Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
593060d7 28#include <asm/div64.h>
4b4e25f2 29#include "compat.h"
0b86a832
CM
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
8b712842 36#include "async-thread.h"
21adbd5c 37#include "check-integrity.h"
606686ee 38#include "rcu-string.h"
0b86a832 39
2b82032c
YZ
40static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 46
8a4b83cc
CM
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
7d9eb12c
CM
50static void lock_chunks(struct btrfs_root *root)
51{
7d9eb12c
CM
52 mutex_lock(&root->fs_info->chunk_mutex);
53}
54
55static void unlock_chunks(struct btrfs_root *root)
56{
7d9eb12c
CM
57 mutex_unlock(&root->fs_info->chunk_mutex);
58}
59
e4404d6e
YZ
60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61{
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
606686ee 68 rcu_string_free(device->name);
e4404d6e
YZ
69 kfree(device);
70 }
71 kfree(fs_devices);
72}
73
143bede5 74void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
75{
76 struct btrfs_fs_devices *fs_devices;
8a4b83cc 77
2b82032c
YZ
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
e4404d6e 82 free_fs_devices(fs_devices);
8a4b83cc 83 }
8a4b83cc
CM
84}
85
a1b32a59
CM
86static noinline struct btrfs_device *__find_device(struct list_head *head,
87 u64 devid, u8 *uuid)
8a4b83cc
CM
88{
89 struct btrfs_device *dev;
8a4b83cc 90
c6e30871 91 list_for_each_entry(dev, head, dev_list) {
a443755f 92 if (dev->devid == devid &&
8f18cf13 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 94 return dev;
a443755f 95 }
8a4b83cc
CM
96 }
97 return NULL;
98}
99
a1b32a59 100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 101{
8a4b83cc
CM
102 struct btrfs_fs_devices *fs_devices;
103
c6e30871 104 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 return fs_devices;
107 }
108 return NULL;
109}
110
ffbd517d
CM
111static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 struct bio *head, struct bio *tail)
113{
114
115 struct bio *old_head;
116
117 old_head = pending_bios->head;
118 pending_bios->head = head;
119 if (pending_bios->tail)
120 tail->bi_next = old_head;
121 else
122 pending_bios->tail = tail;
123}
124
8b712842
CM
125/*
126 * we try to collect pending bios for a device so we don't get a large
127 * number of procs sending bios down to the same device. This greatly
128 * improves the schedulers ability to collect and merge the bios.
129 *
130 * But, it also turns into a long list of bios to process and that is sure
131 * to eventually make the worker thread block. The solution here is to
132 * make some progress and then put this work struct back at the end of
133 * the list if the block device is congested. This way, multiple devices
134 * can make progress from a single worker thread.
135 */
143bede5 136static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
137{
138 struct bio *pending;
139 struct backing_dev_info *bdi;
b64a2851 140 struct btrfs_fs_info *fs_info;
ffbd517d 141 struct btrfs_pending_bios *pending_bios;
8b712842
CM
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
ffbd517d 145 unsigned long num_run;
d644d8a1 146 unsigned long batch_run = 0;
b64a2851 147 unsigned long limit;
b765ead5 148 unsigned long last_waited = 0;
d84275c9 149 int force_reg = 0;
0e588859 150 int sync_pending = 0;
211588ad
CM
151 struct blk_plug plug;
152
153 /*
154 * this function runs all the bios we've collected for
155 * a particular device. We don't want to wander off to
156 * another device without first sending all of these down.
157 * So, setup a plug here and finish it off before we return
158 */
159 blk_start_plug(&plug);
8b712842 160
bedf762b 161 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
162 fs_info = device->dev_root->fs_info;
163 limit = btrfs_async_submit_limit(fs_info);
164 limit = limit * 2 / 3;
165
8b712842
CM
166loop:
167 spin_lock(&device->io_lock);
168
a6837051 169loop_lock:
d84275c9 170 num_run = 0;
ffbd517d 171
8b712842
CM
172 /* take all the bios off the list at once and process them
173 * later on (without the lock held). But, remember the
174 * tail and other pointers so the bios can be properly reinserted
175 * into the list if we hit congestion
176 */
d84275c9 177 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 178 pending_bios = &device->pending_sync_bios;
d84275c9
CM
179 force_reg = 1;
180 } else {
ffbd517d 181 pending_bios = &device->pending_bios;
d84275c9
CM
182 force_reg = 0;
183 }
ffbd517d
CM
184
185 pending = pending_bios->head;
186 tail = pending_bios->tail;
8b712842 187 WARN_ON(pending && !tail);
8b712842
CM
188
189 /*
190 * if pending was null this time around, no bios need processing
191 * at all and we can stop. Otherwise it'll loop back up again
192 * and do an additional check so no bios are missed.
193 *
194 * device->running_pending is used to synchronize with the
195 * schedule_bio code.
196 */
ffbd517d
CM
197 if (device->pending_sync_bios.head == NULL &&
198 device->pending_bios.head == NULL) {
8b712842
CM
199 again = 0;
200 device->running_pending = 0;
ffbd517d
CM
201 } else {
202 again = 1;
203 device->running_pending = 1;
8b712842 204 }
ffbd517d
CM
205
206 pending_bios->head = NULL;
207 pending_bios->tail = NULL;
208
8b712842
CM
209 spin_unlock(&device->io_lock);
210
d397712b 211 while (pending) {
ffbd517d
CM
212
213 rmb();
d84275c9
CM
214 /* we want to work on both lists, but do more bios on the
215 * sync list than the regular list
216 */
217 if ((num_run > 32 &&
218 pending_bios != &device->pending_sync_bios &&
219 device->pending_sync_bios.head) ||
220 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 device->pending_bios.head)) {
ffbd517d
CM
222 spin_lock(&device->io_lock);
223 requeue_list(pending_bios, pending, tail);
224 goto loop_lock;
225 }
226
8b712842
CM
227 cur = pending;
228 pending = pending->bi_next;
229 cur->bi_next = NULL;
b64a2851 230
66657b31 231 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
232 waitqueue_active(&fs_info->async_submit_wait))
233 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
234
235 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 236
2ab1ba68
CM
237 /*
238 * if we're doing the sync list, record that our
239 * plug has some sync requests on it
240 *
241 * If we're doing the regular list and there are
242 * sync requests sitting around, unplug before
243 * we add more
244 */
245 if (pending_bios == &device->pending_sync_bios) {
246 sync_pending = 1;
247 } else if (sync_pending) {
248 blk_finish_plug(&plug);
249 blk_start_plug(&plug);
250 sync_pending = 0;
251 }
252
21adbd5c 253 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
254 num_run++;
255 batch_run++;
7eaceacc 256 if (need_resched())
ffbd517d 257 cond_resched();
8b712842
CM
258
259 /*
260 * we made progress, there is more work to do and the bdi
261 * is now congested. Back off and let other work structs
262 * run instead
263 */
57fd5a5f 264 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 265 fs_info->fs_devices->open_devices > 1) {
b765ead5 266 struct io_context *ioc;
8b712842 267
b765ead5
CM
268 ioc = current->io_context;
269
270 /*
271 * the main goal here is that we don't want to
272 * block if we're going to be able to submit
273 * more requests without blocking.
274 *
275 * This code does two great things, it pokes into
276 * the elevator code from a filesystem _and_
277 * it makes assumptions about how batching works.
278 */
279 if (ioc && ioc->nr_batch_requests > 0 &&
280 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
281 (last_waited == 0 ||
282 ioc->last_waited == last_waited)) {
283 /*
284 * we want to go through our batch of
285 * requests and stop. So, we copy out
286 * the ioc->last_waited time and test
287 * against it before looping
288 */
289 last_waited = ioc->last_waited;
7eaceacc 290 if (need_resched())
ffbd517d 291 cond_resched();
b765ead5
CM
292 continue;
293 }
8b712842 294 spin_lock(&device->io_lock);
ffbd517d 295 requeue_list(pending_bios, pending, tail);
a6837051 296 device->running_pending = 1;
8b712842
CM
297
298 spin_unlock(&device->io_lock);
299 btrfs_requeue_work(&device->work);
300 goto done;
301 }
d85c8a6f
CM
302 /* unplug every 64 requests just for good measure */
303 if (batch_run % 64 == 0) {
304 blk_finish_plug(&plug);
305 blk_start_plug(&plug);
306 sync_pending = 0;
307 }
8b712842 308 }
ffbd517d 309
51684082
CM
310 cond_resched();
311 if (again)
312 goto loop;
313
314 spin_lock(&device->io_lock);
315 if (device->pending_bios.head || device->pending_sync_bios.head)
316 goto loop_lock;
317 spin_unlock(&device->io_lock);
318
8b712842 319done:
211588ad 320 blk_finish_plug(&plug);
8b712842
CM
321}
322
b2950863 323static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
324{
325 struct btrfs_device *device;
326
327 device = container_of(work, struct btrfs_device, work);
328 run_scheduled_bios(device);
329}
330
a1b32a59 331static noinline int device_list_add(const char *path,
8a4b83cc
CM
332 struct btrfs_super_block *disk_super,
333 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334{
335 struct btrfs_device *device;
336 struct btrfs_fs_devices *fs_devices;
606686ee 337 struct rcu_string *name;
8a4b83cc
CM
338 u64 found_transid = btrfs_super_generation(disk_super);
339
340 fs_devices = find_fsid(disk_super->fsid);
341 if (!fs_devices) {
515dc322 342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
343 if (!fs_devices)
344 return -ENOMEM;
345 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 346 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
347 list_add(&fs_devices->list, &fs_uuids);
348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349 fs_devices->latest_devid = devid;
350 fs_devices->latest_trans = found_transid;
e5e9a520 351 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
352 device = NULL;
353 } else {
a443755f
CM
354 device = __find_device(&fs_devices->devices, devid,
355 disk_super->dev_item.uuid);
8a4b83cc
CM
356 }
357 if (!device) {
2b82032c
YZ
358 if (fs_devices->opened)
359 return -EBUSY;
360
8a4b83cc
CM
361 device = kzalloc(sizeof(*device), GFP_NOFS);
362 if (!device) {
363 /* we can safely leave the fs_devices entry around */
364 return -ENOMEM;
365 }
366 device->devid = devid;
733f4fbb 367 device->dev_stats_valid = 0;
8b712842 368 device->work.func = pending_bios_fn;
a443755f
CM
369 memcpy(device->uuid, disk_super->dev_item.uuid,
370 BTRFS_UUID_SIZE);
b248a415 371 spin_lock_init(&device->io_lock);
606686ee
JB
372
373 name = rcu_string_strdup(path, GFP_NOFS);
374 if (!name) {
8a4b83cc
CM
375 kfree(device);
376 return -ENOMEM;
377 }
606686ee 378 rcu_assign_pointer(device->name, name);
2b82032c 379 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 380
90519d66
AJ
381 /* init readahead state */
382 spin_lock_init(&device->reada_lock);
383 device->reada_curr_zone = NULL;
384 atomic_set(&device->reada_in_flight, 0);
385 device->reada_next = 0;
386 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
387 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
388
e5e9a520 389 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 390 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
391 mutex_unlock(&fs_devices->device_list_mutex);
392
2b82032c 393 device->fs_devices = fs_devices;
8a4b83cc 394 fs_devices->num_devices++;
606686ee
JB
395 } else if (!device->name || strcmp(device->name->str, path)) {
396 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
397 if (!name)
398 return -ENOMEM;
606686ee
JB
399 rcu_string_free(device->name);
400 rcu_assign_pointer(device->name, name);
cd02dca5
CM
401 if (device->missing) {
402 fs_devices->missing_devices--;
403 device->missing = 0;
404 }
8a4b83cc
CM
405 }
406
407 if (found_transid > fs_devices->latest_trans) {
408 fs_devices->latest_devid = devid;
409 fs_devices->latest_trans = found_transid;
410 }
8a4b83cc
CM
411 *fs_devices_ret = fs_devices;
412 return 0;
413}
414
e4404d6e
YZ
415static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
416{
417 struct btrfs_fs_devices *fs_devices;
418 struct btrfs_device *device;
419 struct btrfs_device *orig_dev;
420
421 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
422 if (!fs_devices)
423 return ERR_PTR(-ENOMEM);
424
425 INIT_LIST_HEAD(&fs_devices->devices);
426 INIT_LIST_HEAD(&fs_devices->alloc_list);
427 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 428 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
429 fs_devices->latest_devid = orig->latest_devid;
430 fs_devices->latest_trans = orig->latest_trans;
02db0844 431 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433
46224705 434 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 435 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
436 struct rcu_string *name;
437
e4404d6e
YZ
438 device = kzalloc(sizeof(*device), GFP_NOFS);
439 if (!device)
440 goto error;
441
606686ee
JB
442 /*
443 * This is ok to do without rcu read locked because we hold the
444 * uuid mutex so nothing we touch in here is going to disappear.
445 */
446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447 if (!name) {
fd2696f3 448 kfree(device);
e4404d6e 449 goto error;
fd2696f3 450 }
606686ee 451 rcu_assign_pointer(device->name, name);
e4404d6e
YZ
452
453 device->devid = orig_dev->devid;
454 device->work.func = pending_bios_fn;
455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
456 spin_lock_init(&device->io_lock);
457 INIT_LIST_HEAD(&device->dev_list);
458 INIT_LIST_HEAD(&device->dev_alloc_list);
459
460 list_add(&device->dev_list, &fs_devices->devices);
461 device->fs_devices = fs_devices;
462 fs_devices->num_devices++;
463 }
464 return fs_devices;
465error:
466 free_fs_devices(fs_devices);
467 return ERR_PTR(-ENOMEM);
468}
469
143bede5 470void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
dfe25020 471{
c6e30871 472 struct btrfs_device *device, *next;
dfe25020 473
a6b0d5c8
CM
474 struct block_device *latest_bdev = NULL;
475 u64 latest_devid = 0;
476 u64 latest_transid = 0;
477
dfe25020
CM
478 mutex_lock(&uuid_mutex);
479again:
46224705 480 /* This is the initialized path, it is safe to release the devices. */
c6e30871 481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
482 if (device->in_fs_metadata) {
483 if (!latest_transid ||
484 device->generation > latest_transid) {
485 latest_devid = device->devid;
486 latest_transid = device->generation;
487 latest_bdev = device->bdev;
488 }
2b82032c 489 continue;
a6b0d5c8 490 }
2b82032c
YZ
491
492 if (device->bdev) {
d4d77629 493 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
494 device->bdev = NULL;
495 fs_devices->open_devices--;
496 }
497 if (device->writeable) {
498 list_del_init(&device->dev_alloc_list);
499 device->writeable = 0;
500 fs_devices->rw_devices--;
501 }
e4404d6e
YZ
502 list_del_init(&device->dev_list);
503 fs_devices->num_devices--;
606686ee 504 rcu_string_free(device->name);
e4404d6e 505 kfree(device);
dfe25020 506 }
2b82032c
YZ
507
508 if (fs_devices->seed) {
509 fs_devices = fs_devices->seed;
2b82032c
YZ
510 goto again;
511 }
512
a6b0d5c8
CM
513 fs_devices->latest_bdev = latest_bdev;
514 fs_devices->latest_devid = latest_devid;
515 fs_devices->latest_trans = latest_transid;
516
dfe25020 517 mutex_unlock(&uuid_mutex);
dfe25020 518}
a0af469b 519
1f78160c
XG
520static void __free_device(struct work_struct *work)
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, rcu_work);
525
526 if (device->bdev)
527 blkdev_put(device->bdev, device->mode);
528
606686ee 529 rcu_string_free(device->name);
1f78160c
XG
530 kfree(device);
531}
532
533static void free_device(struct rcu_head *head)
534{
535 struct btrfs_device *device;
536
537 device = container_of(head, struct btrfs_device, rcu);
538
539 INIT_WORK(&device->rcu_work, __free_device);
540 schedule_work(&device->rcu_work);
541}
542
2b82032c 543static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 544{
8a4b83cc 545 struct btrfs_device *device;
e4404d6e 546
2b82032c
YZ
547 if (--fs_devices->opened > 0)
548 return 0;
8a4b83cc 549
c9513edb 550 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 551 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 552 struct btrfs_device *new_device;
606686ee 553 struct rcu_string *name;
1f78160c
XG
554
555 if (device->bdev)
a0af469b 556 fs_devices->open_devices--;
1f78160c 557
2b82032c
YZ
558 if (device->writeable) {
559 list_del_init(&device->dev_alloc_list);
560 fs_devices->rw_devices--;
561 }
562
d5e2003c
JB
563 if (device->can_discard)
564 fs_devices->num_can_discard--;
565
1f78160c 566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 567 BUG_ON(!new_device); /* -ENOMEM */
1f78160c 568 memcpy(new_device, device, sizeof(*new_device));
606686ee
JB
569
570 /* Safe because we are under uuid_mutex */
99f5944b
JB
571 if (device->name) {
572 name = rcu_string_strdup(device->name->str, GFP_NOFS);
573 BUG_ON(device->name && !name); /* -ENOMEM */
574 rcu_assign_pointer(new_device->name, name);
575 }
1f78160c
XG
576 new_device->bdev = NULL;
577 new_device->writeable = 0;
578 new_device->in_fs_metadata = 0;
d5e2003c 579 new_device->can_discard = 0;
1f78160c
XG
580 list_replace_rcu(&device->dev_list, &new_device->dev_list);
581
582 call_rcu(&device->rcu, free_device);
8a4b83cc 583 }
c9513edb
XG
584 mutex_unlock(&fs_devices->device_list_mutex);
585
e4404d6e
YZ
586 WARN_ON(fs_devices->open_devices);
587 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
588 fs_devices->opened = 0;
589 fs_devices->seeding = 0;
2b82032c 590
8a4b83cc
CM
591 return 0;
592}
593
2b82032c
YZ
594int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
595{
e4404d6e 596 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
597 int ret;
598
599 mutex_lock(&uuid_mutex);
600 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
601 if (!fs_devices->opened) {
602 seed_devices = fs_devices->seed;
603 fs_devices->seed = NULL;
604 }
2b82032c 605 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
606
607 while (seed_devices) {
608 fs_devices = seed_devices;
609 seed_devices = fs_devices->seed;
610 __btrfs_close_devices(fs_devices);
611 free_fs_devices(fs_devices);
612 }
2b82032c
YZ
613 return ret;
614}
615
e4404d6e
YZ
616static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
617 fmode_t flags, void *holder)
8a4b83cc 618{
d5e2003c 619 struct request_queue *q;
8a4b83cc
CM
620 struct block_device *bdev;
621 struct list_head *head = &fs_devices->devices;
8a4b83cc 622 struct btrfs_device *device;
a0af469b
CM
623 struct block_device *latest_bdev = NULL;
624 struct buffer_head *bh;
625 struct btrfs_super_block *disk_super;
626 u64 latest_devid = 0;
627 u64 latest_transid = 0;
a0af469b 628 u64 devid;
2b82032c 629 int seeding = 1;
a0af469b 630 int ret = 0;
8a4b83cc 631
d4d77629
TH
632 flags |= FMODE_EXCL;
633
c6e30871 634 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
635 if (device->bdev)
636 continue;
dfe25020
CM
637 if (!device->name)
638 continue;
639
606686ee 640 bdev = blkdev_get_by_path(device->name->str, flags, holder);
8a4b83cc 641 if (IS_ERR(bdev)) {
48940662 642 printk(KERN_INFO "btrfs: open %s failed\n", device->name->str);
a0af469b 643 goto error;
8a4b83cc 644 }
3c4bb26b
CM
645 filemap_write_and_wait(bdev->bd_inode->i_mapping);
646 invalidate_bdev(bdev);
a061fc8d 647 set_blocksize(bdev, 4096);
a0af469b 648
a512bbf8 649 bh = btrfs_read_dev_super(bdev);
20bcd649 650 if (!bh)
a0af469b
CM
651 goto error_close;
652
653 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 654 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
655 if (devid != device->devid)
656 goto error_brelse;
657
2b82032c
YZ
658 if (memcmp(device->uuid, disk_super->dev_item.uuid,
659 BTRFS_UUID_SIZE))
660 goto error_brelse;
661
662 device->generation = btrfs_super_generation(disk_super);
663 if (!latest_transid || device->generation > latest_transid) {
a0af469b 664 latest_devid = devid;
2b82032c 665 latest_transid = device->generation;
a0af469b
CM
666 latest_bdev = bdev;
667 }
668
2b82032c
YZ
669 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
670 device->writeable = 0;
671 } else {
672 device->writeable = !bdev_read_only(bdev);
673 seeding = 0;
674 }
675
d5e2003c
JB
676 q = bdev_get_queue(bdev);
677 if (blk_queue_discard(q)) {
678 device->can_discard = 1;
679 fs_devices->num_can_discard++;
680 }
681
8a4b83cc 682 device->bdev = bdev;
