Btrfs: change the insertion criteria for the qgroup operations rbtree
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
8407f553
FM
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
8b050d35 143 int index;
e02119d5 144 int ret;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
995946dd 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
149 ret = -EAGAIN;
150 goto out;
151 }
ff782e0a
JB
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
27cdeb70 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
157 }
158
2ecb7923 159 atomic_inc(&root->log_batch);
7237f183 160 atomic_inc(&root->log_writers);
8b050d35
MX
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 164 ctx->log_transid = root->log_transid;
8b050d35 165 }
7237f183
YZ
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
e87ac136
MX
169
170 ret = 0;
e02119d5 171 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 172 if (!root->fs_info->log_root_tree)
e02119d5 173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
e02119d5 179 ret = btrfs_add_log_tree(trans, root);
4a500fd1 180 if (ret)
e87ac136 181 goto out;
e02119d5 182 }
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 184 root->log_start_pid = current->pid;
2ecb7923 185 atomic_inc(&root->log_batch);
7237f183 186 atomic_inc(&root->log_writers);
8b050d35
MX
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 190 ctx->log_transid = root->log_transid;
8b050d35 191 }
e87ac136 192out:
7237f183 193 mutex_unlock(&root->log_mutex);
e87ac136 194 return ret;
e02119d5
CM
195}
196
197/*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202static int join_running_log_trans(struct btrfs_root *root)
203{
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
7237f183 210 mutex_lock(&root->log_mutex);
e02119d5
CM
211 if (root->log_root) {
212 ret = 0;
7237f183 213 atomic_inc(&root->log_writers);
e02119d5 214 }
7237f183 215 mutex_unlock(&root->log_mutex);
e02119d5
CM
216 return ret;
217}
218
12fcfd22
CM
219/*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224int btrfs_pin_log_trans(struct btrfs_root *root)
225{
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232}
233
e02119d5
CM
234/*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
143bede5 238void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 239{
7237f183
YZ
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
e02119d5
CM
245}
246
247
248/*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299{
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
b50c6e25
JB
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
afe5fea7 467 btrfs_truncate_item(root, path, item_size, 1);
143bede5 468 else if (found_size < item_size)
4b90c680 469 btrfs_extend_item(root, path,
143bede5 470 item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495
496 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 S_ISREG(btrfs_inode_mode(dst_eb, dst_item))) {
498 struct btrfs_map_token token;
499 u64 ino_size = btrfs_inode_size(eb, src_item);
500
501 btrfs_init_map_token(&token);
502 btrfs_set_token_inode_size(dst_eb, dst_item,
503 ino_size, &token);
504 }
e02119d5 505 goto no_copy;
1a4bcf47 506 }
e02119d5
CM
507
508 if (overwrite_root &&
509 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 save_old_i_size = 1;
512 saved_i_size = btrfs_inode_size(path->nodes[0],
513 dst_item);
514 }
515 }
516
517 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 src_ptr, item_size);
519
520 if (save_old_i_size) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 }
525
526 /* make sure the generation is filled in */
527 if (key->type == BTRFS_INODE_ITEM_KEY) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 btrfs_set_inode_generation(path->nodes[0], dst_item,
532 trans->transid);
533 }
534 }
535no_copy:
536 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 537 btrfs_release_path(path);
e02119d5
CM
538 return 0;
539}
540
541/*
542 * simple helper to read an inode off the disk from a given root
543 * This can only be called for subvolume roots and not for the log
544 */
545static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 u64 objectid)
547{
5d4f98a2 548 struct btrfs_key key;
e02119d5 549 struct inode *inode;
e02119d5 550
5d4f98a2
YZ
551 key.objectid = objectid;
552 key.type = BTRFS_INODE_ITEM_KEY;
553 key.offset = 0;
73f73415 554 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
555 if (IS_ERR(inode)) {
556 inode = NULL;
557 } else if (is_bad_inode(inode)) {
e02119d5
CM
558 iput(inode);
559 inode = NULL;
560 }
561 return inode;
562}
563
564/* replays a single extent in 'eb' at 'slot' with 'key' into the
565 * subvolume 'root'. path is released on entry and should be released
566 * on exit.
567 *
568 * extents in the log tree have not been allocated out of the extent
569 * tree yet. So, this completes the allocation, taking a reference
570 * as required if the extent already exists or creating a new extent
571 * if it isn't in the extent allocation tree yet.
572 *
573 * The extent is inserted into the file, dropping any existing extents
574 * from the file that overlap the new one.
575 */
576static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root,
578 struct btrfs_path *path,
579 struct extent_buffer *eb, int slot,
580 struct btrfs_key *key)
581{
582 int found_type;
e02119d5 583 u64 extent_end;
e02119d5 584 u64 start = key->offset;
4bc4bee4 585 u64 nbytes = 0;
e02119d5
CM
586 struct btrfs_file_extent_item *item;
587 struct inode *inode = NULL;
588 unsigned long size;
589 int ret = 0;
590
591 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
592 found_type = btrfs_file_extent_type(eb, item);
593
d899e052 594 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
595 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
596 nbytes = btrfs_file_extent_num_bytes(eb, item);
597 extent_end = start + nbytes;
598
599 /*
600 * We don't add to the inodes nbytes if we are prealloc or a
601 * hole.
602 */
603 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
604 nbytes = 0;
605 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 606 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 607 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 608 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
609 } else {
610 ret = 0;
611 goto out;
612 }
613
614 inode = read_one_inode(root, key->objectid);
615 if (!inode) {
616 ret = -EIO;
617 goto out;
618 }
619
620 /*
621 * first check to see if we already have this extent in the
622 * file. This must be done before the btrfs_drop_extents run
623 * so we don't try to drop this extent.
624 */
33345d01 625 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
626 start, 0);
627
d899e052
YZ
628 if (ret == 0 &&
629 (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
631 struct btrfs_file_extent_item cmp1;
632 struct btrfs_file_extent_item cmp2;
633 struct btrfs_file_extent_item *existing;
634 struct extent_buffer *leaf;
635
636 leaf = path->nodes[0];
637 existing = btrfs_item_ptr(leaf, path->slots[0],
638 struct btrfs_file_extent_item);
639
640 read_extent_buffer(eb, &cmp1, (unsigned long)item,
641 sizeof(cmp1));
642 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
643 sizeof(cmp2));
644
645 /*
646 * we already have a pointer to this exact extent,
647 * we don't have to do anything
648 */
649 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651 goto out;
652 }
653 }
b3b4aa74 654 btrfs_release_path(path);
e02119d5
CM
655
656 /* drop any overlapping extents */
2671485d 657 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
658 if (ret)
659 goto out;
e02119d5 660
07d400a6
YZ
661 if (found_type == BTRFS_FILE_EXTENT_REG ||
662 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 663 u64 offset;
07d400a6
YZ
664 unsigned long dest_offset;
665 struct btrfs_key ins;
666
667 ret = btrfs_insert_empty_item(trans, root, path, key,
668 sizeof(*item));
3650860b
JB
669 if (ret)
670 goto out;
07d400a6
YZ
671 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 path->slots[0]);
673 copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 (unsigned long)item, sizeof(*item));
675
676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 679 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
680
681 if (ins.objectid > 0) {
682 u64 csum_start;
683 u64 csum_end;
684 LIST_HEAD(ordered_sums);
685 /*
686 * is this extent already allocated in the extent
687 * allocation tree? If so, just add a reference
688 */
1a4ed8fd 689 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
690 ins.offset);
691 if (ret == 0) {
692 ret = btrfs_inc_extent_ref(trans, root,
693 ins.objectid, ins.offset,
5d4f98a2 694 0, root->root_key.objectid,
66d7e7f0 695 key->objectid, offset, 0);
b50c6e25
JB
696 if (ret)
697 goto out;
07d400a6
YZ
698 } else {
699 /*
700 * insert the extent pointer in the extent
701 * allocation tree
702 */
5d4f98a2
YZ
703 ret = btrfs_alloc_logged_file_extent(trans,
704 root, root->root_key.objectid,
705 key->objectid, offset, &ins);
b50c6e25
JB
706 if (ret)
707 goto out;
07d400a6 708 }
b3b4aa74 709 btrfs_release_path(path);
07d400a6
YZ
710
711 if (btrfs_file_extent_compression(eb, item)) {
712 csum_start = ins.objectid;
713 csum_end = csum_start + ins.offset;
714 } else {
715 csum_start = ins.objectid +
716 btrfs_file_extent_offset(eb, item);
717 csum_end = csum_start +
718 btrfs_file_extent_num_bytes(eb, item);
719 }
720
721 ret = btrfs_lookup_csums_range(root->log_root,
722 csum_start, csum_end - 1,
a2de733c 723 &ordered_sums, 0);
3650860b
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 while (!list_empty(&ordered_sums)) {
727 struct btrfs_ordered_sum *sums;
728 sums = list_entry(ordered_sums.next,
729 struct btrfs_ordered_sum,
730 list);
3650860b
JB
731 if (!ret)
732 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
733 root->fs_info->csum_root,
734 sums);
07d400a6
YZ
735 list_del(&sums->list);
736 kfree(sums);
737 }
3650860b
JB
738 if (ret)
739 goto out;
07d400a6 740 } else {
b3b4aa74 741 btrfs_release_path(path);
07d400a6
YZ
742 }
743 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
744 /* inline extents are easy, we just overwrite them */
745 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
746 if (ret)
747 goto out;
07d400a6 748 }
e02119d5 749
4bc4bee4 750 inode_add_bytes(inode, nbytes);
b9959295 751 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
752out:
753 if (inode)
754 iput(inode);
755 return ret;
756}
757
758/*
759 * when cleaning up conflicts between the directory names in the
760 * subvolume, directory names in the log and directory names in the
761 * inode back references, we may have to unlink inodes from directories.
762 *
763 * This is a helper function to do the unlink of a specific directory
764 * item
765 */
766static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
767 struct btrfs_root *root,
768 struct btrfs_path *path,
769 struct inode *dir,
770 struct btrfs_dir_item *di)
771{
772 struct inode *inode;
773 char *name;
774 int name_len;
775 struct extent_buffer *leaf;
776 struct btrfs_key location;
777 int ret;
778
779 leaf = path->nodes[0];
780
781 btrfs_dir_item_key_to_cpu(leaf, di, &location);
782 name_len = btrfs_dir_name_len(leaf, di);
783 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 784 if (!name)
785 return -ENOMEM;
786
e02119d5 787 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 788 btrfs_release_path(path);
e02119d5
CM
789
790 inode = read_one_inode(root, location.objectid);
c00e9493 791 if (!inode) {
3650860b
JB
792 ret = -EIO;
793 goto out;
c00e9493 794 }
e02119d5 795
ec051c0f 796 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
797 if (ret)
798 goto out;
12fcfd22 799
e02119d5 800 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
801 if (ret)
802 goto out;
ada9af21
FDBM
803 else
804 ret = btrfs_run_delayed_items(trans, root);
3650860b 805out:
e02119d5 806 kfree(name);
e02119d5
CM
807 iput(inode);
808 return ret;
809}
810
811/*
812 * helper function to see if a given name and sequence number found
813 * in an inode back reference are already in a directory and correctly
814 * point to this inode
815 */
816static noinline int inode_in_dir(struct btrfs_root *root,
817 struct btrfs_path *path,
818 u64 dirid, u64 objectid, u64 index,
819 const char *name, int name_len)
820{
821 struct btrfs_dir_item *di;
822 struct btrfs_key location;
823 int match = 0;
824
825 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
826 index, name, name_len, 0);
827 if (di && !IS_ERR(di)) {
828 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 if (location.objectid != objectid)
830 goto out;
831 } else
832 goto out;
b3b4aa74 833 btrfs_release_path(path);
e02119d5
CM
834
835 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
836 if (di && !IS_ERR(di)) {
837 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
838 if (location.objectid != objectid)
839 goto out;
840 } else
841 goto out;
842 match = 1;
843out:
b3b4aa74 844 btrfs_release_path(path);
e02119d5
CM
845 return match;
846}
847
848/*
849 * helper function to check a log tree for a named back reference in
850 * an inode. This is used to decide if a back reference that is
851 * found in the subvolume conflicts with what we find in the log.
852 *
853 * inode backreferences may have multiple refs in a single item,
854 * during replay we process one reference at a time, and we don't
855 * want to delete valid links to a file from the subvolume if that
856 * link is also in the log.
857 */
858static noinline int backref_in_log(struct btrfs_root *log,
859 struct btrfs_key *key,
f186373f 860 u64 ref_objectid,
df8d116f 861 const char *name, int namelen)
e02119d5
CM
862{
863 struct btrfs_path *path;
864 struct btrfs_inode_ref *ref;
865 unsigned long ptr;
866 unsigned long ptr_end;
867 unsigned long name_ptr;
868 int found_name_len;
869 int item_size;
870 int ret;
871 int match = 0;
872
873 path = btrfs_alloc_path();
2a29edc6 874 if (!path)
875 return -ENOMEM;
876
e02119d5
CM
877 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
878 if (ret != 0)
879 goto out;
880
e02119d5 881 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
882
883 if (key->type == BTRFS_INODE_EXTREF_KEY) {
884 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
885 name, namelen, NULL))
886 match = 1;
887
888 goto out;
889 }
890
891 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
892 ptr_end = ptr + item_size;
893 while (ptr < ptr_end) {
894 ref = (struct btrfs_inode_ref *)ptr;
895 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
896 if (found_name_len == namelen) {
897 name_ptr = (unsigned long)(ref + 1);
898 ret = memcmp_extent_buffer(path->nodes[0], name,
899 name_ptr, namelen);
900 if (ret == 0) {
901 match = 1;
902 goto out;
903 }
904 }
905 ptr = (unsigned long)(ref + 1) + found_name_len;
906 }
907out:
908 btrfs_free_path(path);
909 return match;
910}
911
5a1d7843 912static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 913 struct btrfs_root *root,
e02119d5 914 struct btrfs_path *path,
5a1d7843
JS
915 struct btrfs_root *log_root,
916 struct inode *dir, struct inode *inode,
5a1d7843 917 struct extent_buffer *eb,
f186373f
MF
918 u64 inode_objectid, u64 parent_objectid,
919 u64 ref_index, char *name, int namelen,
920 int *search_done)
e02119d5 921{
34f3e4f2 922 int ret;
f186373f
MF
923 char *victim_name;
924 int victim_name_len;
925 struct extent_buffer *leaf;
5a1d7843 926 struct btrfs_dir_item *di;
f186373f
MF
927 struct btrfs_key search_key;
928 struct btrfs_inode_extref *extref;
c622ae60 929
f186373f
MF
930again:
931 /* Search old style refs */
932 search_key.objectid = inode_objectid;
933 search_key.type = BTRFS_INODE_REF_KEY;
934 search_key.offset = parent_objectid;
935 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 936 if (ret == 0) {
e02119d5
CM
937 struct btrfs_inode_ref *victim_ref;
938 unsigned long ptr;
939 unsigned long ptr_end;
f186373f
MF
940
941 leaf = path->nodes[0];
e02119d5
CM
942
943 /* are we trying to overwrite a back ref for the root directory
944 * if so, just jump out, we're done
945 */
f186373f 946 if (search_key.objectid == search_key.offset)
5a1d7843 947 return 1;
e02119d5
CM
948
949 /* check all the names in this back reference to see
950 * if they are in the log. if so, we allow them to stay
951 * otherwise they must be unlinked as a conflict
952 */
953 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
954 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 955 while (ptr < ptr_end) {
e02119d5
CM
956 victim_ref = (struct btrfs_inode_ref *)ptr;
957 victim_name_len = btrfs_inode_ref_name_len(leaf,
958 victim_ref);
959 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
960 if (!victim_name)
961 return -ENOMEM;
e02119d5
CM
962
963 read_extent_buffer(leaf, victim_name,
964 (unsigned long)(victim_ref + 1),
965 victim_name_len);
966
f186373f
MF
967 if (!backref_in_log(log_root, &search_key,
968 parent_objectid,
969 victim_name,
e02119d5 970 victim_name_len)) {
8b558c5f 971 inc_nlink(inode);
b3b4aa74 972 btrfs_release_path(path);
12fcfd22 973
e02119d5
CM
974 ret = btrfs_unlink_inode(trans, root, dir,
975 inode, victim_name,
976 victim_name_len);
f186373f 977 kfree(victim_name);
3650860b
JB
978 if (ret)
979 return ret;
ada9af21
FDBM
980 ret = btrfs_run_delayed_items(trans, root);
981 if (ret)
982 return ret;
f186373f
MF
983 *search_done = 1;
984 goto again;
e02119d5
CM
985 }
986 kfree(victim_name);
f186373f 987
e02119d5
CM
988 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
989 }
e02119d5 990
c622ae60 991 /*
992 * NOTE: we have searched root tree and checked the
993 * coresponding ref, it does not need to check again.
