btrfs: raid56: make error_bitmap update atomic
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
c7f13d42 24#include "fs.h"
ad1ac501 25#include "accessors.h"
a0231804 26#include "extent-tree.h"
45c40c8f 27#include "root-tree.h"
f2b39277 28#include "dir-item.h"
7c8ede16 29#include "file-item.h"
af142b6f 30#include "file.h"
aa5d3003 31#include "orphan.h"
103c1972 32#include "tree-checker.h"
e02119d5 33
e09d94c9
FM
34#define MAX_CONFLICT_INODES 10
35
e02119d5
CM
36/* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
e13976cf
DS
42enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
e13976cf 45};
e02119d5 46
12fcfd22
CM
47/*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
e02119d5
CM
90/*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
e13976cf
DS
99enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104};
e02119d5 105
12fcfd22 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 107 struct btrfs_inode *inode,
49dae1bc 108 int inode_only,
8407f553 109 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
fa1a0f42 118static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
119
120/*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
e02119d5
CM
143/*
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
147 */
148static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
e02119d5 151{
0b246afa 152 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 153 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 154 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 155 int ret = 0;
fa1a0f42 156 bool created = false;
7237f183 157
47876f7c
FM
158 /*
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
161 */
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 166 if (!ret) {
47876f7c 167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
168 created = true;
169 }
47876f7c
FM
170 }
171 mutex_unlock(&tree_root->log_mutex);
172 if (ret)
173 return ret;
174 }
175
7237f183 176 mutex_lock(&root->log_mutex);
34eb2a52 177
fa1a0f42 178again:
7237f183 179 if (root->log_root) {
fa1a0f42
NA
180 int index = (root->log_transid + 1) % 2;
181
4884b8e8 182 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 183 ret = BTRFS_LOG_FORCE_COMMIT;
50471a38
MX
184 goto out;
185 }
34eb2a52 186
fa1a0f42
NA
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
189 goto again;
190 }
191
ff782e0a 192 if (!root->log_start_pid) {
27cdeb70 193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 194 root->log_start_pid = current->pid;
ff782e0a 195 } else if (root->log_start_pid != current->pid) {
27cdeb70 196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 197 }
34eb2a52 198 } else {
fa1a0f42
NA
199 /*
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
203 * writing.
204 */
205 if (zoned && !created) {
f31f09f6 206 ret = BTRFS_LOG_FORCE_COMMIT;
fa1a0f42
NA
207 goto out;
208 }
209
e02119d5 210 ret = btrfs_add_log_tree(trans, root);
4a500fd1 211 if (ret)
e87ac136 212 goto out;
34eb2a52 213
e7a79811 214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
e02119d5 217 }
34eb2a52 218
7237f183 219 atomic_inc(&root->log_writers);
289cffcb 220 if (!ctx->logging_new_name) {
34eb2a52 221 int index = root->log_transid % 2;
8b050d35 222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 223 ctx->log_transid = root->log_transid;
8b050d35 224 }
34eb2a52 225
e87ac136 226out:
7237f183 227 mutex_unlock(&root->log_mutex);
e87ac136 228 return ret;
e02119d5
CM
229}
230
231/*
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
234 * in progress
235 */
236static int join_running_log_trans(struct btrfs_root *root)
237{
fa1a0f42 238 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
239 int ret = -ENOENT;
240
e7a79811
FM
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 return ret;
243
7237f183 244 mutex_lock(&root->log_mutex);
fa1a0f42 245again:
e02119d5 246 if (root->log_root) {
fa1a0f42
NA
247 int index = (root->log_transid + 1) % 2;
248
e02119d5 249 ret = 0;
fa1a0f42
NA
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
252 goto again;
253 }
7237f183 254 atomic_inc(&root->log_writers);
e02119d5 255 }
7237f183 256 mutex_unlock(&root->log_mutex);
e02119d5
CM
257 return ret;
258}
259
12fcfd22
CM
260/*
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
264 */
45128b08 265void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 266{
12fcfd22 267 atomic_inc(&root->log_writers);
12fcfd22
CM
268}
269
e02119d5
CM
270/*
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
273 */
143bede5 274void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 275{
7237f183 276 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 279 }
e02119d5
CM
280}
281
247462a5
DS
282static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
283{
284 filemap_fdatawait_range(buf->pages[0]->mapping,
285 buf->start, buf->start + buf->len - 1);
286}
e02119d5
CM
287
288/*
289 * the walk control struct is used to pass state down the chain when
290 * processing the log tree. The stage field tells us which part
291 * of the log tree processing we are currently doing. The others
292 * are state fields used for that specific part
293 */
294struct walk_control {
295 /* should we free the extent on disk when done? This is used
296 * at transaction commit time while freeing a log tree
297 */
298 int free;
299
e02119d5
CM
300 /* pin only walk, we record which extents on disk belong to the
301 * log trees
302 */
303 int pin;
304
305 /* what stage of the replay code we're currently in */
306 int stage;
307
f2d72f42
FM
308 /*
309 * Ignore any items from the inode currently being processed. Needs
310 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 * the LOG_WALK_REPLAY_INODES stage.
312 */
313 bool ignore_cur_inode;
314
e02119d5
CM
315 /* the root we are currently replaying */
316 struct btrfs_root *replay_dest;
317
318 /* the trans handle for the current replay */
319 struct btrfs_trans_handle *trans;
320
321 /* the function that gets used to process blocks we find in the
322 * tree. Note the extent_buffer might not be up to date when it is
323 * passed in, and it must be checked or read if you need the data
324 * inside it
325 */
326 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 327 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
328};
329
330/*
331 * process_func used to pin down extents, write them or wait on them
332 */
333static int process_one_buffer(struct btrfs_root *log,
334 struct extent_buffer *eb,
581c1760 335 struct walk_control *wc, u64 gen, int level)
e02119d5 336{
0b246afa 337 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
338 int ret = 0;
339
8c2a1a30
JB
340 /*
341 * If this fs is mixed then we need to be able to process the leaves to
342 * pin down any logged extents, so we have to read the block.
343 */
0b246afa 344 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
789d6a3a
QW
345 struct btrfs_tree_parent_check check = {
346 .level = level,
347 .transid = gen
348 };
349
350 ret = btrfs_read_extent_buffer(eb, &check);
8c2a1a30
JB
351 if (ret)
352 return ret;
353 }
354
c816d705 355 if (wc->pin) {
9fce5704 356 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 357 eb->len);
c816d705
FM
358 if (ret)
359 return ret;
e02119d5 360
c816d705
FM
361 if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 btrfs_header_level(eb) == 0)
bcdc428c 363 ret = btrfs_exclude_logged_extents(eb);
e02119d5 364 }
b50c6e25 365 return ret;
e02119d5
CM
366}
367
3a8d1db3
FM
368/*
369 * Item overwrite used by replay and tree logging. eb, slot and key all refer
370 * to the src data we are copying out.
371 *
372 * root is the tree we are copying into, and path is a scratch
373 * path for use in this function (it should be released on entry and
374 * will be released on exit).
375 *
376 * If the key is already in the destination tree the existing item is
377 * overwritten. If the existing item isn't big enough, it is extended.
378 * If it is too large, it is truncated.
379 *
380 * If the key isn't in the destination yet, a new item is inserted.
381 */
382static int overwrite_item(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct btrfs_path *path,
385 struct extent_buffer *eb, int slot,
386 struct btrfs_key *key)
e02119d5
CM
387{
388 int ret;
389 u32 item_size;
390 u64 saved_i_size = 0;
391 int save_old_i_size = 0;
392 unsigned long src_ptr;
393 unsigned long dst_ptr;
4bc4bee4 394 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5 395
3eb42344
FM
396 /*
397 * This is only used during log replay, so the root is always from a
398 * fs/subvolume tree. In case we ever need to support a log root, then
399 * we'll have to clone the leaf in the path, release the path and use
400 * the leaf before writing into the log tree. See the comments at
401 * copy_items() for more details.
402 */
403 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
e02119d5 404
3212fa14 405 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
406 src_ptr = btrfs_item_ptr_offset(eb, slot);
407
3a8d1db3
FM
408 /* Look for the key in the destination tree. */
409 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 if (ret < 0)
411 return ret;
4bc4bee4 412
e02119d5
CM
413 if (ret == 0) {
414 char *src_copy;
415 char *dst_copy;
3212fa14 416 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
417 path->slots[0]);
418 if (dst_size != item_size)
419 goto insert;
420
421 if (item_size == 0) {
b3b4aa74 422 btrfs_release_path(path);
e02119d5
CM
423 return 0;
424 }
425 dst_copy = kmalloc(item_size, GFP_NOFS);
426 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 427 if (!dst_copy || !src_copy) {
b3b4aa74 428 btrfs_release_path(path);
2a29edc6 429 kfree(dst_copy);
430 kfree(src_copy);
431 return -ENOMEM;
432 }
e02119d5
CM
433
434 read_extent_buffer(eb, src_copy, src_ptr, item_size);
435
436 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
438 item_size);
439 ret = memcmp(dst_copy, src_copy, item_size);
440
441 kfree(dst_copy);
442 kfree(src_copy);
443 /*
444 * they have the same contents, just return, this saves
445 * us from cowing blocks in the destination tree and doing
446 * extra writes that may not have been done by a previous
447 * sync
448 */
449 if (ret == 0) {
b3b4aa74 450 btrfs_release_path(path);
e02119d5
CM
451 return 0;
452 }
453
4bc4bee4
JB
454 /*
455 * We need to load the old nbytes into the inode so when we
456 * replay the extents we've logged we get the right nbytes.
457 */
458 if (inode_item) {
459 struct btrfs_inode_item *item;
460 u64 nbytes;
d555438b 461 u32 mode;
4bc4bee4
JB
462
463 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 struct btrfs_inode_item);
465 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 item = btrfs_item_ptr(eb, slot,
467 struct btrfs_inode_item);
468 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
469
470 /*
471 * If this is a directory we need to reset the i_size to
472 * 0 so that we can set it up properly when replaying
473 * the rest of the items in this log.
474 */
475 mode = btrfs_inode_mode(eb, item);
476 if (S_ISDIR(mode))
477 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
478 }
479 } else if (inode_item) {
480 struct btrfs_inode_item *item;
d555438b 481 u32 mode;
4bc4bee4
JB
482
483 /*
484 * New inode, set nbytes to 0 so that the nbytes comes out
485 * properly when we replay the extents.
486 */
487 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
489
490 /*
491 * If this is a directory we need to reset the i_size to 0 so
492 * that we can set it up properly when replaying the rest of
493 * the items in this log.
494 */
495 mode = btrfs_inode_mode(eb, item);
496 if (S_ISDIR(mode))
497 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
498 }
499insert:
b3b4aa74 500 btrfs_release_path(path);
e02119d5 501 /* try to insert the key into the destination tree */
df8d116f 502 path->skip_release_on_error = 1;
e02119d5
CM
503 ret = btrfs_insert_empty_item(trans, root, path,
504 key, item_size);
df8d116f 505 path->skip_release_on_error = 0;
e02119d5
CM
506
507 /* make sure any existing item is the correct size */
df8d116f 508 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 509 u32 found_size;
3212fa14 510 found_size = btrfs_item_size(path->nodes[0],
e02119d5 511 path->slots[0]);
143bede5 512 if (found_size > item_size)
78ac4f9e 513 btrfs_truncate_item(path, item_size, 1);
143bede5 514 else if (found_size < item_size)
c71dd880 515 btrfs_extend_item(path, item_size - found_size);
e02119d5 516 } else if (ret) {
4a500fd1 517 return ret;
e02119d5
CM
518 }
519 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 path->slots[0]);
521
522 /* don't overwrite an existing inode if the generation number
523 * was logged as zero. This is done when the tree logging code
524 * is just logging an inode to make sure it exists after recovery.