dfe25020 683 device->in_fs_metadata = 0;
15916de8
CM
684 device->mode = flags;
685
c289811c
CM
686 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
687 fs_devices->rotating = 1;
688
a0af469b 689 fs_devices->open_devices++;
2b82032c
YZ
690 if (device->writeable) {
691 fs_devices->rw_devices++;
692 list_add(&device->dev_alloc_list,
693 &fs_devices->alloc_list);
694 }
4f6c9328 695 brelse(bh);
a0af469b 696 continue;
a061fc8d 697
a0af469b
CM
698error_brelse:
699 brelse(bh);
700error_close:
d4d77629 701 blkdev_put(bdev, flags);
a0af469b
CM
702error:
703 continue;
8a4b83cc 704 }
a0af469b 705 if (fs_devices->open_devices == 0) {
20bcd649 706 ret = -EINVAL;
a0af469b
CM
707 goto out;
708 }
2b82032c
YZ
709 fs_devices->seeding = seeding;
710 fs_devices->opened = 1;
a0af469b
CM
711 fs_devices->latest_bdev = latest_bdev;
712 fs_devices->latest_devid = latest_devid;
713 fs_devices->latest_trans = latest_transid;
2b82032c 714 fs_devices->total_rw_bytes = 0;
a0af469b 715out:
2b82032c
YZ
716 return ret;
717}
718
719int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 720 fmode_t flags, void *holder)
2b82032c
YZ
721{
722 int ret;
723
724 mutex_lock(&uuid_mutex);
725 if (fs_devices->opened) {
e4404d6e
YZ
726 fs_devices->opened++;
727 ret = 0;
2b82032c 728 } else {
15916de8 729 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 730 }
8a4b83cc 731 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
732 return ret;
733}
734
97288f2c 735int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
736 struct btrfs_fs_devices **fs_devices_ret)
737{
738 struct btrfs_super_block *disk_super;
739 struct block_device *bdev;
740 struct buffer_head *bh;
741 int ret;
742 u64 devid;
f2984462 743 u64 transid;
02db0844 744 u64 total_devices;
8a4b83cc 745
d4d77629
TH
746 flags |= FMODE_EXCL;
747 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
748
749 if (IS_ERR(bdev)) {
8a4b83cc
CM
750 ret = PTR_ERR(bdev);
751 goto error;
752 }
753
10f6327b 754 mutex_lock(&uuid_mutex);
8a4b83cc
CM
755 ret = set_blocksize(bdev, 4096);
756 if (ret)
757 goto error_close;
a512bbf8 758 bh = btrfs_read_dev_super(bdev);
8a4b83cc 759 if (!bh) {
20b45077 760 ret = -EINVAL;
8a4b83cc
CM
761 goto error_close;
762 }
763 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 764 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 765 transid = btrfs_super_generation(disk_super);
02db0844 766 total_devices = btrfs_super_num_devices(disk_super);
7ae9c09d 767 if (disk_super->label[0])
d397712b 768 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
769 else
770 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 771 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 772 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc 773 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
774 if (!ret && fs_devices_ret)
775 (*fs_devices_ret)->total_devices = total_devices;
8a4b83cc
CM
776 brelse(bh);
777error_close:
10f6327b 778 mutex_unlock(&uuid_mutex);
d4d77629 779 blkdev_put(bdev, flags);
8a4b83cc 780error:
8a4b83cc
CM
781 return ret;
782}
0b86a832 783
6d07bcec
MX
784/* helper to account the used device space in the range */
785int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
786 u64 end, u64 *length)
787{
788 struct btrfs_key key;
789 struct btrfs_root *root = device->dev_root;
790 struct btrfs_dev_extent *dev_extent;
791 struct btrfs_path *path;
792 u64 extent_end;
793 int ret;
794 int slot;
795 struct extent_buffer *l;
796
797 *length = 0;
798
799 if (start >= device->total_bytes)
800 return 0;
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
805 path->reada = 2;
806
807 key.objectid = device->devid;
808 key.offset = start;
809 key.type = BTRFS_DEV_EXTENT_KEY;
810
811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
812 if (ret < 0)
813 goto out;
814 if (ret > 0) {
815 ret = btrfs_previous_item(root, path, key.objectid, key.type);
816 if (ret < 0)
817 goto out;
818 }
819
820 while (1) {
821 l = path->nodes[0];
822 slot = path->slots[0];
823 if (slot >= btrfs_header_nritems(l)) {
824 ret = btrfs_next_leaf(root, path);
825 if (ret == 0)
826 continue;
827 if (ret < 0)
828 goto out;
829
830 break;
831 }
832 btrfs_item_key_to_cpu(l, &key, slot);
833
834 if (key.objectid < device->devid)
835 goto next;
836
837 if (key.objectid > device->devid)
838 break;
839
840 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
841 goto next;
842
843 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
844 extent_end = key.offset + btrfs_dev_extent_length(l,
845 dev_extent);
846 if (key.offset <= start && extent_end > end) {
847 *length = end - start + 1;
848 break;
849 } else if (key.offset <= start && extent_end > start)
850 *length += extent_end - start;
851 else if (key.offset > start && extent_end <= end)
852 *length += extent_end - key.offset;
853 else if (key.offset > start && key.offset <= end) {
854 *length += end - key.offset + 1;
855 break;
856 } else if (key.offset > end)
857 break;
858
859next:
860 path->slots[0]++;
861 }
862 ret = 0;
863out:
864 btrfs_free_path(path);
865 return ret;
866}
867
0b86a832 868/*
7bfc837d 869 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
870 * @device: the device which we search the free space in
871 * @num_bytes: the size of the free space that we need
872 * @start: store the start of the free space.
873 * @len: the size of the free space. that we find, or the size of the max
874 * free space if we don't find suitable free space
875 *
0b86a832
CM
876 * this uses a pretty simple search, the expectation is that it is
877 * called very infrequently and that a given device has a small number
878 * of extents
7bfc837d
MX
879 *
880 * @start is used to store the start of the free space if we find. But if we
881 * don't find suitable free space, it will be used to store the start position
882 * of the max free space.
883 *
884 * @len is used to store the size of the free space that we find.
885 * But if we don't find suitable free space, it is used to store the size of
886 * the max free space.
0b86a832 887 */
125ccb0a 888int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 889 u64 *start, u64 *len)
0b86a832
CM
890{
891 struct btrfs_key key;
892 struct btrfs_root *root = device->dev_root;
7bfc837d 893 struct btrfs_dev_extent *dev_extent;
2b82032c 894 struct btrfs_path *path;
7bfc837d
MX
895 u64 hole_size;
896 u64 max_hole_start;
897 u64 max_hole_size;
898 u64 extent_end;
899 u64 search_start;
0b86a832
CM
900 u64 search_end = device->total_bytes;
901 int ret;
7bfc837d 902 int slot;
0b86a832
CM
903 struct extent_buffer *l;
904
0b86a832
CM
905 /* FIXME use last free of some kind */
906
8a4b83cc
CM
907 /* we don't want to overwrite the superblock on the drive,
908 * so we make sure to start at an offset of at least 1MB
909 */
a9c9bf68 910 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 911
7bfc837d
MX
912 max_hole_start = search_start;
913 max_hole_size = 0;
38c01b96 914 hole_size = 0;
7bfc837d
MX
915
916 if (search_start >= search_end) {
917 ret = -ENOSPC;
918 goto error;
919 }
920
921 path = btrfs_alloc_path();
922 if (!path) {
923 ret = -ENOMEM;
924 goto error;
925 }
926 path->reada = 2;
927
0b86a832
CM
928 key.objectid = device->devid;
929 key.offset = search_start;
930 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 931
125ccb0a 932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 933 if (ret < 0)
7bfc837d 934 goto out;
1fcbac58
YZ
935 if (ret > 0) {
936 ret = btrfs_previous_item(root, path, key.objectid, key.type);
937 if (ret < 0)
7bfc837d 938 goto out;
1fcbac58 939 }
7bfc837d 940
0b86a832
CM
941 while (1) {
942 l = path->nodes[0];
943 slot = path->slots[0];
944 if (slot >= btrfs_header_nritems(l)) {
945 ret = btrfs_next_leaf(root, path);
946 if (ret == 0)
947 continue;
948 if (ret < 0)
7bfc837d
MX
949 goto out;
950
951 break;
0b86a832
CM
952 }
953 btrfs_item_key_to_cpu(l, &key, slot);
954
955 if (key.objectid < device->devid)
956 goto next;
957
958 if (key.objectid > device->devid)
7bfc837d 959 break;
0b86a832 960
7bfc837d
MX
961 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
962 goto next;
9779b72f 963
7bfc837d
MX
964 if (key.offset > search_start) {
965 hole_size = key.offset - search_start;
9779b72f 966
7bfc837d
MX
967 if (hole_size > max_hole_size) {
968 max_hole_start = search_start;
969 max_hole_size = hole_size;
970 }
9779b72f 971
7bfc837d
MX
972 /*
973 * If this free space is greater than which we need,
974 * it must be the max free space that we have found
975 * until now, so max_hole_start must point to the start
976 * of this free space and the length of this free space
977 * is stored in max_hole_size. Thus, we return
978 * max_hole_start and max_hole_size and go back to the
979 * caller.
980 */
981 if (hole_size >= num_bytes) {
982 ret = 0;
983 goto out;
0b86a832
CM
984 }
985 }
0b86a832 986
0b86a832 987 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
988 extent_end = key.offset + btrfs_dev_extent_length(l,
989 dev_extent);
990 if (extent_end > search_start)
991 search_start = extent_end;
0b86a832
CM
992next:
993 path->slots[0]++;
994 cond_resched();
995 }
0b86a832 996
38c01b96 997 /*
998 * At this point, search_start should be the end of
999 * allocated dev extents, and when shrinking the device,
1000 * search_end may be smaller than search_start.
1001 */
1002 if (search_end > search_start)
1003 hole_size = search_end - search_start;
1004
7bfc837d
MX
1005 if (hole_size > max_hole_size) {
1006 max_hole_start = search_start;
1007 max_hole_size = hole_size;
0b86a832 1008 }
0b86a832 1009
7bfc837d
MX
1010 /* See above. */
1011 if (hole_size < num_bytes)
1012 ret = -ENOSPC;
1013 else
1014 ret = 0;
1015
1016out:
2b82032c 1017 btrfs_free_path(path);
7bfc837d
MX
1018error:
1019 *start = max_hole_start;
b2117a39 1020 if (len)
7bfc837d 1021 *len = max_hole_size;
0b86a832
CM
1022 return ret;
1023}
1024
b2950863 1025static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1026 struct btrfs_device *device,
1027 u64 start)
1028{
1029 int ret;
1030 struct btrfs_path *path;
1031 struct btrfs_root *root = device->dev_root;
1032 struct btrfs_key key;
a061fc8d
CM
1033 struct btrfs_key found_key;
1034 struct extent_buffer *leaf = NULL;
1035 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1036
1037 path = btrfs_alloc_path();
1038 if (!path)
1039 return -ENOMEM;
1040
1041 key.objectid = device->devid;
1042 key.offset = start;
1043 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1044again:
8f18cf13 1045 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1046 if (ret > 0) {
1047 ret = btrfs_previous_item(root, path, key.objectid,
1048 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1049 if (ret)
1050 goto out;
a061fc8d
CM
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1053 extent = btrfs_item_ptr(leaf, path->slots[0],
1054 struct btrfs_dev_extent);
1055 BUG_ON(found_key.offset > start || found_key.offset +
1056 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1057 key = found_key;
1058 btrfs_release_path(path);
1059 goto again;
a061fc8d
CM
1060 } else if (ret == 0) {
1061 leaf = path->nodes[0];
1062 extent = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_dev_extent);
79787eaa
JM
1064 } else {
1065 btrfs_error(root->fs_info, ret, "Slot search failed");
1066 goto out;
a061fc8d 1067 }
8f18cf13 1068
2bf64758
JB
1069 if (device->bytes_used > 0) {
1070 u64 len = btrfs_dev_extent_length(leaf, extent);
1071 device->bytes_used -= len;
1072 spin_lock(&root->fs_info->free_chunk_lock);
1073 root->fs_info->free_chunk_space += len;
1074 spin_unlock(&root->fs_info->free_chunk_lock);
1075 }
8f18cf13 1076 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1077 if (ret) {
1078 btrfs_error(root->fs_info, ret,
1079 "Failed to remove dev extent item");
1080 }
b0b802d7 1081out:
8f18cf13
CM
1082 btrfs_free_path(path);
1083 return ret;
1084}
1085
2b82032c 1086int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1087 struct btrfs_device *device,
e17cade2 1088 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1089 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1090{
1091 int ret;
1092 struct btrfs_path *path;
1093 struct btrfs_root *root = device->dev_root;
1094 struct btrfs_dev_extent *extent;
1095 struct extent_buffer *leaf;
1096 struct btrfs_key key;
1097
dfe25020 1098 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1099 path = btrfs_alloc_path();
1100 if (!path)
1101 return -ENOMEM;
1102
0b86a832 1103 key.objectid = device->devid;
2b82032c 1104 key.offset = start;
0b86a832
CM
1105 key.type = BTRFS_DEV_EXTENT_KEY;
1106 ret = btrfs_insert_empty_item(trans, root, path, &key,
1107 sizeof(*extent));
2cdcecbc
MF
1108 if (ret)
1109 goto out;
0b86a832
CM
1110
1111 leaf = path->nodes[0];
1112 extent = btrfs_item_ptr(leaf, path->slots[0],
1113 struct btrfs_dev_extent);
e17cade2
CM
1114 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1115 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1116 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1117
1118 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1119 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1120 BTRFS_UUID_SIZE);
1121
0b86a832
CM
1122 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1123 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1124out:
0b86a832
CM
1125 btrfs_free_path(path);
1126 return ret;
1127}
1128
a1b32a59
CM
1129static noinline int find_next_chunk(struct btrfs_root *root,
1130 u64 objectid, u64 *offset)
0b86a832
CM
1131{
1132 struct btrfs_path *path;
1133 int ret;
1134 struct btrfs_key key;
e17cade2 1135 struct btrfs_chunk *chunk;
0b86a832
CM
1136 struct btrfs_key found_key;
1137
1138 path = btrfs_alloc_path();
92b8e897
MF
1139 if (!path)
1140 return -ENOMEM;
0b86a832 1141
e17cade2 1142 key.objectid = objectid;
0b86a832
CM
1143 key.offset = (u64)-1;
1144 key.type = BTRFS_CHUNK_ITEM_KEY;
1145
1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1147 if (ret < 0)
1148 goto error;
1149
79787eaa 1150 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1151
1152 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1153 if (ret) {
e17cade2 1154 *offset = 0;
0b86a832
CM
1155 } else {
1156 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1157 path->slots[0]);
e17cade2
CM
1158 if (found_key.objectid != objectid)
1159 *offset = 0;
1160 else {
1161 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1162 struct btrfs_chunk);
1163 *offset = found_key.offset +
1164 btrfs_chunk_length(path->nodes[0], chunk);
1165 }
0b86a832
CM
1166 }
1167 ret = 0;
1168error:
1169 btrfs_free_path(path);
1170 return ret;
1171}
1172
2b82032c 1173static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1174{
1175 int ret;
1176 struct btrfs_key key;
1177 struct btrfs_key found_key;
2b82032c
YZ
1178 struct btrfs_path *path;
1179
1180 root = root->fs_info->chunk_root;
1181
1182 path = btrfs_alloc_path();
1183 if (!path)
1184 return -ENOMEM;
0b86a832
CM
1185
1186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1187 key.type = BTRFS_DEV_ITEM_KEY;
1188 key.offset = (u64)-1;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto error;
1193
79787eaa 1194 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1195
1196 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1197 BTRFS_DEV_ITEM_KEY);
1198 if (ret) {
1199 *objectid = 1;
1200 } else {
1201 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1202 path->slots[0]);
1203 *objectid = found_key.offset + 1;
1204 }
1205 ret = 0;
1206error:
2b82032c 1207 btrfs_free_path(path);
0b86a832
CM
1208 return ret;
1209}
1210
1211/*
1212 * the device information is stored in the chunk root
1213 * the btrfs_device struct should be fully filled in
1214 */
1215int btrfs_add_device(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_device *device)
1218{
1219 int ret;
1220 struct btrfs_path *path;
1221 struct btrfs_dev_item *dev_item;
1222 struct extent_buffer *leaf;
1223 struct btrfs_key key;
1224 unsigned long ptr;
0b86a832
CM
1225
1226 root = root->fs_info->chunk_root;
1227
1228 path = btrfs_alloc_path();
1229 if (!path)
1230 return -ENOMEM;
1231
0b86a832
CM
1232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1233 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1234 key.offset = device->devid;
0b86a832
CM
1235
1236 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1237 sizeof(*dev_item));
0b86a832
CM
1238 if (ret)
1239 goto out;
1240
1241 leaf = path->nodes[0];
1242 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1243
1244 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1245 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1246 btrfs_set_device_type(leaf, dev_item, device->type);
1247 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1248 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1249 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1250 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1251 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1252 btrfs_set_device_group(leaf, dev_item, 0);
1253 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1254 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1255 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1256
0b86a832 1257 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1258 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1259 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1260 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1261 btrfs_mark_buffer_dirty(leaf);
0b86a832 1262
2b82032c 1263 ret = 0;
0b86a832
CM
1264out:
1265 btrfs_free_path(path);
1266 return ret;
1267}
8f18cf13 1268
a061fc8d
CM
1269static int btrfs_rm_dev_item(struct btrfs_root *root,
1270 struct btrfs_device *device)
1271{
1272 int ret;
1273 struct btrfs_path *path;
a061fc8d 1274 struct btrfs_key key;
a061fc8d
CM
1275 struct btrfs_trans_handle *trans;
1276
1277 root = root->fs_info->chunk_root;
1278
1279 path = btrfs_alloc_path();
1280 if (!path)
1281 return -ENOMEM;
1282
a22285a6 1283 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1284 if (IS_ERR(trans)) {
1285 btrfs_free_path(path);
1286 return PTR_ERR(trans);
1287 }
a061fc8d
CM
1288 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1289 key.type = BTRFS_DEV_ITEM_KEY;
1290 key.offset = device->devid;
7d9eb12c 1291 lock_chunks(root);
a061fc8d
CM
1292
1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1294 if (ret < 0)
1295 goto out;
1296
1297 if (ret > 0) {
1298 ret = -ENOENT;
1299 goto out;
1300 }
1301
1302 ret = btrfs_del_item(trans, root, path);
1303 if (ret)
1304 goto out;
a061fc8d
CM
1305out:
1306 btrfs_free_path(path);
7d9eb12c 1307 unlock_chunks(root);
a061fc8d
CM
1308 btrfs_commit_transaction(trans, root);
1309 return ret;
1310}
1311
1312int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1313{
1314 struct btrfs_device *device;
2b82032c 1315 struct btrfs_device *next_device;
a061fc8d 1316 struct block_device *bdev;
dfe25020 1317 struct buffer_head *bh = NULL;
a061fc8d 1318 struct btrfs_super_block *disk_super;
1f78160c 1319 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1320 u64 all_avail;
1321 u64 devid;
2b82032c
YZ
1322 u64 num_devices;
1323 u8 *dev_uuid;
a061fc8d 1324 int ret = 0;
1f78160c 1325 bool clear_super = false;
a061fc8d 1326
a061fc8d
CM
1327 mutex_lock(&uuid_mutex);
1328
1329 all_avail = root->fs_info->avail_data_alloc_bits |
1330 root->fs_info->avail_system_alloc_bits |
1331 root->fs_info->avail_metadata_alloc_bits;
1332
1333 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1334 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1335 printk(KERN_ERR "btrfs: unable to go below four devices "
1336 "on raid10\n");
a061fc8d
CM
1337 ret = -EINVAL;
1338 goto out;
1339 }
1340
1341 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1342 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1343 printk(KERN_ERR "btrfs: unable to go below two "
1344 "devices on raid1\n");
a061fc8d
CM
1345 ret = -EINVAL;
1346 goto out;
1347 }
1348
dfe25020 1349 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1350 struct list_head *devices;
1351 struct btrfs_device *tmp;
a061fc8d 1352
dfe25020
CM
1353 device = NULL;
1354 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1355 /*
1356 * It is safe to read the devices since the volume_mutex
1357 * is held.
