5935{
4c664611
QW
5936 WARN_ON(!refcount_read(&bioc->refs));
5937 refcount_inc(&bioc->refs);
6e9606d2
ZL
5938}
5939
4c664611 5940void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5941{
4c664611 5942 if (!bioc)
6e9606d2 5943 return;
4c664611
QW
5944 if (refcount_dec_and_test(&bioc->refs))
5945 kfree(bioc);
6e9606d2
ZL
5946}
5947
0b3d4cd3
LB
5948/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5949/*
5950 * Please note that, discard won't be sent to target device of device
5951 * replace.
5952 */
5953static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5954 u64 logical, u64 *length_ret,
4c664611 5955 struct btrfs_io_context **bioc_ret)
0b3d4cd3
LB
5956{
5957 struct extent_map *em;
5958 struct map_lookup *map;
4c664611 5959 struct btrfs_io_context *bioc;
6b7faadd 5960 u64 length = *length_ret;
0b3d4cd3
LB
5961 u64 offset;
5962 u64 stripe_nr;
5963 u64 stripe_nr_end;
5964 u64 stripe_end_offset;
5965 u64 stripe_cnt;
5966 u64 stripe_len;
5967 u64 stripe_offset;
5968 u64 num_stripes;
5969 u32 stripe_index;
5970 u32 factor = 0;
5971 u32 sub_stripes = 0;
5972 u64 stripes_per_dev = 0;
5973 u32 remaining_stripes = 0;
5974 u32 last_stripe = 0;
5975 int ret = 0;
5976 int i;
5977
4c664611
QW
5978 /* Discard always returns a bioc. */
5979 ASSERT(bioc_ret);
0b3d4cd3 5980
60ca842e 5981 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5982 if (IS_ERR(em))
5983 return PTR_ERR(em);
5984
5985 map = em->map_lookup;
5986 /* we don't discard raid56 yet */
5987 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5988 ret = -EOPNOTSUPP;
5989 goto out;
5990 }
5991
5992 offset = logical - em->start;
2d974619 5993 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5994 *length_ret = length;
0b3d4cd3
LB
5995
5996 stripe_len = map->stripe_len;
5997 /*
5998 * stripe_nr counts the total number of stripes we have to stride
5999 * to get to this block
6000 */
6001 stripe_nr = div64_u64(offset, stripe_len);
6002
6003 /* stripe_offset is the offset of this block in its stripe */
6004 stripe_offset = offset - stripe_nr * stripe_len;
6005
6006 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 6007 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
6008 stripe_cnt = stripe_nr_end - stripe_nr;
6009 stripe_end_offset = stripe_nr_end * map->stripe_len -
6010 (offset + length);
6011 /*
6012 * after this, stripe_nr is the number of stripes on this
6013 * device we have to walk to find the data, and stripe_index is
6014 * the number of our device in the stripe array
6015 */
6016 num_stripes = 1;
6017 stripe_index = 0;
6018 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6019 BTRFS_BLOCK_GROUP_RAID10)) {
6020 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6021 sub_stripes = 1;
6022 else
6023 sub_stripes = map->sub_stripes;
6024
6025 factor = map->num_stripes / sub_stripes;
6026 num_stripes = min_t(u64, map->num_stripes,
6027 sub_stripes * stripe_cnt);
6028 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6029 stripe_index *= sub_stripes;
6030 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6031 &remaining_stripes);
6032 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6033 last_stripe *= sub_stripes;
c7369b3f 6034 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
6035 BTRFS_BLOCK_GROUP_DUP)) {
6036 num_stripes = map->num_stripes;
6037 } else {
6038 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6039 &stripe_index);
6040 }
6041
731ccf15 6042 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
4c664611 6043 if (!bioc) {
0b3d4cd3
LB
6044 ret = -ENOMEM;
6045 goto out;
6046 }
6047
6048 for (i = 0; i < num_stripes; i++) {
4c664611 6049 bioc->stripes[i].physical =
0b3d4cd3
LB
6050 map->stripes[stripe_index].physical +
6051 stripe_offset + stripe_nr * map->stripe_len;
4c664611 6052 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6053
6054 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6055 BTRFS_BLOCK_GROUP_RAID10)) {
4c664611 6056 bioc->stripes[i].length = stripes_per_dev *
0b3d4cd3
LB
6057 map->stripe_len;
6058
6059 if (i / sub_stripes < remaining_stripes)
4c664611 6060 bioc->stripes[i].length += map->stripe_len;
0b3d4cd3
LB
6061
6062 /*
6063 * Special for the first stripe and
6064 * the last stripe:
6065 *
6066 * |-------|...|-------|
6067 * |----------|
6068 * off end_off
6069 */
6070 if (i < sub_stripes)
4c664611 6071 bioc->stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6072
6073 if (stripe_index >= last_stripe &&
6074 stripe_index <= (last_stripe +
6075 sub_stripes - 1))
4c664611 6076 bioc->stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6077
6078 if (i == sub_stripes - 1)
6079 stripe_offset = 0;
6080 } else {
4c664611 6081 bioc->stripes[i].length = length;
0b3d4cd3
LB
6082 }
6083
6084 stripe_index++;
6085 if (stripe_index == map->num_stripes) {
6086 stripe_index = 0;
6087 stripe_nr++;
6088 }
6089 }
6090
4c664611
QW
6091 *bioc_ret = bioc;
6092 bioc->map_type = map->type;
6093 bioc->num_stripes = num_stripes;
0b3d4cd3
LB
6094out:
6095 free_extent_map(em);
6096 return ret;
6097}
6098
5ab56090
LB
6099/*
6100 * In dev-replace case, for repair case (that's the only case where the mirror
6101 * is selected explicitly when calling btrfs_map_block), blocks left of the
6102 * left cursor can also be read from the target drive.
6103 *
6104 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6105 * array of stripes.
6106 * For READ, it also needs to be supported using the same mirror number.
6107 *
6108 * If the requested block is not left of the left cursor, EIO is returned. This
6109 * can happen because btrfs_num_copies() returns one more in the dev-replace
6110 * case.
6111 */
6112static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6113 u64 logical, u64 length,
6114 u64 srcdev_devid, int *mirror_num,
6115 u64 *physical)
6116{
4c664611 6117 struct btrfs_io_context *bioc = NULL;
5ab56090
LB
6118 int num_stripes;
6119 int index_srcdev = 0;
6120 int found = 0;
6121 u64 physical_of_found = 0;
6122 int i;
6123 int ret = 0;
6124
6125 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
4c664611 6126 logical, &length, &bioc, 0, 0);
5ab56090 6127 if (ret) {
4c664611 6128 ASSERT(bioc == NULL);
5ab56090
LB
6129 return ret;
6130 }
6131
4c664611 6132 num_stripes = bioc->num_stripes;
5ab56090
LB
6133 if (*mirror_num > num_stripes) {
6134 /*
6135 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6136 * that means that the requested area is not left of the left
6137 * cursor
6138 */
4c664611 6139 btrfs_put_bioc(bioc);
5ab56090
LB
6140 return -EIO;
6141 }
6142
6143 /*
6144 * process the rest of the function using the mirror_num of the source
6145 * drive. Therefore look it up first. At the end, patch the device
6146 * pointer to the one of the target drive.
6147 */
6148 for (i = 0; i < num_stripes; i++) {
4c664611 6149 if (bioc->stripes[i].dev->devid != srcdev_devid)
5ab56090
LB
6150 continue;
6151
6152 /*
6153 * In case of DUP, in order to keep it simple, only add the
6154 * mirror with the lowest physical address
6155 */
6156 if (found &&
4c664611 6157 physical_of_found <= bioc->stripes[i].physical)
5ab56090
LB
6158 continue;
6159
6160 index_srcdev = i;
6161 found = 1;
4c664611 6162 physical_of_found = bioc->stripes[i].physical;
5ab56090
LB
6163 }
6164
4c664611 6165 btrfs_put_bioc(bioc);
5ab56090
LB
6166
6167 ASSERT(found);
6168 if (!found)
6169 return -EIO;
6170
6171 *mirror_num = index_srcdev + 1;
6172 *physical = physical_of_found;
6173 return ret;
6174}
6175
6143c23c
NA
6176static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6177{
6178 struct btrfs_block_group *cache;
6179 bool ret;
6180
de17addc 6181 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6182 if (!btrfs_is_zoned(fs_info))
6183 return false;
6184
6185 cache = btrfs_lookup_block_group(fs_info, logical);
6186
6187 spin_lock(&cache->lock);
6188 ret = cache->to_copy;
6189 spin_unlock(&cache->lock);
6190
6191 btrfs_put_block_group(cache);
6192 return ret;
6193}
6194
73c0f228 6195static void handle_ops_on_dev_replace(enum btrfs_map_op op,
4c664611 6196 struct btrfs_io_context **bioc_ret,
73c0f228 6197 struct btrfs_dev_replace *dev_replace,
6143c23c 6198 u64 logical,
73c0f228
LB
6199 int *num_stripes_ret, int *max_errors_ret)
6200{
4c664611 6201 struct btrfs_io_context *bioc = *bioc_ret;
73c0f228
LB
6202 u64 srcdev_devid = dev_replace->srcdev->devid;
6203 int tgtdev_indexes = 0;
6204 int num_stripes = *num_stripes_ret;
6205 int max_errors = *max_errors_ret;
6206 int i;
6207
6208 if (op == BTRFS_MAP_WRITE) {
6209 int index_where_to_add;
6210
6143c23c
NA
6211 /*
6212 * A block group which have "to_copy" set will eventually
6213 * copied by dev-replace process. We can avoid cloning IO here.
6214 */
6215 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6216 return;
6217
73c0f228
LB
6218 /*
6219 * duplicate the write operations while the dev replace
6220 * procedure is running. Since the copying of the old disk to
6221 * the new disk takes place at run time while the filesystem is
6222 * mounted writable, the regular write operations to the old
6223 * disk have to be duplicated to go to the new disk as well.
6224 *
6225 * Note that device->missing is handled by the caller, and that
6226 * the write to the old disk is already set up in the stripes
6227 * array.