525 *
526 * Also, don't overwrite i_size on directories during replay.
527 * log replay inserts and removes directory items based on the
528 * state of the tree found in the subvolume, and i_size is modified
529 * as it goes
530 */
531 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 struct btrfs_inode_item *src_item;
533 struct btrfs_inode_item *dst_item;
534
535 src_item = (struct btrfs_inode_item *)src_ptr;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537
1a4bcf47
FM
538 if (btrfs_inode_generation(eb, src_item) == 0) {
539 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 540 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 541
2f2ff0ee
FM
542 /*
543 * For regular files an ino_size == 0 is used only when
544 * logging that an inode exists, as part of a directory
545 * fsync, and the inode wasn't fsynced before. In this
546 * case don't set the size of the inode in the fs/subvol
547 * tree, otherwise we would be throwing valid data away.
548 */
1a4bcf47 549 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 550 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
551 ino_size != 0)
552 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 553 goto no_copy;
1a4bcf47 554 }
e02119d5 555
3eb42344 556 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
e02119d5
CM
557 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 save_old_i_size = 1;
559 saved_i_size = btrfs_inode_size(path->nodes[0],
560 dst_item);
561 }
562 }
563
564 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
565 src_ptr, item_size);
566
567 if (save_old_i_size) {
568 struct btrfs_inode_item *dst_item;
569 dst_item = (struct btrfs_inode_item *)dst_ptr;
570 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
571 }
572
573 /* make sure the generation is filled in */
574 if (key->type == BTRFS_INODE_ITEM_KEY) {
575 struct btrfs_inode_item *dst_item;
576 dst_item = (struct btrfs_inode_item *)dst_ptr;
577 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 btrfs_set_inode_generation(path->nodes[0], dst_item,
579 trans->transid);
580 }
581 }
582no_copy:
583 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 584 btrfs_release_path(path);
e02119d5
CM
585 return 0;
586}
587
e43eec81 588static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
6db75318 589 struct fscrypt_str *name)
e43eec81
STD
590{
591 char *buf;
592
593 buf = kmalloc(len, GFP_NOFS);
594 if (!buf)
595 return -ENOMEM;
596
597 read_extent_buffer(eb, buf, (unsigned long)start, len);
598 name->name = buf;
599 name->len = len;
600 return 0;
601}
602
e02119d5
CM
603/*
604 * simple helper to read an inode off the disk from a given root
605 * This can only be called for subvolume roots and not for the log
606 */
607static noinline struct inode *read_one_inode(struct btrfs_root *root,
608 u64 objectid)
609{
610 struct inode *inode;
e02119d5 611
0202e83f 612 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 613 if (IS_ERR(inode))
5d4f98a2 614 inode = NULL;
e02119d5
CM
615 return inode;
616}
617
618/* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
620 * on exit.
621 *
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
626 *
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
629 */
630static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
635{
5893dfb9 636 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 637 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 638 int found_type;
e02119d5 639 u64 extent_end;
e02119d5 640 u64 start = key->offset;
4bc4bee4 641 u64 nbytes = 0;
e02119d5
CM
642 struct btrfs_file_extent_item *item;
643 struct inode *inode = NULL;
644 unsigned long size;
645 int ret = 0;
646
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
649
d899e052 650 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
654
655 /*
656 * We don't add to the inodes nbytes if we are prealloc or a
657 * hole.
658 */
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 nbytes = 0;
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 662 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 664 extent_end = ALIGN(start + size,
0b246afa 665 fs_info->sectorsize);
e02119d5
CM
666 } else {
667 ret = 0;
668 goto out;
669 }
670
671 inode = read_one_inode(root, key->objectid);
672 if (!inode) {
673 ret = -EIO;
674 goto out;
675 }
676
677 /*
678 * first check to see if we already have this extent in the
679 * file. This must be done before the btrfs_drop_extents run
680 * so we don't try to drop this extent.
681 */
f85b7379
DS
682 ret = btrfs_lookup_file_extent(trans, root, path,
683 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 684
d899e052
YZ
685 if (ret == 0 &&
686 (found_type == BTRFS_FILE_EXTENT_REG ||
687 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
688 struct btrfs_file_extent_item cmp1;
689 struct btrfs_file_extent_item cmp2;
690 struct btrfs_file_extent_item *existing;
691 struct extent_buffer *leaf;
692
693 leaf = path->nodes[0];
694 existing = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_file_extent_item);
696
697 read_extent_buffer(eb, &cmp1, (unsigned long)item,
698 sizeof(cmp1));
699 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
700 sizeof(cmp2));
701
702 /*
703 * we already have a pointer to this exact extent,
704 * we don't have to do anything
705 */
706 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 707 btrfs_release_path(path);
e02119d5
CM
708 goto out;
709 }
710 }
b3b4aa74 711 btrfs_release_path(path);
e02119d5
CM
712
713 /* drop any overlapping extents */
5893dfb9
FM
714 drop_args.start = start;
715 drop_args.end = extent_end;
716 drop_args.drop_cache = true;
717 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
718 if (ret)
719 goto out;
e02119d5 720
07d400a6
YZ
721 if (found_type == BTRFS_FILE_EXTENT_REG ||
722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 723 u64 offset;
07d400a6
YZ
724 unsigned long dest_offset;
725 struct btrfs_key ins;
726
3168021c
FM
727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 btrfs_fs_incompat(fs_info, NO_HOLES))
729 goto update_inode;
730
07d400a6
YZ
731 ret = btrfs_insert_empty_item(trans, root, path, key,
732 sizeof(*item));
3650860b
JB
733 if (ret)
734 goto out;
07d400a6
YZ
735 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
736 path->slots[0]);
737 copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 (unsigned long)item, sizeof(*item));
739
740 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 743 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 744
df2c95f3
QW
745 /*
746 * Manually record dirty extent, as here we did a shallow
747 * file extent item copy and skip normal backref update,
748 * but modifying extent tree all by ourselves.
749 * So need to manually record dirty extent for qgroup,
750 * as the owner of the file extent changed from log tree
751 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
752 */
a95f3aaf 753 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3 754 btrfs_file_extent_disk_bytenr(eb, item),
e2896e79 755 btrfs_file_extent_disk_num_bytes(eb, item));
df2c95f3
QW
756 if (ret < 0)
757 goto out;
758
07d400a6 759 if (ins.objectid > 0) {
82fa113f 760 struct btrfs_ref ref = { 0 };
07d400a6
YZ
761 u64 csum_start;
762 u64 csum_end;
763 LIST_HEAD(ordered_sums);
82fa113f 764
07d400a6
YZ
765 /*
766 * is this extent already allocated in the extent
767 * allocation tree? If so, just add a reference
768 */
2ff7e61e 769 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 770 ins.offset);
3736127a
MPS
771 if (ret < 0) {
772 goto out;
773 } else if (ret == 0) {
82fa113f
QW
774 btrfs_init_generic_ref(&ref,
775 BTRFS_ADD_DELAYED_REF,
776 ins.objectid, ins.offset, 0);
777 btrfs_init_data_ref(&ref,
778 root->root_key.objectid,
f42c5da6 779 key->objectid, offset, 0, false);
82fa113f 780 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
781 if (ret)
782 goto out;
07d400a6
YZ
783 } else {
784 /*
785 * insert the extent pointer in the extent
786 * allocation tree
787 */
5d4f98a2 788 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 789 root->root_key.objectid,
5d4f98a2 790 key->objectid, offset, &ins);
b50c6e25
JB
791 if (ret)
792 goto out;
07d400a6 793 }
b3b4aa74 794 btrfs_release_path(path);
07d400a6
YZ
795
796 if (btrfs_file_extent_compression(eb, item)) {
797 csum_start = ins.objectid;
798 csum_end = csum_start + ins.offset;
799 } else {
800 csum_start = ins.objectid +
801 btrfs_file_extent_offset(eb, item);
802 csum_end = csum_start +
803 btrfs_file_extent_num_bytes(eb, item);
804 }
805
97e38239 806 ret = btrfs_lookup_csums_list(root->log_root,
07d400a6 807 csum_start, csum_end - 1,
26ce9114 808 &ordered_sums, 0, false);
3650860b
JB
809 if (ret)
810 goto out;
b84b8390
FM
811 /*
812 * Now delete all existing cums in the csum root that
813 * cover our range. We do this because we can have an
814 * extent that is completely referenced by one file
815 * extent item and partially referenced by another
816 * file extent item (like after using the clone or
817 * extent_same ioctls). In this case if we end up doing
818 * the replay of the one that partially references the
819 * extent first, and we do not do the csum deletion
820 * below, we can get 2 csum items in the csum tree that
821 * overlap each other. For example, imagine our log has
822 * the two following file extent items:
823 *
824 * key (257 EXTENT_DATA 409600)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 20480 nr 20480 ram 102400
827 *
828 * key (257 EXTENT_DATA 819200)
829 * extent data disk byte 12845056 nr 102400
830 * extent data offset 0 nr 102400 ram 102400
831 *
832 * Where the second one fully references the 100K extent
833 * that starts at disk byte 12845056, and the log tree
834 * has a single csum item that covers the entire range
835 * of the extent:
836 *
837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
838 *
839 * After the first file extent item is replayed, the
840 * csum tree gets the following csum item:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
843 *
844 * Which covers the 20K sub-range starting at offset 20K
845 * of our extent. Now when we replay the second file
846 * extent item, if we do not delete existing csum items
847 * that cover any of its blocks, we end up getting two
848 * csum items in our csum tree that overlap each other:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
852 *
853 * Which is a problem, because after this anyone trying
854 * to lookup up for the checksum of any block of our
855 * extent starting at an offset of 40K or higher, will
856 * end up looking at the second csum item only, which
857 * does not contain the checksum for any block starting
858 * at offset 40K or higher of our extent.
859 */
07d400a6
YZ
860 while (!list_empty(&ordered_sums)) {
861 struct btrfs_ordered_sum *sums;
fc28b25e
JB
862 struct btrfs_root *csum_root;
863
07d400a6
YZ
864 sums = list_entry(ordered_sums.next,
865 struct btrfs_ordered_sum,
866 list);
fc28b25e
JB
867 csum_root = btrfs_csum_root(fs_info,
868 sums->bytenr);
b84b8390 869 if (!ret)
fc28b25e 870 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
871 sums->bytenr,
872 sums->len);
3650860b
JB
873 if (!ret)
874 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
875 csum_root,
876 sums);
07d400a6
YZ
877 list_del(&sums->list);
878 kfree(sums);
879 }
3650860b
JB
880 if (ret)
881 goto out;
07d400a6 882 } else {
b3b4aa74 883 btrfs_release_path(path);
07d400a6
YZ
884 }
885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 /* inline extents are easy, we just overwrite them */
887 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
888 if (ret)
889 goto out;
07d400a6 890 }
e02119d5 891
9ddc959e
JB
892 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
893 extent_end - start);
894 if (ret)
895 goto out;
896
3168021c 897update_inode:
2766ff61 898 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 899 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 900out:
8aa1e49e 901 iput(inode);
e02119d5
CM
902 return ret;
903}
904
313ab753
FM
905static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 struct btrfs_inode *dir,
907 struct btrfs_inode *inode,
6db75318 908 const struct fscrypt_str *name)
313ab753
FM
909{
910 int ret;
911
e43eec81 912 ret = btrfs_unlink_inode(trans, dir, inode, name);
313ab753
FM
913 if (ret)
914 return ret;
915 /*
916 * Whenever we need to check if a name exists or not, we check the
917 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 * that future checks for a name during log replay see that the name
919 * does not exists anymore.
