Btrfs: make things static and include the right headers
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
b2950863 26#include "tree-log.h"
e02119d5
CM
27
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
37/*
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
42 *
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
45 */
46#define LOG_WALK_PIN_ONLY 0
47#define LOG_WALK_REPLAY_INODES 1
48#define LOG_WALK_REPLAY_ALL 2
49
50static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
52 int inode_only);
53
54/*
55 * tree logging is a special write ahead log used to make sure that
56 * fsyncs and O_SYNCs can happen without doing full tree commits.
57 *
58 * Full tree commits are expensive because they require commonly
59 * modified blocks to be recowed, creating many dirty pages in the
60 * extent tree an 4x-6x higher write load than ext3.
61 *
62 * Instead of doing a tree commit on every fsync, we use the
63 * key ranges and transaction ids to find items for a given file or directory
64 * that have changed in this transaction. Those items are copied into
65 * a special tree (one per subvolume root), that tree is written to disk
66 * and then the fsync is considered complete.
67 *
68 * After a crash, items are copied out of the log-tree back into the
69 * subvolume tree. Any file data extents found are recorded in the extent
70 * allocation tree, and the log-tree freed.
71 *
72 * The log tree is read three times, once to pin down all the extents it is
73 * using in ram and once, once to create all the inodes logged in the tree
74 * and once to do all the other items.
75 */
76
77/*
78 * btrfs_add_log_tree adds a new per-subvolume log tree into the
79 * tree of log tree roots. This must be called with a tree log transaction
80 * running (see start_log_trans).
81 */
b2950863 82static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
83 struct btrfs_root *root)
84{
85 struct btrfs_key key;
86 struct btrfs_root_item root_item;
87 struct btrfs_inode_item *inode_item;
88 struct extent_buffer *leaf;
89 struct btrfs_root *new_root = root;
90 int ret;
91 u64 objectid = root->root_key.objectid;
92
31840ae1 93 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
e02119d5 94 BTRFS_TREE_LOG_OBJECTID,
31840ae1 95 trans->transid, 0, 0, 0);
e02119d5
CM
96 if (IS_ERR(leaf)) {
97 ret = PTR_ERR(leaf);
98 return ret;
99 }
100
101 btrfs_set_header_nritems(leaf, 0);
102 btrfs_set_header_level(leaf, 0);
103 btrfs_set_header_bytenr(leaf, leaf->start);
104 btrfs_set_header_generation(leaf, trans->transid);
105 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
106
107 write_extent_buffer(leaf, root->fs_info->fsid,
108 (unsigned long)btrfs_header_fsid(leaf),
109 BTRFS_FSID_SIZE);
110 btrfs_mark_buffer_dirty(leaf);
111
112 inode_item = &root_item.inode;
113 memset(inode_item, 0, sizeof(*inode_item));
114 inode_item->generation = cpu_to_le64(1);
115 inode_item->size = cpu_to_le64(3);
116 inode_item->nlink = cpu_to_le32(1);
a76a3cd4 117 inode_item->nbytes = cpu_to_le64(root->leafsize);
e02119d5
CM
118 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
119
120 btrfs_set_root_bytenr(&root_item, leaf->start);
84234f3a 121 btrfs_set_root_generation(&root_item, trans->transid);
e02119d5
CM
122 btrfs_set_root_level(&root_item, 0);
123 btrfs_set_root_refs(&root_item, 0);
124 btrfs_set_root_used(&root_item, 0);
125
126 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
127 root_item.drop_level = 0;
128
129 btrfs_tree_unlock(leaf);
130 free_extent_buffer(leaf);
131 leaf = NULL;
132
133 btrfs_set_root_dirid(&root_item, 0);
134
135 key.objectid = BTRFS_TREE_LOG_OBJECTID;
136 key.offset = objectid;
137 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
138 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
139 &root_item);
140 if (ret)
141 goto fail;
142
143 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
144 &key);
145 BUG_ON(!new_root);
146
147 WARN_ON(root->log_root);
148 root->log_root = new_root;
149
150 /*
151 * log trees do not get reference counted because they go away
152 * before a real commit is actually done. They do store pointers
153 * to file data extents, and those reference counts still get
154 * updated (along with back refs to the log tree).
155 */
156 new_root->ref_cows = 0;
157 new_root->last_trans = trans->transid;
158fail:
159 return ret;
160}
161
162/*
163 * start a sub transaction and setup the log tree
164 * this increments the log tree writer count to make the people
165 * syncing the tree wait for us to finish
166 */
167static int start_log_trans(struct btrfs_trans_handle *trans,
168 struct btrfs_root *root)
169{
170 int ret;
171 mutex_lock(&root->fs_info->tree_log_mutex);
172 if (!root->fs_info->log_root_tree) {
173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 BUG_ON(ret);
175 }
176 if (!root->log_root) {
177 ret = btrfs_add_log_tree(trans, root);
178 BUG_ON(ret);
179 }
180 atomic_inc(&root->fs_info->tree_log_writers);
181 root->fs_info->tree_log_batch++;
182 mutex_unlock(&root->fs_info->tree_log_mutex);
183 return 0;
184}
185
186/*
187 * returns 0 if there was a log transaction running and we were able
188 * to join, or returns -ENOENT if there were not transactions
189 * in progress
190 */
191static int join_running_log_trans(struct btrfs_root *root)
192{
193 int ret = -ENOENT;
194
195 smp_mb();
196 if (!root->log_root)
197 return -ENOENT;
198
199 mutex_lock(&root->fs_info->tree_log_mutex);
200 if (root->log_root) {
201 ret = 0;
202 atomic_inc(&root->fs_info->tree_log_writers);
203 root->fs_info->tree_log_batch++;
204 }
205 mutex_unlock(&root->fs_info->tree_log_mutex);
206 return ret;
207}
208
209/*
210 * indicate we're done making changes to the log tree
211 * and wake up anyone waiting to do a sync
212 */
213static int end_log_trans(struct btrfs_root *root)
214{
215 atomic_dec(&root->fs_info->tree_log_writers);
216 smp_mb();
217 if (waitqueue_active(&root->fs_info->tree_log_wait))
218 wake_up(&root->fs_info->tree_log_wait);
219 return 0;
220}
221
222
223/*
224 * the walk control struct is used to pass state down the chain when
225 * processing the log tree. The stage field tells us which part
226 * of the log tree processing we are currently doing. The others
227 * are state fields used for that specific part
228 */
229struct walk_control {
230 /* should we free the extent on disk when done? This is used
231 * at transaction commit time while freeing a log tree
232 */
233 int free;
234
235 /* should we write out the extent buffer? This is used
236 * while flushing the log tree to disk during a sync
237 */
238 int write;
239
240 /* should we wait for the extent buffer io to finish? Also used
241 * while flushing the log tree to disk for a sync
242 */
243 int wait;
244
245 /* pin only walk, we record which extents on disk belong to the
246 * log trees
247 */
248 int pin;
249
250 /* what stage of the replay code we're currently in */
251 int stage;
252
253 /* the root we are currently replaying */
254 struct btrfs_root *replay_dest;
255
256 /* the trans handle for the current replay */
257 struct btrfs_trans_handle *trans;
258
259 /* the function that gets used to process blocks we find in the
260 * tree. Note the extent_buffer might not be up to date when it is
261 * passed in, and it must be checked or read if you need the data
262 * inside it
263 */
264 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
265 struct walk_control *wc, u64 gen);
266};
267
268/*
269 * process_func used to pin down extents, write them or wait on them
270 */
271static int process_one_buffer(struct btrfs_root *log,
272 struct extent_buffer *eb,
273 struct walk_control *wc, u64 gen)
274{
275 if (wc->pin) {
25179201 276 mutex_lock(&log->fs_info->pinned_mutex);
e02119d5
CM
277 btrfs_update_pinned_extents(log->fs_info->extent_root,
278 eb->start, eb->len, 1);
25179201 279 mutex_unlock(&log->fs_info->pinned_mutex);
e02119d5
CM
280 }
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341
342 read_extent_buffer(eb, src_copy, src_ptr, item_size);
343
344 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 item_size);
347 ret = memcmp(dst_copy, src_copy, item_size);
348
349 kfree(dst_copy);
350 kfree(src_copy);
351 /*
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
355 * sync
356 */
357 if (ret == 0) {
358 btrfs_release_path(root, path);
359 return 0;
360 }
361
362 }
363insert:
364 btrfs_release_path(root, path);
365 /* try to insert the key into the destination tree */
366 ret = btrfs_insert_empty_item(trans, root, path,
367 key, item_size);
368
369 /* make sure any existing item is the correct size */
370 if (ret == -EEXIST) {
371 u32 found_size;
372 found_size = btrfs_item_size_nr(path->nodes[0],
373 path->slots[0]);
374 if (found_size > item_size) {
375 btrfs_truncate_item(trans, root, path, item_size, 1);
376 } else if (found_size < item_size) {
377 ret = btrfs_del_item(trans, root,
378 path);
379 BUG_ON(ret);
380
381 btrfs_release_path(root, path);
382 ret = btrfs_insert_empty_item(trans,
383 root, path, key, item_size);
384 BUG_ON(ret);
385 }
386 } else if (ret) {
387 BUG();
388 }
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
391
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
395 *
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
400 */
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
404
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
407
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
410
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
417 }
418 }
419
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
422
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 }
428
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
436 }
437 }
31840ae1
ZY
438
439 if (overwrite_root &&
440 key->type == BTRFS_EXTENT_DATA_KEY) {
441 int extent_type;
442 struct btrfs_file_extent_item *fi;
443
444 fi = (struct btrfs_file_extent_item *)dst_ptr;
445 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
d899e052
YZ
446 if (extent_type == BTRFS_FILE_EXTENT_REG ||
447 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
31840ae1
ZY
448 struct btrfs_key ins;
449 ins.objectid = btrfs_file_extent_disk_bytenr(
450 path->nodes[0], fi);
451 ins.offset = btrfs_file_extent_disk_num_bytes(
452 path->nodes[0], fi);
453 ins.type = BTRFS_EXTENT_ITEM_KEY;
454
455 /*
456 * is this extent already allocated in the extent
457 * allocation tree? If so, just add a reference
458 */
459 ret = btrfs_lookup_extent(root, ins.objectid,
460 ins.offset);
461 if (ret == 0) {
462 ret = btrfs_inc_extent_ref(trans, root,
463 ins.objectid, ins.offset,
464 path->nodes[0]->start,
465 root->root_key.objectid,
3bb1a1bc 466 trans->transid, key->objectid);
31840ae1
ZY
467 } else {
468 /*
469 * insert the extent pointer in the extent
470 * allocation tree
471 */
472 ret = btrfs_alloc_logged_extent(trans, root,
473 path->nodes[0]->start,
474 root->root_key.objectid,
475 trans->transid, key->objectid,
3bb1a1bc 476 &ins);
31840ae1
ZY
477 BUG_ON(ret);
478 }
479 }
480 }
e02119d5
CM
481no_copy:
482 btrfs_mark_buffer_dirty(path->nodes[0]);
483 btrfs_release_path(root, path);
484 return 0;
485}
486
487/*
488 * simple helper to read an inode off the disk from a given root
489 * This can only be called for subvolume roots and not for the log
490 */
491static noinline struct inode *read_one_inode(struct btrfs_root *root,
492 u64 objectid)
493{
494 struct inode *inode;
495 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
496 if (inode->i_state & I_NEW) {
497 BTRFS_I(inode)->root = root;
498 BTRFS_I(inode)->location.objectid = objectid;
499 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
500 BTRFS_I(inode)->location.offset = 0;
501 btrfs_read_locked_inode(inode);
502 unlock_new_inode(inode);
503
504 }
505 if (is_bad_inode(inode)) {
506 iput(inode);
507 inode = NULL;
508 }
509 return inode;
510}
511
512/* replays a single extent in 'eb' at 'slot' with 'key' into the
513 * subvolume 'root'. path is released on entry and should be released
514 * on exit.