6228 */
6229 index_where_to_add = num_stripes;
6230 for (i = 0; i < num_stripes; i++) {
4c664611 6231 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228 6232 /* write to new disk, too */
4c664611
QW
6233 struct btrfs_io_stripe *new =
6234 bioc->stripes + index_where_to_add;
6235 struct btrfs_io_stripe *old =
6236 bioc->stripes + i;
73c0f228
LB
6237
6238 new->physical = old->physical;
6239 new->length = old->length;
6240 new->dev = dev_replace->tgtdev;
4c664611 6241 bioc->tgtdev_map[i] = index_where_to_add;
73c0f228
LB
6242 index_where_to_add++;
6243 max_errors++;
6244 tgtdev_indexes++;
6245 }
6246 }
6247 num_stripes = index_where_to_add;
6248 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6249 int index_srcdev = 0;
6250 int found = 0;
6251 u64 physical_of_found = 0;
6252
6253 /*
6254 * During the dev-replace procedure, the target drive can also
6255 * be used to read data in case it is needed to repair a corrupt
6256 * block elsewhere. This is possible if the requested area is
6257 * left of the left cursor. In this area, the target drive is a
6258 * full copy of the source drive.
6259 */
6260 for (i = 0; i < num_stripes; i++) {
4c664611 6261 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228
LB
6262 /*
6263 * In case of DUP, in order to keep it simple,
6264 * only add the mirror with the lowest physical
6265 * address
6266 */
6267 if (found &&
4c664611 6268 physical_of_found <= bioc->stripes[i].physical)
73c0f228
LB
6269 continue;
6270 index_srcdev = i;
6271 found = 1;
4c664611 6272 physical_of_found = bioc->stripes[i].physical;
73c0f228
LB
6273 }
6274 }
6275 if (found) {
4c664611
QW
6276 struct btrfs_io_stripe *tgtdev_stripe =
6277 bioc->stripes + num_stripes;
73c0f228
LB
6278
6279 tgtdev_stripe->physical = physical_of_found;
6280 tgtdev_stripe->length =
4c664611 6281 bioc->stripes[index_srcdev].length;
73c0f228 6282 tgtdev_stripe->dev = dev_replace->tgtdev;
4c664611 6283 bioc->tgtdev_map[index_srcdev] = num_stripes;
73c0f228
LB
6284
6285 tgtdev_indexes++;
6286 num_stripes++;
6287 }
6288 }
6289
6290 *num_stripes_ret = num_stripes;
6291 *max_errors_ret = max_errors;
4c664611
QW
6292 bioc->num_tgtdevs = tgtdev_indexes;
6293 *bioc_ret = bioc;
73c0f228
LB
6294}
6295
2b19a1fe
LB
6296static bool need_full_stripe(enum btrfs_map_op op)
6297{
6298 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6299}
6300
5f141126 6301/*
42034313
MR
6302 * Calculate the geometry of a particular (address, len) tuple. This
6303 * information is used to calculate how big a particular bio can get before it
6304 * straddles a stripe.
5f141126 6305 *
42034313
MR
6306 * @fs_info: the filesystem
6307 * @em: mapping containing the logical extent
6308 * @op: type of operation - write or read
6309 * @logical: address that we want to figure out the geometry of
42034313 6310 * @io_geom: pointer used to return values
5f141126
NB
6311 *
6312 * Returns < 0 in case a chunk for the given logical address cannot be found,
6313 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6314 */
42034313 6315int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6316 enum btrfs_map_op op, u64 logical,
42034313 6317 struct btrfs_io_geometry *io_geom)
5f141126 6318{
5f141126 6319 struct map_lookup *map;
43c0d1a5 6320 u64 len;
5f141126
NB
6321 u64 offset;
6322 u64 stripe_offset;
6323 u64 stripe_nr;
6324 u64 stripe_len;
6325 u64 raid56_full_stripe_start = (u64)-1;
6326 int data_stripes;
6327
6328 ASSERT(op != BTRFS_MAP_DISCARD);
6329
5f141126
NB
6330 map = em->map_lookup;
6331 /* Offset of this logical address in the chunk */
6332 offset = logical - em->start;
6333 /* Len of a stripe in a chunk */
6334 stripe_len = map->stripe_len;
1a9fd417 6335 /* Stripe where this block falls in */
5f141126
NB
6336 stripe_nr = div64_u64(offset, stripe_len);
6337 /* Offset of stripe in the chunk */
6338 stripe_offset = stripe_nr * stripe_len;
6339 if (offset < stripe_offset) {
6340 btrfs_crit(fs_info,
6341"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6342 stripe_offset, offset, em->start, logical, stripe_len);
42034313 6343 return -EINVAL;
5f141126
NB
6344 }
6345
6346 /* stripe_offset is the offset of this block in its stripe */
6347 stripe_offset = offset - stripe_offset;
6348 data_stripes = nr_data_stripes(map);
6349
6350 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6351 u64 max_len = stripe_len - stripe_offset;
6352
6353 /*
6354 * In case of raid56, we need to know the stripe aligned start
6355 */
6356 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6357 unsigned long full_stripe_len = stripe_len * data_stripes;
6358 raid56_full_stripe_start = offset;
6359
6360 /*
6361 * Allow a write of a full stripe, but make sure we
6362 * don't allow straddling of stripes
6363 */
6364 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6365 full_stripe_len);
6366 raid56_full_stripe_start *= full_stripe_len;
6367
6368 /*
6369 * For writes to RAID[56], allow a full stripeset across
6370 * all disks. For other RAID types and for RAID[56]
6371 * reads, just allow a single stripe (on a single disk).
6372 */
6373 if (op == BTRFS_MAP_WRITE) {
6374 max_len = stripe_len * data_stripes -
6375 (offset - raid56_full_stripe_start);
6376 }
6377 }
6378 len = min_t(u64, em->len - offset, max_len);
6379 } else {
6380 len = em->len - offset;
6381 }
6382
6383 io_geom->len = len;
6384 io_geom->offset = offset;
6385 io_geom->stripe_len = stripe_len;
6386 io_geom->stripe_nr = stripe_nr;
6387 io_geom->stripe_offset = stripe_offset;
6388 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6389
42034313 6390 return 0;
5f141126
NB
6391}
6392
cf8cddd3
CH
6393static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6394 enum btrfs_map_op op,
f2d8d74d 6395 u64 logical, u64 *length,
4c664611 6396 struct btrfs_io_context **bioc_ret,
8e5cfb55 6397 int mirror_num, int need_raid_map)
0b86a832
CM
6398{
6399 struct extent_map *em;
6400 struct map_lookup *map;
593060d7
CM
6401 u64 stripe_offset;
6402 u64 stripe_nr;
53b381b3 6403 u64 stripe_len;
9d644a62 6404 u32 stripe_index;
cff82672 6405 int data_stripes;
cea9e445 6406 int i;
de11cc12 6407 int ret = 0;
f2d8d74d 6408 int num_stripes;
a236aed1 6409 int max_errors = 0;
2c8cdd6e 6410 int tgtdev_indexes = 0;
4c664611 6411 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6412 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6413 int dev_replace_is_ongoing = 0;
6414 int num_alloc_stripes;
ad6d620e
SB
6415 int patch_the_first_stripe_for_dev_replace = 0;
6416 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6417 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6418 struct btrfs_io_geometry geom;
6419
4c664611 6420 ASSERT(bioc_ret);
75fb2e9e 6421 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6422
42034313
MR
6423 em = btrfs_get_chunk_map(fs_info, logical, *length);
6424 ASSERT(!IS_ERR(em));
6425
43c0d1a5 6426 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6427 if (ret < 0)
6428 return ret;
0b86a832 6429
95617d69 6430 map = em->map_lookup;
593060d7 6431
89b798ad 6432 *length = geom.len;
89b798ad
NB
6433 stripe_len = geom.stripe_len;
6434 stripe_nr = geom.stripe_nr;
6435 stripe_offset = geom.stripe_offset;
6436 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6437 data_stripes = nr_data_stripes(map);
593060d7 6438
cb5583dd 6439 down_read(&dev_replace->rwsem);
472262f3 6440 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6441 /*
6442 * Hold the semaphore for read during the whole operation, write is
6443 * requested at commit time but must wait.
6444 */
472262f3 6445 if (!dev_replace_is_ongoing)
cb5583dd 6446 up_read(&dev_replace->rwsem);
472262f3 6447
ad6d620e 6448 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6449 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6450 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6451 dev_replace->srcdev->devid,
6452 &mirror_num,
6453 &physical_to_patch_in_first_stripe);
6454 if (ret)
ad6d620e 6455 goto out;
5ab56090
LB
6456 else
6457 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6458 } else if (mirror_num > map->num_stripes) {
6459 mirror_num = 0;
6460 }
6461
f2d8d74d 6462 num_stripes = 1;
cea9e445 6463 stripe_index = 0;
fce3bb9a 6464 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6465 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6466 &stripe_index);
de483734 6467 if (!need_full_stripe(op))
28e1cc7d 6468 mirror_num = 1;
c7369b3f 6469 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6470 if (need_full_stripe(op))
f2d8d74d 6471 num_stripes = map->num_stripes;
2fff734f 6472 else if (mirror_num)
f188591e 6473 stripe_index = mirror_num - 1;
dfe25020 6474 else {
30d9861f 6475 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6476 dev_replace_is_ongoing);
a1d3c478 6477 mirror_num = stripe_index + 1;
dfe25020 6478 }
2fff734f 6479
611f0e00 6480 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6481 if (need_full_stripe(op)) {
f2d8d74d 6482 num_stripes = map->num_stripes;
a1d3c478 6483 } else if (mirror_num) {
f188591e 6484 stripe_index = mirror_num - 1;
a1d3c478
JS
6485 } else {
6486 mirror_num = 1;
6487 }
2fff734f 6488
321aecc6 6489 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6490 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6491
47c5713f 6492 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6493 stripe_index *= map->sub_stripes;
6494
de483734 6495 if (need_full_stripe(op))
f2d8d74d 6496 num_stripes = map->sub_stripes;
321aecc6
CM
6497 else if (mirror_num)
6498 stripe_index += mirror_num - 1;
dfe25020 6499 else {
3e74317a 6500 int old_stripe_index = stripe_index;
30d9861f
SB
6501 stripe_index = find_live_mirror(fs_info, map,
6502 stripe_index,
30d9861f 6503 dev_replace_is_ongoing);
3e74317a 6504 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6505 }
53b381b3 6506
ffe2d203 6507 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6508 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6509 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6510 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6511 stripe_len * data_stripes);
53b381b3
DW
6512
6513 /* RAID[56] write or recovery. Return all stripes */
6514 num_stripes = map->num_stripes;
6515 max_errors = nr_parity_stripes(map);
6516
53b381b3
DW
6517 *length = map->stripe_len;
6518 stripe_index = 0;
6519 stripe_offset = 0;
6520 } else {
6521 /*
6522 * Mirror #0 or #1 means the original data block.