920 */
921 return btrfs_run_delayed_items(trans);
922}
923
e02119d5
CM
924/*
925 * when cleaning up conflicts between the directory names in the
926 * subvolume, directory names in the log and directory names in the
927 * inode back references, we may have to unlink inodes from directories.
928 *
929 * This is a helper function to do the unlink of a specific directory
930 * item
931 */
932static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 933 struct btrfs_path *path,
207e7d92 934 struct btrfs_inode *dir,
e02119d5
CM
935 struct btrfs_dir_item *di)
936{
9798ba24 937 struct btrfs_root *root = dir->root;
e02119d5 938 struct inode *inode;
6db75318 939 struct fscrypt_str name;
e02119d5
CM
940 struct extent_buffer *leaf;
941 struct btrfs_key location;
942 int ret;
943
944 leaf = path->nodes[0];
945
946 btrfs_dir_item_key_to_cpu(leaf, di, &location);
e43eec81
STD
947 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
948 if (ret)
2a29edc6 949 return -ENOMEM;
950
b3b4aa74 951 btrfs_release_path(path);
e02119d5
CM
952
953 inode = read_one_inode(root, location.objectid);
c00e9493 954 if (!inode) {
3650860b
JB
955 ret = -EIO;
956 goto out;
c00e9493 957 }
e02119d5 958
ec051c0f 959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
960 if (ret)
961 goto out;
12fcfd22 962
e43eec81 963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
3650860b 964out:
e43eec81 965 kfree(name.name);
e02119d5
CM
966 iput(inode);
967 return ret;
968}
969
970/*
77a5b9e3
FM
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
973 *
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975 * exists.
e02119d5
CM
976 */
977static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
6db75318 980 struct fscrypt_str *name)
e02119d5
CM
981{
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
77a5b9e3 984 int ret = 0;
e02119d5
CM
985
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
e43eec81 987 index, name, 0);
77a5b9e3 988 if (IS_ERR(di)) {
8dcbc261 989 ret = PTR_ERR(di);
77a5b9e3
FM
990 goto out;
991 } else if (di) {
e02119d5
CM
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
994 goto out;
77a5b9e3 995 } else {
e02119d5 996 goto out;
77a5b9e3 997 }
e02119d5 998
77a5b9e3 999 btrfs_release_path(path);
e43eec81 1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
77a5b9e3
FM
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
e02119d5 1003 goto out;
77a5b9e3
FM
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1007 ret = 1;
1008 }
e02119d5 1009out:
b3b4aa74 1010 btrfs_release_path(path);
77a5b9e3 1011 return ret;
e02119d5
CM
1012}
1013
1014/*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
1024static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
f186373f 1026 u64 ref_objectid,
6db75318 1027 const struct fscrypt_str *name)
e02119d5
CM
1028{
1029 struct btrfs_path *path;
e02119d5 1030 int ret;
e02119d5
CM
1031
1032 path = btrfs_alloc_path();
2a29edc6 1033 if (!path)
1034 return -ENOMEM;
1035
e02119d5 1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1037 if (ret < 0) {
1038 goto out;
1039 } else if (ret == 1) {
89cbf5f6 1040 ret = 0;
f186373f
MF
1041 goto out;
1042 }
1043
89cbf5f6
NB
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 path->slots[0],
e43eec81 1047 ref_objectid, name);
89cbf5f6
NB
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
e43eec81 1050 path->slots[0], name);
e02119d5
CM
1051out:
1052 btrfs_free_path(path);
89cbf5f6 1053 return ret;
e02119d5
CM
1054}
1055
5a1d7843 1056static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1057 struct btrfs_root *root,
e02119d5 1058 struct btrfs_path *path,
5a1d7843 1059 struct btrfs_root *log_root,
94c91a1f
NB
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
f186373f 1062 u64 inode_objectid, u64 parent_objectid,
6db75318 1063 u64 ref_index, struct fscrypt_str *name)
e02119d5 1064{
34f3e4f2 1065 int ret;
f186373f 1066 struct extent_buffer *leaf;
5a1d7843 1067 struct btrfs_dir_item *di;
f186373f
MF
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
c622ae60 1070
f186373f
MF
1071again:
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1077 if (ret == 0) {
e02119d5
CM
1078 struct btrfs_inode_ref *victim_ref;
1079 unsigned long ptr;
1080 unsigned long ptr_end;
f186373f
MF
1081
1082 leaf = path->nodes[0];
e02119d5
CM
1083
1084 /* are we trying to overwrite a back ref for the root directory
1085 * if so, just jump out, we're done
1086 */
f186373f 1087 if (search_key.objectid == search_key.offset)
5a1d7843 1088 return 1;
e02119d5
CM
1089
1090 /* check all the names in this back reference to see
1091 * if they are in the log. if so, we allow them to stay
1092 * otherwise they must be unlinked as a conflict
1093 */
1094 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1095 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1096 while (ptr < ptr_end) {
6db75318 1097 struct fscrypt_str victim_name;
e02119d5 1098
e43eec81
STD
1099 victim_ref = (struct btrfs_inode_ref *)ptr;
1100 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 btrfs_inode_ref_name_len(leaf, victim_ref),
1102 &victim_name);
1103 if (ret)
1104 return ret;
e02119d5 1105
d3316c82 1106 ret = backref_in_log(log_root, &search_key,
e43eec81 1107 parent_objectid, &victim_name);
d3316c82 1108 if (ret < 0) {
e43eec81 1109 kfree(victim_name.name);
d3316c82
NB
1110 return ret;
1111 } else if (!ret) {
94c91a1f 1112 inc_nlink(&inode->vfs_inode);
b3b4aa74 1113 btrfs_release_path(path);
12fcfd22 1114
313ab753 1115 ret = unlink_inode_for_log_replay(trans, dir, inode,
e43eec81
STD
1116 &victim_name);
1117 kfree(victim_name.name);
ada9af21
FDBM
1118 if (ret)
1119 return ret;
f186373f 1120 goto again;
e02119d5 1121 }
e43eec81 1122 kfree(victim_name.name);
f186373f 1123
e43eec81 1124 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
e02119d5 1125 }
e02119d5 1126 }
b3b4aa74 1127 btrfs_release_path(path);
e02119d5 1128
f186373f 1129 /* Same search but for extended refs */
e43eec81 1130 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
f186373f
MF
1131 inode_objectid, parent_objectid, 0,
1132 0);
7a6b75b7
FM
1133 if (IS_ERR(extref)) {
1134 return PTR_ERR(extref);
1135 } else if (extref) {
f186373f
MF
1136 u32 item_size;
1137 u32 cur_offset = 0;
1138 unsigned long base;
1139 struct inode *victim_parent;
1140
1141 leaf = path->nodes[0];
1142
3212fa14 1143 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1144 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145
1146 while (cur_offset < item_size) {
6db75318 1147 struct fscrypt_str victim_name;
f186373f 1148
e43eec81 1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1150
1151 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152 goto next;
1153
e43eec81
STD
1154 ret = read_alloc_one_name(leaf, &extref->name,
1155 btrfs_inode_extref_name_len(leaf, extref),
1156 &victim_name);
1157 if (ret)
1158 return ret;
f186373f
MF
1159
1160 search_key.objectid = inode_objectid;
1161 search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 search_key.offset = btrfs_extref_hash(parent_objectid,
e43eec81
STD
1163 victim_name.name,
1164 victim_name.len);
d3316c82 1165 ret = backref_in_log(log_root, &search_key,
e43eec81 1166 parent_objectid, &victim_name);
d3316c82 1167 if (ret < 0) {
e43eec81 1168 kfree(victim_name.name);
d3316c82
NB
1169 return ret;
1170 } else if (!ret) {
f186373f
MF
1171 ret = -ENOENT;
1172 victim_parent = read_one_inode(root,
94c91a1f 1173 parent_objectid);
f186373f 1174 if (victim_parent) {
94c91a1f 1175 inc_nlink(&inode->vfs_inode);
f186373f
MF
1176 btrfs_release_path(path);
1177
313ab753 1178 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1179 BTRFS_I(victim_parent),
e43eec81 1180 inode, &victim_name);
f186373f 1181 }
f186373f 1182 iput(victim_parent);
e43eec81 1183 kfree(victim_name.name);
3650860b
JB
1184 if (ret)
1185 return ret;
f186373f
MF
1186 goto again;
1187 }
e43eec81 1188 kfree(victim_name.name);
f186373f 1189next:
e43eec81 1190 cur_offset += victim_name.len + sizeof(*extref);
f186373f 1191 }
f186373f
MF
1192 }
1193 btrfs_release_path(path);
1194
34f3e4f2 1195 /* look for a conflicting sequence number */
94c91a1f 1196 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
e43eec81 1197 ref_index, name, 0);
52db7779 1198 if (IS_ERR(di)) {
8dcbc261 1199 return PTR_ERR(di);
52db7779 1200 } else if (di) {
9798ba24 1201 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1202 if (ret)
1203 return ret;
34f3e4f2 1204 }
1205 btrfs_release_path(path);
1206
52042d8e 1207 /* look for a conflicting name */
e43eec81 1208 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
52db7779
FM
1209 if (IS_ERR(di)) {
1210 return PTR_ERR(di);
1211 } else if (di) {
9798ba24 1212 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1213 if (ret)
1214 return ret;
34f3e4f2 1215 }
1216 btrfs_release_path(path);
1217
5a1d7843
JS
1218 return 0;
1219}
e02119d5 1220
bae15d95 1221static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1222 struct fscrypt_str *name, u64 *index,
bae15d95 1223 u64 *parent_objectid)
f186373f
MF
1224{
1225 struct btrfs_inode_extref *extref;
e43eec81 1226 int ret;
f186373f
MF
1227
1228 extref = (struct btrfs_inode_extref *)ref_ptr;
1229
e43eec81
STD
1230 ret = read_alloc_one_name(eb, &extref->name,
1231 btrfs_inode_extref_name_len(eb, extref), name);
1232 if (ret)
1233 return ret;
f186373f 1234
1f250e92
FM
1235 if (index)
1236 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1237 if (parent_objectid)
1238 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239
1240 return 0;
1241}
1242
bae15d95 1243static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1244 struct fscrypt_str *name, u64 *index)
f186373f
MF
1245{
1246 struct btrfs_inode_ref *ref;
e43eec81 1247 int ret;
f186373f
MF
1248
1249 ref = (struct btrfs_inode_ref *)ref_ptr;
1250
e43eec81
STD
1251 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252 name);
1253 if (ret)
1254 return ret;
f186373f 1255
1f250e92
FM
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1258
1259 return 0;
1260}
1261
1f250e92
FM
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1294 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92 1295 while (ref_ptr < ref_end) {
6db75318 1296 struct fscrypt_str name;
1f250e92
FM
1297 u64 parent_id;
1298
1299 if (key->type == BTRFS_INODE_EXTREF_KEY) {
e43eec81 1300 ret = extref_get_fields(eb, ref_ptr, &name,
1f250e92
FM
1301 NULL, &parent_id);
1302 } else {
1303 parent_id = key->offset;
e43eec81 1304 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1f250e92
FM
1305 }
1306 if (ret)
1307 goto out;
1308
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a 1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
e43eec81 1311 parent_id, &name);
1f250e92 1312 else
e43eec81 1313 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1f250e92
FM
1314
1315 if (!ret) {
1316 struct inode *dir;
1317
1318 btrfs_release_path(path);
1319 dir = read_one_inode(root, parent_id);
1320 if (!dir) {
1321 ret = -ENOENT;
e43eec81 1322 kfree(name.name);
1f250e92
FM
1323 goto out;
1324 }
313ab753 1325 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
e43eec81
STD
1326 inode, &name);
1327 kfree(name.name);
1f250e92
FM
1328 iput(dir);
1329 if (ret)
1330 goto out;
1331 goto again;
1332 }
1333
e43eec81
STD
1334 kfree(name.name);
1335 ref_ptr += name.len;
1f250e92
FM
1336 if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 ref_ptr += sizeof(struct btrfs_inode_extref);
1338 else
1339 ref_ptr += sizeof(struct btrfs_inode_ref);
1340 }
1341 ret = 0;
1342 out:
1343 btrfs_release_path(path);
1344 return ret;
1345}
1346
5a1d7843
JS
1347/*
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function. (it should be released on return).