1358 */
c6e30871 1359 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1360 if (tmp->in_fs_metadata && !tmp->bdev) {
1361 device = tmp;
1362 break;
1363 }
1364 }
1365 bdev = NULL;
1366 bh = NULL;
1367 disk_super = NULL;
1368 if (!device) {
d397712b
CM
1369 printk(KERN_ERR "btrfs: no missing devices found to "
1370 "remove\n");
dfe25020
CM
1371 goto out;
1372 }
dfe25020 1373 } else {
d4d77629
TH
1374 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1375 root->fs_info->bdev_holder);
dfe25020
CM
1376 if (IS_ERR(bdev)) {
1377 ret = PTR_ERR(bdev);
1378 goto out;
1379 }
a061fc8d 1380
2b82032c 1381 set_blocksize(bdev, 4096);
3c4bb26b 1382 invalidate_bdev(bdev);
a512bbf8 1383 bh = btrfs_read_dev_super(bdev);
dfe25020 1384 if (!bh) {
20b45077 1385 ret = -EINVAL;
dfe25020
CM
1386 goto error_close;
1387 }
1388 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1389 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1390 dev_uuid = disk_super->dev_item.uuid;
1391 device = btrfs_find_device(root, devid, dev_uuid,
1392 disk_super->fsid);
dfe25020
CM
1393 if (!device) {
1394 ret = -ENOENT;
1395 goto error_brelse;
1396 }
2b82032c 1397 }
dfe25020 1398
2b82032c 1399 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1400 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1401 "device\n");
2b82032c
YZ
1402 ret = -EINVAL;
1403 goto error_brelse;
1404 }
1405
1406 if (device->writeable) {
0c1daee0 1407 lock_chunks(root);
2b82032c 1408 list_del_init(&device->dev_alloc_list);
0c1daee0 1409 unlock_chunks(root);
2b82032c 1410 root->fs_info->fs_devices->rw_devices--;
1f78160c 1411 clear_super = true;
dfe25020 1412 }
a061fc8d
CM
1413
1414 ret = btrfs_shrink_device(device, 0);
1415 if (ret)
9b3517e9 1416 goto error_undo;
a061fc8d 1417
a061fc8d
CM
1418 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1419 if (ret)
9b3517e9 1420 goto error_undo;
a061fc8d 1421
2bf64758
JB
1422 spin_lock(&root->fs_info->free_chunk_lock);
1423 root->fs_info->free_chunk_space = device->total_bytes -
1424 device->bytes_used;
1425 spin_unlock(&root->fs_info->free_chunk_lock);
1426
2b82032c 1427 device->in_fs_metadata = 0;
a2de733c 1428 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1429
1430 /*
1431 * the device list mutex makes sure that we don't change
1432 * the device list while someone else is writing out all
1433 * the device supers.
1434 */
1f78160c
XG
1435
1436 cur_devices = device->fs_devices;
e5e9a520 1437 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1438 list_del_rcu(&device->dev_list);
e5e9a520 1439
e4404d6e 1440 device->fs_devices->num_devices--;
02db0844 1441 device->fs_devices->total_devices--;
2b82032c 1442
cd02dca5
CM
1443 if (device->missing)
1444 root->fs_info->fs_devices->missing_devices--;
1445
2b82032c
YZ
1446 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1447 struct btrfs_device, dev_list);
1448 if (device->bdev == root->fs_info->sb->s_bdev)
1449 root->fs_info->sb->s_bdev = next_device->bdev;
1450 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1451 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1452
1f78160c 1453 if (device->bdev)
e4404d6e 1454 device->fs_devices->open_devices--;
1f78160c
XG
1455
1456 call_rcu(&device->rcu, free_device);
1457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1458
6c41761f
DS
1459 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1460 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1461
1f78160c 1462 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1463 struct btrfs_fs_devices *fs_devices;
1464 fs_devices = root->fs_info->fs_devices;
1465 while (fs_devices) {
1f78160c 1466 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1467 break;
1468 fs_devices = fs_devices->seed;
2b82032c 1469 }
1f78160c
XG
1470 fs_devices->seed = cur_devices->seed;
1471 cur_devices->seed = NULL;
0c1daee0 1472 lock_chunks(root);
1f78160c 1473 __btrfs_close_devices(cur_devices);
0c1daee0 1474 unlock_chunks(root);
1f78160c 1475 free_fs_devices(cur_devices);
2b82032c
YZ
1476 }
1477
5af3e8cc
SB
1478 root->fs_info->num_tolerated_disk_barrier_failures =
1479 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1480
2b82032c
YZ
1481 /*
1482 * at this point, the device is zero sized. We want to
1483 * remove it from the devices list and zero out the old super
1484 */
1f78160c 1485 if (clear_super) {
dfe25020
CM
1486 /* make sure this device isn't detected as part of
1487 * the FS anymore
1488 */
1489 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1490 set_buffer_dirty(bh);
1491 sync_dirty_buffer(bh);
dfe25020 1492 }
a061fc8d 1493
a061fc8d 1494 ret = 0;
a061fc8d
CM
1495
1496error_brelse:
1497 brelse(bh);
1498error_close:
dfe25020 1499 if (bdev)
e525fd89 1500 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1501out:
1502 mutex_unlock(&uuid_mutex);
a061fc8d 1503 return ret;
9b3517e9
ID
1504error_undo:
1505 if (device->writeable) {
0c1daee0 1506 lock_chunks(root);
9b3517e9
ID
1507 list_add(&device->dev_alloc_list,
1508 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1509 unlock_chunks(root);
9b3517e9
ID
1510 root->fs_info->fs_devices->rw_devices++;
1511 }
1512 goto error_brelse;
a061fc8d
CM
1513}
1514
2b82032c
YZ
1515/*
1516 * does all the dirty work required for changing file system's UUID.
1517 */
125ccb0a 1518static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1519{
1520 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1521 struct btrfs_fs_devices *old_devices;
e4404d6e 1522 struct btrfs_fs_devices *seed_devices;
6c41761f 1523 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1524 struct btrfs_device *device;
1525 u64 super_flags;
1526
1527 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1528 if (!fs_devices->seeding)
2b82032c
YZ
1529 return -EINVAL;
1530
e4404d6e
YZ
1531 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1532 if (!seed_devices)
2b82032c
YZ
1533 return -ENOMEM;
1534
e4404d6e
YZ
1535 old_devices = clone_fs_devices(fs_devices);
1536 if (IS_ERR(old_devices)) {
1537 kfree(seed_devices);
1538 return PTR_ERR(old_devices);
2b82032c 1539 }
e4404d6e 1540
2b82032c
YZ
1541 list_add(&old_devices->list, &fs_uuids);
1542
e4404d6e
YZ
1543 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1544 seed_devices->opened = 1;
1545 INIT_LIST_HEAD(&seed_devices->devices);
1546 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1547 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1548
1549 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1550 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1551 synchronize_rcu);
c9513edb
XG
1552 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1553
e4404d6e
YZ
1554 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1555 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1556 device->fs_devices = seed_devices;
1557 }
1558
2b82032c
YZ
1559 fs_devices->seeding = 0;
1560 fs_devices->num_devices = 0;
1561 fs_devices->open_devices = 0;
02db0844 1562 fs_devices->total_devices = 0;
e4404d6e 1563 fs_devices->seed = seed_devices;
2b82032c
YZ
1564
1565 generate_random_uuid(fs_devices->fsid);
1566 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1567 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1568 super_flags = btrfs_super_flags(disk_super) &
1569 ~BTRFS_SUPER_FLAG_SEEDING;
1570 btrfs_set_super_flags(disk_super, super_flags);
1571
1572 return 0;
1573}
1574
1575/*
1576 * strore the expected generation for seed devices in device items.
1577 */
1578static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1579 struct btrfs_root *root)
1580{
1581 struct btrfs_path *path;
1582 struct extent_buffer *leaf;
1583 struct btrfs_dev_item *dev_item;
1584 struct btrfs_device *device;
1585 struct btrfs_key key;
1586 u8 fs_uuid[BTRFS_UUID_SIZE];
1587 u8 dev_uuid[BTRFS_UUID_SIZE];
1588 u64 devid;
1589 int ret;
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 root = root->fs_info->chunk_root;
1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597 key.offset = 0;
1598 key.type = BTRFS_DEV_ITEM_KEY;
1599
1600 while (1) {
1601 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602 if (ret < 0)
1603 goto error;
1604
1605 leaf = path->nodes[0];
1606next_slot:
1607 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1608 ret = btrfs_next_leaf(root, path);
1609 if (ret > 0)
1610 break;
1611 if (ret < 0)
1612 goto error;
1613 leaf = path->nodes[0];
1614 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1615 btrfs_release_path(path);
2b82032c
YZ
1616 continue;
1617 }
1618
1619 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1620 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1621 key.type != BTRFS_DEV_ITEM_KEY)
1622 break;
1623
1624 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_dev_item);
1626 devid = btrfs_device_id(leaf, dev_item);
1627 read_extent_buffer(leaf, dev_uuid,
1628 (unsigned long)btrfs_device_uuid(dev_item),
1629 BTRFS_UUID_SIZE);
1630 read_extent_buffer(leaf, fs_uuid,
1631 (unsigned long)btrfs_device_fsid(dev_item),
1632 BTRFS_UUID_SIZE);
1633 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
79787eaa 1634 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1635
1636 if (device->fs_devices->seeding) {
1637 btrfs_set_device_generation(leaf, dev_item,
1638 device->generation);
1639 btrfs_mark_buffer_dirty(leaf);
1640 }
1641
1642 path->slots[0]++;
1643 goto next_slot;
1644 }
1645 ret = 0;
1646error:
1647 btrfs_free_path(path);
1648 return ret;
1649}
1650
788f20eb
CM
1651int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1652{
d5e2003c 1653 struct request_queue *q;
788f20eb
CM
1654 struct btrfs_trans_handle *trans;
1655 struct btrfs_device *device;
1656 struct block_device *bdev;
788f20eb 1657 struct list_head *devices;
2b82032c 1658 struct super_block *sb = root->fs_info->sb;
606686ee 1659 struct rcu_string *name;
788f20eb 1660 u64 total_bytes;
2b82032c 1661 int seeding_dev = 0;
788f20eb
CM
1662 int ret = 0;
1663
2b82032c 1664 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1665 return -EROFS;
788f20eb 1666
a5d16333 1667 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1668 root->fs_info->bdev_holder);
7f59203a
JB
1669 if (IS_ERR(bdev))
1670 return PTR_ERR(bdev);
a2135011 1671
2b82032c
YZ
1672 if (root->fs_info->fs_devices->seeding) {
1673 seeding_dev = 1;
1674 down_write(&sb->s_umount);
1675 mutex_lock(&uuid_mutex);
1676 }
1677
8c8bee1d 1678 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1679
788f20eb 1680 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1681 /*
1682 * we have the volume lock, so we don't need the extra
1683 * device list mutex while reading the list here.
1684 */
c6e30871 1685 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1686 if (device->bdev == bdev) {
1687 ret = -EEXIST;
2b82032c 1688 goto error;
788f20eb
CM
1689 }
1690 }
1691
1692 device = kzalloc(sizeof(*device), GFP_NOFS);
1693 if (!device) {
1694 /* we can safely leave the fs_devices entry around */
1695 ret = -ENOMEM;
2b82032c 1696 goto error;
788f20eb
CM
1697 }
1698
606686ee
JB
1699 name = rcu_string_strdup(device_path, GFP_NOFS);
1700 if (!name) {
788f20eb 1701 kfree(device);
2b82032c
YZ
1702 ret = -ENOMEM;
1703 goto error;
788f20eb 1704 }
606686ee 1705 rcu_assign_pointer(device->name, name);
2b82032c
YZ
1706
1707 ret = find_next_devid(root, &device->devid);
1708 if (ret) {
606686ee 1709 rcu_string_free(device->name);
2b82032c
YZ
1710 kfree(device);
1711 goto error;
1712 }
1713
a22285a6 1714 trans = btrfs_start_transaction(root, 0);
98d5dc13 1715 if (IS_ERR(trans)) {
606686ee 1716 rcu_string_free(device->name);
98d5dc13
TI
1717 kfree(device);
1718 ret = PTR_ERR(trans);
1719 goto error;
1720 }
1721
2b82032c
YZ
1722 lock_chunks(root);
1723
d5e2003c
JB
1724 q = bdev_get_queue(bdev);
1725 if (blk_queue_discard(q))
1726 device->can_discard = 1;
2b82032c
YZ
1727 device->writeable = 1;
1728 device->work.func = pending_bios_fn;
1729 generate_random_uuid(device->uuid);
1730 spin_lock_init(&device->io_lock);
1731 device->generation = trans->transid;
788f20eb
CM
1732 device->io_width = root->sectorsize;
1733 device->io_align = root->sectorsize;
1734 device->sector_size = root->sectorsize;
1735 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1736 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1737 device->dev_root = root->fs_info->dev_root;
1738 device->bdev = bdev;
dfe25020 1739 device->in_fs_metadata = 1;
fb01aa85 1740 device->mode = FMODE_EXCL;
2b82032c 1741 set_blocksize(device->bdev, 4096);
788f20eb 1742
2b82032c
YZ
1743 if (seeding_dev) {
1744 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1745 ret = btrfs_prepare_sprout(root);
79787eaa 1746 BUG_ON(ret); /* -ENOMEM */
2b82032c 1747 }
788f20eb 1748
2b82032c 1749 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 1750
e5e9a520 1751 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1752 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1753 list_add(&device->dev_alloc_list,
1754 &root->fs_info->fs_devices->alloc_list);
1755 root->fs_info->fs_devices->num_devices++;
1756 root->fs_info->fs_devices->open_devices++;
1757 root->fs_info->fs_devices->rw_devices++;
02db0844 1758 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
1759 if (device->can_discard)
1760 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1761 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1762
2bf64758
JB
1763 spin_lock(&root->fs_info->free_chunk_lock);
1764 root->fs_info->free_chunk_space += device->total_bytes;
1765 spin_unlock(&root->fs_info->free_chunk_lock);
1766
c289811c
CM
1767 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1768 root->fs_info->fs_devices->rotating = 1;
1769
6c41761f
DS
1770 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1771 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1772 total_bytes + device->total_bytes);
1773
6c41761f
DS
1774 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1775 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1776 total_bytes + 1);
e5e9a520 1777 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1778
2b82032c
YZ
1779 if (seeding_dev) {
1780 ret = init_first_rw_device(trans, root, device);
005d6427
DS
1781 if (ret) {
1782 btrfs_abort_transaction(trans, root, ret);
79787eaa 1783 goto error_trans;
005d6427 1784 }
2b82032c 1785 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
1786 if (ret) {
1787 btrfs_abort_transaction(trans, root, ret);
79787eaa 1788 goto error_trans;
005d6427 1789 }
2b82032c
YZ
1790 } else {
1791 ret = btrfs_add_device(trans, root, device);
005d6427
DS
1792 if (ret) {
1793 btrfs_abort_transaction(trans, root, ret);
79787eaa 1794 goto error_trans;
005d6427 1795 }
2b82032c
YZ
1796 }
1797
913d952e
CM
1798 /*
1799 * we've got more storage, clear any full flags on the space
1800 * infos
1801 */
1802 btrfs_clear_space_info_full(root->fs_info);
1803
7d9eb12c 1804 unlock_chunks(root);
5af3e8cc
SB
1805 root->fs_info->num_tolerated_disk_barrier_failures =
1806 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 1807 ret = btrfs_commit_transaction(trans, root);
a2135011 1808
2b82032c
YZ
1809 if (seeding_dev) {
1810 mutex_unlock(&uuid_mutex);
1811 up_write(&sb->s_umount);
788f20eb 1812
79787eaa
JM
1813 if (ret) /* transaction commit */
1814 return ret;
1815
2b82032c 1816 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1817 if (ret < 0)
1818 btrfs_error(root->fs_info, ret,
1819 "Failed to relocate sys chunks after "
1820 "device initialization. This can be fixed "
1821 "using the \"btrfs balance\" command.");
2b82032c 1822 }
c9e9f97b 1823
2b82032c 1824 return ret;
79787eaa
JM
1825
1826error_trans:
1827 unlock_chunks(root);
79787eaa 1828 btrfs_end_transaction(trans, root);
606686ee 1829 rcu_string_free(device->name);
79787eaa 1830 kfree(device);
2b82032c 1831error:
e525fd89 1832 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1833 if (seeding_dev) {
1834 mutex_unlock(&uuid_mutex);
1835 up_write(&sb->s_umount);
1836 }
c9e9f97b 1837 return ret;
788f20eb
CM
1838}
1839
d397712b
CM
1840static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1841 struct btrfs_device *device)
0b86a832
CM
1842{
1843 int ret;
1844 struct btrfs_path *path;
1845 struct btrfs_root *root;
1846 struct btrfs_dev_item *dev_item;
1847 struct extent_buffer *leaf;
1848 struct btrfs_key key;
1849
1850 root = device->dev_root->fs_info->chunk_root;
1851
1852 path = btrfs_alloc_path();
1853 if (!path)
1854 return -ENOMEM;
1855
1856 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1857 key.type = BTRFS_DEV_ITEM_KEY;
1858 key.offset = device->devid;
1859
1860 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1861 if (ret < 0)
1862 goto out;
1863
1864 if (ret > 0) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868
1869 leaf = path->nodes[0];
1870 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1871
1872 btrfs_set_device_id(leaf, dev_item, device->devid);
1873 btrfs_set_device_type(leaf, dev_item, device->type);
1874 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1875 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1876 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1877 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1878 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1879 btrfs_mark_buffer_dirty(leaf);
1880
1881out:
1882 btrfs_free_path(path);
1883 return ret;
1884}
1885
7d9eb12c 1886static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1887 struct btrfs_device *device, u64 new_size)
1888{
1889 struct btrfs_super_block *super_copy =
6c41761f 1890 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1891 u64 old_total = btrfs_super_total_bytes(super_copy);
1892 u64 diff = new_size - device->total_bytes;
1893