515 *
516 * extents in the log tree have not been allocated out of the extent
517 * tree yet. So, this completes the allocation, taking a reference
518 * as required if the extent already exists or creating a new extent
519 * if it isn't in the extent allocation tree yet.
520 *
521 * The extent is inserted into the file, dropping any existing extents
522 * from the file that overlap the new one.
523 */
524static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
525 struct btrfs_root *root,
526 struct btrfs_path *path,
527 struct extent_buffer *eb, int slot,
528 struct btrfs_key *key)
529{
530 int found_type;
531 u64 mask = root->sectorsize - 1;
532 u64 extent_end;
533 u64 alloc_hint;
534 u64 start = key->offset;
535 struct btrfs_file_extent_item *item;
536 struct inode *inode = NULL;
537 unsigned long size;
538 int ret = 0;
539
540 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
541 found_type = btrfs_file_extent_type(eb, item);
542
d899e052
YZ
543 if (found_type == BTRFS_FILE_EXTENT_REG ||
544 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
545 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
546 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 547 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
548 extent_end = (start + size + mask) & ~mask;
549 } else {
550 ret = 0;
551 goto out;
552 }
553
554 inode = read_one_inode(root, key->objectid);
555 if (!inode) {
556 ret = -EIO;
557 goto out;
558 }
559
560 /*
561 * first check to see if we already have this extent in the
562 * file. This must be done before the btrfs_drop_extents run
563 * so we don't try to drop this extent.
564 */
565 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
566 start, 0);
567
d899e052
YZ
568 if (ret == 0 &&
569 (found_type == BTRFS_FILE_EXTENT_REG ||
570 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
571 struct btrfs_file_extent_item cmp1;
572 struct btrfs_file_extent_item cmp2;
573 struct btrfs_file_extent_item *existing;
574 struct extent_buffer *leaf;
575
576 leaf = path->nodes[0];
577 existing = btrfs_item_ptr(leaf, path->slots[0],
578 struct btrfs_file_extent_item);
579
580 read_extent_buffer(eb, &cmp1, (unsigned long)item,
581 sizeof(cmp1));
582 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
583 sizeof(cmp2));
584
585 /*
586 * we already have a pointer to this exact extent,
587 * we don't have to do anything
588 */
589 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
590 btrfs_release_path(root, path);
591 goto out;
592 }
593 }
594 btrfs_release_path(root, path);
595
596 /* drop any overlapping extents */
597 ret = btrfs_drop_extents(trans, root, inode,
598 start, extent_end, start, &alloc_hint);
599 BUG_ON(ret);
600
31840ae1
ZY
601 /* insert the extent */
602 ret = overwrite_item(trans, root, path, eb, slot, key);
e02119d5 603 BUG_ON(ret);
e02119d5 604
a76a3cd4
YZ
605 /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
606 inode_add_bytes(inode, extent_end - start);
e02119d5
CM
607 btrfs_update_inode(trans, root, inode);
608out:
609 if (inode)
610 iput(inode);
611 return ret;
612}
613
614/*
615 * when cleaning up conflicts between the directory names in the
616 * subvolume, directory names in the log and directory names in the
617 * inode back references, we may have to unlink inodes from directories.
618 *
619 * This is a helper function to do the unlink of a specific directory
620 * item
621 */
622static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
623 struct btrfs_root *root,
624 struct btrfs_path *path,
625 struct inode *dir,
626 struct btrfs_dir_item *di)
627{
628 struct inode *inode;
629 char *name;
630 int name_len;
631 struct extent_buffer *leaf;
632 struct btrfs_key location;
633 int ret;
634
635 leaf = path->nodes[0];
636
637 btrfs_dir_item_key_to_cpu(leaf, di, &location);
638 name_len = btrfs_dir_name_len(leaf, di);
639 name = kmalloc(name_len, GFP_NOFS);
640 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
641 btrfs_release_path(root, path);
642
643 inode = read_one_inode(root, location.objectid);
644 BUG_ON(!inode);
645
646 btrfs_inc_nlink(inode);
647 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
648 kfree(name);
649
650 iput(inode);
651 return ret;
652}
653
654/*
655 * helper function to see if a given name and sequence number found
656 * in an inode back reference are already in a directory and correctly
657 * point to this inode
658 */
659static noinline int inode_in_dir(struct btrfs_root *root,
660 struct btrfs_path *path,
661 u64 dirid, u64 objectid, u64 index,
662 const char *name, int name_len)
663{
664 struct btrfs_dir_item *di;
665 struct btrfs_key location;
666 int match = 0;
667
668 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
669 index, name, name_len, 0);
670 if (di && !IS_ERR(di)) {
671 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
672 if (location.objectid != objectid)
673 goto out;
674 } else
675 goto out;
676 btrfs_release_path(root, path);
677
678 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
679 if (di && !IS_ERR(di)) {
680 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
681 if (location.objectid != objectid)
682 goto out;
683 } else
684 goto out;
685 match = 1;
686out:
687 btrfs_release_path(root, path);
688 return match;
689}
690
691/*
692 * helper function to check a log tree for a named back reference in
693 * an inode. This is used to decide if a back reference that is
694 * found in the subvolume conflicts with what we find in the log.
695 *
696 * inode backreferences may have multiple refs in a single item,
697 * during replay we process one reference at a time, and we don't
698 * want to delete valid links to a file from the subvolume if that
699 * link is also in the log.
700 */
701static noinline int backref_in_log(struct btrfs_root *log,
702 struct btrfs_key *key,
703 char *name, int namelen)
704{
705 struct btrfs_path *path;
706 struct btrfs_inode_ref *ref;
707 unsigned long ptr;
708 unsigned long ptr_end;
709 unsigned long name_ptr;
710 int found_name_len;
711 int item_size;
712 int ret;
713 int match = 0;
714
715 path = btrfs_alloc_path();
716 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
717 if (ret != 0)
718 goto out;
719
720 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
721 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
722 ptr_end = ptr + item_size;
723 while (ptr < ptr_end) {
724 ref = (struct btrfs_inode_ref *)ptr;
725 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
726 if (found_name_len == namelen) {
727 name_ptr = (unsigned long)(ref + 1);
728 ret = memcmp_extent_buffer(path->nodes[0], name,
729 name_ptr, namelen);
730 if (ret == 0) {
731 match = 1;
732 goto out;
733 }
734 }
735 ptr = (unsigned long)(ref + 1) + found_name_len;
736 }
737out:
738 btrfs_free_path(path);
739 return match;
740}
741
742
743/*
744 * replay one inode back reference item found in the log tree.
745 * eb, slot and key refer to the buffer and key found in the log tree.
746 * root is the destination we are replaying into, and path is for temp
747 * use by this function. (it should be released on return).
748 */
749static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root,
751 struct btrfs_root *log,
752 struct btrfs_path *path,
753 struct extent_buffer *eb, int slot,
754 struct btrfs_key *key)
755{
756 struct inode *dir;
757 int ret;
758 struct btrfs_key location;
759 struct btrfs_inode_ref *ref;
760 struct btrfs_dir_item *di;
761 struct inode *inode;
762 char *name;
763 int namelen;
764 unsigned long ref_ptr;
765 unsigned long ref_end;
766
767 location.objectid = key->objectid;
768 location.type = BTRFS_INODE_ITEM_KEY;
769 location.offset = 0;
770
771 /*
772 * it is possible that we didn't log all the parent directories
773 * for a given inode. If we don't find the dir, just don't
774 * copy the back ref in. The link count fixup code will take
775 * care of the rest
776 */
777 dir = read_one_inode(root, key->offset);
778 if (!dir)
779 return -ENOENT;
780
781 inode = read_one_inode(root, key->objectid);
782 BUG_ON(!dir);
783
784 ref_ptr = btrfs_item_ptr_offset(eb, slot);
785 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
786
787again:
788 ref = (struct btrfs_inode_ref *)ref_ptr;
789
790 namelen = btrfs_inode_ref_name_len(eb, ref);
791 name = kmalloc(namelen, GFP_NOFS);
792 BUG_ON(!name);
793
794 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
795
796 /* if we already have a perfect match, we're done */
797 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
798 btrfs_inode_ref_index(eb, ref),
799 name, namelen)) {
800 goto out;
801 }
802
803 /*
804 * look for a conflicting back reference in the metadata.
805 * if we find one we have to unlink that name of the file
806 * before we add our new link. Later on, we overwrite any
807 * existing back reference, and we don't want to create
808 * dangling pointers in the directory.
