btrfs: remove stale definition of BUFFER_LRU_MAX
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
9678c543 11#include "ctree.h"
995946dd 12#include "tree-log.h"
e02119d5
CM
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
900c9981 19#include "inode-map.h"
e02119d5
CM
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
781feef7 29#define LOG_OTHER_INODE 2
a3baaf0d 30#define LOG_OTHER_INODE_ALL 3
e02119d5 31
12fcfd22
CM
32/*
33 * directory trouble cases
34 *
35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36 * log, we must force a full commit before doing an fsync of the directory
37 * where the unlink was done.
38 * ---> record transid of last unlink/rename per directory
39 *
40 * mkdir foo/some_dir
41 * normal commit
42 * rename foo/some_dir foo2/some_dir
43 * mkdir foo/some_dir
44 * fsync foo/some_dir/some_file
45 *
46 * The fsync above will unlink the original some_dir without recording
47 * it in its new location (foo2). After a crash, some_dir will be gone
48 * unless the fsync of some_file forces a full commit
49 *
50 * 2) we must log any new names for any file or dir that is in the fsync
51 * log. ---> check inode while renaming/linking.
52 *
53 * 2a) we must log any new names for any file or dir during rename
54 * when the directory they are being removed from was logged.
55 * ---> check inode and old parent dir during rename
56 *
57 * 2a is actually the more important variant. With the extra logging
58 * a crash might unlink the old name without recreating the new one
59 *
60 * 3) after a crash, we must go through any directories with a link count
61 * of zero and redo the rm -rf
62 *
63 * mkdir f1/foo
64 * normal commit
65 * rm -rf f1/foo
66 * fsync(f1)
67 *
68 * The directory f1 was fully removed from the FS, but fsync was never
69 * called on f1, only its parent dir. After a crash the rm -rf must
70 * be replayed. This must be able to recurse down the entire
71 * directory tree. The inode link count fixup code takes care of the
72 * ugly details.
73 */
74
e02119d5
CM
75/*
76 * stages for the tree walking. The first
77 * stage (0) is to only pin down the blocks we find
78 * the second stage (1) is to make sure that all the inodes
79 * we find in the log are created in the subvolume.
80 *
81 * The last stage is to deal with directories and links and extents
82 * and all the other fun semantics
83 */
84#define LOG_WALK_PIN_ONLY 0
85#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
86#define LOG_WALK_REPLAY_DIR_INDEX 2
87#define LOG_WALK_REPLAY_ALL 3
e02119d5 88
12fcfd22 89static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 90 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
91 int inode_only,
92 const loff_t start,
8407f553
FM
93 const loff_t end,
94 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
95static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
98static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root,
100 struct btrfs_root *log,
101 struct btrfs_path *path,
102 u64 dirid, int del_all);
e02119d5
CM
103
104/*
105 * tree logging is a special write ahead log used to make sure that
106 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 *
108 * Full tree commits are expensive because they require commonly
109 * modified blocks to be recowed, creating many dirty pages in the
110 * extent tree an 4x-6x higher write load than ext3.
111 *
112 * Instead of doing a tree commit on every fsync, we use the
113 * key ranges and transaction ids to find items for a given file or directory
114 * that have changed in this transaction. Those items are copied into
115 * a special tree (one per subvolume root), that tree is written to disk
116 * and then the fsync is considered complete.
117 *
118 * After a crash, items are copied out of the log-tree back into the
119 * subvolume tree. Any file data extents found are recorded in the extent
120 * allocation tree, and the log-tree freed.
121 *
122 * The log tree is read three times, once to pin down all the extents it is
123 * using in ram and once, once to create all the inodes logged in the tree
124 * and once to do all the other items.
125 */
126
e02119d5
CM
127/*
128 * start a sub transaction and setup the log tree
129 * this increments the log tree writer count to make the people
130 * syncing the tree wait for us to finish
131 */
132static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
133 struct btrfs_root *root,
134 struct btrfs_log_ctx *ctx)
e02119d5 135{
0b246afa 136 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 137 int ret = 0;
7237f183
YZ
138
139 mutex_lock(&root->log_mutex);
34eb2a52 140
7237f183 141 if (root->log_root) {
0b246afa 142 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
143 ret = -EAGAIN;
144 goto out;
145 }
34eb2a52 146
ff782e0a 147 if (!root->log_start_pid) {
27cdeb70 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 149 root->log_start_pid = current->pid;
ff782e0a 150 } else if (root->log_start_pid != current->pid) {
27cdeb70 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 152 }
34eb2a52 153 } else {
0b246afa
JM
154 mutex_lock(&fs_info->tree_log_mutex);
155 if (!fs_info->log_root_tree)
156 ret = btrfs_init_log_root_tree(trans, fs_info);
157 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
158 if (ret)
159 goto out;
ff782e0a 160
e02119d5 161 ret = btrfs_add_log_tree(trans, root);
4a500fd1 162 if (ret)
e87ac136 163 goto out;
34eb2a52
Z
164
165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 root->log_start_pid = current->pid;
e02119d5 167 }
34eb2a52 168
2ecb7923 169 atomic_inc(&root->log_batch);
7237f183 170 atomic_inc(&root->log_writers);
8b050d35 171 if (ctx) {
34eb2a52 172 int index = root->log_transid % 2;
8b050d35 173 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 174 ctx->log_transid = root->log_transid;
8b050d35 175 }
34eb2a52 176
e87ac136 177out:
7237f183 178 mutex_unlock(&root->log_mutex);
e87ac136 179 return ret;
e02119d5
CM
180}
181
182/*
183 * returns 0 if there was a log transaction running and we were able
184 * to join, or returns -ENOENT if there were not transactions
185 * in progress
186 */
187static int join_running_log_trans(struct btrfs_root *root)
188{
189 int ret = -ENOENT;
190
191 smp_mb();
192 if (!root->log_root)
193 return -ENOENT;
194
7237f183 195 mutex_lock(&root->log_mutex);
e02119d5
CM
196 if (root->log_root) {
197 ret = 0;
7237f183 198 atomic_inc(&root->log_writers);
e02119d5 199 }
7237f183 200 mutex_unlock(&root->log_mutex);
e02119d5
CM
201 return ret;
202}
203
12fcfd22
CM
204/*
205 * This either makes the current running log transaction wait
206 * until you call btrfs_end_log_trans() or it makes any future
207 * log transactions wait until you call btrfs_end_log_trans()
208 */
45128b08 209void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 210{
12fcfd22
CM
211 mutex_lock(&root->log_mutex);
212 atomic_inc(&root->log_writers);
213 mutex_unlock(&root->log_mutex);
12fcfd22
CM
214}
215
e02119d5
CM
216/*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
143bede5 220void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 221{
7237f183 222 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
223 /* atomic_dec_and_test implies a barrier */
224 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 225 }
e02119d5
CM
226}
227
228
229/*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
f2d72f42
FM
259 /*
260 * Ignore any items from the inode currently being processed. Needs
261 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
262 * the LOG_WALK_REPLAY_INODES stage.
263 */
264 bool ignore_cur_inode;
265
e02119d5
CM
266 /* the root we are currently replaying */
267 struct btrfs_root *replay_dest;
268
269 /* the trans handle for the current replay */
270 struct btrfs_trans_handle *trans;
271
272 /* the function that gets used to process blocks we find in the
273 * tree. Note the extent_buffer might not be up to date when it is
274 * passed in, and it must be checked or read if you need the data
275 * inside it
276 */
277 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 278 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
279};
280
281/*
282 * process_func used to pin down extents, write them or wait on them
283 */
284static int process_one_buffer(struct btrfs_root *log,
285 struct extent_buffer *eb,
581c1760 286 struct walk_control *wc, u64 gen, int level)
e02119d5 287{
0b246afa 288 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
289 int ret = 0;
290
8c2a1a30
JB
291 /*
292 * If this fs is mixed then we need to be able to process the leaves to
293 * pin down any logged extents, so we have to read the block.
294 */
0b246afa 295 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 296 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
297 if (ret)
298 return ret;
299 }
300
04018de5 301 if (wc->pin)
2ff7e61e
JM
302 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
303 eb->len);
e02119d5 304
b50c6e25 305 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 306 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 307 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
308 if (wc->write)
309 btrfs_write_tree_block(eb);
310 if (wc->wait)
311 btrfs_wait_tree_block_writeback(eb);
312 }
b50c6e25 313 return ret;
e02119d5
CM
314}
315
316/*
317 * Item overwrite used by replay and tree logging. eb, slot and key all refer
318 * to the src data we are copying out.
319 *
320 * root is the tree we are copying into, and path is a scratch
321 * path for use in this function (it should be released on entry and
322 * will be released on exit).
323 *
324 * If the key is already in the destination tree the existing item is
325 * overwritten. If the existing item isn't big enough, it is extended.
326 * If it is too large, it is truncated.
327 *
328 * If the key isn't in the destination yet, a new item is inserted.
329 */
330static noinline int overwrite_item(struct btrfs_trans_handle *trans,
331 struct btrfs_root *root,
332 struct btrfs_path *path,
333 struct extent_buffer *eb, int slot,
334 struct btrfs_key *key)
335{
2ff7e61e 336 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
337 int ret;
338 u32 item_size;
339 u64 saved_i_size = 0;
340 int save_old_i_size = 0;
341 unsigned long src_ptr;
342 unsigned long dst_ptr;
343 int overwrite_root = 0;
4bc4bee4 344 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
345
346 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
347 overwrite_root = 1;
348
349 item_size = btrfs_item_size_nr(eb, slot);
350 src_ptr = btrfs_item_ptr_offset(eb, slot);
351
352 /* look for the key in the destination tree */
353 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
354 if (ret < 0)
355 return ret;
356
e02119d5
CM
357 if (ret == 0) {
358 char *src_copy;
359 char *dst_copy;
360 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
361 path->slots[0]);
362 if (dst_size != item_size)
363 goto insert;
364
365 if (item_size == 0) {
b3b4aa74 366 btrfs_release_path(path);
e02119d5
CM
367 return 0;
368 }
369 dst_copy = kmalloc(item_size, GFP_NOFS);
370 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 371 if (!dst_copy || !src_copy) {
b3b4aa74 372 btrfs_release_path(path);
2a29edc6 373 kfree(dst_copy);
374 kfree(src_copy);
375 return -ENOMEM;
376 }
e02119d5
CM
377
378 read_extent_buffer(eb, src_copy, src_ptr, item_size);
379
380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
381 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
382 item_size);
383 ret = memcmp(dst_copy, src_copy, item_size);
384
385 kfree(dst_copy);
386 kfree(src_copy);
387 /*
388 * they have the same contents, just return, this saves
389 * us from cowing blocks in the destination tree and doing
390 * extra writes that may not have been done by a previous
391 * sync
392 */
393 if (ret == 0) {
b3b4aa74 394 btrfs_release_path(path);
e02119d5
CM
395 return 0;
396 }
397
4bc4bee4
JB
398 /*
399 * We need to load the old nbytes into the inode so when we
400 * replay the extents we've logged we get the right nbytes.
401 */
402 if (inode_item) {
403 struct btrfs_inode_item *item;
404 u64 nbytes;
d555438b 405 u32 mode;
4bc4bee4
JB
406
407 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
408 struct btrfs_inode_item);
409 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
410 item = btrfs_item_ptr(eb, slot,
411 struct btrfs_inode_item);
412 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
413
414 /*
415 * If this is a directory we need to reset the i_size to
416 * 0 so that we can set it up properly when replaying
417 * the rest of the items in this log.
418 */
419 mode = btrfs_inode_mode(eb, item);
420 if (S_ISDIR(mode))
421 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
422 }
423 } else if (inode_item) {
424 struct btrfs_inode_item *item;
d555438b 425 u32 mode;
4bc4bee4
JB
426
427 /*
428 * New inode, set nbytes to 0 so that the nbytes comes out
429 * properly when we replay the extents.
430 */
431 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
432 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
433
434 /*
435 * If this is a directory we need to reset the i_size to 0 so
436 * that we can set it up properly when replaying the rest of
437 * the items in this log.
438 */
439 mode = btrfs_inode_mode(eb, item);
440 if (S_ISDIR(mode))
441 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
442 }
443insert:
b3b4aa74 444 btrfs_release_path(path);
e02119d5 445 /* try to insert the key into the destination tree */
df8d116f 446 path->skip_release_on_error = 1;
e02119d5
CM
447 ret = btrfs_insert_empty_item(trans, root, path,
448 key, item_size);
df8d116f 449 path->skip_release_on_error = 0;
e02119d5
CM
450
451 /* make sure any existing item is the correct size */
df8d116f 452 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
453 u32 found_size;
454 found_size = btrfs_item_size_nr(path->nodes[0],
455 path->slots[0]);
143bede5 456 if (found_size > item_size)
2ff7e61e 457 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 458 else if (found_size < item_size)
2ff7e61e 459 btrfs_extend_item(fs_info, path,
143bede5 460 item_size - found_size);
e02119d5 461 } else if (ret) {
4a500fd1 462 return ret;
e02119d5
CM
463 }
464 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
465 path->slots[0]);
466
467 /* don't overwrite an existing inode if the generation number
468 * was logged as zero. This is done when the tree logging code
469 * is just logging an inode to make sure it exists after recovery.
470 *
471 * Also, don't overwrite i_size on directories during replay.
472 * log replay inserts and removes directory items based on the
473 * state of the tree found in the subvolume, and i_size is modified
474 * as it goes
475 */
476 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
477 struct btrfs_inode_item *src_item;
478 struct btrfs_inode_item *dst_item;
479
480 src_item = (struct btrfs_inode_item *)src_ptr;
481 dst_item = (struct btrfs_inode_item *)dst_ptr;
482
1a4bcf47
FM
483 if (btrfs_inode_generation(eb, src_item) == 0) {
484 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 485 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 486
2f2ff0ee
FM
487 /*
488 * For regular files an ino_size == 0 is used only when
489 * logging that an inode exists, as part of a directory
490 * fsync, and the inode wasn't fsynced before. In this
491 * case don't set the size of the inode in the fs/subvol
492 * tree, otherwise we would be throwing valid data away.
493 */
1a4bcf47 494 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
495 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
496 ino_size != 0) {
1a4bcf47 497 struct btrfs_map_token token;
1a4bcf47
FM
498
499 btrfs_init_map_token(&token);
500 btrfs_set_token_inode_size(dst_eb, dst_item,
501 ino_size, &token);
502 }
e02119d5 503 goto no_copy;
1a4bcf47 504 }
e02119d5
CM
505
506 if (overwrite_root &&
507 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
508 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
509 save_old_i_size = 1;
510 saved_i_size = btrfs_inode_size(path->nodes[0],
511 dst_item);
512 }
513 }
514
515 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
516 src_ptr, item_size);
517
518 if (save_old_i_size) {
519 struct btrfs_inode_item *dst_item;
520 dst_item = (struct btrfs_inode_item *)dst_ptr;
521 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
522 }
523
524 /* make sure the generation is filled in */
525 if (key->type == BTRFS_INODE_ITEM_KEY) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
529 btrfs_set_inode_generation(path->nodes[0], dst_item,
530 trans->transid);
531 }
532 }
533no_copy:
534 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 535 btrfs_release_path(path);
e02119d5
CM
536 return 0;
537}
538
539/*
540 * simple helper to read an inode off the disk from a given root
541 * This can only be called for subvolume roots and not for the log
542 */
543static noinline struct inode *read_one_inode(struct btrfs_root *root,
544 u64 objectid)
545{
5d4f98a2 546 struct btrfs_key key;
e02119d5 547 struct inode *inode;
e02119d5 548
5d4f98a2
YZ
549 key.objectid = objectid;
550 key.type = BTRFS_INODE_ITEM_KEY;
551 key.offset = 0;
73f73415 552 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
2e19f1f9 553 if (IS_ERR(inode))
5d4f98a2 554 inode = NULL;
e02119d5
CM
555 return inode;
556}
557
558/* replays a single extent in 'eb' at 'slot' with 'key' into the
559 * subvolume 'root'. path is released on entry and should be released
560 * on exit.
561 *
562 * extents in the log tree have not been allocated out of the extent
563 * tree yet. So, this completes the allocation, taking a reference
564 * as required if the extent already exists or creating a new extent
565 * if it isn't in the extent allocation tree yet.
566 *
567 * The extent is inserted into the file, dropping any existing extents
568 * from the file that overlap the new one.
569 */
570static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_path *path,
573 struct extent_buffer *eb, int slot,
574 struct btrfs_key *key)
575{
0b246afa 576 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 577 int found_type;
e02119d5 578 u64 extent_end;
e02119d5 579 u64 start = key->offset;
4bc4bee4 580 u64 nbytes = 0;
e02119d5
CM
581 struct btrfs_file_extent_item *item;
582 struct inode *inode = NULL;
583 unsigned long size;
584 int ret = 0;
585
586 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
587 found_type = btrfs_file_extent_type(eb, item);
588
d899e052 589 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
590 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
591 nbytes = btrfs_file_extent_num_bytes(eb, item);
592 extent_end = start + nbytes;
593
594 /*
595 * We don't add to the inodes nbytes if we are prealloc or a
596 * hole.
597 */
598 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
599 nbytes = 0;
600 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 601 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 602 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 603 extent_end = ALIGN(start + size,
0b246afa 604 fs_info->sectorsize);
e02119d5
CM
605 } else {
606 ret = 0;
607 goto out;
608 }
609
610 inode = read_one_inode(root, key->objectid);
611 if (!inode) {
612 ret = -EIO;
613 goto out;
614 }
615
616 /*
617 * first check to see if we already have this extent in the
618 * file. This must be done before the btrfs_drop_extents run
619 * so we don't try to drop this extent.
620 */
f85b7379
DS
621 ret = btrfs_lookup_file_extent(trans, root, path,
622 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 623
d899e052
YZ
624 if (ret == 0 &&
625 (found_type == BTRFS_FILE_EXTENT_REG ||
626 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
627 struct btrfs_file_extent_item cmp1;
628 struct btrfs_file_extent_item cmp2;
629 struct btrfs_file_extent_item *existing;
630 struct extent_buffer *leaf;
631
632 leaf = path->nodes[0];
633 existing = btrfs_item_ptr(leaf, path->slots[0],
634 struct btrfs_file_extent_item);
635
636 read_extent_buffer(eb, &cmp1, (unsigned long)item,
637 sizeof(cmp1));
638 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
639 sizeof(cmp2));
640
641 /*
642 * we already have a pointer to this exact extent,
643 * we don't have to do anything
644 */
645 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 646 btrfs_release_path(path);
e02119d5
CM
647 goto out;
648 }
649 }
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651
652 /* drop any overlapping extents */
2671485d 653 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
654 if (ret)
655 goto out;
e02119d5 656
07d400a6
YZ
657 if (found_type == BTRFS_FILE_EXTENT_REG ||
658 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 659 u64 offset;
07d400a6
YZ
660 unsigned long dest_offset;
661 struct btrfs_key ins;
662
3168021c
FM
663 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
664 btrfs_fs_incompat(fs_info, NO_HOLES))
665 goto update_inode;
666
07d400a6
YZ
667 ret = btrfs_insert_empty_item(trans, root, path, key,
668 sizeof(*item));
3650860b
JB
669 if (ret)
670 goto out;
07d400a6
YZ
671 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 path->slots[0]);
673 copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 (unsigned long)item, sizeof(*item));
675
676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 679 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 680
df2c95f3
QW
681 /*
682 * Manually record dirty extent, as here we did a shallow
683 * file extent item copy and skip normal backref update,
684 * but modifying extent tree all by ourselves.
685 * So need to manually record dirty extent for qgroup,
686 * as the owner of the file extent changed from log tree
687 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 */
a95f3aaf 689 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
690 btrfs_file_extent_disk_bytenr(eb, item),
691 btrfs_file_extent_disk_num_bytes(eb, item),
692 GFP_NOFS);
693 if (ret < 0)
694 goto out;
695
07d400a6
YZ
696 if (ins.objectid > 0) {
697 u64 csum_start;
698 u64 csum_end;
699 LIST_HEAD(ordered_sums);
700 /*
701 * is this extent already allocated in the extent
702 * allocation tree? If so, just add a reference
703 */
2ff7e61e 704 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
705 ins.offset);
706 if (ret == 0) {
84f7d8e6 707 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 708 ins.objectid, ins.offset,
5d4f98a2 709 0, root->root_key.objectid,
b06c4bf5 710 key->objectid, offset);
b50c6e25
JB
711 if (ret)
712 goto out;
07d400a6
YZ
713 } else {
714 /*
715 * insert the extent pointer in the extent
716 * allocation tree
717 */
5d4f98a2 718 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 719 root->root_key.objectid,
5d4f98a2 720 key->objectid, offset, &ins);
b50c6e25
JB
721 if (ret)
722 goto out;
07d400a6 723 }
b3b4aa74 724 btrfs_release_path(path);
07d400a6
YZ
725
726 if (btrfs_file_extent_compression(eb, item)) {
727 csum_start = ins.objectid;
728 csum_end = csum_start + ins.offset;
729 } else {
730 csum_start = ins.objectid +
731 btrfs_file_extent_offset(eb, item);
732 csum_end = csum_start +
733 btrfs_file_extent_num_bytes(eb, item);
734 }
735
736 ret = btrfs_lookup_csums_range(root->log_root,
737 csum_start, csum_end - 1,
a2de733c 738 &ordered_sums, 0);
3650860b
JB
739 if (ret)
740 goto out;
b84b8390
FM
741 /*
742 * Now delete all existing cums in the csum root that
743 * cover our range. We do this because we can have an
744 * extent that is completely referenced by one file
745 * extent item and partially referenced by another
746 * file extent item (like after using the clone or
747 * extent_same ioctls). In this case if we end up doing
748 * the replay of the one that partially references the
749 * extent first, and we do not do the csum deletion
750 * below, we can get 2 csum items in the csum tree that
751 * overlap each other. For example, imagine our log has
752 * the two following file extent items:
753 *
754 * key (257 EXTENT_DATA 409600)
755 * extent data disk byte 12845056 nr 102400
756 * extent data offset 20480 nr 20480 ram 102400
757 *
758 * key (257 EXTENT_DATA 819200)
759 * extent data disk byte 12845056 nr 102400
760 * extent data offset 0 nr 102400 ram 102400
761 *
762 * Where the second one fully references the 100K extent
763 * that starts at disk byte 12845056, and the log tree
764 * has a single csum item that covers the entire range
765 * of the extent:
766 *
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 *
769 * After the first file extent item is replayed, the
770 * csum tree gets the following csum item:
771 *
772 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
773 *
774 * Which covers the 20K sub-range starting at offset 20K
775 * of our extent. Now when we replay the second file
776 * extent item, if we do not delete existing csum items
777 * that cover any of its blocks, we end up getting two
778 * csum items in our csum tree that overlap each other:
779 *
780 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
782 *
783 * Which is a problem, because after this anyone trying
784 * to lookup up for the checksum of any block of our
785 * extent starting at an offset of 40K or higher, will
786 * end up looking at the second csum item only, which
787 * does not contain the checksum for any block starting
788 * at offset 40K or higher of our extent.