6523 * Mirror #2 is RAID5 parity block.
6524 * Mirror #3 is RAID6 Q block.
6525 */
47c5713f 6526 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6527 data_stripes, &stripe_index);
53b381b3 6528 if (mirror_num > 1)
cff82672 6529 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6530
6531 /* We distribute the parity blocks across stripes */
47c5713f
DS
6532 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6533 &stripe_index);
de483734 6534 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6535 mirror_num = 1;
53b381b3 6536 }
8790d502
CM
6537 } else {
6538 /*
47c5713f
DS
6539 * after this, stripe_nr is the number of stripes on this
6540 * device we have to walk to find the data, and stripe_index is
6541 * the number of our device in the stripe array
8790d502 6542 */
47c5713f
DS
6543 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6544 &stripe_index);
a1d3c478 6545 mirror_num = stripe_index + 1;
8790d502 6546 }
e042d1ec 6547 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6548 btrfs_crit(fs_info,
6549 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6550 stripe_index, map->num_stripes);
6551 ret = -EINVAL;
6552 goto out;
6553 }
cea9e445 6554
472262f3 6555 num_alloc_stripes = num_stripes;
6fad823f 6556 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6557 if (op == BTRFS_MAP_WRITE)
ad6d620e 6558 num_alloc_stripes <<= 1;
cf8cddd3 6559 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6560 num_alloc_stripes++;
2c8cdd6e 6561 tgtdev_indexes = num_stripes;
ad6d620e 6562 }
2c8cdd6e 6563
731ccf15 6564 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
4c664611 6565 if (!bioc) {
de11cc12
LZ
6566 ret = -ENOMEM;
6567 goto out;
6568 }
608769a4
NB
6569
6570 for (i = 0; i < num_stripes; i++) {
4c664611 6571 bioc->stripes[i].physical = map->stripes[stripe_index].physical +
608769a4 6572 stripe_offset + stripe_nr * map->stripe_len;
4c664611 6573 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
608769a4
NB
6574 stripe_index++;
6575 }
de11cc12 6576
4c664611 6577 /* Build raid_map */
2b19a1fe
LB
6578 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6579 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6580 u64 tmp;
9d644a62 6581 unsigned rot;
8e5cfb55 6582
8e5cfb55 6583 /* Work out the disk rotation on this stripe-set */
47c5713f 6584 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6585
6586 /* Fill in the logical address of each stripe */
cff82672
DS
6587 tmp = stripe_nr * data_stripes;
6588 for (i = 0; i < data_stripes; i++)
4c664611 6589 bioc->raid_map[(i + rot) % num_stripes] =
8e5cfb55
ZL
6590 em->start + (tmp + i) * map->stripe_len;
6591
4c664611 6592 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
8e5cfb55 6593 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4c664611 6594 bioc->raid_map[(i + rot + 1) % num_stripes] =
8e5cfb55 6595 RAID6_Q_STRIPE;
8e5cfb55 6596
4c664611 6597 sort_parity_stripes(bioc, num_stripes);
593060d7 6598 }
de11cc12 6599
2b19a1fe 6600 if (need_full_stripe(op))
d20983b4 6601 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6602
73c0f228 6603 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6604 need_full_stripe(op)) {
4c664611 6605 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6143c23c 6606 &num_stripes, &max_errors);
472262f3
SB
6607 }
6608
4c664611
QW
6609 *bioc_ret = bioc;
6610 bioc->map_type = map->type;
6611 bioc->num_stripes = num_stripes;
6612 bioc->max_errors = max_errors;
6613 bioc->mirror_num = mirror_num;
ad6d620e
SB
6614
6615 /*
6616 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6617 * mirror_num == num_stripes + 1 && dev_replace target drive is
6618 * available as a mirror
6619 */
6620 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6621 WARN_ON(num_stripes > 1);
4c664611
QW
6622 bioc->stripes[0].dev = dev_replace->tgtdev;
6623 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6624 bioc->mirror_num = map->num_stripes + 1;
ad6d620e 6625 }
cea9e445 6626out:
73beece9 6627 if (dev_replace_is_ongoing) {
53176dde
DS
6628 lockdep_assert_held(&dev_replace->rwsem);
6629 /* Unlock and let waiting writers proceed */
cb5583dd 6630 up_read(&dev_replace->rwsem);
73beece9 6631 }
0b86a832 6632 free_extent_map(em);
de11cc12 6633 return ret;
0b86a832
CM
6634}
6635
cf8cddd3 6636int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6637 u64 logical, u64 *length,
4c664611 6638 struct btrfs_io_context **bioc_ret, int mirror_num)
f2d8d74d 6639{
75fb2e9e
DS
6640 if (op == BTRFS_MAP_DISCARD)
6641 return __btrfs_map_block_for_discard(fs_info, logical,
4c664611 6642 length, bioc_ret);
75fb2e9e 6643
4c664611 6644 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
8e5cfb55 6645 mirror_num, 0);
f2d8d74d
CM
6646}
6647
af8e2d1d 6648/* For Scrub/replace */
cf8cddd3 6649int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6650 u64 logical, u64 *length,
4c664611 6651 struct btrfs_io_context **bioc_ret)
af8e2d1d 6652{
4c664611 6653 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
af8e2d1d
MX
6654}
6655
4c664611 6656static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
8408c716 6657{
4c664611
QW
6658 bio->bi_private = bioc->private;
6659 bio->bi_end_io = bioc->end_io;
4246a0b6 6660 bio_endio(bio);
326e1dbb 6661
4c664611 6662 btrfs_put_bioc(bioc);
8408c716
MX
6663}
6664
4246a0b6 6665static void btrfs_end_bio(struct bio *bio)
8790d502 6666{
4c664611 6667 struct btrfs_io_context *bioc = bio->bi_private;
7d2b4daa 6668 int is_orig_bio = 0;
8790d502 6669
4e4cbee9 6670 if (bio->bi_status) {
4c664611 6671 atomic_inc(&bioc->error);
4e4cbee9
CH
6672 if (bio->bi_status == BLK_STS_IOERR ||
6673 bio->bi_status == BLK_STS_TARGET) {
c3a3b19b 6674 struct btrfs_device *dev = btrfs_bio(bio)->device;
442a4f63 6675
3eee86c8 6676 ASSERT(dev->bdev);
cfe94440 6677 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6678 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6679 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6680 else if (!(bio->bi_opf & REQ_RAHEAD))
6681 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6682 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6683 if (bio->bi_opf & REQ_PREFLUSH)
6684 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6685 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6686 }
6687 }
8790d502 6688
4c664611 6689 if (bio == bioc->orig_bio)
7d2b4daa
CM
6690 is_orig_bio = 1;
6691
4c664611 6692 btrfs_bio_counter_dec(bioc->fs_info);
c404e0dc 6693
4c664611 6694 if (atomic_dec_and_test(&bioc->stripes_pending)) {
7d2b4daa
CM
6695 if (!is_orig_bio) {
6696 bio_put(bio);
4c664611 6697 bio = bioc->orig_bio;
7d2b4daa 6698 }
c7b22bb1 6699
c3a3b19b 6700 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
a236aed1 6701 /* only send an error to the higher layers if it is
53b381b3 6702 * beyond the tolerance of the btrfs bio
a236aed1 6703 */
4c664611 6704 if (atomic_read(&bioc->error) > bioc->max_errors) {
4e4cbee9 6705 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6706 } else {
1259ab75
CM
6707 /*
6708 * this bio is actually up to date, we didn't
6709 * go over the max number of errors
6710 */
2dbe0c77 6711 bio->bi_status = BLK_STS_OK;
1259ab75 6712 }
c55f1396 6713
4c664611 6714 btrfs_end_bioc(bioc, bio);
7d2b4daa 6715 } else if (!is_orig_bio) {
8790d502
CM
6716 bio_put(bio);
6717 }
8790d502
CM
6718}
6719
4c664611 6720static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
c31efbdf 6721 u64 physical, struct btrfs_device *dev)
de1ee92a 6722{
4c664611 6723 struct btrfs_fs_info *fs_info = bioc->fs_info;
de1ee92a 6724
4c664611 6725 bio->bi_private = bioc;
c3a3b19b 6726 btrfs_bio(bio)->device = dev;
de1ee92a 6727 bio->bi_end_io = btrfs_end_bio;
4f024f37 6728 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6729 /*
6730 * For zone append writing, bi_sector must point the beginning of the
6731 * zone
6732 */
6733 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6734 if (btrfs_dev_is_sequential(dev, physical)) {
6735 u64 zone_start = round_down(physical, fs_info->zone_size);
6736
6737 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6738 } else {
6739 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6740 bio->bi_opf |= REQ_OP_WRITE;
6741 }
6742 }
672d5990
MT
6743 btrfs_debug_in_rcu(fs_info,
6744 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6745 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6746 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6747 dev->devid, bio->bi_iter.bi_size);
74d46992 6748 bio_set_dev(bio, dev->bdev);
c404e0dc 6749
2ff7e61e 6750 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6751
08635bae 6752 btrfsic_submit_bio(bio);
de1ee92a
JB
6753}
6754
4c664611 6755static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
de1ee92a 6756{
4c664611
QW
6757 atomic_inc(&bioc->error);
6758 if (atomic_dec_and_test(&bioc->stripes_pending)) {
01327610 6759 /* Should be the original bio. */
4c664611 6760 WARN_ON(bio != bioc->orig_bio);
8408c716 6761
c3a3b19b 6762 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
4f024f37 6763 bio->bi_iter.bi_sector = logical >> 9;
4c664611 6764 if (atomic_read(&bioc->error) > bioc->max_errors)
102ed2c5
AJ
6765 bio->bi_status = BLK_STS_IOERR;
6766 else
6767 bio->bi_status = BLK_STS_OK;
4c664611 6768 btrfs_end_bioc(bioc, bio);
de1ee92a
JB
6769 }
6770}
6771
58efbc9f 6772blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6773 int mirror_num)
0b86a832 6774{
0b86a832 6775 struct btrfs_device *dev;
8790d502 6776 struct bio *first_bio = bio;
1201b58b 6777 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6778 u64 length = 0;
6779 u64 map_length;
0b86a832 6780 int ret;
08da757d
ZL
6781 int dev_nr;
6782 int total_devs;
4c664611 6783 struct btrfs_io_context *bioc = NULL;
0b86a832 6784
4f024f37 6785 length = bio->bi_iter.bi_size;
0b86a832 6786 map_length = length;
cea9e445 6787
0b246afa 6788 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6789 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