1352 */
1353static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct btrfs_root *log,
1356 struct btrfs_path *path,
1357 struct extent_buffer *eb, int slot,
1358 struct btrfs_key *key)
1359{
03b2f08b
GB
1360 struct inode *dir = NULL;
1361 struct inode *inode = NULL;
5a1d7843
JS
1362 unsigned long ref_ptr;
1363 unsigned long ref_end;
6db75318 1364 struct fscrypt_str name;
5a1d7843 1365 int ret;
f186373f
MF
1366 int log_ref_ver = 0;
1367 u64 parent_objectid;
1368 u64 inode_objectid;
f46dbe3d 1369 u64 ref_index = 0;
f186373f
MF
1370 int ref_struct_size;
1371
1372 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1373 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1374
1375 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 struct btrfs_inode_extref *r;
1377
1378 ref_struct_size = sizeof(struct btrfs_inode_extref);
1379 log_ref_ver = 1;
1380 r = (struct btrfs_inode_extref *)ref_ptr;
1381 parent_objectid = btrfs_inode_extref_parent(eb, r);
1382 } else {
1383 ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 parent_objectid = key->offset;
1385 }
1386 inode_objectid = key->objectid;
e02119d5 1387
5a1d7843
JS
1388 /*
1389 * it is possible that we didn't log all the parent directories
1390 * for a given inode. If we don't find the dir, just don't
1391 * copy the back ref in. The link count fixup code will take
1392 * care of the rest
1393 */
f186373f 1394 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1395 if (!dir) {
1396 ret = -ENOENT;
1397 goto out;
1398 }
5a1d7843 1399
f186373f 1400 inode = read_one_inode(root, inode_objectid);
5a1d7843 1401 if (!inode) {
03b2f08b
GB
1402 ret = -EIO;
1403 goto out;
5a1d7843
JS
1404 }
1405
5a1d7843 1406 while (ref_ptr < ref_end) {
f186373f 1407 if (log_ref_ver) {
e43eec81 1408 ret = extref_get_fields(eb, ref_ptr, &name,
bae15d95 1409 &ref_index, &parent_objectid);
f186373f
MF
1410 /*
1411 * parent object can change from one array
1412 * item to another.
1413 */
1414 if (!dir)
1415 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1416 if (!dir) {
1417 ret = -ENOENT;
1418 goto out;
1419 }
f186373f 1420 } else {
e43eec81 1421 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
f186373f
MF
1422 }
1423 if (ret)
03b2f08b 1424 goto out;
5a1d7843 1425
77a5b9e3 1426 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
e43eec81 1427 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
77a5b9e3
FM
1428 if (ret < 0) {
1429 goto out;
1430 } else if (ret == 0) {
5a1d7843
JS
1431 /*
1432 * look for a conflicting back reference in the
1433 * metadata. if we find one we have to unlink that name
1434 * of the file before we add our new link. Later on, we
1435 * overwrite any existing back reference, and we don't
1436 * want to create dangling pointers in the directory.
1437 */
7059c658
FM
1438 ret = __add_inode_ref(trans, root, path, log,
1439 BTRFS_I(dir), BTRFS_I(inode),
1440 inode_objectid, parent_objectid,
e43eec81 1441 ref_index, &name);
7059c658
FM
1442 if (ret) {
1443 if (ret == 1)
1444 ret = 0;
0d836392 1445 goto out;
7059c658 1446 }
0d836392 1447
5a1d7843 1448 /* insert our name */
7059c658 1449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 1450 &name, 0, ref_index);
3650860b
JB
1451 if (ret)
1452 goto out;
5a1d7843 1453
f96d4474
JB
1454 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455 if (ret)
1456 goto out;
5a1d7843 1457 }
77a5b9e3 1458 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1459
e43eec81
STD
1460 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461 kfree(name.name);
1462 name.name = NULL;
f186373f
MF
1463 if (log_ref_ver) {
1464 iput(dir);
1465 dir = NULL;
1466 }
5a1d7843 1467 }
e02119d5 1468
1f250e92
FM
1469 /*
1470 * Before we overwrite the inode reference item in the subvolume tree
1471 * with the item from the log tree, we must unlink all names from the
1472 * parent directory that are in the subvolume's tree inode reference
1473 * item, otherwise we end up with an inconsistent subvolume tree where
1474 * dir index entries exist for a name but there is no inode reference
1475 * item with the same name.
1476 */
1477 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478 key);
1479 if (ret)
1480 goto out;
1481
e02119d5
CM
1482 /* finally write the back reference in the inode */
1483 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1484out:
b3b4aa74 1485 btrfs_release_path(path);
e43eec81 1486 kfree(name.name);
e02119d5
CM
1487 iput(dir);
1488 iput(inode);
3650860b 1489 return ret;
e02119d5
CM
1490}
1491
f186373f 1492static int count_inode_extrefs(struct btrfs_root *root,
36283658 1493 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1494{
1495 int ret = 0;
1496 int name_len;
1497 unsigned int nlink = 0;
1498 u32 item_size;
1499 u32 cur_offset = 0;
36283658 1500 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1501 u64 offset = 0;
1502 unsigned long ptr;
1503 struct btrfs_inode_extref *extref;
1504 struct extent_buffer *leaf;
1505
1506 while (1) {
1507 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508 &extref, &offset);
1509 if (ret)
1510 break;
c71bf099 1511
f186373f 1512 leaf = path->nodes[0];
3212fa14 1513 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1514 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1515 cur_offset = 0;
f186373f
MF
1516
1517 while (cur_offset < item_size) {
1518 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 name_len = btrfs_inode_extref_name_len(leaf, extref);
1520
1521 nlink++;
1522
1523 cur_offset += name_len + sizeof(*extref);
1524 }
1525
1526 offset++;
1527 btrfs_release_path(path);
1528 }
1529 btrfs_release_path(path);
1530
2c2c452b 1531 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1532 return ret;
1533 return nlink;
1534}
1535
1536static int count_inode_refs(struct btrfs_root *root,
f329e319 1537 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1538{
e02119d5
CM
1539 int ret;
1540 struct btrfs_key key;
f186373f 1541 unsigned int nlink = 0;
e02119d5
CM
1542 unsigned long ptr;
1543 unsigned long ptr_end;
1544 int name_len;
f329e319 1545 u64 ino = btrfs_ino(inode);
e02119d5 1546
33345d01 1547 key.objectid = ino;
e02119d5
CM
1548 key.type = BTRFS_INODE_REF_KEY;
1549 key.offset = (u64)-1;
1550
d397712b 1551 while (1) {
e02119d5
CM
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 if (ret < 0)
1554 break;
1555 if (ret > 0) {
1556 if (path->slots[0] == 0)
1557 break;
1558 path->slots[0]--;
1559 }
e93ae26f 1560process_slot:
e02119d5
CM
1561 btrfs_item_key_to_cpu(path->nodes[0], &key,
1562 path->slots[0]);
33345d01 1563 if (key.objectid != ino ||
e02119d5
CM
1564 key.type != BTRFS_INODE_REF_KEY)
1565 break;
1566 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1567 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1568 path->slots[0]);
d397712b 1569 while (ptr < ptr_end) {
e02119d5
CM
1570 struct btrfs_inode_ref *ref;
1571
1572 ref = (struct btrfs_inode_ref *)ptr;
1573 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574 ref);
1575 ptr = (unsigned long)(ref + 1) + name_len;
1576 nlink++;
1577 }
1578
1579 if (key.offset == 0)
1580 break;
e93ae26f
FDBM
1581 if (path->slots[0] > 0) {
1582 path->slots[0]--;
1583 goto process_slot;
1584 }
e02119d5 1585 key.offset--;
b3b4aa74 1586 btrfs_release_path(path);
e02119d5 1587 }
b3b4aa74 1588 btrfs_release_path(path);
f186373f
MF
1589
1590 return nlink;
1591}
1592
1593/*
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay. So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1598 *
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found. If it goes down to zero, the iput
1601 * will free the inode.