994 */
5a1d7843 995 *search_done = 1;
e02119d5 996 }
b3b4aa74 997 btrfs_release_path(path);
e02119d5 998
f186373f
MF
999 /* Same search but for extended refs */
1000 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1001 inode_objectid, parent_objectid, 0,
1002 0);
1003 if (!IS_ERR_OR_NULL(extref)) {
1004 u32 item_size;
1005 u32 cur_offset = 0;
1006 unsigned long base;
1007 struct inode *victim_parent;
1008
1009 leaf = path->nodes[0];
1010
1011 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1012 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1013
1014 while (cur_offset < item_size) {
dd9ef135 1015 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1016
1017 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1018
1019 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1020 goto next;
1021
1022 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1023 if (!victim_name)
1024 return -ENOMEM;
f186373f
MF
1025 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1026 victim_name_len);
1027
1028 search_key.objectid = inode_objectid;
1029 search_key.type = BTRFS_INODE_EXTREF_KEY;
1030 search_key.offset = btrfs_extref_hash(parent_objectid,
1031 victim_name,
1032 victim_name_len);
1033 ret = 0;
1034 if (!backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len)) {
1037 ret = -ENOENT;
1038 victim_parent = read_one_inode(root,
1039 parent_objectid);
1040 if (victim_parent) {
8b558c5f 1041 inc_nlink(inode);
f186373f
MF
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root,
1045 victim_parent,
1046 inode,
1047 victim_name,
1048 victim_name_len);
ada9af21
FDBM
1049 if (!ret)
1050 ret = btrfs_run_delayed_items(
1051 trans, root);
f186373f 1052 }
f186373f
MF
1053 iput(victim_parent);
1054 kfree(victim_name);
3650860b
JB
1055 if (ret)
1056 return ret;
f186373f
MF
1057 *search_done = 1;
1058 goto again;
1059 }
1060 kfree(victim_name);
3650860b
JB
1061 if (ret)
1062 return ret;
f186373f
MF
1063next:
1064 cur_offset += victim_name_len + sizeof(*extref);
1065 }
1066 *search_done = 1;
1067 }
1068 btrfs_release_path(path);
1069
34f3e4f2 1070 /* look for a conflicting sequence number */
1071 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1072 ref_index, name, namelen, 0);
34f3e4f2 1073 if (di && !IS_ERR(di)) {
1074 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1075 if (ret)
1076 return ret;
34f3e4f2 1077 }
1078 btrfs_release_path(path);
1079
1080 /* look for a conflicing name */
1081 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1082 name, namelen, 0);
1083 if (di && !IS_ERR(di)) {
1084 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1085 if (ret)
1086 return ret;
34f3e4f2 1087 }
1088 btrfs_release_path(path);
1089
5a1d7843
JS
1090 return 0;
1091}
e02119d5 1092
f186373f
MF
1093static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1094 u32 *namelen, char **name, u64 *index,
1095 u64 *parent_objectid)
1096{
1097 struct btrfs_inode_extref *extref;
1098
1099 extref = (struct btrfs_inode_extref *)ref_ptr;
1100
1101 *namelen = btrfs_inode_extref_name_len(eb, extref);
1102 *name = kmalloc(*namelen, GFP_NOFS);
1103 if (*name == NULL)
1104 return -ENOMEM;
1105
1106 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1107 *namelen);
1108
1109 *index = btrfs_inode_extref_index(eb, extref);
1110 if (parent_objectid)
1111 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1112
1113 return 0;
1114}
1115
1116static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1117 u32 *namelen, char **name, u64 *index)
1118{
1119 struct btrfs_inode_ref *ref;
1120
1121 ref = (struct btrfs_inode_ref *)ref_ptr;
1122
1123 *namelen = btrfs_inode_ref_name_len(eb, ref);
1124 *name = kmalloc(*namelen, GFP_NOFS);
1125 if (*name == NULL)
1126 return -ENOMEM;
1127
1128 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1129
1130 *index = btrfs_inode_ref_index(eb, ref);
1131
1132 return 0;
1133}
1134
5a1d7843
JS
1135/*
1136 * replay one inode back reference item found in the log tree.
1137 * eb, slot and key refer to the buffer and key found in the log tree.
1138 * root is the destination we are replaying into, and path is for temp
1139 * use by this function. (it should be released on return).
1140 */
1141static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_root *log,
1144 struct btrfs_path *path,
1145 struct extent_buffer *eb, int slot,
1146 struct btrfs_key *key)
1147{
03b2f08b
GB
1148 struct inode *dir = NULL;
1149 struct inode *inode = NULL;
5a1d7843
JS
1150 unsigned long ref_ptr;
1151 unsigned long ref_end;
03b2f08b 1152 char *name = NULL;
5a1d7843
JS
1153 int namelen;
1154 int ret;
1155 int search_done = 0;
f186373f
MF
1156 int log_ref_ver = 0;
1157 u64 parent_objectid;
1158 u64 inode_objectid;
f46dbe3d 1159 u64 ref_index = 0;
f186373f
MF
1160 int ref_struct_size;
1161
1162 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1163 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1164
1165 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1166 struct btrfs_inode_extref *r;
1167
1168 ref_struct_size = sizeof(struct btrfs_inode_extref);
1169 log_ref_ver = 1;
1170 r = (struct btrfs_inode_extref *)ref_ptr;
1171 parent_objectid = btrfs_inode_extref_parent(eb, r);
1172 } else {
1173 ref_struct_size = sizeof(struct btrfs_inode_ref);
1174 parent_objectid = key->offset;
1175 }
1176 inode_objectid = key->objectid;
e02119d5 1177
5a1d7843
JS
1178 /*
1179 * it is possible that we didn't log all the parent directories
1180 * for a given inode. If we don't find the dir, just don't
1181 * copy the back ref in. The link count fixup code will take
1182 * care of the rest
1183 */
f186373f 1184 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1185 if (!dir) {
1186 ret = -ENOENT;
1187 goto out;
1188 }
5a1d7843 1189
f186373f 1190 inode = read_one_inode(root, inode_objectid);
5a1d7843 1191 if (!inode) {
03b2f08b
GB
1192 ret = -EIO;
1193 goto out;
5a1d7843
JS
1194 }
1195
5a1d7843 1196 while (ref_ptr < ref_end) {
f186373f
MF
1197 if (log_ref_ver) {
1198 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1199 &ref_index, &parent_objectid);
1200 /*
1201 * parent object can change from one array
1202 * item to another.
1203 */
1204 if (!dir)
1205 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1206 if (!dir) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
f186373f
MF
1210 } else {
1211 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1212 &ref_index);
1213 }
1214 if (ret)
03b2f08b 1215 goto out;
5a1d7843
JS
1216
1217 /* if we already have a perfect match, we're done */
1218 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1219 ref_index, name, namelen)) {
5a1d7843
JS
1220 /*
1221 * look for a conflicting back reference in the
1222 * metadata. if we find one we have to unlink that name
1223 * of the file before we add our new link. Later on, we
1224 * overwrite any existing back reference, and we don't
1225 * want to create dangling pointers in the directory.
1226 */
1227
1228 if (!search_done) {
1229 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1230 dir, inode, eb,
1231 inode_objectid,
1232 parent_objectid,
1233 ref_index, name, namelen,
5a1d7843 1234 &search_done);
03b2f08b
GB
1235 if (ret) {
1236 if (ret == 1)
1237 ret = 0;
3650860b
JB
1238 goto out;
1239 }
5a1d7843
JS
1240 }
1241
1242 /* insert our name */
1243 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1244 0, ref_index);
3650860b
JB
1245 if (ret)
1246 goto out;
5a1d7843
JS
1247
1248 btrfs_update_inode(trans, root, inode);
1249 }
1250
f186373f 1251 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1252 kfree(name);
03b2f08b 1253 name = NULL;
f186373f
MF
1254 if (log_ref_ver) {
1255 iput(dir);
1256 dir = NULL;
1257 }
5a1d7843 1258 }
e02119d5
CM
1259
1260 /* finally write the back reference in the inode */
1261 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1262out:
b3b4aa74 1263 btrfs_release_path(path);
03b2f08b 1264 kfree(name);
e02119d5
CM
1265 iput(dir);
1266 iput(inode);
3650860b 1267 return ret;
e02119d5
CM
1268}
1269
c71bf099 1270static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1271 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1272{
1273 int ret;
381cf658 1274
9c4f61f0
DS
1275 ret = btrfs_insert_orphan_item(trans, root, ino);
1276 if (ret == -EEXIST)
1277 ret = 0;
381cf658 1278
c71bf099
YZ
1279 return ret;
1280}
1281
f186373f
MF
1282static int count_inode_extrefs(struct btrfs_root *root,
1283 struct inode *inode, struct btrfs_path *path)
1284{
1285 int ret = 0;
1286 int name_len;
1287 unsigned int nlink = 0;
1288 u32 item_size;
1289 u32 cur_offset = 0;
1290 u64 inode_objectid = btrfs_ino(inode);
1291 u64 offset = 0;
1292 unsigned long ptr;
1293 struct btrfs_inode_extref *extref;
1294 struct extent_buffer *leaf;
1295
1296 while (1) {
1297 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1298 &extref, &offset);
1299 if (ret)
1300 break;
c71bf099 1301
f186373f
MF
1302 leaf = path->nodes[0];
1303 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1304 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1305 cur_offset = 0;
f186373f
MF
1306
1307 while (cur_offset < item_size) {
1308 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1309 name_len = btrfs_inode_extref_name_len(leaf, extref);
1310
1311 nlink++;
1312
1313 cur_offset += name_len + sizeof(*extref);
1314 }
1315
1316 offset++;
1317 btrfs_release_path(path);
1318 }
1319 btrfs_release_path(path);
1320
2c2c452b 1321 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1322 return ret;
1323 return nlink;
1324}
1325
1326static int count_inode_refs(struct btrfs_root *root,
1327 struct inode *inode, struct btrfs_path *path)
e02119d5 1328{
e02119d5
CM
1329 int ret;
1330 struct btrfs_key key;
f186373f 1331 unsigned int nlink = 0;
e02119d5
CM
1332 unsigned long ptr;
1333 unsigned long ptr_end;
1334 int name_len;
33345d01 1335 u64 ino = btrfs_ino(inode);
e02119d5 1336
33345d01 1337 key.objectid = ino;
e02119d5
CM
1338 key.type = BTRFS_INODE_REF_KEY;
1339 key.offset = (u64)-1;
1340
d397712b 1341 while (1) {
e02119d5
CM
1342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1343 if (ret < 0)
1344 break;
1345 if (ret > 0) {
1346 if (path->slots[0] == 0)
1347 break;
1348 path->slots[0]--;
1349 }
e93ae26f 1350process_slot:
e02119d5
CM
1351 btrfs_item_key_to_cpu(path->nodes[0], &key,
1352 path->slots[0]);
33345d01 1353 if (key.objectid != ino ||
e02119d5
CM
1354 key.type != BTRFS_INODE_REF_KEY)
1355 break;
1356 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1357 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1358 path->slots[0]);
d397712b 1359 while (ptr < ptr_end) {
e02119d5
CM
1360 struct btrfs_inode_ref *ref;
1361
1362 ref = (struct btrfs_inode_ref *)ptr;
1363 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1364 ref);
1365 ptr = (unsigned long)(ref + 1) + name_len;
1366 nlink++;
1367 }
1368
1369 if (key.offset == 0)
1370 break;
e93ae26f
FDBM
1371 if (path->slots[0] > 0) {
1372 path->slots[0]--;
1373 goto process_slot;
1374 }
e02119d5 1375 key.offset--;
b3b4aa74 1376 btrfs_release_path(path);
e02119d5 1377 }
b3b4aa74 1378 btrfs_release_path(path);
f186373f
MF
1379
1380 return nlink;
1381}
1382
1383/*
1384 * There are a few corners where the link count of the file can't
1385 * be properly maintained during replay. So, instead of adding
1386 * lots of complexity to the log code, we just scan the backrefs
1387 * for any file that has been through replay.
1388 *
1389 * The scan will update the link count on the inode to reflect the
1390 * number of back refs found. If it goes down to zero, the iput
1391 * will free the inode.
1392 */
1393static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct inode *inode)
1396{
1397 struct btrfs_path *path;
1398 int ret;
1399 u64 nlink = 0;
1400 u64 ino = btrfs_ino(inode);
1401
1402 path = btrfs_alloc_path();
1403 if (!path)
1404 return -ENOMEM;
1405
1406 ret = count_inode_refs(root, inode, path);
1407 if (ret < 0)
1408 goto out;
1409
1410 nlink = ret;
1411
1412 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1413 if (ret < 0)
1414 goto out;
1415
1416 nlink += ret;
1417
1418 ret = 0;
1419
e02119d5 1420 if (nlink != inode->i_nlink) {
bfe86848 1421 set_nlink(inode, nlink);
e02119d5
CM
1422 btrfs_update_inode(trans, root, inode);
1423 }
8d5bf1cb 1424 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1425
c71bf099
YZ
1426 if (inode->i_nlink == 0) {
1427 if (S_ISDIR(inode->i_mode)) {
1428 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1429 ino, 1);
3650860b
JB
1430 if (ret)
1431 goto out;
c71bf099 1432 }
33345d01 1433 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1434 }
12fcfd22 1435
f186373f
MF
1436out:
1437 btrfs_free_path(path);
1438 return ret;
e02119d5
CM
1439}
1440
1441static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1442 struct btrfs_root *root,
1443 struct btrfs_path *path)
1444{
1445 int ret;
1446 struct btrfs_key key;
1447 struct inode *inode;
1448
1449 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1450 key.type = BTRFS_ORPHAN_ITEM_KEY;
1451 key.offset = (u64)-1;
d397712b 1452 while (1) {
e02119d5
CM
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret < 0)
1455 break;
1456
1457 if (ret == 1) {
1458 if (path->slots[0] == 0)
1459 break;
1460 path->slots[0]--;
1461 }
1462
1463 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1464 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1465 key.type != BTRFS_ORPHAN_ITEM_KEY)
1466 break;
1467
1468 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1469 if (ret)
1470 goto out;
e02119d5 1471
b3b4aa74 1472 btrfs_release_path(path);
e02119d5 1473 inode = read_one_inode(root, key.offset);
c00e9493
TI
1474 if (!inode)
1475 return -EIO;
e02119d5
CM
1476
1477 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1478 iput(inode);
3650860b
JB
1479 if (ret)
1480 goto out;
e02119d5 1481
12fcfd22
CM
1482 /*
1483 * fixup on a directory may create new entries,
1484 * make sure we always look for the highset possible
1485 * offset
1486 */
1487 key.offset = (u64)-1;
e02119d5 1488 }
65a246c5
TI
1489 ret = 0;
1490out:
b3b4aa74 1491 btrfs_release_path(path);
65a246c5 1492 return ret;
e02119d5
CM
1493}
1494
1495
1496/*
1497 * record a given inode in the fixup dir so we can check its link
1498 * count when replay is done. The link count is incremented here
1499 * so the inode won't go away until we check it
1500 */
1501static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1502 struct btrfs_root *root,
1503 struct btrfs_path *path,
1504 u64 objectid)
1505{
1506 struct btrfs_key key;
1507 int ret = 0;
1508 struct inode *inode;
1509
1510 inode = read_one_inode(root, objectid);
c00e9493
TI
1511 if (!inode)
1512 return -EIO;
e02119d5
CM
1513
1514 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1515 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1516 key.offset = objectid;
1517
1518 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1519
b3b4aa74 1520 btrfs_release_path(path);
e02119d5 1521 if (ret == 0) {
9bf7a489
JB
1522 if (!inode->i_nlink)
1523 set_nlink(inode, 1);
1524 else
8b558c5f 1525 inc_nlink(inode);
b9959295 1526 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1527 } else if (ret == -EEXIST) {
1528 ret = 0;
1529 } else {
3650860b 1530 BUG(); /* Logic Error */
e02119d5
CM
1531 }
1532 iput(inode);
1533
1534 return ret;
1535}
1536
1537/*
1538 * when replaying the log for a directory, we only insert names
1539 * for inodes that actually exist. This means an fsync on a directory
1540 * does not implicitly fsync all the new files in it
1541 */
1542static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1543 struct btrfs_root *root,
1544 struct btrfs_path *path,
1545 u64 dirid, u64 index,
1546 char *name, int name_len, u8 type,
1547 struct btrfs_key *location)
1548{
1549 struct inode *inode;
1550 struct inode *dir;
1551 int ret;
1552
1553 inode = read_one_inode(root, location->objectid);
1554 if (!inode)
1555 return -ENOENT;
1556
1557 dir = read_one_inode(root, dirid);
1558 if (!dir) {
1559 iput(inode);
1560 return -EIO;
1561 }
d555438b 1562
e02119d5
CM
1563 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1564
1565 /* FIXME, put inode into FIXUP list */
1566
1567 iput(inode);
1568 iput(dir);
1569 return ret;
1570}
1571
df8d116f
FM
1572/*
1573 * Return true if an inode reference exists in the log for the given name,
1574 * inode and parent inode.
1575 */
1576static bool name_in_log_ref(struct btrfs_root *log_root,
1577 const char *name, const int name_len,
1578 const u64 dirid, const u64 ino)
1579{
1580 struct btrfs_key search_key;
1581
1582 search_key.objectid = ino;
1583 search_key.type = BTRFS_INODE_REF_KEY;
1584 search_key.offset = dirid;
1585 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1586 return true;
1587
1588 search_key.type = BTRFS_INODE_EXTREF_KEY;
1589 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1590 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1591 return true;
1592
1593 return false;
1594}
1595
e02119d5
CM
1596/*
1597 * take a single entry in a log directory item and replay it into
1598 * the subvolume.
1599 *
1600 * if a conflicting item exists in the subdirectory already,
1601 * the inode it points to is unlinked and put into the link count
1602 * fix up tree.
1603 *
1604 * If a name from the log points to a file or directory that does
1605 * not exist in the FS, it is skipped. fsyncs on directories
1606 * do not force down inodes inside that directory, just changes to the
1607 * names or unlinks in a directory.