4c664611 6790 &map_length, &bioc, mirror_num, 1);
c404e0dc 6791 if (ret) {
0b246afa 6792 btrfs_bio_counter_dec(fs_info);
58efbc9f 6793 return errno_to_blk_status(ret);
c404e0dc 6794 }
cea9e445 6795
4c664611
QW
6796 total_devs = bioc->num_stripes;
6797 bioc->orig_bio = first_bio;
6798 bioc->private = first_bio->bi_private;
6799 bioc->end_io = first_bio->bi_end_io;
4c664611 6800 atomic_set(&bioc->stripes_pending, bioc->num_stripes);
53b381b3 6801
4c664611 6802 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6803 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6804 /* In this case, map_length has been set to the length of
6805 a single stripe; not the whole write */
cfe94440 6806 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6a258d72 6807 ret = raid56_parity_write(bio, bioc, map_length);
53b381b3 6808 } else {
6a258d72
QW
6809 ret = raid56_parity_recover(bio, bioc, map_length,
6810 mirror_num, 1);
53b381b3 6811 }
4245215d 6812
0b246afa 6813 btrfs_bio_counter_dec(fs_info);
58efbc9f 6814 return errno_to_blk_status(ret);
53b381b3
DW
6815 }
6816
cea9e445 6817 if (map_length < length) {
0b246afa 6818 btrfs_crit(fs_info,
5d163e0e
JM
6819 "mapping failed logical %llu bio len %llu len %llu",
6820 logical, length, map_length);
cea9e445
CM
6821 BUG();
6822 }
a1d3c478 6823
08da757d 6824 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
4c664611 6825 dev = bioc->stripes[dev_nr].dev;
fc8a168a
NB
6826 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6827 &dev->dev_state) ||
cfe94440 6828 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6829 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
4c664611 6830 bioc_error(bioc, first_bio, logical);
de1ee92a
JB
6831 continue;
6832 }
6833
3aa8e074 6834 if (dev_nr < total_devs - 1)
8b6c1d56 6835 bio = btrfs_bio_clone(first_bio);
3aa8e074 6836 else
a1d3c478 6837 bio = first_bio;
de1ee92a 6838
4c664611 6839 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
8790d502 6840 }
0b246afa 6841 btrfs_bio_counter_dec(fs_info);
58efbc9f 6842 return BLK_STS_OK;
0b86a832
CM
6843}
6844
562d7b15
JB
6845static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6846 const struct btrfs_fs_devices *fs_devices)
6847{
6848 if (args->fsid == NULL)
6849 return true;
6850 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6851 return true;
6852 return false;
6853}
6854
6855static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6856 const struct btrfs_device *device)
6857{
6858 ASSERT((args->devid != (u64)-1) || args->missing);
6859
6860 if ((args->devid != (u64)-1) && device->devid != args->devid)
6861 return false;
6862 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6863 return false;
6864 if (!args->missing)
6865 return true;
6866 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6867 !device->bdev)
6868 return true;
6869 return false;
6870}
6871
09ba3bc9
AJ
6872/*
6873 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6874 * return NULL.
6875 *
6876 * If devid and uuid are both specified, the match must be exact, otherwise
6877 * only devid is used.
09ba3bc9 6878 */
562d7b15
JB
6879struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6880 const struct btrfs_dev_lookup_args *args)
0b86a832 6881{
2b82032c 6882 struct btrfs_device *device;
944d3f9f
NB
6883 struct btrfs_fs_devices *seed_devs;
6884
562d7b15 6885 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6886 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6887 if (dev_args_match_device(args, device))
944d3f9f
NB
6888 return device;
6889 }
6890 }
2b82032c 6891
944d3f9f 6892 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6893 if (!dev_args_match_fs_devices(args, seed_devs))
6894 continue;
6895 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6896 if (dev_args_match_device(args, device))
6897 return device;
2b82032c 6898 }
2b82032c 6899 }
944d3f9f 6900
2b82032c 6901 return NULL;
0b86a832
CM
6902}
6903
2ff7e61e 6904static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6905 u64 devid, u8 *dev_uuid)
6906{
6907 struct btrfs_device *device;
fccc0007 6908 unsigned int nofs_flag;
dfe25020 6909
fccc0007
JB
6910 /*
6911 * We call this under the chunk_mutex, so we want to use NOFS for this
6912 * allocation, however we don't want to change btrfs_alloc_device() to
6913 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6914 * places.
6915 */
6916 nofs_flag = memalloc_nofs_save();
12bd2fc0 6917 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6918 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6919 if (IS_ERR(device))
adfb69af 6920 return device;
12bd2fc0
ID
6921
6922 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6923 device->fs_devices = fs_devices;
dfe25020 6924 fs_devices->num_devices++;
12bd2fc0 6925
e6e674bd 6926 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6927 fs_devices->missing_devices++;
12bd2fc0 6928
dfe25020
CM
6929 return device;
6930}
6931
12bd2fc0
ID
6932/**
6933 * btrfs_alloc_device - allocate struct btrfs_device
6934 * @fs_info: used only for generating a new devid, can be NULL if
6935 * devid is provided (i.e. @devid != NULL).
6936 * @devid: a pointer to devid for this device. If NULL a new devid
6937 * is generated.
6938 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6939 * is generated.
6940 *
6941 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6942 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6943 * destroyed with btrfs_free_device.
12bd2fc0
ID
6944 */
6945struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6946 const u64 *devid,
6947 const u8 *uuid)
6948{
6949 struct btrfs_device *dev;
6950 u64 tmp;
6951
fae7f21c 6952 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6953 return ERR_PTR(-EINVAL);
12bd2fc0 6954
fe4f46d4
DS
6955 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6956 if (!dev)
6957 return ERR_PTR(-ENOMEM);
6958
6959 /*
6960 * Preallocate a bio that's always going to be used for flushing device
6961 * barriers and matches the device lifespan
6962 */
6963 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6964 if (!dev->flush_bio) {
6965 kfree(dev);
6966 return ERR_PTR(-ENOMEM);
6967 }
6968
6969 INIT_LIST_HEAD(&dev->dev_list);
6970 INIT_LIST_HEAD(&dev->dev_alloc_list);
6971 INIT_LIST_HEAD(&dev->post_commit_list);
6972
6973 atomic_set(&dev->reada_in_flight, 0);
6974 atomic_set(&dev->dev_stats_ccnt, 0);
6975 btrfs_device_data_ordered_init(dev);
6976 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6977 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6978 extent_io_tree_init(fs_info, &dev->alloc_state,
6979 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6980
6981 if (devid)
6982 tmp = *devid;
6983 else {
6984 int ret;
6985
6986 ret = find_next_devid(fs_info, &tmp);
6987 if (ret) {
a425f9d4 6988 btrfs_free_device(dev);
12bd2fc0
ID
6989 return ERR_PTR(ret);
6990 }
6991 }
6992 dev->devid = tmp;
6993
6994 if (uuid)
6995 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6996 else
6997 generate_random_uuid(dev->uuid);
6998
12bd2fc0
ID
6999 return dev;
7000}
7001
5a2b8e60 7002static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 7003 u64 devid, u8 *uuid, bool error)
5a2b8e60 7004{
2b902dfc
AJ
7005 if (error)
7006 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7007 devid, uuid);
7008 else
7009 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7010 devid, uuid);
5a2b8e60
AJ
7011}
7012
39e264a4
NB
7013static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7014{
d58ede8d 7015 const int data_stripes = calc_data_stripes(type, num_stripes);
e4f6c6be 7016
39e264a4
NB
7017 return div_u64(chunk_len, data_stripes);
7018}
7019
e9306ad4
QW
7020#if BITS_PER_LONG == 32
7021/*
7022 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7023 * can't be accessed on 32bit systems.
7024 *
7025 * This function do mount time check to reject the fs if it already has
7026 * metadata chunk beyond that limit.
7027 */
7028static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7029 u64 logical, u64 length, u64 type)
7030{
7031 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7032 return 0;
7033
7034 if (logical + length < MAX_LFS_FILESIZE)
7035 return 0;
7036
7037 btrfs_err_32bit_limit(fs_info);
7038 return -EOVERFLOW;
7039}
7040
7041/*
7042 * This is to give early warning for any metadata chunk reaching
7043 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7044 * Although we can still access the metadata, it's not going to be possible
7045 * once the limit is reached.
7046 */
7047static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7048 u64 logical, u64 length, u64 type)
7049{
7050 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7051 return;
7052
7053 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7054 return;
7055
7056 btrfs_warn_32bit_limit(fs_info);
7057}
7058#endif
7059
9690ac09 7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
7061 struct btrfs_chunk *chunk)
7062{
562d7b15 7063 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 7064 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 7065 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
7066 struct map_lookup *map;
7067 struct extent_map *em;
7068 u64 logical;
7069 u64 length;
e06cd3dd 7070 u64 devid;
e9306ad4 7071 u64 type;
e06cd3dd
LB
7072 u8 uuid[BTRFS_UUID_SIZE];
7073 int num_stripes;
7074 int ret;
7075 int i;
7076
7077 logical = key->offset;
7078 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 7079 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
7080 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
e9306ad4
QW
7082#if BITS_PER_LONG == 32
7083 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 if (ret < 0)
7085 return ret;
7086 warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
075cb3c7
QW
7089 /*
7090 * Only need to verify chunk item if we're reading from sys chunk array,
7091 * as chunk item in tree block is already verified by tree-checker.