1602 */
1603static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct inode *inode)
1606{
1607 struct btrfs_path *path;
1608 int ret;
1609 u64 nlink = 0;
4a0cc7ca 1610 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1611
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
f329e319 1616 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink = ret;
1621
36283658 1622 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1623 if (ret < 0)
1624 goto out;
1625
1626 nlink += ret;
1627
1628 ret = 0;
1629
e02119d5 1630 if (nlink != inode->i_nlink) {
bfe86848 1631 set_nlink(inode, nlink);
f96d4474
JB
1632 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633 if (ret)
1634 goto out;
e02119d5 1635 }
8d5bf1cb 1636 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1637
c71bf099
YZ
1638 if (inode->i_nlink == 0) {
1639 if (S_ISDIR(inode->i_mode)) {
1640 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1641 ino, 1);
3650860b
JB
1642 if (ret)
1643 goto out;
c71bf099 1644 }
ecdcf3c2
NB
1645 ret = btrfs_insert_orphan_item(trans, root, ino);
1646 if (ret == -EEXIST)
1647 ret = 0;
12fcfd22 1648 }
12fcfd22 1649
f186373f
MF
1650out:
1651 btrfs_free_path(path);
1652 return ret;
e02119d5
CM
1653}
1654
1655static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path)
1658{
1659 int ret;
1660 struct btrfs_key key;
1661 struct inode *inode;
1662
1663 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 key.offset = (u64)-1;
d397712b 1666 while (1) {
e02119d5
CM
1667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 if (ret < 0)
1669 break;
1670
1671 if (ret == 1) {
011b28ac 1672 ret = 0;
e02119d5
CM
1673 if (path->slots[0] == 0)
1674 break;
1675 path->slots[0]--;
1676 }
1677
1678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 key.type != BTRFS_ORPHAN_ITEM_KEY)
1681 break;
1682
1683 ret = btrfs_del_item(trans, root, path);
65a246c5 1684 if (ret)
011b28ac 1685 break;
e02119d5 1686
b3b4aa74 1687 btrfs_release_path(path);
e02119d5 1688 inode = read_one_inode(root, key.offset);
011b28ac
JB
1689 if (!inode) {
1690 ret = -EIO;
1691 break;
1692 }
e02119d5
CM
1693
1694 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1695 iput(inode);
3650860b 1696 if (ret)
011b28ac 1697 break;
e02119d5 1698
12fcfd22
CM
1699 /*
1700 * fixup on a directory may create new entries,
1701 * make sure we always look for the highset possible
1702 * offset
1703 */
1704 key.offset = (u64)-1;
e02119d5 1705 }
b3b4aa74 1706 btrfs_release_path(path);
65a246c5 1707 return ret;
e02119d5
CM
1708}
1709
1710
1711/*
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done. The link count is incremented here
1714 * so the inode won't go away until we check it
1715 */
1716static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 struct btrfs_path *path,
1719 u64 objectid)
1720{
1721 struct btrfs_key key;
1722 int ret = 0;
1723 struct inode *inode;
1724
1725 inode = read_one_inode(root, objectid);
c00e9493
TI
1726 if (!inode)
1727 return -EIO;
e02119d5
CM
1728
1729 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1730 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1731 key.offset = objectid;
1732
1733 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734
b3b4aa74 1735 btrfs_release_path(path);
e02119d5 1736 if (ret == 0) {
9bf7a489
JB
1737 if (!inode->i_nlink)
1738 set_nlink(inode, 1);
1739 else
8b558c5f 1740 inc_nlink(inode);
9a56fcd1 1741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1742 } else if (ret == -EEXIST) {
1743 ret = 0;
e02119d5
CM
1744 }
1745 iput(inode);
1746
1747 return ret;
1748}
1749
1750/*
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist. This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1754 */
1755static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
e02119d5 1757 u64 dirid, u64 index,
6db75318 1758 const struct fscrypt_str *name,
e02119d5
CM
1759 struct btrfs_key *location)
1760{
1761 struct inode *inode;
1762 struct inode *dir;
1763 int ret;
1764
1765 inode = read_one_inode(root, location->objectid);
1766 if (!inode)
1767 return -ENOENT;
1768
1769 dir = read_one_inode(root, dirid);
1770 if (!dir) {
1771 iput(inode);
1772 return -EIO;
1773 }
d555438b 1774
db0a669f 1775 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 1776 1, index);
e02119d5
CM
1777
1778 /* FIXME, put inode into FIXUP list */
1779
1780 iput(inode);
1781 iput(dir);
1782 return ret;
1783}
1784
339d0354
FM
1785static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 struct btrfs_inode *dir,
1787 struct btrfs_path *path,
1788 struct btrfs_dir_item *dst_di,
1789 const struct btrfs_key *log_key,
94a48aef 1790 u8 log_flags,
339d0354
FM
1791 bool exists)
1792{
1793 struct btrfs_key found_key;
1794
1795 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 /* The existing dentry points to the same inode, don't delete it. */
1797 if (found_key.objectid == log_key->objectid &&
1798 found_key.type == log_key->type &&
1799 found_key.offset == log_key->offset &&
94a48aef 1800 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
339d0354
FM
1801 return 1;
1802
1803 /*
1804 * Don't drop the conflicting directory entry if the inode for the new
1805 * entry doesn't exist.
1806 */
1807 if (!exists)
1808 return 0;
1809
1810 return drop_one_dir_item(trans, path, dir, dst_di);
1811}
1812
e02119d5
CM
1813/*
1814 * take a single entry in a log directory item and replay it into
1815 * the subvolume.
1816 *
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1819 * fix up tree.
1820 *
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped. fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
bb53eda9
FM
1825 *
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1828 */
1829static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path,
1832 struct extent_buffer *eb,
1833 struct btrfs_dir_item *di,
1834 struct btrfs_key *key)
1835{
6db75318 1836 struct fscrypt_str name;
339d0354
FM
1837 struct btrfs_dir_item *dir_dst_di;
1838 struct btrfs_dir_item *index_dst_di;
1839 bool dir_dst_matches = false;
1840 bool index_dst_matches = false;
e02119d5 1841 struct btrfs_key log_key;
339d0354 1842 struct btrfs_key search_key;
e02119d5 1843 struct inode *dir;
94a48aef 1844 u8 log_flags;
cfd31269
FM
1845 bool exists;
1846 int ret;
339d0354 1847 bool update_size = true;
bb53eda9 1848 bool name_added = false;
e02119d5
CM
1849
1850 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1851 if (!dir)
1852 return -EIO;
e02119d5 1853
e43eec81
STD
1854 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855 if (ret)
2bac325e 1856 goto out;
2a29edc6 1857
94a48aef 1858 log_flags = btrfs_dir_flags(eb, di);
e02119d5 1859 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1860 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1861 btrfs_release_path(path);
cfd31269
FM
1862 if (ret < 0)
1863 goto out;
1864 exists = (ret == 0);
1865 ret = 0;
4bef0848 1866
339d0354 1867 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
e43eec81 1868 &name, 1);
339d0354
FM
1869 if (IS_ERR(dir_dst_di)) {
1870 ret = PTR_ERR(dir_dst_di);
3650860b 1871 goto out;
339d0354
FM
1872 } else if (dir_dst_di) {
1873 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
94a48aef
OS
1874 dir_dst_di, &log_key,
1875 log_flags, exists);
339d0354
FM
1876 if (ret < 0)
1877 goto out;
1878 dir_dst_matches = (ret == 1);
e02119d5 1879 }
e15ac641 1880
339d0354
FM
1881 btrfs_release_path(path);
1882
1883 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 key->objectid, key->offset,
e43eec81 1885 &name, 1);
339d0354
FM
1886 if (IS_ERR(index_dst_di)) {
1887 ret = PTR_ERR(index_dst_di);
e15ac641 1888 goto out;
339d0354
FM
1889 } else if (index_dst_di) {
1890 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 index_dst_di, &log_key,
94a48aef 1892 log_flags, exists);
339d0354 1893 if (ret < 0)
e02119d5 1894 goto out;
339d0354 1895 index_dst_matches = (ret == 1);
e02119d5
CM
1896 }
1897
339d0354
FM
1898 btrfs_release_path(path);
1899
1900 if (dir_dst_matches && index_dst_matches) {
1901 ret = 0;
a2cc11db 1902 update_size = false;
e02119d5
CM
1903 goto out;
1904 }
1905
725af92a
NB
1906 /*
1907 * Check if the inode reference exists in the log for the given name,
1908 * inode and parent inode
1909 */
339d0354
FM
1910 search_key.objectid = log_key.objectid;
1911 search_key.type = BTRFS_INODE_REF_KEY;
1912 search_key.offset = key->objectid;
e43eec81 1913 ret = backref_in_log(root->log_root, &search_key, 0, &name);
725af92a
NB
1914 if (ret < 0) {
1915 goto out;
1916 } else if (ret) {
1917 /* The dentry will be added later. */
1918 ret = 0;
1919 update_size = false;
1920 goto out;
1921 }
1922
339d0354
FM
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 search_key.offset = key->objectid;
e43eec81 1926 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
725af92a
NB
1927 if (ret < 0) {
1928 goto out;
1929 } else if (ret) {
df8d116f
FM
1930 /* The dentry will be added later. */
1931 ret = 0;
1932 update_size = false;
1933 goto out;
1934 }
b3b4aa74 1935 btrfs_release_path(path);
60d53eb3 1936 ret = insert_one_name(trans, root, key->objectid, key->offset,
e43eec81 1937 &name, &log_key);
df8d116f 1938 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1939 goto out;
bb53eda9
FM
1940 if (!ret)
1941 name_added = true;
d555438b 1942 update_size = false;
3650860b 1943 ret = 0;
339d0354
FM
1944
1945out:
1946 if (!ret && update_size) {
e43eec81 1947 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
339d0354
FM
1948 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949 }
e43eec81 1950 kfree(name.name);
339d0354
FM
1951 iput(dir);
1952 if (!ret && name_added)
1953 ret = 1;
1954 return ret;
e02119d5
CM
1955}
1956
339d0354 1957/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
1958static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_path *path,
1961 struct extent_buffer *eb, int slot,
1962 struct btrfs_key *key)
1963{
339d0354 1964 int ret;
e02119d5 1965 struct btrfs_dir_item *di;
e02119d5 1966
339d0354
FM
1967 /* We only log dir index keys, which only contain a single dir item. */
1968 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1969
339d0354
FM
1970 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 ret = replay_one_name(trans, root, path, eb, di, key);
1972 if (ret < 0)
1973 return ret;
bb53eda9 1974
339d0354
FM
1975 /*
1976 * If this entry refers to a non-directory (directories can not have a
1977 * link count > 1) and it was added in the transaction that was not
1978 * committed, make sure we fixup the link count of the inode the entry
1979 * points to. Otherwise something like the following would result in a
1980 * directory pointing to an inode with a wrong link that does not account
1981 * for this dir entry:
1982 *
1983 * mkdir testdir
1984 * touch testdir/foo
1985 * touch testdir/bar
1986 * sync
1987 *
1988 * ln testdir/bar testdir/bar_link
1989 * ln testdir/foo testdir/foo_link
1990 * xfs_io -c "fsync" testdir/bar
1991 *
1992 * <power failure>
1993 *
1994 * mount fs, log replay happens
1995 *
1996 * File foo would remain with a link count of 1 when it has two entries
1997 * pointing to it in the directory testdir. This would make it impossible
1998 * to ever delete the parent directory has it would result in stale
1999 * dentries that can never be deleted.