1608 */
1609static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root,
1611 struct btrfs_path *path,
1612 struct extent_buffer *eb,
1613 struct btrfs_dir_item *di,
1614 struct btrfs_key *key)
1615{
1616 char *name;
1617 int name_len;
1618 struct btrfs_dir_item *dst_di;
1619 struct btrfs_key found_key;
1620 struct btrfs_key log_key;
1621 struct inode *dir;
e02119d5 1622 u8 log_type;
4bef0848 1623 int exists;
3650860b 1624 int ret = 0;
d555438b 1625 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1626
1627 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1628 if (!dir)
1629 return -EIO;
e02119d5
CM
1630
1631 name_len = btrfs_dir_name_len(eb, di);
1632 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1633 if (!name) {
1634 ret = -ENOMEM;
1635 goto out;
1636 }
2a29edc6 1637
e02119d5
CM
1638 log_type = btrfs_dir_type(eb, di);
1639 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1640 name_len);
1641
1642 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1643 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1644 if (exists == 0)
1645 exists = 1;
1646 else
1647 exists = 0;
b3b4aa74 1648 btrfs_release_path(path);
4bef0848 1649
e02119d5
CM
1650 if (key->type == BTRFS_DIR_ITEM_KEY) {
1651 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1652 name, name_len, 1);
d397712b 1653 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1654 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1655 key->objectid,
1656 key->offset, name,
1657 name_len, 1);
1658 } else {
3650860b
JB
1659 /* Corruption */
1660 ret = -EINVAL;
1661 goto out;
e02119d5 1662 }
c704005d 1663 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1664 /* we need a sequence number to insert, so we only
1665 * do inserts for the BTRFS_DIR_INDEX_KEY types
1666 */
1667 if (key->type != BTRFS_DIR_INDEX_KEY)
1668 goto out;
1669 goto insert;
1670 }
1671
1672 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1673 /* the existing item matches the logged item */
1674 if (found_key.objectid == log_key.objectid &&
1675 found_key.type == log_key.type &&
1676 found_key.offset == log_key.offset &&
1677 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1678 update_size = false;
e02119d5
CM
1679 goto out;
1680 }
1681
1682 /*
1683 * don't drop the conflicting directory entry if the inode
1684 * for the new entry doesn't exist
1685 */
4bef0848 1686 if (!exists)
e02119d5
CM
1687 goto out;
1688
e02119d5 1689 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1690 if (ret)
1691 goto out;
e02119d5
CM
1692
1693 if (key->type == BTRFS_DIR_INDEX_KEY)
1694 goto insert;
1695out:
b3b4aa74 1696 btrfs_release_path(path);
d555438b
JB
1697 if (!ret && update_size) {
1698 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1699 ret = btrfs_update_inode(trans, root, dir);
1700 }
e02119d5
CM
1701 kfree(name);
1702 iput(dir);
3650860b 1703 return ret;
e02119d5
CM
1704
1705insert:
df8d116f
FM
1706 if (name_in_log_ref(root->log_root, name, name_len,
1707 key->objectid, log_key.objectid)) {
1708 /* The dentry will be added later. */
1709 ret = 0;
1710 update_size = false;
1711 goto out;
1712 }
b3b4aa74 1713 btrfs_release_path(path);
e02119d5
CM
1714 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1715 name, name_len, log_type, &log_key);
df8d116f 1716 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1717 goto out;
d555438b 1718 update_size = false;
3650860b 1719 ret = 0;
e02119d5
CM
1720 goto out;
1721}
1722
1723/*
1724 * find all the names in a directory item and reconcile them into
1725 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1726 * one name in a directory item, but the same code gets used for
1727 * both directory index types
1728 */
1729static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1730 struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 struct extent_buffer *eb, int slot,
1733 struct btrfs_key *key)
1734{
1735 int ret;
1736 u32 item_size = btrfs_item_size_nr(eb, slot);
1737 struct btrfs_dir_item *di;
1738 int name_len;
1739 unsigned long ptr;
1740 unsigned long ptr_end;
1741
1742 ptr = btrfs_item_ptr_offset(eb, slot);
1743 ptr_end = ptr + item_size;
d397712b 1744 while (ptr < ptr_end) {
e02119d5 1745 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1746 if (verify_dir_item(root, eb, di))
1747 return -EIO;
e02119d5
CM
1748 name_len = btrfs_dir_name_len(eb, di);
1749 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1750 if (ret)
1751 return ret;
e02119d5
CM
1752 ptr = (unsigned long)(di + 1);
1753 ptr += name_len;
1754 }
1755 return 0;
1756}
1757
1758/*
1759 * directory replay has two parts. There are the standard directory
1760 * items in the log copied from the subvolume, and range items
1761 * created in the log while the subvolume was logged.
1762 *
1763 * The range items tell us which parts of the key space the log
1764 * is authoritative for. During replay, if a key in the subvolume
1765 * directory is in a logged range item, but not actually in the log
1766 * that means it was deleted from the directory before the fsync
1767 * and should be removed.
1768 */
1769static noinline int find_dir_range(struct btrfs_root *root,
1770 struct btrfs_path *path,
1771 u64 dirid, int key_type,
1772 u64 *start_ret, u64 *end_ret)
1773{
1774 struct btrfs_key key;
1775 u64 found_end;
1776 struct btrfs_dir_log_item *item;
1777 int ret;
1778 int nritems;
1779
1780 if (*start_ret == (u64)-1)
1781 return 1;
1782
1783 key.objectid = dirid;
1784 key.type = key_type;
1785 key.offset = *start_ret;
1786
1787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1788 if (ret < 0)
1789 goto out;
1790 if (ret > 0) {
1791 if (path->slots[0] == 0)
1792 goto out;
1793 path->slots[0]--;
1794 }
1795 if (ret != 0)
1796 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1797
1798 if (key.type != key_type || key.objectid != dirid) {
1799 ret = 1;
1800 goto next;
1801 }
1802 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1803 struct btrfs_dir_log_item);
1804 found_end = btrfs_dir_log_end(path->nodes[0], item);
1805
1806 if (*start_ret >= key.offset && *start_ret <= found_end) {
1807 ret = 0;
1808 *start_ret = key.offset;
1809 *end_ret = found_end;
1810 goto out;
1811 }
1812 ret = 1;
1813next:
1814 /* check the next slot in the tree to see if it is a valid item */
1815 nritems = btrfs_header_nritems(path->nodes[0]);
1816 if (path->slots[0] >= nritems) {
1817 ret = btrfs_next_leaf(root, path);
1818 if (ret)
1819 goto out;
1820 } else {
1821 path->slots[0]++;
1822 }
1823
1824 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1825
1826 if (key.type != key_type || key.objectid != dirid) {
1827 ret = 1;
1828 goto out;
1829 }
1830 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1831 struct btrfs_dir_log_item);
1832 found_end = btrfs_dir_log_end(path->nodes[0], item);
1833 *start_ret = key.offset;
1834 *end_ret = found_end;
1835 ret = 0;
1836out:
b3b4aa74 1837 btrfs_release_path(path);
e02119d5
CM
1838 return ret;
1839}
1840
1841/*
1842 * this looks for a given directory item in the log. If the directory
1843 * item is not in the log, the item is removed and the inode it points
1844 * to is unlinked
1845 */
1846static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_root *log,
1849 struct btrfs_path *path,
1850 struct btrfs_path *log_path,
1851 struct inode *dir,
1852 struct btrfs_key *dir_key)
1853{
1854 int ret;
1855 struct extent_buffer *eb;
1856 int slot;
1857 u32 item_size;
1858 struct btrfs_dir_item *di;
1859 struct btrfs_dir_item *log_di;
1860 int name_len;
1861 unsigned long ptr;
1862 unsigned long ptr_end;
1863 char *name;
1864 struct inode *inode;
1865 struct btrfs_key location;
1866
1867again:
1868 eb = path->nodes[0];
1869 slot = path->slots[0];
1870 item_size = btrfs_item_size_nr(eb, slot);
1871 ptr = btrfs_item_ptr_offset(eb, slot);
1872 ptr_end = ptr + item_size;
d397712b 1873 while (ptr < ptr_end) {
e02119d5 1874 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1875 if (verify_dir_item(root, eb, di)) {
1876 ret = -EIO;
1877 goto out;
1878 }
1879
e02119d5
CM
1880 name_len = btrfs_dir_name_len(eb, di);
1881 name = kmalloc(name_len, GFP_NOFS);
1882 if (!name) {
1883 ret = -ENOMEM;
1884 goto out;
1885 }
1886 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1887 name_len);
1888 log_di = NULL;
12fcfd22 1889 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1890 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1891 dir_key->objectid,
1892 name, name_len, 0);
12fcfd22 1893 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1894 log_di = btrfs_lookup_dir_index_item(trans, log,
1895 log_path,
1896 dir_key->objectid,
1897 dir_key->offset,
1898 name, name_len, 0);
1899 }
269d040f 1900 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1901 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1902 btrfs_release_path(path);
1903 btrfs_release_path(log_path);
e02119d5 1904 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1905 if (!inode) {
1906 kfree(name);
1907 return -EIO;
1908 }
e02119d5
CM
1909
1910 ret = link_to_fixup_dir(trans, root,
1911 path, location.objectid);
3650860b
JB
1912 if (ret) {
1913 kfree(name);
1914 iput(inode);
1915 goto out;
1916 }
1917
8b558c5f 1918 inc_nlink(inode);
e02119d5
CM
1919 ret = btrfs_unlink_inode(trans, root, dir, inode,
1920 name, name_len);
3650860b 1921 if (!ret)
ada9af21 1922 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1923 kfree(name);
1924 iput(inode);
3650860b
JB
1925 if (ret)
1926 goto out;
e02119d5
CM
1927
1928 /* there might still be more names under this key
1929 * check and repeat if required
1930 */
1931 ret = btrfs_search_slot(NULL, root, dir_key, path,
1932 0, 0);
1933 if (ret == 0)
1934 goto again;
1935 ret = 0;
1936 goto out;
269d040f
FDBM
1937 } else if (IS_ERR(log_di)) {
1938 kfree(name);
1939 return PTR_ERR(log_di);
e02119d5 1940 }
b3b4aa74 1941 btrfs_release_path(log_path);
e02119d5
CM
1942 kfree(name);
1943
1944 ptr = (unsigned long)(di + 1);
1945 ptr += name_len;
1946 }
1947 ret = 0;
1948out:
b3b4aa74
DS
1949 btrfs_release_path(path);
1950 btrfs_release_path(log_path);
e02119d5
CM
1951 return ret;
1952}
1953
4f764e51
FM
1954static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_root *log,
1957 struct btrfs_path *path,
1958 const u64 ino)
1959{
1960 struct btrfs_key search_key;
1961 struct btrfs_path *log_path;
1962 int i;
1963 int nritems;
1964 int ret;
1965
1966 log_path = btrfs_alloc_path();
1967 if (!log_path)
1968 return -ENOMEM;
1969
1970 search_key.objectid = ino;
1971 search_key.type = BTRFS_XATTR_ITEM_KEY;
1972 search_key.offset = 0;
1973again:
1974 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1975 if (ret < 0)
1976 goto out;
1977process_leaf:
1978 nritems = btrfs_header_nritems(path->nodes[0]);
1979 for (i = path->slots[0]; i < nritems; i++) {
1980 struct btrfs_key key;
1981 struct btrfs_dir_item *di;
1982 struct btrfs_dir_item *log_di;
1983 u32 total_size;
1984 u32 cur;
1985
1986 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
1987 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
1988 ret = 0;
1989 goto out;
1990 }
1991
1992 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
1993 total_size = btrfs_item_size_nr(path->nodes[0], i);
1994 cur = 0;
1995 while (cur < total_size) {
1996 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
1997 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
1998 u32 this_len = sizeof(*di) + name_len + data_len;
1999 char *name;
2000
2001 name = kmalloc(name_len, GFP_NOFS);
2002 if (!name) {
2003 ret = -ENOMEM;
2004 goto out;
2005 }
2006 read_extent_buffer(path->nodes[0], name,
2007 (unsigned long)(di + 1), name_len);
2008
2009 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2010 name, name_len, 0);
2011 btrfs_release_path(log_path);
2012 if (!log_di) {
2013 /* Doesn't exist in log tree, so delete it. */
2014 btrfs_release_path(path);
2015 di = btrfs_lookup_xattr(trans, root, path, ino,
2016 name, name_len, -1);
2017 kfree(name);
2018 if (IS_ERR(di)) {
2019 ret = PTR_ERR(di);
2020 goto out;
2021 }
2022 ASSERT(di);
2023 ret = btrfs_delete_one_dir_name(trans, root,
2024 path, di);
2025 if (ret)
2026 goto out;
2027 btrfs_release_path(path);
2028 search_key = key;
2029 goto again;
2030 }
2031 kfree(name);
2032 if (IS_ERR(log_di)) {
2033 ret = PTR_ERR(log_di);
2034 goto out;
2035 }
2036 cur += this_len;
2037 di = (struct btrfs_dir_item *)((char *)di + this_len);
2038 }
2039 }
2040 ret = btrfs_next_leaf(root, path);
2041 if (ret > 0)
2042 ret = 0;
2043 else if (ret == 0)
2044 goto process_leaf;
2045out:
2046 btrfs_free_path(log_path);
2047 btrfs_release_path(path);
2048 return ret;
2049}
2050
2051
e02119d5
CM
2052/*
2053 * deletion replay happens before we copy any new directory items
2054 * out of the log or out of backreferences from inodes. It
2055 * scans the log to find ranges of keys that log is authoritative for,
2056 * and then scans the directory to find items in those ranges that are
2057 * not present in the log.
2058 *
2059 * Anything we don't find in the log is unlinked and removed from the
2060 * directory.
2061 */
2062static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_root *log,
2065 struct btrfs_path *path,
12fcfd22 2066 u64 dirid, int del_all)
e02119d5
CM
2067{
2068 u64 range_start;
2069 u64 range_end;
2070 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2071 int ret = 0;
2072 struct btrfs_key dir_key;
2073 struct btrfs_key found_key;
2074 struct btrfs_path *log_path;
2075 struct inode *dir;
2076
2077 dir_key.objectid = dirid;
2078 dir_key.type = BTRFS_DIR_ITEM_KEY;
2079 log_path = btrfs_alloc_path();
2080 if (!log_path)
2081 return -ENOMEM;
2082
2083 dir = read_one_inode(root, dirid);
2084 /* it isn't an error if the inode isn't there, that can happen
2085 * because we replay the deletes before we copy in the inode item
2086 * from the log
2087 */
2088 if (!dir) {
2089 btrfs_free_path(log_path);
2090 return 0;
2091 }
2092again:
2093 range_start = 0;
2094 range_end = 0;
d397712b 2095 while (1) {
12fcfd22
CM
2096 if (del_all)
2097 range_end = (u64)-1;
2098 else {
2099 ret = find_dir_range(log, path, dirid, key_type,
2100 &range_start, &range_end);
2101 if (ret != 0)
2102 break;
2103 }
e02119d5
CM
2104
2105 dir_key.offset = range_start;
d397712b 2106 while (1) {
e02119d5
CM
2107 int nritems;
2108 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2109 0, 0);
2110 if (ret < 0)
2111 goto out;
2112
2113 nritems = btrfs_header_nritems(path->nodes[0]);
2114 if (path->slots[0] >= nritems) {
2115 ret = btrfs_next_leaf(root, path);
2116 if (ret)
2117 break;
2118 }
2119 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2120 path->slots[0]);
2121 if (found_key.objectid != dirid ||
2122 found_key.type != dir_key.type)
2123 goto next_type;
2124
2125 if (found_key.offset > range_end)
2126 break;
2127
2128 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2129 log_path, dir,
2130 &found_key);
3650860b
JB
2131 if (ret)
2132 goto out;
e02119d5
CM
2133 if (found_key.offset == (u64)-1)
2134 break;
2135 dir_key.offset = found_key.offset + 1;
2136 }
b3b4aa74 2137 btrfs_release_path(path);
e02119d5
CM
2138 if (range_end == (u64)-1)
2139 break;
2140 range_start = range_end + 1;
2141 }
2142
2143next_type:
2144 ret = 0;
2145 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2146 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2147 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2148 btrfs_release_path(path);
e02119d5
CM
2149 goto again;
2150 }
2151out:
b3b4aa74 2152 btrfs_release_path(path);
e02119d5
CM
2153 btrfs_free_path(log_path);
2154 iput(dir);
2155 return ret;
2156}
2157
2158/*
2159 * the process_func used to replay items from the log tree. This
2160 * gets called in two different stages. The first stage just looks
2161 * for inodes and makes sure they are all copied into the subvolume.
2162 *
2163 * The second stage copies all the other item types from the log into
2164 * the subvolume. The two stage approach is slower, but gets rid of
2165 * lots of complexity around inodes referencing other inodes that exist
2166 * only in the log (references come from either directory items or inode
2167 * back refs).