2b82032c
YZ
1894 if (!device->writeable)
1895 return -EACCES;
1896 if (new_size <= device->total_bytes)
1897 return -EINVAL;
1898
8f18cf13 1899 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1900 device->fs_devices->total_rw_bytes += diff;
1901
1902 device->total_bytes = new_size;
9779b72f 1903 device->disk_total_bytes = new_size;
4184ea7f
CM
1904 btrfs_clear_space_info_full(device->dev_root->fs_info);
1905
8f18cf13
CM
1906 return btrfs_update_device(trans, device);
1907}
1908
7d9eb12c
CM
1909int btrfs_grow_device(struct btrfs_trans_handle *trans,
1910 struct btrfs_device *device, u64 new_size)
1911{
1912 int ret;
1913 lock_chunks(device->dev_root);
1914 ret = __btrfs_grow_device(trans, device, new_size);
1915 unlock_chunks(device->dev_root);
1916 return ret;
1917}
1918
8f18cf13
CM
1919static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 u64 chunk_tree, u64 chunk_objectid,
1922 u64 chunk_offset)
1923{
1924 int ret;
1925 struct btrfs_path *path;
1926 struct btrfs_key key;
1927
1928 root = root->fs_info->chunk_root;
1929 path = btrfs_alloc_path();
1930 if (!path)
1931 return -ENOMEM;
1932
1933 key.objectid = chunk_objectid;
1934 key.offset = chunk_offset;
1935 key.type = BTRFS_CHUNK_ITEM_KEY;
1936
1937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
1938 if (ret < 0)
1939 goto out;
1940 else if (ret > 0) { /* Logic error or corruption */
1941 btrfs_error(root->fs_info, -ENOENT,
1942 "Failed lookup while freeing chunk.");
1943 ret = -ENOENT;
1944 goto out;
1945 }
8f18cf13
CM
1946
1947 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1948 if (ret < 0)
1949 btrfs_error(root->fs_info, ret,
1950 "Failed to delete chunk item.");
1951out:
8f18cf13 1952 btrfs_free_path(path);
65a246c5 1953 return ret;
8f18cf13
CM
1954}
1955
b2950863 1956static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1957 chunk_offset)
1958{
6c41761f 1959 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1960 struct btrfs_disk_key *disk_key;
1961 struct btrfs_chunk *chunk;
1962 u8 *ptr;
1963 int ret = 0;
1964 u32 num_stripes;
1965 u32 array_size;
1966 u32 len = 0;
1967 u32 cur;
1968 struct btrfs_key key;
1969
1970 array_size = btrfs_super_sys_array_size(super_copy);
1971
1972 ptr = super_copy->sys_chunk_array;
1973 cur = 0;
1974
1975 while (cur < array_size) {
1976 disk_key = (struct btrfs_disk_key *)ptr;
1977 btrfs_disk_key_to_cpu(&key, disk_key);
1978
1979 len = sizeof(*disk_key);
1980
1981 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1982 chunk = (struct btrfs_chunk *)(ptr + len);
1983 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1984 len += btrfs_chunk_item_size(num_stripes);
1985 } else {
1986 ret = -EIO;
1987 break;
1988 }
1989 if (key.objectid == chunk_objectid &&
1990 key.offset == chunk_offset) {
1991 memmove(ptr, ptr + len, array_size - (cur + len));
1992 array_size -= len;
1993 btrfs_set_super_sys_array_size(super_copy, array_size);
1994 } else {
1995 ptr += len;
1996 cur += len;
1997 }
1998 }
1999 return ret;
2000}
2001
b2950863 2002static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2003 u64 chunk_tree, u64 chunk_objectid,
2004 u64 chunk_offset)
2005{
2006 struct extent_map_tree *em_tree;
2007 struct btrfs_root *extent_root;
2008 struct btrfs_trans_handle *trans;
2009 struct extent_map *em;
2010 struct map_lookup *map;
2011 int ret;
2012 int i;
2013
2014 root = root->fs_info->chunk_root;
2015 extent_root = root->fs_info->extent_root;
2016 em_tree = &root->fs_info->mapping_tree.map_tree;
2017
ba1bf481
JB
2018 ret = btrfs_can_relocate(extent_root, chunk_offset);
2019 if (ret)
2020 return -ENOSPC;
2021
8f18cf13 2022 /* step one, relocate all the extents inside this chunk */
1a40e23b 2023 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2024 if (ret)
2025 return ret;
8f18cf13 2026
a22285a6 2027 trans = btrfs_start_transaction(root, 0);
98d5dc13 2028 BUG_ON(IS_ERR(trans));
8f18cf13 2029
7d9eb12c
CM
2030 lock_chunks(root);
2031
8f18cf13
CM
2032 /*
2033 * step two, delete the device extents and the
2034 * chunk tree entries
2035 */
890871be 2036 read_lock(&em_tree->lock);
8f18cf13 2037 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2038 read_unlock(&em_tree->lock);
8f18cf13 2039
285190d9 2040 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2041 em->start + em->len < chunk_offset);
8f18cf13
CM
2042 map = (struct map_lookup *)em->bdev;
2043
2044 for (i = 0; i < map->num_stripes; i++) {
2045 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2046 map->stripes[i].physical);
2047 BUG_ON(ret);
a061fc8d 2048
dfe25020
CM
2049 if (map->stripes[i].dev) {
2050 ret = btrfs_update_device(trans, map->stripes[i].dev);
2051 BUG_ON(ret);
2052 }
8f18cf13
CM
2053 }
2054 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2055 chunk_offset);
2056
2057 BUG_ON(ret);
2058
1abe9b8a 2059 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2060
8f18cf13
CM
2061 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2063 BUG_ON(ret);
8f18cf13
CM
2064 }
2065
2b82032c
YZ
2066 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2067 BUG_ON(ret);
2068
890871be 2069 write_lock(&em_tree->lock);
2b82032c 2070 remove_extent_mapping(em_tree, em);
890871be 2071 write_unlock(&em_tree->lock);
2b82032c
YZ
2072
2073 kfree(map);
2074 em->bdev = NULL;
2075
2076 /* once for the tree */
2077 free_extent_map(em);
2078 /* once for us */
2079 free_extent_map(em);
2080
2081 unlock_chunks(root);
2082 btrfs_end_transaction(trans, root);
2083 return 0;
2084}
2085
2086static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2087{
2088 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2089 struct btrfs_path *path;
2090 struct extent_buffer *leaf;
2091 struct btrfs_chunk *chunk;
2092 struct btrfs_key key;
2093 struct btrfs_key found_key;
2094 u64 chunk_tree = chunk_root->root_key.objectid;
2095 u64 chunk_type;
ba1bf481
JB
2096 bool retried = false;
2097 int failed = 0;
2b82032c
YZ
2098 int ret;
2099
2100 path = btrfs_alloc_path();
2101 if (!path)
2102 return -ENOMEM;
2103
ba1bf481 2104again:
2b82032c
YZ
2105 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2106 key.offset = (u64)-1;
2107 key.type = BTRFS_CHUNK_ITEM_KEY;
2108
2109 while (1) {
2110 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2111 if (ret < 0)
2112 goto error;
79787eaa 2113 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2114
2115 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2116 key.type);
2117 if (ret < 0)
2118 goto error;
2119 if (ret > 0)
2120 break;
1a40e23b 2121
2b82032c
YZ
2122 leaf = path->nodes[0];
2123 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2124
2b82032c
YZ
2125 chunk = btrfs_item_ptr(leaf, path->slots[0],
2126 struct btrfs_chunk);
2127 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2128 btrfs_release_path(path);
8f18cf13 2129
2b82032c
YZ
2130 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2131 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2132 found_key.objectid,
2133 found_key.offset);
ba1bf481
JB
2134 if (ret == -ENOSPC)
2135 failed++;
2136 else if (ret)
2137 BUG();
2b82032c 2138 }
8f18cf13 2139
2b82032c
YZ
2140 if (found_key.offset == 0)
2141 break;
2142 key.offset = found_key.offset - 1;
2143 }
2144 ret = 0;
ba1bf481
JB
2145 if (failed && !retried) {
2146 failed = 0;
2147 retried = true;
2148 goto again;
2149 } else if (failed && retried) {
2150 WARN_ON(1);
2151 ret = -ENOSPC;
2152 }
2b82032c
YZ
2153error:
2154 btrfs_free_path(path);
2155 return ret;
8f18cf13
CM
2156}
2157
0940ebf6
ID
2158static int insert_balance_item(struct btrfs_root *root,
2159 struct btrfs_balance_control *bctl)
2160{
2161 struct btrfs_trans_handle *trans;
2162 struct btrfs_balance_item *item;
2163 struct btrfs_disk_balance_args disk_bargs;
2164 struct btrfs_path *path;
2165 struct extent_buffer *leaf;
2166 struct btrfs_key key;
2167 int ret, err;
2168
2169 path = btrfs_alloc_path();
2170 if (!path)
2171 return -ENOMEM;
2172
2173 trans = btrfs_start_transaction(root, 0);
2174 if (IS_ERR(trans)) {
2175 btrfs_free_path(path);
2176 return PTR_ERR(trans);
2177 }
2178
2179 key.objectid = BTRFS_BALANCE_OBJECTID;
2180 key.type = BTRFS_BALANCE_ITEM_KEY;
2181 key.offset = 0;
2182
2183 ret = btrfs_insert_empty_item(trans, root, path, &key,
2184 sizeof(*item));
2185 if (ret)
2186 goto out;
2187
2188 leaf = path->nodes[0];
2189 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2190
2191 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2192
2193 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2194 btrfs_set_balance_data(leaf, item, &disk_bargs);
2195 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2196 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2197 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2198 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2199
2200 btrfs_set_balance_flags(leaf, item, bctl->flags);
2201
2202 btrfs_mark_buffer_dirty(leaf);
2203out:
2204 btrfs_free_path(path);
2205 err = btrfs_commit_transaction(trans, root);
2206 if (err && !ret)
2207 ret = err;
2208 return ret;
2209}
2210
2211static int del_balance_item(struct btrfs_root *root)
2212{
2213 struct btrfs_trans_handle *trans;
2214 struct btrfs_path *path;
2215 struct btrfs_key key;
2216 int ret, err;
2217
2218 path = btrfs_alloc_path();
2219 if (!path)
2220 return -ENOMEM;
2221
2222 trans = btrfs_start_transaction(root, 0);
2223 if (IS_ERR(trans)) {
2224 btrfs_free_path(path);
2225 return PTR_ERR(trans);
2226 }
2227
2228 key.objectid = BTRFS_BALANCE_OBJECTID;
2229 key.type = BTRFS_BALANCE_ITEM_KEY;
2230 key.offset = 0;
2231
2232 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2233 if (ret < 0)
2234 goto out;
2235 if (ret > 0) {
2236 ret = -ENOENT;
2237 goto out;
2238 }
2239
2240 ret = btrfs_del_item(trans, root, path);
2241out:
2242 btrfs_free_path(path);
2243 err = btrfs_commit_transaction(trans, root);
2244 if (err && !ret)
2245 ret = err;
2246 return ret;
2247}
2248
59641015
ID
2249/*
2250 * This is a heuristic used to reduce the number of chunks balanced on
2251 * resume after balance was interrupted.
2252 */
2253static void update_balance_args(struct btrfs_balance_control *bctl)
2254{
2255 /*
2256 * Turn on soft mode for chunk types that were being converted.
2257 */
2258 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2259 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2260 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2261 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2262 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2263 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2264
2265 /*
2266 * Turn on usage filter if is not already used. The idea is
2267 * that chunks that we have already balanced should be
2268 * reasonably full. Don't do it for chunks that are being
2269 * converted - that will keep us from relocating unconverted
2270 * (albeit full) chunks.
2271 */
2272 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2273 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2274 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2275 bctl->data.usage = 90;
2276 }
2277 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2278 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2279 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2280 bctl->sys.usage = 90;
2281 }
2282 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2283 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2284 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2285 bctl->meta.usage = 90;
2286 }
2287}
2288
c9e9f97b
ID
2289/*
2290 * Should be called with both balance and volume mutexes held to
2291 * serialize other volume operations (add_dev/rm_dev/resize) with
2292 * restriper. Same goes for unset_balance_control.
2293 */
2294static void set_balance_control(struct btrfs_balance_control *bctl)
2295{
2296 struct btrfs_fs_info *fs_info = bctl->fs_info;
2297
2298 BUG_ON(fs_info->balance_ctl);
2299
2300 spin_lock(&fs_info->balance_lock);
2301 fs_info->balance_ctl = bctl;
2302 spin_unlock(&fs_info->balance_lock);
2303}
2304
2305static void unset_balance_control(struct btrfs_fs_info *fs_info)
2306{
2307 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2308
2309 BUG_ON(!fs_info->balance_ctl);
2310
2311 spin_lock(&fs_info->balance_lock);
2312 fs_info->balance_ctl = NULL;
2313 spin_unlock(&fs_info->balance_lock);
2314
2315 kfree(bctl);
2316}
2317
ed25e9b2
ID
2318/*
2319 * Balance filters. Return 1 if chunk should be filtered out
2320 * (should not be balanced).
2321 */
899c81ea 2322static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2323 struct btrfs_balance_args *bargs)
2324{
899c81ea
ID
2325 chunk_type = chunk_to_extended(chunk_type) &
2326 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2327
899c81ea 2328 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2329 return 0;
2330
2331 return 1;
2332}
2333
5ce5b3c0
ID
2334static u64 div_factor_fine(u64 num, int factor)
2335{
2336 if (factor <= 0)
2337 return 0;
2338 if (factor >= 100)
2339 return num;
2340
2341 num *= factor;
2342 do_div(num, 100);
2343 return num;
2344}
2345
2346static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2347 struct btrfs_balance_args *bargs)
2348{
2349 struct btrfs_block_group_cache *cache;
2350 u64 chunk_used, user_thresh;
2351 int ret = 1;
2352
2353 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2354 chunk_used = btrfs_block_group_used(&cache->item);
2355
2356 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2357 if (chunk_used < user_thresh)
2358 ret = 0;
2359
2360 btrfs_put_block_group(cache);
2361 return ret;
2362}
2363
409d404b
ID
2364static int chunk_devid_filter(struct extent_buffer *leaf,
2365 struct btrfs_chunk *chunk,
2366 struct btrfs_balance_args *bargs)
2367{
2368 struct btrfs_stripe *stripe;
2369 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2370 int i;
2371
2372 for (i = 0; i < num_stripes; i++) {
2373 stripe = btrfs_stripe_nr(chunk, i);
2374 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2375 return 0;
2376 }
2377
2378 return 1;
2379}
2380
94e60d5a
ID
2381/* [pstart, pend) */
2382static int chunk_drange_filter(struct extent_buffer *leaf,
2383 struct btrfs_chunk *chunk,
2384 u64 chunk_offset,
2385 struct btrfs_balance_args *bargs)
2386{
2387 struct btrfs_stripe *stripe;
2388 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2389 u64 stripe_offset;
2390 u64 stripe_length;
2391 int factor;
2392 int i;
2393
2394 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2395 return 0;
2396
2397 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2398 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2399 factor = 2;
2400 else
2401 factor = 1;
2402 factor = num_stripes / factor;
2403
2404 for (i = 0; i < num_stripes; i++) {
2405 stripe = btrfs_stripe_nr(chunk, i);
2406 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2407 continue;
2408
2409 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2410 stripe_length = btrfs_chunk_length(leaf, chunk);
2411 do_div(stripe_length, factor);
2412
2413 if (stripe_offset < bargs->pend &&
2414 stripe_offset + stripe_length > bargs->pstart)
2415 return 0;
2416 }
2417
2418 return 1;
2419}
2420
ea67176a
ID
2421/* [vstart, vend) */
2422static int chunk_vrange_filter(struct extent_buffer *leaf,
2423 struct btrfs_chunk *chunk,
2424 u64 chunk_offset,
2425 struct btrfs_balance_args *bargs)
2426{
2427 if (chunk_offset < bargs->vend &&
2428 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2429 /* at least part of the chunk is inside this vrange */
2430 return 0;
2431
2432 return 1;
2433}
2434
899c81ea 2435static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2436 struct btrfs_balance_args *bargs)
2437{
2438 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2439 return 0;
2440
899c81ea
ID
2441 chunk_type = chunk_to_extended(chunk_type) &
2442 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2443
899c81ea 2444 if (bargs->target == chunk_type)
cfa4c961
ID
2445 return 1;
2446
2447 return 0;
2448}
2449
f43ffb60
ID
2450static int should_balance_chunk(struct btrfs_root *root,
2451 struct extent_buffer *leaf,
2452 struct btrfs_chunk *chunk, u64 chunk_offset)
2453{
2454 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2455 struct btrfs_balance_args *bargs = NULL;
2456 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2457
2458 /* type filter */
2459 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2460 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2461 return 0;
2462 }
2463
2464 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2465 bargs = &bctl->data;
2466 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2467 bargs = &bctl->sys;
2468 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2469 bargs = &bctl->meta;
2470
ed25e9b2
ID
2471 /* profiles filter */
2472 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2473 chunk_profiles_filter(chunk_type, bargs)) {
2474 return 0;
5ce5b3c0
ID
2475 }
2476
2477 /* usage filter */
2478 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2479 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2480 return 0;
409d404b
ID
2481 }
2482
2483 /* devid filter */
2484 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2485 chunk_devid_filter(leaf, chunk, bargs)) {
2486 return 0;
94e60d5a
ID
2487 }
2488
2489 /* drange filter, makes sense only with devid filter */
2490 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2491 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2492 return 0;
ea67176a
ID
2493 }
2494
2495 /* vrange filter */
2496 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2497 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2498 return 0;