789 */
07d400a6
YZ
790 while (!list_empty(&ordered_sums)) {
791 struct btrfs_ordered_sum *sums;
792 sums = list_entry(ordered_sums.next,
793 struct btrfs_ordered_sum,
794 list);
b84b8390 795 if (!ret)
0b246afa 796 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
797 sums->bytenr,
798 sums->len);
3650860b
JB
799 if (!ret)
800 ret = btrfs_csum_file_blocks(trans,
0b246afa 801 fs_info->csum_root, sums);
07d400a6
YZ
802 list_del(&sums->list);
803 kfree(sums);
804 }
3650860b
JB
805 if (ret)
806 goto out;
07d400a6 807 } else {
b3b4aa74 808 btrfs_release_path(path);
07d400a6
YZ
809 }
810 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 /* inline extents are easy, we just overwrite them */
812 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
813 if (ret)
814 goto out;
07d400a6 815 }
e02119d5 816
4bc4bee4 817 inode_add_bytes(inode, nbytes);
3168021c 818update_inode:
b9959295 819 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
820out:
821 if (inode)
822 iput(inode);
823 return ret;
824}
825
826/*
827 * when cleaning up conflicts between the directory names in the
828 * subvolume, directory names in the log and directory names in the
829 * inode back references, we may have to unlink inodes from directories.
830 *
831 * This is a helper function to do the unlink of a specific directory
832 * item
833 */
834static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root,
836 struct btrfs_path *path,
207e7d92 837 struct btrfs_inode *dir,
e02119d5
CM
838 struct btrfs_dir_item *di)
839{
840 struct inode *inode;
841 char *name;
842 int name_len;
843 struct extent_buffer *leaf;
844 struct btrfs_key location;
845 int ret;
846
847 leaf = path->nodes[0];
848
849 btrfs_dir_item_key_to_cpu(leaf, di, &location);
850 name_len = btrfs_dir_name_len(leaf, di);
851 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 852 if (!name)
853 return -ENOMEM;
854
e02119d5 855 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 856 btrfs_release_path(path);
e02119d5
CM
857
858 inode = read_one_inode(root, location.objectid);
c00e9493 859 if (!inode) {
3650860b
JB
860 ret = -EIO;
861 goto out;
c00e9493 862 }
e02119d5 863
ec051c0f 864 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
865 if (ret)
866 goto out;
12fcfd22 867
207e7d92
NB
868 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
869 name_len);
3650860b
JB
870 if (ret)
871 goto out;
ada9af21 872 else
e5c304e6 873 ret = btrfs_run_delayed_items(trans);
3650860b 874out:
e02119d5 875 kfree(name);
e02119d5
CM
876 iput(inode);
877 return ret;
878}
879
880/*
881 * helper function to see if a given name and sequence number found
882 * in an inode back reference are already in a directory and correctly
883 * point to this inode
884 */
885static noinline int inode_in_dir(struct btrfs_root *root,
886 struct btrfs_path *path,
887 u64 dirid, u64 objectid, u64 index,
888 const char *name, int name_len)
889{
890 struct btrfs_dir_item *di;
891 struct btrfs_key location;
892 int match = 0;
893
894 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
895 index, name, name_len, 0);
896 if (di && !IS_ERR(di)) {
897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898 if (location.objectid != objectid)
899 goto out;
900 } else
901 goto out;
b3b4aa74 902 btrfs_release_path(path);
e02119d5
CM
903
904 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
908 goto out;
909 } else
910 goto out;
911 match = 1;
912out:
b3b4aa74 913 btrfs_release_path(path);
e02119d5
CM
914 return match;
915}
916
917/*
918 * helper function to check a log tree for a named back reference in
919 * an inode. This is used to decide if a back reference that is
920 * found in the subvolume conflicts with what we find in the log.
921 *
922 * inode backreferences may have multiple refs in a single item,
923 * during replay we process one reference at a time, and we don't
924 * want to delete valid links to a file from the subvolume if that
925 * link is also in the log.
926 */
927static noinline int backref_in_log(struct btrfs_root *log,
928 struct btrfs_key *key,
f186373f 929 u64 ref_objectid,
df8d116f 930 const char *name, int namelen)
e02119d5
CM
931{
932 struct btrfs_path *path;
933 struct btrfs_inode_ref *ref;
934 unsigned long ptr;
935 unsigned long ptr_end;
936 unsigned long name_ptr;
937 int found_name_len;
938 int item_size;
939 int ret;
940 int match = 0;
941
942 path = btrfs_alloc_path();
2a29edc6 943 if (!path)
944 return -ENOMEM;
945
e02119d5
CM
946 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
947 if (ret != 0)
948 goto out;
949
e02119d5 950 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
951
952 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
953 if (btrfs_find_name_in_ext_backref(path->nodes[0],
954 path->slots[0],
955 ref_objectid,
f186373f
MF
956 name, namelen, NULL))
957 match = 1;
958
959 goto out;
960 }
961
962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
963 ptr_end = ptr + item_size;
964 while (ptr < ptr_end) {
965 ref = (struct btrfs_inode_ref *)ptr;
966 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
967 if (found_name_len == namelen) {
968 name_ptr = (unsigned long)(ref + 1);
969 ret = memcmp_extent_buffer(path->nodes[0], name,
970 name_ptr, namelen);
971 if (ret == 0) {
972 match = 1;
973 goto out;
974 }
975 }
976 ptr = (unsigned long)(ref + 1) + found_name_len;
977 }
978out:
979 btrfs_free_path(path);
980 return match;
981}
982
5a1d7843 983static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 984 struct btrfs_root *root,
e02119d5 985 struct btrfs_path *path,
5a1d7843 986 struct btrfs_root *log_root,
94c91a1f
NB
987 struct btrfs_inode *dir,
988 struct btrfs_inode *inode,
f186373f
MF
989 u64 inode_objectid, u64 parent_objectid,
990 u64 ref_index, char *name, int namelen,
991 int *search_done)
e02119d5 992{
34f3e4f2 993 int ret;
f186373f
MF
994 char *victim_name;
995 int victim_name_len;
996 struct extent_buffer *leaf;
5a1d7843 997 struct btrfs_dir_item *di;
f186373f
MF
998 struct btrfs_key search_key;
999 struct btrfs_inode_extref *extref;
c622ae60 1000
f186373f
MF
1001again:
1002 /* Search old style refs */
1003 search_key.objectid = inode_objectid;
1004 search_key.type = BTRFS_INODE_REF_KEY;
1005 search_key.offset = parent_objectid;
1006 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1007 if (ret == 0) {
e02119d5
CM
1008 struct btrfs_inode_ref *victim_ref;
1009 unsigned long ptr;
1010 unsigned long ptr_end;
f186373f
MF
1011
1012 leaf = path->nodes[0];
e02119d5
CM
1013
1014 /* are we trying to overwrite a back ref for the root directory
1015 * if so, just jump out, we're done
1016 */
f186373f 1017 if (search_key.objectid == search_key.offset)
5a1d7843 1018 return 1;
e02119d5
CM
1019
1020 /* check all the names in this back reference to see
1021 * if they are in the log. if so, we allow them to stay
1022 * otherwise they must be unlinked as a conflict
1023 */
1024 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1025 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1026 while (ptr < ptr_end) {
e02119d5
CM
1027 victim_ref = (struct btrfs_inode_ref *)ptr;
1028 victim_name_len = btrfs_inode_ref_name_len(leaf,
1029 victim_ref);
1030 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1031 if (!victim_name)
1032 return -ENOMEM;
e02119d5
CM
1033
1034 read_extent_buffer(leaf, victim_name,
1035 (unsigned long)(victim_ref + 1),
1036 victim_name_len);
1037
f186373f
MF
1038 if (!backref_in_log(log_root, &search_key,
1039 parent_objectid,
1040 victim_name,
e02119d5 1041 victim_name_len)) {
94c91a1f 1042 inc_nlink(&inode->vfs_inode);
b3b4aa74 1043 btrfs_release_path(path);
12fcfd22 1044
94c91a1f 1045 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1046 victim_name, victim_name_len);
f186373f 1047 kfree(victim_name);
3650860b
JB
1048 if (ret)
1049 return ret;
e5c304e6 1050 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1051 if (ret)
1052 return ret;
f186373f
MF
1053 *search_done = 1;
1054 goto again;
e02119d5
CM
1055 }
1056 kfree(victim_name);
f186373f 1057
e02119d5
CM
1058 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1059 }
e02119d5 1060
c622ae60 1061 /*
1062 * NOTE: we have searched root tree and checked the
bb7ab3b9 1063 * corresponding ref, it does not need to check again.
c622ae60 1064 */
5a1d7843 1065 *search_done = 1;
e02119d5 1066 }
b3b4aa74 1067 btrfs_release_path(path);
e02119d5 1068
f186373f
MF
1069 /* Same search but for extended refs */
1070 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1071 inode_objectid, parent_objectid, 0,
1072 0);
1073 if (!IS_ERR_OR_NULL(extref)) {
1074 u32 item_size;
1075 u32 cur_offset = 0;
1076 unsigned long base;
1077 struct inode *victim_parent;
1078
1079 leaf = path->nodes[0];
1080
1081 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1082 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083
1084 while (cur_offset < item_size) {
dd9ef135 1085 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1086
1087 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088
1089 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1090 goto next;
1091
1092 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1093 if (!victim_name)
1094 return -ENOMEM;
f186373f
MF
1095 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1096 victim_name_len);
1097
1098 search_key.objectid = inode_objectid;
1099 search_key.type = BTRFS_INODE_EXTREF_KEY;
1100 search_key.offset = btrfs_extref_hash(parent_objectid,
1101 victim_name,
1102 victim_name_len);
1103 ret = 0;
1104 if (!backref_in_log(log_root, &search_key,
1105 parent_objectid, victim_name,
1106 victim_name_len)) {
1107 ret = -ENOENT;
1108 victim_parent = read_one_inode(root,
94c91a1f 1109 parent_objectid);
f186373f 1110 if (victim_parent) {
94c91a1f 1111 inc_nlink(&inode->vfs_inode);
f186373f
MF
1112 btrfs_release_path(path);
1113
1114 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1115 BTRFS_I(victim_parent),
94c91a1f 1116 inode,
4ec5934e
NB
1117 victim_name,
1118 victim_name_len);
ada9af21
FDBM
1119 if (!ret)
1120 ret = btrfs_run_delayed_items(
e5c304e6 1121 trans);
f186373f 1122 }
f186373f
MF
1123 iput(victim_parent);
1124 kfree(victim_name);
3650860b
JB
1125 if (ret)
1126 return ret;
f186373f
MF
1127 *search_done = 1;
1128 goto again;
1129 }
1130 kfree(victim_name);
f186373f
MF
1131next:
1132 cur_offset += victim_name_len + sizeof(*extref);
1133 }
1134 *search_done = 1;
1135 }
1136 btrfs_release_path(path);
1137
34f3e4f2 1138 /* look for a conflicting sequence number */
94c91a1f 1139 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1140 ref_index, name, namelen, 0);
34f3e4f2 1141 if (di && !IS_ERR(di)) {
94c91a1f 1142 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1143 if (ret)
1144 return ret;
34f3e4f2 1145 }
1146 btrfs_release_path(path);
1147
52042d8e 1148 /* look for a conflicting name */
94c91a1f 1149 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1150 name, namelen, 0);
1151 if (di && !IS_ERR(di)) {
94c91a1f 1152 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1153 if (ret)
1154 return ret;
34f3e4f2 1155 }
1156 btrfs_release_path(path);
1157
5a1d7843
JS
1158 return 0;
1159}
e02119d5 1160
bae15d95
QW
1161static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1162 u32 *namelen, char **name, u64 *index,
1163 u64 *parent_objectid)
f186373f
MF
1164{
1165 struct btrfs_inode_extref *extref;
1166
1167 extref = (struct btrfs_inode_extref *)ref_ptr;
1168
1169 *namelen = btrfs_inode_extref_name_len(eb, extref);
1170 *name = kmalloc(*namelen, GFP_NOFS);
1171 if (*name == NULL)
1172 return -ENOMEM;
1173
1174 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1175 *namelen);
1176
1f250e92
FM
1177 if (index)
1178 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1179 if (parent_objectid)
1180 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181
1182 return 0;
1183}
1184
bae15d95
QW
1185static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1186 u32 *namelen, char **name, u64 *index)
f186373f
MF
1187{
1188 struct btrfs_inode_ref *ref;
1189
1190 ref = (struct btrfs_inode_ref *)ref_ptr;
1191
1192 *namelen = btrfs_inode_ref_name_len(eb, ref);
1193 *name = kmalloc(*namelen, GFP_NOFS);
1194 if (*name == NULL)
1195 return -ENOMEM;
1196
1197 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198
1f250e92
FM
1199 if (index)
1200 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1201
1202 return 0;
1203}
1204
1f250e92
FM
1205/*
1206 * Take an inode reference item from the log tree and iterate all names from the
1207 * inode reference item in the subvolume tree with the same key (if it exists).
1208 * For any name that is not in the inode reference item from the log tree, do a
1209 * proper unlink of that name (that is, remove its entry from the inode
1210 * reference item and both dir index keys).
1211 */
1212static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1213 struct btrfs_root *root,
1214 struct btrfs_path *path,
1215 struct btrfs_inode *inode,
1216 struct extent_buffer *log_eb,
1217 int log_slot,
1218 struct btrfs_key *key)
1219{
1220 int ret;
1221 unsigned long ref_ptr;
1222 unsigned long ref_end;
1223 struct extent_buffer *eb;
1224
1225again:
1226 btrfs_release_path(path);
1227 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1228 if (ret > 0) {
1229 ret = 0;
1230 goto out;
1231 }
1232 if (ret < 0)
1233 goto out;
1234
1235 eb = path->nodes[0];
1236 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1237 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1238 while (ref_ptr < ref_end) {
1239 char *name = NULL;
1240 int namelen;
1241 u64 parent_id;
1242
1243 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1244 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1245 NULL, &parent_id);
1246 } else {
1247 parent_id = key->offset;
1248 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1249 NULL);
1250 }
1251 if (ret)
1252 goto out;
1253
1254 if (key->type == BTRFS_INODE_EXTREF_KEY)
1255 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1256 parent_id, name,
1257 namelen, NULL);
1258 else
1259 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1260 namelen, NULL);
1261
1262 if (!ret) {
1263 struct inode *dir;
1264
1265 btrfs_release_path(path);
1266 dir = read_one_inode(root, parent_id);
1267 if (!dir) {
1268 ret = -ENOENT;
1269 kfree(name);
1270 goto out;
1271 }
1272 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1273 inode, name, namelen);
1274 kfree(name);
1275 iput(dir);
1276 if (ret)
1277 goto out;
1278 goto again;
1279 }
1280
1281 kfree(name);
1282 ref_ptr += namelen;
1283 if (key->type == BTRFS_INODE_EXTREF_KEY)
1284 ref_ptr += sizeof(struct btrfs_inode_extref);
1285 else
1286 ref_ptr += sizeof(struct btrfs_inode_ref);
1287 }
1288 ret = 0;
1289 out:
1290 btrfs_release_path(path);
1291 return ret;
1292}
1293
0d836392
FM
1294static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1295 const u8 ref_type, const char *name,
1296 const int namelen)
1297{
1298 struct btrfs_key key;
1299 struct btrfs_path *path;
1300 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1301 int ret;
1302
1303 path = btrfs_alloc_path();
1304 if (!path)
1305 return -ENOMEM;
1306
1307 key.objectid = btrfs_ino(BTRFS_I(inode));
1308 key.type = ref_type;
1309 if (key.type == BTRFS_INODE_REF_KEY)
1310 key.offset = parent_id;
1311 else
1312 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1313
1314 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1315 if (ret < 0)
1316 goto out;
1317 if (ret > 0) {
1318 ret = 0;
1319 goto out;
1320 }
1321 if (key.type == BTRFS_INODE_EXTREF_KEY)
1322 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1323 path->slots[0], parent_id,
1324 name, namelen, NULL);
1325 else
1326 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen, NULL);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
6b5fc433
FM
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
5a1d7843
JS
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
03b2f08b
GB
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
5a1d7843
JS
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
03b2f08b 1412 char *name = NULL;
5a1d7843
JS
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
f186373f
MF
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
f46dbe3d 1419 u64 ref_index = 0;
f186373f
MF
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
e02119d5 1437
5a1d7843
JS
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
f186373f 1444 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
5a1d7843 1449
f186373f 1450 inode = read_one_inode(root, inode_objectid);
5a1d7843 1451 if (!inode) {
03b2f08b
GB
1452 ret = -EIO;
1453 goto out;
5a1d7843
JS
1454 }
1455
5a1d7843 1456 while (ref_ptr < ref_end) {
f186373f 1457 if (log_ref_ver) {
bae15d95
QW
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
f186373f
MF
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
f186373f 1470 } else {
bae15d95
QW
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
f186373f
MF
1473 }
1474 if (ret)
03b2f08b 1475 goto out;
5a1d7843
JS
1476
1477 /* if we already have a perfect match, we're done */
f85b7379
DS
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
5a1d7843
JS
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1491 BTRFS_I(dir),
d75eefdf 1492 BTRFS_I(inode),
f186373f
MF
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
5a1d7843 1496 &search_done);
03b2f08b
GB
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
3650860b
JB
1500 goto out;
1501 }
5a1d7843
JS
1502 }
1503
0d836392
FM
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
5a1d7843 1530 /* insert our name */
6b5fc433
FM
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
3650860b
JB
1533 if (ret)
1534 goto out;
5a1d7843
JS
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
f186373f 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1540 kfree(name);
03b2f08b 1541 name = NULL;
f186373f
MF
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
5a1d7843 1546 }
e02119d5 1547
1f250e92
FM
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
e02119d5
CM
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1563out:
b3b4aa74 1564 btrfs_release_path(path);
03b2f08b 1565 kfree(name);
e02119d5
CM
1566 iput(dir);
1567 iput(inode);
3650860b 1568 return ret;
e02119d5
CM
1569}
1570
c71bf099 1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1572 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1573{
1574 int ret;
381cf658 1575
9c4f61f0
DS
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
381cf658 1579
c71bf099
YZ
1580 return ret;
1581}
1582
f186373f 1583static int count_inode_extrefs(struct btrfs_root *root,
36283658 1584 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
36283658 1591 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
c71bf099 1602
f186373f
MF
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1606 cur_offset = 0;
f186373f
MF
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
2c2c452b 1622 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
f329e319 1628 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1629{
e02119d5
CM
1630 int ret;
1631 struct btrfs_key key;
f186373f 1632 unsigned int nlink = 0;
e02119d5
CM
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
f329e319 1636 u64 ino = btrfs_ino(inode);
e02119d5 1637
33345d01 1638 key.objectid = ino;
e02119d5
CM
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
d397712b 1642 while (1) {
e02119d5
CM
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
e93ae26f 1651process_slot:
e02119d5
CM
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
33345d01 1654 if (key.objectid != ino ||
e02119d5
CM
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
d397712b 1660 while (ptr < ptr_end) {
e02119d5
CM
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
e93ae26f
FDBM
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
e02119d5 1676 key.offset--;
b3b4aa74 1677 btrfs_release_path(path);
e02119d5 1678 }
b3b4aa74 1679 btrfs_release_path(path);
f186373f
MF
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
4a0cc7ca 1701 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
f329e319 1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
36283658 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
e02119d5 1721 if (nlink != inode->i_nlink) {
bfe86848 1722 set_nlink(inode, nlink);
e02119d5
CM
1723 btrfs_update_inode(trans, root, inode);
1724 }
8d5bf1cb 1725 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1726
c71bf099
YZ
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1730 ino, 1);
3650860b
JB
1731 if (ret)
1732 goto out;
c71bf099 1733 }
33345d01 1734 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1735 }
12fcfd22 1736
f186373f
MF
1737out:
1738 btrfs_free_path(path);
1739 return ret;
e02119d5
CM
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
d397712b 1753 while (1) {
e02119d5
CM
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1770 if (ret)
1771 goto out;
e02119d5 1772
b3b4aa74 1773 btrfs_release_path(path);
e02119d5 1774 inode = read_one_inode(root, key.offset);
c00e9493
TI
1775 if (!inode)
1776 return -EIO;
e02119d5
CM
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1779 iput(inode);
3650860b
JB
1780 if (ret)
1781 goto out;
e02119d5 1782
12fcfd22
CM
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
e02119d5 1789 }
65a246c5
TI
1790 ret = 0;
1791out:
b3b4aa74 1792 btrfs_release_path(path);
65a246c5 1793 return ret;
e02119d5
CM
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
c00e9493
TI
1812 if (!inode)
1813 return -EIO;
e02119d5
CM
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
b3b4aa74 1821 btrfs_release_path(path);
e02119d5 1822 if (ret == 0) {
9bf7a489
JB
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
8b558c5f 1826 inc_nlink(inode);
b9959295 1827 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
3650860b 1831 BUG(); /* Logic Error */
e02119d5
CM
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
e02119d5 1845 u64 dirid, u64 index,
60d53eb3 1846 char *name, int name_len,
e02119d5
CM
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
d555438b 1862
db0a669f
NB
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
e02119d5
CM
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
df8d116f
FM
1873/*
1874 * Return true if an inode reference exists in the log for the given name,
1875 * inode and parent inode.
1876 */
1877static bool name_in_log_ref(struct btrfs_root *log_root,
1878 const char *name, const int name_len,
1879 const u64 dirid, const u64 ino)
1880{
1881 struct btrfs_key search_key;
1882
1883 search_key.objectid = ino;
1884 search_key.type = BTRFS_INODE_REF_KEY;
1885 search_key.offset = dirid;
1886 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1887 return true;
1888
1889 search_key.type = BTRFS_INODE_EXTREF_KEY;
1890 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1891 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1892 return true;
1893
1894 return false;
1895}
1896
e02119d5
CM
1897/*
1898 * take a single entry in a log directory item and replay it into
1899 * the subvolume.
1900 *
1901 * if a conflicting item exists in the subdirectory already,
1902 * the inode it points to is unlinked and put into the link count
1903 * fix up tree.