2000 */
94a48aef 2001 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
339d0354
FM
2002 struct btrfs_path *fixup_path;
2003 struct btrfs_key di_key;
bb53eda9 2004
339d0354
FM
2005 fixup_path = btrfs_alloc_path();
2006 if (!fixup_path)
2007 return -ENOMEM;
2008
2009 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 btrfs_free_path(fixup_path);
e02119d5 2012 }
339d0354 2013
bb53eda9 2014 return ret;
e02119d5
CM
2015}
2016
2017/*
2018 * directory replay has two parts. There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2021 *
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for. During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2027 */
2028static noinline int find_dir_range(struct btrfs_root *root,
2029 struct btrfs_path *path,
ccae4a19 2030 u64 dirid,
e02119d5
CM
2031 u64 *start_ret, u64 *end_ret)
2032{
2033 struct btrfs_key key;
2034 u64 found_end;
2035 struct btrfs_dir_log_item *item;
2036 int ret;
2037 int nritems;
2038
2039 if (*start_ret == (u64)-1)
2040 return 1;
2041
2042 key.objectid = dirid;
ccae4a19 2043 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2044 key.offset = *start_ret;
2045
2046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047 if (ret < 0)
2048 goto out;
2049 if (ret > 0) {
2050 if (path->slots[0] == 0)
2051 goto out;
2052 path->slots[0]--;
2053 }
2054 if (ret != 0)
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
ccae4a19 2057 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2058 ret = 1;
2059 goto next;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064
2065 if (*start_ret >= key.offset && *start_ret <= found_end) {
2066 ret = 0;
2067 *start_ret = key.offset;
2068 *end_ret = found_end;
2069 goto out;
2070 }
2071 ret = 1;
2072next:
2073 /* check the next slot in the tree to see if it is a valid item */
2074 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2075 path->slots[0]++;
e02119d5
CM
2076 if (path->slots[0] >= nritems) {
2077 ret = btrfs_next_leaf(root, path);
2078 if (ret)
2079 goto out;
e02119d5
CM
2080 }
2081
2082 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083
ccae4a19 2084 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2085 ret = 1;
2086 goto out;
2087 }
2088 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 struct btrfs_dir_log_item);
2090 found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2093 ret = 0;
2094out:
b3b4aa74 2095 btrfs_release_path(path);
e02119d5
CM
2096 return ret;
2097}
2098
2099/*
2100 * this looks for a given directory item in the log. If the directory
2101 * item is not in the log, the item is removed and the inode it points
2102 * to is unlinked
2103 */
2104static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2105 struct btrfs_root *log,
2106 struct btrfs_path *path,
2107 struct btrfs_path *log_path,
2108 struct inode *dir,
2109 struct btrfs_key *dir_key)
2110{
d1ed82f3 2111 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2112 int ret;
2113 struct extent_buffer *eb;
2114 int slot;
e02119d5 2115 struct btrfs_dir_item *di;
6db75318 2116 struct fscrypt_str name;
ccae4a19 2117 struct inode *inode = NULL;
e02119d5
CM
2118 struct btrfs_key location;
2119
ccae4a19 2120 /*
143823cf 2121 * Currently we only log dir index keys. Even if we replay a log created
ccae4a19
FM
2122 * by an older kernel that logged both dir index and dir item keys, all
2123 * we need to do is process the dir index keys, we (and our caller) can
2124 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125 */
2126 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127
e02119d5
CM
2128 eb = path->nodes[0];
2129 slot = path->slots[0];
ccae4a19 2130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
e43eec81
STD
2131 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132 if (ret)
ccae4a19 2133 goto out;
3650860b 2134
ccae4a19
FM
2135 if (log) {
2136 struct btrfs_dir_item *log_di;
e02119d5 2137
ccae4a19
FM
2138 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139 dir_key->objectid,
e43eec81 2140 dir_key->offset, &name, 0);
ccae4a19
FM
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2143 goto out;
2144 } else if (log_di) {
2145 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2146 ret = 0;
2147 goto out;
2148 }
ccae4a19 2149 }
e02119d5 2150
ccae4a19
FM
2151 btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 btrfs_release_path(path);
2153 btrfs_release_path(log_path);
2154 inode = read_one_inode(root, location.objectid);
2155 if (!inode) {
2156 ret = -EIO;
2157 goto out;
e02119d5 2158 }
ccae4a19
FM
2159
2160 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161 if (ret)
2162 goto out;
2163
2164 inc_nlink(inode);
313ab753 2165 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 2166 &name);
ccae4a19
FM
2167 /*
2168 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 * them, as there are no key collisions since each key has a unique offset
2170 * (an index number), so we're done.
2171 */
e02119d5 2172out:
b3b4aa74
DS
2173 btrfs_release_path(path);
2174 btrfs_release_path(log_path);
e43eec81 2175 kfree(name.name);
ccae4a19 2176 iput(inode);
e02119d5
CM
2177 return ret;
2178}
2179
4f764e51
FM
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2219 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
e02119d5
CM
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
12fcfd22 2292 u64 dirid, int del_all)
e02119d5
CM
2293{
2294 u64 range_start;
2295 u64 range_end;
e02119d5
CM
2296 int ret = 0;
2297 struct btrfs_key dir_key;
2298 struct btrfs_key found_key;
2299 struct btrfs_path *log_path;
2300 struct inode *dir;
2301
2302 dir_key.objectid = dirid;
ccae4a19 2303 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2304 log_path = btrfs_alloc_path();
2305 if (!log_path)
2306 return -ENOMEM;
2307
2308 dir = read_one_inode(root, dirid);
2309 /* it isn't an error if the inode isn't there, that can happen
2310 * because we replay the deletes before we copy in the inode item
2311 * from the log
2312 */
2313 if (!dir) {
2314 btrfs_free_path(log_path);
2315 return 0;
2316 }
ccae4a19 2317
e02119d5
CM
2318 range_start = 0;
2319 range_end = 0;
d397712b 2320 while (1) {
12fcfd22
CM
2321 if (del_all)
2322 range_end = (u64)-1;
2323 else {
ccae4a19 2324 ret = find_dir_range(log, path, dirid,
12fcfd22 2325 &range_start, &range_end);
10adb115
FM
2326 if (ret < 0)
2327 goto out;
2328 else if (ret > 0)
12fcfd22
CM
2329 break;
2330 }
e02119d5
CM
2331
2332 dir_key.offset = range_start;
d397712b 2333 while (1) {
e02119d5
CM
2334 int nritems;
2335 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 nritems = btrfs_header_nritems(path->nodes[0]);
2341 if (path->slots[0] >= nritems) {
2342 ret = btrfs_next_leaf(root, path);
b98def7c 2343 if (ret == 1)
e02119d5 2344 break;
b98def7c
LB
2345 else if (ret < 0)
2346 goto out;
e02119d5
CM
2347 }
2348 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 path->slots[0]);
2350 if (found_key.objectid != dirid ||
ccae4a19
FM
2351 found_key.type != dir_key.type) {
2352 ret = 0;
2353 goto out;
2354 }
e02119d5
CM
2355
2356 if (found_key.offset > range_end)
2357 break;
2358
d1ed82f3 2359 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2360 log_path, dir,
2361 &found_key);
3650860b
JB
2362 if (ret)
2363 goto out;
e02119d5
CM
2364 if (found_key.offset == (u64)-1)
2365 break;
2366 dir_key.offset = found_key.offset + 1;
2367 }
b3b4aa74 2368 btrfs_release_path(path);
e02119d5
CM
2369 if (range_end == (u64)-1)
2370 break;
2371 range_start = range_end + 1;
2372 }
e02119d5 2373 ret = 0;
e02119d5 2374out:
b3b4aa74 2375 btrfs_release_path(path);
e02119d5
CM
2376 btrfs_free_path(log_path);
2377 iput(dir);
2378 return ret;
2379}
2380
2381/*
2382 * the process_func used to replay items from the log tree. This
2383 * gets called in two different stages. The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2385 *
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume. The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2390 * back refs).
2391 */
2392static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2393 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2394{
2395 int nritems;
789d6a3a
QW
2396 struct btrfs_tree_parent_check check = {
2397 .transid = gen,
2398 .level = level
2399 };
e02119d5
CM
2400 struct btrfs_path *path;
2401 struct btrfs_root *root = wc->replay_dest;
2402 struct btrfs_key key;
e02119d5
CM
2403 int i;
2404 int ret;
2405
789d6a3a 2406 ret = btrfs_read_extent_buffer(eb, &check);
018642a1
TI
2407 if (ret)
2408 return ret;
e02119d5
CM
2409
2410 level = btrfs_header_level(eb);
2411
2412 if (level != 0)
2413 return 0;
2414
2415 path = btrfs_alloc_path();
1e5063d0
MF
2416 if (!path)
2417 return -ENOMEM;
e02119d5
CM
2418
2419 nritems = btrfs_header_nritems(eb);
2420 for (i = 0; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2422
2423 /* inode keys are done during the first stage */
2424 if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2426 struct btrfs_inode_item *inode_item;
2427 u32 mode;
2428
2429 inode_item = btrfs_item_ptr(eb, i,
2430 struct btrfs_inode_item);
f2d72f42
FM
2431 /*
2432 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 * and never got linked before the fsync, skip it, as
2434 * replaying it is pointless since it would be deleted
2435 * later. We skip logging tmpfiles, but it's always
2436 * possible we are replaying a log created with a kernel
2437 * that used to log tmpfiles.
2438 */
2439 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 wc->ignore_cur_inode = true;
2441 continue;
2442 } else {
2443 wc->ignore_cur_inode = false;
2444 }
4f764e51
FM
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2447 if (ret)
2448 break;
e02119d5
CM
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
12fcfd22 2452 root, log, path, key.objectid, 0);
b50c6e25
JB
2453 if (ret)
2454 break;
e02119d5
CM
2455 }
2456 ret = overwrite_item(wc->trans, root, path,
2457 eb, i, &key);
b50c6e25
JB
2458 if (ret)
2459 break;
e02119d5 2460
471d557a
FM
2461 /*
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
e02119d5
CM
2468 */
2469 if (S_ISREG(mode)) {
5893dfb9 2470 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2471 struct inode *inode;
2472 u64 from;
2473
2474 inode = read_one_inode(root, key.objectid);
2475 if (!inode) {
2476 ret = -EIO;
2477 break;
2478 }
2479 from = ALIGN(i_size_read(inode),
2480 root->fs_info->sectorsize);
5893dfb9
FM
2481 drop_args.start = from;
2482 drop_args.end = (u64)-1;
2483 drop_args.drop_cache = true;
2484 ret = btrfs_drop_extents(wc->trans, root,
2485 BTRFS_I(inode),
2486 &drop_args);
471d557a 2487 if (!ret) {
2766ff61
FM
2488 inode_sub_bytes(inode,
2489 drop_args.bytes_found);
f2d72f42 2490 /* Update the inode's nbytes. */
471d557a 2491 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2492 root, BTRFS_I(inode));
471d557a
FM
2493 }
2494 iput(inode);
b50c6e25
JB
2495 if (ret)
2496 break;
e02119d5 2497 }
c71bf099 2498
e02119d5
CM
2499 ret = link_to_fixup_dir(wc->trans, root,
2500 path, key.objectid);
b50c6e25
JB
2501 if (ret)
2502 break;
e02119d5 2503 }
dd8e7217 2504
f2d72f42
FM
2505 if (wc->ignore_cur_inode)
2506 continue;
2507
dd8e7217
JB
2508 if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 ret = replay_one_dir_item(wc->trans, root, path,
2511 eb, i, &key);
2512 if (ret)
2513 break;
2514 }
2515
e02119d5
CM
2516 if (wc->stage < LOG_WALK_REPLAY_ALL)
2517 continue;
2518
2519 /* these keys are simply copied */
2520 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 ret = overwrite_item(wc->trans, root, path,
2522 eb, i, &key);
b50c6e25
JB
2523 if (ret)
2524 break;
2da1c669
LB
2525 } else if (key.type == BTRFS_INODE_REF_KEY ||
2526 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2527 ret = add_inode_ref(wc->trans, root, log, path,
2528 eb, i, &key);
b50c6e25
JB
2529 if (ret && ret != -ENOENT)
2530 break;
2531 ret = 0;
e02119d5
CM
2532 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 ret = replay_one_extent(wc->trans, root, path,
2534 eb, i, &key);
b50c6e25
JB
2535 if (ret)
2536 break;
e02119d5 2537 }
339d0354
FM
2538 /*
2539 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 * older kernel with such keys, ignore them.