809 */
810conflict_again:
811 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
812 if (ret == 0) {
813 char *victim_name;
814 int victim_name_len;
815 struct btrfs_inode_ref *victim_ref;
816 unsigned long ptr;
817 unsigned long ptr_end;
818 struct extent_buffer *leaf = path->nodes[0];
819
820 /* are we trying to overwrite a back ref for the root directory
821 * if so, just jump out, we're done
822 */
823 if (key->objectid == key->offset)
824 goto out_nowrite;
825
826 /* check all the names in this back reference to see
827 * if they are in the log. if so, we allow them to stay
828 * otherwise they must be unlinked as a conflict
829 */
830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
831 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
832 while(ptr < ptr_end) {
833 victim_ref = (struct btrfs_inode_ref *)ptr;
834 victim_name_len = btrfs_inode_ref_name_len(leaf,
835 victim_ref);
836 victim_name = kmalloc(victim_name_len, GFP_NOFS);
837 BUG_ON(!victim_name);
838
839 read_extent_buffer(leaf, victim_name,
840 (unsigned long)(victim_ref + 1),
841 victim_name_len);
842
843 if (!backref_in_log(log, key, victim_name,
844 victim_name_len)) {
845 btrfs_inc_nlink(inode);
846 btrfs_release_path(root, path);
847 ret = btrfs_unlink_inode(trans, root, dir,
848 inode, victim_name,
849 victim_name_len);
850 kfree(victim_name);
851 btrfs_release_path(root, path);
852 goto conflict_again;
853 }
854 kfree(victim_name);
855 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
856 }
857 BUG_ON(ret);
858 }
859 btrfs_release_path(root, path);
860
861 /* look for a conflicting sequence number */
862 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
863 btrfs_inode_ref_index(eb, ref),
864 name, namelen, 0);
865 if (di && !IS_ERR(di)) {
866 ret = drop_one_dir_item(trans, root, path, dir, di);
867 BUG_ON(ret);
868 }
869 btrfs_release_path(root, path);
870
871
872 /* look for a conflicting name */
873 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
874 name, namelen, 0);
875 if (di && !IS_ERR(di)) {
876 ret = drop_one_dir_item(trans, root, path, dir, di);
877 BUG_ON(ret);
878 }
879 btrfs_release_path(root, path);
880
881 /* insert our name */
882 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
883 btrfs_inode_ref_index(eb, ref));
884 BUG_ON(ret);
885
886 btrfs_update_inode(trans, root, inode);
887
888out:
889 ref_ptr = (unsigned long)(ref + 1) + namelen;
890 kfree(name);
891 if (ref_ptr < ref_end)
892 goto again;
893
894 /* finally write the back reference in the inode */
895 ret = overwrite_item(trans, root, path, eb, slot, key);
896 BUG_ON(ret);
897
898out_nowrite:
899 btrfs_release_path(root, path);
900 iput(dir);
901 iput(inode);
902 return 0;
903}
904
905/*
906 * replay one csum item from the log tree into the subvolume 'root'
907 * eb, slot and key all refer to the log tree
908 * path is for temp use by this function and should be released on return
909 *
910 * This copies the checksums out of the log tree and inserts them into
911 * the subvolume. Any existing checksums for this range in the file
912 * are overwritten, and new items are added where required.
913 *
914 * We keep this simple by reusing the btrfs_ordered_sum code from
915 * the data=ordered mode. This basically means making a copy
916 * of all the checksums in ram, which we have to do anyway for kmap
917 * rules.
918 *
919 * The copy is then sent down to btrfs_csum_file_blocks, which
920 * does all the hard work of finding existing items in the file
921 * or adding new ones.
922 */
923static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root,
925 struct btrfs_path *path,
926 struct extent_buffer *eb, int slot,
927 struct btrfs_key *key)
928{
929 int ret;
930 u32 item_size = btrfs_item_size_nr(eb, slot);
931 u64 cur_offset;
932 unsigned long file_bytes;
933 struct btrfs_ordered_sum *sums;
934 struct btrfs_sector_sum *sector_sum;
935 struct inode *inode;
936 unsigned long ptr;
937
938 file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
939 inode = read_one_inode(root, key->objectid);
940 if (!inode) {
941 return -EIO;
942 }
943
944 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
945 if (!sums) {
946 iput(inode);
947 return -ENOMEM;
948 }
949
950 INIT_LIST_HEAD(&sums->list);
951 sums->len = file_bytes;
952 sums->file_offset = key->offset;
953
954 /*
955 * copy all the sums into the ordered sum struct
956 */
957 sector_sum = sums->sums;
958 cur_offset = key->offset;
959 ptr = btrfs_item_ptr_offset(eb, slot);
960 while(item_size > 0) {
961 sector_sum->offset = cur_offset;
962 read_extent_buffer(eb, &sector_sum->sum, ptr, BTRFS_CRC32_SIZE);
963 sector_sum++;
964 item_size -= BTRFS_CRC32_SIZE;
965 ptr += BTRFS_CRC32_SIZE;
966 cur_offset += root->sectorsize;
967 }
968
969 /* let btrfs_csum_file_blocks add them into the file */
970 ret = btrfs_csum_file_blocks(trans, root, inode, sums);
971 BUG_ON(ret);
972 kfree(sums);
973 iput(inode);
974
975 return 0;
976}
977/*
978 * There are a few corners where the link count of the file can't
979 * be properly maintained during replay. So, instead of adding
980 * lots of complexity to the log code, we just scan the backrefs
981 * for any file that has been through replay.
982 *
983 * The scan will update the link count on the inode to reflect the
984 * number of back refs found. If it goes down to zero, the iput
985 * will free the inode.
986 */
987static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct inode *inode)
990{
991 struct btrfs_path *path;
992 int ret;
993 struct btrfs_key key;
994 u64 nlink = 0;
995 unsigned long ptr;
996 unsigned long ptr_end;
997 int name_len;
998
999 key.objectid = inode->i_ino;
1000 key.type = BTRFS_INODE_REF_KEY;
1001 key.offset = (u64)-1;
1002
1003 path = btrfs_alloc_path();
1004
1005 while(1) {
1006 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1007 if (ret < 0)
1008 break;
1009 if (ret > 0) {
1010 if (path->slots[0] == 0)
1011 break;
1012 path->slots[0]--;
1013 }
1014 btrfs_item_key_to_cpu(path->nodes[0], &key,
1015 path->slots[0]);
1016 if (key.objectid != inode->i_ino ||
1017 key.type != BTRFS_INODE_REF_KEY)
1018 break;
1019 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1020 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1021 path->slots[0]);
1022 while(ptr < ptr_end) {
1023 struct btrfs_inode_ref *ref;
1024
1025 ref = (struct btrfs_inode_ref *)ptr;
1026 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1027 ref);
1028 ptr = (unsigned long)(ref + 1) + name_len;
1029 nlink++;
1030 }
1031
1032 if (key.offset == 0)
1033 break;
1034 key.offset--;
1035 btrfs_release_path(root, path);
1036 }
1037 btrfs_free_path(path);
1038 if (nlink != inode->i_nlink) {
1039 inode->i_nlink = nlink;
1040 btrfs_update_inode(trans, root, inode);
1041 }
8d5bf1cb 1042 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5
CM
1043
1044 return 0;
1045}
1046
1047static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1048 struct btrfs_root *root,
1049 struct btrfs_path *path)
1050{
1051 int ret;
1052 struct btrfs_key key;
1053 struct inode *inode;
1054
1055 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1056 key.type = BTRFS_ORPHAN_ITEM_KEY;
1057 key.offset = (u64)-1;
1058 while(1) {
1059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1060 if (ret < 0)
1061 break;
1062
1063 if (ret == 1) {
1064 if (path->slots[0] == 0)
1065 break;
1066 path->slots[0]--;
1067 }
1068
1069 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1070 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1071 key.type != BTRFS_ORPHAN_ITEM_KEY)
1072 break;
1073
1074 ret = btrfs_del_item(trans, root, path);
1075 BUG_ON(ret);
1076
1077 btrfs_release_path(root, path);
1078 inode = read_one_inode(root, key.offset);
1079 BUG_ON(!inode);
1080
1081 ret = fixup_inode_link_count(trans, root, inode);
1082 BUG_ON(ret);
1083
1084 iput(inode);
1085
1086 if (key.offset == 0)
1087 break;
1088 key.offset--;
1089 }
1090 btrfs_release_path(root, path);
1091 return 0;
1092}
1093
1094
1095/*
1096 * record a given inode in the fixup dir so we can check its link
1097 * count when replay is done. The link count is incremented here
1098 * so the inode won't go away until we check it
1099 */
1100static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root,
1102 struct btrfs_path *path,
1103 u64 objectid)
1104{
1105 struct btrfs_key key;
1106 int ret = 0;
1107 struct inode *inode;
1108
1109 inode = read_one_inode(root, objectid);
1110 BUG_ON(!inode);
1111
1112 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1113 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1114 key.offset = objectid;
1115
1116 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1117
1118 btrfs_release_path(root, path);
1119 if (ret == 0) {
1120 btrfs_inc_nlink(inode);
1121 btrfs_update_inode(trans, root, inode);
1122 } else if (ret == -EEXIST) {
1123 ret = 0;
1124 } else {
1125 BUG();
1126 }
1127 iput(inode);
1128
1129 return ret;
1130}
1131
1132/*
1133 * when replaying the log for a directory, we only insert names
1134 * for inodes that actually exist. This means an fsync on a directory
1135 * does not implicitly fsync all the new files in it
1136 */
1137static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root,
1139 struct btrfs_path *path,
1140 u64 dirid, u64 index,
1141 char *name, int name_len, u8 type,
1142 struct btrfs_key *location)
1143{
1144 struct inode *inode;
1145 struct inode *dir;
1146 int ret;
1147
1148 inode = read_one_inode(root, location->objectid);
1149 if (!inode)
1150 return -ENOENT;
1151
1152 dir = read_one_inode(root, dirid);
1153 if (!dir) {
1154 iput(inode);
1155 return -EIO;
1156 }
1157 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1158
1159 /* FIXME, put inode into FIXUP list */
1160
1161 iput(inode);
1162 iput(dir);
1163 return ret;
1164}
1165
1166/*
1167 * take a single entry in a log directory item and replay it into
1168 * the subvolume.
1169 *
1170 * if a conflicting item exists in the subdirectory already,
1171 * the inode it points to is unlinked and put into the link count
1172 * fix up tree.
1173 *
1174 * If a name from the log points to a file or directory that does
1175 * not exist in the FS, it is skipped. fsyncs on directories
1176 * do not force down inodes inside that directory, just changes to the
1177 * names or unlinks in a directory.