7092 */
7093 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 7094 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
7095 if (ret)
7096 return ret;
7097 }
a061fc8d 7098
c8bf1b67
DS
7099 read_lock(&map_tree->lock);
7100 em = lookup_extent_mapping(map_tree, logical, 1);
7101 read_unlock(&map_tree->lock);
0b86a832
CM
7102
7103 /* already mapped? */
7104 if (em && em->start <= logical && em->start + em->len > logical) {
7105 free_extent_map(em);
0b86a832
CM
7106 return 0;
7107 } else if (em) {
7108 free_extent_map(em);
7109 }
0b86a832 7110
172ddd60 7111 em = alloc_extent_map();
0b86a832
CM
7112 if (!em)
7113 return -ENOMEM;
593060d7 7114 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
7115 if (!map) {
7116 free_extent_map(em);
7117 return -ENOMEM;
7118 }
7119
298a8f9c 7120 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 7121 em->map_lookup = map;
0b86a832
CM
7122 em->start = logical;
7123 em->len = length;
70c8a91c 7124 em->orig_start = 0;
0b86a832 7125 em->block_start = 0;
c8b97818 7126 em->block_len = em->len;
0b86a832 7127
593060d7
CM
7128 map->num_stripes = num_stripes;
7129 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7130 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 7131 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 7132 map->type = type;
321aecc6 7133 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 7134 map->verified_stripes = 0;
e9306ad4 7135 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 7136 map->num_stripes);
593060d7
CM
7137 for (i = 0; i < num_stripes; i++) {
7138 map->stripes[i].physical =
7139 btrfs_stripe_offset_nr(leaf, chunk, i);
7140 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 7141 args.devid = devid;
a443755f
CM
7142 read_extent_buffer(leaf, uuid, (unsigned long)
7143 btrfs_stripe_dev_uuid_nr(chunk, i),
7144 BTRFS_UUID_SIZE);
562d7b15
JB
7145 args.uuid = uuid;
7146 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
3cdde224 7147 if (!map->stripes[i].dev &&
0b246afa 7148 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 7149 free_extent_map(em);
2b902dfc 7150 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 7151 return -ENOENT;
593060d7 7152 }
dfe25020
CM
7153 if (!map->stripes[i].dev) {
7154 map->stripes[i].dev =
2ff7e61e
JM
7155 add_missing_dev(fs_info->fs_devices, devid,
7156 uuid);
adfb69af 7157 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7158 free_extent_map(em);
adfb69af
AJ
7159 btrfs_err(fs_info,
7160 "failed to init missing dev %llu: %ld",
7161 devid, PTR_ERR(map->stripes[i].dev));
7162 return PTR_ERR(map->stripes[i].dev);
dfe25020 7163 }
2b902dfc 7164 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 7165 }
e12c9621
AJ
7166 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7167 &(map->stripes[i].dev->dev_state));
7168
0b86a832
CM
7169 }
7170
c8bf1b67
DS
7171 write_lock(&map_tree->lock);
7172 ret = add_extent_mapping(map_tree, em, 0);
7173 write_unlock(&map_tree->lock);
64f64f43
QW
7174 if (ret < 0) {
7175 btrfs_err(fs_info,
7176 "failed to add chunk map, start=%llu len=%llu: %d",
7177 em->start, em->len, ret);
7178 }
0b86a832
CM
7179 free_extent_map(em);
7180
64f64f43 7181 return ret;
0b86a832
CM
7182}
7183
143bede5 7184static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7185 struct btrfs_dev_item *dev_item,
7186 struct btrfs_device *device)
7187{
7188 unsigned long ptr;
0b86a832
CM
7189
7190 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7191 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7192 device->total_bytes = device->disk_total_bytes;
935e5cc9 7193 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7194 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7195 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7196 device->type = btrfs_device_type(leaf, dev_item);
7197 device->io_align = btrfs_device_io_align(leaf, dev_item);
7198 device->io_width = btrfs_device_io_width(leaf, dev_item);
7199 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7200 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7201 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7202
410ba3a2 7203 ptr = btrfs_device_uuid(dev_item);
e17cade2 7204 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7205}
7206
2ff7e61e 7207static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7208 u8 *fsid)
2b82032c
YZ
7209{
7210 struct btrfs_fs_devices *fs_devices;
7211 int ret;
7212
a32bf9a3 7213 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7214 ASSERT(fsid);
2b82032c 7215
427c8fdd 7216 /* This will match only for multi-device seed fs */
944d3f9f 7217 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7218 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7219 return fs_devices;
7220
2b82032c 7221
7239ff4b 7222 fs_devices = find_fsid(fsid, NULL);
2b82032c 7223 if (!fs_devices) {
0b246afa 7224 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7225 return ERR_PTR(-ENOENT);
7226
7239ff4b 7227 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7228 if (IS_ERR(fs_devices))
7229 return fs_devices;
7230
0395d84f 7231 fs_devices->seeding = true;
5f375835
MX
7232 fs_devices->opened = 1;
7233 return fs_devices;
2b82032c 7234 }
e4404d6e 7235
427c8fdd
NB
7236 /*
7237 * Upon first call for a seed fs fsid, just create a private copy of the
7238 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7239 */
e4404d6e 7240 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7241 if (IS_ERR(fs_devices))
7242 return fs_devices;
2b82032c 7243
897fb573 7244 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7245 if (ret) {
7246 free_fs_devices(fs_devices);
c83b60c0 7247 return ERR_PTR(ret);
48d28232 7248 }
2b82032c
YZ
7249
7250 if (!fs_devices->seeding) {
0226e0eb 7251 close_fs_devices(fs_devices);
e4404d6e 7252 free_fs_devices(fs_devices);
c83b60c0 7253 return ERR_PTR(-EINVAL);
2b82032c
YZ
7254 }
7255
944d3f9f 7256 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7257
5f375835 7258 return fs_devices;
2b82032c
YZ
7259}
7260
17850759 7261static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7262 struct btrfs_dev_item *dev_item)
7263{
562d7b15 7264 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 7265 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7266 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7267 struct btrfs_device *device;
7268 u64 devid;
7269 int ret;
44880fdc 7270 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7271 u8 dev_uuid[BTRFS_UUID_SIZE];
7272
562d7b15 7273 devid = args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7274 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7275 BTRFS_UUID_SIZE);
1473b24e 7276 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7277 BTRFS_FSID_SIZE);
562d7b15
JB
7278 args.uuid = dev_uuid;
7279 args.fsid = fs_uuid;
2b82032c 7280
de37aa51 7281 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7282 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7283 if (IS_ERR(fs_devices))
7284 return PTR_ERR(fs_devices);
2b82032c
YZ
7285 }
7286
562d7b15 7287 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 7288 if (!device) {
c5502451 7289 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7290 btrfs_report_missing_device(fs_info, devid,
7291 dev_uuid, true);
45dbdbc9 7292 return -ENOENT;
c5502451 7293 }
2b82032c 7294
2ff7e61e 7295 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7296 if (IS_ERR(device)) {
7297 btrfs_err(fs_info,
7298 "failed to add missing dev %llu: %ld",
7299 devid, PTR_ERR(device));
7300 return PTR_ERR(device);
7301 }
2b902dfc 7302 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7303 } else {
c5502451 7304 if (!device->bdev) {
2b902dfc
AJ
7305 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7306 btrfs_report_missing_device(fs_info,
7307 devid, dev_uuid, true);
45dbdbc9 7308 return -ENOENT;
2b902dfc
AJ
7309 }
7310 btrfs_report_missing_device(fs_info, devid,
7311 dev_uuid, false);
c5502451 7312 }
5f375835 7313
e6e674bd
AJ
7314 if (!device->bdev &&
7315 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7316 /*
7317 * this happens when a device that was properly setup
7318 * in the device info lists suddenly goes bad.
7319 * device->bdev is NULL, and so we have to set
7320 * device->missing to one here
7321 */
5f375835 7322 device->fs_devices->missing_devices++;
e6e674bd 7323 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7324 }
5f375835
MX
7325
7326 /* Move the device to its own fs_devices */
7327 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7328 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7329 &device->dev_state));
5f375835
MX
7330
7331 list_move(&device->dev_list, &fs_devices->devices);
7332 device->fs_devices->num_devices--;
7333 fs_devices->num_devices++;
7334
7335 device->fs_devices->missing_devices--;
7336 fs_devices->missing_devices++;
7337
7338 device->fs_devices = fs_devices;
7339 }
2b82032c
YZ
7340 }
7341
0b246afa 7342 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7343 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7344 if (device->generation !=
7345 btrfs_device_generation(leaf, dev_item))
7346 return -EINVAL;
6324fbf3 7347 }
0b86a832
CM
7348
7349 fill_device_from_item(leaf, dev_item, device);
3a160a93 7350 if (device->bdev) {
cda00eba 7351 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7352
7353 if (device->total_bytes > max_total_bytes) {
7354 btrfs_err(fs_info,
7355 "device total_bytes should be at most %llu but found %llu",
7356 max_total_bytes, device->total_bytes);
7357 return -EINVAL;
7358 }
7359 }
e12c9621 7360 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7361 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7362 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7363 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7364 atomic64_add(device->total_bytes - device->bytes_used,
7365 &fs_info->free_chunk_space);
2bf64758 7366 }
0b86a832 7367 ret = 0;
0b86a832
CM
7368 return ret;
7369}
7370
6bccf3ab 7371int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7372{
6bccf3ab 7373 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7374 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7375 struct extent_buffer *sb;
0b86a832 7376 struct btrfs_disk_key *disk_key;
0b86a832 7377 struct btrfs_chunk *chunk;
1ffb22cf
DS
7378 u8 *array_ptr;
7379 unsigned long sb_array_offset;
84eed90f 7380 int ret = 0;
0b86a832
CM
7381 u32 num_stripes;
7382 u32 array_size;
7383 u32 len = 0;
1ffb22cf 7384 u32 cur_offset;
e06cd3dd 7385 u64 type;
84eed90f 7386 struct btrfs_key key;
0b86a832 7387
0b246afa 7388 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7389 /*
7390 * This will create extent buffer of nodesize, superblock size is
7391 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7392 * overallocate but we can keep it as-is, only the first page is used.