ed25e9b2
ID
2499 }
2500
cfa4c961
ID
2501 /* soft profile changing mode */
2502 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2503 chunk_soft_convert_filter(chunk_type, bargs)) {
2504 return 0;
2505 }
2506
f43ffb60
ID
2507 return 1;
2508}
2509
ec44a35c
CM
2510static u64 div_factor(u64 num, int factor)
2511{
2512 if (factor == 10)
2513 return num;
2514 num *= factor;
2515 do_div(num, 10);
2516 return num;
2517}
2518
c9e9f97b 2519static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2520{
19a39dce 2521 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2522 struct btrfs_root *chunk_root = fs_info->chunk_root;
2523 struct btrfs_root *dev_root = fs_info->dev_root;
2524 struct list_head *devices;
ec44a35c
CM
2525 struct btrfs_device *device;
2526 u64 old_size;
2527 u64 size_to_free;
f43ffb60 2528 struct btrfs_chunk *chunk;
ec44a35c
CM
2529 struct btrfs_path *path;
2530 struct btrfs_key key;
ec44a35c 2531 struct btrfs_key found_key;
c9e9f97b 2532 struct btrfs_trans_handle *trans;
f43ffb60
ID
2533 struct extent_buffer *leaf;
2534 int slot;
c9e9f97b
ID
2535 int ret;
2536 int enospc_errors = 0;
19a39dce 2537 bool counting = true;
ec44a35c 2538
ec44a35c 2539 /* step one make some room on all the devices */
c9e9f97b 2540 devices = &fs_info->fs_devices->devices;
c6e30871 2541 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2542 old_size = device->total_bytes;
2543 size_to_free = div_factor(old_size, 1);
2544 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2545 if (!device->writeable ||
2546 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2547 continue;
2548
2549 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2550 if (ret == -ENOSPC)
2551 break;
ec44a35c
CM
2552 BUG_ON(ret);
2553
a22285a6 2554 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2555 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2556
2557 ret = btrfs_grow_device(trans, device, old_size);
2558 BUG_ON(ret);
2559
2560 btrfs_end_transaction(trans, dev_root);
2561 }
2562
2563 /* step two, relocate all the chunks */
2564 path = btrfs_alloc_path();
17e9f796
MF
2565 if (!path) {
2566 ret = -ENOMEM;
2567 goto error;
2568 }
19a39dce
ID
2569
2570 /* zero out stat counters */
2571 spin_lock(&fs_info->balance_lock);
2572 memset(&bctl->stat, 0, sizeof(bctl->stat));
2573 spin_unlock(&fs_info->balance_lock);
2574again:
ec44a35c
CM
2575 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2576 key.offset = (u64)-1;
2577 key.type = BTRFS_CHUNK_ITEM_KEY;
2578
d397712b 2579 while (1) {
19a39dce 2580 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2581 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2582 ret = -ECANCELED;
2583 goto error;
2584 }
2585
ec44a35c
CM
2586 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2587 if (ret < 0)
2588 goto error;
2589
2590 /*
2591 * this shouldn't happen, it means the last relocate
2592 * failed
2593 */
2594 if (ret == 0)
c9e9f97b 2595 BUG(); /* FIXME break ? */
ec44a35c
CM
2596
2597 ret = btrfs_previous_item(chunk_root, path, 0,
2598 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2599 if (ret) {
2600 ret = 0;
ec44a35c 2601 break;
c9e9f97b 2602 }
7d9eb12c 2603
f43ffb60
ID
2604 leaf = path->nodes[0];
2605 slot = path->slots[0];
2606 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2607
ec44a35c
CM
2608 if (found_key.objectid != key.objectid)
2609 break;
7d9eb12c 2610
ec44a35c 2611 /* chunk zero is special */
ba1bf481 2612 if (found_key.offset == 0)
ec44a35c
CM
2613 break;
2614
f43ffb60
ID
2615 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2616
19a39dce
ID
2617 if (!counting) {
2618 spin_lock(&fs_info->balance_lock);
2619 bctl->stat.considered++;
2620 spin_unlock(&fs_info->balance_lock);
2621 }
2622
f43ffb60
ID
2623 ret = should_balance_chunk(chunk_root, leaf, chunk,
2624 found_key.offset);
b3b4aa74 2625 btrfs_release_path(path);
f43ffb60
ID
2626 if (!ret)
2627 goto loop;
2628
19a39dce
ID
2629 if (counting) {
2630 spin_lock(&fs_info->balance_lock);
2631 bctl->stat.expected++;
2632 spin_unlock(&fs_info->balance_lock);
2633 goto loop;
2634 }
2635
ec44a35c
CM
2636 ret = btrfs_relocate_chunk(chunk_root,
2637 chunk_root->root_key.objectid,
2638 found_key.objectid,
2639 found_key.offset);
508794eb
JB
2640 if (ret && ret != -ENOSPC)
2641 goto error;
19a39dce 2642 if (ret == -ENOSPC) {
c9e9f97b 2643 enospc_errors++;
19a39dce
ID
2644 } else {
2645 spin_lock(&fs_info->balance_lock);
2646 bctl->stat.completed++;
2647 spin_unlock(&fs_info->balance_lock);
2648 }
f43ffb60 2649loop:
ba1bf481 2650 key.offset = found_key.offset - 1;
ec44a35c 2651 }
c9e9f97b 2652
19a39dce
ID
2653 if (counting) {
2654 btrfs_release_path(path);
2655 counting = false;
2656 goto again;
2657 }
ec44a35c
CM
2658error:
2659 btrfs_free_path(path);
c9e9f97b
ID
2660 if (enospc_errors) {
2661 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2662 enospc_errors);
2663 if (!ret)
2664 ret = -ENOSPC;
2665 }
2666
ec44a35c
CM
2667 return ret;
2668}
2669
0c460c0d
ID
2670/**
2671 * alloc_profile_is_valid - see if a given profile is valid and reduced
2672 * @flags: profile to validate
2673 * @extended: if true @flags is treated as an extended profile
2674 */
2675static int alloc_profile_is_valid(u64 flags, int extended)
2676{
2677 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2678 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2679
2680 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2681
2682 /* 1) check that all other bits are zeroed */
2683 if (flags & ~mask)
2684 return 0;
2685
2686 /* 2) see if profile is reduced */
2687 if (flags == 0)
2688 return !extended; /* "0" is valid for usual profiles */
2689
2690 /* true if exactly one bit set */
2691 return (flags & (flags - 1)) == 0;
2692}
2693
837d5b6e
ID
2694static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2695{
a7e99c69
ID
2696 /* cancel requested || normal exit path */
2697 return atomic_read(&fs_info->balance_cancel_req) ||
2698 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2699 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2700}
2701
c9e9f97b
ID
2702static void __cancel_balance(struct btrfs_fs_info *fs_info)
2703{
0940ebf6
ID
2704 int ret;
2705
c9e9f97b 2706 unset_balance_control(fs_info);
0940ebf6
ID
2707 ret = del_balance_item(fs_info->tree_root);
2708 BUG_ON(ret);
c9e9f97b
ID
2709}
2710
19a39dce 2711void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2712 struct btrfs_ioctl_balance_args *bargs);
2713
2714/*
2715 * Should be called with both balance and volume mutexes held
2716 */
2717int btrfs_balance(struct btrfs_balance_control *bctl,
2718 struct btrfs_ioctl_balance_args *bargs)
2719{
2720 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2721 u64 allowed;
e4837f8f 2722 int mixed = 0;
c9e9f97b
ID
2723 int ret;
2724
837d5b6e 2725 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2726 atomic_read(&fs_info->balance_pause_req) ||
2727 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2728 ret = -EINVAL;
2729 goto out;
2730 }
2731
e4837f8f
ID
2732 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2733 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2734 mixed = 1;
2735
f43ffb60
ID
2736 /*
2737 * In case of mixed groups both data and meta should be picked,
2738 * and identical options should be given for both of them.
2739 */
e4837f8f
ID
2740 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2741 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2742 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2743 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2744 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2745 printk(KERN_ERR "btrfs: with mixed groups data and "
2746 "metadata balance options must be the same\n");
2747 ret = -EINVAL;
2748 goto out;
2749 }
2750 }
2751
e4d8ec0f
ID
2752 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2753 if (fs_info->fs_devices->num_devices == 1)
2754 allowed |= BTRFS_BLOCK_GROUP_DUP;
2755 else if (fs_info->fs_devices->num_devices < 4)
2756 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2757 else
2758 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2759 BTRFS_BLOCK_GROUP_RAID10);
2760
6728b198
ID
2761 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2762 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2763 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2764 printk(KERN_ERR "btrfs: unable to start balance with target "
2765 "data profile %llu\n",
2766 (unsigned long long)bctl->data.target);
2767 ret = -EINVAL;
2768 goto out;
2769 }
6728b198
ID
2770 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2771 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2772 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2773 printk(KERN_ERR "btrfs: unable to start balance with target "
2774 "metadata profile %llu\n",
2775 (unsigned long long)bctl->meta.target);
2776 ret = -EINVAL;
2777 goto out;
2778 }
6728b198
ID
2779 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2780 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2781 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2782 printk(KERN_ERR "btrfs: unable to start balance with target "
2783 "system profile %llu\n",
2784 (unsigned long long)bctl->sys.target);
2785 ret = -EINVAL;
2786 goto out;
2787 }
2788
e4837f8f
ID
2789 /* allow dup'ed data chunks only in mixed mode */
2790 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2791 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2792 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2793 ret = -EINVAL;
2794 goto out;
2795 }
2796
2797 /* allow to reduce meta or sys integrity only if force set */
2798 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2799 BTRFS_BLOCK_GROUP_RAID10;
2800 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2801 (fs_info->avail_system_alloc_bits & allowed) &&
2802 !(bctl->sys.target & allowed)) ||
2803 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2804 (fs_info->avail_metadata_alloc_bits & allowed) &&
2805 !(bctl->meta.target & allowed))) {
2806 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2807 printk(KERN_INFO "btrfs: force reducing metadata "
2808 "integrity\n");
2809 } else {
2810 printk(KERN_ERR "btrfs: balance will reduce metadata "
2811 "integrity, use force if you want this\n");
2812 ret = -EINVAL;
2813 goto out;
2814 }
2815 }
2816
5af3e8cc
SB
2817 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2818 int num_tolerated_disk_barrier_failures;
2819 u64 target = bctl->sys.target;
2820
2821 num_tolerated_disk_barrier_failures =
2822 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2823 if (num_tolerated_disk_barrier_failures > 0 &&
2824 (target &
2825 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
2826 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
2827 num_tolerated_disk_barrier_failures = 0;
2828 else if (num_tolerated_disk_barrier_failures > 1 &&
2829 (target &
2830 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
2831 num_tolerated_disk_barrier_failures = 1;
2832
2833 fs_info->num_tolerated_disk_barrier_failures =
2834 num_tolerated_disk_barrier_failures;
2835 }
2836
0940ebf6 2837 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2838 if (ret && ret != -EEXIST)
0940ebf6
ID
2839 goto out;
2840
59641015
ID
2841 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2842 BUG_ON(ret == -EEXIST);
2843 set_balance_control(bctl);
2844 } else {
2845 BUG_ON(ret != -EEXIST);
2846 spin_lock(&fs_info->balance_lock);
2847 update_balance_args(bctl);
2848 spin_unlock(&fs_info->balance_lock);
2849 }
c9e9f97b 2850
837d5b6e 2851 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2852 mutex_unlock(&fs_info->balance_mutex);
2853
2854 ret = __btrfs_balance(fs_info);
2855
2856 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2857 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2858
2859 if (bargs) {
2860 memset(bargs, 0, sizeof(*bargs));
19a39dce 2861 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2862 }
2863
837d5b6e
ID
2864 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2865 balance_need_close(fs_info)) {
2866 __cancel_balance(fs_info);
2867 }
2868
5af3e8cc
SB
2869 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2870 fs_info->num_tolerated_disk_barrier_failures =
2871 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2872 }
2873
837d5b6e 2874 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2875
2876 return ret;
2877out:
59641015
ID
2878 if (bctl->flags & BTRFS_BALANCE_RESUME)
2879 __cancel_balance(fs_info);
2880 else
2881 kfree(bctl);
2882 return ret;
2883}
2884
2885static int balance_kthread(void *data)
2886{
2b6ba629 2887 struct btrfs_fs_info *fs_info = data;
9555c6c1 2888 int ret = 0;
59641015
ID
2889
2890 mutex_lock(&fs_info->volume_mutex);
2891 mutex_lock(&fs_info->balance_mutex);
2892
2b6ba629 2893 if (fs_info->balance_ctl) {
9555c6c1 2894 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 2895 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 2896 }
59641015
ID
2897
2898 mutex_unlock(&fs_info->balance_mutex);
2899 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 2900
59641015
ID
2901 return ret;
2902}
2903
2b6ba629
ID
2904int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2905{
2906 struct task_struct *tsk;
2907
2908 spin_lock(&fs_info->balance_lock);
2909 if (!fs_info->balance_ctl) {
2910 spin_unlock(&fs_info->balance_lock);
2911 return 0;
2912 }
2913 spin_unlock(&fs_info->balance_lock);
2914
2915 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2916 printk(KERN_INFO "btrfs: force skipping balance\n");
2917 return 0;
2918 }
2919
2920 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2921 if (IS_ERR(tsk))
2922 return PTR_ERR(tsk);
2923
2924 return 0;
2925}
2926
68310a5e 2927int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 2928{
59641015
ID
2929 struct btrfs_balance_control *bctl;
2930 struct btrfs_balance_item *item;
2931 struct btrfs_disk_balance_args disk_bargs;
2932 struct btrfs_path *path;
2933 struct extent_buffer *leaf;
2934 struct btrfs_key key;
2935 int ret;
2936
2937 path = btrfs_alloc_path();
2938 if (!path)
2939 return -ENOMEM;
2940
59641015
ID
2941 key.objectid = BTRFS_BALANCE_OBJECTID;
2942 key.type = BTRFS_BALANCE_ITEM_KEY;
2943 key.offset = 0;
2944
68310a5e 2945 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 2946 if (ret < 0)
68310a5e 2947 goto out;
59641015
ID
2948 if (ret > 0) { /* ret = -ENOENT; */
2949 ret = 0;
68310a5e
ID
2950 goto out;
2951 }
2952
2953 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2954 if (!bctl) {
2955 ret = -ENOMEM;
2956 goto out;
59641015
ID
2957 }
2958
2959 leaf = path->nodes[0];
2960 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2961
68310a5e
ID
2962 bctl->fs_info = fs_info;
2963 bctl->flags = btrfs_balance_flags(leaf, item);
2964 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
2965
2966 btrfs_balance_data(leaf, item, &disk_bargs);
2967 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2968 btrfs_balance_meta(leaf, item, &disk_bargs);
2969 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2970 btrfs_balance_sys(leaf, item, &disk_bargs);
2971 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2972
68310a5e
ID
2973 mutex_lock(&fs_info->volume_mutex);
2974 mutex_lock(&fs_info->balance_mutex);
59641015 2975
68310a5e
ID
2976 set_balance_control(bctl);
2977
2978 mutex_unlock(&fs_info->balance_mutex);
2979 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
2980out:
2981 btrfs_free_path(path);
ec44a35c
CM
2982 return ret;
2983}
2984
837d5b6e
ID
2985int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2986{
2987 int ret = 0;
2988
2989 mutex_lock(&fs_info->balance_mutex);
2990 if (!fs_info->balance_ctl) {
2991 mutex_unlock(&fs_info->balance_mutex);
2992 return -ENOTCONN;
2993 }
2994
2995 if (atomic_read(&fs_info->balance_running)) {
2996 atomic_inc(&fs_info->balance_pause_req);
2997 mutex_unlock(&fs_info->balance_mutex);
2998
2999 wait_event(fs_info->balance_wait_q,
3000 atomic_read(&fs_info->balance_running) == 0);
3001
3002 mutex_lock(&fs_info->balance_mutex);
3003 /* we are good with balance_ctl ripped off from under us */
3004 BUG_ON(atomic_read(&fs_info->balance_running));
3005 atomic_dec(&fs_info->balance_pause_req);
3006 } else {
3007 ret = -ENOTCONN;
3008 }
3009
3010 mutex_unlock(&fs_info->balance_mutex);
3011 return ret;
3012}
3013
a7e99c69
ID
3014int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3015{
3016 mutex_lock(&fs_info->balance_mutex);
3017 if (!fs_info->balance_ctl) {
3018 mutex_unlock(&fs_info->balance_mutex);
3019 return -ENOTCONN;
3020 }
3021
3022 atomic_inc(&fs_info->balance_cancel_req);
3023 /*
3024 * if we are running just wait and return, balance item is
3025 * deleted in btrfs_balance in this case
3026 */
3027 if (atomic_read(&fs_info->balance_running)) {
3028 mutex_unlock(&fs_info->balance_mutex);
3029 wait_event(fs_info->balance_wait_q,
3030 atomic_read(&fs_info->balance_running) == 0);
3031 mutex_lock(&fs_info->balance_mutex);
3032 } else {
3033 /* __cancel_balance needs volume_mutex */
3034 mutex_unlock(&fs_info->balance_mutex);
3035 mutex_lock(&fs_info->volume_mutex);
3036 mutex_lock(&fs_info->balance_mutex);
3037
3038 if (fs_info->balance_ctl)
3039 __cancel_balance(fs_info);
3040
3041 mutex_unlock(&fs_info->volume_mutex);
3042 }
3043
3044 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3045 atomic_dec(&fs_info->balance_cancel_req);
3046 mutex_unlock(&fs_info->balance_mutex);
3047 return 0;
3048}
3049
8f18cf13
CM
3050/*
3051 * shrinking a device means finding all of the device extents past
3052 * the new size, and then following the back refs to the chunks.