2168 */
2169static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2170 struct walk_control *wc, u64 gen)
2171{
2172 int nritems;
2173 struct btrfs_path *path;
2174 struct btrfs_root *root = wc->replay_dest;
2175 struct btrfs_key key;
e02119d5
CM
2176 int level;
2177 int i;
2178 int ret;
2179
018642a1
TI
2180 ret = btrfs_read_buffer(eb, gen);
2181 if (ret)
2182 return ret;
e02119d5
CM
2183
2184 level = btrfs_header_level(eb);
2185
2186 if (level != 0)
2187 return 0;
2188
2189 path = btrfs_alloc_path();
1e5063d0
MF
2190 if (!path)
2191 return -ENOMEM;
e02119d5
CM
2192
2193 nritems = btrfs_header_nritems(eb);
2194 for (i = 0; i < nritems; i++) {
2195 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2196
2197 /* inode keys are done during the first stage */
2198 if (key.type == BTRFS_INODE_ITEM_KEY &&
2199 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2200 struct btrfs_inode_item *inode_item;
2201 u32 mode;
2202
2203 inode_item = btrfs_item_ptr(eb, i,
2204 struct btrfs_inode_item);
4f764e51
FM
2205 ret = replay_xattr_deletes(wc->trans, root, log,
2206 path, key.objectid);
2207 if (ret)
2208 break;
e02119d5
CM
2209 mode = btrfs_inode_mode(eb, inode_item);
2210 if (S_ISDIR(mode)) {
2211 ret = replay_dir_deletes(wc->trans,
12fcfd22 2212 root, log, path, key.objectid, 0);
b50c6e25
JB
2213 if (ret)
2214 break;
e02119d5
CM
2215 }
2216 ret = overwrite_item(wc->trans, root, path,
2217 eb, i, &key);
b50c6e25
JB
2218 if (ret)
2219 break;
e02119d5 2220
c71bf099
YZ
2221 /* for regular files, make sure corresponding
2222 * orhpan item exist. extents past the new EOF
2223 * will be truncated later by orphan cleanup.
e02119d5
CM
2224 */
2225 if (S_ISREG(mode)) {
c71bf099
YZ
2226 ret = insert_orphan_item(wc->trans, root,
2227 key.objectid);
b50c6e25
JB
2228 if (ret)
2229 break;
e02119d5 2230 }
c71bf099 2231
e02119d5
CM
2232 ret = link_to_fixup_dir(wc->trans, root,
2233 path, key.objectid);
b50c6e25
JB
2234 if (ret)
2235 break;
e02119d5 2236 }
dd8e7217
JB
2237
2238 if (key.type == BTRFS_DIR_INDEX_KEY &&
2239 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2240 ret = replay_one_dir_item(wc->trans, root, path,
2241 eb, i, &key);
2242 if (ret)
2243 break;
2244 }
2245
e02119d5
CM
2246 if (wc->stage < LOG_WALK_REPLAY_ALL)
2247 continue;
2248
2249 /* these keys are simply copied */
2250 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2251 ret = overwrite_item(wc->trans, root, path,
2252 eb, i, &key);
b50c6e25
JB
2253 if (ret)
2254 break;
2da1c669
LB
2255 } else if (key.type == BTRFS_INODE_REF_KEY ||
2256 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2257 ret = add_inode_ref(wc->trans, root, log, path,
2258 eb, i, &key);
b50c6e25
JB
2259 if (ret && ret != -ENOENT)
2260 break;
2261 ret = 0;
e02119d5
CM
2262 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2263 ret = replay_one_extent(wc->trans, root, path,
2264 eb, i, &key);
b50c6e25
JB
2265 if (ret)
2266 break;
dd8e7217 2267 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2268 ret = replay_one_dir_item(wc->trans, root, path,
2269 eb, i, &key);
b50c6e25
JB
2270 if (ret)
2271 break;
e02119d5
CM
2272 }
2273 }
2274 btrfs_free_path(path);
b50c6e25 2275 return ret;
e02119d5
CM
2276}
2277
d397712b 2278static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2279 struct btrfs_root *root,
2280 struct btrfs_path *path, int *level,
2281 struct walk_control *wc)
2282{
2283 u64 root_owner;
e02119d5
CM
2284 u64 bytenr;
2285 u64 ptr_gen;
2286 struct extent_buffer *next;
2287 struct extent_buffer *cur;
2288 struct extent_buffer *parent;
2289 u32 blocksize;
2290 int ret = 0;
2291
2292 WARN_ON(*level < 0);
2293 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2294
d397712b 2295 while (*level > 0) {
e02119d5
CM
2296 WARN_ON(*level < 0);
2297 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2298 cur = path->nodes[*level];
2299
fae7f21c 2300 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2301
2302 if (path->slots[*level] >=
2303 btrfs_header_nritems(cur))
2304 break;
2305
2306 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2307 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2308 blocksize = root->nodesize;
e02119d5
CM
2309
2310 parent = path->nodes[*level];
2311 root_owner = btrfs_header_owner(parent);
e02119d5 2312
a83fffb7 2313 next = btrfs_find_create_tree_block(root, bytenr);
2a29edc6 2314 if (!next)
2315 return -ENOMEM;
e02119d5 2316
e02119d5 2317 if (*level == 1) {
1e5063d0 2318 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2319 if (ret) {
2320 free_extent_buffer(next);
1e5063d0 2321 return ret;
b50c6e25 2322 }
4a500fd1 2323
e02119d5
CM
2324 path->slots[*level]++;
2325 if (wc->free) {
018642a1
TI
2326 ret = btrfs_read_buffer(next, ptr_gen);
2327 if (ret) {
2328 free_extent_buffer(next);
2329 return ret;
2330 }
e02119d5 2331
681ae509
JB
2332 if (trans) {
2333 btrfs_tree_lock(next);
2334 btrfs_set_lock_blocking(next);
01d58472
DD
2335 clean_tree_block(trans, root->fs_info,
2336 next);
681ae509
JB
2337 btrfs_wait_tree_block_writeback(next);
2338 btrfs_tree_unlock(next);
2339 }
e02119d5 2340
e02119d5
CM
2341 WARN_ON(root_owner !=
2342 BTRFS_TREE_LOG_OBJECTID);
e688b725 2343 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2344 bytenr, blocksize);
3650860b
JB
2345 if (ret) {
2346 free_extent_buffer(next);
2347 return ret;
2348 }
e02119d5
CM
2349 }
2350 free_extent_buffer(next);
2351 continue;
2352 }
018642a1
TI
2353 ret = btrfs_read_buffer(next, ptr_gen);
2354 if (ret) {
2355 free_extent_buffer(next);
2356 return ret;
2357 }
e02119d5
CM
2358
2359 WARN_ON(*level <= 0);
2360 if (path->nodes[*level-1])
2361 free_extent_buffer(path->nodes[*level-1]);
2362 path->nodes[*level-1] = next;
2363 *level = btrfs_header_level(next);
2364 path->slots[*level] = 0;
2365 cond_resched();
2366 }
2367 WARN_ON(*level < 0);
2368 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2369
4a500fd1 2370 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2371
2372 cond_resched();
2373 return 0;
2374}
2375
d397712b 2376static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2377 struct btrfs_root *root,
2378 struct btrfs_path *path, int *level,
2379 struct walk_control *wc)
2380{
2381 u64 root_owner;
e02119d5
CM
2382 int i;
2383 int slot;
2384 int ret;
2385
d397712b 2386 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2387 slot = path->slots[i];
4a500fd1 2388 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2389 path->slots[i]++;
2390 *level = i;
2391 WARN_ON(*level == 0);
2392 return 0;
2393 } else {
31840ae1
ZY
2394 struct extent_buffer *parent;
2395 if (path->nodes[*level] == root->node)
2396 parent = path->nodes[*level];
2397 else
2398 parent = path->nodes[*level + 1];
2399
2400 root_owner = btrfs_header_owner(parent);
1e5063d0 2401 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2402 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2403 if (ret)
2404 return ret;
2405
e02119d5
CM
2406 if (wc->free) {
2407 struct extent_buffer *next;
2408
2409 next = path->nodes[*level];
2410
681ae509
JB
2411 if (trans) {
2412 btrfs_tree_lock(next);
2413 btrfs_set_lock_blocking(next);
01d58472
DD
2414 clean_tree_block(trans, root->fs_info,
2415 next);
681ae509
JB
2416 btrfs_wait_tree_block_writeback(next);
2417 btrfs_tree_unlock(next);
2418 }
e02119d5 2419
e02119d5 2420 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2421 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2422 path->nodes[*level]->start,
d00aff00 2423 path->nodes[*level]->len);
3650860b
JB
2424 if (ret)
2425 return ret;
e02119d5
CM
2426 }
2427 free_extent_buffer(path->nodes[*level]);
2428 path->nodes[*level] = NULL;
2429 *level = i + 1;
2430 }
2431 }
2432 return 1;
2433}
2434
2435/*
2436 * drop the reference count on the tree rooted at 'snap'. This traverses
2437 * the tree freeing any blocks that have a ref count of zero after being
2438 * decremented.
2439 */
2440static int walk_log_tree(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *log, struct walk_control *wc)
2442{
2443 int ret = 0;
2444 int wret;
2445 int level;
2446 struct btrfs_path *path;
e02119d5
CM
2447 int orig_level;
2448
2449 path = btrfs_alloc_path();
db5b493a
TI
2450 if (!path)
2451 return -ENOMEM;
e02119d5
CM
2452
2453 level = btrfs_header_level(log->node);
2454 orig_level = level;
2455 path->nodes[level] = log->node;
2456 extent_buffer_get(log->node);
2457 path->slots[level] = 0;
2458
d397712b 2459 while (1) {
e02119d5
CM
2460 wret = walk_down_log_tree(trans, log, path, &level, wc);
2461 if (wret > 0)
2462 break;
79787eaa 2463 if (wret < 0) {
e02119d5 2464 ret = wret;
79787eaa
JM
2465 goto out;
2466 }
e02119d5
CM
2467
2468 wret = walk_up_log_tree(trans, log, path, &level, wc);
2469 if (wret > 0)
2470 break;
79787eaa 2471 if (wret < 0) {
e02119d5 2472 ret = wret;
79787eaa
JM
2473 goto out;
2474 }
e02119d5
CM
2475 }
2476
2477 /* was the root node processed? if not, catch it here */
2478 if (path->nodes[orig_level]) {
79787eaa 2479 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2480 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2481 if (ret)
2482 goto out;
e02119d5
CM
2483 if (wc->free) {
2484 struct extent_buffer *next;
2485
2486 next = path->nodes[orig_level];
2487
681ae509
JB
2488 if (trans) {
2489 btrfs_tree_lock(next);
2490 btrfs_set_lock_blocking(next);
01d58472 2491 clean_tree_block(trans, log->fs_info, next);
681ae509
JB
2492 btrfs_wait_tree_block_writeback(next);
2493 btrfs_tree_unlock(next);
2494 }
e02119d5 2495
e02119d5
CM
2496 WARN_ON(log->root_key.objectid !=
2497 BTRFS_TREE_LOG_OBJECTID);
e688b725 2498 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2499 next->len);
3650860b
JB
2500 if (ret)
2501 goto out;
e02119d5
CM
2502 }
2503 }
2504
79787eaa 2505out:
e02119d5 2506 btrfs_free_path(path);
e02119d5
CM
2507 return ret;
2508}
2509
7237f183
YZ
2510/*
2511 * helper function to update the item for a given subvolumes log root
2512 * in the tree of log roots
2513 */
2514static int update_log_root(struct btrfs_trans_handle *trans,
2515 struct btrfs_root *log)
2516{
2517 int ret;
2518
2519 if (log->log_transid == 1) {
2520 /* insert root item on the first sync */
2521 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2522 &log->root_key, &log->root_item);
2523 } else {
2524 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2525 &log->root_key, &log->root_item);
2526 }
2527 return ret;
2528}
2529
8b050d35
MX
2530static void wait_log_commit(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, int transid)
e02119d5
CM
2532{
2533 DEFINE_WAIT(wait);
7237f183 2534 int index = transid % 2;
e02119d5 2535
7237f183
YZ
2536 /*
2537 * we only allow two pending log transactions at a time,
2538 * so we know that if ours is more than 2 older than the
2539 * current transaction, we're done
2540 */
e02119d5 2541 do {
7237f183
YZ
2542 prepare_to_wait(&root->log_commit_wait[index],
2543 &wait, TASK_UNINTERRUPTIBLE);
2544 mutex_unlock(&root->log_mutex);
12fcfd22 2545
d1433deb 2546 if (root->log_transid_committed < transid &&
7237f183
YZ
2547 atomic_read(&root->log_commit[index]))
2548 schedule();
12fcfd22 2549
7237f183
YZ
2550 finish_wait(&root->log_commit_wait[index], &wait);
2551 mutex_lock(&root->log_mutex);
d1433deb 2552 } while (root->log_transid_committed < transid &&
7237f183 2553 atomic_read(&root->log_commit[index]));
7237f183
YZ
2554}
2555
143bede5
JM
2556static void wait_for_writer(struct btrfs_trans_handle *trans,
2557 struct btrfs_root *root)
7237f183
YZ
2558{
2559 DEFINE_WAIT(wait);
8b050d35
MX
2560
2561 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2562 prepare_to_wait(&root->log_writer_wait,
2563 &wait, TASK_UNINTERRUPTIBLE);
2564 mutex_unlock(&root->log_mutex);
8b050d35 2565 if (atomic_read(&root->log_writers))
e02119d5 2566 schedule();
7237f183 2567 finish_wait(&root->log_writer_wait, &wait);
575849ec 2568 mutex_lock(&root->log_mutex);
7237f183 2569 }
e02119d5
CM
2570}
2571
8b050d35
MX
2572static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2573 struct btrfs_log_ctx *ctx)
2574{
2575 if (!ctx)
2576 return;
2577
2578 mutex_lock(&root->log_mutex);
2579 list_del_init(&ctx->list);
2580 mutex_unlock(&root->log_mutex);
2581}
2582
2583/*
2584 * Invoked in log mutex context, or be sure there is no other task which
2585 * can access the list.
2586 */
2587static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2588 int index, int error)
2589{
2590 struct btrfs_log_ctx *ctx;
2591
2592 if (!error) {
2593 INIT_LIST_HEAD(&root->log_ctxs[index]);
2594 return;
2595 }
2596
2597 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2598 ctx->log_ret = error;
2599
2600 INIT_LIST_HEAD(&root->log_ctxs[index]);
2601}
2602
e02119d5
CM
2603/*
2604 * btrfs_sync_log does sends a given tree log down to the disk and
2605 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2606 * you know that any inodes previously logged are safely on disk only
2607 * if it returns 0.
2608 *
2609 * Any other return value means you need to call btrfs_commit_transaction.
2610 * Some of the edge cases for fsyncing directories that have had unlinks
2611 * or renames done in the past mean that sometimes the only safe
2612 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2613 * that has happened.
e02119d5
CM
2614 */
2615int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2616 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2617{
7237f183
YZ
2618 int index1;
2619 int index2;
8cef4e16 2620 int mark;
e02119d5 2621 int ret;
e02119d5 2622 struct btrfs_root *log = root->log_root;
7237f183 2623 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2624 int log_transid = 0;
8b050d35 2625 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2626 struct blk_plug plug;
e02119d5 2627
7237f183 2628 mutex_lock(&root->log_mutex);
d1433deb
MX
2629 log_transid = ctx->log_transid;
2630 if (root->log_transid_committed >= log_transid) {
2631 mutex_unlock(&root->log_mutex);
2632 return ctx->log_ret;
2633 }
2634
2635 index1 = log_transid % 2;
7237f183 2636 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2637 wait_log_commit(trans, root, log_transid);
7237f183 2638 mutex_unlock(&root->log_mutex);
8b050d35 2639 return ctx->log_ret;
e02119d5 2640 }
d1433deb 2641 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2642 atomic_set(&root->log_commit[index1], 1);
2643
2644 /* wait for previous tree log sync to complete */
2645 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2646 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2647
86df7eb9 2648 while (1) {
2ecb7923 2649 int batch = atomic_read(&root->log_batch);
cd354ad6 2650 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2651 if (!btrfs_test_opt(root, SSD) &&
2652 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2653 mutex_unlock(&root->log_mutex);
2654 schedule_timeout_uninterruptible(1);
2655 mutex_lock(&root->log_mutex);
2656 }
12fcfd22 2657 wait_for_writer(trans, root);
2ecb7923 2658 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2659 break;
2660 }
e02119d5 2661
12fcfd22 2662 /* bail out if we need to do a full commit */
995946dd 2663 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2664 ret = -EAGAIN;
2ab28f32 2665 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2666 mutex_unlock(&root->log_mutex);
2667 goto out;
2668 }
2669
8cef4e16
YZ
2670 if (log_transid % 2 == 0)
2671 mark = EXTENT_DIRTY;
2672 else
2673 mark = EXTENT_NEW;
2674
690587d1
CM
2675 /* we start IO on all the marked extents here, but we don't actually
2676 * wait for them until later.