1904 *
1905 * If a name from the log points to a file or directory that does
1906 * not exist in the FS, it is skipped. fsyncs on directories
1907 * do not force down inodes inside that directory, just changes to the
1908 * names or unlinks in a directory.
bb53eda9
FM
1909 *
1910 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1911 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1912 */
1913static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root,
1915 struct btrfs_path *path,
1916 struct extent_buffer *eb,
1917 struct btrfs_dir_item *di,
1918 struct btrfs_key *key)
1919{
1920 char *name;
1921 int name_len;
1922 struct btrfs_dir_item *dst_di;
1923 struct btrfs_key found_key;
1924 struct btrfs_key log_key;
1925 struct inode *dir;
e02119d5 1926 u8 log_type;
4bef0848 1927 int exists;
3650860b 1928 int ret = 0;
d555438b 1929 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1930 bool name_added = false;
e02119d5
CM
1931
1932 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1933 if (!dir)
1934 return -EIO;
e02119d5
CM
1935
1936 name_len = btrfs_dir_name_len(eb, di);
1937 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1938 if (!name) {
1939 ret = -ENOMEM;
1940 goto out;
1941 }
2a29edc6 1942
e02119d5
CM
1943 log_type = btrfs_dir_type(eb, di);
1944 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1945 name_len);
1946
1947 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1948 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1949 if (exists == 0)
1950 exists = 1;
1951 else
1952 exists = 0;
b3b4aa74 1953 btrfs_release_path(path);
4bef0848 1954
e02119d5
CM
1955 if (key->type == BTRFS_DIR_ITEM_KEY) {
1956 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1957 name, name_len, 1);
d397712b 1958 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1959 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1960 key->objectid,
1961 key->offset, name,
1962 name_len, 1);
1963 } else {
3650860b
JB
1964 /* Corruption */
1965 ret = -EINVAL;
1966 goto out;
e02119d5 1967 }
c704005d 1968 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1969 /* we need a sequence number to insert, so we only
1970 * do inserts for the BTRFS_DIR_INDEX_KEY types
1971 */
1972 if (key->type != BTRFS_DIR_INDEX_KEY)
1973 goto out;
1974 goto insert;
1975 }
1976
1977 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1978 /* the existing item matches the logged item */
1979 if (found_key.objectid == log_key.objectid &&
1980 found_key.type == log_key.type &&
1981 found_key.offset == log_key.offset &&
1982 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1983 update_size = false;
e02119d5
CM
1984 goto out;
1985 }
1986
1987 /*
1988 * don't drop the conflicting directory entry if the inode
1989 * for the new entry doesn't exist
1990 */
4bef0848 1991 if (!exists)
e02119d5
CM
1992 goto out;
1993
207e7d92 1994 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1995 if (ret)
1996 goto out;
e02119d5
CM
1997
1998 if (key->type == BTRFS_DIR_INDEX_KEY)
1999 goto insert;
2000out:
b3b4aa74 2001 btrfs_release_path(path);
d555438b 2002 if (!ret && update_size) {
6ef06d27 2003 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
2004 ret = btrfs_update_inode(trans, root, dir);
2005 }
e02119d5
CM
2006 kfree(name);
2007 iput(dir);
bb53eda9
FM
2008 if (!ret && name_added)
2009 ret = 1;
3650860b 2010 return ret;
e02119d5
CM
2011
2012insert:
df8d116f
FM
2013 if (name_in_log_ref(root->log_root, name, name_len,
2014 key->objectid, log_key.objectid)) {
2015 /* The dentry will be added later. */
2016 ret = 0;
2017 update_size = false;
2018 goto out;
2019 }
b3b4aa74 2020 btrfs_release_path(path);
60d53eb3
Z
2021 ret = insert_one_name(trans, root, key->objectid, key->offset,
2022 name, name_len, &log_key);
df8d116f 2023 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2024 goto out;
bb53eda9
FM
2025 if (!ret)
2026 name_added = true;
d555438b 2027 update_size = false;
3650860b 2028 ret = 0;
e02119d5
CM
2029 goto out;
2030}
2031
2032/*
2033 * find all the names in a directory item and reconcile them into
2034 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2035 * one name in a directory item, but the same code gets used for
2036 * both directory index types
2037 */
2038static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2039 struct btrfs_root *root,
2040 struct btrfs_path *path,
2041 struct extent_buffer *eb, int slot,
2042 struct btrfs_key *key)
2043{
bb53eda9 2044 int ret = 0;
e02119d5
CM
2045 u32 item_size = btrfs_item_size_nr(eb, slot);
2046 struct btrfs_dir_item *di;
2047 int name_len;
2048 unsigned long ptr;
2049 unsigned long ptr_end;
bb53eda9 2050 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2051
2052 ptr = btrfs_item_ptr_offset(eb, slot);
2053 ptr_end = ptr + item_size;
d397712b 2054 while (ptr < ptr_end) {
e02119d5
CM
2055 di = (struct btrfs_dir_item *)ptr;
2056 name_len = btrfs_dir_name_len(eb, di);
2057 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2058 if (ret < 0)
2059 break;
e02119d5
CM
2060 ptr = (unsigned long)(di + 1);
2061 ptr += name_len;
bb53eda9
FM
2062
2063 /*
2064 * If this entry refers to a non-directory (directories can not
2065 * have a link count > 1) and it was added in the transaction
2066 * that was not committed, make sure we fixup the link count of
2067 * the inode it the entry points to. Otherwise something like
2068 * the following would result in a directory pointing to an
2069 * inode with a wrong link that does not account for this dir
2070 * entry:
2071 *
2072 * mkdir testdir
2073 * touch testdir/foo
2074 * touch testdir/bar
2075 * sync
2076 *
2077 * ln testdir/bar testdir/bar_link
2078 * ln testdir/foo testdir/foo_link
2079 * xfs_io -c "fsync" testdir/bar
2080 *
2081 * <power failure>
2082 *
2083 * mount fs, log replay happens
2084 *
2085 * File foo would remain with a link count of 1 when it has two
2086 * entries pointing to it in the directory testdir. This would
2087 * make it impossible to ever delete the parent directory has
2088 * it would result in stale dentries that can never be deleted.
2089 */
2090 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2091 struct btrfs_key di_key;
2092
2093 if (!fixup_path) {
2094 fixup_path = btrfs_alloc_path();
2095 if (!fixup_path) {
2096 ret = -ENOMEM;
2097 break;
2098 }
2099 }
2100
2101 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2102 ret = link_to_fixup_dir(trans, root, fixup_path,
2103 di_key.objectid);
2104 if (ret)
2105 break;
2106 }
2107 ret = 0;
e02119d5 2108 }
bb53eda9
FM
2109 btrfs_free_path(fixup_path);
2110 return ret;
e02119d5
CM
2111}
2112
2113/*
2114 * directory replay has two parts. There are the standard directory
2115 * items in the log copied from the subvolume, and range items
2116 * created in the log while the subvolume was logged.
2117 *
2118 * The range items tell us which parts of the key space the log
2119 * is authoritative for. During replay, if a key in the subvolume
2120 * directory is in a logged range item, but not actually in the log
2121 * that means it was deleted from the directory before the fsync
2122 * and should be removed.
2123 */
2124static noinline int find_dir_range(struct btrfs_root *root,
2125 struct btrfs_path *path,
2126 u64 dirid, int key_type,
2127 u64 *start_ret, u64 *end_ret)
2128{
2129 struct btrfs_key key;
2130 u64 found_end;
2131 struct btrfs_dir_log_item *item;
2132 int ret;
2133 int nritems;
2134
2135 if (*start_ret == (u64)-1)
2136 return 1;
2137
2138 key.objectid = dirid;
2139 key.type = key_type;
2140 key.offset = *start_ret;
2141
2142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2143 if (ret < 0)
2144 goto out;
2145 if (ret > 0) {
2146 if (path->slots[0] == 0)
2147 goto out;
2148 path->slots[0]--;
2149 }
2150 if (ret != 0)
2151 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2152
2153 if (key.type != key_type || key.objectid != dirid) {
2154 ret = 1;
2155 goto next;
2156 }
2157 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2158 struct btrfs_dir_log_item);
2159 found_end = btrfs_dir_log_end(path->nodes[0], item);
2160
2161 if (*start_ret >= key.offset && *start_ret <= found_end) {
2162 ret = 0;
2163 *start_ret = key.offset;
2164 *end_ret = found_end;
2165 goto out;
2166 }
2167 ret = 1;
2168next:
2169 /* check the next slot in the tree to see if it is a valid item */
2170 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2171 path->slots[0]++;
e02119d5
CM
2172 if (path->slots[0] >= nritems) {
2173 ret = btrfs_next_leaf(root, path);
2174 if (ret)
2175 goto out;
e02119d5
CM
2176 }
2177
2178 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2179
2180 if (key.type != key_type || key.objectid != dirid) {
2181 ret = 1;
2182 goto out;
2183 }
2184 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2185 struct btrfs_dir_log_item);
2186 found_end = btrfs_dir_log_end(path->nodes[0], item);
2187 *start_ret = key.offset;
2188 *end_ret = found_end;
2189 ret = 0;
2190out:
b3b4aa74 2191 btrfs_release_path(path);
e02119d5
CM
2192 return ret;
2193}
2194
2195/*
2196 * this looks for a given directory item in the log. If the directory
2197 * item is not in the log, the item is removed and the inode it points
2198 * to is unlinked
2199 */
2200static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct btrfs_root *log,
2203 struct btrfs_path *path,
2204 struct btrfs_path *log_path,
2205 struct inode *dir,
2206 struct btrfs_key *dir_key)
2207{
2208 int ret;
2209 struct extent_buffer *eb;
2210 int slot;
2211 u32 item_size;
2212 struct btrfs_dir_item *di;
2213 struct btrfs_dir_item *log_di;
2214 int name_len;
2215 unsigned long ptr;
2216 unsigned long ptr_end;
2217 char *name;
2218 struct inode *inode;
2219 struct btrfs_key location;
2220
2221again:
2222 eb = path->nodes[0];
2223 slot = path->slots[0];
2224 item_size = btrfs_item_size_nr(eb, slot);
2225 ptr = btrfs_item_ptr_offset(eb, slot);
2226 ptr_end = ptr + item_size;
d397712b 2227 while (ptr < ptr_end) {
e02119d5
CM
2228 di = (struct btrfs_dir_item *)ptr;
2229 name_len = btrfs_dir_name_len(eb, di);
2230 name = kmalloc(name_len, GFP_NOFS);
2231 if (!name) {
2232 ret = -ENOMEM;
2233 goto out;
2234 }
2235 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2236 name_len);
2237 log_di = NULL;
12fcfd22 2238 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2239 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2240 dir_key->objectid,
2241 name, name_len, 0);
12fcfd22 2242 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2243 log_di = btrfs_lookup_dir_index_item(trans, log,
2244 log_path,
2245 dir_key->objectid,
2246 dir_key->offset,
2247 name, name_len, 0);
2248 }
8d9e220c 2249 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2250 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2251 btrfs_release_path(path);
2252 btrfs_release_path(log_path);
e02119d5 2253 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2254 if (!inode) {
2255 kfree(name);
2256 return -EIO;
2257 }
e02119d5
CM
2258
2259 ret = link_to_fixup_dir(trans, root,
2260 path, location.objectid);
3650860b
JB
2261 if (ret) {
2262 kfree(name);
2263 iput(inode);
2264 goto out;
2265 }
2266
8b558c5f 2267 inc_nlink(inode);
4ec5934e
NB
2268 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2269 BTRFS_I(inode), name, name_len);
3650860b 2270 if (!ret)
e5c304e6 2271 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2272 kfree(name);
2273 iput(inode);
3650860b
JB
2274 if (ret)
2275 goto out;
e02119d5
CM
2276
2277 /* there might still be more names under this key
2278 * check and repeat if required
2279 */
2280 ret = btrfs_search_slot(NULL, root, dir_key, path,
2281 0, 0);
2282 if (ret == 0)
2283 goto again;
2284 ret = 0;
2285 goto out;
269d040f
FDBM
2286 } else if (IS_ERR(log_di)) {
2287 kfree(name);
2288 return PTR_ERR(log_di);
e02119d5 2289 }
b3b4aa74 2290 btrfs_release_path(log_path);
e02119d5
CM
2291 kfree(name);
2292
2293 ptr = (unsigned long)(di + 1);
2294 ptr += name_len;
2295 }
2296 ret = 0;
2297out:
b3b4aa74
DS
2298 btrfs_release_path(path);
2299 btrfs_release_path(log_path);
e02119d5
CM
2300 return ret;
2301}
2302
4f764e51
FM
2303static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2304 struct btrfs_root *root,
2305 struct btrfs_root *log,
2306 struct btrfs_path *path,
2307 const u64 ino)
2308{
2309 struct btrfs_key search_key;
2310 struct btrfs_path *log_path;
2311 int i;
2312 int nritems;
2313 int ret;
2314
2315 log_path = btrfs_alloc_path();
2316 if (!log_path)
2317 return -ENOMEM;
2318
2319 search_key.objectid = ino;
2320 search_key.type = BTRFS_XATTR_ITEM_KEY;
2321 search_key.offset = 0;
2322again:
2323 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2324 if (ret < 0)
2325 goto out;
2326process_leaf:
2327 nritems = btrfs_header_nritems(path->nodes[0]);
2328 for (i = path->slots[0]; i < nritems; i++) {
2329 struct btrfs_key key;
2330 struct btrfs_dir_item *di;
2331 struct btrfs_dir_item *log_di;
2332 u32 total_size;
2333 u32 cur;
2334
2335 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2336 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2337 ret = 0;
2338 goto out;
2339 }
2340
2341 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2342 total_size = btrfs_item_size_nr(path->nodes[0], i);
2343 cur = 0;
2344 while (cur < total_size) {
2345 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2346 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2347 u32 this_len = sizeof(*di) + name_len + data_len;
2348 char *name;
2349
2350 name = kmalloc(name_len, GFP_NOFS);
2351 if (!name) {
2352 ret = -ENOMEM;
2353 goto out;
2354 }
2355 read_extent_buffer(path->nodes[0], name,
2356 (unsigned long)(di + 1), name_len);
2357
2358 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2359 name, name_len, 0);
2360 btrfs_release_path(log_path);
2361 if (!log_di) {
2362 /* Doesn't exist in log tree, so delete it. */
2363 btrfs_release_path(path);
2364 di = btrfs_lookup_xattr(trans, root, path, ino,
2365 name, name_len, -1);
2366 kfree(name);
2367 if (IS_ERR(di)) {
2368 ret = PTR_ERR(di);
2369 goto out;
2370 }
2371 ASSERT(di);
2372 ret = btrfs_delete_one_dir_name(trans, root,
2373 path, di);
2374 if (ret)
2375 goto out;
2376 btrfs_release_path(path);
2377 search_key = key;
2378 goto again;
2379 }
2380 kfree(name);
2381 if (IS_ERR(log_di)) {
2382 ret = PTR_ERR(log_di);
2383 goto out;
2384 }
2385 cur += this_len;
2386 di = (struct btrfs_dir_item *)((char *)di + this_len);
2387 }
2388 }
2389 ret = btrfs_next_leaf(root, path);
2390 if (ret > 0)
2391 ret = 0;
2392 else if (ret == 0)
2393 goto process_leaf;
2394out:
2395 btrfs_free_path(log_path);
2396 btrfs_release_path(path);
2397 return ret;
2398}
2399
2400
e02119d5
CM
2401/*
2402 * deletion replay happens before we copy any new directory items
2403 * out of the log or out of backreferences from inodes. It
2404 * scans the log to find ranges of keys that log is authoritative for,
2405 * and then scans the directory to find items in those ranges that are
2406 * not present in the log.
2407 *
2408 * Anything we don't find in the log is unlinked and removed from the
2409 * directory.
2410 */
2411static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2412 struct btrfs_root *root,
2413 struct btrfs_root *log,
2414 struct btrfs_path *path,
12fcfd22 2415 u64 dirid, int del_all)
e02119d5
CM
2416{
2417 u64 range_start;
2418 u64 range_end;
2419 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2420 int ret = 0;
2421 struct btrfs_key dir_key;
2422 struct btrfs_key found_key;
2423 struct btrfs_path *log_path;
2424 struct inode *dir;
2425
2426 dir_key.objectid = dirid;
2427 dir_key.type = BTRFS_DIR_ITEM_KEY;
2428 log_path = btrfs_alloc_path();
2429 if (!log_path)
2430 return -ENOMEM;
2431
2432 dir = read_one_inode(root, dirid);
2433 /* it isn't an error if the inode isn't there, that can happen
2434 * because we replay the deletes before we copy in the inode item
2435 * from the log
2436 */
2437 if (!dir) {
2438 btrfs_free_path(log_path);
2439 return 0;
2440 }
2441again:
2442 range_start = 0;
2443 range_end = 0;
d397712b 2444 while (1) {
12fcfd22
CM
2445 if (del_all)
2446 range_end = (u64)-1;
2447 else {
2448 ret = find_dir_range(log, path, dirid, key_type,
2449 &range_start, &range_end);
2450 if (ret != 0)
2451 break;
2452 }
e02119d5
CM
2453
2454 dir_key.offset = range_start;
d397712b 2455 while (1) {
e02119d5
CM
2456 int nritems;
2457 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2458 0, 0);
2459 if (ret < 0)
2460 goto out;
2461
2462 nritems = btrfs_header_nritems(path->nodes[0]);
2463 if (path->slots[0] >= nritems) {
2464 ret = btrfs_next_leaf(root, path);
b98def7c 2465 if (ret == 1)
e02119d5 2466 break;
b98def7c
LB
2467 else if (ret < 0)
2468 goto out;
e02119d5
CM
2469 }
2470 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2471 path->slots[0]);
2472 if (found_key.objectid != dirid ||
2473 found_key.type != dir_key.type)
2474 goto next_type;
2475
2476 if (found_key.offset > range_end)
2477 break;
2478
2479 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2480 log_path, dir,
2481 &found_key);
3650860b
JB
2482 if (ret)
2483 goto out;
e02119d5
CM
2484 if (found_key.offset == (u64)-1)
2485 break;
2486 dir_key.offset = found_key.offset + 1;
2487 }
b3b4aa74 2488 btrfs_release_path(path);
e02119d5
CM
2489 if (range_end == (u64)-1)
2490 break;
2491 range_start = range_end + 1;
2492 }
2493
2494next_type:
2495 ret = 0;
2496 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2497 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2498 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2499 btrfs_release_path(path);
e02119d5
CM
2500 goto again;
2501 }
2502out:
b3b4aa74 2503 btrfs_release_path(path);
e02119d5
CM
2504 btrfs_free_path(log_path);
2505 iput(dir);
2506 return ret;
2507}
2508
2509/*
2510 * the process_func used to replay items from the log tree. This
2511 * gets called in two different stages. The first stage just looks
2512 * for inodes and makes sure they are all copied into the subvolume.
2513 *
2514 * The second stage copies all the other item types from the log into
2515 * the subvolume. The two stage approach is slower, but gets rid of
2516 * lots of complexity around inodes referencing other inodes that exist
2517 * only in the log (references come from either directory items or inode
2518 * back refs).
2519 */
2520static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2521 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2522{
2523 int nritems;
2524 struct btrfs_path *path;
2525 struct btrfs_root *root = wc->replay_dest;
2526 struct btrfs_key key;
e02119d5
CM
2527 int i;
2528 int ret;
2529
581c1760 2530 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2531 if (ret)
2532 return ret;
e02119d5
CM
2533
2534 level = btrfs_header_level(eb);
2535
2536 if (level != 0)
2537 return 0;
2538
2539 path = btrfs_alloc_path();
1e5063d0
MF
2540 if (!path)
2541 return -ENOMEM;
e02119d5
CM
2542
2543 nritems = btrfs_header_nritems(eb);
2544 for (i = 0; i < nritems; i++) {
2545 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2546
2547 /* inode keys are done during the first stage */
2548 if (key.type == BTRFS_INODE_ITEM_KEY &&
2549 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2550 struct btrfs_inode_item *inode_item;
2551 u32 mode;
2552
2553 inode_item = btrfs_item_ptr(eb, i,
2554 struct btrfs_inode_item);
f2d72f42
FM
2555 /*
2556 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2557 * and never got linked before the fsync, skip it, as
2558 * replaying it is pointless since it would be deleted
2559 * later. We skip logging tmpfiles, but it's always
2560 * possible we are replaying a log created with a kernel
2561 * that used to log tmpfiles.
2562 */
2563 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2564 wc->ignore_cur_inode = true;
2565 continue;
2566 } else {
2567 wc->ignore_cur_inode = false;
2568 }
4f764e51
FM
2569 ret = replay_xattr_deletes(wc->trans, root, log,
2570 path, key.objectid);
2571 if (ret)
2572 break;
e02119d5
CM
2573 mode = btrfs_inode_mode(eb, inode_item);
2574 if (S_ISDIR(mode)) {
2575 ret = replay_dir_deletes(wc->trans,
12fcfd22 2576 root, log, path, key.objectid, 0);
b50c6e25
JB
2577 if (ret)
2578 break;
e02119d5
CM
2579 }
2580 ret = overwrite_item(wc->trans, root, path,
2581 eb, i, &key);
b50c6e25
JB
2582 if (ret)
2583 break;
e02119d5 2584
471d557a
FM
2585 /*
2586 * Before replaying extents, truncate the inode to its
2587 * size. We need to do it now and not after log replay
2588 * because before an fsync we can have prealloc extents
2589 * added beyond the inode's i_size. If we did it after,
2590 * through orphan cleanup for example, we would drop
2591 * those prealloc extents just after replaying them.
e02119d5
CM
2592 */
2593 if (S_ISREG(mode)) {
471d557a
FM
2594 struct inode *inode;
2595 u64 from;
2596
2597 inode = read_one_inode(root, key.objectid);
2598 if (!inode) {
2599 ret = -EIO;
2600 break;
2601 }
2602 from = ALIGN(i_size_read(inode),
2603 root->fs_info->sectorsize);
2604 ret = btrfs_drop_extents(wc->trans, root, inode,
2605 from, (u64)-1, 1);
471d557a 2606 if (!ret) {
f2d72f42 2607 /* Update the inode's nbytes. */
471d557a
FM
2608 ret = btrfs_update_inode(wc->trans,
2609 root, inode);
2610 }
2611 iput(inode);
b50c6e25
JB
2612 if (ret)
2613 break;
e02119d5 2614 }
c71bf099 2615
e02119d5
CM
2616 ret = link_to_fixup_dir(wc->trans, root,
2617 path, key.objectid);
b50c6e25
JB
2618 if (ret)
2619 break;
e02119d5 2620 }
dd8e7217 2621
f2d72f42
FM
2622 if (wc->ignore_cur_inode)
2623 continue;
2624
dd8e7217
JB
2625 if (key.type == BTRFS_DIR_INDEX_KEY &&
2626 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2627 ret = replay_one_dir_item(wc->trans, root, path,
2628 eb, i, &key);
2629 if (ret)
2630 break;
2631 }
2632
e02119d5
CM
2633 if (wc->stage < LOG_WALK_REPLAY_ALL)
2634 continue;
2635
2636 /* these keys are simply copied */
2637 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2638 ret = overwrite_item(wc->trans, root, path,
2639 eb, i, &key);
b50c6e25
JB
2640 if (ret)
2641 break;
2da1c669
LB
2642 } else if (key.type == BTRFS_INODE_REF_KEY ||
2643 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2644 ret = add_inode_ref(wc->trans, root, log, path,
2645 eb, i, &key);
b50c6e25
JB
2646 if (ret && ret != -ENOENT)
2647 break;
2648 ret = 0;
e02119d5
CM
2649 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2650 ret = replay_one_extent(wc->trans, root, path,
2651 eb, i, &key);
b50c6e25
JB
2652 if (ret)
2653 break;
dd8e7217 2654 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2655 ret = replay_one_dir_item(wc->trans, root, path,
2656 eb, i, &key);
b50c6e25
JB
2657 if (ret)
2658 break;
e02119d5
CM
2659 }
2660 }
2661 btrfs_free_path(path);
b50c6e25 2662 return ret;
e02119d5
CM
2663}
2664
d397712b 2665static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2666 struct btrfs_root *root,
2667 struct btrfs_path *path, int *level,
2668 struct walk_control *wc)
2669{
0b246afa 2670 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2671 u64 root_owner;
e02119d5
CM
2672 u64 bytenr;
2673 u64 ptr_gen;
2674 struct extent_buffer *next;
2675 struct extent_buffer *cur;
2676 struct extent_buffer *parent;
2677 u32 blocksize;
2678 int ret = 0;
2679
2680 WARN_ON(*level < 0);
2681 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2682
d397712b 2683 while (*level > 0) {
581c1760
QW
2684 struct btrfs_key first_key;
2685
e02119d5
CM
2686 WARN_ON(*level < 0);
2687 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2688 cur = path->nodes[*level];
2689
fae7f21c 2690 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2691
2692 if (path->slots[*level] >=
2693 btrfs_header_nritems(cur))
2694 break;
2695
2696 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2697 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2698 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2699 blocksize = fs_info->nodesize;
e02119d5
CM
2700
2701 parent = path->nodes[*level];
2702 root_owner = btrfs_header_owner(parent);
e02119d5 2703
2ff7e61e 2704 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2705 if (IS_ERR(next))
2706 return PTR_ERR(next);
e02119d5 2707
e02119d5 2708 if (*level == 1) {
581c1760
QW
2709 ret = wc->process_func(root, next, wc, ptr_gen,
2710 *level - 1);
b50c6e25
JB
2711 if (ret) {
2712 free_extent_buffer(next);
1e5063d0 2713 return ret;
b50c6e25 2714 }
4a500fd1 2715
e02119d5
CM
2716 path->slots[*level]++;
2717 if (wc->free) {
581c1760
QW
2718 ret = btrfs_read_buffer(next, ptr_gen,
2719 *level - 1, &first_key);
018642a1
TI
2720 if (ret) {
2721 free_extent_buffer(next);
2722 return ret;
2723 }
e02119d5 2724
681ae509
JB
2725 if (trans) {
2726 btrfs_tree_lock(next);
8bead258 2727 btrfs_set_lock_blocking_write(next);
7c302b49 2728 clean_tree_block(fs_info, next);
681ae509
JB
2729 btrfs_wait_tree_block_writeback(next);
2730 btrfs_tree_unlock(next);
1846430c
LB
2731 } else {
2732 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2733 clear_extent_buffer_dirty(next);
681ae509 2734 }
e02119d5 2735
e02119d5
CM
2736 WARN_ON(root_owner !=
2737 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2738 ret = btrfs_free_and_pin_reserved_extent(
2739 fs_info, bytenr,
2740 blocksize);
3650860b
JB
2741 if (ret) {
2742 free_extent_buffer(next);
2743 return ret;
2744 }
e02119d5
CM
2745 }
2746 free_extent_buffer(next);
2747 continue;
2748 }
581c1760 2749 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2750 if (ret) {
2751 free_extent_buffer(next);
2752 return ret;
2753 }
e02119d5
CM
2754
2755 WARN_ON(*level <= 0);
2756 if (path->nodes[*level-1])
2757 free_extent_buffer(path->nodes[*level-1]);
2758 path->nodes[*level-1] = next;
2759 *level = btrfs_header_level(next);
2760 path->slots[*level] = 0;
2761 cond_resched();
2762 }
2763 WARN_ON(*level < 0);
2764 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2765
4a500fd1 2766 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2767
2768 cond_resched();
2769 return 0;
2770}
2771
d397712b 2772static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2773 struct btrfs_root *root,
2774 struct btrfs_path *path, int *level,
2775 struct walk_control *wc)
2776{
0b246afa 2777 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2778 u64 root_owner;
e02119d5
CM
2779 int i;
2780 int slot;
2781 int ret;
2782
d397712b 2783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2784 slot = path->slots[i];
4a500fd1 2785 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2786 path->slots[i]++;
2787 *level = i;
2788 WARN_ON(*level == 0);
2789 return 0;
2790 } else {
31840ae1
ZY
2791 struct extent_buffer *parent;
2792 if (path->nodes[*level] == root->node)
2793 parent = path->nodes[*level];
2794 else
2795 parent = path->nodes[*level + 1];
2796
2797 root_owner = btrfs_header_owner(parent);
1e5063d0 2798 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2799 btrfs_header_generation(path->nodes[*level]),
2800 *level);
1e5063d0
MF
2801 if (ret)
2802 return ret;
2803
e02119d5
CM
2804 if (wc->free) {
2805 struct extent_buffer *next;
2806
2807 next = path->nodes[*level];
2808
681ae509
JB
2809 if (trans) {
2810 btrfs_tree_lock(next);
8bead258 2811 btrfs_set_lock_blocking_write(next);
7c302b49 2812 clean_tree_block(fs_info, next);
681ae509
JB
2813 btrfs_wait_tree_block_writeback(next);
2814 btrfs_tree_unlock(next);
1846430c
LB
2815 } else {
2816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2817 clear_extent_buffer_dirty(next);
681ae509 2818 }
e02119d5 2819
e02119d5 2820 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2821 ret = btrfs_free_and_pin_reserved_extent(
2822 fs_info,
e02119d5 2823 path->nodes[*level]->start,
d00aff00 2824 path->nodes[*level]->len);
3650860b
JB
2825 if (ret)
2826 return ret;
e02119d5
CM
2827 }
2828 free_extent_buffer(path->nodes[*level]);
2829 path->nodes[*level] = NULL;
2830 *level = i + 1;
2831 }
2832 }
2833 return 1;
2834}
2835
2836/*
2837 * drop the reference count on the tree rooted at 'snap'. This traverses
2838 * the tree freeing any blocks that have a ref count of zero after being
2839 * decremented.