3053 * The chunk relocation code actually frees the device extent
3054 */
3055int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3056{
3057 struct btrfs_trans_handle *trans;
3058 struct btrfs_root *root = device->dev_root;
3059 struct btrfs_dev_extent *dev_extent = NULL;
3060 struct btrfs_path *path;
3061 u64 length;
3062 u64 chunk_tree;
3063 u64 chunk_objectid;
3064 u64 chunk_offset;
3065 int ret;
3066 int slot;
ba1bf481
JB
3067 int failed = 0;
3068 bool retried = false;
8f18cf13
CM
3069 struct extent_buffer *l;
3070 struct btrfs_key key;
6c41761f 3071 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3072 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3073 u64 old_size = device->total_bytes;
8f18cf13
CM
3074 u64 diff = device->total_bytes - new_size;
3075
2b82032c
YZ
3076 if (new_size >= device->total_bytes)
3077 return -EINVAL;
8f18cf13
CM
3078
3079 path = btrfs_alloc_path();
3080 if (!path)
3081 return -ENOMEM;
3082
8f18cf13
CM
3083 path->reada = 2;
3084
7d9eb12c
CM
3085 lock_chunks(root);
3086
8f18cf13 3087 device->total_bytes = new_size;
2bf64758 3088 if (device->writeable) {
2b82032c 3089 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3090 spin_lock(&root->fs_info->free_chunk_lock);
3091 root->fs_info->free_chunk_space -= diff;
3092 spin_unlock(&root->fs_info->free_chunk_lock);
3093 }
7d9eb12c 3094 unlock_chunks(root);
8f18cf13 3095
ba1bf481 3096again:
8f18cf13
CM
3097 key.objectid = device->devid;
3098 key.offset = (u64)-1;
3099 key.type = BTRFS_DEV_EXTENT_KEY;
3100
213e64da 3101 do {
8f18cf13
CM
3102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3103 if (ret < 0)
3104 goto done;
3105
3106 ret = btrfs_previous_item(root, path, 0, key.type);
3107 if (ret < 0)
3108 goto done;
3109 if (ret) {
3110 ret = 0;
b3b4aa74 3111 btrfs_release_path(path);
bf1fb512 3112 break;
8f18cf13
CM
3113 }
3114
3115 l = path->nodes[0];
3116 slot = path->slots[0];
3117 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3118
ba1bf481 3119 if (key.objectid != device->devid) {
b3b4aa74 3120 btrfs_release_path(path);
bf1fb512 3121 break;
ba1bf481 3122 }
8f18cf13
CM
3123
3124 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3125 length = btrfs_dev_extent_length(l, dev_extent);
3126
ba1bf481 3127 if (key.offset + length <= new_size) {
b3b4aa74 3128 btrfs_release_path(path);
d6397bae 3129 break;
ba1bf481 3130 }
8f18cf13
CM
3131
3132 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3133 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3134 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3135 btrfs_release_path(path);
8f18cf13
CM
3136
3137 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3138 chunk_offset);
ba1bf481 3139 if (ret && ret != -ENOSPC)
8f18cf13 3140 goto done;
ba1bf481
JB
3141 if (ret == -ENOSPC)
3142 failed++;
213e64da 3143 } while (key.offset-- > 0);
ba1bf481
JB
3144
3145 if (failed && !retried) {
3146 failed = 0;
3147 retried = true;
3148 goto again;
3149 } else if (failed && retried) {
3150 ret = -ENOSPC;
3151 lock_chunks(root);
3152
3153 device->total_bytes = old_size;
3154 if (device->writeable)
3155 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3156 spin_lock(&root->fs_info->free_chunk_lock);
3157 root->fs_info->free_chunk_space += diff;
3158 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3159 unlock_chunks(root);
3160 goto done;
8f18cf13
CM
3161 }
3162
d6397bae 3163 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3164 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3165 if (IS_ERR(trans)) {
3166 ret = PTR_ERR(trans);
3167 goto done;
3168 }
3169
d6397bae
CB
3170 lock_chunks(root);
3171
3172 device->disk_total_bytes = new_size;
3173 /* Now btrfs_update_device() will change the on-disk size. */
3174 ret = btrfs_update_device(trans, device);
3175 if (ret) {
3176 unlock_chunks(root);
3177 btrfs_end_transaction(trans, root);
3178 goto done;
3179 }
3180 WARN_ON(diff > old_total);
3181 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3182 unlock_chunks(root);
3183 btrfs_end_transaction(trans, root);
8f18cf13
CM
3184done:
3185 btrfs_free_path(path);
3186 return ret;
3187}
3188
125ccb0a 3189static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3190 struct btrfs_key *key,
3191 struct btrfs_chunk *chunk, int item_size)
3192{
6c41761f 3193 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3194 struct btrfs_disk_key disk_key;
3195 u32 array_size;
3196 u8 *ptr;
3197
3198 array_size = btrfs_super_sys_array_size(super_copy);
3199 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3200 return -EFBIG;
3201
3202 ptr = super_copy->sys_chunk_array + array_size;
3203 btrfs_cpu_key_to_disk(&disk_key, key);
3204 memcpy(ptr, &disk_key, sizeof(disk_key));
3205 ptr += sizeof(disk_key);
3206 memcpy(ptr, chunk, item_size);
3207 item_size += sizeof(disk_key);
3208 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3209 return 0;
3210}
3211
73c5de00
AJ
3212/*
3213 * sort the devices in descending order by max_avail, total_avail
3214 */
3215static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3216{
73c5de00
AJ
3217 const struct btrfs_device_info *di_a = a;
3218 const struct btrfs_device_info *di_b = b;
9b3f68b9 3219
73c5de00 3220 if (di_a->max_avail > di_b->max_avail)
b2117a39 3221 return -1;
73c5de00 3222 if (di_a->max_avail < di_b->max_avail)
b2117a39 3223 return 1;
73c5de00
AJ
3224 if (di_a->total_avail > di_b->total_avail)
3225 return -1;
3226 if (di_a->total_avail < di_b->total_avail)
3227 return 1;
3228 return 0;
b2117a39 3229}
0b86a832 3230
73c5de00
AJ
3231static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *extent_root,
3233 struct map_lookup **map_ret,
3234 u64 *num_bytes_out, u64 *stripe_size_out,
3235 u64 start, u64 type)
b2117a39 3236{
73c5de00
AJ
3237 struct btrfs_fs_info *info = extent_root->fs_info;
3238 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3239 struct list_head *cur;
3240 struct map_lookup *map = NULL;
3241 struct extent_map_tree *em_tree;
3242 struct extent_map *em;
3243 struct btrfs_device_info *devices_info = NULL;
3244 u64 total_avail;
3245 int num_stripes; /* total number of stripes to allocate */
3246 int sub_stripes; /* sub_stripes info for map */
3247 int dev_stripes; /* stripes per dev */
3248 int devs_max; /* max devs to use */
3249 int devs_min; /* min devs needed */
3250 int devs_increment; /* ndevs has to be a multiple of this */
3251 int ncopies; /* how many copies to data has */
3252 int ret;
3253 u64 max_stripe_size;
3254 u64 max_chunk_size;
3255 u64 stripe_size;
3256 u64 num_bytes;
3257 int ndevs;
3258 int i;
3259 int j;
593060d7 3260
0c460c0d 3261 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3262
73c5de00
AJ
3263 if (list_empty(&fs_devices->alloc_list))
3264 return -ENOSPC;
b2117a39 3265
73c5de00
AJ
3266 sub_stripes = 1;
3267 dev_stripes = 1;
3268 devs_increment = 1;
3269 ncopies = 1;
3270 devs_max = 0; /* 0 == as many as possible */
3271 devs_min = 1;
3272
3273 /*
3274 * define the properties of each RAID type.
3275 * FIXME: move this to a global table and use it in all RAID
3276 * calculation code
3277 */
3278 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3279 dev_stripes = 2;
b2117a39 3280 ncopies = 2;
73c5de00
AJ
3281 devs_max = 1;
3282 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3283 devs_min = 2;
3284 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3285 devs_increment = 2;
b2117a39 3286 ncopies = 2;
73c5de00
AJ
3287 devs_max = 2;
3288 devs_min = 2;
3289 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3290 sub_stripes = 2;
3291 devs_increment = 2;
3292 ncopies = 2;
3293 devs_min = 4;
3294 } else {
3295 devs_max = 1;
3296 }
b2117a39 3297
9b3f68b9 3298 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3299 max_stripe_size = 1024 * 1024 * 1024;
3300 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3301 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3302 /* for larger filesystems, use larger metadata chunks */
3303 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3304 max_stripe_size = 1024 * 1024 * 1024;
3305 else
3306 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3307 max_chunk_size = max_stripe_size;
a40a90a0 3308 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3309 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3310 max_chunk_size = 2 * max_stripe_size;
3311 } else {
3312 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3313 type);
3314 BUG_ON(1);
9b3f68b9
CM
3315 }
3316
2b82032c
YZ
3317 /* we don't want a chunk larger than 10% of writeable space */
3318 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3319 max_chunk_size);
9b3f68b9 3320
73c5de00
AJ
3321 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3322 GFP_NOFS);
3323 if (!devices_info)
3324 return -ENOMEM;
0cad8a11 3325
73c5de00 3326 cur = fs_devices->alloc_list.next;
9b3f68b9 3327
9f680ce0 3328 /*
73c5de00
AJ
3329 * in the first pass through the devices list, we gather information
3330 * about the available holes on each device.
9f680ce0 3331 */
73c5de00
AJ
3332 ndevs = 0;
3333 while (cur != &fs_devices->alloc_list) {
3334 struct btrfs_device *device;
3335 u64 max_avail;
3336 u64 dev_offset;
b2117a39 3337
73c5de00 3338 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3339
73c5de00 3340 cur = cur->next;
b2117a39 3341
73c5de00
AJ
3342 if (!device->writeable) {
3343 printk(KERN_ERR
3344 "btrfs: read-only device in alloc_list\n");
3345 WARN_ON(1);
3346 continue;
3347 }
b2117a39 3348
73c5de00
AJ
3349 if (!device->in_fs_metadata)
3350 continue;
b2117a39 3351
73c5de00
AJ
3352 if (device->total_bytes > device->bytes_used)
3353 total_avail = device->total_bytes - device->bytes_used;
3354 else
3355 total_avail = 0;
38c01b96 3356
3357 /* If there is no space on this device, skip it. */
3358 if (total_avail == 0)
3359 continue;
b2117a39 3360
125ccb0a 3361 ret = find_free_dev_extent(device,
73c5de00
AJ
3362 max_stripe_size * dev_stripes,
3363 &dev_offset, &max_avail);
3364 if (ret && ret != -ENOSPC)
3365 goto error;
b2117a39 3366
73c5de00
AJ
3367 if (ret == 0)
3368 max_avail = max_stripe_size * dev_stripes;
b2117a39 3369
73c5de00
AJ
3370 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3371 continue;
b2117a39 3372
73c5de00
AJ
3373 devices_info[ndevs].dev_offset = dev_offset;
3374 devices_info[ndevs].max_avail = max_avail;
3375 devices_info[ndevs].total_avail = total_avail;
3376 devices_info[ndevs].dev = device;
3377 ++ndevs;
3378 }
b2117a39 3379
73c5de00
AJ
3380 /*
3381 * now sort the devices by hole size / available space
3382 */
3383 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3384 btrfs_cmp_device_info, NULL);
b2117a39 3385
73c5de00
AJ
3386 /* round down to number of usable stripes */
3387 ndevs -= ndevs % devs_increment;
b2117a39 3388
73c5de00
AJ
3389 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3390 ret = -ENOSPC;
3391 goto error;
b2117a39 3392 }
9f680ce0 3393
73c5de00
AJ
3394 if (devs_max && ndevs > devs_max)
3395 ndevs = devs_max;
3396 /*
3397 * the primary goal is to maximize the number of stripes, so use as many
3398 * devices as possible, even if the stripes are not maximum sized.
3399 */
3400 stripe_size = devices_info[ndevs-1].max_avail;
3401 num_stripes = ndevs * dev_stripes;
b2117a39 3402
37db63a4 3403 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3404 stripe_size = max_chunk_size * ncopies;
37db63a4 3405 do_div(stripe_size, ndevs);
b2117a39 3406 }
b2117a39 3407
73c5de00 3408 do_div(stripe_size, dev_stripes);
37db63a4
ID
3409
3410 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3411 do_div(stripe_size, BTRFS_STRIPE_LEN);
3412 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3413
3414 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3415 if (!map) {
3416 ret = -ENOMEM;
3417 goto error;
3418 }
3419 map->num_stripes = num_stripes;
9b3f68b9 3420
73c5de00
AJ
3421 for (i = 0; i < ndevs; ++i) {
3422 for (j = 0; j < dev_stripes; ++j) {
3423 int s = i * dev_stripes + j;
3424 map->stripes[s].dev = devices_info[i].dev;
3425 map->stripes[s].physical = devices_info[i].dev_offset +
3426 j * stripe_size;
6324fbf3 3427 }
6324fbf3 3428 }
2b82032c 3429 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3430 map->stripe_len = BTRFS_STRIPE_LEN;
3431 map->io_align = BTRFS_STRIPE_LEN;
3432 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3433 map->type = type;
2b82032c 3434 map->sub_stripes = sub_stripes;
0b86a832 3435
2b82032c 3436 *map_ret = map;
73c5de00 3437 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3438
73c5de00
AJ
3439 *stripe_size_out = stripe_size;
3440 *num_bytes_out = num_bytes;
0b86a832 3441
73c5de00 3442 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3443
172ddd60 3444 em = alloc_extent_map();
2b82032c 3445 if (!em) {
b2117a39
MX
3446 ret = -ENOMEM;
3447 goto error;
593060d7 3448 }
2b82032c
YZ
3449 em->bdev = (struct block_device *)map;
3450 em->start = start;
73c5de00 3451 em->len = num_bytes;
2b82032c
YZ
3452 em->block_start = 0;
3453 em->block_len = em->len;
593060d7 3454
2b82032c 3455 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3456 write_lock(&em_tree->lock);
2b82032c 3457 ret = add_extent_mapping(em_tree, em);
890871be 3458 write_unlock(&em_tree->lock);
2b82032c 3459 free_extent_map(em);
1dd4602f
MF
3460 if (ret)
3461 goto error;
0b86a832 3462
2b82032c
YZ
3463 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3464 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3465 start, num_bytes);
79787eaa
JM
3466 if (ret)
3467 goto error;
611f0e00 3468
73c5de00
AJ
3469 for (i = 0; i < map->num_stripes; ++i) {
3470 struct btrfs_device *device;
3471 u64 dev_offset;
3472
3473 device = map->stripes[i].dev;
3474 dev_offset = map->stripes[i].physical;
0b86a832
CM
3475
3476 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3477 info->chunk_root->root_key.objectid,
3478 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3479 start, dev_offset, stripe_size);
79787eaa
JM
3480 if (ret) {
3481 btrfs_abort_transaction(trans, extent_root, ret);
3482 goto error;
3483 }
2b82032c
YZ
3484 }
3485
b2117a39 3486 kfree(devices_info);
2b82032c 3487 return 0;
b2117a39
MX
3488
3489error:
3490 kfree(map);
3491 kfree(devices_info);
3492 return ret;
2b82032c
YZ
3493}
3494
3495static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3496 struct btrfs_root *extent_root,
3497 struct map_lookup *map, u64 chunk_offset,
3498 u64 chunk_size, u64 stripe_size)
3499{
3500 u64 dev_offset;
3501 struct btrfs_key key;
3502 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3503 struct btrfs_device *device;
3504 struct btrfs_chunk *chunk;
3505 struct btrfs_stripe *stripe;
3506 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3507 int index = 0;
3508 int ret;
3509
3510 chunk = kzalloc(item_size, GFP_NOFS);
3511 if (!chunk)
3512 return -ENOMEM;
3513
3514 index = 0;
3515 while (index < map->num_stripes) {
3516 device = map->stripes[index].dev;
3517 device->bytes_used += stripe_size;
0b86a832 3518 ret = btrfs_update_device(trans, device);
3acd3953
MF
3519 if (ret)
3520 goto out_free;
2b82032c
YZ
3521 index++;
3522 }
3523
2bf64758
JB
3524 spin_lock(&extent_root->fs_info->free_chunk_lock);
3525 extent_root->fs_info->free_chunk_space -= (stripe_size *
3526 map->num_stripes);
3527 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3528
2b82032c
YZ
3529 index = 0;
3530 stripe = &chunk->stripe;
3531 while (index < map->num_stripes) {
3532 device = map->stripes[index].dev;
3533 dev_offset = map->stripes[index].physical;
0b86a832 3534
e17cade2
CM
3535 btrfs_set_stack_stripe_devid(stripe, device->devid);
3536 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3537 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3538 stripe++;
0b86a832
CM
3539 index++;
3540 }
3541
2b82032c 3542 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3543 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3544 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3545 btrfs_set_stack_chunk_type(chunk, map->type);
3546 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3547 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3548 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3549 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3550 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3551
2b82032c
YZ
3552 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3553 key.type = BTRFS_CHUNK_ITEM_KEY;
3554 key.offset = chunk_offset;
0b86a832 3555
2b82032c 3556 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3557
4ed1d16e
MF
3558 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3559 /*
3560 * TODO: Cleanup of inserted chunk root in case of
3561 * failure.
3562 */
125ccb0a 3563 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3564 item_size);
8f18cf13 3565 }
1abe9b8a 3566
3acd3953 3567out_free:
0b86a832 3568 kfree(chunk);
4ed1d16e 3569 return ret;
2b82032c 3570}
0b86a832 3571
2b82032c
YZ
3572/*
3573 * Chunk allocation falls into two parts. The first part does works
3574 * that make the new allocated chunk useable, but not do any operation
3575 * that modifies the chunk tree. The second part does the works that
3576 * require modifying the chunk tree. This division is important for the
3577 * bootstrap process of adding storage to a seed btrfs.
3578 */
3579int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3580 struct btrfs_root *extent_root, u64 type)
3581{
3582 u64 chunk_offset;
3583 u64 chunk_size;
3584 u64 stripe_size;
3585 struct map_lookup *map;
3586 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3587 int ret;
3588
3589 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3590 &chunk_offset);
3591 if (ret)
3592 return ret;
3593
3594 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3595 &stripe_size, chunk_offset, type);
3596 if (ret)
3597 return ret;
3598
3599 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3600 chunk_size, stripe_size);
79787eaa
JM
3601 if (ret)
3602 return ret;
2b82032c
YZ
3603 return 0;
3604}
3605
d397712b 3606static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3607 struct btrfs_root *root,
3608 struct btrfs_device *device)
3609{
3610 u64 chunk_offset;
3611 u64 sys_chunk_offset;
3612 u64 chunk_size;
3613 u64 sys_chunk_size;
3614 u64 stripe_size;
3615 u64 sys_stripe_size;
3616 u64 alloc_profile;
3617 struct map_lookup *map;
3618 struct map_lookup *sys_map;
3619 struct btrfs_fs_info *fs_info = root->fs_info;
3620 struct btrfs_root *extent_root = fs_info->extent_root;
3621 int ret;
3622
3623 ret = find_next_chunk(fs_info->chunk_root,
3624 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3625 if (ret)
3626 return ret;
2b82032c
YZ
3627
3628 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3629 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3630 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3631
3632 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3633 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3634 if (ret)
3635 return ret;
2b82032c
YZ
3636
3637 sys_chunk_offset = chunk_offset + chunk_size;
3638
3639 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3640 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3641 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3642
3643 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3644 &sys_chunk_size, &sys_stripe_size,
3645 sys_chunk_offset, alloc_profile);
005d6427
DS
3646 if (ret) {
3647 btrfs_abort_transaction(trans, root, ret);
3648 goto out;
3649 }
2b82032c
YZ
3650
3651 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
005d6427
DS
3652 if (ret) {
3653 btrfs_abort_transaction(trans, root, ret);
3654 goto out;
3655 }
2b82032c
YZ
3656
3657 /*
3658 * Modifying chunk tree needs allocating new blocks from both
3659 * system block group and metadata block group. So we only can
3660 * do operations require modifying the chunk tree after both
3661 * block groups were created.