7393 */
3fbaf258
JB
7394 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7395 root->root_key.objectid, 0);
c871b0f2
LB
7396 if (IS_ERR(sb))
7397 return PTR_ERR(sb);
4db8c528 7398 set_extent_buffer_uptodate(sb);
8a334426 7399 /*
01327610 7400 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7401 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7402 * pages up-to-date when the page is larger: extent does not cover the
7403 * whole page and consequently check_page_uptodate does not find all
7404 * the page's extents up-to-date (the hole beyond sb),
7405 * write_extent_buffer then triggers a WARN_ON.
7406 *
7407 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7408 * but sb spans only this function. Add an explicit SetPageUptodate call
7409 * to silence the warning eg. on PowerPC 64.
7410 */
09cbfeaf 7411 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7412 SetPageUptodate(sb->pages[0]);
4008c04a 7413
a061fc8d 7414 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7415 array_size = btrfs_super_sys_array_size(super_copy);
7416
1ffb22cf
DS
7417 array_ptr = super_copy->sys_chunk_array;
7418 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7419 cur_offset = 0;
0b86a832 7420
1ffb22cf
DS
7421 while (cur_offset < array_size) {
7422 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7423 len = sizeof(*disk_key);
7424 if (cur_offset + len > array_size)
7425 goto out_short_read;
7426
0b86a832
CM
7427 btrfs_disk_key_to_cpu(&key, disk_key);
7428
1ffb22cf
DS
7429 array_ptr += len;
7430 sb_array_offset += len;
7431 cur_offset += len;
0b86a832 7432
32ab3d1b
JT
7433 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7434 btrfs_err(fs_info,
7435 "unexpected item type %u in sys_array at offset %u",
7436 (u32)key.type, cur_offset);
7437 ret = -EIO;
7438 break;
7439 }
f5cdedd7 7440
32ab3d1b
JT
7441 chunk = (struct btrfs_chunk *)sb_array_offset;
7442 /*
7443 * At least one btrfs_chunk with one stripe must be present,
7444 * exact stripe count check comes afterwards
7445 */
7446 len = btrfs_chunk_item_size(1);
7447 if (cur_offset + len > array_size)
7448 goto out_short_read;
e06cd3dd 7449
32ab3d1b
JT
7450 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7451 if (!num_stripes) {
7452 btrfs_err(fs_info,
7453 "invalid number of stripes %u in sys_array at offset %u",
7454 num_stripes, cur_offset);
7455 ret = -EIO;
7456 break;
7457 }
e3540eab 7458
32ab3d1b
JT
7459 type = btrfs_chunk_type(sb, chunk);
7460 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7461 btrfs_err(fs_info,
32ab3d1b
JT
7462 "invalid chunk type %llu in sys_array at offset %u",
7463 type, cur_offset);
84eed90f
CM
7464 ret = -EIO;
7465 break;
0b86a832 7466 }
32ab3d1b
JT
7467
7468 len = btrfs_chunk_item_size(num_stripes);
7469 if (cur_offset + len > array_size)
7470 goto out_short_read;
7471
7472 ret = read_one_chunk(&key, sb, chunk);
7473 if (ret)
7474 break;
7475
1ffb22cf
DS
7476 array_ptr += len;
7477 sb_array_offset += len;
7478 cur_offset += len;
0b86a832 7479 }
d865177a 7480 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7481 free_extent_buffer_stale(sb);
84eed90f 7482 return ret;
e3540eab
DS
7483
7484out_short_read:
ab8d0fc4 7485 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7486 len, cur_offset);
d865177a 7487 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7488 free_extent_buffer_stale(sb);
e3540eab 7489 return -EIO;
0b86a832
CM
7490}
7491
21634a19
QW
7492/*
7493 * Check if all chunks in the fs are OK for read-write degraded mount
7494 *
6528b99d
AJ
7495 * If the @failing_dev is specified, it's accounted as missing.
7496 *
21634a19
QW
7497 * Return true if all chunks meet the minimal RW mount requirements.
7498 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7499 */
6528b99d
AJ
7500bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7501 struct btrfs_device *failing_dev)
21634a19 7502{
c8bf1b67 7503 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7504 struct extent_map *em;
7505 u64 next_start = 0;
7506 bool ret = true;
7507
c8bf1b67
DS
7508 read_lock(&map_tree->lock);
7509 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7510 read_unlock(&map_tree->lock);
21634a19
QW
7511 /* No chunk at all? Return false anyway */
7512 if (!em) {
7513 ret = false;
7514 goto out;
7515 }
7516 while (em) {
7517 struct map_lookup *map;
7518 int missing = 0;
7519 int max_tolerated;
7520 int i;
7521
7522 map = em->map_lookup;
7523 max_tolerated =
7524 btrfs_get_num_tolerated_disk_barrier_failures(
7525 map->type);
7526 for (i = 0; i < map->num_stripes; i++) {
7527 struct btrfs_device *dev = map->stripes[i].dev;
7528
e6e674bd
AJ
7529 if (!dev || !dev->bdev ||
7530 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7531 dev->last_flush_error)
7532 missing++;
6528b99d
AJ
7533 else if (failing_dev && failing_dev == dev)
7534 missing++;
21634a19
QW
7535 }
7536 if (missing > max_tolerated) {
6528b99d
AJ
7537 if (!failing_dev)
7538 btrfs_warn(fs_info,
52042d8e 7539 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7540 em->start, missing, max_tolerated);
7541 free_extent_map(em);
7542 ret = false;
7543 goto out;
7544 }
7545 next_start = extent_map_end(em);
7546 free_extent_map(em);
7547
c8bf1b67
DS
7548 read_lock(&map_tree->lock);
7549 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7550 (u64)(-1) - next_start);
c8bf1b67 7551 read_unlock(&map_tree->lock);
21634a19
QW
7552 }
7553out:
7554 return ret;
7555}
7556
d85327b1
DS
7557static void readahead_tree_node_children(struct extent_buffer *node)
7558{
7559 int i;
7560 const int nr_items = btrfs_header_nritems(node);
7561
bfb484d9
JB
7562 for (i = 0; i < nr_items; i++)
7563 btrfs_readahead_node_child(node, i);
d85327b1
DS
7564}
7565
5b4aacef 7566int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7567{
5b4aacef 7568 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7569 struct btrfs_path *path;
7570 struct extent_buffer *leaf;
7571 struct btrfs_key key;
7572 struct btrfs_key found_key;
7573 int ret;
7574 int slot;
99e3ecfc 7575 u64 total_dev = 0;
d85327b1 7576 u64 last_ra_node = 0;
0b86a832 7577
0b86a832
CM
7578 path = btrfs_alloc_path();
7579 if (!path)
7580 return -ENOMEM;
7581
3dd0f7a3
AJ
7582 /*
7583 * uuid_mutex is needed only if we are mounting a sprout FS
7584 * otherwise we don't need it.
7585 */
b367e47f 7586 mutex_lock(&uuid_mutex);
b367e47f 7587
48cfa61b
BB
7588 /*
7589 * It is possible for mount and umount to race in such a way that
7590 * we execute this code path, but open_fs_devices failed to clear
7591 * total_rw_bytes. We certainly want it cleared before reading the
7592 * device items, so clear it here.
7593 */
7594 fs_info->fs_devices->total_rw_bytes = 0;
7595
4d9380e0
FM
7596 /*
7597 * Lockdep complains about possible circular locking dependency between
7598 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7599 * used for freeze procection of a fs (struct super_block.s_writers),
7600 * which we take when starting a transaction, and extent buffers of the
7601 * chunk tree if we call read_one_dev() while holding a lock on an
7602 * extent buffer of the chunk tree. Since we are mounting the filesystem
7603 * and at this point there can't be any concurrent task modifying the
7604 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7605 */
7606 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7607 path->skip_locking = 1;
7608
395927a9
FDBM
7609 /*
7610 * Read all device items, and then all the chunk items. All
7611 * device items are found before any chunk item (their object id
7612 * is smaller than the lowest possible object id for a chunk
7613 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7614 */
7615 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7616 key.offset = 0;
7617 key.type = 0;
0b86a832 7618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7619 if (ret < 0)
7620 goto error;
d397712b 7621 while (1) {
d85327b1
DS
7622 struct extent_buffer *node;
7623
0b86a832
CM
7624 leaf = path->nodes[0];
7625 slot = path->slots[0];
7626 if (slot >= btrfs_header_nritems(leaf)) {
7627 ret = btrfs_next_leaf(root, path);
7628 if (ret == 0)
7629 continue;
7630 if (ret < 0)
7631 goto error;
7632 break;
7633 }
d85327b1
DS
7634 node = path->nodes[1];
7635 if (node) {
7636 if (last_ra_node != node->start) {
7637 readahead_tree_node_children(node);
7638 last_ra_node = node->start;
7639 }
7640 }
0b86a832 7641 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7642 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7643 struct btrfs_dev_item *dev_item;
7644 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7645 struct btrfs_dev_item);
17850759 7646 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7647 if (ret)
7648 goto error;
99e3ecfc 7649 total_dev++;
0b86a832
CM
7650 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7651 struct btrfs_chunk *chunk;
79bd3712
FM
7652
7653 /*
7654 * We are only called at mount time, so no need to take
7655 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7656 * we always lock first fs_info->chunk_mutex before
7657 * acquiring any locks on the chunk tree. This is a
7658 * requirement for chunk allocation, see the comment on
7659 * top of btrfs_chunk_alloc() for details.
7660 */
0b86a832 7661 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7662 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7663 if (ret)
7664 goto error;
0b86a832
CM
7665 }
7666 path->slots[0]++;
7667 }
99e3ecfc
LB
7668
7669 /*
7670 * After loading chunk tree, we've got all device information,
7671 * do another round of validation checks.