2840 */
2841static int walk_log_tree(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *log, struct walk_control *wc)
2843{
2ff7e61e 2844 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2845 int ret = 0;
2846 int wret;
2847 int level;
2848 struct btrfs_path *path;
e02119d5
CM
2849 int orig_level;
2850
2851 path = btrfs_alloc_path();
db5b493a
TI
2852 if (!path)
2853 return -ENOMEM;
e02119d5
CM
2854
2855 level = btrfs_header_level(log->node);
2856 orig_level = level;
2857 path->nodes[level] = log->node;
2858 extent_buffer_get(log->node);
2859 path->slots[level] = 0;
2860
d397712b 2861 while (1) {
e02119d5
CM
2862 wret = walk_down_log_tree(trans, log, path, &level, wc);
2863 if (wret > 0)
2864 break;
79787eaa 2865 if (wret < 0) {
e02119d5 2866 ret = wret;
79787eaa
JM
2867 goto out;
2868 }
e02119d5
CM
2869
2870 wret = walk_up_log_tree(trans, log, path, &level, wc);
2871 if (wret > 0)
2872 break;
79787eaa 2873 if (wret < 0) {
e02119d5 2874 ret = wret;
79787eaa
JM
2875 goto out;
2876 }
e02119d5
CM
2877 }
2878
2879 /* was the root node processed? if not, catch it here */
2880 if (path->nodes[orig_level]) {
79787eaa 2881 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2882 btrfs_header_generation(path->nodes[orig_level]),
2883 orig_level);
79787eaa
JM
2884 if (ret)
2885 goto out;
e02119d5
CM
2886 if (wc->free) {
2887 struct extent_buffer *next;
2888
2889 next = path->nodes[orig_level];
2890
681ae509
JB
2891 if (trans) {
2892 btrfs_tree_lock(next);
8bead258 2893 btrfs_set_lock_blocking_write(next);
7c302b49 2894 clean_tree_block(fs_info, next);
681ae509
JB
2895 btrfs_wait_tree_block_writeback(next);
2896 btrfs_tree_unlock(next);
1846430c
LB
2897 } else {
2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 clear_extent_buffer_dirty(next);
681ae509 2900 }
e02119d5 2901
e02119d5
CM
2902 WARN_ON(log->root_key.objectid !=
2903 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2904 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2905 next->start, next->len);
3650860b
JB
2906 if (ret)
2907 goto out;
e02119d5
CM
2908 }
2909 }
2910
79787eaa 2911out:
e02119d5 2912 btrfs_free_path(path);
e02119d5
CM
2913 return ret;
2914}
2915
7237f183
YZ
2916/*
2917 * helper function to update the item for a given subvolumes log root
2918 * in the tree of log roots
2919 */
2920static int update_log_root(struct btrfs_trans_handle *trans,
2921 struct btrfs_root *log)
2922{
0b246afa 2923 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2924 int ret;
2925
2926 if (log->log_transid == 1) {
2927 /* insert root item on the first sync */
0b246afa 2928 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2929 &log->root_key, &log->root_item);
2930 } else {
0b246afa 2931 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2932 &log->root_key, &log->root_item);
2933 }
2934 return ret;
2935}
2936
60d53eb3 2937static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2938{
2939 DEFINE_WAIT(wait);
7237f183 2940 int index = transid % 2;
e02119d5 2941
7237f183
YZ
2942 /*
2943 * we only allow two pending log transactions at a time,
2944 * so we know that if ours is more than 2 older than the
2945 * current transaction, we're done
2946 */
49e83f57 2947 for (;;) {
7237f183
YZ
2948 prepare_to_wait(&root->log_commit_wait[index],
2949 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2950
49e83f57
LB
2951 if (!(root->log_transid_committed < transid &&
2952 atomic_read(&root->log_commit[index])))
2953 break;
12fcfd22 2954
49e83f57
LB
2955 mutex_unlock(&root->log_mutex);
2956 schedule();
7237f183 2957 mutex_lock(&root->log_mutex);
49e83f57
LB
2958 }
2959 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2960}
2961
60d53eb3 2962static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2963{
2964 DEFINE_WAIT(wait);
8b050d35 2965
49e83f57
LB
2966 for (;;) {
2967 prepare_to_wait(&root->log_writer_wait, &wait,
2968 TASK_UNINTERRUPTIBLE);
2969 if (!atomic_read(&root->log_writers))
2970 break;
2971
7237f183 2972 mutex_unlock(&root->log_mutex);
49e83f57 2973 schedule();
575849ec 2974 mutex_lock(&root->log_mutex);
7237f183 2975 }
49e83f57 2976 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2977}
2978
8b050d35
MX
2979static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2980 struct btrfs_log_ctx *ctx)
2981{
2982 if (!ctx)
2983 return;
2984
2985 mutex_lock(&root->log_mutex);
2986 list_del_init(&ctx->list);
2987 mutex_unlock(&root->log_mutex);
2988}
2989
2990/*
2991 * Invoked in log mutex context, or be sure there is no other task which
2992 * can access the list.
2993 */
2994static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2995 int index, int error)
2996{
2997 struct btrfs_log_ctx *ctx;
570dd450 2998 struct btrfs_log_ctx *safe;
8b050d35 2999
570dd450
CM
3000 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3001 list_del_init(&ctx->list);
8b050d35 3002 ctx->log_ret = error;
570dd450 3003 }
8b050d35
MX
3004
3005 INIT_LIST_HEAD(&root->log_ctxs[index]);
3006}
3007
e02119d5
CM
3008/*
3009 * btrfs_sync_log does sends a given tree log down to the disk and
3010 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3011 * you know that any inodes previously logged are safely on disk only
3012 * if it returns 0.
3013 *
3014 * Any other return value means you need to call btrfs_commit_transaction.
3015 * Some of the edge cases for fsyncing directories that have had unlinks
3016 * or renames done in the past mean that sometimes the only safe
3017 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3018 * that has happened.
e02119d5
CM
3019 */
3020int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3021 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3022{
7237f183
YZ
3023 int index1;
3024 int index2;
8cef4e16 3025 int mark;
e02119d5 3026 int ret;
0b246afa 3027 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3028 struct btrfs_root *log = root->log_root;
0b246afa 3029 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 3030 int log_transid = 0;
8b050d35 3031 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3032 struct blk_plug plug;
e02119d5 3033
7237f183 3034 mutex_lock(&root->log_mutex);
d1433deb
MX
3035 log_transid = ctx->log_transid;
3036 if (root->log_transid_committed >= log_transid) {
3037 mutex_unlock(&root->log_mutex);
3038 return ctx->log_ret;
3039 }
3040
3041 index1 = log_transid % 2;
7237f183 3042 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3043 wait_log_commit(root, log_transid);
7237f183 3044 mutex_unlock(&root->log_mutex);
8b050d35 3045 return ctx->log_ret;
e02119d5 3046 }
d1433deb 3047 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3048 atomic_set(&root->log_commit[index1], 1);
3049
3050 /* wait for previous tree log sync to complete */
3051 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3052 wait_log_commit(root, log_transid - 1);
48cab2e0 3053
86df7eb9 3054 while (1) {
2ecb7923 3055 int batch = atomic_read(&root->log_batch);
cd354ad6 3056 /* when we're on an ssd, just kick the log commit out */
0b246afa 3057 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3058 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3059 mutex_unlock(&root->log_mutex);
3060 schedule_timeout_uninterruptible(1);
3061 mutex_lock(&root->log_mutex);
3062 }
60d53eb3 3063 wait_for_writer(root);
2ecb7923 3064 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3065 break;
3066 }
e02119d5 3067
12fcfd22 3068 /* bail out if we need to do a full commit */
0b246afa 3069 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22
CM
3070 ret = -EAGAIN;
3071 mutex_unlock(&root->log_mutex);
3072 goto out;
3073 }
3074
8cef4e16
YZ
3075 if (log_transid % 2 == 0)
3076 mark = EXTENT_DIRTY;
3077 else
3078 mark = EXTENT_NEW;
3079
690587d1
CM
3080 /* we start IO on all the marked extents here, but we don't actually
3081 * wait for them until later.
3082 */
c6adc9cc 3083 blk_start_plug(&plug);
2ff7e61e 3084 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3085 if (ret) {
c6adc9cc 3086 blk_finish_plug(&plug);
66642832 3087 btrfs_abort_transaction(trans, ret);
0b246afa 3088 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
3089 mutex_unlock(&root->log_mutex);
3090 goto out;
3091 }
7237f183 3092
5d4f98a2 3093 btrfs_set_root_node(&log->root_item, log->node);
7237f183 3094
7237f183
YZ
3095 root->log_transid++;
3096 log->log_transid = root->log_transid;
ff782e0a 3097 root->log_start_pid = 0;
7237f183 3098 /*
8cef4e16
YZ
3099 * IO has been started, blocks of the log tree have WRITTEN flag set
3100 * in their headers. new modifications of the log will be written to
3101 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3102 */
3103 mutex_unlock(&root->log_mutex);
3104
28a23593 3105 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3106
7237f183 3107 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3108 atomic_inc(&log_root_tree->log_batch);
7237f183 3109 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3110
3111 index2 = log_root_tree->log_transid % 2;
3112 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3113 root_log_ctx.log_transid = log_root_tree->log_transid;
3114
7237f183
YZ
3115 mutex_unlock(&log_root_tree->log_mutex);
3116
3117 ret = update_log_root(trans, log);
7237f183
YZ
3118
3119 mutex_lock(&log_root_tree->log_mutex);
3120 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3121 /* atomic_dec_and_test implies a barrier */
3122 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3123 }
3124
4a500fd1 3125 if (ret) {
d1433deb
MX
3126 if (!list_empty(&root_log_ctx.list))
3127 list_del_init(&root_log_ctx.list);
3128
c6adc9cc 3129 blk_finish_plug(&plug);
0b246afa 3130 btrfs_set_log_full_commit(fs_info, trans);
995946dd 3131
79787eaa 3132 if (ret != -ENOSPC) {
66642832 3133 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3134 mutex_unlock(&log_root_tree->log_mutex);
3135 goto out;
3136 }
bf89d38f 3137 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3138 mutex_unlock(&log_root_tree->log_mutex);
3139 ret = -EAGAIN;
3140 goto out;
3141 }
3142
d1433deb 3143 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3144 blk_finish_plug(&plug);
cbd60aa7 3145 list_del_init(&root_log_ctx.list);
d1433deb
MX
3146 mutex_unlock(&log_root_tree->log_mutex);
3147 ret = root_log_ctx.log_ret;
3148 goto out;
3149 }
8b050d35 3150
d1433deb 3151 index2 = root_log_ctx.log_transid % 2;
7237f183 3152 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3153 blk_finish_plug(&plug);
bf89d38f 3154 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3155 wait_log_commit(log_root_tree,
d1433deb 3156 root_log_ctx.log_transid);
7237f183 3157 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3158 if (!ret)
3159 ret = root_log_ctx.log_ret;
7237f183
YZ
3160 goto out;
3161 }
d1433deb 3162 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3163 atomic_set(&log_root_tree->log_commit[index2], 1);
3164
12fcfd22 3165 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3166 wait_log_commit(log_root_tree,
d1433deb 3167 root_log_ctx.log_transid - 1);
12fcfd22
CM
3168 }
3169
60d53eb3 3170 wait_for_writer(log_root_tree);
7237f183 3171
12fcfd22
CM
3172 /*
3173 * now that we've moved on to the tree of log tree roots,
3174 * check the full commit flag again
3175 */
0b246afa 3176 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 3177 blk_finish_plug(&plug);
bf89d38f 3178 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3179 mutex_unlock(&log_root_tree->log_mutex);
3180 ret = -EAGAIN;
3181 goto out_wake_log_root;
3182 }
7237f183 3183
2ff7e61e 3184 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3185 &log_root_tree->dirty_log_pages,
3186 EXTENT_DIRTY | EXTENT_NEW);
3187 blk_finish_plug(&plug);
79787eaa 3188 if (ret) {
0b246afa 3189 btrfs_set_log_full_commit(fs_info, trans);
66642832 3190 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3191 mutex_unlock(&log_root_tree->log_mutex);
3192 goto out_wake_log_root;
3193 }
bf89d38f 3194 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3195 if (!ret)
bf89d38f
JM
3196 ret = btrfs_wait_tree_log_extents(log_root_tree,
3197 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3198 if (ret) {
0b246afa 3199 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
3200 mutex_unlock(&log_root_tree->log_mutex);
3201 goto out_wake_log_root;
3202 }
e02119d5 3203
0b246afa
JM
3204 btrfs_set_super_log_root(fs_info->super_for_commit,
3205 log_root_tree->node->start);
3206 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3207 btrfs_header_level(log_root_tree->node));
e02119d5 3208
7237f183 3209 log_root_tree->log_transid++;
7237f183
YZ
3210 mutex_unlock(&log_root_tree->log_mutex);
3211
3212 /*
52042d8e 3213 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3214 * super here because the log_commit atomic below is protecting
3215 * us. We must be called with a transaction handle pinning
3216 * the running transaction open, so a full commit can't hop
3217 * in and cause problems either.
3218 */
eece6a9c 3219 ret = write_all_supers(fs_info, 1);
5af3e8cc 3220 if (ret) {
0b246afa 3221 btrfs_set_log_full_commit(fs_info, trans);
66642832 3222 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3223 goto out_wake_log_root;
3224 }
7237f183 3225
257c62e1
CM
3226 mutex_lock(&root->log_mutex);
3227 if (root->last_log_commit < log_transid)
3228 root->last_log_commit = log_transid;
3229 mutex_unlock(&root->log_mutex);
3230
12fcfd22 3231out_wake_log_root:
570dd450 3232 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3233 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3234
d1433deb 3235 log_root_tree->log_transid_committed++;
7237f183 3236 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3237 mutex_unlock(&log_root_tree->log_mutex);
3238
33a9eca7 3239 /*
093258e6
DS
3240 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 * all the updates above are seen by the woken threads. It might not be
3242 * necessary, but proving that seems to be hard.
33a9eca7 3243 */
093258e6 3244 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3245out:
d1433deb 3246 mutex_lock(&root->log_mutex);
570dd450 3247 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3248 root->log_transid_committed++;
7237f183 3249 atomic_set(&root->log_commit[index1], 0);
d1433deb 3250 mutex_unlock(&root->log_mutex);
8b050d35 3251
33a9eca7 3252 /*
093258e6
DS
3253 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3254 * all the updates above are seen by the woken threads. It might not be
3255 * necessary, but proving that seems to be hard.
33a9eca7 3256 */
093258e6 3257 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3258 return ret;
e02119d5
CM
3259}
3260
4a500fd1
YZ
3261static void free_log_tree(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *log)
e02119d5
CM
3263{
3264 int ret;
e02119d5
CM
3265 struct walk_control wc = {
3266 .free = 1,
3267 .process_func = process_one_buffer
3268 };
3269
681ae509 3270 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3271 if (ret) {
3272 if (trans)
3273 btrfs_abort_transaction(trans, ret);
3274 else
3275 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3276 }
e02119d5 3277
59b0713a
FM
3278 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3279 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
7237f183
YZ
3280 free_extent_buffer(log->node);
3281 kfree(log);
4a500fd1
YZ
3282}
3283
3284/*
3285 * free all the extents used by the tree log. This should be called
3286 * at commit time of the full transaction
3287 */
3288int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3289{
3290 if (root->log_root) {
3291 free_log_tree(trans, root->log_root);
3292 root->log_root = NULL;
3293 }
3294 return 0;
3295}
3296
3297int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_fs_info *fs_info)
3299{
3300 if (fs_info->log_root_tree) {
3301 free_log_tree(trans, fs_info->log_root_tree);
3302 fs_info->log_root_tree = NULL;
3303 }
e02119d5
CM
3304 return 0;
3305}
3306
e02119d5
CM
3307/*
3308 * If both a file and directory are logged, and unlinks or renames are
3309 * mixed in, we have a few interesting corners:
3310 *
3311 * create file X in dir Y
3312 * link file X to X.link in dir Y
3313 * fsync file X
3314 * unlink file X but leave X.link
3315 * fsync dir Y
3316 *
3317 * After a crash we would expect only X.link to exist. But file X
3318 * didn't get fsync'd again so the log has back refs for X and X.link.
3319 *
3320 * We solve this by removing directory entries and inode backrefs from the
3321 * log when a file that was logged in the current transaction is
3322 * unlinked. Any later fsync will include the updated log entries, and
3323 * we'll be able to reconstruct the proper directory items from backrefs.
3324 *
3325 * This optimizations allows us to avoid relogging the entire inode
3326 * or the entire directory.
3327 */
3328int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root,
3330 const char *name, int name_len,
49f34d1f 3331 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3332{
3333 struct btrfs_root *log;
3334 struct btrfs_dir_item *di;
3335 struct btrfs_path *path;
3336 int ret;
4a500fd1 3337 int err = 0;
e02119d5 3338 int bytes_del = 0;
49f34d1f 3339 u64 dir_ino = btrfs_ino(dir);
e02119d5 3340
49f34d1f 3341 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3342 return 0;
3343
e02119d5
CM
3344 ret = join_running_log_trans(root);
3345 if (ret)
3346 return 0;
3347
49f34d1f 3348 mutex_lock(&dir->log_mutex);
e02119d5
CM
3349
3350 log = root->log_root;
3351 path = btrfs_alloc_path();
a62f44a5
TI
3352 if (!path) {
3353 err = -ENOMEM;
3354 goto out_unlock;
3355 }
2a29edc6 3356
33345d01 3357 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3358 name, name_len, -1);
4a500fd1
YZ
3359 if (IS_ERR(di)) {
3360 err = PTR_ERR(di);
3361 goto fail;
3362 }
3363 if (di) {
e02119d5
CM
3364 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3365 bytes_del += name_len;
3650860b
JB
3366 if (ret) {
3367 err = ret;
3368 goto fail;
3369 }
e02119d5 3370 }
b3b4aa74 3371 btrfs_release_path(path);
33345d01 3372 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3373 index, name, name_len, -1);
4a500fd1
YZ
3374 if (IS_ERR(di)) {
3375 err = PTR_ERR(di);
3376 goto fail;
3377 }
3378 if (di) {
e02119d5
CM
3379 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3380 bytes_del += name_len;
3650860b
JB
3381 if (ret) {
3382 err = ret;
3383 goto fail;
3384 }
e02119d5
CM
3385 }
3386
3387 /* update the directory size in the log to reflect the names
3388 * we have removed
3389 */
3390 if (bytes_del) {
3391 struct btrfs_key key;
3392
33345d01 3393 key.objectid = dir_ino;
e02119d5
CM
3394 key.offset = 0;
3395 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3396 btrfs_release_path(path);
e02119d5
CM
3397
3398 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3399 if (ret < 0) {
3400 err = ret;
3401 goto fail;
3402 }
e02119d5
CM
3403 if (ret == 0) {
3404 struct btrfs_inode_item *item;
3405 u64 i_size;
3406
3407 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3408 struct btrfs_inode_item);
3409 i_size = btrfs_inode_size(path->nodes[0], item);
3410 if (i_size > bytes_del)
3411 i_size -= bytes_del;
3412 else
3413 i_size = 0;
3414 btrfs_set_inode_size(path->nodes[0], item, i_size);
3415 btrfs_mark_buffer_dirty(path->nodes[0]);
3416 } else
3417 ret = 0;
b3b4aa74 3418 btrfs_release_path(path);
e02119d5 3419 }
4a500fd1 3420fail:
e02119d5 3421 btrfs_free_path(path);
a62f44a5 3422out_unlock:
49f34d1f 3423 mutex_unlock(&dir->log_mutex);
4a500fd1 3424 if (ret == -ENOSPC) {
995946dd 3425 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3426 ret = 0;
79787eaa 3427 } else if (ret < 0)
66642832 3428 btrfs_abort_transaction(trans, ret);
79787eaa 3429
12fcfd22 3430 btrfs_end_log_trans(root);
e02119d5 3431
411fc6bc 3432 return err;
e02119d5
CM
3433}
3434
3435/* see comments for btrfs_del_dir_entries_in_log */
3436int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3437 struct btrfs_root *root,
3438 const char *name, int name_len,
a491abb2 3439 struct btrfs_inode *inode, u64 dirid)
e02119d5 3440{
0b246afa 3441 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3442 struct btrfs_root *log;
3443 u64 index;
3444 int ret;
3445
a491abb2 3446 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3447 return 0;
3448
e02119d5
CM
3449 ret = join_running_log_trans(root);
3450 if (ret)
3451 return 0;
3452 log = root->log_root;
a491abb2 3453 mutex_lock(&inode->log_mutex);
e02119d5 3454
a491abb2 3455 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3456 dirid, &index);
a491abb2 3457 mutex_unlock(&inode->log_mutex);
4a500fd1 3458 if (ret == -ENOSPC) {
0b246afa 3459 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3460 ret = 0;
79787eaa 3461 } else if (ret < 0 && ret != -ENOENT)
66642832 3462 btrfs_abort_transaction(trans, ret);
12fcfd22 3463 btrfs_end_log_trans(root);
e02119d5 3464
e02119d5
CM
3465 return ret;
3466}
3467
3468/*
3469 * creates a range item in the log for 'dirid'. first_offset and
3470 * last_offset tell us which parts of the key space the log should
3471 * be considered authoritative for.