1178 */
1179static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1180 struct btrfs_root *root,
1181 struct btrfs_path *path,
1182 struct extent_buffer *eb,
1183 struct btrfs_dir_item *di,
1184 struct btrfs_key *key)
1185{
1186 char *name;
1187 int name_len;
1188 struct btrfs_dir_item *dst_di;
1189 struct btrfs_key found_key;
1190 struct btrfs_key log_key;
1191 struct inode *dir;
e02119d5 1192 u8 log_type;
4bef0848 1193 int exists;
e02119d5
CM
1194 int ret;
1195
1196 dir = read_one_inode(root, key->objectid);
1197 BUG_ON(!dir);
1198
1199 name_len = btrfs_dir_name_len(eb, di);
1200 name = kmalloc(name_len, GFP_NOFS);
1201 log_type = btrfs_dir_type(eb, di);
1202 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1203 name_len);
1204
1205 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1206 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1207 if (exists == 0)
1208 exists = 1;
1209 else
1210 exists = 0;
1211 btrfs_release_path(root, path);
1212
e02119d5
CM
1213 if (key->type == BTRFS_DIR_ITEM_KEY) {
1214 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1215 name, name_len, 1);
1216 }
1217 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1218 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1219 key->objectid,
1220 key->offset, name,
1221 name_len, 1);
1222 } else {
1223 BUG();
1224 }
1225 if (!dst_di || IS_ERR(dst_di)) {
1226 /* we need a sequence number to insert, so we only
1227 * do inserts for the BTRFS_DIR_INDEX_KEY types
1228 */
1229 if (key->type != BTRFS_DIR_INDEX_KEY)
1230 goto out;
1231 goto insert;
1232 }
1233
1234 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1235 /* the existing item matches the logged item */
1236 if (found_key.objectid == log_key.objectid &&
1237 found_key.type == log_key.type &&
1238 found_key.offset == log_key.offset &&
1239 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1240 goto out;
1241 }
1242
1243 /*
1244 * don't drop the conflicting directory entry if the inode
1245 * for the new entry doesn't exist
1246 */
4bef0848 1247 if (!exists)
e02119d5
CM
1248 goto out;
1249
e02119d5
CM
1250 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1251 BUG_ON(ret);
1252
1253 if (key->type == BTRFS_DIR_INDEX_KEY)
1254 goto insert;
1255out:
1256 btrfs_release_path(root, path);
1257 kfree(name);
1258 iput(dir);
1259 return 0;
1260
1261insert:
1262 btrfs_release_path(root, path);
1263 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1264 name, name_len, log_type, &log_key);
1265
1266 if (ret && ret != -ENOENT)
1267 BUG();
1268 goto out;
1269}
1270
1271/*
1272 * find all the names in a directory item and reconcile them into
1273 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1274 * one name in a directory item, but the same code gets used for
1275 * both directory index types
1276 */
1277static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1278 struct btrfs_root *root,
1279 struct btrfs_path *path,
1280 struct extent_buffer *eb, int slot,
1281 struct btrfs_key *key)
1282{
1283 int ret;
1284 u32 item_size = btrfs_item_size_nr(eb, slot);
1285 struct btrfs_dir_item *di;
1286 int name_len;
1287 unsigned long ptr;
1288 unsigned long ptr_end;
1289
1290 ptr = btrfs_item_ptr_offset(eb, slot);
1291 ptr_end = ptr + item_size;
1292 while(ptr < ptr_end) {
1293 di = (struct btrfs_dir_item *)ptr;
1294 name_len = btrfs_dir_name_len(eb, di);
1295 ret = replay_one_name(trans, root, path, eb, di, key);
1296 BUG_ON(ret);
1297 ptr = (unsigned long)(di + 1);
1298 ptr += name_len;
1299 }
1300 return 0;
1301}
1302
1303/*
1304 * directory replay has two parts. There are the standard directory
1305 * items in the log copied from the subvolume, and range items
1306 * created in the log while the subvolume was logged.
1307 *
1308 * The range items tell us which parts of the key space the log
1309 * is authoritative for. During replay, if a key in the subvolume
1310 * directory is in a logged range item, but not actually in the log
1311 * that means it was deleted from the directory before the fsync
1312 * and should be removed.
1313 */
1314static noinline int find_dir_range(struct btrfs_root *root,
1315 struct btrfs_path *path,
1316 u64 dirid, int key_type,
1317 u64 *start_ret, u64 *end_ret)
1318{
1319 struct btrfs_key key;
1320 u64 found_end;
1321 struct btrfs_dir_log_item *item;
1322 int ret;
1323 int nritems;
1324
1325 if (*start_ret == (u64)-1)
1326 return 1;
1327
1328 key.objectid = dirid;
1329 key.type = key_type;
1330 key.offset = *start_ret;
1331
1332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1333 if (ret < 0)
1334 goto out;
1335 if (ret > 0) {
1336 if (path->slots[0] == 0)
1337 goto out;
1338 path->slots[0]--;
1339 }
1340 if (ret != 0)
1341 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1342
1343 if (key.type != key_type || key.objectid != dirid) {
1344 ret = 1;
1345 goto next;
1346 }
1347 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1348 struct btrfs_dir_log_item);
1349 found_end = btrfs_dir_log_end(path->nodes[0], item);
1350
1351 if (*start_ret >= key.offset && *start_ret <= found_end) {
1352 ret = 0;
1353 *start_ret = key.offset;
1354 *end_ret = found_end;
1355 goto out;
1356 }
1357 ret = 1;
1358next:
1359 /* check the next slot in the tree to see if it is a valid item */
1360 nritems = btrfs_header_nritems(path->nodes[0]);
1361 if (path->slots[0] >= nritems) {
1362 ret = btrfs_next_leaf(root, path);
1363 if (ret)
1364 goto out;
1365 } else {
1366 path->slots[0]++;
1367 }
1368
1369 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1370
1371 if (key.type != key_type || key.objectid != dirid) {
1372 ret = 1;
1373 goto out;
1374 }
1375 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1376 struct btrfs_dir_log_item);
1377 found_end = btrfs_dir_log_end(path->nodes[0], item);
1378 *start_ret = key.offset;
1379 *end_ret = found_end;
1380 ret = 0;
1381out:
1382 btrfs_release_path(root, path);
1383 return ret;
1384}
1385
1386/*
1387 * this looks for a given directory item in the log. If the directory
1388 * item is not in the log, the item is removed and the inode it points
1389 * to is unlinked
1390 */
1391static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1392 struct btrfs_root *root,
1393 struct btrfs_root *log,
1394 struct btrfs_path *path,
1395 struct btrfs_path *log_path,
1396 struct inode *dir,
1397 struct btrfs_key *dir_key)
1398{
1399 int ret;
1400 struct extent_buffer *eb;
1401 int slot;
1402 u32 item_size;
1403 struct btrfs_dir_item *di;
1404 struct btrfs_dir_item *log_di;
1405 int name_len;
1406 unsigned long ptr;
1407 unsigned long ptr_end;
1408 char *name;
1409 struct inode *inode;
1410 struct btrfs_key location;
1411
1412again:
1413 eb = path->nodes[0];
1414 slot = path->slots[0];
1415 item_size = btrfs_item_size_nr(eb, slot);
1416 ptr = btrfs_item_ptr_offset(eb, slot);
1417 ptr_end = ptr + item_size;
1418 while(ptr < ptr_end) {
1419 di = (struct btrfs_dir_item *)ptr;
1420 name_len = btrfs_dir_name_len(eb, di);
1421 name = kmalloc(name_len, GFP_NOFS);
1422 if (!name) {
1423 ret = -ENOMEM;
1424 goto out;
1425 }
1426 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1427 name_len);
1428 log_di = NULL;
1429 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1430 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1431 dir_key->objectid,
1432 name, name_len, 0);
1433 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1434 log_di = btrfs_lookup_dir_index_item(trans, log,
1435 log_path,
1436 dir_key->objectid,
1437 dir_key->offset,
1438 name, name_len, 0);
1439 }
1440 if (!log_di || IS_ERR(log_di)) {
1441 btrfs_dir_item_key_to_cpu(eb, di, &location);
1442 btrfs_release_path(root, path);
1443 btrfs_release_path(log, log_path);
1444 inode = read_one_inode(root, location.objectid);
1445 BUG_ON(!inode);
1446
1447 ret = link_to_fixup_dir(trans, root,
1448 path, location.objectid);
1449 BUG_ON(ret);
1450 btrfs_inc_nlink(inode);
1451 ret = btrfs_unlink_inode(trans, root, dir, inode,
1452 name, name_len);
1453 BUG_ON(ret);
1454 kfree(name);
1455 iput(inode);
1456
1457 /* there might still be more names under this key
1458 * check and repeat if required
1459 */
1460 ret = btrfs_search_slot(NULL, root, dir_key, path,
1461 0, 0);
1462 if (ret == 0)
1463 goto again;
1464 ret = 0;
1465 goto out;
1466 }
1467 btrfs_release_path(log, log_path);
1468 kfree(name);
1469
1470 ptr = (unsigned long)(di + 1);
1471 ptr += name_len;
1472 }
1473 ret = 0;
1474out:
1475 btrfs_release_path(root, path);
1476 btrfs_release_path(log, log_path);
1477 return ret;
1478}
1479
1480/*
1481 * deletion replay happens before we copy any new directory items
1482 * out of the log or out of backreferences from inodes. It
1483 * scans the log to find ranges of keys that log is authoritative for,
1484 * and then scans the directory to find items in those ranges that are
1485 * not present in the log.
1486 *
1487 * Anything we don't find in the log is unlinked and removed from the
1488 * directory.
1489 */
1490static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1491 struct btrfs_root *root,
1492 struct btrfs_root *log,
1493 struct btrfs_path *path,
1494 u64 dirid)
1495{
1496 u64 range_start;
1497 u64 range_end;
1498 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1499 int ret = 0;
1500 struct btrfs_key dir_key;
1501 struct btrfs_key found_key;
1502 struct btrfs_path *log_path;
1503 struct inode *dir;
1504
1505 dir_key.objectid = dirid;
1506 dir_key.type = BTRFS_DIR_ITEM_KEY;
1507 log_path = btrfs_alloc_path();
1508 if (!log_path)
1509 return -ENOMEM;
1510
1511 dir = read_one_inode(root, dirid);
1512 /* it isn't an error if the inode isn't there, that can happen
1513 * because we replay the deletes before we copy in the inode item
1514 * from the log
1515 */
1516 if (!dir) {
1517 btrfs_free_path(log_path);
1518 return 0;
1519 }
1520again:
1521 range_start = 0;
1522 range_end = 0;
1523 while(1) {
1524 ret = find_dir_range(log, path, dirid, key_type,
1525 &range_start, &range_end);
1526 if (ret != 0)
1527 break;
1528
1529 dir_key.offset = range_start;
1530 while(1) {
1531 int nritems;
1532 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1533 0, 0);
1534 if (ret < 0)
1535 goto out;
1536
1537 nritems = btrfs_header_nritems(path->nodes[0]);
1538 if (path->slots[0] >= nritems) {
1539 ret = btrfs_next_leaf(root, path);
1540 if (ret)
1541 break;
1542 }
1543 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1544 path->slots[0]);
1545 if (found_key.objectid != dirid ||
1546 found_key.type != dir_key.type)
1547 goto next_type;
1548
1549 if (found_key.offset > range_end)
1550 break;
1551
1552 ret = check_item_in_log(trans, root, log, path,
1553 log_path, dir, &found_key);
1554 BUG_ON(ret);
1555 if (found_key.offset == (u64)-1)
1556 break;
1557 dir_key.offset = found_key.offset + 1;
1558 }
1559 btrfs_release_path(root, path);
1560 if (range_end == (u64)-1)
1561 break;
1562 range_start = range_end + 1;
1563 }
1564
1565next_type:
1566 ret = 0;
1567 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1568 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1569 dir_key.type = BTRFS_DIR_INDEX_KEY;
1570 btrfs_release_path(root, path);
1571 goto again;
1572 }
1573out:
1574 btrfs_release_path(root, path);
1575 btrfs_free_path(log_path);
1576 iput(dir);
1577 return ret;
1578}
1579
1580/*
1581 * the process_func used to replay items from the log tree. This
1582 * gets called in two different stages. The first stage just looks
1583 * for inodes and makes sure they are all copied into the subvolume.