7672 */
0b246afa
JM
7673 if (total_dev != fs_info->fs_devices->total_devices) {
7674 btrfs_err(fs_info,
99e3ecfc 7675 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7676 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7677 total_dev);
7678 ret = -EINVAL;
7679 goto error;
7680 }
0b246afa
JM
7681 if (btrfs_super_total_bytes(fs_info->super_copy) <
7682 fs_info->fs_devices->total_rw_bytes) {
7683 btrfs_err(fs_info,
99e3ecfc 7684 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7685 btrfs_super_total_bytes(fs_info->super_copy),
7686 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7687 ret = -EINVAL;
7688 goto error;
7689 }
0b86a832
CM
7690 ret = 0;
7691error:
b367e47f
LZ
7692 mutex_unlock(&uuid_mutex);
7693
2b82032c 7694 btrfs_free_path(path);
0b86a832
CM
7695 return ret;
7696}
442a4f63 7697
cb517eab
MX
7698void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7699{
944d3f9f 7700 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7701 struct btrfs_device *device;
7702
944d3f9f
NB
7703 fs_devices->fs_info = fs_info;
7704
7705 mutex_lock(&fs_devices->device_list_mutex);
7706 list_for_each_entry(device, &fs_devices->devices, dev_list)
7707 device->fs_info = fs_info;
944d3f9f
NB
7708
7709 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7710 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7711 device->fs_info = fs_info;
29cc83f6 7712
944d3f9f 7713 seed_devs->fs_info = fs_info;
29cc83f6 7714 }
e17125b5 7715 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7716}
7717
1dc990df
DS
7718static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7719 const struct btrfs_dev_stats_item *ptr,
7720 int index)
7721{
7722 u64 val;
7723
7724 read_extent_buffer(eb, &val,
7725 offsetof(struct btrfs_dev_stats_item, values) +
7726 ((unsigned long)ptr) + (index * sizeof(u64)),
7727 sizeof(val));
7728 return val;
7729}
7730
7731static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7732 struct btrfs_dev_stats_item *ptr,
7733 int index, u64 val)
7734{
7735 write_extent_buffer(eb, &val,
7736 offsetof(struct btrfs_dev_stats_item, values) +
7737 ((unsigned long)ptr) + (index * sizeof(u64)),
7738 sizeof(val));
7739}
7740
92e26df4
JB
7741static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7742 struct btrfs_path *path)
733f4fbb 7743{
124604eb 7744 struct btrfs_dev_stats_item *ptr;
733f4fbb 7745 struct extent_buffer *eb;
124604eb
JB
7746 struct btrfs_key key;
7747 int item_size;
7748 int i, ret, slot;
7749
82d62d06
JB
7750 if (!device->fs_info->dev_root)
7751 return 0;
7752
124604eb
JB
7753 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7754 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7755 key.offset = device->devid;
7756 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7757 if (ret) {
7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759 btrfs_dev_stat_set(device, i, 0);
7760 device->dev_stats_valid = 1;
7761 btrfs_release_path(path);
92e26df4 7762 return ret < 0 ? ret : 0;
124604eb
JB
7763 }
7764 slot = path->slots[0];
7765 eb = path->nodes[0];
3212fa14 7766 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7767
7768 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7769
7770 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7771 if (item_size >= (1 + i) * sizeof(__le64))
7772 btrfs_dev_stat_set(device, i,
7773 btrfs_dev_stats_value(eb, ptr, i));
7774 else
7775 btrfs_dev_stat_set(device, i, 0);
7776 }
7777
7778 device->dev_stats_valid = 1;
7779 btrfs_dev_stat_print_on_load(device);
7780 btrfs_release_path(path);
92e26df4
JB
7781
7782 return 0;
124604eb
JB
7783}
7784
7785int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7786{
7787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7788 struct btrfs_device *device;
7789 struct btrfs_path *path = NULL;
92e26df4 7790 int ret = 0;
733f4fbb
SB
7791
7792 path = btrfs_alloc_path();
3b80a984
AJ
7793 if (!path)
7794 return -ENOMEM;
733f4fbb
SB
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7797 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7798 ret = btrfs_device_init_dev_stats(device, path);
7799 if (ret)
7800 goto out;
7801 }
124604eb 7802 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7803 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7804 ret = btrfs_device_init_dev_stats(device, path);
7805 if (ret)
7806 goto out;
7807 }
733f4fbb 7808 }
92e26df4 7809out:
733f4fbb
SB
7810 mutex_unlock(&fs_devices->device_list_mutex);
7811
733f4fbb 7812 btrfs_free_path(path);
92e26df4 7813 return ret;
733f4fbb
SB
7814}
7815
7816static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7817 struct btrfs_device *device)
7818{
5495f195 7819 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7820 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7821 struct btrfs_path *path;
7822 struct btrfs_key key;
7823 struct extent_buffer *eb;
7824 struct btrfs_dev_stats_item *ptr;
7825 int ret;
7826 int i;
7827
242e2956
DS
7828 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7829 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7830 key.offset = device->devid;
7831
7832 path = btrfs_alloc_path();
fa252992
DS
7833 if (!path)
7834 return -ENOMEM;
733f4fbb
SB
7835 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7836 if (ret < 0) {
0b246afa 7837 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7838 "error %d while searching for dev_stats item for device %s",
606686ee 7839 ret, rcu_str_deref(device->name));
733f4fbb
SB
7840 goto out;
7841 }
7842
7843 if (ret == 0 &&
3212fa14 7844 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7845 /* need to delete old one and insert a new one */
7846 ret = btrfs_del_item(trans, dev_root, path);
7847 if (ret != 0) {
0b246afa 7848 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7849 "delete too small dev_stats item for device %s failed %d",
606686ee 7850 rcu_str_deref(device->name), ret);
733f4fbb
SB
7851 goto out;
7852 }
7853 ret = 1;
7854 }
7855
7856 if (ret == 1) {
7857 /* need to insert a new item */
7858 btrfs_release_path(path);
7859 ret = btrfs_insert_empty_item(trans, dev_root, path,
7860 &key, sizeof(*ptr));
7861 if (ret < 0) {
0b246afa 7862 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7863 "insert dev_stats item for device %s failed %d",
7864 rcu_str_deref(device->name), ret);
733f4fbb
SB
7865 goto out;
7866 }
7867 }
7868
7869 eb = path->nodes[0];
7870 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7871 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7872 btrfs_set_dev_stats_value(eb, ptr, i,
7873 btrfs_dev_stat_read(device, i));
7874 btrfs_mark_buffer_dirty(eb);
7875
7876out:
7877 btrfs_free_path(path);
7878 return ret;
7879}
7880
7881/*
7882 * called from commit_transaction. Writes all changed device stats to disk.
7883 */
196c9d8d 7884int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7885{
196c9d8d 7886 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7888 struct btrfs_device *device;
addc3fa7 7889 int stats_cnt;
733f4fbb
SB
7890 int ret = 0;
7891
7892 mutex_lock(&fs_devices->device_list_mutex);
7893 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7894 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7895 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7896 continue;
7897
9deae968
NB
7898
7899 /*
7900 * There is a LOAD-LOAD control dependency between the value of
7901 * dev_stats_ccnt and updating the on-disk values which requires
7902 * reading the in-memory counters. Such control dependencies
7903 * require explicit read memory barriers.
7904 *
7905 * This memory barriers pairs with smp_mb__before_atomic in
7906 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7907 * barrier implied by atomic_xchg in
7908 * btrfs_dev_stats_read_and_reset
7909 */
7910 smp_rmb();
7911
5495f195 7912 ret = update_dev_stat_item(trans, device);
733f4fbb 7913 if (!ret)
addc3fa7 7914 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7915 }
7916 mutex_unlock(&fs_devices->device_list_mutex);
7917
7918 return ret;
7919}
7920
442a4f63
SB
7921void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7922{
7923 btrfs_dev_stat_inc(dev, index);
7924 btrfs_dev_stat_print_on_error(dev);
7925}
7926
48a3b636 7927static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7928{
733f4fbb
SB
7929 if (!dev->dev_stats_valid)
7930 return;
fb456252 7931 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7932 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7933 rcu_str_deref(dev->name),
442a4f63
SB
7934 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7935 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7936 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7937 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7938 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7939}
c11d2c23 7940
733f4fbb
SB
7941static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7942{
a98cdb85
SB
7943 int i;
7944
7945 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946 if (btrfs_dev_stat_read(dev, i) != 0)
7947 break;
7948 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7949 return; /* all values == 0, suppress message */
7950
fb456252 7951 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7952 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7953 rcu_str_deref(dev->name),
733f4fbb
SB
7954 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7955 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7956 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7957 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7958 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7959}
7960
2ff7e61e 7961int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7962 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7963{
562d7b15 7964 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7965 struct btrfs_device *dev;
0b246afa 7966 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7967 int i;
7968
7969 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7970 args.devid = stats->devid;
7971 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7972 mutex_unlock(&fs_devices->device_list_mutex);
7973
7974 if (!dev) {
0b246afa 7975 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7976 return -ENODEV;
733f4fbb 7977 } else if (!dev->dev_stats_valid) {
0b246afa 7978 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7979 return -ENODEV;
b27f7c0c 7980 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7981 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7982 if (stats->nr_items > i)
7983 stats->values[i] =
7984 btrfs_dev_stat_read_and_reset(dev, i);
7985 else
4e411a7d 7986 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7987 }
a69976bc
AJ
7988 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7989 current->comm, task_pid_nr(current));
c11d2c23
SB
7990 } else {
7991 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7992 if (stats->nr_items > i)
7993 stats->values[i] = btrfs_dev_stat_read(dev, i);
7994 }
7995 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7996 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7997 return 0;
7998}
a8a6dab7 7999
935e5cc9 8000/*
bbbf7243
NB
8001 * Update the size and bytes used for each device where it changed. This is
8002 * delayed since we would otherwise get errors while writing out the
8003 * superblocks.
8004 *
8005 * Must be invoked during transaction commit.
935e5cc9 8006 */
bbbf7243 8007void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 8008{
935e5cc9
MX
8009 struct btrfs_device *curr, *next;
8010
bbbf7243 8011 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 8012
bbbf7243 8013 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
8014 return;
8015
bbbf7243
NB
8016 /*
8017 * We don't need the device_list_mutex here. This list is owned by the
8018 * transaction and the transaction must complete before the device is
8019 * released.