2677 */
c6adc9cc 2678 blk_start_plug(&plug);
8cef4e16 2679 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2680 if (ret) {
c6adc9cc 2681 blk_finish_plug(&plug);
79787eaa 2682 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2683 btrfs_free_logged_extents(log, log_transid);
995946dd 2684 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2685 mutex_unlock(&root->log_mutex);
2686 goto out;
2687 }
7237f183 2688
5d4f98a2 2689 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2690
7237f183
YZ
2691 root->log_transid++;
2692 log->log_transid = root->log_transid;
ff782e0a 2693 root->log_start_pid = 0;
7237f183 2694 /*
8cef4e16
YZ
2695 * IO has been started, blocks of the log tree have WRITTEN flag set
2696 * in their headers. new modifications of the log will be written to
2697 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2698 */
2699 mutex_unlock(&root->log_mutex);
2700
d1433deb
MX
2701 btrfs_init_log_ctx(&root_log_ctx);
2702
7237f183 2703 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2704 atomic_inc(&log_root_tree->log_batch);
7237f183 2705 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2706
2707 index2 = log_root_tree->log_transid % 2;
2708 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2709 root_log_ctx.log_transid = log_root_tree->log_transid;
2710
7237f183
YZ
2711 mutex_unlock(&log_root_tree->log_mutex);
2712
2713 ret = update_log_root(trans, log);
7237f183
YZ
2714
2715 mutex_lock(&log_root_tree->log_mutex);
2716 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2717 smp_mb();
2718 if (waitqueue_active(&log_root_tree->log_writer_wait))
2719 wake_up(&log_root_tree->log_writer_wait);
2720 }
2721
4a500fd1 2722 if (ret) {
d1433deb
MX
2723 if (!list_empty(&root_log_ctx.list))
2724 list_del_init(&root_log_ctx.list);
2725
c6adc9cc 2726 blk_finish_plug(&plug);
995946dd
MX
2727 btrfs_set_log_full_commit(root->fs_info, trans);
2728
79787eaa
JM
2729 if (ret != -ENOSPC) {
2730 btrfs_abort_transaction(trans, root, ret);
2731 mutex_unlock(&log_root_tree->log_mutex);
2732 goto out;
2733 }
4a500fd1 2734 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2735 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2736 mutex_unlock(&log_root_tree->log_mutex);
2737 ret = -EAGAIN;
2738 goto out;
2739 }
2740
d1433deb 2741 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2742 blk_finish_plug(&plug);
d1433deb
MX
2743 mutex_unlock(&log_root_tree->log_mutex);
2744 ret = root_log_ctx.log_ret;
2745 goto out;
2746 }
8b050d35 2747
d1433deb 2748 index2 = root_log_ctx.log_transid % 2;
7237f183 2749 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2750 blk_finish_plug(&plug);
5ab5e44a
FM
2751 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2752 mark);
50d9aa99 2753 btrfs_wait_logged_extents(trans, log, log_transid);
8b050d35 2754 wait_log_commit(trans, log_root_tree,
d1433deb 2755 root_log_ctx.log_transid);
7237f183 2756 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2757 if (!ret)
2758 ret = root_log_ctx.log_ret;
7237f183
YZ
2759 goto out;
2760 }
d1433deb 2761 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2762 atomic_set(&log_root_tree->log_commit[index2], 1);
2763
12fcfd22
CM
2764 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2765 wait_log_commit(trans, log_root_tree,
d1433deb 2766 root_log_ctx.log_transid - 1);
12fcfd22
CM
2767 }
2768
2769 wait_for_writer(trans, log_root_tree);
7237f183 2770
12fcfd22
CM
2771 /*
2772 * now that we've moved on to the tree of log tree roots,
2773 * check the full commit flag again
2774 */
995946dd 2775 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2776 blk_finish_plug(&plug);
8cef4e16 2777 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2778 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2779 mutex_unlock(&log_root_tree->log_mutex);
2780 ret = -EAGAIN;
2781 goto out_wake_log_root;
2782 }
7237f183 2783
c6adc9cc
MX
2784 ret = btrfs_write_marked_extents(log_root_tree,
2785 &log_root_tree->dirty_log_pages,
2786 EXTENT_DIRTY | EXTENT_NEW);
2787 blk_finish_plug(&plug);
79787eaa 2788 if (ret) {
995946dd 2789 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2790 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2791 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2792 mutex_unlock(&log_root_tree->log_mutex);
2793 goto out_wake_log_root;
2794 }
5ab5e44a
FM
2795 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2796 if (!ret)
2797 ret = btrfs_wait_marked_extents(log_root_tree,
2798 &log_root_tree->dirty_log_pages,
2799 EXTENT_NEW | EXTENT_DIRTY);
2800 if (ret) {
2801 btrfs_set_log_full_commit(root->fs_info, trans);
2802 btrfs_free_logged_extents(log, log_transid);
2803 mutex_unlock(&log_root_tree->log_mutex);
2804 goto out_wake_log_root;
2805 }
50d9aa99 2806 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2807
6c41761f 2808 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2809 log_root_tree->node->start);
6c41761f 2810 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2811 btrfs_header_level(log_root_tree->node));
e02119d5 2812
7237f183 2813 log_root_tree->log_transid++;
7237f183
YZ
2814 mutex_unlock(&log_root_tree->log_mutex);
2815
2816 /*
2817 * nobody else is going to jump in and write the the ctree
2818 * super here because the log_commit atomic below is protecting
2819 * us. We must be called with a transaction handle pinning
2820 * the running transaction open, so a full commit can't hop
2821 * in and cause problems either.
2822 */
5af3e8cc 2823 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2824 if (ret) {
995946dd 2825 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2826 btrfs_abort_transaction(trans, root, ret);
2827 goto out_wake_log_root;
2828 }
7237f183 2829
257c62e1
CM
2830 mutex_lock(&root->log_mutex);
2831 if (root->last_log_commit < log_transid)
2832 root->last_log_commit = log_transid;
2833 mutex_unlock(&root->log_mutex);
2834
12fcfd22 2835out_wake_log_root:
8b050d35
MX
2836 /*
2837 * We needn't get log_mutex here because we are sure all
2838 * the other tasks are blocked.
2839 */
2840 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2841
d1433deb
MX
2842 mutex_lock(&log_root_tree->log_mutex);
2843 log_root_tree->log_transid_committed++;
7237f183 2844 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2845 mutex_unlock(&log_root_tree->log_mutex);
2846
7237f183
YZ
2847 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2848 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2849out:
8b050d35
MX
2850 /* See above. */
2851 btrfs_remove_all_log_ctxs(root, index1, ret);
2852
d1433deb
MX
2853 mutex_lock(&root->log_mutex);
2854 root->log_transid_committed++;
7237f183 2855 atomic_set(&root->log_commit[index1], 0);
d1433deb 2856 mutex_unlock(&root->log_mutex);
8b050d35 2857
7237f183
YZ
2858 if (waitqueue_active(&root->log_commit_wait[index1]))
2859 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2860 return ret;
e02119d5
CM
2861}
2862
4a500fd1
YZ
2863static void free_log_tree(struct btrfs_trans_handle *trans,
2864 struct btrfs_root *log)
e02119d5
CM
2865{
2866 int ret;
d0c803c4
CM
2867 u64 start;
2868 u64 end;
e02119d5
CM
2869 struct walk_control wc = {
2870 .free = 1,
2871 .process_func = process_one_buffer
2872 };
2873
681ae509
JB
2874 ret = walk_log_tree(trans, log, &wc);
2875 /* I don't think this can happen but just in case */
2876 if (ret)
2877 btrfs_abort_transaction(trans, log, ret);
e02119d5 2878
d397712b 2879 while (1) {
d0c803c4 2880 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2881 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2882 NULL);
d0c803c4
CM
2883 if (ret)
2884 break;
2885
8cef4e16
YZ
2886 clear_extent_bits(&log->dirty_log_pages, start, end,
2887 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2888 }
2889
2ab28f32
JB
2890 /*
2891 * We may have short-circuited the log tree with the full commit logic
2892 * and left ordered extents on our list, so clear these out to keep us
2893 * from leaking inodes and memory.
2894 */
2895 btrfs_free_logged_extents(log, 0);
2896 btrfs_free_logged_extents(log, 1);
2897
7237f183
YZ
2898 free_extent_buffer(log->node);
2899 kfree(log);
4a500fd1
YZ
2900}
2901
2902/*
2903 * free all the extents used by the tree log. This should be called
2904 * at commit time of the full transaction
2905 */
2906int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2907{
2908 if (root->log_root) {
2909 free_log_tree(trans, root->log_root);
2910 root->log_root = NULL;
2911 }
2912 return 0;
2913}
2914
2915int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2916 struct btrfs_fs_info *fs_info)
2917{
2918 if (fs_info->log_root_tree) {
2919 free_log_tree(trans, fs_info->log_root_tree);
2920 fs_info->log_root_tree = NULL;
2921 }
e02119d5
CM
2922 return 0;
2923}
2924
e02119d5
CM
2925/*
2926 * If both a file and directory are logged, and unlinks or renames are
2927 * mixed in, we have a few interesting corners:
2928 *
2929 * create file X in dir Y
2930 * link file X to X.link in dir Y
2931 * fsync file X
2932 * unlink file X but leave X.link
2933 * fsync dir Y
2934 *
2935 * After a crash we would expect only X.link to exist. But file X
2936 * didn't get fsync'd again so the log has back refs for X and X.link.
2937 *
2938 * We solve this by removing directory entries and inode backrefs from the
2939 * log when a file that was logged in the current transaction is
2940 * unlinked. Any later fsync will include the updated log entries, and
2941 * we'll be able to reconstruct the proper directory items from backrefs.
2942 *
2943 * This optimizations allows us to avoid relogging the entire inode
2944 * or the entire directory.
2945 */
2946int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2947 struct btrfs_root *root,
2948 const char *name, int name_len,
2949 struct inode *dir, u64 index)
2950{
2951 struct btrfs_root *log;
2952 struct btrfs_dir_item *di;
2953 struct btrfs_path *path;
2954 int ret;
4a500fd1 2955 int err = 0;
e02119d5 2956 int bytes_del = 0;
33345d01 2957 u64 dir_ino = btrfs_ino(dir);
e02119d5 2958
3a5f1d45
CM
2959 if (BTRFS_I(dir)->logged_trans < trans->transid)
2960 return 0;
2961
e02119d5
CM
2962 ret = join_running_log_trans(root);
2963 if (ret)
2964 return 0;
2965
2966 mutex_lock(&BTRFS_I(dir)->log_mutex);
2967
2968 log = root->log_root;
2969 path = btrfs_alloc_path();
a62f44a5
TI
2970 if (!path) {
2971 err = -ENOMEM;
2972 goto out_unlock;
2973 }
2a29edc6 2974
33345d01 2975 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2976 name, name_len, -1);
4a500fd1
YZ
2977 if (IS_ERR(di)) {
2978 err = PTR_ERR(di);
2979 goto fail;
2980 }
2981 if (di) {
e02119d5
CM
2982 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2983 bytes_del += name_len;
3650860b
JB
2984 if (ret) {
2985 err = ret;
2986 goto fail;
2987 }
e02119d5 2988 }
b3b4aa74 2989 btrfs_release_path(path);
33345d01 2990 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2991 index, name, name_len, -1);
4a500fd1
YZ
2992 if (IS_ERR(di)) {
2993 err = PTR_ERR(di);
2994 goto fail;
2995 }
2996 if (di) {
e02119d5
CM
2997 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2998 bytes_del += name_len;
3650860b
JB
2999 if (ret) {
3000 err = ret;
3001 goto fail;
3002 }
e02119d5
CM
3003 }
3004
3005 /* update the directory size in the log to reflect the names
3006 * we have removed
3007 */
3008 if (bytes_del) {
3009 struct btrfs_key key;
3010
33345d01 3011 key.objectid = dir_ino;
e02119d5
CM
3012 key.offset = 0;
3013 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3014 btrfs_release_path(path);
e02119d5
CM
3015
3016 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3017 if (ret < 0) {
3018 err = ret;
3019 goto fail;
3020 }
e02119d5
CM
3021 if (ret == 0) {
3022 struct btrfs_inode_item *item;
3023 u64 i_size;
3024
3025 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3026 struct btrfs_inode_item);
3027 i_size = btrfs_inode_size(path->nodes[0], item);
3028 if (i_size > bytes_del)
3029 i_size -= bytes_del;
3030 else
3031 i_size = 0;
3032 btrfs_set_inode_size(path->nodes[0], item, i_size);
3033 btrfs_mark_buffer_dirty(path->nodes[0]);
3034 } else
3035 ret = 0;
b3b4aa74 3036 btrfs_release_path(path);
e02119d5 3037 }
4a500fd1 3038fail:
e02119d5 3039 btrfs_free_path(path);
a62f44a5 3040out_unlock:
e02119d5 3041 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 3042 if (ret == -ENOSPC) {
995946dd 3043 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3044 ret = 0;
79787eaa
JM
3045 } else if (ret < 0)
3046 btrfs_abort_transaction(trans, root, ret);
3047
12fcfd22 3048 btrfs_end_log_trans(root);
e02119d5 3049
411fc6bc 3050 return err;
e02119d5
CM
3051}
3052
3053/* see comments for btrfs_del_dir_entries_in_log */
3054int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3055 struct btrfs_root *root,
3056 const char *name, int name_len,
3057 struct inode *inode, u64 dirid)
3058{
3059 struct btrfs_root *log;
3060 u64 index;
3061 int ret;
3062
3a5f1d45
CM
3063 if (BTRFS_I(inode)->logged_trans < trans->transid)
3064 return 0;
3065
e02119d5
CM
3066 ret = join_running_log_trans(root);
3067 if (ret)
3068 return 0;
3069 log = root->log_root;
3070 mutex_lock(&BTRFS_I(inode)->log_mutex);
3071
33345d01 3072 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
3073 dirid, &index);
3074 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 3075 if (ret == -ENOSPC) {
995946dd 3076 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3077 ret = 0;
79787eaa
JM
3078 } else if (ret < 0 && ret != -ENOENT)
3079 btrfs_abort_transaction(trans, root, ret);
12fcfd22 3080 btrfs_end_log_trans(root);
e02119d5 3081
e02119d5
CM
3082 return ret;
3083}
3084
3085/*
3086 * creates a range item in the log for 'dirid'. first_offset and
3087 * last_offset tell us which parts of the key space the log should
3088 * be considered authoritative for.
3089 */
3090static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3091 struct btrfs_root *log,
3092 struct btrfs_path *path,
3093 int key_type, u64 dirid,
3094 u64 first_offset, u64 last_offset)
3095{
3096 int ret;
3097 struct btrfs_key key;
3098 struct btrfs_dir_log_item *item;
3099
3100 key.objectid = dirid;
3101 key.offset = first_offset;
3102 if (key_type == BTRFS_DIR_ITEM_KEY)
3103 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3104 else
3105 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3106 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3107 if (ret)
3108 return ret;
e02119d5
CM
3109
3110 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3111 struct btrfs_dir_log_item);
3112 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3113 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3114 btrfs_release_path(path);
e02119d5
CM
3115 return 0;
3116}
3117
3118/*
3119 * log all the items included in the current transaction for a given
3120 * directory. This also creates the range items in the log tree required
3121 * to replay anything deleted before the fsync
3122 */
3123static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3124 struct btrfs_root *root, struct inode *inode,
3125 struct btrfs_path *path,
3126 struct btrfs_path *dst_path, int key_type,
3127 u64 min_offset, u64 *last_offset_ret)
3128{
3129 struct btrfs_key min_key;
e02119d5
CM
3130 struct btrfs_root *log = root->log_root;
3131 struct extent_buffer *src;
4a500fd1 3132 int err = 0;
e02119d5
CM
3133 int ret;
3134 int i;
3135 int nritems;
3136 u64 first_offset = min_offset;
3137 u64 last_offset = (u64)-1;
33345d01 3138 u64 ino = btrfs_ino(inode);
e02119d5
CM
3139
3140 log = root->log_root;
e02119d5 3141
33345d01 3142 min_key.objectid = ino;
e02119d5
CM
3143 min_key.type = key_type;
3144 min_key.offset = min_offset;
3145
6174d3cb 3146 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3147
3148 /*
3149 * we didn't find anything from this transaction, see if there
3150 * is anything at all
3151 */
33345d01
LZ
3152 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3153 min_key.objectid = ino;
e02119d5
CM
3154 min_key.type = key_type;
3155 min_key.offset = (u64)-1;
b3b4aa74 3156 btrfs_release_path(path);
e02119d5
CM
3157 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3158 if (ret < 0) {
b3b4aa74 3159 btrfs_release_path(path);
e02119d5
CM
3160 return ret;
3161 }
33345d01 3162 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3163
3164 /* if ret == 0 there are items for this type,
3165 * create a range to tell us the last key of this type.
3166 * otherwise, there are no items in this directory after
3167 * *min_offset, and we create a range to indicate that.
3168 */
3169 if (ret == 0) {
3170 struct btrfs_key tmp;
3171 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3172 path->slots[0]);
d397712b 3173 if (key_type == tmp.type)
e02119d5 3174 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3175 }
3176 goto done;
3177 }
3178
3179 /* go backward to find any previous key */
33345d01 3180 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3181 if (ret == 0) {
3182 struct btrfs_key tmp;
3183 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3184 if (key_type == tmp.type) {
3185 first_offset = tmp.offset;
3186 ret = overwrite_item(trans, log, dst_path,
3187 path->nodes[0], path->slots[0],
3188 &tmp);
4a500fd1
YZ
3189 if (ret) {
3190 err = ret;
3191 goto done;
3192 }
e02119d5
CM
3193 }
3194 }
b3b4aa74 3195 btrfs_release_path(path);
e02119d5
CM
3196
3197 /* find the first key from this transaction again */
3198 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3199 if (WARN_ON(ret != 0))
e02119d5 3200 goto done;
e02119d5
CM
3201
3202 /*
3203 * we have a block from this transaction, log every item in it
3204 * from our directory
3205 */
d397712b 3206 while (1) {
e02119d5
CM
3207 struct btrfs_key tmp;
3208 src = path->nodes[0];
3209 nritems = btrfs_header_nritems(src);
3210 for (i = path->slots[0]; i < nritems; i++) {
3211 btrfs_item_key_to_cpu(src, &min_key, i);
3212
33345d01 3213 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3214 goto done;
3215 ret = overwrite_item(trans, log, dst_path, src, i,
3216 &min_key);
4a500fd1
YZ
3217 if (ret) {
3218 err = ret;
3219 goto done;
3220 }
e02119d5
CM
3221 }
3222 path->slots[0] = nritems;
3223
3224 /*
3225 * look ahead to the next item and see if it is also
3226 * from this directory and from this transaction
3227 */
3228 ret = btrfs_next_leaf(root, path);
3229 if (ret == 1) {
3230 last_offset = (u64)-1;
3231 goto done;
3232 }
3233 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3234 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3235 last_offset = (u64)-1;
3236 goto done;
3237 }
3238 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3239 ret = overwrite_item(trans, log, dst_path,
3240 path->nodes[0], path->slots[0],
3241 &tmp);
4a500fd1
YZ
3242 if (ret)
3243 err = ret;
3244 else
3245 last_offset = tmp.offset;
e02119d5
CM
3246 goto done;
3247 }
3248 }
3249done:
b3b4aa74
DS
3250 btrfs_release_path(path);
3251 btrfs_release_path(dst_path);
e02119d5 3252
4a500fd1
YZ
3253 if (err == 0) {
3254 *last_offset_ret = last_offset;
3255 /*
3256 * insert the log range keys to indicate where the log
3257 * is valid
3258 */
3259 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3260 ino, first_offset, last_offset);
4a500fd1
YZ
3261 if (ret)
3262 err = ret;
3263 }
3264 return err;
e02119d5
CM
3265}
3266
3267/*
3268 * logging directories is very similar to logging inodes, We find all the items
3269 * from the current transaction and write them to the log.