2543 */
e02119d5
CM
2544 }
2545 btrfs_free_path(path);
b50c6e25 2546 return ret;
e02119d5
CM
2547}
2548
6787bb9f
NB
2549/*
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551 */
2552static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553{
2554 struct btrfs_block_group *cache;
2555
2556 cache = btrfs_lookup_block_group(fs_info, start);
2557 if (!cache) {
2558 btrfs_err(fs_info, "unable to find block group for %llu", start);
2559 return;
2560 }
2561
2562 spin_lock(&cache->space_info->lock);
2563 spin_lock(&cache->lock);
2564 cache->reserved -= fs_info->nodesize;
2565 cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 spin_unlock(&cache->lock);
2567 spin_unlock(&cache->space_info->lock);
2568
2569 btrfs_put_block_group(cache);
2570}
2571
d397712b 2572static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2573 struct btrfs_root *root,
2574 struct btrfs_path *path, int *level,
2575 struct walk_control *wc)
2576{
0b246afa 2577 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2578 u64 bytenr;
2579 u64 ptr_gen;
2580 struct extent_buffer *next;
2581 struct extent_buffer *cur;
e02119d5
CM
2582 u32 blocksize;
2583 int ret = 0;
2584
d397712b 2585 while (*level > 0) {
789d6a3a 2586 struct btrfs_tree_parent_check check = { 0 };
581c1760 2587
e02119d5
CM
2588 cur = path->nodes[*level];
2589
fae7f21c 2590 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2591
2592 if (path->slots[*level] >=
2593 btrfs_header_nritems(cur))
2594 break;
2595
2596 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
789d6a3a
QW
2598 check.transid = ptr_gen;
2599 check.level = *level - 1;
2600 check.has_first_key = true;
2601 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
0b246afa 2602 blocksize = fs_info->nodesize;
e02119d5 2603
3fbaf258
JB
2604 next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 btrfs_header_owner(cur),
2606 *level - 1);
c871b0f2
LB
2607 if (IS_ERR(next))
2608 return PTR_ERR(next);
e02119d5 2609
e02119d5 2610 if (*level == 1) {
581c1760
QW
2611 ret = wc->process_func(root, next, wc, ptr_gen,
2612 *level - 1);
b50c6e25
JB
2613 if (ret) {
2614 free_extent_buffer(next);
1e5063d0 2615 return ret;
b50c6e25 2616 }
4a500fd1 2617
e02119d5
CM
2618 path->slots[*level]++;
2619 if (wc->free) {
789d6a3a 2620 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2621 if (ret) {
2622 free_extent_buffer(next);
2623 return ret;
2624 }
e02119d5 2625
681ae509
JB
2626 if (trans) {
2627 btrfs_tree_lock(next);
6a884d7d 2628 btrfs_clean_tree_block(next);
681ae509
JB
2629 btrfs_wait_tree_block_writeback(next);
2630 btrfs_tree_unlock(next);
7bfc1007 2631 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2632 bytenr, blocksize);
2633 if (ret) {
2634 free_extent_buffer(next);
2635 return ret;
2636 }
d3575156
NA
2637 btrfs_redirty_list_add(
2638 trans->transaction, next);
1846430c
LB
2639 } else {
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
10e958d5 2642 unaccount_log_buffer(fs_info, bytenr);
3650860b 2643 }
e02119d5
CM
2644 }
2645 free_extent_buffer(next);
2646 continue;
2647 }
789d6a3a 2648 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2649 if (ret) {
2650 free_extent_buffer(next);
2651 return ret;
2652 }
e02119d5 2653
e02119d5
CM
2654 if (path->nodes[*level-1])
2655 free_extent_buffer(path->nodes[*level-1]);
2656 path->nodes[*level-1] = next;
2657 *level = btrfs_header_level(next);
2658 path->slots[*level] = 0;
2659 cond_resched();
2660 }
4a500fd1 2661 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2662
2663 cond_resched();
2664 return 0;
2665}
2666
d397712b 2667static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2668 struct btrfs_root *root,
2669 struct btrfs_path *path, int *level,
2670 struct walk_control *wc)
2671{
0b246afa 2672 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2673 int i;
2674 int slot;
2675 int ret;
2676
d397712b 2677 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2678 slot = path->slots[i];
4a500fd1 2679 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2680 path->slots[i]++;
2681 *level = i;
2682 WARN_ON(*level == 0);
2683 return 0;
2684 } else {
1e5063d0 2685 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2686 btrfs_header_generation(path->nodes[*level]),
2687 *level);
1e5063d0
MF
2688 if (ret)
2689 return ret;
2690
e02119d5
CM
2691 if (wc->free) {
2692 struct extent_buffer *next;
2693
2694 next = path->nodes[*level];
2695
681ae509
JB
2696 if (trans) {
2697 btrfs_tree_lock(next);
6a884d7d 2698 btrfs_clean_tree_block(next);
681ae509
JB
2699 btrfs_wait_tree_block_writeback(next);
2700 btrfs_tree_unlock(next);
7bfc1007 2701 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2702 path->nodes[*level]->start,
2703 path->nodes[*level]->len);
2704 if (ret)
2705 return ret;
84c25448
NA
2706 btrfs_redirty_list_add(trans->transaction,
2707 next);
1846430c
LB
2708 } else {
2709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 clear_extent_buffer_dirty(next);
e02119d5 2711
10e958d5
NB
2712 unaccount_log_buffer(fs_info,
2713 path->nodes[*level]->start);
2714 }
e02119d5
CM
2715 }
2716 free_extent_buffer(path->nodes[*level]);
2717 path->nodes[*level] = NULL;
2718 *level = i + 1;
2719 }
2720 }
2721 return 1;
2722}
2723
2724/*
2725 * drop the reference count on the tree rooted at 'snap'. This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2727 * decremented.
2728 */
2729static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *log, struct walk_control *wc)
2731{
2ff7e61e 2732 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2733 int ret = 0;
2734 int wret;
2735 int level;
2736 struct btrfs_path *path;
e02119d5
CM
2737 int orig_level;
2738
2739 path = btrfs_alloc_path();
db5b493a
TI
2740 if (!path)
2741 return -ENOMEM;
e02119d5
CM
2742
2743 level = btrfs_header_level(log->node);
2744 orig_level = level;
2745 path->nodes[level] = log->node;
67439dad 2746 atomic_inc(&log->node->refs);
e02119d5
CM
2747 path->slots[level] = 0;
2748
d397712b 2749 while (1) {
e02119d5
CM
2750 wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 if (wret > 0)
2752 break;
79787eaa 2753 if (wret < 0) {
e02119d5 2754 ret = wret;
79787eaa
JM
2755 goto out;
2756 }
e02119d5
CM
2757
2758 wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 if (wret > 0)
2760 break;
79787eaa 2761 if (wret < 0) {
e02119d5 2762 ret = wret;
79787eaa
JM
2763 goto out;
2764 }
e02119d5
CM
2765 }
2766
2767 /* was the root node processed? if not, catch it here */
2768 if (path->nodes[orig_level]) {
79787eaa 2769 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2770 btrfs_header_generation(path->nodes[orig_level]),
2771 orig_level);
79787eaa
JM
2772 if (ret)
2773 goto out;
e02119d5
CM
2774 if (wc->free) {
2775 struct extent_buffer *next;
2776
2777 next = path->nodes[orig_level];
2778
681ae509
JB
2779 if (trans) {
2780 btrfs_tree_lock(next);
6a884d7d 2781 btrfs_clean_tree_block(next);
681ae509
JB
2782 btrfs_wait_tree_block_writeback(next);
2783 btrfs_tree_unlock(next);
7bfc1007 2784 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2785 next->start, next->len);
2786 if (ret)
2787 goto out;
84c25448 2788 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2789 } else {
2790 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 clear_extent_buffer_dirty(next);
10e958d5 2792 unaccount_log_buffer(fs_info, next->start);
681ae509 2793 }
e02119d5
CM
2794 }
2795 }
2796
79787eaa 2797out:
e02119d5 2798 btrfs_free_path(path);
e02119d5
CM
2799 return ret;
2800}
2801
7237f183
YZ
2802/*
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2805 */
2806static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2807 struct btrfs_root *log,
2808 struct btrfs_root_item *root_item)
7237f183 2809{
0b246afa 2810 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2811 int ret;
2812
2813 if (log->log_transid == 1) {
2814 /* insert root item on the first sync */
0b246afa 2815 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2816 &log->root_key, root_item);
7237f183 2817 } else {
0b246afa 2818 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2819 &log->root_key, root_item);
7237f183
YZ
2820 }
2821 return ret;
2822}
2823
60d53eb3 2824static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2825{
2826 DEFINE_WAIT(wait);
7237f183 2827 int index = transid % 2;
e02119d5 2828
7237f183
YZ
2829 /*
2830 * we only allow two pending log transactions at a time,
2831 * so we know that if ours is more than 2 older than the
2832 * current transaction, we're done
2833 */
49e83f57 2834 for (;;) {
7237f183
YZ
2835 prepare_to_wait(&root->log_commit_wait[index],
2836 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2837
49e83f57
LB
2838 if (!(root->log_transid_committed < transid &&
2839 atomic_read(&root->log_commit[index])))
2840 break;
12fcfd22 2841
49e83f57
LB
2842 mutex_unlock(&root->log_mutex);
2843 schedule();
7237f183 2844 mutex_lock(&root->log_mutex);
49e83f57
LB
2845 }
2846 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2847}
2848
60d53eb3 2849static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2850{
2851 DEFINE_WAIT(wait);
8b050d35 2852
49e83f57
LB
2853 for (;;) {
2854 prepare_to_wait(&root->log_writer_wait, &wait,
2855 TASK_UNINTERRUPTIBLE);
2856 if (!atomic_read(&root->log_writers))
2857 break;
2858
7237f183 2859 mutex_unlock(&root->log_mutex);
49e83f57 2860 schedule();
575849ec 2861 mutex_lock(&root->log_mutex);
7237f183 2862 }
49e83f57 2863 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2864}
2865
8b050d35
MX
2866static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 struct btrfs_log_ctx *ctx)
2868{
8b050d35
MX
2869 mutex_lock(&root->log_mutex);
2870 list_del_init(&ctx->list);
2871 mutex_unlock(&root->log_mutex);
2872}
2873
2874/*
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2877 */
2878static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 int index, int error)
2880{
2881 struct btrfs_log_ctx *ctx;
570dd450 2882 struct btrfs_log_ctx *safe;
8b050d35 2883
570dd450
CM
2884 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 list_del_init(&ctx->list);
8b050d35 2886 ctx->log_ret = error;
570dd450 2887 }
8b050d35
MX
2888}
2889
e02119d5
CM
2890/*
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2893 * you know that any inodes previously logged are safely on disk only
2894 * if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
e02119d5
CM
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2904{
7237f183
YZ
2905 int index1;
2906 int index2;
8cef4e16 2907 int mark;
e02119d5 2908 int ret;
0b246afa 2909 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2910 struct btrfs_root *log = root->log_root;
0b246afa 2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 2912 struct btrfs_root_item new_root_item;
bb14a59b 2913 int log_transid = 0;
8b050d35 2914 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2915 struct blk_plug plug;
47876f7c
FM
2916 u64 log_root_start;
2917 u64 log_root_level;
e02119d5 2918
7237f183 2919 mutex_lock(&root->log_mutex);
d1433deb
MX
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
7237f183 2927 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2928 wait_log_commit(root, log_transid);
7237f183 2929 mutex_unlock(&root->log_mutex);
8b050d35 2930 return ctx->log_ret;
e02119d5 2931 }
d1433deb 2932 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2937 wait_log_commit(root, log_transid - 1);
48cab2e0 2938
86df7eb9 2939 while (1) {
2ecb7923 2940 int batch = atomic_read(&root->log_batch);
cd354ad6 2941 /* when we're on an ssd, just kick the log commit out */
0b246afa 2942 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
60d53eb3 2948 wait_for_writer(root);
2ecb7923 2949 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2950 break;
2951 }
e02119d5 2952
12fcfd22 2953 /* bail out if we need to do a full commit */
4884b8e8 2954 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 2955 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
8cef4e16
YZ
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
690587d1
CM
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
c6adc9cc 2968 blk_start_plug(&plug);
2ff7e61e 2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
79787eaa 2981 if (ret) {
c6adc9cc 2982 blk_finish_plug(&plug);
90787766 2983 btrfs_set_log_full_commit(trans);
79787eaa
JM
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
7237f183 2987
4203e968
JB
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
5d4f98a2 3001 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3003
7237f183
YZ
3004 root->log_transid++;
3005 log->log_transid = root->log_transid;
ff782e0a 3006 root->log_start_pid = 0;
7237f183 3007 /*
8cef4e16
YZ
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3ddebf27 3014 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3015 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
ea32af47 3019 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3020 blk_finish_plug(&plug);
3ddebf27
NA
3021 goto out;
3022 }
3023 }
e75f9fd1 3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3025 }
3026
e75f9fd1
NA
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
e3d3b415
FM
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
4203e968
JB
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3041 if (ret) {
d1433deb
MX
3042 if (!list_empty(&root_log_ctx.list))
3043 list_del_init(&root_log_ctx.list);
3044
c6adc9cc 3045 blk_finish_plug(&plug);
90787766 3046 btrfs_set_log_full_commit(trans);
09e44868
FM
3047 if (ret != -ENOSPC)
3048 btrfs_err(fs_info,
3049 "failed to update log for root %llu ret %d",
3050 root->root_key.objectid, ret);
bf89d38f 3051 btrfs_wait_tree_log_extents(log, mark);
4a500fd1 3052 mutex_unlock(&log_root_tree->log_mutex);
4a500fd1
YZ
3053 goto out;
3054 }
3055
d1433deb 3056 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3057 blk_finish_plug(&plug);
cbd60aa7 3058 list_del_init(&root_log_ctx.list);
d1433deb
MX
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 ret = root_log_ctx.log_ret;
3061 goto out;
3062 }
8b050d35 3063
d1433deb 3064 index2 = root_log_ctx.log_transid % 2;
7237f183 3065 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3066 blk_finish_plug(&plug);
bf89d38f 3067 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3068 wait_log_commit(log_root_tree,
d1433deb 3069 root_log_ctx.log_transid);
7237f183 3070 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3071 if (!ret)
3072 ret = root_log_ctx.log_ret;
7237f183
YZ
3073 goto out;
3074 }
d1433deb 3075 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3076 atomic_set(&log_root_tree->log_commit[index2], 1);
3077
12fcfd22 3078 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3079 wait_log_commit(log_root_tree,
d1433deb 3080 root_log_ctx.log_transid - 1);
12fcfd22
CM
3081 }
3082
12fcfd22
CM
3083 /*
3084 * now that we've moved on to the tree of log tree roots,
3085 * check the full commit flag again
3086 */
4884b8e8 3087 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3088 blk_finish_plug(&plug);
bf89d38f 3089 btrfs_wait_tree_log_extents(log, mark);
12fcfd22 3090 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3091 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
3092 goto out_wake_log_root;
3093 }
7237f183 3094
2ff7e61e 3095 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3096 &log_root_tree->dirty_log_pages,
3097 EXTENT_DIRTY | EXTENT_NEW);
3098 blk_finish_plug(&plug);
b528f467
NA
3099 /*
3100 * As described above, -EAGAIN indicates a hole in the extents. We
3101 * cannot wait for these write outs since the waiting cause a
3102 * deadlock. Bail out to the full commit instead.