3662 */
3663 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3664 chunk_size, stripe_size);
005d6427
DS
3665 if (ret) {
3666 btrfs_abort_transaction(trans, root, ret);
3667 goto out;
3668 }
2b82032c
YZ
3669
3670 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3671 sys_chunk_offset, sys_chunk_size,
3672 sys_stripe_size);
79787eaa 3673 if (ret)
005d6427 3674 btrfs_abort_transaction(trans, root, ret);
79787eaa 3675
005d6427 3676out:
79787eaa 3677
79787eaa 3678 return ret;
2b82032c
YZ
3679}
3680
3681int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3682{
3683 struct extent_map *em;
3684 struct map_lookup *map;
3685 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3686 int readonly = 0;
3687 int i;
3688
890871be 3689 read_lock(&map_tree->map_tree.lock);
2b82032c 3690 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3691 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3692 if (!em)
3693 return 1;
3694
f48b9075
JB
3695 if (btrfs_test_opt(root, DEGRADED)) {
3696 free_extent_map(em);
3697 return 0;
3698 }
3699
2b82032c
YZ
3700 map = (struct map_lookup *)em->bdev;
3701 for (i = 0; i < map->num_stripes; i++) {
3702 if (!map->stripes[i].dev->writeable) {
3703 readonly = 1;
3704 break;
3705 }
3706 }
0b86a832 3707 free_extent_map(em);
2b82032c 3708 return readonly;
0b86a832
CM
3709}
3710
3711void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3712{
a8067e02 3713 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3714}
3715
3716void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3717{
3718 struct extent_map *em;
3719
d397712b 3720 while (1) {
890871be 3721 write_lock(&tree->map_tree.lock);
0b86a832
CM
3722 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3723 if (em)
3724 remove_extent_mapping(&tree->map_tree, em);
890871be 3725 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3726 if (!em)
3727 break;
3728 kfree(em->bdev);
3729 /* once for us */
3730 free_extent_map(em);
3731 /* once for the tree */
3732 free_extent_map(em);
3733 }
3734}
3735
f188591e
CM
3736int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3737{
3738 struct extent_map *em;
3739 struct map_lookup *map;
3740 struct extent_map_tree *em_tree = &map_tree->map_tree;
3741 int ret;
3742
890871be 3743 read_lock(&em_tree->lock);
f188591e 3744 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3745 read_unlock(&em_tree->lock);
f188591e
CM
3746 BUG_ON(!em);
3747
3748 BUG_ON(em->start > logical || em->start + em->len < logical);
3749 map = (struct map_lookup *)em->bdev;
3750 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3751 ret = map->num_stripes;
321aecc6
CM
3752 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3753 ret = map->sub_stripes;
f188591e
CM
3754 else
3755 ret = 1;
3756 free_extent_map(em);
f188591e
CM
3757 return ret;
3758}
3759
dfe25020
CM
3760static int find_live_mirror(struct map_lookup *map, int first, int num,
3761 int optimal)
3762{
3763 int i;
3764 if (map->stripes[optimal].dev->bdev)
3765 return optimal;
3766 for (i = first; i < first + num; i++) {
3767 if (map->stripes[i].dev->bdev)
3768 return i;
3769 }
3770 /* we couldn't find one that doesn't fail. Just return something
3771 * and the io error handling code will clean up eventually
3772 */
3773 return optimal;
3774}
3775
f2d8d74d
CM
3776static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3777 u64 logical, u64 *length,
a1d3c478 3778 struct btrfs_bio **bbio_ret,
7eaceacc 3779 int mirror_num)
0b86a832
CM
3780{
3781 struct extent_map *em;
3782 struct map_lookup *map;
3783 struct extent_map_tree *em_tree = &map_tree->map_tree;
3784 u64 offset;
593060d7 3785 u64 stripe_offset;
fce3bb9a 3786 u64 stripe_end_offset;
593060d7 3787 u64 stripe_nr;
fce3bb9a
LD
3788 u64 stripe_nr_orig;
3789 u64 stripe_nr_end;
593060d7 3790 int stripe_index;
cea9e445 3791 int i;
de11cc12 3792 int ret = 0;
f2d8d74d 3793 int num_stripes;
a236aed1 3794 int max_errors = 0;
a1d3c478 3795 struct btrfs_bio *bbio = NULL;
0b86a832 3796
890871be 3797 read_lock(&em_tree->lock);
0b86a832 3798 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3799 read_unlock(&em_tree->lock);
f2d8d74d 3800
3b951516 3801 if (!em) {
48940662 3802 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
d397712b
CM
3803 (unsigned long long)logical,
3804 (unsigned long long)*length);
f2d8d74d 3805 BUG();
3b951516 3806 }
0b86a832
CM
3807
3808 BUG_ON(em->start > logical || em->start + em->len < logical);
3809 map = (struct map_lookup *)em->bdev;
3810 offset = logical - em->start;
593060d7 3811
f188591e
CM
3812 if (mirror_num > map->num_stripes)
3813 mirror_num = 0;
3814
593060d7
CM
3815 stripe_nr = offset;
3816 /*
3817 * stripe_nr counts the total number of stripes we have to stride
3818 * to get to this block
3819 */
3820 do_div(stripe_nr, map->stripe_len);
3821
3822 stripe_offset = stripe_nr * map->stripe_len;
3823 BUG_ON(offset < stripe_offset);
3824
3825 /* stripe_offset is the offset of this block in its stripe*/
3826 stripe_offset = offset - stripe_offset;
3827
fce3bb9a
LD
3828 if (rw & REQ_DISCARD)
3829 *length = min_t(u64, em->len - offset, *length);
52ba6929 3830 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3831 /* we limit the length of each bio to what fits in a stripe */
3832 *length = min_t(u64, em->len - offset,
fce3bb9a 3833 map->stripe_len - stripe_offset);
cea9e445
CM
3834 } else {
3835 *length = em->len - offset;
3836 }
f2d8d74d 3837
a1d3c478 3838 if (!bbio_ret)
cea9e445
CM
3839 goto out;
3840
f2d8d74d 3841 num_stripes = 1;
cea9e445 3842 stripe_index = 0;
fce3bb9a
LD
3843 stripe_nr_orig = stripe_nr;
3844 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3845 (~(map->stripe_len - 1));
3846 do_div(stripe_nr_end, map->stripe_len);
3847 stripe_end_offset = stripe_nr_end * map->stripe_len -
3848 (offset + *length);
3849 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3850 if (rw & REQ_DISCARD)
3851 num_stripes = min_t(u64, map->num_stripes,
3852 stripe_nr_end - stripe_nr_orig);
3853 stripe_index = do_div(stripe_nr, map->num_stripes);
3854 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3855 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3856 num_stripes = map->num_stripes;
2fff734f 3857 else if (mirror_num)
f188591e 3858 stripe_index = mirror_num - 1;
dfe25020
CM
3859 else {
3860 stripe_index = find_live_mirror(map, 0,
3861 map->num_stripes,
3862 current->pid % map->num_stripes);
a1d3c478 3863 mirror_num = stripe_index + 1;
dfe25020 3864 }
2fff734f 3865
611f0e00 3866 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3867 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3868 num_stripes = map->num_stripes;
a1d3c478 3869 } else if (mirror_num) {
f188591e 3870 stripe_index = mirror_num - 1;
a1d3c478
JS
3871 } else {
3872 mirror_num = 1;
3873 }
2fff734f 3874
321aecc6
CM
3875 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3876 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3877
3878 stripe_index = do_div(stripe_nr, factor);
3879 stripe_index *= map->sub_stripes;
3880
7eaceacc 3881 if (rw & REQ_WRITE)
f2d8d74d 3882 num_stripes = map->sub_stripes;
fce3bb9a
LD
3883 else if (rw & REQ_DISCARD)
3884 num_stripes = min_t(u64, map->sub_stripes *
3885 (stripe_nr_end - stripe_nr_orig),
3886 map->num_stripes);
321aecc6
CM
3887 else if (mirror_num)
3888 stripe_index += mirror_num - 1;
dfe25020 3889 else {
3e74317a 3890 int old_stripe_index = stripe_index;
dfe25020
CM
3891 stripe_index = find_live_mirror(map, stripe_index,
3892 map->sub_stripes, stripe_index +
3893 current->pid % map->sub_stripes);
3e74317a 3894 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 3895 }
8790d502
CM
3896 } else {
3897 /*
3898 * after this do_div call, stripe_nr is the number of stripes
3899 * on this device we have to walk to find the data, and
3900 * stripe_index is the number of our device in the stripe array
3901 */
3902 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3903 mirror_num = stripe_index + 1;
8790d502 3904 }
593060d7 3905 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3906
de11cc12
LZ
3907 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3908 if (!bbio) {
3909 ret = -ENOMEM;
3910 goto out;
3911 }
3912 atomic_set(&bbio->error, 0);
3913
fce3bb9a 3914 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3915 int factor = 0;
3916 int sub_stripes = 0;
3917 u64 stripes_per_dev = 0;
3918 u32 remaining_stripes = 0;
b89203f7 3919 u32 last_stripe = 0;
ec9ef7a1
LZ
3920
3921 if (map->type &
3922 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3923 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3924 sub_stripes = 1;
3925 else
3926 sub_stripes = map->sub_stripes;
3927
3928 factor = map->num_stripes / sub_stripes;
3929 stripes_per_dev = div_u64_rem(stripe_nr_end -
3930 stripe_nr_orig,
3931 factor,
3932 &remaining_stripes);
b89203f7
LB
3933 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3934 last_stripe *= sub_stripes;
ec9ef7a1
LZ
3935 }
3936
fce3bb9a 3937 for (i = 0; i < num_stripes; i++) {
a1d3c478 3938 bbio->stripes[i].physical =
f2d8d74d
CM
3939 map->stripes[stripe_index].physical +
3940 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3941 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3942
ec9ef7a1
LZ
3943 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3944 BTRFS_BLOCK_GROUP_RAID10)) {
3945 bbio->stripes[i].length = stripes_per_dev *
3946 map->stripe_len;
b89203f7 3947
ec9ef7a1
LZ
3948 if (i / sub_stripes < remaining_stripes)
3949 bbio->stripes[i].length +=
3950 map->stripe_len;
b89203f7
LB
3951
3952 /*
3953 * Special for the first stripe and
3954 * the last stripe:
3955 *
3956 * |-------|...|-------|
3957 * |----------|
3958 * off end_off
3959 */
ec9ef7a1 3960 if (i < sub_stripes)
a1d3c478 3961 bbio->stripes[i].length -=
fce3bb9a 3962 stripe_offset;
b89203f7
LB
3963
3964 if (stripe_index >= last_stripe &&
3965 stripe_index <= (last_stripe +
3966 sub_stripes - 1))
a1d3c478 3967 bbio->stripes[i].length -=
fce3bb9a 3968 stripe_end_offset;
b89203f7 3969
ec9ef7a1
LZ
3970 if (i == sub_stripes - 1)
3971 stripe_offset = 0;
fce3bb9a 3972 } else
a1d3c478 3973 bbio->stripes[i].length = *length;
fce3bb9a
LD
3974
3975 stripe_index++;
3976 if (stripe_index == map->num_stripes) {
3977 /* This could only happen for RAID0/10 */
3978 stripe_index = 0;
3979 stripe_nr++;
3980 }
3981 }
3982 } else {
3983 for (i = 0; i < num_stripes; i++) {
a1d3c478 3984 bbio->stripes[i].physical =
212a17ab
LT
3985 map->stripes[stripe_index].physical +
3986 stripe_offset +
3987 stripe_nr * map->stripe_len;
a1d3c478 3988 bbio->stripes[i].dev =
212a17ab 3989 map->stripes[stripe_index].dev;
fce3bb9a 3990 stripe_index++;
f2d8d74d 3991 }
593060d7 3992 }
de11cc12
LZ
3993
3994 if (rw & REQ_WRITE) {
3995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3996 BTRFS_BLOCK_GROUP_RAID10 |
3997 BTRFS_BLOCK_GROUP_DUP)) {
3998 max_errors = 1;
3999 }
f2d8d74d 4000 }
de11cc12
LZ
4001
4002 *bbio_ret = bbio;
4003 bbio->num_stripes = num_stripes;
4004 bbio->max_errors = max_errors;
4005 bbio->mirror_num = mirror_num;
cea9e445 4006out:
0b86a832 4007 free_extent_map(em);
de11cc12 4008 return ret;
0b86a832
CM
4009}
4010
f2d8d74d
CM
4011int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
4012 u64 logical, u64 *length,
a1d3c478 4013 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 4014{
a1d3c478 4015 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 4016 mirror_num);
f2d8d74d
CM
4017}
4018
a512bbf8
YZ
4019int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4020 u64 chunk_start, u64 physical, u64 devid,
4021 u64 **logical, int *naddrs, int *stripe_len)
4022{
4023 struct extent_map_tree *em_tree = &map_tree->map_tree;
4024 struct extent_map *em;
4025 struct map_lookup *map;
4026 u64 *buf;
4027 u64 bytenr;
4028 u64 length;
4029 u64 stripe_nr;
4030 int i, j, nr = 0;
4031
890871be 4032 read_lock(&em_tree->lock);
a512bbf8 4033 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 4034 read_unlock(&em_tree->lock);
a512bbf8
YZ
4035
4036 BUG_ON(!em || em->start != chunk_start);
4037 map = (struct map_lookup *)em->bdev;
4038
4039 length = em->len;
4040 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4041 do_div(length, map->num_stripes / map->sub_stripes);
4042 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4043 do_div(length, map->num_stripes);
4044
4045 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 4046 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
4047
4048 for (i = 0; i < map->num_stripes; i++) {
4049 if (devid && map->stripes[i].dev->devid != devid)
4050 continue;
4051 if (map->stripes[i].physical > physical ||
4052 map->stripes[i].physical + length <= physical)
4053 continue;
4054
4055 stripe_nr = physical - map->stripes[i].physical;
4056 do_div(stripe_nr, map->stripe_len);
4057
4058 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4059 stripe_nr = stripe_nr * map->num_stripes + i;
4060 do_div(stripe_nr, map->sub_stripes);
4061 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4062 stripe_nr = stripe_nr * map->num_stripes + i;
4063 }
4064 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 4065 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
4066 for (j = 0; j < nr; j++) {
4067 if (buf[j] == bytenr)
4068 break;
4069 }
934d375b
CM
4070 if (j == nr) {
4071 WARN_ON(nr >= map->num_stripes);
a512bbf8 4072 buf[nr++] = bytenr;
934d375b 4073 }
a512bbf8
YZ
4074 }
4075
a512bbf8
YZ
4076 *logical = buf;
4077 *naddrs = nr;
4078 *stripe_len = map->stripe_len;
4079
4080 free_extent_map(em);
4081 return 0;
f2d8d74d
CM
4082}
4083
442a4f63
SB
4084static void *merge_stripe_index_into_bio_private(void *bi_private,
4085 unsigned int stripe_index)
4086{
4087 /*
4088 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4089 * at most 1.
4090 * The alternative solution (instead of stealing bits from the
4091 * pointer) would be to allocate an intermediate structure
4092 * that contains the old private pointer plus the stripe_index.
4093 */
4094 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4095 BUG_ON(stripe_index > 3);
4096 return (void *)(((uintptr_t)bi_private) | stripe_index);
4097}
4098
4099static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4100{
4101 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4102}
4103
4104static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4105{
4106 return (unsigned int)((uintptr_t)bi_private) & 3;
4107}
4108
a1d3c478 4109static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4110{
442a4f63 4111 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4112 int is_orig_bio = 0;
8790d502 4113
442a4f63 4114 if (err) {
a1d3c478 4115 atomic_inc(&bbio->error);
442a4f63
SB
4116 if (err == -EIO || err == -EREMOTEIO) {
4117 unsigned int stripe_index =
4118 extract_stripe_index_from_bio_private(
4119 bio->bi_private);
4120 struct btrfs_device *dev;
4121
4122 BUG_ON(stripe_index >= bbio->num_stripes);
4123 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
4124 if (dev->bdev) {
4125 if (bio->bi_rw & WRITE)
4126 btrfs_dev_stat_inc(dev,
4127 BTRFS_DEV_STAT_WRITE_ERRS);
4128 else
4129 btrfs_dev_stat_inc(dev,
4130 BTRFS_DEV_STAT_READ_ERRS);
4131 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4132 btrfs_dev_stat_inc(dev,
4133 BTRFS_DEV_STAT_FLUSH_ERRS);
4134 btrfs_dev_stat_print_on_error(dev);
4135 }
442a4f63
SB
4136 }
4137 }
8790d502 4138
a1d3c478 4139 if (bio == bbio->orig_bio)
7d2b4daa
CM
4140 is_orig_bio = 1;
4141
a1d3c478 4142 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4143 if (!is_orig_bio) {
4144 bio_put(bio);
a1d3c478 4145 bio = bbio->orig_bio;
7d2b4daa 4146 }
a1d3c478
JS
4147 bio->bi_private = bbio->private;
4148 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4149 bio->bi_bdev = (struct block_device *)
4150 (unsigned long)bbio->mirror_num;
a236aed1
CM
4151 /* only send an error to the higher layers if it is
4152 * beyond the tolerance of the multi-bio
4153 */
a1d3c478 4154 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4155 err = -EIO;
5dbc8fca 4156 } else {
1259ab75
CM
4157 /*
4158 * this bio is actually up to date, we didn't
4159 * go over the max number of errors
4160 */
4161 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4162 err = 0;
1259ab75 4163 }
a1d3c478 4164 kfree(bbio);
8790d502
CM
4165
4166 bio_endio(bio, err);
7d2b4daa 4167 } else if (!is_orig_bio) {
8790d502
CM
4168 bio_put(bio);
4169 }
8790d502
CM
4170}
4171
8b712842
CM
4172struct async_sched {
4173 struct bio *bio;
4174 int rw;
4175 struct btrfs_fs_info *info;
4176 struct btrfs_work work;
4177};
4178
4179/*
4180 * see run_scheduled_bios for a description of why bios are collected for
4181 * async submit.
4182 *
4183 * This will add one bio to the pending list for a device and make sure
4184 * the work struct is scheduled.