3270 *
3271 * The recovery code scans the directory in the subvolume, and if it finds a
3272 * key in the range logged that is not present in the log tree, then it means
3273 * that dir entry was unlinked during the transaction.
3274 *
3275 * In order for that scan to work, we must include one key smaller than
3276 * the smallest logged by this transaction and one key larger than the largest
3277 * key logged by this transaction.
3278 */
3279static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *root, struct inode *inode,
3281 struct btrfs_path *path,
3282 struct btrfs_path *dst_path)
3283{
3284 u64 min_key;
3285 u64 max_key;
3286 int ret;
3287 int key_type = BTRFS_DIR_ITEM_KEY;
3288
3289again:
3290 min_key = 0;
3291 max_key = 0;
d397712b 3292 while (1) {
e02119d5
CM
3293 ret = log_dir_items(trans, root, inode, path,
3294 dst_path, key_type, min_key,
3295 &max_key);
4a500fd1
YZ
3296 if (ret)
3297 return ret;
e02119d5
CM
3298 if (max_key == (u64)-1)
3299 break;
3300 min_key = max_key + 1;
3301 }
3302
3303 if (key_type == BTRFS_DIR_ITEM_KEY) {
3304 key_type = BTRFS_DIR_INDEX_KEY;
3305 goto again;
3306 }
3307 return 0;
3308}
3309
3310/*
3311 * a helper function to drop items from the log before we relog an
3312 * inode. max_key_type indicates the highest item type to remove.
3313 * This cannot be run for file data extents because it does not
3314 * free the extents they point to.
3315 */
3316static int drop_objectid_items(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *log,
3318 struct btrfs_path *path,
3319 u64 objectid, int max_key_type)
3320{
3321 int ret;
3322 struct btrfs_key key;
3323 struct btrfs_key found_key;
18ec90d6 3324 int start_slot;
e02119d5
CM
3325
3326 key.objectid = objectid;
3327 key.type = max_key_type;
3328 key.offset = (u64)-1;
3329
d397712b 3330 while (1) {
e02119d5 3331 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3332 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3333 if (ret < 0)
e02119d5
CM
3334 break;
3335
3336 if (path->slots[0] == 0)
3337 break;
3338
3339 path->slots[0]--;
3340 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3341 path->slots[0]);
3342
3343 if (found_key.objectid != objectid)
3344 break;
3345
18ec90d6
JB
3346 found_key.offset = 0;
3347 found_key.type = 0;
3348 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3349 &start_slot);
3350
3351 ret = btrfs_del_items(trans, log, path, start_slot,
3352 path->slots[0] - start_slot + 1);
3353 /*
3354 * If start slot isn't 0 then we don't need to re-search, we've
3355 * found the last guy with the objectid in this tree.
3356 */
3357 if (ret || start_slot != 0)
65a246c5 3358 break;
b3b4aa74 3359 btrfs_release_path(path);
e02119d5 3360 }
b3b4aa74 3361 btrfs_release_path(path);
5bdbeb21
JB
3362 if (ret > 0)
3363 ret = 0;
4a500fd1 3364 return ret;
e02119d5
CM
3365}
3366
94edf4ae
JB
3367static void fill_inode_item(struct btrfs_trans_handle *trans,
3368 struct extent_buffer *leaf,
3369 struct btrfs_inode_item *item,
1a4bcf47
FM
3370 struct inode *inode, int log_inode_only,
3371 u64 logged_isize)
94edf4ae 3372{
0b1c6cca
JB
3373 struct btrfs_map_token token;
3374
3375 btrfs_init_map_token(&token);
94edf4ae
JB
3376
3377 if (log_inode_only) {
3378 /* set the generation to zero so the recover code
3379 * can tell the difference between an logging
3380 * just to say 'this inode exists' and a logging
3381 * to say 'update this inode with these values'
3382 */
0b1c6cca 3383 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3384 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3385 } else {
0b1c6cca
JB
3386 btrfs_set_token_inode_generation(leaf, item,
3387 BTRFS_I(inode)->generation,
3388 &token);
3389 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3390 }
3391
3392 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3393 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3394 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3395 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3396
a937b979 3397 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3398 inode->i_atime.tv_sec, &token);
a937b979 3399 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3400 inode->i_atime.tv_nsec, &token);
3401
a937b979 3402 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3403 inode->i_mtime.tv_sec, &token);
a937b979 3404 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3405 inode->i_mtime.tv_nsec, &token);
3406
a937b979 3407 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3408 inode->i_ctime.tv_sec, &token);
a937b979 3409 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3410 inode->i_ctime.tv_nsec, &token);
3411
3412 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3413 &token);
3414
3415 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3416 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3417 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3418 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3419 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3420}
3421
a95249b3
JB
3422static int log_inode_item(struct btrfs_trans_handle *trans,
3423 struct btrfs_root *log, struct btrfs_path *path,
3424 struct inode *inode)
3425{
3426 struct btrfs_inode_item *inode_item;
a95249b3
JB
3427 int ret;
3428
efd0c405
FDBM
3429 ret = btrfs_insert_empty_item(trans, log, path,
3430 &BTRFS_I(inode)->location,
a95249b3
JB
3431 sizeof(*inode_item));
3432 if (ret && ret != -EEXIST)
3433 return ret;
3434 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3435 struct btrfs_inode_item);
1a4bcf47 3436 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3437 btrfs_release_path(path);
3438 return 0;
3439}
3440
31ff1cd2 3441static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3442 struct inode *inode,
31ff1cd2 3443 struct btrfs_path *dst_path,
16e7549f 3444 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3445 int start_slot, int nr, int inode_only,
3446 u64 logged_isize)
31ff1cd2
CM
3447{
3448 unsigned long src_offset;
3449 unsigned long dst_offset;
d2794405 3450 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3451 struct btrfs_file_extent_item *extent;
3452 struct btrfs_inode_item *inode_item;
16e7549f
JB
3453 struct extent_buffer *src = src_path->nodes[0];
3454 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3455 int ret;
3456 struct btrfs_key *ins_keys;
3457 u32 *ins_sizes;
3458 char *ins_data;
3459 int i;
d20f7043 3460 struct list_head ordered_sums;
d2794405 3461 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3462 bool has_extents = false;
74121f7c 3463 bool need_find_last_extent = true;
16e7549f 3464 bool done = false;
d20f7043
CM
3465
3466 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3467
3468 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3469 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3470 if (!ins_data)
3471 return -ENOMEM;
3472
16e7549f
JB
3473 first_key.objectid = (u64)-1;
3474
31ff1cd2
CM
3475 ins_sizes = (u32 *)ins_data;
3476 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3477
3478 for (i = 0; i < nr; i++) {
3479 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3480 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3481 }
3482 ret = btrfs_insert_empty_items(trans, log, dst_path,
3483 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3484 if (ret) {
3485 kfree(ins_data);
3486 return ret;
3487 }
31ff1cd2 3488
5d4f98a2 3489 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3490 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3491 dst_path->slots[0]);
3492
3493 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3494
16e7549f
JB
3495 if ((i == (nr - 1)))
3496 last_key = ins_keys[i];
3497
94edf4ae 3498 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3499 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3500 dst_path->slots[0],
3501 struct btrfs_inode_item);
94edf4ae 3502 fill_inode_item(trans, dst_path->nodes[0], inode_item,
1a4bcf47
FM
3503 inode, inode_only == LOG_INODE_EXISTS,
3504 logged_isize);
94edf4ae
JB
3505 } else {
3506 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3507 src_offset, ins_sizes[i]);
31ff1cd2 3508 }
94edf4ae 3509
16e7549f
JB
3510 /*
3511 * We set need_find_last_extent here in case we know we were
3512 * processing other items and then walk into the first extent in
3513 * the inode. If we don't hit an extent then nothing changes,
3514 * we'll do the last search the next time around.
3515 */
3516 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3517 has_extents = true;
74121f7c 3518 if (first_key.objectid == (u64)-1)
16e7549f
JB
3519 first_key = ins_keys[i];
3520 } else {
3521 need_find_last_extent = false;
3522 }
3523
31ff1cd2
CM
3524 /* take a reference on file data extents so that truncates
3525 * or deletes of this inode don't have to relog the inode
3526 * again
3527 */
962a298f 3528 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3529 !skip_csum) {
31ff1cd2
CM
3530 int found_type;
3531 extent = btrfs_item_ptr(src, start_slot + i,
3532 struct btrfs_file_extent_item);
3533
8e531cdf 3534 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3535 continue;
3536
31ff1cd2 3537 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3538 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3539 u64 ds, dl, cs, cl;
3540 ds = btrfs_file_extent_disk_bytenr(src,
3541 extent);
3542 /* ds == 0 is a hole */
3543 if (ds == 0)
3544 continue;
3545
3546 dl = btrfs_file_extent_disk_num_bytes(src,
3547 extent);
3548 cs = btrfs_file_extent_offset(src, extent);
3549 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3550 extent);
580afd76
CM
3551 if (btrfs_file_extent_compression(src,
3552 extent)) {
3553 cs = 0;
3554 cl = dl;
3555 }
5d4f98a2
YZ
3556
3557 ret = btrfs_lookup_csums_range(
3558 log->fs_info->csum_root,
3559 ds + cs, ds + cs + cl - 1,
a2de733c 3560 &ordered_sums, 0);
3650860b
JB
3561 if (ret) {
3562 btrfs_release_path(dst_path);
3563 kfree(ins_data);
3564 return ret;
3565 }
31ff1cd2
CM
3566 }
3567 }
31ff1cd2
CM
3568 }
3569
3570 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3571 btrfs_release_path(dst_path);
31ff1cd2 3572 kfree(ins_data);
d20f7043
CM
3573
3574 /*
3575 * we have to do this after the loop above to avoid changing the
3576 * log tree while trying to change the log tree.
3577 */
4a500fd1 3578 ret = 0;
d397712b 3579 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3580 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3581 struct btrfs_ordered_sum,
3582 list);
4a500fd1
YZ
3583 if (!ret)
3584 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3585 list_del(&sums->list);
3586 kfree(sums);
3587 }
16e7549f
JB
3588
3589 if (!has_extents)
3590 return ret;
3591
74121f7c
FM
3592 if (need_find_last_extent && *last_extent == first_key.offset) {
3593 /*
3594 * We don't have any leafs between our current one and the one
3595 * we processed before that can have file extent items for our
3596 * inode (and have a generation number smaller than our current
3597 * transaction id).
3598 */
3599 need_find_last_extent = false;
3600 }
3601
16e7549f
JB
3602 /*
3603 * Because we use btrfs_search_forward we could skip leaves that were
3604 * not modified and then assume *last_extent is valid when it really
3605 * isn't. So back up to the previous leaf and read the end of the last
3606 * extent before we go and fill in holes.
3607 */
3608 if (need_find_last_extent) {
3609 u64 len;
3610
3611 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3612 if (ret < 0)
3613 return ret;
3614 if (ret)
3615 goto fill_holes;
3616 if (src_path->slots[0])
3617 src_path->slots[0]--;
3618 src = src_path->nodes[0];
3619 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3620 if (key.objectid != btrfs_ino(inode) ||
3621 key.type != BTRFS_EXTENT_DATA_KEY)
3622 goto fill_holes;
3623 extent = btrfs_item_ptr(src, src_path->slots[0],
3624 struct btrfs_file_extent_item);
3625 if (btrfs_file_extent_type(src, extent) ==
3626 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3627 len = btrfs_file_extent_inline_len(src,
3628 src_path->slots[0],
3629 extent);
16e7549f
JB
3630 *last_extent = ALIGN(key.offset + len,
3631 log->sectorsize);
3632 } else {
3633 len = btrfs_file_extent_num_bytes(src, extent);
3634 *last_extent = key.offset + len;
3635 }
3636 }
3637fill_holes:
3638 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3639 * things could have happened
3640 *
3641 * 1) A merge could have happened, so we could currently be on a leaf
3642 * that holds what we were copying in the first place.
3643 * 2) A split could have happened, and now not all of the items we want
3644 * are on the same leaf.
3645 *
3646 * So we need to adjust how we search for holes, we need to drop the
3647 * path and re-search for the first extent key we found, and then walk
3648 * forward until we hit the last one we copied.
3649 */
3650 if (need_find_last_extent) {
3651 /* btrfs_prev_leaf could return 1 without releasing the path */
3652 btrfs_release_path(src_path);
3653 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3654 src_path, 0, 0);
3655 if (ret < 0)
3656 return ret;
3657 ASSERT(ret == 0);
3658 src = src_path->nodes[0];
3659 i = src_path->slots[0];
3660 } else {
3661 i = start_slot;
3662 }
3663
3664 /*
3665 * Ok so here we need to go through and fill in any holes we may have
3666 * to make sure that holes are punched for those areas in case they had
3667 * extents previously.
3668 */
3669 while (!done) {
3670 u64 offset, len;
3671 u64 extent_end;
3672
3673 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3674 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3675 if (ret < 0)
3676 return ret;
3677 ASSERT(ret == 0);
3678 src = src_path->nodes[0];
3679 i = 0;
3680 }
3681
3682 btrfs_item_key_to_cpu(src, &key, i);
3683 if (!btrfs_comp_cpu_keys(&key, &last_key))
3684 done = true;
3685 if (key.objectid != btrfs_ino(inode) ||
3686 key.type != BTRFS_EXTENT_DATA_KEY) {
3687 i++;
3688 continue;
3689 }
3690 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3691 if (btrfs_file_extent_type(src, extent) ==
3692 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3693 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3694 extent_end = ALIGN(key.offset + len, log->sectorsize);
3695 } else {
3696 len = btrfs_file_extent_num_bytes(src, extent);
3697 extent_end = key.offset + len;
3698 }
3699 i++;
3700
3701 if (*last_extent == key.offset) {
3702 *last_extent = extent_end;
3703 continue;
3704 }
3705 offset = *last_extent;
3706 len = key.offset - *last_extent;
3707 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3708 offset, 0, 0, len, 0, len, 0,
3709 0, 0);
3710 if (ret)
3711 break;
74121f7c 3712 *last_extent = extent_end;
16e7549f
JB
3713 }
3714 /*
3715 * Need to let the callers know we dropped the path so they should
3716 * re-search.
3717 */
3718 if (!ret && need_find_last_extent)
3719 ret = 1;
4a500fd1 3720 return ret;
31ff1cd2
CM
3721}
3722
5dc562c5
JB
3723static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3724{
3725 struct extent_map *em1, *em2;
3726
3727 em1 = list_entry(a, struct extent_map, list);
3728 em2 = list_entry(b, struct extent_map, list);
3729
3730 if (em1->start < em2->start)
3731 return -1;
3732 else if (em1->start > em2->start)
3733 return 1;
3734 return 0;
3735}
3736
8407f553
FM
3737static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3738 struct inode *inode,
3739 struct btrfs_root *root,
3740 const struct extent_map *em,
3741 const struct list_head *logged_list,
3742 bool *ordered_io_error)
5dc562c5 3743{
2ab28f32 3744 struct btrfs_ordered_extent *ordered;
8407f553 3745 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3746 u64 mod_start = em->mod_start;
3747 u64 mod_len = em->mod_len;
8407f553 3748 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3749 u64 csum_offset;
3750 u64 csum_len;
8407f553
FM
3751 LIST_HEAD(ordered_sums);
3752 int ret = 0;
0aa4a17d 3753
8407f553 3754 *ordered_io_error = false;
0aa4a17d 3755
8407f553
FM
3756 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3757 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3758 return 0;
5dc562c5 3759
2ab28f32 3760 /*
8407f553
FM
3761 * Wait far any ordered extent that covers our extent map. If it
3762 * finishes without an error, first check and see if our csums are on
3763 * our outstanding ordered extents.
2ab28f32 3764 */
827463c4 3765 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3766 struct btrfs_ordered_sum *sum;
3767
3768 if (!mod_len)
3769 break;
3770
2ab28f32
JB
3771 if (ordered->file_offset + ordered->len <= mod_start ||
3772 mod_start + mod_len <= ordered->file_offset)
3773 continue;
3774
8407f553
FM
3775 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3776 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3777 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3778 const u64 start = ordered->file_offset;
3779 const u64 end = ordered->file_offset + ordered->len - 1;
3780
3781 WARN_ON(ordered->inode != inode);
3782 filemap_fdatawrite_range(inode->i_mapping, start, end);
3783 }
3784
3785 wait_event(ordered->wait,
3786 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3787 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3788
3789 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3790 /*
3791 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3792 * i_mapping flags, so that the next fsync won't get
3793 * an outdated io error too.
3794 */
3795 btrfs_inode_check_errors(inode);
8407f553
FM
3796 *ordered_io_error = true;
3797 break;
3798 }
2ab28f32
JB
3799 /*
3800 * We are going to copy all the csums on this ordered extent, so
3801 * go ahead and adjust mod_start and mod_len in case this
3802 * ordered extent has already been logged.