3472 */
3473static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *log,
3475 struct btrfs_path *path,
3476 int key_type, u64 dirid,
3477 u64 first_offset, u64 last_offset)
3478{
3479 int ret;
3480 struct btrfs_key key;
3481 struct btrfs_dir_log_item *item;
3482
3483 key.objectid = dirid;
3484 key.offset = first_offset;
3485 if (key_type == BTRFS_DIR_ITEM_KEY)
3486 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3487 else
3488 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3489 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3490 if (ret)
3491 return ret;
e02119d5
CM
3492
3493 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3494 struct btrfs_dir_log_item);
3495 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3496 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3497 btrfs_release_path(path);
e02119d5
CM
3498 return 0;
3499}
3500
3501/*
3502 * log all the items included in the current transaction for a given
3503 * directory. This also creates the range items in the log tree required
3504 * to replay anything deleted before the fsync
3505 */
3506static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3507 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3508 struct btrfs_path *path,
3509 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3510 struct btrfs_log_ctx *ctx,
e02119d5
CM
3511 u64 min_offset, u64 *last_offset_ret)
3512{
3513 struct btrfs_key min_key;
e02119d5
CM
3514 struct btrfs_root *log = root->log_root;
3515 struct extent_buffer *src;
4a500fd1 3516 int err = 0;
e02119d5
CM
3517 int ret;
3518 int i;
3519 int nritems;
3520 u64 first_offset = min_offset;
3521 u64 last_offset = (u64)-1;
684a5773 3522 u64 ino = btrfs_ino(inode);
e02119d5
CM
3523
3524 log = root->log_root;
e02119d5 3525
33345d01 3526 min_key.objectid = ino;
e02119d5
CM
3527 min_key.type = key_type;
3528 min_key.offset = min_offset;
3529
6174d3cb 3530 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3531
3532 /*
3533 * we didn't find anything from this transaction, see if there
3534 * is anything at all
3535 */
33345d01
LZ
3536 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3537 min_key.objectid = ino;
e02119d5
CM
3538 min_key.type = key_type;
3539 min_key.offset = (u64)-1;
b3b4aa74 3540 btrfs_release_path(path);
e02119d5
CM
3541 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3542 if (ret < 0) {
b3b4aa74 3543 btrfs_release_path(path);
e02119d5
CM
3544 return ret;
3545 }
33345d01 3546 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3547
3548 /* if ret == 0 there are items for this type,
3549 * create a range to tell us the last key of this type.
3550 * otherwise, there are no items in this directory after
3551 * *min_offset, and we create a range to indicate that.
3552 */
3553 if (ret == 0) {
3554 struct btrfs_key tmp;
3555 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3556 path->slots[0]);
d397712b 3557 if (key_type == tmp.type)
e02119d5 3558 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3559 }
3560 goto done;
3561 }
3562
3563 /* go backward to find any previous key */
33345d01 3564 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3565 if (ret == 0) {
3566 struct btrfs_key tmp;
3567 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3568 if (key_type == tmp.type) {
3569 first_offset = tmp.offset;
3570 ret = overwrite_item(trans, log, dst_path,
3571 path->nodes[0], path->slots[0],
3572 &tmp);
4a500fd1
YZ
3573 if (ret) {
3574 err = ret;
3575 goto done;
3576 }
e02119d5
CM
3577 }
3578 }
b3b4aa74 3579 btrfs_release_path(path);
e02119d5 3580
2cc83342
JB
3581 /*
3582 * Find the first key from this transaction again. See the note for
3583 * log_new_dir_dentries, if we're logging a directory recursively we
3584 * won't be holding its i_mutex, which means we can modify the directory
3585 * while we're logging it. If we remove an entry between our first
3586 * search and this search we'll not find the key again and can just
3587 * bail.
3588 */
e02119d5 3589 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3590 if (ret != 0)
e02119d5 3591 goto done;
e02119d5
CM
3592
3593 /*
3594 * we have a block from this transaction, log every item in it
3595 * from our directory
3596 */
d397712b 3597 while (1) {
e02119d5
CM
3598 struct btrfs_key tmp;
3599 src = path->nodes[0];
3600 nritems = btrfs_header_nritems(src);
3601 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3602 struct btrfs_dir_item *di;
3603
e02119d5
CM
3604 btrfs_item_key_to_cpu(src, &min_key, i);
3605
33345d01 3606 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3607 goto done;
3608 ret = overwrite_item(trans, log, dst_path, src, i,
3609 &min_key);
4a500fd1
YZ
3610 if (ret) {
3611 err = ret;
3612 goto done;
3613 }
2f2ff0ee
FM
3614
3615 /*
3616 * We must make sure that when we log a directory entry,
3617 * the corresponding inode, after log replay, has a
3618 * matching link count. For example:
3619 *
3620 * touch foo
3621 * mkdir mydir
3622 * sync
3623 * ln foo mydir/bar
3624 * xfs_io -c "fsync" mydir
3625 * <crash>
3626 * <mount fs and log replay>
3627 *
3628 * Would result in a fsync log that when replayed, our
3629 * file inode would have a link count of 1, but we get
3630 * two directory entries pointing to the same inode.
3631 * After removing one of the names, it would not be
3632 * possible to remove the other name, which resulted
3633 * always in stale file handle errors, and would not
3634 * be possible to rmdir the parent directory, since
3635 * its i_size could never decrement to the value
3636 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3637 */
3638 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3639 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3640 if (ctx &&
3641 (btrfs_dir_transid(src, di) == trans->transid ||
3642 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3643 tmp.type != BTRFS_ROOT_ITEM_KEY)
3644 ctx->log_new_dentries = true;
e02119d5
CM
3645 }
3646 path->slots[0] = nritems;
3647
3648 /*
3649 * look ahead to the next item and see if it is also
3650 * from this directory and from this transaction
3651 */
3652 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3653 if (ret) {
3654 if (ret == 1)
3655 last_offset = (u64)-1;
3656 else
3657 err = ret;
e02119d5
CM
3658 goto done;
3659 }
3660 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3661 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3662 last_offset = (u64)-1;
3663 goto done;
3664 }
3665 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3666 ret = overwrite_item(trans, log, dst_path,
3667 path->nodes[0], path->slots[0],
3668 &tmp);
4a500fd1
YZ
3669 if (ret)
3670 err = ret;
3671 else
3672 last_offset = tmp.offset;
e02119d5
CM
3673 goto done;
3674 }
3675 }
3676done:
b3b4aa74
DS
3677 btrfs_release_path(path);
3678 btrfs_release_path(dst_path);
e02119d5 3679
4a500fd1
YZ
3680 if (err == 0) {
3681 *last_offset_ret = last_offset;
3682 /*
3683 * insert the log range keys to indicate where the log
3684 * is valid
3685 */
3686 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3687 ino, first_offset, last_offset);
4a500fd1
YZ
3688 if (ret)
3689 err = ret;
3690 }
3691 return err;
e02119d5
CM
3692}
3693
3694/*
3695 * logging directories is very similar to logging inodes, We find all the items
3696 * from the current transaction and write them to the log.
3697 *
3698 * The recovery code scans the directory in the subvolume, and if it finds a
3699 * key in the range logged that is not present in the log tree, then it means
3700 * that dir entry was unlinked during the transaction.
3701 *
3702 * In order for that scan to work, we must include one key smaller than
3703 * the smallest logged by this transaction and one key larger than the largest
3704 * key logged by this transaction.
3705 */
3706static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3707 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3708 struct btrfs_path *path,
2f2ff0ee
FM
3709 struct btrfs_path *dst_path,
3710 struct btrfs_log_ctx *ctx)
e02119d5
CM
3711{
3712 u64 min_key;
3713 u64 max_key;
3714 int ret;
3715 int key_type = BTRFS_DIR_ITEM_KEY;
3716
3717again:
3718 min_key = 0;
3719 max_key = 0;
d397712b 3720 while (1) {
dbf39ea4
NB
3721 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3722 ctx, min_key, &max_key);
4a500fd1
YZ
3723 if (ret)
3724 return ret;
e02119d5
CM
3725 if (max_key == (u64)-1)
3726 break;
3727 min_key = max_key + 1;
3728 }
3729
3730 if (key_type == BTRFS_DIR_ITEM_KEY) {
3731 key_type = BTRFS_DIR_INDEX_KEY;
3732 goto again;
3733 }
3734 return 0;
3735}
3736
3737/*
3738 * a helper function to drop items from the log before we relog an
3739 * inode. max_key_type indicates the highest item type to remove.
3740 * This cannot be run for file data extents because it does not
3741 * free the extents they point to.
3742 */
3743static int drop_objectid_items(struct btrfs_trans_handle *trans,
3744 struct btrfs_root *log,
3745 struct btrfs_path *path,
3746 u64 objectid, int max_key_type)
3747{
3748 int ret;
3749 struct btrfs_key key;
3750 struct btrfs_key found_key;
18ec90d6 3751 int start_slot;
e02119d5
CM
3752
3753 key.objectid = objectid;
3754 key.type = max_key_type;
3755 key.offset = (u64)-1;
3756
d397712b 3757 while (1) {
e02119d5 3758 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3759 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3760 if (ret < 0)
e02119d5
CM
3761 break;
3762
3763 if (path->slots[0] == 0)
3764 break;
3765
3766 path->slots[0]--;
3767 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3768 path->slots[0]);
3769
3770 if (found_key.objectid != objectid)
3771 break;
3772
18ec90d6
JB
3773 found_key.offset = 0;
3774 found_key.type = 0;
3775 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3776 &start_slot);
cbca7d59
FM
3777 if (ret < 0)
3778 break;
18ec90d6
JB
3779
3780 ret = btrfs_del_items(trans, log, path, start_slot,
3781 path->slots[0] - start_slot + 1);
3782 /*
3783 * If start slot isn't 0 then we don't need to re-search, we've
3784 * found the last guy with the objectid in this tree.
3785 */
3786 if (ret || start_slot != 0)
65a246c5 3787 break;
b3b4aa74 3788 btrfs_release_path(path);
e02119d5 3789 }
b3b4aa74 3790 btrfs_release_path(path);
5bdbeb21
JB
3791 if (ret > 0)
3792 ret = 0;
4a500fd1 3793 return ret;
e02119d5
CM
3794}
3795
94edf4ae
JB
3796static void fill_inode_item(struct btrfs_trans_handle *trans,
3797 struct extent_buffer *leaf,
3798 struct btrfs_inode_item *item,
1a4bcf47
FM
3799 struct inode *inode, int log_inode_only,
3800 u64 logged_isize)
94edf4ae 3801{
0b1c6cca
JB
3802 struct btrfs_map_token token;
3803
3804 btrfs_init_map_token(&token);
94edf4ae
JB
3805
3806 if (log_inode_only) {
3807 /* set the generation to zero so the recover code
3808 * can tell the difference between an logging
3809 * just to say 'this inode exists' and a logging
3810 * to say 'update this inode with these values'
3811 */
0b1c6cca 3812 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3813 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3814 } else {
0b1c6cca
JB
3815 btrfs_set_token_inode_generation(leaf, item,
3816 BTRFS_I(inode)->generation,
3817 &token);
3818 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3819 }
3820
3821 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3822 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3823 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3824 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3825
a937b979 3826 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3827 inode->i_atime.tv_sec, &token);
a937b979 3828 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3829 inode->i_atime.tv_nsec, &token);
3830
a937b979 3831 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3832 inode->i_mtime.tv_sec, &token);
a937b979 3833 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3834 inode->i_mtime.tv_nsec, &token);
3835
a937b979 3836 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3837 inode->i_ctime.tv_sec, &token);
a937b979 3838 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3839 inode->i_ctime.tv_nsec, &token);
3840
3841 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3842 &token);
3843
c7f88c4e
JL
3844 btrfs_set_token_inode_sequence(leaf, item,
3845 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3846 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3847 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3848 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3849 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3850}
3851
a95249b3
JB
3852static int log_inode_item(struct btrfs_trans_handle *trans,
3853 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3854 struct btrfs_inode *inode)
a95249b3
JB
3855{
3856 struct btrfs_inode_item *inode_item;
a95249b3
JB
3857 int ret;
3858
efd0c405 3859 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3860 &inode->location, sizeof(*inode_item));
a95249b3
JB
3861 if (ret && ret != -EEXIST)
3862 return ret;
3863 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3864 struct btrfs_inode_item);
6d889a3b
NB
3865 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3866 0, 0);
a95249b3
JB
3867 btrfs_release_path(path);
3868 return 0;
3869}
3870
31ff1cd2 3871static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3872 struct btrfs_inode *inode,
31ff1cd2 3873 struct btrfs_path *dst_path,
16e7549f 3874 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3875 int start_slot, int nr, int inode_only,
3876 u64 logged_isize)
31ff1cd2 3877{
3ffbd68c 3878 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3879 unsigned long src_offset;
3880 unsigned long dst_offset;
44d70e19 3881 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3882 struct btrfs_file_extent_item *extent;
3883 struct btrfs_inode_item *inode_item;
16e7549f
JB
3884 struct extent_buffer *src = src_path->nodes[0];
3885 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3886 int ret;
3887 struct btrfs_key *ins_keys;
3888 u32 *ins_sizes;
3889 char *ins_data;
3890 int i;
d20f7043 3891 struct list_head ordered_sums;
44d70e19 3892 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3893 bool has_extents = false;
74121f7c 3894 bool need_find_last_extent = true;
16e7549f 3895 bool done = false;
d20f7043
CM
3896
3897 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3898
3899 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3900 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3901 if (!ins_data)
3902 return -ENOMEM;
3903
16e7549f
JB
3904 first_key.objectid = (u64)-1;
3905
31ff1cd2
CM
3906 ins_sizes = (u32 *)ins_data;
3907 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3908
3909 for (i = 0; i < nr; i++) {
3910 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3911 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3912 }
3913 ret = btrfs_insert_empty_items(trans, log, dst_path,
3914 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3915 if (ret) {
3916 kfree(ins_data);
3917 return ret;
3918 }
31ff1cd2 3919
5d4f98a2 3920 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3921 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3922 dst_path->slots[0]);
3923
3924 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3925
0dde10be 3926 if (i == nr - 1)
16e7549f
JB
3927 last_key = ins_keys[i];
3928
94edf4ae 3929 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3930 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3931 dst_path->slots[0],
3932 struct btrfs_inode_item);
94edf4ae 3933 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3934 &inode->vfs_inode,
3935 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3936 logged_isize);
94edf4ae
JB
3937 } else {
3938 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3939 src_offset, ins_sizes[i]);
31ff1cd2 3940 }
94edf4ae 3941
16e7549f
JB
3942 /*
3943 * We set need_find_last_extent here in case we know we were
3944 * processing other items and then walk into the first extent in
3945 * the inode. If we don't hit an extent then nothing changes,
3946 * we'll do the last search the next time around.
3947 */
3948 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3949 has_extents = true;
74121f7c 3950 if (first_key.objectid == (u64)-1)
16e7549f
JB
3951 first_key = ins_keys[i];
3952 } else {
3953 need_find_last_extent = false;
3954 }
3955
31ff1cd2
CM
3956 /* take a reference on file data extents so that truncates
3957 * or deletes of this inode don't have to relog the inode
3958 * again
3959 */
962a298f 3960 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3961 !skip_csum) {
31ff1cd2
CM
3962 int found_type;
3963 extent = btrfs_item_ptr(src, start_slot + i,
3964 struct btrfs_file_extent_item);
3965
8e531cdf 3966 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3967 continue;
3968
31ff1cd2 3969 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3970 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3971 u64 ds, dl, cs, cl;
3972 ds = btrfs_file_extent_disk_bytenr(src,
3973 extent);
3974 /* ds == 0 is a hole */
3975 if (ds == 0)
3976 continue;
3977
3978 dl = btrfs_file_extent_disk_num_bytes(src,
3979 extent);
3980 cs = btrfs_file_extent_offset(src, extent);
3981 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3982 extent);
580afd76
CM
3983 if (btrfs_file_extent_compression(src,
3984 extent)) {
3985 cs = 0;
3986 cl = dl;
3987 }
5d4f98a2
YZ
3988
3989 ret = btrfs_lookup_csums_range(
0b246afa 3990 fs_info->csum_root,
5d4f98a2 3991 ds + cs, ds + cs + cl - 1,
a2de733c 3992 &ordered_sums, 0);
3650860b
JB
3993 if (ret) {
3994 btrfs_release_path(dst_path);
3995 kfree(ins_data);
3996 return ret;
3997 }
31ff1cd2
CM
3998 }
3999 }
31ff1cd2
CM
4000 }
4001
4002 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4003 btrfs_release_path(dst_path);
31ff1cd2 4004 kfree(ins_data);
d20f7043
CM
4005
4006 /*
4007 * we have to do this after the loop above to avoid changing the
4008 * log tree while trying to change the log tree.
4009 */
4a500fd1 4010 ret = 0;
d397712b 4011 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4012 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4013 struct btrfs_ordered_sum,
4014 list);
4a500fd1
YZ
4015 if (!ret)
4016 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
4017 list_del(&sums->list);
4018 kfree(sums);
4019 }
16e7549f
JB
4020
4021 if (!has_extents)
4022 return ret;
4023
74121f7c
FM
4024 if (need_find_last_extent && *last_extent == first_key.offset) {
4025 /*
4026 * We don't have any leafs between our current one and the one
4027 * we processed before that can have file extent items for our
4028 * inode (and have a generation number smaller than our current
4029 * transaction id).
4030 */
4031 need_find_last_extent = false;
4032 }
4033
16e7549f
JB
4034 /*
4035 * Because we use btrfs_search_forward we could skip leaves that were
4036 * not modified and then assume *last_extent is valid when it really
4037 * isn't. So back up to the previous leaf and read the end of the last
4038 * extent before we go and fill in holes.
4039 */
4040 if (need_find_last_extent) {
4041 u64 len;
4042
44d70e19 4043 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
4044 if (ret < 0)
4045 return ret;
4046 if (ret)
4047 goto fill_holes;
4048 if (src_path->slots[0])
4049 src_path->slots[0]--;
4050 src = src_path->nodes[0];
4051 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 4052 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4053 key.type != BTRFS_EXTENT_DATA_KEY)
4054 goto fill_holes;
4055 extent = btrfs_item_ptr(src, src_path->slots[0],
4056 struct btrfs_file_extent_item);
4057 if (btrfs_file_extent_type(src, extent) ==
4058 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4059 len = btrfs_file_extent_ram_bytes(src, extent);
16e7549f 4060 *last_extent = ALIGN(key.offset + len,
0b246afa 4061 fs_info->sectorsize);
16e7549f
JB
4062 } else {
4063 len = btrfs_file_extent_num_bytes(src, extent);
4064 *last_extent = key.offset + len;
4065 }
4066 }
4067fill_holes:
4068 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4069 * things could have happened
4070 *
4071 * 1) A merge could have happened, so we could currently be on a leaf
4072 * that holds what we were copying in the first place.
4073 * 2) A split could have happened, and now not all of the items we want
4074 * are on the same leaf.
4075 *
4076 * So we need to adjust how we search for holes, we need to drop the
4077 * path and re-search for the first extent key we found, and then walk
4078 * forward until we hit the last one we copied.
4079 */
4080 if (need_find_last_extent) {
4081 /* btrfs_prev_leaf could return 1 without releasing the path */
4082 btrfs_release_path(src_path);
f85b7379
DS
4083 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4084 src_path, 0, 0);
16e7549f
JB
4085 if (ret < 0)
4086 return ret;
4087 ASSERT(ret == 0);
4088 src = src_path->nodes[0];
4089 i = src_path->slots[0];
4090 } else {
4091 i = start_slot;
4092 }
4093
4094 /*
4095 * Ok so here we need to go through and fill in any holes we may have
4096 * to make sure that holes are punched for those areas in case they had
4097 * extents previously.
4098 */
4099 while (!done) {
4100 u64 offset, len;
4101 u64 extent_end;
4102
4103 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4104 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4105 if (ret < 0)
4106 return ret;
4107 ASSERT(ret == 0);
4108 src = src_path->nodes[0];
4109 i = 0;
8434ec46 4110 need_find_last_extent = true;
16e7549f
JB
4111 }
4112
4113 btrfs_item_key_to_cpu(src, &key, i);
4114 if (!btrfs_comp_cpu_keys(&key, &last_key))
4115 done = true;
44d70e19 4116 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4117 key.type != BTRFS_EXTENT_DATA_KEY) {
4118 i++;
4119 continue;
4120 }
4121 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4122 if (btrfs_file_extent_type(src, extent) ==
4123 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4124 len = btrfs_file_extent_ram_bytes(src, extent);
da17066c 4125 extent_end = ALIGN(key.offset + len,
0b246afa 4126 fs_info->sectorsize);
16e7549f
JB
4127 } else {
4128 len = btrfs_file_extent_num_bytes(src, extent);
4129 extent_end = key.offset + len;
4130 }
4131 i++;
4132
4133 if (*last_extent == key.offset) {
4134 *last_extent = extent_end;
4135 continue;
4136 }
4137 offset = *last_extent;
4138 len = key.offset - *last_extent;
44d70e19 4139 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4140 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4141 if (ret)
4142 break;
74121f7c 4143 *last_extent = extent_end;
16e7549f 4144 }
4ee3fad3
FM
4145
4146 /*
4147 * Check if there is a hole between the last extent found in our leaf
4148 * and the first extent in the next leaf. If there is one, we need to
4149 * log an explicit hole so that at replay time we can punch the hole.
4150 */
4151 if (ret == 0 &&
4152 key.objectid == btrfs_ino(inode) &&
4153 key.type == BTRFS_EXTENT_DATA_KEY &&
4154 i == btrfs_header_nritems(src_path->nodes[0])) {
4155 ret = btrfs_next_leaf(inode->root, src_path);
4156 need_find_last_extent = true;
4157 if (ret > 0) {
4158 ret = 0;
4159 } else if (ret == 0) {
4160 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4161 src_path->slots[0]);
4162 if (key.objectid == btrfs_ino(inode) &&
4163 key.type == BTRFS_EXTENT_DATA_KEY &&
4164 *last_extent < key.offset) {
4165 const u64 len = key.offset - *last_extent;
4166
4167 ret = btrfs_insert_file_extent(trans, log,
4168 btrfs_ino(inode),
4169 *last_extent, 0,
4170 0, len, 0, len,
4171 0, 0, 0);
4172 }
4173 }
4174 }
16e7549f
JB
4175 /*
4176 * Need to let the callers know we dropped the path so they should
4177 * re-search.