1584 *
1585 * The second stage copies all the other item types from the log into
1586 * the subvolume. The two stage approach is slower, but gets rid of
1587 * lots of complexity around inodes referencing other inodes that exist
1588 * only in the log (references come from either directory items or inode
1589 * back refs).
1590 */
1591static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1592 struct walk_control *wc, u64 gen)
1593{
1594 int nritems;
1595 struct btrfs_path *path;
1596 struct btrfs_root *root = wc->replay_dest;
1597 struct btrfs_key key;
1598 u32 item_size;
1599 int level;
1600 int i;
1601 int ret;
1602
1603 btrfs_read_buffer(eb, gen);
1604
1605 level = btrfs_header_level(eb);
1606
1607 if (level != 0)
1608 return 0;
1609
1610 path = btrfs_alloc_path();
1611 BUG_ON(!path);
1612
1613 nritems = btrfs_header_nritems(eb);
1614 for (i = 0; i < nritems; i++) {
1615 btrfs_item_key_to_cpu(eb, &key, i);
1616 item_size = btrfs_item_size_nr(eb, i);
1617
1618 /* inode keys are done during the first stage */
1619 if (key.type == BTRFS_INODE_ITEM_KEY &&
1620 wc->stage == LOG_WALK_REPLAY_INODES) {
1621 struct inode *inode;
1622 struct btrfs_inode_item *inode_item;
1623 u32 mode;
1624
1625 inode_item = btrfs_item_ptr(eb, i,
1626 struct btrfs_inode_item);
1627 mode = btrfs_inode_mode(eb, inode_item);
1628 if (S_ISDIR(mode)) {
1629 ret = replay_dir_deletes(wc->trans,
1630 root, log, path, key.objectid);
1631 BUG_ON(ret);
1632 }
1633 ret = overwrite_item(wc->trans, root, path,
1634 eb, i, &key);
1635 BUG_ON(ret);
1636
1637 /* for regular files, truncate away
1638 * extents past the new EOF
1639 */
1640 if (S_ISREG(mode)) {
1641 inode = read_one_inode(root,
1642 key.objectid);
1643 BUG_ON(!inode);
1644
1645 ret = btrfs_truncate_inode_items(wc->trans,
1646 root, inode, inode->i_size,
1647 BTRFS_EXTENT_DATA_KEY);
1648 BUG_ON(ret);
1649 iput(inode);
1650 }
1651 ret = link_to_fixup_dir(wc->trans, root,
1652 path, key.objectid);
1653 BUG_ON(ret);
1654 }
1655 if (wc->stage < LOG_WALK_REPLAY_ALL)
1656 continue;
1657
1658 /* these keys are simply copied */
1659 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1660 ret = overwrite_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663 } else if (key.type == BTRFS_INODE_REF_KEY) {
1664 ret = add_inode_ref(wc->trans, root, log, path,
1665 eb, i, &key);
1666 BUG_ON(ret && ret != -ENOENT);
1667 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1668 ret = replay_one_extent(wc->trans, root, path,
1669 eb, i, &key);
1670 BUG_ON(ret);
1671 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1672 ret = replay_one_csum(wc->trans, root, path,
1673 eb, i, &key);
1674 BUG_ON(ret);
1675 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1676 key.type == BTRFS_DIR_INDEX_KEY) {
1677 ret = replay_one_dir_item(wc->trans, root, path,
1678 eb, i, &key);
1679 BUG_ON(ret);
1680 }
1681 }
1682 btrfs_free_path(path);
1683 return 0;
1684}
1685
1686static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1687 struct btrfs_root *root,
1688 struct btrfs_path *path, int *level,
1689 struct walk_control *wc)
1690{
1691 u64 root_owner;
1692 u64 root_gen;
1693 u64 bytenr;
1694 u64 ptr_gen;
1695 struct extent_buffer *next;
1696 struct extent_buffer *cur;
1697 struct extent_buffer *parent;
1698 u32 blocksize;
1699 int ret = 0;
1700
1701 WARN_ON(*level < 0);
1702 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1703
1704 while(*level > 0) {
1705 WARN_ON(*level < 0);
1706 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1707 cur = path->nodes[*level];
1708
1709 if (btrfs_header_level(cur) != *level)
1710 WARN_ON(1);
1711
1712 if (path->slots[*level] >=
1713 btrfs_header_nritems(cur))
1714 break;
1715
1716 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1717 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1718 blocksize = btrfs_level_size(root, *level - 1);
1719
1720 parent = path->nodes[*level];
1721 root_owner = btrfs_header_owner(parent);
1722 root_gen = btrfs_header_generation(parent);
1723
1724 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1725
1726 wc->process_func(root, next, wc, ptr_gen);
1727
1728 if (*level == 1) {
1729 path->slots[*level]++;
1730 if (wc->free) {
1731 btrfs_read_buffer(next, ptr_gen);
1732
1733 btrfs_tree_lock(next);
1734 clean_tree_block(trans, root, next);
1735 btrfs_wait_tree_block_writeback(next);
1736 btrfs_tree_unlock(next);
1737
1738 ret = btrfs_drop_leaf_ref(trans, root, next);
1739 BUG_ON(ret);
1740
1741 WARN_ON(root_owner !=
1742 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1743 ret = btrfs_free_reserved_extent(root,
1744 bytenr, blocksize);
e02119d5
CM
1745 BUG_ON(ret);
1746 }
1747 free_extent_buffer(next);
1748 continue;
1749 }
1750 btrfs_read_buffer(next, ptr_gen);
1751
1752 WARN_ON(*level <= 0);
1753 if (path->nodes[*level-1])
1754 free_extent_buffer(path->nodes[*level-1]);
1755 path->nodes[*level-1] = next;
1756 *level = btrfs_header_level(next);
1757 path->slots[*level] = 0;
1758 cond_resched();
1759 }
1760 WARN_ON(*level < 0);
1761 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1762
1763 if (path->nodes[*level] == root->node) {
1764 parent = path->nodes[*level];
1765 } else {
1766 parent = path->nodes[*level + 1];
1767 }
1768 bytenr = path->nodes[*level]->start;
1769
1770 blocksize = btrfs_level_size(root, *level);
1771 root_owner = btrfs_header_owner(parent);
1772 root_gen = btrfs_header_generation(parent);
1773
1774 wc->process_func(root, path->nodes[*level], wc,
1775 btrfs_header_generation(path->nodes[*level]));
1776
1777 if (wc->free) {
1778 next = path->nodes[*level];
1779 btrfs_tree_lock(next);
1780 clean_tree_block(trans, root, next);
1781 btrfs_wait_tree_block_writeback(next);
1782 btrfs_tree_unlock(next);
1783
1784 if (*level == 0) {
1785 ret = btrfs_drop_leaf_ref(trans, root, next);
1786 BUG_ON(ret);
1787 }
1788 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1789 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1790 BUG_ON(ret);
1791 }
1792 free_extent_buffer(path->nodes[*level]);
1793 path->nodes[*level] = NULL;
1794 *level += 1;
1795
1796 cond_resched();
1797 return 0;
1798}
1799
1800static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path, int *level,
1803 struct walk_control *wc)
1804{
1805 u64 root_owner;
1806 u64 root_gen;
1807 int i;
1808 int slot;
1809 int ret;
1810
1811 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1812 slot = path->slots[i];
1813 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1814 struct extent_buffer *node;
1815 node = path->nodes[i];
1816 path->slots[i]++;
1817 *level = i;
1818 WARN_ON(*level == 0);
1819 return 0;
1820 } else {
31840ae1
ZY
1821 struct extent_buffer *parent;
1822 if (path->nodes[*level] == root->node)
1823 parent = path->nodes[*level];
1824 else
1825 parent = path->nodes[*level + 1];
1826
1827 root_owner = btrfs_header_owner(parent);
1828 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1829 wc->process_func(root, path->nodes[*level], wc,
1830 btrfs_header_generation(path->nodes[*level]));
1831 if (wc->free) {
1832 struct extent_buffer *next;
1833
1834 next = path->nodes[*level];
1835
1836 btrfs_tree_lock(next);
1837 clean_tree_block(trans, root, next);
1838 btrfs_wait_tree_block_writeback(next);
1839 btrfs_tree_unlock(next);
1840
1841 if (*level == 0) {
1842 ret = btrfs_drop_leaf_ref(trans, root,
1843 next);
1844 BUG_ON(ret);
1845 }
1846
1847 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1848 ret = btrfs_free_reserved_extent(root,
e02119d5 1849 path->nodes[*level]->start,
d00aff00 1850 path->nodes[*level]->len);
e02119d5
CM
1851 BUG_ON(ret);
1852 }
1853 free_extent_buffer(path->nodes[*level]);
1854 path->nodes[*level] = NULL;
1855 *level = i + 1;
1856 }
1857 }
1858 return 1;
1859}
1860
1861/*
1862 * drop the reference count on the tree rooted at 'snap'. This traverses
1863 * the tree freeing any blocks that have a ref count of zero after being
1864 * decremented.