4185 */
143bede5 4186static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4187 struct btrfs_device *device,
4188 int rw, struct bio *bio)
8b712842
CM
4189{
4190 int should_queue = 1;
ffbd517d 4191 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4192
4193 /* don't bother with additional async steps for reads, right now */
7b6d91da 4194 if (!(rw & REQ_WRITE)) {
492bb6de 4195 bio_get(bio);
21adbd5c 4196 btrfsic_submit_bio(rw, bio);
492bb6de 4197 bio_put(bio);
143bede5 4198 return;
8b712842
CM
4199 }
4200
4201 /*
0986fe9e 4202 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4203 * higher layers. Otherwise, the async bio makes it appear we have
4204 * made progress against dirty pages when we've really just put it
4205 * on a queue for later
4206 */
0986fe9e 4207 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4208 WARN_ON(bio->bi_next);
8b712842
CM
4209 bio->bi_next = NULL;
4210 bio->bi_rw |= rw;
4211
4212 spin_lock(&device->io_lock);
7b6d91da 4213 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4214 pending_bios = &device->pending_sync_bios;
4215 else
4216 pending_bios = &device->pending_bios;
8b712842 4217
ffbd517d
CM
4218 if (pending_bios->tail)
4219 pending_bios->tail->bi_next = bio;
8b712842 4220
ffbd517d
CM
4221 pending_bios->tail = bio;
4222 if (!pending_bios->head)
4223 pending_bios->head = bio;
8b712842
CM
4224 if (device->running_pending)
4225 should_queue = 0;
4226
4227 spin_unlock(&device->io_lock);
4228
4229 if (should_queue)
1cc127b5
CM
4230 btrfs_queue_worker(&root->fs_info->submit_workers,
4231 &device->work);
8b712842
CM
4232}
4233
f188591e 4234int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4235 int mirror_num, int async_submit)
0b86a832
CM
4236{
4237 struct btrfs_mapping_tree *map_tree;
4238 struct btrfs_device *dev;
8790d502 4239 struct bio *first_bio = bio;
a62b9401 4240 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4241 u64 length = 0;
4242 u64 map_length;
0b86a832 4243 int ret;
8790d502
CM
4244 int dev_nr = 0;
4245 int total_devs = 1;
a1d3c478 4246 struct btrfs_bio *bbio = NULL;
0b86a832 4247
f2d8d74d 4248 length = bio->bi_size;
0b86a832
CM
4249 map_tree = &root->fs_info->mapping_tree;
4250 map_length = length;
cea9e445 4251
a1d3c478 4252 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4253 mirror_num);
79787eaa
JM
4254 if (ret) /* -ENOMEM */
4255 return ret;
cea9e445 4256
a1d3c478 4257 total_devs = bbio->num_stripes;
cea9e445 4258 if (map_length < length) {
48940662 4259 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
d397712b
CM
4260 "len %llu\n", (unsigned long long)logical,
4261 (unsigned long long)length,
4262 (unsigned long long)map_length);
cea9e445
CM
4263 BUG();
4264 }
a1d3c478
JS
4265
4266 bbio->orig_bio = first_bio;
4267 bbio->private = first_bio->bi_private;
4268 bbio->end_io = first_bio->bi_end_io;
4269 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4270
d397712b 4271 while (dev_nr < total_devs) {
a1d3c478
JS
4272 if (dev_nr < total_devs - 1) {
4273 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4274 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4275 } else {
4276 bio = first_bio;
8790d502 4277 }
a1d3c478 4278 bio->bi_private = bbio;
442a4f63
SB
4279 bio->bi_private = merge_stripe_index_into_bio_private(
4280 bio->bi_private, (unsigned int)dev_nr);
a1d3c478
JS
4281 bio->bi_end_io = btrfs_end_bio;
4282 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4283 dev = bbio->stripes[dev_nr].dev;
18e503d6 4284 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
606686ee
JB
4285#ifdef DEBUG
4286 struct rcu_string *name;
4287
4288 rcu_read_lock();
4289 name = rcu_dereference(dev->name);
a1d3c478
JS
4290 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4291 "(%s id %llu), size=%u\n", rw,
4292 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
606686ee
JB
4293 name->str, dev->devid, bio->bi_size);
4294 rcu_read_unlock();
4295#endif
dfe25020 4296 bio->bi_bdev = dev->bdev;
8b712842
CM
4297 if (async_submit)
4298 schedule_bio(root, dev, rw, bio);
4299 else
21adbd5c 4300 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4301 } else {
4302 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4303 bio->bi_sector = logical >> 9;
dfe25020 4304 bio_endio(bio, -EIO);
dfe25020 4305 }
8790d502
CM
4306 dev_nr++;
4307 }
0b86a832
CM
4308 return 0;
4309}
4310
a443755f 4311struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4312 u8 *uuid, u8 *fsid)
0b86a832 4313{
2b82032c
YZ
4314 struct btrfs_device *device;
4315 struct btrfs_fs_devices *cur_devices;
4316
4317 cur_devices = root->fs_info->fs_devices;
4318 while (cur_devices) {
4319 if (!fsid ||
4320 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4321 device = __find_device(&cur_devices->devices,
4322 devid, uuid);
4323 if (device)
4324 return device;
4325 }
4326 cur_devices = cur_devices->seed;
4327 }
4328 return NULL;
0b86a832
CM
4329}
4330
dfe25020
CM
4331static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4332 u64 devid, u8 *dev_uuid)
4333{
4334 struct btrfs_device *device;
4335 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4336
4337 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4338 if (!device)
4339 return NULL;
dfe25020
CM
4340 list_add(&device->dev_list,
4341 &fs_devices->devices);
dfe25020
CM
4342 device->dev_root = root->fs_info->dev_root;
4343 device->devid = devid;
8b712842 4344 device->work.func = pending_bios_fn;
e4404d6e 4345 device->fs_devices = fs_devices;
cd02dca5 4346 device->missing = 1;
dfe25020 4347 fs_devices->num_devices++;
cd02dca5 4348 fs_devices->missing_devices++;
dfe25020 4349 spin_lock_init(&device->io_lock);
d20f7043 4350 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4351 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4352 return device;
4353}
4354
0b86a832
CM
4355static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4356 struct extent_buffer *leaf,
4357 struct btrfs_chunk *chunk)
4358{
4359 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4360 struct map_lookup *map;
4361 struct extent_map *em;
4362 u64 logical;
4363 u64 length;
4364 u64 devid;
a443755f 4365 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4366 int num_stripes;
0b86a832 4367 int ret;
593060d7 4368 int i;
0b86a832 4369
e17cade2
CM
4370 logical = key->offset;
4371 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4372
890871be 4373 read_lock(&map_tree->map_tree.lock);
0b86a832 4374 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4375 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4376
4377 /* already mapped? */
4378 if (em && em->start <= logical && em->start + em->len > logical) {
4379 free_extent_map(em);
0b86a832
CM
4380 return 0;
4381 } else if (em) {
4382 free_extent_map(em);
4383 }
0b86a832 4384
172ddd60 4385 em = alloc_extent_map();
0b86a832
CM
4386 if (!em)
4387 return -ENOMEM;
593060d7
CM
4388 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4389 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4390 if (!map) {
4391 free_extent_map(em);
4392 return -ENOMEM;
4393 }
4394
4395 em->bdev = (struct block_device *)map;
4396 em->start = logical;
4397 em->len = length;
4398 em->block_start = 0;
c8b97818 4399 em->block_len = em->len;
0b86a832 4400
593060d7
CM
4401 map->num_stripes = num_stripes;
4402 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4403 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4404 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4405 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4406 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4407 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4408 for (i = 0; i < num_stripes; i++) {
4409 map->stripes[i].physical =
4410 btrfs_stripe_offset_nr(leaf, chunk, i);
4411 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4412 read_extent_buffer(leaf, uuid, (unsigned long)
4413 btrfs_stripe_dev_uuid_nr(chunk, i),
4414 BTRFS_UUID_SIZE);
2b82032c
YZ
4415 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4416 NULL);
dfe25020 4417 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4418 kfree(map);
4419 free_extent_map(em);
4420 return -EIO;
4421 }
dfe25020
CM
4422 if (!map->stripes[i].dev) {
4423 map->stripes[i].dev =
4424 add_missing_dev(root, devid, uuid);
4425 if (!map->stripes[i].dev) {
4426 kfree(map);
4427 free_extent_map(em);
4428 return -EIO;
4429 }
4430 }
4431 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4432 }
4433
890871be 4434 write_lock(&map_tree->map_tree.lock);
0b86a832 4435 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4436 write_unlock(&map_tree->map_tree.lock);
79787eaa 4437 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
4438 free_extent_map(em);
4439
4440 return 0;
4441}
4442
143bede5 4443static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
4444 struct btrfs_dev_item *dev_item,
4445 struct btrfs_device *device)
4446{
4447 unsigned long ptr;
0b86a832
CM
4448
4449 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4450 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4451 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4452 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4453 device->type = btrfs_device_type(leaf, dev_item);
4454 device->io_align = btrfs_device_io_align(leaf, dev_item);
4455 device->io_width = btrfs_device_io_width(leaf, dev_item);
4456 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4457
4458 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4459 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
4460}
4461
2b82032c
YZ
4462static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4463{
4464 struct btrfs_fs_devices *fs_devices;
4465 int ret;
4466
b367e47f 4467 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4468
4469 fs_devices = root->fs_info->fs_devices->seed;
4470 while (fs_devices) {
4471 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4472 ret = 0;
4473 goto out;
4474 }
4475 fs_devices = fs_devices->seed;
4476 }
4477
4478 fs_devices = find_fsid(fsid);
4479 if (!fs_devices) {
4480 ret = -ENOENT;
4481 goto out;
4482 }
e4404d6e
YZ
4483
4484 fs_devices = clone_fs_devices(fs_devices);
4485 if (IS_ERR(fs_devices)) {
4486 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4487 goto out;
4488 }
4489
97288f2c 4490 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4491 root->fs_info->bdev_holder);
48d28232
JL
4492 if (ret) {
4493 free_fs_devices(fs_devices);
2b82032c 4494 goto out;
48d28232 4495 }
2b82032c
YZ
4496
4497 if (!fs_devices->seeding) {
4498 __btrfs_close_devices(fs_devices);
e4404d6e 4499 free_fs_devices(fs_devices);
2b82032c
YZ
4500 ret = -EINVAL;
4501 goto out;
4502 }
4503
4504 fs_devices->seed = root->fs_info->fs_devices->seed;
4505 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4506out:
2b82032c
YZ
4507 return ret;
4508}
4509
0d81ba5d 4510static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4511 struct extent_buffer *leaf,
4512 struct btrfs_dev_item *dev_item)
4513{
4514 struct btrfs_device *device;
4515 u64 devid;
4516 int ret;
2b82032c 4517 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4518 u8 dev_uuid[BTRFS_UUID_SIZE];
4519
0b86a832 4520 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4521 read_extent_buffer(leaf, dev_uuid,
4522 (unsigned long)btrfs_device_uuid(dev_item),
4523 BTRFS_UUID_SIZE);
2b82032c
YZ
4524 read_extent_buffer(leaf, fs_uuid,
4525 (unsigned long)btrfs_device_fsid(dev_item),
4526 BTRFS_UUID_SIZE);
4527
4528 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4529 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4530 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4531 return ret;
2b82032c
YZ
4532 }
4533
4534 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4535 if (!device || !device->bdev) {
e4404d6e 4536 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4537 return -EIO;
4538
4539 if (!device) {
d397712b
CM
4540 printk(KERN_WARNING "warning devid %llu missing\n",
4541 (unsigned long long)devid);
2b82032c
YZ
4542 device = add_missing_dev(root, devid, dev_uuid);
4543 if (!device)
4544 return -ENOMEM;
cd02dca5
CM
4545 } else if (!device->missing) {
4546 /*
4547 * this happens when a device that was properly setup
4548 * in the device info lists suddenly goes bad.
4549 * device->bdev is NULL, and so we have to set
4550 * device->missing to one here
4551 */
4552 root->fs_info->fs_devices->missing_devices++;
4553 device->missing = 1;
2b82032c
YZ
4554 }
4555 }
4556
4557 if (device->fs_devices != root->fs_info->fs_devices) {
4558 BUG_ON(device->writeable);
4559 if (device->generation !=
4560 btrfs_device_generation(leaf, dev_item))
4561 return -EINVAL;
6324fbf3 4562 }
0b86a832
CM
4563
4564 fill_device_from_item(leaf, dev_item, device);
4565 device->dev_root = root->fs_info->dev_root;
dfe25020 4566 device->in_fs_metadata = 1;
2bf64758 4567 if (device->writeable) {
2b82032c 4568 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4569 spin_lock(&root->fs_info->free_chunk_lock);
4570 root->fs_info->free_chunk_space += device->total_bytes -
4571 device->bytes_used;
4572 spin_unlock(&root->fs_info->free_chunk_lock);
4573 }
0b86a832 4574 ret = 0;
0b86a832
CM
4575 return ret;
4576}
4577
e4404d6e 4578int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4579{
6c41761f 4580 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4581 struct extent_buffer *sb;
0b86a832 4582 struct btrfs_disk_key *disk_key;
0b86a832 4583 struct btrfs_chunk *chunk;
84eed90f
CM
4584 u8 *ptr;
4585 unsigned long sb_ptr;
4586 int ret = 0;
0b86a832
CM
4587 u32 num_stripes;
4588 u32 array_size;
4589 u32 len = 0;
0b86a832 4590 u32 cur;
84eed90f 4591 struct btrfs_key key;
0b86a832 4592
e4404d6e 4593 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4594 BTRFS_SUPER_INFO_SIZE);
4595 if (!sb)
4596 return -ENOMEM;
4597 btrfs_set_buffer_uptodate(sb);
85d4e461 4598 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4599 /*
4600 * The sb extent buffer is artifical and just used to read the system array.
4601 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4602 * pages up-to-date when the page is larger: extent does not cover the
4603 * whole page and consequently check_page_uptodate does not find all
4604 * the page's extents up-to-date (the hole beyond sb),
4605 * write_extent_buffer then triggers a WARN_ON.
4606 *
4607 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4608 * but sb spans only this function. Add an explicit SetPageUptodate call
4609 * to silence the warning eg. on PowerPC 64.
4610 */
4611 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4612 SetPageUptodate(sb->pages[0]);
4008c04a 4613
a061fc8d 4614 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4615 array_size = btrfs_super_sys_array_size(super_copy);
4616
0b86a832
CM
4617 ptr = super_copy->sys_chunk_array;
4618 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4619 cur = 0;
4620
4621 while (cur < array_size) {
4622 disk_key = (struct btrfs_disk_key *)ptr;
4623 btrfs_disk_key_to_cpu(&key, disk_key);
4624
a061fc8d 4625 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4626 sb_ptr += len;
4627 cur += len;
4628
0d81ba5d 4629 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4630 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4631 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4632 if (ret)
4633 break;
0b86a832
CM
4634 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4635 len = btrfs_chunk_item_size(num_stripes);
4636 } else {
84eed90f
CM
4637 ret = -EIO;
4638 break;
0b86a832
CM
4639 }
4640 ptr += len;
4641 sb_ptr += len;
4642 cur += len;
4643 }
a061fc8d 4644 free_extent_buffer(sb);
84eed90f 4645 return ret;
0b86a832
CM
4646}
4647
4648int btrfs_read_chunk_tree(struct btrfs_root *root)
4649{
4650 struct btrfs_path *path;
4651 struct extent_buffer *leaf;
4652 struct btrfs_key key;
4653 struct btrfs_key found_key;
4654 int ret;
4655 int slot;
4656
4657 root = root->fs_info->chunk_root;
4658
4659 path = btrfs_alloc_path();
4660 if (!path)
4661 return -ENOMEM;
4662
b367e47f
LZ
4663 mutex_lock(&uuid_mutex);
4664 lock_chunks(root);
4665
0b86a832
CM
4666 /* first we search for all of the device items, and then we
4667 * read in all of the chunk items. This way we can create chunk
4668 * mappings that reference all of the devices that are afound
4669 */
4670 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4671 key.offset = 0;
4672 key.type = 0;
4673again:
4674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4675 if (ret < 0)
4676 goto error;
d397712b 4677 while (1) {
0b86a832
CM
4678 leaf = path->nodes[0];
4679 slot = path->slots[0];
4680 if (slot >= btrfs_header_nritems(leaf)) {
4681 ret = btrfs_next_leaf(root, path);
4682 if (ret == 0)
4683 continue;
4684 if (ret < 0)
4685 goto error;
4686 break;
4687 }
4688 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4689 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4690 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4691 break;
4692 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4693 struct btrfs_dev_item *dev_item;
4694 dev_item = btrfs_item_ptr(leaf, slot,
4695 struct btrfs_dev_item);
0d81ba5d 4696 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4697 if (ret)
4698 goto error;
0b86a832
CM
4699 }
4700 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4701 struct btrfs_chunk *chunk;
4702 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4703 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4704 if (ret)
4705 goto error;
0b86a832
CM
4706 }
4707 path->slots[0]++;
4708 }
4709 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4710 key.objectid = 0;
b3b4aa74 4711 btrfs_release_path(path);
0b86a832
CM
4712 goto again;
4713 }
0b86a832
CM
4714 ret = 0;
4715error:
b367e47f
LZ
4716 unlock_chunks(root);
4717 mutex_unlock(&uuid_mutex);
4718
2b82032c 4719 btrfs_free_path(path);
0b86a832
CM
4720 return ret;
4721}
442a4f63 4722
733f4fbb
SB
4723static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4724{
4725 int i;
4726
4727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4728 btrfs_dev_stat_reset(dev, i);
4729}
4730
4731int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4732{
4733 struct btrfs_key key;
4734 struct btrfs_key found_key;
4735 struct btrfs_root *dev_root = fs_info->dev_root;
4736 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4737 struct extent_buffer *eb;
4738 int slot;
4739 int ret = 0;
4740 struct btrfs_device *device;
4741 struct btrfs_path *path = NULL;
4742 int i;
4743
4744 path = btrfs_alloc_path();
4745 if (!path) {
4746 ret = -ENOMEM;
4747 goto out;
4748 }
4749
4750 mutex_lock(&fs_devices->device_list_mutex);
4751 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4752 int item_size;
4753 struct btrfs_dev_stats_item *ptr;
4754
4755 key.objectid = 0;
4756 key.type = BTRFS_DEV_STATS_KEY;
4757 key.offset = device->devid;
4758 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4759 if (ret) {
733f4fbb
SB
4760 __btrfs_reset_dev_stats(device);
4761 device->dev_stats_valid = 1;
4762 btrfs_release_path(path);
4763 continue;
4764 }
4765 slot = path->slots[0];
4766 eb = path->nodes[0];
4767 btrfs_item_key_to_cpu(eb, &found_key, slot);
4768 item_size = btrfs_item_size_nr(eb, slot);
4769
4770 ptr = btrfs_item_ptr(eb, slot,
4771 struct btrfs_dev_stats_item);
4772
4773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4774 if (item_size >= (1 + i) * sizeof(__le64))
4775 btrfs_dev_stat_set(device, i,
4776 btrfs_dev_stats_value(eb, ptr, i));
4777 else
4778 btrfs_dev_stat_reset(device, i);
4779 }
4780
4781 device->dev_stats_valid = 1;
4782 btrfs_dev_stat_print_on_load(device);
4783 btrfs_release_path(path);
4784 }
4785 mutex_unlock(&fs_devices->device_list_mutex);
4786
4787out:
4788 btrfs_free_path(path);
4789 return ret < 0 ? ret : 0;
4790}
4791
4792static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4793 struct btrfs_root *dev_root,
4794 struct btrfs_device *device)
4795{
4796 struct btrfs_path *path;
4797 struct btrfs_key key;
4798 struct extent_buffer *eb;
4799 struct btrfs_dev_stats_item *ptr;
4800 int ret;
4801 int i;
4802
4803 key.objectid = 0;
4804 key.type = BTRFS_DEV_STATS_KEY;
4805 key.offset = device->devid;
4806
4807 path = btrfs_alloc_path();
4808 BUG_ON(!path);
4809 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4810 if (ret < 0) {
606686ee
JB
4811 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4812 ret, rcu_str_deref(device->name));
733f4fbb
SB
4813 goto out;
4814 }
4815
4816 if (ret == 0 &&
4817 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4818 /* need to delete old one and insert a new one */
4819 ret = btrfs_del_item(trans, dev_root, path);
4820 if (ret != 0) {
606686ee
JB
4821 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4822 rcu_str_deref(device->name), ret);
733f4fbb
SB
4823 goto out;
4824 }
4825 ret = 1;
4826 }
4827
4828 if (ret == 1) {
4829 /* need to insert a new item */
4830 btrfs_release_path(path);
4831 ret = btrfs_insert_empty_item(trans, dev_root, path,
4832 &key, sizeof(*ptr));
4833 if (ret < 0) {
606686ee
JB
4834 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4835 rcu_str_deref(device->name), ret);
733f4fbb
SB
4836 goto out;
4837 }
4838 }
4839
4840 eb = path->nodes[0];
4841 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4842 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4843 btrfs_set_dev_stats_value(eb, ptr, i,
4844 btrfs_dev_stat_read(device, i));
4845 btrfs_mark_buffer_dirty(eb);
4846
4847out:
4848 btrfs_free_path(path);
4849 return ret;
4850}
4851
4852/*
4853 * called from commit_transaction. Writes all changed device stats to disk.
4854 */
4855int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4856 struct btrfs_fs_info *fs_info)
4857{
4858 struct btrfs_root *dev_root = fs_info->dev_root;
4859 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4860 struct btrfs_device *device;
4861 int ret = 0;
4862
4863 mutex_lock(&fs_devices->device_list_mutex);
4864 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4865 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4866 continue;
4867
4868 ret = update_dev_stat_item(trans, dev_root, device);
4869 if (!ret)
4870 device->dev_stats_dirty = 0;
4871 }
4872 mutex_unlock(&fs_devices->device_list_mutex);
4873
4874 return ret;
4875}
4876
442a4f63
SB
4877void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4878{
4879 btrfs_dev_stat_inc(dev, index);
4880 btrfs_dev_stat_print_on_error(dev);
4881}
4882
4883void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4884{
733f4fbb
SB
4885 if (!dev->dev_stats_valid)
4886 return;
606686ee 4887 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 4888 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 4889 rcu_str_deref(dev->name),
442a4f63
SB
4890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4893 btrfs_dev_stat_read(dev,
4894 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4895 btrfs_dev_stat_read(dev,
4896 BTRFS_DEV_STAT_GENERATION_ERRS));
4897}
c11d2c23 4898
733f4fbb
SB
4899static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4900{
a98cdb85
SB
4901 int i;
4902
4903 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4904 if (btrfs_dev_stat_read(dev, i) != 0)
4905 break;
4906 if (i == BTRFS_DEV_STAT_VALUES_MAX)
4907 return; /* all values == 0, suppress message */
4908
606686ee
JB
4909 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4910 rcu_str_deref(dev->name),
733f4fbb
SB
4911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4913 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4914 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4915 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4916}
4917
c11d2c23 4918int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 4919 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
4920{
4921 struct btrfs_device *dev;
4922 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4923 int i;
4924
4925 mutex_lock(&fs_devices->device_list_mutex);
4926 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4927 mutex_unlock(&fs_devices->device_list_mutex);
4928
4929 if (!dev) {
4930 printk(KERN_WARNING
4931 "btrfs: get dev_stats failed, device not found\n");
4932 return -ENODEV;
733f4fbb
SB
4933 } else if (!dev->dev_stats_valid) {
4934 printk(KERN_WARNING
4935 "btrfs: get dev_stats failed, not yet valid\n");
4936 return -ENODEV;
b27f7c0c 4937 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
4938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4939 if (stats->nr_items > i)
4940 stats->values[i] =
4941 btrfs_dev_stat_read_and_reset(dev, i);
4942 else
4943 btrfs_dev_stat_reset(dev, i);
4944 }
4945 } else {
4946 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4947 if (stats->nr_items > i)
4948 stats->values[i] = btrfs_dev_stat_read(dev, i);
4949 }
4950 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4951 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4952 return 0;
4953}