4178 */
4179 if (!ret && need_find_last_extent)
4180 ret = 1;
4a500fd1 4181 return ret;
31ff1cd2
CM
4182}
4183
5dc562c5
JB
4184static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4185{
4186 struct extent_map *em1, *em2;
4187
4188 em1 = list_entry(a, struct extent_map, list);
4189 em2 = list_entry(b, struct extent_map, list);
4190
4191 if (em1->start < em2->start)
4192 return -1;
4193 else if (em1->start > em2->start)
4194 return 1;
4195 return 0;
4196}
4197
e7175a69
JB
4198static int log_extent_csums(struct btrfs_trans_handle *trans,
4199 struct btrfs_inode *inode,
a9ecb653 4200 struct btrfs_root *log_root,
e7175a69 4201 const struct extent_map *em)
5dc562c5 4202{
2ab28f32
JB
4203 u64 csum_offset;
4204 u64 csum_len;
8407f553
FM
4205 LIST_HEAD(ordered_sums);
4206 int ret = 0;
0aa4a17d 4207
e7175a69
JB
4208 if (inode->flags & BTRFS_INODE_NODATASUM ||
4209 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4210 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4211 return 0;
5dc562c5 4212
e7175a69 4213 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4214 if (em->compress_type) {
4215 csum_offset = 0;
8407f553 4216 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4217 } else {
e7175a69
JB
4218 csum_offset = em->mod_start - em->start;
4219 csum_len = em->mod_len;
488111aa 4220 }
2ab28f32 4221
70c8a91c 4222 /* block start is already adjusted for the file extent offset. */
a9ecb653 4223 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4224 em->block_start + csum_offset,
4225 em->block_start + csum_offset +
4226 csum_len - 1, &ordered_sums, 0);
4227 if (ret)
4228 return ret;
5dc562c5 4229
70c8a91c
JB
4230 while (!list_empty(&ordered_sums)) {
4231 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4232 struct btrfs_ordered_sum,
4233 list);
4234 if (!ret)
a9ecb653 4235 ret = btrfs_csum_file_blocks(trans, log_root, sums);
70c8a91c
JB
4236 list_del(&sums->list);
4237 kfree(sums);
5dc562c5
JB
4238 }
4239
70c8a91c 4240 return ret;
5dc562c5
JB
4241}
4242
8407f553 4243static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4244 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4245 const struct extent_map *em,
4246 struct btrfs_path *path,
8407f553
FM
4247 struct btrfs_log_ctx *ctx)
4248{
4249 struct btrfs_root *log = root->log_root;
4250 struct btrfs_file_extent_item *fi;
4251 struct extent_buffer *leaf;
4252 struct btrfs_map_token token;
4253 struct btrfs_key key;
4254 u64 extent_offset = em->start - em->orig_start;
4255 u64 block_len;
4256 int ret;
4257 int extent_inserted = 0;
8407f553 4258
a9ecb653 4259 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4260 if (ret)
4261 return ret;
4262
8407f553
FM
4263 btrfs_init_map_token(&token);
4264
9d122629 4265 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4266 em->start + em->len, NULL, 0, 1,
4267 sizeof(*fi), &extent_inserted);
4268 if (ret)
4269 return ret;
4270
4271 if (!extent_inserted) {
9d122629 4272 key.objectid = btrfs_ino(inode);
8407f553
FM
4273 key.type = BTRFS_EXTENT_DATA_KEY;
4274 key.offset = em->start;
4275
4276 ret = btrfs_insert_empty_item(trans, log, path, &key,
4277 sizeof(*fi));
4278 if (ret)
4279 return ret;
4280 }
4281 leaf = path->nodes[0];
4282 fi = btrfs_item_ptr(leaf, path->slots[0],
4283 struct btrfs_file_extent_item);
4284
50d9aa99 4285 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4286 &token);
4287 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4288 btrfs_set_token_file_extent_type(leaf, fi,
4289 BTRFS_FILE_EXTENT_PREALLOC,
4290 &token);
4291 else
4292 btrfs_set_token_file_extent_type(leaf, fi,
4293 BTRFS_FILE_EXTENT_REG,
4294 &token);
4295
4296 block_len = max(em->block_len, em->orig_block_len);
4297 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4298 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 em->block_start,
4300 &token);
4301 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 &token);
4303 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4304 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4305 em->block_start -
4306 extent_offset, &token);
4307 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4308 &token);
4309 } else {
4310 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4311 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4312 &token);
4313 }
4314
4315 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4316 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4317 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4318 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4319 &token);
4320 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4321 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4322 btrfs_mark_buffer_dirty(leaf);
4323
4324 btrfs_release_path(path);
4325
4326 return ret;
4327}
4328
31d11b83
FM
4329/*
4330 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4331 * lose them after doing a fast fsync and replaying the log. We scan the
4332 * subvolume's root instead of iterating the inode's extent map tree because
4333 * otherwise we can log incorrect extent items based on extent map conversion.
4334 * That can happen due to the fact that extent maps are merged when they
4335 * are not in the extent map tree's list of modified extents.
4336 */
4337static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4338 struct btrfs_inode *inode,
4339 struct btrfs_path *path)
4340{
4341 struct btrfs_root *root = inode->root;
4342 struct btrfs_key key;
4343 const u64 i_size = i_size_read(&inode->vfs_inode);
4344 const u64 ino = btrfs_ino(inode);
4345 struct btrfs_path *dst_path = NULL;
4346 u64 last_extent = (u64)-1;
4347 int ins_nr = 0;
4348 int start_slot;
4349 int ret;
4350
4351 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4352 return 0;
4353
4354 key.objectid = ino;
4355 key.type = BTRFS_EXTENT_DATA_KEY;
4356 key.offset = i_size;
4357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4358 if (ret < 0)
4359 goto out;
4360
4361 while (true) {
4362 struct extent_buffer *leaf = path->nodes[0];
4363 int slot = path->slots[0];
4364
4365 if (slot >= btrfs_header_nritems(leaf)) {
4366 if (ins_nr > 0) {
4367 ret = copy_items(trans, inode, dst_path, path,
4368 &last_extent, start_slot,
4369 ins_nr, 1, 0);
4370 if (ret < 0)
4371 goto out;
4372 ins_nr = 0;
4373 }
4374 ret = btrfs_next_leaf(root, path);
4375 if (ret < 0)
4376 goto out;
4377 if (ret > 0) {
4378 ret = 0;
4379 break;
4380 }
4381 continue;
4382 }
4383
4384 btrfs_item_key_to_cpu(leaf, &key, slot);
4385 if (key.objectid > ino)
4386 break;
4387 if (WARN_ON_ONCE(key.objectid < ino) ||
4388 key.type < BTRFS_EXTENT_DATA_KEY ||
4389 key.offset < i_size) {
4390 path->slots[0]++;
4391 continue;
4392 }
4393 if (last_extent == (u64)-1) {
4394 last_extent = key.offset;
4395 /*
4396 * Avoid logging extent items logged in past fsync calls
4397 * and leading to duplicate keys in the log tree.
4398 */
4399 do {
4400 ret = btrfs_truncate_inode_items(trans,
4401 root->log_root,
4402 &inode->vfs_inode,
4403 i_size,
4404 BTRFS_EXTENT_DATA_KEY);
4405 } while (ret == -EAGAIN);
4406 if (ret)
4407 goto out;
4408 }
4409 if (ins_nr == 0)
4410 start_slot = slot;
4411 ins_nr++;
4412 path->slots[0]++;
4413 if (!dst_path) {
4414 dst_path = btrfs_alloc_path();
4415 if (!dst_path) {
4416 ret = -ENOMEM;
4417 goto out;
4418 }
4419 }
4420 }
4421 if (ins_nr > 0) {
4422 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4423 start_slot, ins_nr, 1, 0);
4424 if (ret > 0)
4425 ret = 0;
4426 }
4427out:
4428 btrfs_release_path(path);
4429 btrfs_free_path(dst_path);
4430 return ret;
4431}
4432
5dc562c5
JB
4433static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4434 struct btrfs_root *root,
9d122629 4435 struct btrfs_inode *inode,
827463c4 4436 struct btrfs_path *path,
de0ee0ed
FM
4437 struct btrfs_log_ctx *ctx,
4438 const u64 start,
4439 const u64 end)
5dc562c5 4440{
5dc562c5
JB
4441 struct extent_map *em, *n;
4442 struct list_head extents;
9d122629 4443 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4444 u64 test_gen;
4445 int ret = 0;
2ab28f32 4446 int num = 0;
5dc562c5
JB
4447
4448 INIT_LIST_HEAD(&extents);
4449
5dc562c5
JB
4450 write_lock(&tree->lock);
4451 test_gen = root->fs_info->last_trans_committed;
4452
4453 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4454 /*
4455 * Skip extents outside our logging range. It's important to do
4456 * it for correctness because if we don't ignore them, we may
4457 * log them before their ordered extent completes, and therefore
4458 * we could log them without logging their respective checksums
4459 * (the checksum items are added to the csum tree at the very
4460 * end of btrfs_finish_ordered_io()). Also leave such extents
4461 * outside of our range in the list, since we may have another
4462 * ranged fsync in the near future that needs them. If an extent
4463 * outside our range corresponds to a hole, log it to avoid
4464 * leaving gaps between extents (fsck will complain when we are
4465 * not using the NO_HOLES feature).
4466 */
4467 if ((em->start > end || em->start + em->len <= start) &&
4468 em->block_start != EXTENT_MAP_HOLE)
4469 continue;
4470
5dc562c5 4471 list_del_init(&em->list);
2ab28f32
JB
4472 /*
4473 * Just an arbitrary number, this can be really CPU intensive
4474 * once we start getting a lot of extents, and really once we
4475 * have a bunch of extents we just want to commit since it will
4476 * be faster.
4477 */
4478 if (++num > 32768) {
4479 list_del_init(&tree->modified_extents);
4480 ret = -EFBIG;
4481 goto process;
4482 }
4483
5dc562c5
JB
4484 if (em->generation <= test_gen)
4485 continue;
8c6c5928 4486
31d11b83
FM
4487 /* We log prealloc extents beyond eof later. */
4488 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4489 em->start >= i_size_read(&inode->vfs_inode))
4490 continue;
4491
ff44c6e3 4492 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4493 refcount_inc(&em->refs);
ff44c6e3 4494 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4495 list_add_tail(&em->list, &extents);
2ab28f32 4496 num++;
5dc562c5
JB
4497 }
4498
4499 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4500process:
5dc562c5
JB
4501 while (!list_empty(&extents)) {
4502 em = list_entry(extents.next, struct extent_map, list);
4503
4504 list_del_init(&em->list);
4505
4506 /*
4507 * If we had an error we just need to delete everybody from our
4508 * private list.
4509 */
ff44c6e3 4510 if (ret) {
201a9038 4511 clear_em_logging(tree, em);
ff44c6e3 4512 free_extent_map(em);
5dc562c5 4513 continue;
ff44c6e3
JB
4514 }
4515
4516 write_unlock(&tree->lock);
5dc562c5 4517
a2120a47 4518 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4519 write_lock(&tree->lock);
201a9038
JB
4520 clear_em_logging(tree, em);
4521 free_extent_map(em);
5dc562c5 4522 }
ff44c6e3
JB
4523 WARN_ON(!list_empty(&extents));
4524 write_unlock(&tree->lock);
5dc562c5 4525
5dc562c5 4526 btrfs_release_path(path);
31d11b83
FM
4527 if (!ret)
4528 ret = btrfs_log_prealloc_extents(trans, inode, path);
4529
5dc562c5
JB
4530 return ret;
4531}
4532
481b01c0 4533static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4534 struct btrfs_path *path, u64 *size_ret)
4535{
4536 struct btrfs_key key;
4537 int ret;
4538
481b01c0 4539 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4540 key.type = BTRFS_INODE_ITEM_KEY;
4541 key.offset = 0;
4542
4543 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4544 if (ret < 0) {
4545 return ret;
4546 } else if (ret > 0) {
2f2ff0ee 4547 *size_ret = 0;
1a4bcf47
FM
4548 } else {
4549 struct btrfs_inode_item *item;
4550
4551 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4552 struct btrfs_inode_item);
4553 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4554 /*
4555 * If the in-memory inode's i_size is smaller then the inode
4556 * size stored in the btree, return the inode's i_size, so
4557 * that we get a correct inode size after replaying the log
4558 * when before a power failure we had a shrinking truncate
4559 * followed by addition of a new name (rename / new hard link).
4560 * Otherwise return the inode size from the btree, to avoid
4561 * data loss when replaying a log due to previously doing a
4562 * write that expands the inode's size and logging a new name
4563 * immediately after.
4564 */
4565 if (*size_ret > inode->vfs_inode.i_size)
4566 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4567 }
4568
4569 btrfs_release_path(path);
4570 return 0;
4571}
4572
36283bf7
FM
4573/*
4574 * At the moment we always log all xattrs. This is to figure out at log replay
4575 * time which xattrs must have their deletion replayed. If a xattr is missing
4576 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4577 * because if a xattr is deleted, the inode is fsynced and a power failure
4578 * happens, causing the log to be replayed the next time the fs is mounted,
4579 * we want the xattr to not exist anymore (same behaviour as other filesystems
4580 * with a journal, ext3/4, xfs, f2fs, etc).
4581 */
4582static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4583 struct btrfs_root *root,
1a93c36a 4584 struct btrfs_inode *inode,
36283bf7
FM
4585 struct btrfs_path *path,
4586 struct btrfs_path *dst_path)
4587{
4588 int ret;
4589 struct btrfs_key key;
1a93c36a 4590 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4591 int ins_nr = 0;
4592 int start_slot = 0;
4593
4594 key.objectid = ino;
4595 key.type = BTRFS_XATTR_ITEM_KEY;
4596 key.offset = 0;
4597
4598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4599 if (ret < 0)
4600 return ret;
4601
4602 while (true) {
4603 int slot = path->slots[0];
4604 struct extent_buffer *leaf = path->nodes[0];
4605 int nritems = btrfs_header_nritems(leaf);
4606
4607 if (slot >= nritems) {
4608 if (ins_nr > 0) {
4609 u64 last_extent = 0;
4610
1a93c36a 4611 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4612 &last_extent, start_slot,
4613 ins_nr, 1, 0);
4614 /* can't be 1, extent items aren't processed */
4615 ASSERT(ret <= 0);
4616 if (ret < 0)
4617 return ret;
4618 ins_nr = 0;
4619 }
4620 ret = btrfs_next_leaf(root, path);
4621 if (ret < 0)
4622 return ret;
4623 else if (ret > 0)
4624 break;
4625 continue;
4626 }
4627
4628 btrfs_item_key_to_cpu(leaf, &key, slot);
4629 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4630 break;
4631
4632 if (ins_nr == 0)
4633 start_slot = slot;
4634 ins_nr++;
4635 path->slots[0]++;
4636 cond_resched();
4637 }
4638 if (ins_nr > 0) {
4639 u64 last_extent = 0;
4640
1a93c36a 4641 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4642 &last_extent, start_slot,
4643 ins_nr, 1, 0);
4644 /* can't be 1, extent items aren't processed */
4645 ASSERT(ret <= 0);
4646 if (ret < 0)
4647 return ret;
4648 }
4649
4650 return 0;
4651}
4652
a89ca6f2
FM
4653/*
4654 * If the no holes feature is enabled we need to make sure any hole between the
4655 * last extent and the i_size of our inode is explicitly marked in the log. This
4656 * is to make sure that doing something like:
4657 *
4658 * 1) create file with 128Kb of data
4659 * 2) truncate file to 64Kb
4660 * 3) truncate file to 256Kb
4661 * 4) fsync file
4662 * 5) <crash/power failure>
4663 * 6) mount fs and trigger log replay
4664 *
4665 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4666 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4667 * file correspond to a hole. The presence of explicit holes in a log tree is
4668 * what guarantees that log replay will remove/adjust file extent items in the
4669 * fs/subvol tree.
4670 *
4671 * Here we do not need to care about holes between extents, that is already done
4672 * by copy_items(). We also only need to do this in the full sync path, where we
4673 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4674 * lookup the list of modified extent maps and if any represents a hole, we
4675 * insert a corresponding extent representing a hole in the log tree.
4676 */
4677static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4678 struct btrfs_root *root,
a0308dd7 4679 struct btrfs_inode *inode,
a89ca6f2
FM
4680 struct btrfs_path *path)
4681{
0b246afa 4682 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4683 int ret;
4684 struct btrfs_key key;
4685 u64 hole_start;
4686 u64 hole_size;
4687 struct extent_buffer *leaf;
4688 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4689 const u64 ino = btrfs_ino(inode);
4690 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4691
0b246afa 4692 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4693 return 0;
4694
4695 key.objectid = ino;
4696 key.type = BTRFS_EXTENT_DATA_KEY;
4697 key.offset = (u64)-1;
4698
4699 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4700 ASSERT(ret != 0);
4701 if (ret < 0)
4702 return ret;
4703
4704 ASSERT(path->slots[0] > 0);
4705 path->slots[0]--;
4706 leaf = path->nodes[0];
4707 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4708
4709 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4710 /* inode does not have any extents */
4711 hole_start = 0;
4712 hole_size = i_size;
4713 } else {
4714 struct btrfs_file_extent_item *extent;
4715 u64 len;
4716
4717 /*
4718 * If there's an extent beyond i_size, an explicit hole was
4719 * already inserted by copy_items().
4720 */
4721 if (key.offset >= i_size)
4722 return 0;
4723
4724 extent = btrfs_item_ptr(leaf, path->slots[0],
4725 struct btrfs_file_extent_item);
4726
4727 if (btrfs_file_extent_type(leaf, extent) ==
0ccc3876 4728 BTRFS_FILE_EXTENT_INLINE)
a89ca6f2 4729 return 0;
a89ca6f2
FM
4730
4731 len = btrfs_file_extent_num_bytes(leaf, extent);
4732 /* Last extent goes beyond i_size, no need to log a hole. */
4733 if (key.offset + len > i_size)
4734 return 0;
4735 hole_start = key.offset + len;
4736 hole_size = i_size - hole_start;
4737 }
4738 btrfs_release_path(path);
4739
4740 /* Last extent ends at i_size. */
4741 if (hole_size == 0)
4742 return 0;
4743
0b246afa 4744 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4745 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4746 hole_size, 0, hole_size, 0, 0, 0);
4747 return ret;
4748}
4749
56f23fdb
FM
4750/*
4751 * When we are logging a new inode X, check if it doesn't have a reference that
4752 * matches the reference from some other inode Y created in a past transaction
4753 * and that was renamed in the current transaction. If we don't do this, then at
4754 * log replay time we can lose inode Y (and all its files if it's a directory):
4755 *
4756 * mkdir /mnt/x
4757 * echo "hello world" > /mnt/x/foobar
4758 * sync
4759 * mv /mnt/x /mnt/y
4760 * mkdir /mnt/x # or touch /mnt/x
4761 * xfs_io -c fsync /mnt/x
4762 * <power fail>
4763 * mount fs, trigger log replay
4764 *
4765 * After the log replay procedure, we would lose the first directory and all its
4766 * files (file foobar).
4767 * For the case where inode Y is not a directory we simply end up losing it:
4768 *
4769 * echo "123" > /mnt/foo
4770 * sync
4771 * mv /mnt/foo /mnt/bar
4772 * echo "abc" > /mnt/foo
4773 * xfs_io -c fsync /mnt/foo
4774 * <power fail>
4775 *
4776 * We also need this for cases where a snapshot entry is replaced by some other
4777 * entry (file or directory) otherwise we end up with an unreplayable log due to
4778 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4779 * if it were a regular entry:
4780 *
4781 * mkdir /mnt/x
4782 * btrfs subvolume snapshot /mnt /mnt/x/snap
4783 * btrfs subvolume delete /mnt/x/snap
4784 * rmdir /mnt/x
4785 * mkdir /mnt/x
4786 * fsync /mnt/x or fsync some new file inside it
4787 * <power fail>
4788 *
4789 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4790 * the same transaction.
4791 */
4792static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4793 const int slot,
4794 const struct btrfs_key *key,
4791c8f1 4795 struct btrfs_inode *inode,
a3baaf0d 4796 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4797{
4798 int ret;
4799 struct btrfs_path *search_path;
4800 char *name = NULL;
4801 u32 name_len = 0;
4802 u32 item_size = btrfs_item_size_nr(eb, slot);
4803 u32 cur_offset = 0;
4804 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4805
4806 search_path = btrfs_alloc_path();
4807 if (!search_path)
4808 return -ENOMEM;
4809 search_path->search_commit_root = 1;
4810 search_path->skip_locking = 1;
4811
4812 while (cur_offset < item_size) {
4813 u64 parent;
4814 u32 this_name_len;
4815 u32 this_len;
4816 unsigned long name_ptr;
4817 struct btrfs_dir_item *di;
4818
4819 if (key->type == BTRFS_INODE_REF_KEY) {
4820 struct btrfs_inode_ref *iref;
4821
4822 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4823 parent = key->offset;
4824 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4825 name_ptr = (unsigned long)(iref + 1);
4826 this_len = sizeof(*iref) + this_name_len;
4827 } else {
4828 struct btrfs_inode_extref *extref;
4829
4830 extref = (struct btrfs_inode_extref *)(ptr +
4831 cur_offset);
4832 parent = btrfs_inode_extref_parent(eb, extref);
4833 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4834 name_ptr = (unsigned long)&extref->name;
4835 this_len = sizeof(*extref) + this_name_len;
4836 }
4837
4838 if (this_name_len > name_len) {
4839 char *new_name;
4840
4841 new_name = krealloc(name, this_name_len, GFP_NOFS);
4842 if (!new_name) {
4843 ret = -ENOMEM;
4844 goto out;
4845 }
4846 name_len = this_name_len;
4847 name = new_name;
4848 }
4849
4850 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4851 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4852 parent, name, this_name_len, 0);
56f23fdb 4853 if (di && !IS_ERR(di)) {
44f714da
FM
4854 struct btrfs_key di_key;
4855
4856 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4857 di, &di_key);
4858 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4859 if (di_key.objectid != key->objectid) {
4860 ret = 1;
4861 *other_ino = di_key.objectid;
a3baaf0d 4862 *other_parent = parent;
6b5fc433
FM
4863 } else {
4864 ret = 0;
4865 }
44f714da
FM
4866 } else {
4867 ret = -EAGAIN;
4868 }
56f23fdb
FM
4869 goto out;
4870 } else if (IS_ERR(di)) {
4871 ret = PTR_ERR(di);
4872 goto out;
4873 }
4874 btrfs_release_path(search_path);
4875
4876 cur_offset += this_len;
4877 }
4878 ret = 0;
4879out:
4880 btrfs_free_path(search_path);
4881 kfree(name);
4882 return ret;
4883}
4884
6b5fc433
FM
4885struct btrfs_ino_list {
4886 u64 ino;
a3baaf0d 4887 u64 parent;
6b5fc433
FM
4888 struct list_head list;
4889};
4890
4891static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4892 struct btrfs_root *root,
4893 struct btrfs_path *path,
4894 struct btrfs_log_ctx *ctx,
a3baaf0d 4895 u64 ino, u64 parent)
6b5fc433
FM
4896{
4897 struct btrfs_ino_list *ino_elem;
4898 LIST_HEAD(inode_list);
4899 int ret = 0;
4900
4901 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4902 if (!ino_elem)
4903 return -ENOMEM;
4904 ino_elem->ino = ino;
a3baaf0d 4905 ino_elem->parent = parent;
6b5fc433
FM
4906 list_add_tail(&ino_elem->list, &inode_list);
4907
4908 while (!list_empty(&inode_list)) {
4909 struct btrfs_fs_info *fs_info = root->fs_info;
4910 struct btrfs_key key;
4911 struct inode *inode;
4912
4913 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4914 list);
4915 ino = ino_elem->ino;
a3baaf0d 4916 parent = ino_elem->parent;
6b5fc433
FM
4917 list_del(&ino_elem->list);
4918 kfree(ino_elem);
4919 if (ret)
4920 continue;
4921
4922 btrfs_release_path(path);
4923
4924 key.objectid = ino;
4925 key.type = BTRFS_INODE_ITEM_KEY;
4926 key.offset = 0;
4927 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4928 /*
4929 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4930 * deleted in the current transaction, we need to log its parent
4931 * directory.