1865 */
1866static int walk_log_tree(struct btrfs_trans_handle *trans,
1867 struct btrfs_root *log, struct walk_control *wc)
1868{
1869 int ret = 0;
1870 int wret;
1871 int level;
1872 struct btrfs_path *path;
1873 int i;
1874 int orig_level;
1875
1876 path = btrfs_alloc_path();
1877 BUG_ON(!path);
1878
1879 level = btrfs_header_level(log->node);
1880 orig_level = level;
1881 path->nodes[level] = log->node;
1882 extent_buffer_get(log->node);
1883 path->slots[level] = 0;
1884
1885 while(1) {
1886 wret = walk_down_log_tree(trans, log, path, &level, wc);
1887 if (wret > 0)
1888 break;
1889 if (wret < 0)
1890 ret = wret;
1891
1892 wret = walk_up_log_tree(trans, log, path, &level, wc);
1893 if (wret > 0)
1894 break;
1895 if (wret < 0)
1896 ret = wret;
1897 }
1898
1899 /* was the root node processed? if not, catch it here */
1900 if (path->nodes[orig_level]) {
1901 wc->process_func(log, path->nodes[orig_level], wc,
1902 btrfs_header_generation(path->nodes[orig_level]));
1903 if (wc->free) {
1904 struct extent_buffer *next;
1905
1906 next = path->nodes[orig_level];
1907
1908 btrfs_tree_lock(next);
1909 clean_tree_block(trans, log, next);
1910 btrfs_wait_tree_block_writeback(next);
1911 btrfs_tree_unlock(next);
1912
1913 if (orig_level == 0) {
1914 ret = btrfs_drop_leaf_ref(trans, log,
1915 next);
1916 BUG_ON(ret);
1917 }
1918 WARN_ON(log->root_key.objectid !=
1919 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1920 ret = btrfs_free_reserved_extent(log, next->start,
1921 next->len);
e02119d5
CM
1922 BUG_ON(ret);
1923 }
1924 }
1925
1926 for (i = 0; i <= orig_level; i++) {
1927 if (path->nodes[i]) {
1928 free_extent_buffer(path->nodes[i]);
1929 path->nodes[i] = NULL;
1930 }
1931 }
1932 btrfs_free_path(path);
1933 if (wc->free)
1934 free_extent_buffer(log->node);
1935 return ret;
1936}
1937
b2950863 1938static int wait_log_commit(struct btrfs_root *log)
e02119d5
CM
1939{
1940 DEFINE_WAIT(wait);
1941 u64 transid = log->fs_info->tree_log_transid;
1942
1943 do {
1944 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1945 TASK_UNINTERRUPTIBLE);
1946 mutex_unlock(&log->fs_info->tree_log_mutex);
1947 if (atomic_read(&log->fs_info->tree_log_commit))
1948 schedule();
1949 finish_wait(&log->fs_info->tree_log_wait, &wait);
1950 mutex_lock(&log->fs_info->tree_log_mutex);
1951 } while(transid == log->fs_info->tree_log_transid &&
1952 atomic_read(&log->fs_info->tree_log_commit));
1953 return 0;
1954}
1955
1956/*
1957 * btrfs_sync_log does sends a given tree log down to the disk and
1958 * updates the super blocks to record it. When this call is done,
1959 * you know that any inodes previously logged are safely on disk
1960 */
1961int btrfs_sync_log(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
1963{
1964 int ret;
1965 unsigned long batch;
1966 struct btrfs_root *log = root->log_root;
e02119d5
CM
1967
1968 mutex_lock(&log->fs_info->tree_log_mutex);
1969 if (atomic_read(&log->fs_info->tree_log_commit)) {
1970 wait_log_commit(log);
1971 goto out;
1972 }
1973 atomic_set(&log->fs_info->tree_log_commit, 1);
1974
1975 while(1) {
49eb7e46 1976 batch = log->fs_info->tree_log_batch;
e02119d5
CM
1977 mutex_unlock(&log->fs_info->tree_log_mutex);
1978 schedule_timeout_uninterruptible(1);
1979 mutex_lock(&log->fs_info->tree_log_mutex);
e02119d5
CM
1980
1981 while(atomic_read(&log->fs_info->tree_log_writers)) {
1982 DEFINE_WAIT(wait);
1983 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1984 TASK_UNINTERRUPTIBLE);
e02119d5
CM
1985 mutex_unlock(&log->fs_info->tree_log_mutex);
1986 if (atomic_read(&log->fs_info->tree_log_writers))
1987 schedule();
1988 mutex_lock(&log->fs_info->tree_log_mutex);
1989 finish_wait(&log->fs_info->tree_log_wait, &wait);
1990 }
1991 if (batch == log->fs_info->tree_log_batch)
1992 break;
1993 }
e02119d5 1994
d0c803c4 1995 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 1996 BUG_ON(ret);
d0c803c4
CM
1997 ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1998 &root->fs_info->log_root_tree->dirty_log_pages);
e02119d5
CM
1999 BUG_ON(ret);
2000
2001 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2002 log->fs_info->log_root_tree->node->start);
2003 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2004 btrfs_header_level(log->fs_info->log_root_tree->node));
2005
2006 write_ctree_super(trans, log->fs_info->tree_root);
2007 log->fs_info->tree_log_transid++;
2008 log->fs_info->tree_log_batch = 0;
2009 atomic_set(&log->fs_info->tree_log_commit, 0);
2010 smp_mb();
2011 if (waitqueue_active(&log->fs_info->tree_log_wait))
2012 wake_up(&log->fs_info->tree_log_wait);
2013out:
2014 mutex_unlock(&log->fs_info->tree_log_mutex);
2015 return 0;
2016
2017}
2018
3a5f1d45 2019/* * free all the extents used by the tree log. This should be called
e02119d5
CM
2020 * at commit time of the full transaction
2021 */
2022int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2023{
2024 int ret;
2025 struct btrfs_root *log;
2026 struct key;
d0c803c4
CM
2027 u64 start;
2028 u64 end;
e02119d5
CM
2029 struct walk_control wc = {
2030 .free = 1,
2031 .process_func = process_one_buffer
2032 };
2033
2034 if (!root->log_root)
2035 return 0;
2036
2037 log = root->log_root;
2038 ret = walk_log_tree(trans, log, &wc);
2039 BUG_ON(ret);
2040
d0c803c4
CM
2041 while(1) {
2042 ret = find_first_extent_bit(&log->dirty_log_pages,
2043 0, &start, &end, EXTENT_DIRTY);
2044 if (ret)
2045 break;
2046
2047 clear_extent_dirty(&log->dirty_log_pages,
2048 start, end, GFP_NOFS);
2049 }
2050
e02119d5
CM
2051 log = root->log_root;
2052 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2053 &log->root_key);
2054 BUG_ON(ret);
2055 root->log_root = NULL;
2056 kfree(root->log_root);
2057 return 0;
2058}
2059
2060/*
2061 * helper function to update the item for a given subvolumes log root
2062 * in the tree of log roots
2063 */
2064static int update_log_root(struct btrfs_trans_handle *trans,
2065 struct btrfs_root *log)
2066{
2067 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2068 int ret;
2069
2070 if (log->node->start == bytenr)
2071 return 0;
2072
2073 btrfs_set_root_bytenr(&log->root_item, log->node->start);
84234f3a 2074 btrfs_set_root_generation(&log->root_item, trans->transid);
e02119d5
CM
2075 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2076 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2077 &log->root_key, &log->root_item);
2078 BUG_ON(ret);
2079 return ret;
2080}
2081
2082/*
2083 * If both a file and directory are logged, and unlinks or renames are
2084 * mixed in, we have a few interesting corners:
2085 *
2086 * create file X in dir Y
2087 * link file X to X.link in dir Y
2088 * fsync file X
2089 * unlink file X but leave X.link
2090 * fsync dir Y
2091 *
2092 * After a crash we would expect only X.link to exist. But file X
2093 * didn't get fsync'd again so the log has back refs for X and X.link.
2094 *
2095 * We solve this by removing directory entries and inode backrefs from the
2096 * log when a file that was logged in the current transaction is
2097 * unlinked. Any later fsync will include the updated log entries, and
2098 * we'll be able to reconstruct the proper directory items from backrefs.
2099 *
2100 * This optimizations allows us to avoid relogging the entire inode
2101 * or the entire directory.
2102 */
2103int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2104 struct btrfs_root *root,
2105 const char *name, int name_len,
2106 struct inode *dir, u64 index)
2107{
2108 struct btrfs_root *log;
2109 struct btrfs_dir_item *di;
2110 struct btrfs_path *path;
2111 int ret;
2112 int bytes_del = 0;
2113
3a5f1d45
CM
2114 if (BTRFS_I(dir)->logged_trans < trans->transid)
2115 return 0;
2116
e02119d5
CM
2117 ret = join_running_log_trans(root);
2118 if (ret)
2119 return 0;
2120
2121 mutex_lock(&BTRFS_I(dir)->log_mutex);
2122
2123 log = root->log_root;
2124 path = btrfs_alloc_path();
2125 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2126 name, name_len, -1);
2127 if (di && !IS_ERR(di)) {
2128 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2129 bytes_del += name_len;
2130 BUG_ON(ret);
2131 }
2132 btrfs_release_path(log, path);
2133 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2134 index, name, name_len, -1);
2135 if (di && !IS_ERR(di)) {
2136 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2137 bytes_del += name_len;
2138 BUG_ON(ret);
2139 }
2140
2141 /* update the directory size in the log to reflect the names
2142 * we have removed
2143 */
2144 if (bytes_del) {
2145 struct btrfs_key key;
2146
2147 key.objectid = dir->i_ino;
2148 key.offset = 0;
2149 key.type = BTRFS_INODE_ITEM_KEY;
2150 btrfs_release_path(log, path);
2151
2152 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2153 if (ret == 0) {
2154 struct btrfs_inode_item *item;
2155 u64 i_size;
2156
2157 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2158 struct btrfs_inode_item);
2159 i_size = btrfs_inode_size(path->nodes[0], item);
2160 if (i_size > bytes_del)
2161 i_size -= bytes_del;
2162 else
2163 i_size = 0;
2164 btrfs_set_inode_size(path->nodes[0], item, i_size);
2165 btrfs_mark_buffer_dirty(path->nodes[0]);
2166 } else
2167 ret = 0;
2168 btrfs_release_path(log, path);
2169 }
2170
2171 btrfs_free_path(path);
2172 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2173 end_log_trans(root);
2174
2175 return 0;
2176}
2177
2178/* see comments for btrfs_del_dir_entries_in_log */
2179int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 const char *name, int name_len,
2182 struct inode *inode, u64 dirid)
2183{
2184 struct btrfs_root *log;
2185 u64 index;
2186 int ret;
2187
3a5f1d45
CM
2188 if (BTRFS_I(inode)->logged_trans < trans->transid)
2189 return 0;
2190
e02119d5
CM
2191 ret = join_running_log_trans(root);
2192 if (ret)
2193 return 0;
2194 log = root->log_root;
2195 mutex_lock(&BTRFS_I(inode)->log_mutex);
2196
2197 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2198 dirid, &index);
2199 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2200 end_log_trans(root);
2201
e02119d5
CM
2202 return ret;
2203}
2204
2205/*
2206 * creates a range item in the log for 'dirid'. first_offset and
2207 * last_offset tell us which parts of the key space the log should
2208 * be considered authoritative for.