3803 */
3804 if (ordered->file_offset > mod_start) {
3805 if (ordered->file_offset + ordered->len >=
3806 mod_start + mod_len)
3807 mod_len = ordered->file_offset - mod_start;
3808 /*
3809 * If we have this case
3810 *
3811 * |--------- logged extent ---------|
3812 * |----- ordered extent ----|
3813 *
3814 * Just don't mess with mod_start and mod_len, we'll
3815 * just end up logging more csums than we need and it
3816 * will be ok.
3817 */
3818 } else {
3819 if (ordered->file_offset + ordered->len <
3820 mod_start + mod_len) {
3821 mod_len = (mod_start + mod_len) -
3822 (ordered->file_offset + ordered->len);
3823 mod_start = ordered->file_offset +
3824 ordered->len;
3825 } else {
3826 mod_len = 0;
3827 }
3828 }
3829
8407f553
FM
3830 if (skip_csum)
3831 continue;
3832
2ab28f32
JB
3833 /*
3834 * To keep us from looping for the above case of an ordered
3835 * extent that falls inside of the logged extent.
3836 */
3837 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3838 &ordered->flags))
3839 continue;
2ab28f32 3840
23c671a5
MX
3841 if (ordered->csum_bytes_left) {
3842 btrfs_start_ordered_extent(inode, ordered, 0);
3843 wait_event(ordered->wait,
3844 ordered->csum_bytes_left == 0);
3845 }
2ab28f32
JB
3846
3847 list_for_each_entry(sum, &ordered->list, list) {
3848 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3849 if (ret)
8407f553 3850 break;
2ab28f32 3851 }
2ab28f32 3852 }
2ab28f32 3853
8407f553 3854 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
3855 return ret;
3856
488111aa
FDBM
3857 if (em->compress_type) {
3858 csum_offset = 0;
8407f553 3859 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
3860 } else {
3861 csum_offset = mod_start - em->start;
3862 csum_len = mod_len;
3863 }
2ab28f32 3864
70c8a91c
JB
3865 /* block start is already adjusted for the file extent offset. */
3866 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3867 em->block_start + csum_offset,
3868 em->block_start + csum_offset +
3869 csum_len - 1, &ordered_sums, 0);
3870 if (ret)
3871 return ret;
5dc562c5 3872
70c8a91c
JB
3873 while (!list_empty(&ordered_sums)) {
3874 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3875 struct btrfs_ordered_sum,
3876 list);
3877 if (!ret)
3878 ret = btrfs_csum_file_blocks(trans, log, sums);
3879 list_del(&sums->list);
3880 kfree(sums);
5dc562c5
JB
3881 }
3882
70c8a91c 3883 return ret;
5dc562c5
JB
3884}
3885
8407f553
FM
3886static int log_one_extent(struct btrfs_trans_handle *trans,
3887 struct inode *inode, struct btrfs_root *root,
3888 const struct extent_map *em,
3889 struct btrfs_path *path,
3890 const struct list_head *logged_list,
3891 struct btrfs_log_ctx *ctx)
3892{
3893 struct btrfs_root *log = root->log_root;
3894 struct btrfs_file_extent_item *fi;
3895 struct extent_buffer *leaf;
3896 struct btrfs_map_token token;
3897 struct btrfs_key key;
3898 u64 extent_offset = em->start - em->orig_start;
3899 u64 block_len;
3900 int ret;
3901 int extent_inserted = 0;
3902 bool ordered_io_err = false;
3903
3904 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3905 &ordered_io_err);
3906 if (ret)
3907 return ret;
3908
3909 if (ordered_io_err) {
3910 ctx->io_err = -EIO;
3911 return 0;
3912 }
3913
3914 btrfs_init_map_token(&token);
3915
3916 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3917 em->start + em->len, NULL, 0, 1,
3918 sizeof(*fi), &extent_inserted);
3919 if (ret)
3920 return ret;
3921
3922 if (!extent_inserted) {
3923 key.objectid = btrfs_ino(inode);
3924 key.type = BTRFS_EXTENT_DATA_KEY;
3925 key.offset = em->start;
3926
3927 ret = btrfs_insert_empty_item(trans, log, path, &key,
3928 sizeof(*fi));
3929 if (ret)
3930 return ret;
3931 }
3932 leaf = path->nodes[0];
3933 fi = btrfs_item_ptr(leaf, path->slots[0],
3934 struct btrfs_file_extent_item);
3935
50d9aa99 3936 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
3937 &token);
3938 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3939 btrfs_set_token_file_extent_type(leaf, fi,
3940 BTRFS_FILE_EXTENT_PREALLOC,
3941 &token);
3942 else
3943 btrfs_set_token_file_extent_type(leaf, fi,
3944 BTRFS_FILE_EXTENT_REG,
3945 &token);
3946
3947 block_len = max(em->block_len, em->orig_block_len);
3948 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3949 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3950 em->block_start,
3951 &token);
3952 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3953 &token);
3954 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3955 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3956 em->block_start -
3957 extent_offset, &token);
3958 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3959 &token);
3960 } else {
3961 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3962 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3963 &token);
3964 }
3965
3966 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3967 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3968 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3969 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3970 &token);
3971 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3972 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3973 btrfs_mark_buffer_dirty(leaf);
3974
3975 btrfs_release_path(path);
3976
3977 return ret;
3978}
3979
5dc562c5
JB
3980static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct inode *inode,
827463c4 3983 struct btrfs_path *path,
8407f553
FM
3984 struct list_head *logged_list,
3985 struct btrfs_log_ctx *ctx)
5dc562c5 3986{
5dc562c5
JB
3987 struct extent_map *em, *n;
3988 struct list_head extents;
3989 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3990 u64 test_gen;
3991 int ret = 0;
2ab28f32 3992 int num = 0;
5dc562c5
JB
3993
3994 INIT_LIST_HEAD(&extents);
3995
5dc562c5
JB
3996 write_lock(&tree->lock);
3997 test_gen = root->fs_info->last_trans_committed;
3998
3999 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4000 list_del_init(&em->list);
2ab28f32
JB
4001
4002 /*
4003 * Just an arbitrary number, this can be really CPU intensive
4004 * once we start getting a lot of extents, and really once we
4005 * have a bunch of extents we just want to commit since it will
4006 * be faster.
4007 */
4008 if (++num > 32768) {
4009 list_del_init(&tree->modified_extents);
4010 ret = -EFBIG;
4011 goto process;
4012 }
4013
5dc562c5
JB
4014 if (em->generation <= test_gen)
4015 continue;
ff44c6e3
JB
4016 /* Need a ref to keep it from getting evicted from cache */
4017 atomic_inc(&em->refs);
4018 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4019 list_add_tail(&em->list, &extents);
2ab28f32 4020 num++;
5dc562c5
JB
4021 }
4022
4023 list_sort(NULL, &extents, extent_cmp);
4024
2ab28f32 4025process:
5dc562c5
JB
4026 while (!list_empty(&extents)) {
4027 em = list_entry(extents.next, struct extent_map, list);
4028
4029 list_del_init(&em->list);
4030
4031 /*
4032 * If we had an error we just need to delete everybody from our
4033 * private list.
4034 */
ff44c6e3 4035 if (ret) {
201a9038 4036 clear_em_logging(tree, em);
ff44c6e3 4037 free_extent_map(em);
5dc562c5 4038 continue;
ff44c6e3
JB
4039 }
4040
4041 write_unlock(&tree->lock);
5dc562c5 4042
8407f553
FM
4043 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4044 ctx);
ff44c6e3 4045 write_lock(&tree->lock);
201a9038
JB
4046 clear_em_logging(tree, em);
4047 free_extent_map(em);
5dc562c5 4048 }
ff44c6e3
JB
4049 WARN_ON(!list_empty(&extents));
4050 write_unlock(&tree->lock);
5dc562c5 4051
5dc562c5 4052 btrfs_release_path(path);
5dc562c5
JB
4053 return ret;
4054}
4055
1a4bcf47
FM
4056static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4057 struct btrfs_path *path, u64 *size_ret)
4058{
4059 struct btrfs_key key;
4060 int ret;
4061
4062 key.objectid = btrfs_ino(inode);
4063 key.type = BTRFS_INODE_ITEM_KEY;
4064 key.offset = 0;
4065
4066 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4067 if (ret < 0) {
4068 return ret;
4069 } else if (ret > 0) {
4070 *size_ret = i_size_read(inode);
4071 } else {
4072 struct btrfs_inode_item *item;
4073
4074 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4075 struct btrfs_inode_item);
4076 *size_ret = btrfs_inode_size(path->nodes[0], item);
4077 }
4078
4079 btrfs_release_path(path);
4080 return 0;
4081}
4082
e02119d5
CM
4083/* log a single inode in the tree log.
4084 * At least one parent directory for this inode must exist in the tree
4085 * or be logged already.
4086 *
4087 * Any items from this inode changed by the current transaction are copied
4088 * to the log tree. An extra reference is taken on any extents in this
4089 * file, allowing us to avoid a whole pile of corner cases around logging
4090 * blocks that have been removed from the tree.
4091 *
4092 * See LOG_INODE_ALL and related defines for a description of what inode_only
4093 * does.
4094 *
4095 * This handles both files and directories.
4096 */
12fcfd22 4097static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
4098 struct btrfs_root *root, struct inode *inode,
4099 int inode_only,
4100 const loff_t start,
8407f553
FM
4101 const loff_t end,
4102 struct btrfs_log_ctx *ctx)
e02119d5
CM
4103{
4104 struct btrfs_path *path;
4105 struct btrfs_path *dst_path;
4106 struct btrfs_key min_key;
4107 struct btrfs_key max_key;
4108 struct btrfs_root *log = root->log_root;
31ff1cd2 4109 struct extent_buffer *src = NULL;
827463c4 4110 LIST_HEAD(logged_list);
16e7549f 4111 u64 last_extent = 0;
4a500fd1 4112 int err = 0;
e02119d5 4113 int ret;
3a5f1d45 4114 int nritems;
31ff1cd2
CM
4115 int ins_start_slot = 0;
4116 int ins_nr;
5dc562c5 4117 bool fast_search = false;
33345d01 4118 u64 ino = btrfs_ino(inode);
49dae1bc 4119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4120 u64 logged_isize = 0;
e02119d5 4121
e02119d5 4122 path = btrfs_alloc_path();
5df67083
TI
4123 if (!path)
4124 return -ENOMEM;
e02119d5 4125 dst_path = btrfs_alloc_path();
5df67083
TI
4126 if (!dst_path) {
4127 btrfs_free_path(path);
4128 return -ENOMEM;
4129 }
e02119d5 4130
33345d01 4131 min_key.objectid = ino;
e02119d5
CM
4132 min_key.type = BTRFS_INODE_ITEM_KEY;
4133 min_key.offset = 0;
4134
33345d01 4135 max_key.objectid = ino;
12fcfd22 4136
12fcfd22 4137
5dc562c5 4138 /* today the code can only do partial logging of directories */
5269b67e
MX
4139 if (S_ISDIR(inode->i_mode) ||
4140 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4141 &BTRFS_I(inode)->runtime_flags) &&
4142 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
4143 max_key.type = BTRFS_XATTR_ITEM_KEY;
4144 else
4145 max_key.type = (u8)-1;
4146 max_key.offset = (u64)-1;
4147
2c2c452b
FM
4148 /*
4149 * Only run delayed items if we are a dir or a new file.
4150 * Otherwise commit the delayed inode only, which is needed in
4151 * order for the log replay code to mark inodes for link count
4152 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4153 */
94edf4ae 4154 if (S_ISDIR(inode->i_mode) ||
2c2c452b 4155 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
94edf4ae 4156 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
4157 else
4158 ret = btrfs_commit_inode_delayed_inode(inode);
4159
4160 if (ret) {
4161 btrfs_free_path(path);
4162 btrfs_free_path(dst_path);
4163 return ret;
16cdcec7
MX
4164 }
4165
e02119d5
CM
4166 mutex_lock(&BTRFS_I(inode)->log_mutex);
4167
0870295b 4168 btrfs_get_logged_extents(inode, &logged_list, start, end);
2ab28f32 4169
e02119d5
CM
4170 /*
4171 * a brute force approach to making sure we get the most uptodate
4172 * copies of everything.
4173 */
4174 if (S_ISDIR(inode->i_mode)) {
4175 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4176
4f764e51
FM
4177 if (inode_only == LOG_INODE_EXISTS)
4178 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4179 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4180 } else {
1a4bcf47
FM
4181 if (inode_only == LOG_INODE_EXISTS) {
4182 /*
4183 * Make sure the new inode item we write to the log has
4184 * the same isize as the current one (if it exists).
4185 * This is necessary to prevent data loss after log
4186 * replay, and also to prevent doing a wrong expanding
4187 * truncate - for e.g. create file, write 4K into offset
4188 * 0, fsync, write 4K into offset 4096, add hard link,
4189 * fsync some other file (to sync log), power fail - if
4190 * we use the inode's current i_size, after log replay
4191 * we get a 8Kb file, with the last 4Kb extent as a hole
4192 * (zeroes), as if an expanding truncate happened,
4193 * instead of getting a file of 4Kb only.
4194 */
4195 err = logged_inode_size(log, inode, path,
4196 &logged_isize);
4197 if (err)
4198 goto out_unlock;
4199 }
a742994a
FM
4200 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4201 &BTRFS_I(inode)->runtime_flags)) {
4202 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4203 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4204 ret = drop_objectid_items(trans, log, path, ino,
4205 max_key.type);
4206 } else {
4207 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4208 &BTRFS_I(inode)->runtime_flags);
4209 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4210 &BTRFS_I(inode)->runtime_flags);
4211 ret = btrfs_truncate_inode_items(trans, log,
4212 inode, 0, 0);
4213 }
4f764e51
FM
4214 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4215 &BTRFS_I(inode)->runtime_flags) ||
6cfab851 4216 inode_only == LOG_INODE_EXISTS) {
4f764e51 4217 if (inode_only == LOG_INODE_ALL)
183f37fa 4218 fast_search = true;
4f764e51 4219 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4220 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4221 max_key.type);
a95249b3
JB
4222 } else {
4223 if (inode_only == LOG_INODE_ALL)
4224 fast_search = true;
4225 ret = log_inode_item(trans, log, dst_path, inode);
4226 if (ret) {
4227 err = ret;
4228 goto out_unlock;
4229 }
4230 goto log_extents;
5dc562c5 4231 }
a95249b3 4232
e02119d5 4233 }
4a500fd1
YZ
4234 if (ret) {
4235 err = ret;
4236 goto out_unlock;
4237 }
e02119d5 4238
d397712b 4239 while (1) {
31ff1cd2 4240 ins_nr = 0;
6174d3cb 4241 ret = btrfs_search_forward(root, &min_key,
de78b51a 4242 path, trans->transid);
e02119d5
CM
4243 if (ret != 0)
4244 break;
3a5f1d45 4245again:
31ff1cd2 4246 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4247 if (min_key.objectid != ino)
e02119d5
CM
4248 break;
4249 if (min_key.type > max_key.type)
4250 break;
31ff1cd2 4251
e02119d5 4252 src = path->nodes[0];
31ff1cd2
CM
4253 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4254 ins_nr++;
4255 goto next_slot;
4256 } else if (!ins_nr) {
4257 ins_start_slot = path->slots[0];
4258 ins_nr = 1;
4259 goto next_slot;
e02119d5
CM
4260 }
4261
16e7549f 4262 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4263 ins_start_slot, ins_nr, inode_only,
4264 logged_isize);
16e7549f 4265 if (ret < 0) {
4a500fd1
YZ
4266 err = ret;
4267 goto out_unlock;
a71db86e
RV
4268 }
4269 if (ret) {
16e7549f
JB
4270 ins_nr = 0;
4271 btrfs_release_path(path);
4272 continue;
4a500fd1 4273 }
31ff1cd2
CM
4274 ins_nr = 1;
4275 ins_start_slot = path->slots[0];
4276next_slot:
e02119d5 4277
3a5f1d45
CM
4278 nritems = btrfs_header_nritems(path->nodes[0]);
4279 path->slots[0]++;
4280 if (path->slots[0] < nritems) {
4281 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4282 path->slots[0]);
4283 goto again;
4284 }
31ff1cd2 4285 if (ins_nr) {
16e7549f
JB
4286 ret = copy_items(trans, inode, dst_path, path,
4287 &last_extent, ins_start_slot,
1a4bcf47 4288 ins_nr, inode_only, logged_isize);
16e7549f 4289 if (ret < 0) {
4a500fd1
YZ
4290 err = ret;
4291 goto out_unlock;
4292 }
16e7549f 4293 ret = 0;
31ff1cd2
CM
4294 ins_nr = 0;
4295 }
b3b4aa74 4296 btrfs_release_path(path);
3a5f1d45 4297
3d41d702 4298 if (min_key.offset < (u64)-1) {
e02119d5 4299 min_key.offset++;
3d41d702 4300 } else if (min_key.type < max_key.type) {
e02119d5 4301 min_key.type++;
3d41d702
FDBM
4302 min_key.offset = 0;
4303 } else {
e02119d5 4304 break;
3d41d702 4305 }
e02119d5 4306 }
31ff1cd2 4307 if (ins_nr) {
16e7549f 4308 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4309 ins_start_slot, ins_nr, inode_only,
4310 logged_isize);
16e7549f 4311 if (ret < 0) {
4a500fd1
YZ
4312 err = ret;
4313 goto out_unlock;
4314 }
16e7549f 4315 ret = 0;
31ff1cd2
CM
4316 ins_nr = 0;
4317 }
5dc562c5 4318
a95249b3 4319log_extents:
f3b15ccd
JB
4320 btrfs_release_path(path);
4321 btrfs_release_path(dst_path);
5dc562c5 4322 if (fast_search) {
b38ef71c
FM
4323 /*
4324 * Some ordered extents started by fsync might have completed
4325 * before we collected the ordered extents in logged_list, which
4326 * means they're gone, not in our logged_list nor in the inode's
4327 * ordered tree. We want the application/user space to know an
4328 * error happened while attempting to persist file data so that
4329 * it can take proper action. If such error happened, we leave
4330 * without writing to the log tree and the fsync must report the
4331 * file data write error and not commit the current transaction.