6b5fc433
FM
4932 */
4933 if (IS_ERR(inode)) {
4934 ret = PTR_ERR(inode);
a3baaf0d
FM
4935 if (ret == -ENOENT) {
4936 key.objectid = parent;
4937 inode = btrfs_iget(fs_info->sb, &key, root,
4938 NULL);
4939 if (IS_ERR(inode)) {
4940 ret = PTR_ERR(inode);
4941 } else {
4942 ret = btrfs_log_inode(trans, root,
4943 BTRFS_I(inode),
4944 LOG_OTHER_INODE_ALL,
4945 0, LLONG_MAX, ctx);
4946 iput(inode);
4947 }
4948 }
6b5fc433
FM
4949 continue;
4950 }
4951 /*
4952 * We are safe logging the other inode without acquiring its
4953 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4954 * are safe against concurrent renames of the other inode as
4955 * well because during a rename we pin the log and update the
4956 * log with the new name before we unpin it.
4957 */
4958 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4959 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4960 if (ret) {
4961 iput(inode);
4962 continue;
4963 }
4964
4965 key.objectid = ino;
4966 key.type = BTRFS_INODE_REF_KEY;
4967 key.offset = 0;
4968 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4969 if (ret < 0) {
4970 iput(inode);
4971 continue;
4972 }
4973
4974 while (true) {
4975 struct extent_buffer *leaf = path->nodes[0];
4976 int slot = path->slots[0];
4977 u64 other_ino = 0;
a3baaf0d 4978 u64 other_parent = 0;
6b5fc433
FM
4979
4980 if (slot >= btrfs_header_nritems(leaf)) {
4981 ret = btrfs_next_leaf(root, path);
4982 if (ret < 0) {
4983 break;
4984 } else if (ret > 0) {
4985 ret = 0;
4986 break;
4987 }
4988 continue;
4989 }
4990
4991 btrfs_item_key_to_cpu(leaf, &key, slot);
4992 if (key.objectid != ino ||
4993 (key.type != BTRFS_INODE_REF_KEY &&
4994 key.type != BTRFS_INODE_EXTREF_KEY)) {
4995 ret = 0;
4996 break;
4997 }
4998
4999 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5000 BTRFS_I(inode), &other_ino,
5001 &other_parent);
6b5fc433
FM
5002 if (ret < 0)
5003 break;
5004 if (ret > 0) {
5005 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5006 if (!ino_elem) {
5007 ret = -ENOMEM;
5008 break;
5009 }
5010 ino_elem->ino = other_ino;
a3baaf0d 5011 ino_elem->parent = other_parent;
6b5fc433
FM
5012 list_add_tail(&ino_elem->list, &inode_list);
5013 ret = 0;
5014 }
5015 path->slots[0]++;
5016 }
5017 iput(inode);
5018 }
5019
5020 return ret;
5021}
5022
e02119d5
CM
5023/* log a single inode in the tree log.
5024 * At least one parent directory for this inode must exist in the tree
5025 * or be logged already.
5026 *
5027 * Any items from this inode changed by the current transaction are copied
5028 * to the log tree. An extra reference is taken on any extents in this
5029 * file, allowing us to avoid a whole pile of corner cases around logging
5030 * blocks that have been removed from the tree.
5031 *
5032 * See LOG_INODE_ALL and related defines for a description of what inode_only
5033 * does.
5034 *
5035 * This handles both files and directories.
5036 */
12fcfd22 5037static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5038 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
5039 int inode_only,
5040 const loff_t start,
8407f553
FM
5041 const loff_t end,
5042 struct btrfs_log_ctx *ctx)
e02119d5 5043{
0b246afa 5044 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5045 struct btrfs_path *path;
5046 struct btrfs_path *dst_path;
5047 struct btrfs_key min_key;
5048 struct btrfs_key max_key;
5049 struct btrfs_root *log = root->log_root;
16e7549f 5050 u64 last_extent = 0;
4a500fd1 5051 int err = 0;
e02119d5 5052 int ret;
3a5f1d45 5053 int nritems;
31ff1cd2
CM
5054 int ins_start_slot = 0;
5055 int ins_nr;
5dc562c5 5056 bool fast_search = false;
a59108a7
NB
5057 u64 ino = btrfs_ino(inode);
5058 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5059 u64 logged_isize = 0;
e4545de5 5060 bool need_log_inode_item = true;
9a8fca62 5061 bool xattrs_logged = false;
a3baaf0d 5062 bool recursive_logging = false;
e02119d5 5063
e02119d5 5064 path = btrfs_alloc_path();
5df67083
TI
5065 if (!path)
5066 return -ENOMEM;
e02119d5 5067 dst_path = btrfs_alloc_path();
5df67083
TI
5068 if (!dst_path) {
5069 btrfs_free_path(path);
5070 return -ENOMEM;
5071 }
e02119d5 5072
33345d01 5073 min_key.objectid = ino;
e02119d5
CM
5074 min_key.type = BTRFS_INODE_ITEM_KEY;
5075 min_key.offset = 0;
5076
33345d01 5077 max_key.objectid = ino;
12fcfd22 5078
12fcfd22 5079
5dc562c5 5080 /* today the code can only do partial logging of directories */
a59108a7 5081 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5082 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5083 &inode->runtime_flags) &&
781feef7 5084 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5085 max_key.type = BTRFS_XATTR_ITEM_KEY;
5086 else
5087 max_key.type = (u8)-1;
5088 max_key.offset = (u64)-1;
5089
2c2c452b
FM
5090 /*
5091 * Only run delayed items if we are a dir or a new file.
5092 * Otherwise commit the delayed inode only, which is needed in
5093 * order for the log replay code to mark inodes for link count
5094 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5095 */
a59108a7
NB
5096 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5097 inode->generation > fs_info->last_trans_committed)
5098 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5099 else
a59108a7 5100 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5101
5102 if (ret) {
5103 btrfs_free_path(path);
5104 btrfs_free_path(dst_path);
5105 return ret;
16cdcec7
MX
5106 }
5107
a3baaf0d
FM
5108 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5109 recursive_logging = true;
5110 if (inode_only == LOG_OTHER_INODE)
5111 inode_only = LOG_INODE_EXISTS;
5112 else
5113 inode_only = LOG_INODE_ALL;
a59108a7 5114 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5115 } else {
a59108a7 5116 mutex_lock(&inode->log_mutex);
781feef7 5117 }
e02119d5
CM
5118
5119 /*
5120 * a brute force approach to making sure we get the most uptodate
5121 * copies of everything.
5122 */
a59108a7 5123 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5124 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5125
4f764e51
FM
5126 if (inode_only == LOG_INODE_EXISTS)
5127 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5128 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5129 } else {
1a4bcf47
FM
5130 if (inode_only == LOG_INODE_EXISTS) {
5131 /*
5132 * Make sure the new inode item we write to the log has
5133 * the same isize as the current one (if it exists).
5134 * This is necessary to prevent data loss after log
5135 * replay, and also to prevent doing a wrong expanding
5136 * truncate - for e.g. create file, write 4K into offset
5137 * 0, fsync, write 4K into offset 4096, add hard link,
5138 * fsync some other file (to sync log), power fail - if
5139 * we use the inode's current i_size, after log replay
5140 * we get a 8Kb file, with the last 4Kb extent as a hole
5141 * (zeroes), as if an expanding truncate happened,
5142 * instead of getting a file of 4Kb only.
5143 */
a59108a7 5144 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5145 if (err)
5146 goto out_unlock;
5147 }
a742994a 5148 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5149 &inode->runtime_flags)) {
a742994a 5150 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5151 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5152 ret = drop_objectid_items(trans, log, path, ino,
5153 max_key.type);
5154 } else {
5155 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5156 &inode->runtime_flags);
a742994a 5157 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5158 &inode->runtime_flags);
28ed1345
CM
5159 while(1) {
5160 ret = btrfs_truncate_inode_items(trans,
a59108a7 5161 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5162 if (ret != -EAGAIN)
5163 break;
5164 }
a742994a 5165 }
4f764e51 5166 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5167 &inode->runtime_flags) ||
6cfab851 5168 inode_only == LOG_INODE_EXISTS) {
4f764e51 5169 if (inode_only == LOG_INODE_ALL)
183f37fa 5170 fast_search = true;
4f764e51 5171 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5172 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5173 max_key.type);
a95249b3
JB
5174 } else {
5175 if (inode_only == LOG_INODE_ALL)
5176 fast_search = true;
a95249b3 5177 goto log_extents;
5dc562c5 5178 }
a95249b3 5179
e02119d5 5180 }
4a500fd1
YZ
5181 if (ret) {
5182 err = ret;
5183 goto out_unlock;
5184 }
e02119d5 5185
d397712b 5186 while (1) {
31ff1cd2 5187 ins_nr = 0;
6174d3cb 5188 ret = btrfs_search_forward(root, &min_key,
de78b51a 5189 path, trans->transid);
fb770ae4
LB
5190 if (ret < 0) {
5191 err = ret;
5192 goto out_unlock;
5193 }
e02119d5
CM
5194 if (ret != 0)
5195 break;
3a5f1d45 5196again:
31ff1cd2 5197 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 5198 if (min_key.objectid != ino)
e02119d5
CM
5199 break;
5200 if (min_key.type > max_key.type)
5201 break;
31ff1cd2 5202
e4545de5
FM
5203 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5204 need_log_inode_item = false;
5205
56f23fdb
FM
5206 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5207 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
6b5fc433
FM
5208 inode->generation == trans->transid &&
5209 !recursive_logging) {
44f714da 5210 u64 other_ino = 0;
a3baaf0d 5211 u64 other_parent = 0;
44f714da 5212
56f23fdb 5213 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7 5214 path->slots[0], &min_key, inode,
a3baaf0d 5215 &other_ino, &other_parent);
56f23fdb
FM
5216 if (ret < 0) {
5217 err = ret;
5218 goto out_unlock;
28a23593 5219 } else if (ret > 0 && ctx &&
4a0cc7ca 5220 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
5221 if (ins_nr > 0) {
5222 ins_nr++;
5223 } else {
5224 ins_nr = 1;
5225 ins_start_slot = path->slots[0];
5226 }
a59108a7 5227 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5228 &last_extent, ins_start_slot,
5229 ins_nr, inode_only,
5230 logged_isize);
5231 if (ret < 0) {
5232 err = ret;
5233 goto out_unlock;
5234 }
5235 ins_nr = 0;
6b5fc433
FM
5236
5237 err = log_conflicting_inodes(trans, root, path,
a3baaf0d 5238 ctx, other_ino, other_parent);
44f714da
FM
5239 if (err)
5240 goto out_unlock;
6b5fc433
FM
5241 btrfs_release_path(path);
5242 goto next_key;
56f23fdb
FM
5243 }
5244 }
5245
36283bf7
FM
5246 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5247 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5248 if (ins_nr == 0)
5249 goto next_slot;
a59108a7 5250 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5251 &last_extent, ins_start_slot,
5252 ins_nr, inode_only, logged_isize);
5253 if (ret < 0) {
5254 err = ret;
5255 goto out_unlock;
5256 }
5257 ins_nr = 0;
5258 if (ret) {
5259 btrfs_release_path(path);
5260 continue;
5261 }
5262 goto next_slot;
5263 }
5264
31ff1cd2
CM
5265 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5266 ins_nr++;
5267 goto next_slot;
5268 } else if (!ins_nr) {
5269 ins_start_slot = path->slots[0];
5270 ins_nr = 1;
5271 goto next_slot;
e02119d5
CM
5272 }
5273
a59108a7 5274 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5275 ins_start_slot, ins_nr, inode_only,
5276 logged_isize);
16e7549f 5277 if (ret < 0) {
4a500fd1
YZ
5278 err = ret;
5279 goto out_unlock;
a71db86e
RV
5280 }
5281 if (ret) {
16e7549f
JB
5282 ins_nr = 0;
5283 btrfs_release_path(path);
5284 continue;
4a500fd1 5285 }
31ff1cd2
CM
5286 ins_nr = 1;
5287 ins_start_slot = path->slots[0];
5288next_slot:
e02119d5 5289
3a5f1d45
CM
5290 nritems = btrfs_header_nritems(path->nodes[0]);
5291 path->slots[0]++;
5292 if (path->slots[0] < nritems) {
5293 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5294 path->slots[0]);
5295 goto again;
5296 }
31ff1cd2 5297 if (ins_nr) {
a59108a7 5298 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5299 &last_extent, ins_start_slot,
1a4bcf47 5300 ins_nr, inode_only, logged_isize);
16e7549f 5301 if (ret < 0) {
4a500fd1
YZ
5302 err = ret;
5303 goto out_unlock;
5304 }
16e7549f 5305 ret = 0;
31ff1cd2
CM
5306 ins_nr = 0;
5307 }
b3b4aa74 5308 btrfs_release_path(path);
44f714da 5309next_key:
3d41d702 5310 if (min_key.offset < (u64)-1) {
e02119d5 5311 min_key.offset++;
3d41d702 5312 } else if (min_key.type < max_key.type) {
e02119d5 5313 min_key.type++;
3d41d702
FDBM
5314 min_key.offset = 0;
5315 } else {
e02119d5 5316 break;
3d41d702 5317 }
e02119d5 5318 }
31ff1cd2 5319 if (ins_nr) {
a59108a7 5320 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5321 ins_start_slot, ins_nr, inode_only,
5322 logged_isize);
16e7549f 5323 if (ret < 0) {
4a500fd1
YZ
5324 err = ret;
5325 goto out_unlock;
5326 }
16e7549f 5327 ret = 0;
31ff1cd2
CM
5328 ins_nr = 0;
5329 }
5dc562c5 5330
36283bf7
FM
5331 btrfs_release_path(path);
5332 btrfs_release_path(dst_path);
a59108a7 5333 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5334 if (err)
5335 goto out_unlock;
9a8fca62 5336 xattrs_logged = true;
a89ca6f2
FM
5337 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5338 btrfs_release_path(path);
5339 btrfs_release_path(dst_path);
a59108a7 5340 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5341 if (err)
5342 goto out_unlock;
5343 }
a95249b3 5344log_extents:
f3b15ccd
JB
5345 btrfs_release_path(path);
5346 btrfs_release_path(dst_path);
e4545de5 5347 if (need_log_inode_item) {
a59108a7 5348 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5349 if (!err && !xattrs_logged) {
5350 err = btrfs_log_all_xattrs(trans, root, inode, path,
5351 dst_path);
5352 btrfs_release_path(path);
5353 }
e4545de5
FM
5354 if (err)
5355 goto out_unlock;
5356 }
5dc562c5 5357 if (fast_search) {
a59108a7 5358 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5359 ctx, start, end);
5dc562c5
JB
5360 if (ret) {
5361 err = ret;
5362 goto out_unlock;
5363 }
d006a048 5364 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5365 struct extent_map *em, *n;
5366
49dae1bc
FM
5367 write_lock(&em_tree->lock);
5368 /*
5369 * We can't just remove every em if we're called for a ranged
5370 * fsync - that is, one that doesn't cover the whole possible
5371 * file range (0 to LLONG_MAX). This is because we can have
5372 * em's that fall outside the range we're logging and therefore
5373 * their ordered operations haven't completed yet
5374 * (btrfs_finish_ordered_io() not invoked yet). This means we
5375 * didn't get their respective file extent item in the fs/subvol
5376 * tree yet, and need to let the next fast fsync (one which
5377 * consults the list of modified extent maps) find the em so
5378 * that it logs a matching file extent item and waits for the
5379 * respective ordered operation to complete (if it's still
5380 * running).
5381 *
5382 * Removing every em outside the range we're logging would make
5383 * the next fast fsync not log their matching file extent items,
5384 * therefore making us lose data after a log replay.
5385 */
5386 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5387 list) {
5388 const u64 mod_end = em->mod_start + em->mod_len - 1;
5389
5390 if (em->mod_start >= start && mod_end <= end)
5391 list_del_init(&em->list);
5392 }
5393 write_unlock(&em_tree->lock);
5dc562c5
JB
5394 }
5395
a59108a7
NB
5396 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5397 ret = log_directory_changes(trans, root, inode, path, dst_path,
5398 ctx);
4a500fd1
YZ
5399 if (ret) {
5400 err = ret;
5401 goto out_unlock;
5402 }
e02119d5 5403 }
49dae1bc 5404
a59108a7
NB
5405 spin_lock(&inode->lock);
5406 inode->logged_trans = trans->transid;
5407 inode->last_log_commit = inode->last_sub_trans;
5408 spin_unlock(&inode->lock);
4a500fd1 5409out_unlock:
a59108a7 5410 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5411
5412 btrfs_free_path(path);
5413 btrfs_free_path(dst_path);
4a500fd1 5414 return err;
e02119d5
CM
5415}
5416
2be63d5c
FM
5417/*
5418 * Check if we must fallback to a transaction commit when logging an inode.
5419 * This must be called after logging the inode and is used only in the context
5420 * when fsyncing an inode requires the need to log some other inode - in which
5421 * case we can't lock the i_mutex of each other inode we need to log as that
5422 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5423 * log inodes up or down in the hierarchy) or rename operations for example. So
5424 * we take the log_mutex of the inode after we have logged it and then check for
5425 * its last_unlink_trans value - this is safe because any task setting
5426 * last_unlink_trans must take the log_mutex and it must do this before it does
5427 * the actual unlink operation, so if we do this check before a concurrent task
5428 * sets last_unlink_trans it means we've logged a consistent version/state of
5429 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5430 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5431 * we logged the inode or it might have also done the unlink).
5432 */
5433static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5434 struct btrfs_inode *inode)
2be63d5c 5435{
ab1717b2 5436 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5437 bool ret = false;
5438
ab1717b2
NB
5439 mutex_lock(&inode->log_mutex);
5440 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5441 /*
5442 * Make sure any commits to the log are forced to be full
5443 * commits.
5444 */
5445 btrfs_set_log_full_commit(fs_info, trans);
5446 ret = true;
5447 }
ab1717b2 5448 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5449
5450 return ret;
5451}
5452
12fcfd22
CM
5453/*
5454 * follow the dentry parent pointers up the chain and see if any
5455 * of the directories in it require a full commit before they can
5456 * be logged. Returns zero if nothing special needs to be done or 1 if
5457 * a full commit is required.
5458 */
5459static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5460 struct btrfs_inode *inode,
12fcfd22
CM
5461 struct dentry *parent,
5462 struct super_block *sb,
5463 u64 last_committed)
e02119d5 5464{
12fcfd22 5465 int ret = 0;
6a912213 5466 struct dentry *old_parent = NULL;
aefa6115 5467 struct btrfs_inode *orig_inode = inode;
e02119d5 5468
af4176b4
CM
5469 /*
5470 * for regular files, if its inode is already on disk, we don't
5471 * have to worry about the parents at all. This is because
5472 * we can use the last_unlink_trans field to record renames
5473 * and other fun in this file.
5474 */
aefa6115
NB
5475 if (S_ISREG(inode->vfs_inode.i_mode) &&
5476 inode->generation <= last_committed &&
5477 inode->last_unlink_trans <= last_committed)
5478 goto out;
af4176b4 5479
aefa6115 5480 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5481 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5482 goto out;
aefa6115 5483 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5484 }
5485
5486 while (1) {
de2b530b
JB
5487 /*
5488 * If we are logging a directory then we start with our inode,
01327610 5489 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5490 * logged_trans so that further down in the log code we don't
5491 * think this inode has already been logged.
5492 */
5493 if (inode != orig_inode)
aefa6115 5494 inode->logged_trans = trans->transid;
12fcfd22
CM
5495 smp_mb();
5496
aefa6115 5497 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5498 ret = 1;
5499 break;
5500 }
5501
fc64005c 5502 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5503 break;
5504
44f714da 5505 if (IS_ROOT(parent)) {
aefa6115
NB
5506 inode = BTRFS_I(d_inode(parent));
5507 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5508 ret = 1;
12fcfd22 5509 break;
44f714da 5510 }
12fcfd22 5511
6a912213
JB
5512 parent = dget_parent(parent);
5513 dput(old_parent);
5514 old_parent = parent;
aefa6115 5515 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5516
5517 }
6a912213 5518 dput(old_parent);
12fcfd22 5519out:
e02119d5
CM
5520 return ret;
5521}
5522
2f2ff0ee
FM
5523struct btrfs_dir_list {
5524 u64 ino;
5525 struct list_head list;
5526};
5527
5528/*
5529 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5530 * details about the why it is needed.
5531 * This is a recursive operation - if an existing dentry corresponds to a
5532 * directory, that directory's new entries are logged too (same behaviour as
5533 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5534 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5535 * complains about the following circular lock dependency / possible deadlock:
5536 *
5537 * CPU0 CPU1
5538 * ---- ----
5539 * lock(&type->i_mutex_dir_key#3/2);
5540 * lock(sb_internal#2);
5541 * lock(&type->i_mutex_dir_key#3/2);
5542 * lock(&sb->s_type->i_mutex_key#14);
5543 *
5544 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5545 * sb_start_intwrite() in btrfs_start_transaction().
5546 * Not locking i_mutex of the inodes is still safe because:
5547 *
5548 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5549 * that while logging the inode new references (names) are added or removed
5550 * from the inode, leaving the logged inode item with a link count that does
5551 * not match the number of logged inode reference items. This is fine because
5552 * at log replay time we compute the real number of links and correct the
5553 * link count in the inode item (see replay_one_buffer() and
5554 * link_to_fixup_dir());
5555 *
5556 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5557 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5558 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5559 * has a size that doesn't match the sum of the lengths of all the logged
5560 * names. This does not result in a problem because if a dir_item key is
5561 * logged but its matching dir_index key is not logged, at log replay time we
5562 * don't use it to replay the respective name (see replay_one_name()). On the
5563 * other hand if only the dir_index key ends up being logged, the respective
5564 * name is added to the fs/subvol tree with both the dir_item and dir_index
5565 * keys created (see replay_one_name()).
5566 * The directory's inode item with a wrong i_size is not a problem as well,
5567 * since we don't use it at log replay time to set the i_size in the inode
5568 * item of the fs/subvol tree (see overwrite_item()).