8020 */
8021 mutex_lock(&trans->fs_info->chunk_mutex);
8022 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8023 post_commit_list) {
8024 list_del_init(&curr->post_commit_list);
8025 curr->commit_total_bytes = curr->disk_total_bytes;
8026 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 8027 }
bbbf7243 8028 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 8029}
5a13f430 8030
46df06b8
DS
8031/*
8032 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8033 */
8034int btrfs_bg_type_to_factor(u64 flags)
8035{
44b28ada
DS
8036 const int index = btrfs_bg_flags_to_raid_index(flags);
8037
8038 return btrfs_raid_array[index].ncopies;
46df06b8 8039}
cf90d884
QW
8040
8041
cf90d884
QW
8042
8043static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8044 u64 chunk_offset, u64 devid,
8045 u64 physical_offset, u64 physical_len)
8046{
562d7b15 8047 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 8048 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8049 struct extent_map *em;
8050 struct map_lookup *map;
05a37c48 8051 struct btrfs_device *dev;
cf90d884
QW
8052 u64 stripe_len;
8053 bool found = false;
8054 int ret = 0;
8055 int i;
8056
8057 read_lock(&em_tree->lock);
8058 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8059 read_unlock(&em_tree->lock);
8060
8061 if (!em) {
8062 btrfs_err(fs_info,
8063"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8064 physical_offset, devid);
8065 ret = -EUCLEAN;
8066 goto out;
8067 }
8068
8069 map = em->map_lookup;
8070 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8071 if (physical_len != stripe_len) {
8072 btrfs_err(fs_info,
8073"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8074 physical_offset, devid, em->start, physical_len,
8075 stripe_len);
8076 ret = -EUCLEAN;
8077 goto out;
8078 }
8079
8080 for (i = 0; i < map->num_stripes; i++) {
8081 if (map->stripes[i].dev->devid == devid &&
8082 map->stripes[i].physical == physical_offset) {
8083 found = true;
8084 if (map->verified_stripes >= map->num_stripes) {
8085 btrfs_err(fs_info,
8086 "too many dev extents for chunk %llu found",
8087 em->start);
8088 ret = -EUCLEAN;
8089 goto out;
8090 }
8091 map->verified_stripes++;
8092 break;
8093 }
8094 }
8095 if (!found) {
8096 btrfs_err(fs_info,
8097 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8098 physical_offset, devid);
8099 ret = -EUCLEAN;
8100 }
05a37c48 8101
1a9fd417 8102 /* Make sure no dev extent is beyond device boundary */
562d7b15 8103 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
8104 if (!dev) {
8105 btrfs_err(fs_info, "failed to find devid %llu", devid);
8106 ret = -EUCLEAN;
8107 goto out;
8108 }
1b3922a8 8109
05a37c48
QW
8110 if (physical_offset + physical_len > dev->disk_total_bytes) {
8111 btrfs_err(fs_info,
8112"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8113 devid, physical_offset, physical_len,
8114 dev->disk_total_bytes);
8115 ret = -EUCLEAN;
8116 goto out;
8117 }
381a696e
NA
8118
8119 if (dev->zone_info) {
8120 u64 zone_size = dev->zone_info->zone_size;
8121
8122 if (!IS_ALIGNED(physical_offset, zone_size) ||
8123 !IS_ALIGNED(physical_len, zone_size)) {
8124 btrfs_err(fs_info,
8125"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8126 devid, physical_offset, physical_len);
8127 ret = -EUCLEAN;
8128 goto out;
8129 }
8130 }
8131
cf90d884
QW
8132out:
8133 free_extent_map(em);
8134 return ret;
8135}
8136
8137static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8138{
c8bf1b67 8139 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8140 struct extent_map *em;
8141 struct rb_node *node;
8142 int ret = 0;
8143
8144 read_lock(&em_tree->lock);
07e1ce09 8145 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
8146 em = rb_entry(node, struct extent_map, rb_node);
8147 if (em->map_lookup->num_stripes !=
8148 em->map_lookup->verified_stripes) {
8149 btrfs_err(fs_info,
8150 "chunk %llu has missing dev extent, have %d expect %d",
8151 em->start, em->map_lookup->verified_stripes,
8152 em->map_lookup->num_stripes);
8153 ret = -EUCLEAN;
8154 goto out;
8155 }
8156 }
8157out:
8158 read_unlock(&em_tree->lock);
8159 return ret;
8160}
8161
8162/*
8163 * Ensure that all dev extents are mapped to correct chunk, otherwise
8164 * later chunk allocation/free would cause unexpected behavior.
8165 *
8166 * NOTE: This will iterate through the whole device tree, which should be of
8167 * the same size level as the chunk tree. This slightly increases mount time.
8168 */
8169int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8170{
8171 struct btrfs_path *path;
8172 struct btrfs_root *root = fs_info->dev_root;
8173 struct btrfs_key key;
5eb19381
QW
8174 u64 prev_devid = 0;
8175 u64 prev_dev_ext_end = 0;
cf90d884
QW
8176 int ret = 0;
8177
42437a63
JB
8178 /*
8179 * We don't have a dev_root because we mounted with ignorebadroots and
8180 * failed to load the root, so we want to skip the verification in this
8181 * case for sure.
8182 *
8183 * However if the dev root is fine, but the tree itself is corrupted
8184 * we'd still fail to mount. This verification is only to make sure
8185 * writes can happen safely, so instead just bypass this check
8186 * completely in the case of IGNOREBADROOTS.
8187 */
8188 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8189 return 0;
8190
cf90d884
QW
8191 key.objectid = 1;
8192 key.type = BTRFS_DEV_EXTENT_KEY;
8193 key.offset = 0;
8194
8195 path = btrfs_alloc_path();
8196 if (!path)
8197 return -ENOMEM;
8198
8199 path->reada = READA_FORWARD;
8200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8201 if (ret < 0)
8202 goto out;
8203
8204 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8205 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8206 if (ret < 0)
8207 goto out;
8208 /* No dev extents at all? Not good */
8209 if (ret > 0) {
8210 ret = -EUCLEAN;
8211 goto out;
8212 }
8213 }
8214 while (1) {
8215 struct extent_buffer *leaf = path->nodes[0];
8216 struct btrfs_dev_extent *dext;
8217 int slot = path->slots[0];
8218 u64 chunk_offset;
8219 u64 physical_offset;
8220 u64 physical_len;
8221 u64 devid;
8222
8223 btrfs_item_key_to_cpu(leaf, &key, slot);
8224 if (key.type != BTRFS_DEV_EXTENT_KEY)
8225 break;
8226 devid = key.objectid;
8227 physical_offset = key.offset;
8228
8229 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8230 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8231 physical_len = btrfs_dev_extent_length(leaf, dext);
8232
5eb19381
QW
8233 /* Check if this dev extent overlaps with the previous one */
8234 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8235 btrfs_err(fs_info,
8236"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8237 devid, physical_offset, prev_dev_ext_end);
8238 ret = -EUCLEAN;
8239 goto out;
8240 }
8241
cf90d884
QW
8242 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8243 physical_offset, physical_len);
8244 if (ret < 0)
8245 goto out;
5eb19381
QW
8246 prev_devid = devid;
8247 prev_dev_ext_end = physical_offset + physical_len;
8248
cf90d884
QW
8249 ret = btrfs_next_item(root, path);
8250 if (ret < 0)
8251 goto out;
8252 if (ret > 0) {
8253 ret = 0;
8254 break;
8255 }
8256 }
8257
8258 /* Ensure all chunks have corresponding dev extents */
8259 ret = verify_chunk_dev_extent_mapping(fs_info);
8260out:
8261 btrfs_free_path(path);
8262 return ret;
8263}
eede2bf3
OS
8264
8265/*
8266 * Check whether the given block group or device is pinned by any inode being
8267 * used as a swapfile.
8268 */
8269bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8270{
8271 struct btrfs_swapfile_pin *sp;
8272 struct rb_node *node;
8273
8274 spin_lock(&fs_info->swapfile_pins_lock);
8275 node = fs_info->swapfile_pins.rb_node;
8276 while (node) {
8277 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8278 if (ptr < sp->ptr)
8279 node = node->rb_left;
8280 else if (ptr > sp->ptr)
8281 node = node->rb_right;
8282 else
8283 break;
8284 }
8285 spin_unlock(&fs_info->swapfile_pins_lock);
8286 return node != NULL;
8287}
f7ef5287
NA
8288
8289static int relocating_repair_kthread(void *data)
8290{
8291 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8292 struct btrfs_fs_info *fs_info = cache->fs_info;
8293 u64 target;
8294 int ret = 0;
8295
8296 target = cache->start;
8297 btrfs_put_block_group(cache);
8298
8299 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8300 btrfs_info(fs_info,
8301 "zoned: skip relocating block group %llu to repair: EBUSY",
8302 target);
8303 return -EBUSY;
8304 }
8305
f3372065 8306 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8307
8308 /* Ensure block group still exists */
8309 cache = btrfs_lookup_block_group(fs_info, target);
8310 if (!cache)
8311 goto out;
8312
8313 if (!cache->relocating_repair)
8314 goto out;
8315
8316 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8317 if (ret < 0)
8318 goto out;
8319
8320 btrfs_info(fs_info,
8321 "zoned: relocating block group %llu to repair IO failure",
8322 target);
8323 ret = btrfs_relocate_chunk(fs_info, target);
8324
8325out:
8326 if (cache)
8327 btrfs_put_block_group(cache);
f3372065 8328 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8329 btrfs_exclop_finish(fs_info);
8330
8331 return ret;
8332}
8333
8334int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8335{
8336 struct btrfs_block_group *cache;
8337
8338 /* Do not attempt to repair in degraded state */
8339 if (btrfs_test_opt(fs_info, DEGRADED))
8340 return 0;
8341
8342 cache = btrfs_lookup_block_group(fs_info, logical);
8343 if (!cache)
8344 return 0;
8345
8346 spin_lock(&cache->lock);
8347 if (cache->relocating_repair) {
8348 spin_unlock(&cache->lock);
8349 btrfs_put_block_group(cache);
8350 return 0;
8351 }
8352 cache->relocating_repair = 1;
8353 spin_unlock(&cache->lock);
8354
8355 kthread_run(relocating_repair_kthread, cache,
8356 "btrfs-relocating-repair");
8357
8358 return 0;
8359}