4332 */
4333 err = btrfs_inode_check_errors(inode);
4334 if (err) {
4335 ctx->io_err = err;
4336 goto out_unlock;
4337 }
827463c4 4338 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
8407f553 4339 &logged_list, ctx);
5dc562c5
JB
4340 if (ret) {
4341 err = ret;
4342 goto out_unlock;
4343 }
d006a048 4344 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4345 struct extent_map *em, *n;
4346
49dae1bc
FM
4347 write_lock(&em_tree->lock);
4348 /*
4349 * We can't just remove every em if we're called for a ranged
4350 * fsync - that is, one that doesn't cover the whole possible
4351 * file range (0 to LLONG_MAX). This is because we can have
4352 * em's that fall outside the range we're logging and therefore
4353 * their ordered operations haven't completed yet
4354 * (btrfs_finish_ordered_io() not invoked yet). This means we
4355 * didn't get their respective file extent item in the fs/subvol
4356 * tree yet, and need to let the next fast fsync (one which
4357 * consults the list of modified extent maps) find the em so
4358 * that it logs a matching file extent item and waits for the
4359 * respective ordered operation to complete (if it's still
4360 * running).
4361 *
4362 * Removing every em outside the range we're logging would make
4363 * the next fast fsync not log their matching file extent items,
4364 * therefore making us lose data after a log replay.
4365 */
4366 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4367 list) {
4368 const u64 mod_end = em->mod_start + em->mod_len - 1;
4369
4370 if (em->mod_start >= start && mod_end <= end)
4371 list_del_init(&em->list);
4372 }
4373 write_unlock(&em_tree->lock);
5dc562c5
JB
4374 }
4375
9623f9a3 4376 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4377 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4378 if (ret) {
4379 err = ret;
4380 goto out_unlock;
4381 }
e02119d5 4382 }
49dae1bc 4383
125c4cf9
FM
4384 BTRFS_I(inode)->logged_trans = trans->transid;
4385 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 4386out_unlock:
827463c4
MX
4387 if (unlikely(err))
4388 btrfs_put_logged_extents(&logged_list);
4389 else
4390 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4391 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4392
4393 btrfs_free_path(path);
4394 btrfs_free_path(dst_path);
4a500fd1 4395 return err;
e02119d5
CM
4396}
4397
12fcfd22
CM
4398/*
4399 * follow the dentry parent pointers up the chain and see if any
4400 * of the directories in it require a full commit before they can
4401 * be logged. Returns zero if nothing special needs to be done or 1 if
4402 * a full commit is required.
4403 */
4404static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4405 struct inode *inode,
4406 struct dentry *parent,
4407 struct super_block *sb,
4408 u64 last_committed)
e02119d5 4409{
12fcfd22
CM
4410 int ret = 0;
4411 struct btrfs_root *root;
6a912213 4412 struct dentry *old_parent = NULL;
de2b530b 4413 struct inode *orig_inode = inode;
e02119d5 4414
af4176b4
CM
4415 /*
4416 * for regular files, if its inode is already on disk, we don't
4417 * have to worry about the parents at all. This is because
4418 * we can use the last_unlink_trans field to record renames
4419 * and other fun in this file.
4420 */
4421 if (S_ISREG(inode->i_mode) &&
4422 BTRFS_I(inode)->generation <= last_committed &&
4423 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4424 goto out;
4425
12fcfd22
CM
4426 if (!S_ISDIR(inode->i_mode)) {
4427 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4428 goto out;
4429 inode = parent->d_inode;
4430 }
4431
4432 while (1) {
de2b530b
JB
4433 /*
4434 * If we are logging a directory then we start with our inode,
4435 * not our parents inode, so we need to skipp setting the
4436 * logged_trans so that further down in the log code we don't
4437 * think this inode has already been logged.
4438 */
4439 if (inode != orig_inode)
4440 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4441 smp_mb();
4442
4443 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4444 root = BTRFS_I(inode)->root;
4445
4446 /*
4447 * make sure any commits to the log are forced
4448 * to be full commits
4449 */
995946dd 4450 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4451 ret = 1;
4452 break;
4453 }
4454
4455 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4456 break;
4457
76dda93c 4458 if (IS_ROOT(parent))
12fcfd22
CM
4459 break;
4460
6a912213
JB
4461 parent = dget_parent(parent);
4462 dput(old_parent);
4463 old_parent = parent;
12fcfd22
CM
4464 inode = parent->d_inode;
4465
4466 }
6a912213 4467 dput(old_parent);
12fcfd22 4468out:
e02119d5
CM
4469 return ret;
4470}
4471
4472/*
4473 * helper function around btrfs_log_inode to make sure newly created
4474 * parent directories also end up in the log. A minimal inode and backref
4475 * only logging is done of any parent directories that are older than
4476 * the last committed transaction
4477 */
48a3b636
ES
4478static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4479 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
4480 struct dentry *parent,
4481 const loff_t start,
4482 const loff_t end,
4483 int exists_only,
8b050d35 4484 struct btrfs_log_ctx *ctx)
e02119d5 4485{
12fcfd22 4486 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4487 struct super_block *sb;
6a912213 4488 struct dentry *old_parent = NULL;
12fcfd22
CM
4489 int ret = 0;
4490 u64 last_committed = root->fs_info->last_trans_committed;
d36808e0
FM
4491 const struct dentry * const first_parent = parent;
4492 const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4493 last_committed);
12fcfd22
CM
4494
4495 sb = inode->i_sb;
4496
3a5e1404
SW
4497 if (btrfs_test_opt(root, NOTREELOG)) {
4498 ret = 1;
4499 goto end_no_trans;
4500 }
4501
995946dd
MX
4502 /*
4503 * The prev transaction commit doesn't complete, we need do
4504 * full commit by ourselves.
4505 */
12fcfd22
CM
4506 if (root->fs_info->last_trans_log_full_commit >
4507 root->fs_info->last_trans_committed) {
4508 ret = 1;
4509 goto end_no_trans;
4510 }
4511
76dda93c
YZ
4512 if (root != BTRFS_I(inode)->root ||
4513 btrfs_root_refs(&root->root_item) == 0) {
4514 ret = 1;
4515 goto end_no_trans;
4516 }
4517
12fcfd22
CM
4518 ret = check_parent_dirs_for_sync(trans, inode, parent,
4519 sb, last_committed);
4520 if (ret)
4521 goto end_no_trans;
e02119d5 4522
22ee6985 4523 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4524 ret = BTRFS_NO_LOG_SYNC;
4525 goto end_no_trans;
4526 }
4527
8b050d35 4528 ret = start_log_trans(trans, root, ctx);
4a500fd1 4529 if (ret)
e87ac136 4530 goto end_no_trans;
e02119d5 4531
8407f553 4532 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
4533 if (ret)
4534 goto end_trans;
12fcfd22 4535
af4176b4
CM
4536 /*
4537 * for regular files, if its inode is already on disk, we don't
4538 * have to worry about the parents at all. This is because
4539 * we can use the last_unlink_trans field to record renames
4540 * and other fun in this file.
4541 */
4542 if (S_ISREG(inode->i_mode) &&
4543 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4544 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4545 ret = 0;
4546 goto end_trans;
4547 }
af4176b4 4548
12fcfd22
CM
4549 while (1) {
4550 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4551 break;
4552
12fcfd22 4553 inode = parent->d_inode;
76dda93c
YZ
4554 if (root != BTRFS_I(inode)->root)
4555 break;
4556
d36808e0
FM
4557 /*
4558 * On unlink we must make sure our immediate parent directory
4559 * inode is fully logged. This is to prevent leaving dangling
4560 * directory index entries and a wrong directory inode's i_size.
4561 * Not doing so can result in a directory being impossible to
4562 * delete after log replay (rmdir will always fail with error
4563 * -ENOTEMPTY).
4564 */
4565 if (did_unlink && parent == first_parent)
4566 inode_only = LOG_INODE_ALL;
4567 else
4568 inode_only = LOG_INODE_EXISTS;
4569
12fcfd22 4570 if (BTRFS_I(inode)->generation >
d36808e0
FM
4571 root->fs_info->last_trans_committed ||
4572 inode_only == LOG_INODE_ALL) {
49dae1bc 4573 ret = btrfs_log_inode(trans, root, inode, inode_only,
8407f553 4574 0, LLONG_MAX, ctx);
4a500fd1
YZ
4575 if (ret)
4576 goto end_trans;
12fcfd22 4577 }
76dda93c 4578 if (IS_ROOT(parent))
e02119d5 4579 break;
12fcfd22 4580
6a912213
JB
4581 parent = dget_parent(parent);
4582 dput(old_parent);
4583 old_parent = parent;
e02119d5 4584 }
12fcfd22 4585 ret = 0;
4a500fd1 4586end_trans:
6a912213 4587 dput(old_parent);
4a500fd1 4588 if (ret < 0) {
995946dd 4589 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
4590 ret = 1;
4591 }
8b050d35
MX
4592
4593 if (ret)
4594 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4595 btrfs_end_log_trans(root);
4596end_no_trans:
4597 return ret;
e02119d5
CM
4598}
4599
4600/*
4601 * it is not safe to log dentry if the chunk root has added new
4602 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4603 * If this returns 1, you must commit the transaction to safely get your
4604 * data on disk.
4605 */
4606int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 4607 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
4608 const loff_t start,
4609 const loff_t end,
8b050d35 4610 struct btrfs_log_ctx *ctx)
e02119d5 4611{
6a912213
JB
4612 struct dentry *parent = dget_parent(dentry);
4613 int ret;
4614
8b050d35 4615 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
49dae1bc 4616 start, end, 0, ctx);
6a912213
JB
4617 dput(parent);
4618
4619 return ret;
e02119d5
CM
4620}
4621
4622/*
4623 * should be called during mount to recover any replay any log trees
4624 * from the FS
4625 */
4626int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4627{
4628 int ret;
4629 struct btrfs_path *path;
4630 struct btrfs_trans_handle *trans;
4631 struct btrfs_key key;
4632 struct btrfs_key found_key;
4633 struct btrfs_key tmp_key;
4634 struct btrfs_root *log;
4635 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4636 struct walk_control wc = {
4637 .process_func = process_one_buffer,
4638 .stage = 0,
4639 };
4640
e02119d5 4641 path = btrfs_alloc_path();
db5b493a
TI
4642 if (!path)
4643 return -ENOMEM;
4644
4645 fs_info->log_root_recovering = 1;
e02119d5 4646
4a500fd1 4647 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4648 if (IS_ERR(trans)) {
4649 ret = PTR_ERR(trans);
4650 goto error;
4651 }
e02119d5
CM
4652
4653 wc.trans = trans;
4654 wc.pin = 1;
4655
db5b493a 4656 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4657 if (ret) {
4658 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4659 "recovering log root tree.");
4660 goto error;
4661 }
e02119d5
CM
4662
4663again:
4664 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4665 key.offset = (u64)-1;
962a298f 4666 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 4667
d397712b 4668 while (1) {
e02119d5 4669 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4670
4671 if (ret < 0) {
4672 btrfs_error(fs_info, ret,
4673 "Couldn't find tree log root.");
4674 goto error;
4675 }
e02119d5
CM
4676 if (ret > 0) {
4677 if (path->slots[0] == 0)
4678 break;
4679 path->slots[0]--;
4680 }
4681 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4682 path->slots[0]);
b3b4aa74 4683 btrfs_release_path(path);
e02119d5
CM
4684 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4685 break;
4686
cb517eab 4687 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4688 if (IS_ERR(log)) {
4689 ret = PTR_ERR(log);
4690 btrfs_error(fs_info, ret,
4691 "Couldn't read tree log root.");
4692 goto error;
4693 }
e02119d5
CM
4694
4695 tmp_key.objectid = found_key.offset;
4696 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4697 tmp_key.offset = (u64)-1;
4698
4699 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4700 if (IS_ERR(wc.replay_dest)) {
4701 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4702 free_extent_buffer(log->node);
4703 free_extent_buffer(log->commit_root);
4704 kfree(log);
79787eaa
JM
4705 btrfs_error(fs_info, ret, "Couldn't read target root "
4706 "for tree log recovery.");
4707 goto error;
4708 }
e02119d5 4709
07d400a6 4710 wc.replay_dest->log_root = log;
5d4f98a2 4711 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4712 ret = walk_log_tree(trans, log, &wc);
e02119d5 4713
b50c6e25 4714 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4715 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4716 path);
e02119d5
CM
4717 }
4718
4719 key.offset = found_key.offset - 1;
07d400a6 4720 wc.replay_dest->log_root = NULL;
e02119d5 4721 free_extent_buffer(log->node);
b263c2c8 4722 free_extent_buffer(log->commit_root);
e02119d5
CM
4723 kfree(log);
4724
b50c6e25
JB
4725 if (ret)
4726 goto error;
4727
e02119d5
CM
4728 if (found_key.offset == 0)
4729 break;
4730 }
b3b4aa74 4731 btrfs_release_path(path);
e02119d5
CM
4732
4733 /* step one is to pin it all, step two is to replay just inodes */
4734 if (wc.pin) {
4735 wc.pin = 0;
4736 wc.process_func = replay_one_buffer;
4737 wc.stage = LOG_WALK_REPLAY_INODES;
4738 goto again;
4739 }
4740 /* step three is to replay everything */
4741 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4742 wc.stage++;
4743 goto again;
4744 }
4745
4746 btrfs_free_path(path);
4747
abefa55a
JB
4748 /* step 4: commit the transaction, which also unpins the blocks */
4749 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4750 if (ret)
4751 return ret;
4752
e02119d5
CM
4753 free_extent_buffer(log_root_tree->node);
4754 log_root_tree->log_root = NULL;
4755 fs_info->log_root_recovering = 0;
e02119d5 4756 kfree(log_root_tree);
79787eaa 4757
abefa55a 4758 return 0;
79787eaa 4759error:
b50c6e25
JB
4760 if (wc.trans)
4761 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4762 btrfs_free_path(path);
4763 return ret;
e02119d5 4764}
12fcfd22
CM
4765
4766/*
4767 * there are some corner cases where we want to force a full
4768 * commit instead of allowing a directory to be logged.
4769 *
4770 * They revolve around files there were unlinked from the directory, and
4771 * this function updates the parent directory so that a full commit is
4772 * properly done if it is fsync'd later after the unlinks are done.
4773 */
4774void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4775 struct inode *dir, struct inode *inode,
4776 int for_rename)
4777{
af4176b4
CM
4778 /*
4779 * when we're logging a file, if it hasn't been renamed
4780 * or unlinked, and its inode is fully committed on disk,
4781 * we don't have to worry about walking up the directory chain
4782 * to log its parents.
4783 *
4784 * So, we use the last_unlink_trans field to put this transid
4785 * into the file. When the file is logged we check it and
4786 * don't log the parents if the file is fully on disk.
4787 */
4788 if (S_ISREG(inode->i_mode))
4789 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4790
12fcfd22
CM
4791 /*
4792 * if this directory was already logged any new
4793 * names for this file/dir will get recorded
4794 */
4795 smp_mb();
4796 if (BTRFS_I(dir)->logged_trans == trans->transid)
4797 return;
4798
4799 /*
4800 * if the inode we're about to unlink was logged,
4801 * the log will be properly updated for any new names
4802 */
4803 if (BTRFS_I(inode)->logged_trans == trans->transid)
4804 return;
4805
4806 /*
4807 * when renaming files across directories, if the directory
4808 * there we're unlinking from gets fsync'd later on, there's
4809 * no way to find the destination directory later and fsync it
4810 * properly. So, we have to be conservative and force commits
4811 * so the new name gets discovered.
4812 */
4813 if (for_rename)
4814 goto record;
4815
4816 /* we can safely do the unlink without any special recording */
4817 return;
4818
4819record:
4820 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4821}
4822
4823/*
4824 * Call this after adding a new name for a file and it will properly
4825 * update the log to reflect the new name.
4826 *
4827 * It will return zero if all goes well, and it will return 1 if a
4828 * full transaction commit is required.
4829 */
4830int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4831 struct inode *inode, struct inode *old_dir,
4832 struct dentry *parent)
4833{
4834 struct btrfs_root * root = BTRFS_I(inode)->root;
4835
af4176b4
CM
4836 /*
4837 * this will force the logging code to walk the dentry chain
4838 * up for the file
4839 */
4840 if (S_ISREG(inode->i_mode))
4841 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4842
12fcfd22
CM
4843 /*
4844 * if this inode hasn't been logged and directory we're renaming it
4845 * from hasn't been logged, we don't need to log it
4846 */
4847 if (BTRFS_I(inode)->logged_trans <=
4848 root->fs_info->last_trans_committed &&
4849 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4850 root->fs_info->last_trans_committed))
4851 return 0;
4852
49dae1bc
FM
4853 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4854 LLONG_MAX, 1, NULL);
12fcfd22
CM
4855}
4856