2209 */
2210static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2211 struct btrfs_root *log,
2212 struct btrfs_path *path,
2213 int key_type, u64 dirid,
2214 u64 first_offset, u64 last_offset)
2215{
2216 int ret;
2217 struct btrfs_key key;
2218 struct btrfs_dir_log_item *item;
2219
2220 key.objectid = dirid;
2221 key.offset = first_offset;
2222 if (key_type == BTRFS_DIR_ITEM_KEY)
2223 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2224 else
2225 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2226 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2227 BUG_ON(ret);
2228
2229 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2230 struct btrfs_dir_log_item);
2231 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2232 btrfs_mark_buffer_dirty(path->nodes[0]);
2233 btrfs_release_path(log, path);
2234 return 0;
2235}
2236
2237/*
2238 * log all the items included in the current transaction for a given
2239 * directory. This also creates the range items in the log tree required
2240 * to replay anything deleted before the fsync
2241 */
2242static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2243 struct btrfs_root *root, struct inode *inode,
2244 struct btrfs_path *path,
2245 struct btrfs_path *dst_path, int key_type,
2246 u64 min_offset, u64 *last_offset_ret)
2247{
2248 struct btrfs_key min_key;
2249 struct btrfs_key max_key;
2250 struct btrfs_root *log = root->log_root;
2251 struct extent_buffer *src;
2252 int ret;
2253 int i;
2254 int nritems;
2255 u64 first_offset = min_offset;
2256 u64 last_offset = (u64)-1;
2257
2258 log = root->log_root;
2259 max_key.objectid = inode->i_ino;
2260 max_key.offset = (u64)-1;
2261 max_key.type = key_type;
2262
2263 min_key.objectid = inode->i_ino;
2264 min_key.type = key_type;
2265 min_key.offset = min_offset;
2266
2267 path->keep_locks = 1;
2268
2269 ret = btrfs_search_forward(root, &min_key, &max_key,
2270 path, 0, trans->transid);
2271
2272 /*
2273 * we didn't find anything from this transaction, see if there
2274 * is anything at all
2275 */
2276 if (ret != 0 || min_key.objectid != inode->i_ino ||
2277 min_key.type != key_type) {
2278 min_key.objectid = inode->i_ino;
2279 min_key.type = key_type;
2280 min_key.offset = (u64)-1;
2281 btrfs_release_path(root, path);
2282 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2283 if (ret < 0) {
2284 btrfs_release_path(root, path);
2285 return ret;
2286 }
2287 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2288
2289 /* if ret == 0 there are items for this type,
2290 * create a range to tell us the last key of this type.
2291 * otherwise, there are no items in this directory after
2292 * *min_offset, and we create a range to indicate that.
2293 */
2294 if (ret == 0) {
2295 struct btrfs_key tmp;
2296 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2297 path->slots[0]);
2298 if (key_type == tmp.type) {
2299 first_offset = max(min_offset, tmp.offset) + 1;
2300 }
2301 }
2302 goto done;
2303 }
2304
2305 /* go backward to find any previous key */
2306 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2307 if (ret == 0) {
2308 struct btrfs_key tmp;
2309 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2310 if (key_type == tmp.type) {
2311 first_offset = tmp.offset;
2312 ret = overwrite_item(trans, log, dst_path,
2313 path->nodes[0], path->slots[0],
2314 &tmp);
2315 }
2316 }
2317 btrfs_release_path(root, path);
2318
2319 /* find the first key from this transaction again */
2320 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2321 if (ret != 0) {
2322 WARN_ON(1);
2323 goto done;
2324 }
2325
2326 /*
2327 * we have a block from this transaction, log every item in it
2328 * from our directory
2329 */
2330 while(1) {
2331 struct btrfs_key tmp;
2332 src = path->nodes[0];
2333 nritems = btrfs_header_nritems(src);
2334 for (i = path->slots[0]; i < nritems; i++) {
2335 btrfs_item_key_to_cpu(src, &min_key, i);
2336
2337 if (min_key.objectid != inode->i_ino ||
2338 min_key.type != key_type)
2339 goto done;
2340 ret = overwrite_item(trans, log, dst_path, src, i,
2341 &min_key);
2342 BUG_ON(ret);
2343 }
2344 path->slots[0] = nritems;
2345
2346 /*
2347 * look ahead to the next item and see if it is also
2348 * from this directory and from this transaction
2349 */
2350 ret = btrfs_next_leaf(root, path);
2351 if (ret == 1) {
2352 last_offset = (u64)-1;
2353 goto done;
2354 }
2355 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2356 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2357 last_offset = (u64)-1;
2358 goto done;
2359 }
2360 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2361 ret = overwrite_item(trans, log, dst_path,
2362 path->nodes[0], path->slots[0],
2363 &tmp);
2364
2365 BUG_ON(ret);
2366 last_offset = tmp.offset;
2367 goto done;
2368 }
2369 }
2370done:
2371 *last_offset_ret = last_offset;
2372 btrfs_release_path(root, path);
2373 btrfs_release_path(log, dst_path);
2374
2375 /* insert the log range keys to indicate where the log is valid */
2376 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2377 first_offset, last_offset);
2378 BUG_ON(ret);
2379 return 0;
2380}
2381
2382/*
2383 * logging directories is very similar to logging inodes, We find all the items
2384 * from the current transaction and write them to the log.
2385 *
2386 * The recovery code scans the directory in the subvolume, and if it finds a
2387 * key in the range logged that is not present in the log tree, then it means
2388 * that dir entry was unlinked during the transaction.
2389 *
2390 * In order for that scan to work, we must include one key smaller than
2391 * the smallest logged by this transaction and one key larger than the largest
2392 * key logged by this transaction.
2393 */
2394static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2395 struct btrfs_root *root, struct inode *inode,
2396 struct btrfs_path *path,
2397 struct btrfs_path *dst_path)
2398{
2399 u64 min_key;
2400 u64 max_key;
2401 int ret;
2402 int key_type = BTRFS_DIR_ITEM_KEY;
2403
2404again:
2405 min_key = 0;
2406 max_key = 0;
2407 while(1) {
2408 ret = log_dir_items(trans, root, inode, path,
2409 dst_path, key_type, min_key,
2410 &max_key);
2411 BUG_ON(ret);
2412 if (max_key == (u64)-1)
2413 break;
2414 min_key = max_key + 1;
2415 }
2416
2417 if (key_type == BTRFS_DIR_ITEM_KEY) {
2418 key_type = BTRFS_DIR_INDEX_KEY;
2419 goto again;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * a helper function to drop items from the log before we relog an
2426 * inode. max_key_type indicates the highest item type to remove.
2427 * This cannot be run for file data extents because it does not
2428 * free the extents they point to.
2429 */
2430static int drop_objectid_items(struct btrfs_trans_handle *trans,
2431 struct btrfs_root *log,
2432 struct btrfs_path *path,
2433 u64 objectid, int max_key_type)
2434{
2435 int ret;
2436 struct btrfs_key key;
2437 struct btrfs_key found_key;
2438
2439 key.objectid = objectid;
2440 key.type = max_key_type;
2441 key.offset = (u64)-1;
2442
2443 while(1) {
2444 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2445
2446 if (ret != 1)
2447 break;
2448
2449 if (path->slots[0] == 0)
2450 break;
2451
2452 path->slots[0]--;
2453 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2454 path->slots[0]);
2455
2456 if (found_key.objectid != objectid)
2457 break;
2458
2459 ret = btrfs_del_item(trans, log, path);
2460 BUG_ON(ret);
2461 btrfs_release_path(log, path);
2462 }
2463 btrfs_release_path(log, path);
2464 return 0;
2465}
2466
31ff1cd2
CM
2467static noinline int copy_items(struct btrfs_trans_handle *trans,
2468 struct btrfs_root *log,
2469 struct btrfs_path *dst_path,
2470 struct extent_buffer *src,
2471 int start_slot, int nr, int inode_only)
2472{
2473 unsigned long src_offset;
2474 unsigned long dst_offset;
2475 struct btrfs_file_extent_item *extent;
2476 struct btrfs_inode_item *inode_item;
2477 int ret;
2478 struct btrfs_key *ins_keys;
2479 u32 *ins_sizes;
2480 char *ins_data;
2481 int i;
2482
2483 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2484 nr * sizeof(u32), GFP_NOFS);
2485 ins_sizes = (u32 *)ins_data;
2486 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2487
2488 for (i = 0; i < nr; i++) {
2489 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2490 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2491 }
2492 ret = btrfs_insert_empty_items(trans, log, dst_path,
2493 ins_keys, ins_sizes, nr);
2494 BUG_ON(ret);
2495
2496 for (i = 0; i < nr; i++) {
2497 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2498 dst_path->slots[0]);
2499
2500 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2501
2502 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2503 src_offset, ins_sizes[i]);
2504
2505 if (inode_only == LOG_INODE_EXISTS &&
2506 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2507 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2508 dst_path->slots[0],
2509 struct btrfs_inode_item);
2510 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2511
2512 /* set the generation to zero so the recover code
2513 * can tell the difference between an logging
2514 * just to say 'this inode exists' and a logging
2515 * to say 'update this inode with these values'
2516 */
2517 btrfs_set_inode_generation(dst_path->nodes[0],
2518 inode_item, 0);
2519 }
2520 /* take a reference on file data extents so that truncates
2521 * or deletes of this inode don't have to relog the inode
2522 * again
2523 */
2524 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2525 int found_type;
2526 extent = btrfs_item_ptr(src, start_slot + i,
2527 struct btrfs_file_extent_item);
2528
2529 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2530 if (found_type == BTRFS_FILE_EXTENT_REG ||
2531 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
31ff1cd2
CM
2532 u64 ds = btrfs_file_extent_disk_bytenr(src,
2533 extent);
2534 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2535 extent);
2536 /* ds == 0 is a hole */
2537 if (ds != 0) {
2538 ret = btrfs_inc_extent_ref(trans, log,
2539 ds, dl,
31840ae1 2540 dst_path->nodes[0]->start,
31ff1cd2 2541 BTRFS_TREE_LOG_OBJECTID,
31840ae1 2542 trans->transid,
3bb1a1bc 2543 ins_keys[i].objectid);
31ff1cd2
CM
2544 BUG_ON(ret);
2545 }
2546 }
2547 }
2548 dst_path->slots[0]++;
2549 }
2550
2551 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2552 btrfs_release_path(log, dst_path);
2553 kfree(ins_data);
2554 return 0;
2555}
2556
e02119d5
CM
2557/* log a single inode in the tree log.
2558 * At least one parent directory for this inode must exist in the tree
2559 * or be logged already.