5569 */
5570static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5571 struct btrfs_root *root,
51cc0d32 5572 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5573 struct btrfs_log_ctx *ctx)
5574{
0b246afa 5575 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5576 struct btrfs_root *log = root->log_root;
5577 struct btrfs_path *path;
5578 LIST_HEAD(dir_list);
5579 struct btrfs_dir_list *dir_elem;
5580 int ret = 0;
5581
5582 path = btrfs_alloc_path();
5583 if (!path)
5584 return -ENOMEM;
5585
5586 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5587 if (!dir_elem) {
5588 btrfs_free_path(path);
5589 return -ENOMEM;
5590 }
51cc0d32 5591 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5592 list_add_tail(&dir_elem->list, &dir_list);
5593
5594 while (!list_empty(&dir_list)) {
5595 struct extent_buffer *leaf;
5596 struct btrfs_key min_key;
5597 int nritems;
5598 int i;
5599
5600 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5601 list);
5602 if (ret)
5603 goto next_dir_inode;
5604
5605 min_key.objectid = dir_elem->ino;
5606 min_key.type = BTRFS_DIR_ITEM_KEY;
5607 min_key.offset = 0;
5608again:
5609 btrfs_release_path(path);
5610 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5611 if (ret < 0) {
5612 goto next_dir_inode;
5613 } else if (ret > 0) {
5614 ret = 0;
5615 goto next_dir_inode;
5616 }
5617
5618process_leaf:
5619 leaf = path->nodes[0];
5620 nritems = btrfs_header_nritems(leaf);
5621 for (i = path->slots[0]; i < nritems; i++) {
5622 struct btrfs_dir_item *di;
5623 struct btrfs_key di_key;
5624 struct inode *di_inode;
5625 struct btrfs_dir_list *new_dir_elem;
5626 int log_mode = LOG_INODE_EXISTS;
5627 int type;
5628
5629 btrfs_item_key_to_cpu(leaf, &min_key, i);
5630 if (min_key.objectid != dir_elem->ino ||
5631 min_key.type != BTRFS_DIR_ITEM_KEY)
5632 goto next_dir_inode;
5633
5634 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5635 type = btrfs_dir_type(leaf, di);
5636 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5637 type != BTRFS_FT_DIR)
5638 continue;
5639 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5640 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5641 continue;
5642
ec125cfb 5643 btrfs_release_path(path);
0b246afa 5644 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5645 if (IS_ERR(di_inode)) {
5646 ret = PTR_ERR(di_inode);
5647 goto next_dir_inode;
5648 }
5649
0f8939b8 5650 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5651 iput(di_inode);
ec125cfb 5652 break;
2f2ff0ee
FM
5653 }
5654
5655 ctx->log_new_dentries = false;
3f9749f6 5656 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5657 log_mode = LOG_INODE_ALL;
a59108a7 5658 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5659 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5660 if (!ret &&
ab1717b2 5661 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5662 ret = 1;
2f2ff0ee
FM
5663 iput(di_inode);
5664 if (ret)
5665 goto next_dir_inode;
5666 if (ctx->log_new_dentries) {
5667 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5668 GFP_NOFS);
5669 if (!new_dir_elem) {
5670 ret = -ENOMEM;
5671 goto next_dir_inode;
5672 }
5673 new_dir_elem->ino = di_key.objectid;
5674 list_add_tail(&new_dir_elem->list, &dir_list);
5675 }
5676 break;
5677 }
5678 if (i == nritems) {
5679 ret = btrfs_next_leaf(log, path);
5680 if (ret < 0) {
5681 goto next_dir_inode;
5682 } else if (ret > 0) {
5683 ret = 0;
5684 goto next_dir_inode;
5685 }
5686 goto process_leaf;
5687 }
5688 if (min_key.offset < (u64)-1) {
5689 min_key.offset++;
5690 goto again;
5691 }
5692next_dir_inode:
5693 list_del(&dir_elem->list);
5694 kfree(dir_elem);
5695 }
5696
5697 btrfs_free_path(path);
5698 return ret;
5699}
5700
18aa0922 5701static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5702 struct btrfs_inode *inode,
18aa0922
FM
5703 struct btrfs_log_ctx *ctx)
5704{
3ffbd68c 5705 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5706 int ret;
5707 struct btrfs_path *path;
5708 struct btrfs_key key;
d0a0b78d
NB
5709 struct btrfs_root *root = inode->root;
5710 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5711
5712 path = btrfs_alloc_path();
5713 if (!path)
5714 return -ENOMEM;
5715 path->skip_locking = 1;
5716 path->search_commit_root = 1;
5717
5718 key.objectid = ino;
5719 key.type = BTRFS_INODE_REF_KEY;
5720 key.offset = 0;
5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5722 if (ret < 0)
5723 goto out;
5724
5725 while (true) {
5726 struct extent_buffer *leaf = path->nodes[0];
5727 int slot = path->slots[0];
5728 u32 cur_offset = 0;
5729 u32 item_size;
5730 unsigned long ptr;
5731
5732 if (slot >= btrfs_header_nritems(leaf)) {
5733 ret = btrfs_next_leaf(root, path);
5734 if (ret < 0)
5735 goto out;
5736 else if (ret > 0)
5737 break;
5738 continue;
5739 }
5740
5741 btrfs_item_key_to_cpu(leaf, &key, slot);
5742 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5743 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5744 break;
5745
5746 item_size = btrfs_item_size_nr(leaf, slot);
5747 ptr = btrfs_item_ptr_offset(leaf, slot);
5748 while (cur_offset < item_size) {
5749 struct btrfs_key inode_key;
5750 struct inode *dir_inode;
5751
5752 inode_key.type = BTRFS_INODE_ITEM_KEY;
5753 inode_key.offset = 0;
5754
5755 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5756 struct btrfs_inode_extref *extref;
5757
5758 extref = (struct btrfs_inode_extref *)
5759 (ptr + cur_offset);
5760 inode_key.objectid = btrfs_inode_extref_parent(
5761 leaf, extref);
5762 cur_offset += sizeof(*extref);
5763 cur_offset += btrfs_inode_extref_name_len(leaf,
5764 extref);
5765 } else {
5766 inode_key.objectid = key.offset;
5767 cur_offset = item_size;
5768 }
5769
0b246afa 5770 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922 5771 root, NULL);
0f375eed
FM
5772 /*
5773 * If the parent inode was deleted, return an error to
5774 * fallback to a transaction commit. This is to prevent
5775 * getting an inode that was moved from one parent A to
5776 * a parent B, got its former parent A deleted and then
5777 * it got fsync'ed, from existing at both parents after
5778 * a log replay (and the old parent still existing).
5779 * Example:
5780 *
5781 * mkdir /mnt/A
5782 * mkdir /mnt/B
5783 * touch /mnt/B/bar
5784 * sync
5785 * mv /mnt/B/bar /mnt/A/bar
5786 * mv -T /mnt/A /mnt/B
5787 * fsync /mnt/B/bar
5788 * <power fail>
5789 *
5790 * If we ignore the old parent B which got deleted,
5791 * after a log replay we would have file bar linked
5792 * at both parents and the old parent B would still
5793 * exist.
5794 */
5795 if (IS_ERR(dir_inode)) {
5796 ret = PTR_ERR(dir_inode);
5797 goto out;
5798 }
18aa0922 5799
657ed1aa
FM
5800 if (ctx)
5801 ctx->log_new_dentries = false;
a59108a7 5802 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5803 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5804 if (!ret &&
ab1717b2 5805 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5806 ret = 1;
657ed1aa
FM
5807 if (!ret && ctx && ctx->log_new_dentries)
5808 ret = log_new_dir_dentries(trans, root,
f85b7379 5809 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5810 iput(dir_inode);
5811 if (ret)
5812 goto out;
5813 }
5814 path->slots[0]++;
5815 }
5816 ret = 0;
5817out:
5818 btrfs_free_path(path);
5819 return ret;
5820}
5821
e02119d5
CM
5822/*
5823 * helper function around btrfs_log_inode to make sure newly created
5824 * parent directories also end up in the log. A minimal inode and backref
5825 * only logging is done of any parent directories that are older than
5826 * the last committed transaction
5827 */
48a3b636 5828static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5829 struct btrfs_inode *inode,
49dae1bc
FM
5830 struct dentry *parent,
5831 const loff_t start,
5832 const loff_t end,
41a1eada 5833 int inode_only,
8b050d35 5834 struct btrfs_log_ctx *ctx)
e02119d5 5835{
f882274b 5836 struct btrfs_root *root = inode->root;
0b246afa 5837 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5838 struct super_block *sb;
6a912213 5839 struct dentry *old_parent = NULL;
12fcfd22 5840 int ret = 0;
0b246afa 5841 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5842 bool log_dentries = false;
19df27a9 5843 struct btrfs_inode *orig_inode = inode;
12fcfd22 5844
19df27a9 5845 sb = inode->vfs_inode.i_sb;
12fcfd22 5846
0b246afa 5847 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5848 ret = 1;
5849 goto end_no_trans;
5850 }
5851
995946dd
MX
5852 /*
5853 * The prev transaction commit doesn't complete, we need do
5854 * full commit by ourselves.
5855 */
0b246afa
JM
5856 if (fs_info->last_trans_log_full_commit >
5857 fs_info->last_trans_committed) {
12fcfd22
CM
5858 ret = 1;
5859 goto end_no_trans;
5860 }
5861
f882274b 5862 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5863 ret = 1;
5864 goto end_no_trans;
5865 }
5866
19df27a9
NB
5867 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5868 last_committed);
12fcfd22
CM
5869 if (ret)
5870 goto end_no_trans;
e02119d5 5871
f2d72f42
FM
5872 /*
5873 * Skip already logged inodes or inodes corresponding to tmpfiles
5874 * (since logging them is pointless, a link count of 0 means they
5875 * will never be accessible).
5876 */
5877 if (btrfs_inode_in_log(inode, trans->transid) ||
5878 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
5879 ret = BTRFS_NO_LOG_SYNC;
5880 goto end_no_trans;
5881 }
5882
8b050d35 5883 ret = start_log_trans(trans, root, ctx);
4a500fd1 5884 if (ret)
e87ac136 5885 goto end_no_trans;
e02119d5 5886
19df27a9 5887 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5888 if (ret)
5889 goto end_trans;
12fcfd22 5890
af4176b4
CM
5891 /*
5892 * for regular files, if its inode is already on disk, we don't
5893 * have to worry about the parents at all. This is because
5894 * we can use the last_unlink_trans field to record renames
5895 * and other fun in this file.
5896 */
19df27a9
NB
5897 if (S_ISREG(inode->vfs_inode.i_mode) &&
5898 inode->generation <= last_committed &&
5899 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5900 ret = 0;
5901 goto end_trans;
5902 }
af4176b4 5903
19df27a9 5904 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5905 log_dentries = true;
5906
18aa0922 5907 /*
01327610 5908 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5909 * inodes are fully logged. This is to prevent leaving dangling
5910 * directory index entries in directories that were our parents but are
5911 * not anymore. Not doing this results in old parent directory being
5912 * impossible to delete after log replay (rmdir will always fail with
5913 * error -ENOTEMPTY).
5914 *
5915 * Example 1:
5916 *
5917 * mkdir testdir
5918 * touch testdir/foo
5919 * ln testdir/foo testdir/bar
5920 * sync
5921 * unlink testdir/bar
5922 * xfs_io -c fsync testdir/foo
5923 * <power failure>
5924 * mount fs, triggers log replay
5925 *
5926 * If we don't log the parent directory (testdir), after log replay the
5927 * directory still has an entry pointing to the file inode using the bar
5928 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5929 * the file inode has a link count of 1.
5930 *
5931 * Example 2:
5932 *
5933 * mkdir testdir
5934 * touch foo
5935 * ln foo testdir/foo2
5936 * ln foo testdir/foo3
5937 * sync
5938 * unlink testdir/foo3
5939 * xfs_io -c fsync foo
5940 * <power failure>
5941 * mount fs, triggers log replay
5942 *
5943 * Similar as the first example, after log replay the parent directory
5944 * testdir still has an entry pointing to the inode file with name foo3
5945 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5946 * and has a link count of 2.
5947 */
19df27a9 5948 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5949 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5950 if (ret)
5951 goto end_trans;
5952 }
5953
41bd6067
FM
5954 /*
5955 * If a new hard link was added to the inode in the current transaction
5956 * and its link count is now greater than 1, we need to fallback to a
5957 * transaction commit, otherwise we can end up not logging all its new
5958 * parents for all the hard links. Here just from the dentry used to
5959 * fsync, we can not visit the ancestor inodes for all the other hard
5960 * links to figure out if any is new, so we fallback to a transaction
5961 * commit (instead of adding a lot of complexity of scanning a btree,
5962 * since this scenario is not a common use case).
5963 */
5964 if (inode->vfs_inode.i_nlink > 1 &&
5965 inode->last_link_trans > last_committed) {
5966 ret = -EMLINK;
5967 goto end_trans;
5968 }
5969
12fcfd22 5970 while (1) {
fc64005c 5971 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5972 break;
5973
19df27a9
NB
5974 inode = BTRFS_I(d_inode(parent));
5975 if (root != inode->root)
76dda93c
YZ
5976 break;
5977
19df27a9
NB
5978 if (inode->generation > last_committed) {
5979 ret = btrfs_log_inode(trans, root, inode,
5980 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5981 if (ret)
5982 goto end_trans;
12fcfd22 5983 }
76dda93c 5984 if (IS_ROOT(parent))
e02119d5 5985 break;
12fcfd22 5986
6a912213
JB
5987 parent = dget_parent(parent);
5988 dput(old_parent);
5989 old_parent = parent;
e02119d5 5990 }
2f2ff0ee 5991 if (log_dentries)
19df27a9 5992 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5993 else
5994 ret = 0;
4a500fd1 5995end_trans:
6a912213 5996 dput(old_parent);
4a500fd1 5997 if (ret < 0) {
0b246afa 5998 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5999 ret = 1;
6000 }
8b050d35
MX
6001
6002 if (ret)
6003 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6004 btrfs_end_log_trans(root);
6005end_no_trans:
6006 return ret;
e02119d5
CM
6007}
6008
6009/*
6010 * it is not safe to log dentry if the chunk root has added new
6011 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6012 * If this returns 1, you must commit the transaction to safely get your
6013 * data on disk.
6014 */
6015int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6016 struct dentry *dentry,
49dae1bc
FM
6017 const loff_t start,
6018 const loff_t end,
8b050d35 6019 struct btrfs_log_ctx *ctx)
e02119d5 6020{
6a912213
JB
6021 struct dentry *parent = dget_parent(dentry);
6022 int ret;
6023
f882274b
NB
6024 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6025 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6026 dput(parent);
6027
6028 return ret;
e02119d5
CM
6029}
6030
6031/*
6032 * should be called during mount to recover any replay any log trees
6033 * from the FS
6034 */
6035int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6036{
6037 int ret;
6038 struct btrfs_path *path;
6039 struct btrfs_trans_handle *trans;
6040 struct btrfs_key key;
6041 struct btrfs_key found_key;
6042 struct btrfs_key tmp_key;
6043 struct btrfs_root *log;
6044 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6045 struct walk_control wc = {
6046 .process_func = process_one_buffer,
6047 .stage = 0,
6048 };
6049
e02119d5 6050 path = btrfs_alloc_path();
db5b493a
TI
6051 if (!path)
6052 return -ENOMEM;
6053
afcdd129 6054 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6055
4a500fd1 6056 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6057 if (IS_ERR(trans)) {
6058 ret = PTR_ERR(trans);
6059 goto error;
6060 }
e02119d5
CM
6061
6062 wc.trans = trans;
6063 wc.pin = 1;
6064
db5b493a 6065 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6066 if (ret) {
5d163e0e
JM
6067 btrfs_handle_fs_error(fs_info, ret,
6068 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6069 goto error;
6070 }
e02119d5
CM
6071
6072again:
6073 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6074 key.offset = (u64)-1;
962a298f 6075 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6076
d397712b 6077 while (1) {
e02119d5 6078 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6079
6080 if (ret < 0) {
34d97007 6081 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6082 "Couldn't find tree log root.");
6083 goto error;
6084 }
e02119d5
CM
6085 if (ret > 0) {
6086 if (path->slots[0] == 0)
6087 break;
6088 path->slots[0]--;
6089 }
6090 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6091 path->slots[0]);
b3b4aa74 6092 btrfs_release_path(path);
e02119d5
CM
6093 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6094 break;
6095
cb517eab 6096 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
6097 if (IS_ERR(log)) {
6098 ret = PTR_ERR(log);
34d97007 6099 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6100 "Couldn't read tree log root.");
6101 goto error;
6102 }
e02119d5
CM
6103
6104 tmp_key.objectid = found_key.offset;
6105 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6106 tmp_key.offset = (u64)-1;
6107
6108 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
6109 if (IS_ERR(wc.replay_dest)) {
6110 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
6111 free_extent_buffer(log->node);
6112 free_extent_buffer(log->commit_root);
6113 kfree(log);
5d163e0e
JM
6114 btrfs_handle_fs_error(fs_info, ret,
6115 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6116 goto error;
6117 }
e02119d5 6118
07d400a6 6119 wc.replay_dest->log_root = log;
5d4f98a2 6120 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6121 ret = walk_log_tree(trans, log, &wc);
e02119d5 6122
b50c6e25 6123 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6124 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6125 path);
e02119d5
CM
6126 }
6127
900c9981
LB
6128 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6129 struct btrfs_root *root = wc.replay_dest;
6130
6131 btrfs_release_path(path);
6132
6133 /*
6134 * We have just replayed everything, and the highest
6135 * objectid of fs roots probably has changed in case
6136 * some inode_item's got replayed.
6137 *
6138 * root->objectid_mutex is not acquired as log replay
6139 * could only happen during mount.
6140 */
6141 ret = btrfs_find_highest_objectid(root,
6142 &root->highest_objectid);
6143 }
6144
e02119d5 6145 key.offset = found_key.offset - 1;
07d400a6 6146 wc.replay_dest->log_root = NULL;
e02119d5 6147 free_extent_buffer(log->node);
b263c2c8 6148 free_extent_buffer(log->commit_root);
e02119d5
CM
6149 kfree(log);
6150
b50c6e25
JB
6151 if (ret)
6152 goto error;
6153
e02119d5
CM
6154 if (found_key.offset == 0)
6155 break;
6156 }
b3b4aa74 6157 btrfs_release_path(path);
e02119d5
CM
6158
6159 /* step one is to pin it all, step two is to replay just inodes */
6160 if (wc.pin) {
6161 wc.pin = 0;
6162 wc.process_func = replay_one_buffer;
6163 wc.stage = LOG_WALK_REPLAY_INODES;
6164 goto again;
6165 }
6166 /* step three is to replay everything */
6167 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6168 wc.stage++;
6169 goto again;
6170 }
6171
6172 btrfs_free_path(path);
6173
abefa55a 6174 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6175 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6176 if (ret)
6177 return ret;
6178
e02119d5
CM
6179 free_extent_buffer(log_root_tree->node);
6180 log_root_tree->log_root = NULL;
afcdd129 6181 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6182 kfree(log_root_tree);
79787eaa 6183
abefa55a 6184 return 0;
79787eaa 6185error:
b50c6e25 6186 if (wc.trans)
3a45bb20 6187 btrfs_end_transaction(wc.trans);
79787eaa
JM
6188 btrfs_free_path(path);
6189 return ret;
e02119d5 6190}
12fcfd22
CM
6191
6192/*
6193 * there are some corner cases where we want to force a full
6194 * commit instead of allowing a directory to be logged.
6195 *
6196 * They revolve around files there were unlinked from the directory, and
6197 * this function updates the parent directory so that a full commit is
6198 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6199 *
6200 * Must be called before the unlink operations (updates to the subvolume tree,
6201 * inodes, etc) are done.
12fcfd22
CM
6202 */
6203void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6204 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6205 int for_rename)
6206{
af4176b4
CM
6207 /*
6208 * when we're logging a file, if it hasn't been renamed
6209 * or unlinked, and its inode is fully committed on disk,
6210 * we don't have to worry about walking up the directory chain
6211 * to log its parents.
6212 *
6213 * So, we use the last_unlink_trans field to put this transid
6214 * into the file. When the file is logged we check it and
6215 * don't log the parents if the file is fully on disk.
6216 */
4176bdbf
NB
6217 mutex_lock(&inode->log_mutex);
6218 inode->last_unlink_trans = trans->transid;
6219 mutex_unlock(&inode->log_mutex);
af4176b4 6220
12fcfd22
CM
6221 /*
6222 * if this directory was already logged any new
6223 * names for this file/dir will get recorded
6224 */
6225 smp_mb();
4176bdbf 6226 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6227 return;
6228
6229 /*
6230 * if the inode we're about to unlink was logged,
6231 * the log will be properly updated for any new names
6232 */
4176bdbf 6233 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6234 return;
6235
6236 /*
6237 * when renaming files across directories, if the directory
6238 * there we're unlinking from gets fsync'd later on, there's
6239 * no way to find the destination directory later and fsync it
6240 * properly. So, we have to be conservative and force commits
6241 * so the new name gets discovered.
6242 */
6243 if (for_rename)
6244 goto record;
6245
6246 /* we can safely do the unlink without any special recording */
6247 return;
6248
6249record:
4176bdbf
NB
6250 mutex_lock(&dir->log_mutex);
6251 dir->last_unlink_trans = trans->transid;
6252 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6253}
6254
6255/*
6256 * Make sure that if someone attempts to fsync the parent directory of a deleted
6257 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6258 * that after replaying the log tree of the parent directory's root we will not
6259 * see the snapshot anymore and at log replay time we will not see any log tree
6260 * corresponding to the deleted snapshot's root, which could lead to replaying
6261 * it after replaying the log tree of the parent directory (which would replay
6262 * the snapshot delete operation).
2be63d5c
FM
6263 *
6264 * Must be called before the actual snapshot destroy operation (updates to the
6265 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6266 */
6267void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6268 struct btrfs_inode *dir)
1ec9a1ae 6269{
43663557
NB
6270 mutex_lock(&dir->log_mutex);
6271 dir->last_unlink_trans = trans->transid;
6272 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6273}
6274
6275/*
6276 * Call this after adding a new name for a file and it will properly
6277 * update the log to reflect the new name.
6278 *
d4682ba0
FM
6279 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6280 * true (because it's not used).
6281 *
6282 * Return value depends on whether @sync_log is true or false.
6283 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6284 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6285 * otherwise.
6286 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6287 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6288 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6289 * committed (without attempting to sync the log).
12fcfd22
CM
6290 */
6291int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6292 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6293 struct dentry *parent,
6294 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6295{
3ffbd68c 6296 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6297 int ret;
12fcfd22 6298
af4176b4
CM
6299 /*
6300 * this will force the logging code to walk the dentry chain
6301 * up for the file
6302 */
9a6509c4 6303 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6304 inode->last_unlink_trans = trans->transid;
af4176b4 6305
12fcfd22
CM
6306 /*
6307 * if this inode hasn't been logged and directory we're renaming it
6308 * from hasn't been logged, we don't need to log it
6309 */
9ca5fbfb
NB
6310 if (inode->logged_trans <= fs_info->last_trans_committed &&
6311 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6312 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6313 BTRFS_DONT_NEED_LOG_SYNC;
6314
6315 if (sync_log) {
6316 struct btrfs_log_ctx ctx2;
6317
6318 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6319 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6320 LOG_INODE_EXISTS, &ctx2);
6321 if (ret == BTRFS_NO_LOG_SYNC)
6322 return BTRFS_DONT_NEED_TRANS_COMMIT;
6323 else if (ret)
6324 return BTRFS_NEED_TRANS_COMMIT;
6325
6326 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6327 if (ret)
6328 return BTRFS_NEED_TRANS_COMMIT;
6329 return BTRFS_DONT_NEED_TRANS_COMMIT;
6330 }
6331
6332 ASSERT(ctx);
6333 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6334 LOG_INODE_EXISTS, ctx);
6335 if (ret == BTRFS_NO_LOG_SYNC)
6336 return BTRFS_DONT_NEED_LOG_SYNC;
6337 else if (ret)
6338 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6339
d4682ba0 6340 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6341}
6342