2560 *
2561 * Any items from this inode changed by the current transaction are copied
2562 * to the log tree. An extra reference is taken on any extents in this
2563 * file, allowing us to avoid a whole pile of corner cases around logging
2564 * blocks that have been removed from the tree.
2565 *
2566 * See LOG_INODE_ALL and related defines for a description of what inode_only
2567 * does.
2568 *
2569 * This handles both files and directories.
2570 */
2571static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2572 struct btrfs_root *root, struct inode *inode,
2573 int inode_only)
2574{
2575 struct btrfs_path *path;
2576 struct btrfs_path *dst_path;
2577 struct btrfs_key min_key;
2578 struct btrfs_key max_key;
2579 struct btrfs_root *log = root->log_root;
31ff1cd2 2580 struct extent_buffer *src = NULL;
e02119d5
CM
2581 u32 size;
2582 int ret;
3a5f1d45 2583 int nritems;
31ff1cd2
CM
2584 int ins_start_slot = 0;
2585 int ins_nr;
e02119d5
CM
2586
2587 log = root->log_root;
2588
2589 path = btrfs_alloc_path();
2590 dst_path = btrfs_alloc_path();
2591
2592 min_key.objectid = inode->i_ino;
2593 min_key.type = BTRFS_INODE_ITEM_KEY;
2594 min_key.offset = 0;
2595
2596 max_key.objectid = inode->i_ino;
2597 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2598 max_key.type = BTRFS_XATTR_ITEM_KEY;
2599 else
2600 max_key.type = (u8)-1;
2601 max_key.offset = (u64)-1;
2602
2603 /*
2604 * if this inode has already been logged and we're in inode_only
2605 * mode, we don't want to delete the things that have already
2606 * been written to the log.
2607 *
2608 * But, if the inode has been through an inode_only log,
2609 * the logged_trans field is not set. This allows us to catch
2610 * any new names for this inode in the backrefs by logging it
2611 * again
2612 */
2613 if (inode_only == LOG_INODE_EXISTS &&
2614 BTRFS_I(inode)->logged_trans == trans->transid) {
2615 btrfs_free_path(path);
2616 btrfs_free_path(dst_path);
2617 goto out;
2618 }
2619 mutex_lock(&BTRFS_I(inode)->log_mutex);
2620
2621 /*
2622 * a brute force approach to making sure we get the most uptodate
2623 * copies of everything.
2624 */
2625 if (S_ISDIR(inode->i_mode)) {
2626 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2627
2628 if (inode_only == LOG_INODE_EXISTS)
2629 max_key_type = BTRFS_XATTR_ITEM_KEY;
2630 ret = drop_objectid_items(trans, log, path,
2631 inode->i_ino, max_key_type);
2632 } else {
2633 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2634 }
2635 BUG_ON(ret);
2636 path->keep_locks = 1;
2637
2638 while(1) {
31ff1cd2 2639 ins_nr = 0;
e02119d5
CM
2640 ret = btrfs_search_forward(root, &min_key, &max_key,
2641 path, 0, trans->transid);
2642 if (ret != 0)
2643 break;
3a5f1d45 2644again:
31ff1cd2 2645 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2646 if (min_key.objectid != inode->i_ino)
2647 break;
2648 if (min_key.type > max_key.type)
2649 break;
31ff1cd2 2650
e02119d5
CM
2651 src = path->nodes[0];
2652 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2653 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2654 ins_nr++;
2655 goto next_slot;
2656 } else if (!ins_nr) {
2657 ins_start_slot = path->slots[0];
2658 ins_nr = 1;
2659 goto next_slot;
e02119d5
CM
2660 }
2661
31ff1cd2
CM
2662 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2663 ins_nr, inode_only);
2664 BUG_ON(ret);
2665 ins_nr = 1;
2666 ins_start_slot = path->slots[0];
2667next_slot:
e02119d5 2668
3a5f1d45
CM
2669 nritems = btrfs_header_nritems(path->nodes[0]);
2670 path->slots[0]++;
2671 if (path->slots[0] < nritems) {
2672 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2673 path->slots[0]);
2674 goto again;
2675 }
31ff1cd2
CM
2676 if (ins_nr) {
2677 ret = copy_items(trans, log, dst_path, src,
2678 ins_start_slot,
2679 ins_nr, inode_only);
2680 BUG_ON(ret);
2681 ins_nr = 0;
2682 }
3a5f1d45
CM
2683 btrfs_release_path(root, path);
2684
e02119d5
CM
2685 if (min_key.offset < (u64)-1)
2686 min_key.offset++;
2687 else if (min_key.type < (u8)-1)
2688 min_key.type++;
2689 else if (min_key.objectid < (u64)-1)
2690 min_key.objectid++;
2691 else
2692 break;
2693 }
31ff1cd2
CM
2694 if (ins_nr) {
2695 ret = copy_items(trans, log, dst_path, src,
2696 ins_start_slot,
2697 ins_nr, inode_only);
2698 BUG_ON(ret);
2699 ins_nr = 0;
2700 }
2701 WARN_ON(ins_nr);
9623f9a3 2702 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2703 btrfs_release_path(root, path);
2704 btrfs_release_path(log, dst_path);
49eb7e46 2705 BTRFS_I(inode)->log_dirty_trans = 0;
e02119d5
CM
2706 ret = log_directory_changes(trans, root, inode, path, dst_path);
2707 BUG_ON(ret);
2708 }
3a5f1d45 2709 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2710 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2711
2712 btrfs_free_path(path);
2713 btrfs_free_path(dst_path);
2714
2715 mutex_lock(&root->fs_info->tree_log_mutex);
2716 ret = update_log_root(trans, log);
2717 BUG_ON(ret);
2718 mutex_unlock(&root->fs_info->tree_log_mutex);
2719out:
2720 return 0;
2721}
2722
2723int btrfs_log_inode(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root, struct inode *inode,
2725 int inode_only)
2726{
2727 int ret;
2728
2729 start_log_trans(trans, root);
2730 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2731 end_log_trans(root);
2732 return ret;
2733}
2734
2735/*
2736 * helper function around btrfs_log_inode to make sure newly created
2737 * parent directories also end up in the log. A minimal inode and backref
2738 * only logging is done of any parent directories that are older than
2739 * the last committed transaction
2740 */
2741int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2742 struct btrfs_root *root, struct dentry *dentry)
2743{
2744 int inode_only = LOG_INODE_ALL;
2745 struct super_block *sb;
2746 int ret;
2747
2748 start_log_trans(trans, root);
2749 sb = dentry->d_inode->i_sb;
2750 while(1) {
2751 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2752 inode_only);
2753 BUG_ON(ret);
2754 inode_only = LOG_INODE_EXISTS;
2755
2756 dentry = dentry->d_parent;
2757 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2758 break;
2759
2760 if (BTRFS_I(dentry->d_inode)->generation <=
2761 root->fs_info->last_trans_committed)
2762 break;
2763 }
2764 end_log_trans(root);
2765 return 0;
2766}
2767
2768/*
2769 * it is not safe to log dentry if the chunk root has added new
2770 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2771 * If this returns 1, you must commit the transaction to safely get your
2772 * data on disk.
2773 */
2774int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root, struct dentry *dentry)
2776{
2777 u64 gen;
2778 gen = root->fs_info->last_trans_new_blockgroup;
2779 if (gen > root->fs_info->last_trans_committed)
2780 return 1;
2781 else
2782 return btrfs_log_dentry(trans, root, dentry);
2783}
2784
2785/*
2786 * should be called during mount to recover any replay any log trees
2787 * from the FS
2788 */
2789int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2790{
2791 int ret;
2792 struct btrfs_path *path;
2793 struct btrfs_trans_handle *trans;
2794 struct btrfs_key key;
2795 struct btrfs_key found_key;
2796 struct btrfs_key tmp_key;
2797 struct btrfs_root *log;
2798 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
8d5bf1cb 2799 u64 highest_inode;
e02119d5
CM
2800 struct walk_control wc = {
2801 .process_func = process_one_buffer,
2802 .stage = 0,
2803 };
2804
2805 fs_info->log_root_recovering = 1;
2806 path = btrfs_alloc_path();
2807 BUG_ON(!path);
2808
2809 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2810
2811 wc.trans = trans;
2812 wc.pin = 1;
2813
2814 walk_log_tree(trans, log_root_tree, &wc);
2815
2816again:
2817 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2818 key.offset = (u64)-1;
2819 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2820
2821 while(1) {
2822 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2823 if (ret < 0)
2824 break;
2825 if (ret > 0) {
2826 if (path->slots[0] == 0)
2827 break;
2828 path->slots[0]--;
2829 }
2830 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2831 path->slots[0]);
2832 btrfs_release_path(log_root_tree, path);
2833 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2834 break;
2835
2836 log = btrfs_read_fs_root_no_radix(log_root_tree,
2837 &found_key);
2838 BUG_ON(!log);
2839
2840
2841 tmp_key.objectid = found_key.offset;
2842 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2843 tmp_key.offset = (u64)-1;
2844
2845 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2846
2847 BUG_ON(!wc.replay_dest);
2848
2849 btrfs_record_root_in_trans(wc.replay_dest);
2850 ret = walk_log_tree(trans, log, &wc);
2851 BUG_ON(ret);
2852
2853 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2854 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2855 path);
2856 BUG_ON(ret);
2857 }
8d5bf1cb
CM
2858 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2859 if (ret == 0) {
2860 wc.replay_dest->highest_inode = highest_inode;
2861 wc.replay_dest->last_inode_alloc = highest_inode;
2862 }
e02119d5
CM
2863
2864 key.offset = found_key.offset - 1;
2865 free_extent_buffer(log->node);
2866 kfree(log);
2867
2868 if (found_key.offset == 0)
2869 break;
2870 }
2871 btrfs_release_path(log_root_tree, path);
2872
2873 /* step one is to pin it all, step two is to replay just inodes */
2874 if (wc.pin) {
2875 wc.pin = 0;
2876 wc.process_func = replay_one_buffer;
2877 wc.stage = LOG_WALK_REPLAY_INODES;
2878 goto again;
2879 }
2880 /* step three is to replay everything */
2881 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2882 wc.stage++;
2883 goto again;
2884 }
2885
2886 btrfs_free_path(path);
2887
2888 free_extent_buffer(log_root_tree->node);
2889 log_root_tree->log_root = NULL;
2890 fs_info->log_root_recovering = 0;
2891
2892 /* step 4: commit the transaction, which also unpins the blocks */
2893 btrfs_commit_transaction(trans, fs_info->tree_root);
2894
2895 kfree(log_root_tree);
2896 return 0;
2897}