3103 */
3104 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105 btrfs_set_log_full_commit(trans);
3106 btrfs_wait_tree_log_extents(log, mark);
3107 mutex_unlock(&log_root_tree->log_mutex);
3108 goto out_wake_log_root;
3109 } else if (ret) {
90787766 3110 btrfs_set_log_full_commit(trans);
79787eaa
JM
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3113 }
bf89d38f 3114 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3115 if (!ret)
bf89d38f
JM
3116 ret = btrfs_wait_tree_log_extents(log_root_tree,
3117 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3118 if (ret) {
90787766 3119 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3120 mutex_unlock(&log_root_tree->log_mutex);
3121 goto out_wake_log_root;
3122 }
e02119d5 3123
47876f7c
FM
3124 log_root_start = log_root_tree->node->start;
3125 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3126 log_root_tree->log_transid++;
7237f183
YZ
3127 mutex_unlock(&log_root_tree->log_mutex);
3128
3129 /*
47876f7c
FM
3130 * Here we are guaranteed that nobody is going to write the superblock
3131 * for the current transaction before us and that neither we do write
3132 * our superblock before the previous transaction finishes its commit
3133 * and writes its superblock, because:
3134 *
3135 * 1) We are holding a handle on the current transaction, so no body
3136 * can commit it until we release the handle;
3137 *
3138 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139 * if the previous transaction is still committing, and hasn't yet
3140 * written its superblock, we wait for it to do it, because a
3141 * transaction commit acquires the tree_log_mutex when the commit
3142 * begins and releases it only after writing its superblock.
7237f183 3143 */
47876f7c 3144 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3145
3146 /*
3147 * The previous transaction writeout phase could have failed, and thus
3148 * marked the fs in an error state. We must not commit here, as we
3149 * could have updated our generation in the super_for_commit and
3150 * writing the super here would result in transid mismatches. If there
3151 * is an error here just bail.
3152 */
84961539 3153 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3154 ret = -EIO;
3155 btrfs_set_log_full_commit(trans);
3156 btrfs_abort_transaction(trans, ret);
3157 mutex_unlock(&fs_info->tree_log_mutex);
3158 goto out_wake_log_root;
3159 }
3160
47876f7c
FM
3161 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3163 ret = write_all_supers(fs_info, 1);
47876f7c 3164 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3165 if (ret) {
90787766 3166 btrfs_set_log_full_commit(trans);
66642832 3167 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3168 goto out_wake_log_root;
3169 }
7237f183 3170
e1a6d264
FM
3171 /*
3172 * We know there can only be one task here, since we have not yet set
3173 * root->log_commit[index1] to 0 and any task attempting to sync the
3174 * log must wait for the previous log transaction to commit if it's
3175 * still in progress or wait for the current log transaction commit if
3176 * someone else already started it. We use <= and not < because the
3177 * first log transaction has an ID of 0.
3178 */
3179 ASSERT(root->last_log_commit <= log_transid);
3180 root->last_log_commit = log_transid;
257c62e1 3181
12fcfd22 3182out_wake_log_root:
570dd450 3183 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3184 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
d1433deb 3186 log_root_tree->log_transid_committed++;
7237f183 3187 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3188 mutex_unlock(&log_root_tree->log_mutex);
3189
33a9eca7 3190 /*
093258e6
DS
3191 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192 * all the updates above are seen by the woken threads. It might not be
3193 * necessary, but proving that seems to be hard.
33a9eca7 3194 */
093258e6 3195 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3196out:
d1433deb 3197 mutex_lock(&root->log_mutex);
570dd450 3198 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3199 root->log_transid_committed++;
7237f183 3200 atomic_set(&root->log_commit[index1], 0);
d1433deb 3201 mutex_unlock(&root->log_mutex);
8b050d35 3202
33a9eca7 3203 /*
093258e6
DS
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
33a9eca7 3207 */
093258e6 3208 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3209 return ret;
e02119d5
CM
3210}
3211
4a500fd1
YZ
3212static void free_log_tree(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *log)
e02119d5
CM
3214{
3215 int ret;
e02119d5
CM
3216 struct walk_control wc = {
3217 .free = 1,
3218 .process_func = process_one_buffer
3219 };
3220
3ddebf27
NA
3221 if (log->node) {
3222 ret = walk_log_tree(trans, log, &wc);
3223 if (ret) {
40cdc509
FM
3224 /*
3225 * We weren't able to traverse the entire log tree, the
3226 * typical scenario is getting an -EIO when reading an
3227 * extent buffer of the tree, due to a previous writeback
3228 * failure of it.
3229 */
3230 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231 &log->fs_info->fs_state);
3232
3233 /*
3234 * Some extent buffers of the log tree may still be dirty
3235 * and not yet written back to storage, because we may
3236 * have updates to a log tree without syncing a log tree,
3237 * such as during rename and link operations. So flush
3238 * them out and wait for their writeback to complete, so
3239 * that we properly cleanup their state and pages.
3240 */
3241 btrfs_write_marked_extents(log->fs_info,
3242 &log->dirty_log_pages,
3243 EXTENT_DIRTY | EXTENT_NEW);
3244 btrfs_wait_tree_log_extents(log,
3245 EXTENT_DIRTY | EXTENT_NEW);
3246
3ddebf27
NA
3247 if (trans)
3248 btrfs_abort_transaction(trans, ret);
3249 else
3250 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251 }
374b0e2d 3252 }
e02119d5 3253
59b0713a
FM
3254 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3255 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3256 extent_io_tree_release(&log->log_csum_range);
d3575156 3257
00246528 3258 btrfs_put_root(log);
4a500fd1
YZ
3259}
3260
3261/*
3262 * free all the extents used by the tree log. This should be called
3263 * at commit time of the full transaction
3264 */
3265int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266{
3267 if (root->log_root) {
3268 free_log_tree(trans, root->log_root);
3269 root->log_root = NULL;
e7a79811 3270 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3271 }
3272 return 0;
3273}
3274
3275int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276 struct btrfs_fs_info *fs_info)
3277{
3278 if (fs_info->log_root_tree) {
3279 free_log_tree(trans, fs_info->log_root_tree);
3280 fs_info->log_root_tree = NULL;
47876f7c 3281 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3282 }
e02119d5
CM
3283 return 0;
3284}
3285
803f0f64 3286/*
0f8ce498
FM
3287 * Check if an inode was logged in the current transaction. This correctly deals
3288 * with the case where the inode was logged but has a logged_trans of 0, which
3289 * happens if the inode is evicted and loaded again, as logged_trans is an in
3290 * memory only field (not persisted).
3291 *
3292 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293 * and < 0 on error.
803f0f64 3294 */
0f8ce498
FM
3295static int inode_logged(struct btrfs_trans_handle *trans,
3296 struct btrfs_inode *inode,
3297 struct btrfs_path *path_in)
803f0f64 3298{
0f8ce498
FM
3299 struct btrfs_path *path = path_in;
3300 struct btrfs_key key;
3301 int ret;
3302
803f0f64 3303 if (inode->logged_trans == trans->transid)
0f8ce498 3304 return 1;
803f0f64 3305
0f8ce498
FM
3306 /*
3307 * If logged_trans is not 0, then we know the inode logged was not logged
3308 * in this transaction, so we can return false right away.
3309 */
3310 if (inode->logged_trans > 0)
3311 return 0;
3312
3313 /*
3314 * If no log tree was created for this root in this transaction, then
3315 * the inode can not have been logged in this transaction. In that case
3316 * set logged_trans to anything greater than 0 and less than the current
3317 * transaction's ID, to avoid the search below in a future call in case
3318 * a log tree gets created after this.
3319 */
3320 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321 inode->logged_trans = trans->transid - 1;
3322 return 0;
3323 }
3324
3325 /*
3326 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327 * for sure if the inode was logged before in this transaction by looking
3328 * only at logged_trans. We could be pessimistic and assume it was, but
3329 * that can lead to unnecessarily logging an inode during rename and link
3330 * operations, and then further updating the log in followup rename and
3331 * link operations, specially if it's a directory, which adds latency
3332 * visible to applications doing a series of rename or link operations.
3333 *
3334 * A logged_trans of 0 here can mean several things:
3335 *
3336 * 1) The inode was never logged since the filesystem was mounted, and may
3337 * or may have not been evicted and loaded again;
3338 *
3339 * 2) The inode was logged in a previous transaction, then evicted and
3340 * then loaded again;
3341 *
3342 * 3) The inode was logged in the current transaction, then evicted and
3343 * then loaded again.
3344 *
3345 * For cases 1) and 2) we don't want to return true, but we need to detect
3346 * case 3) and return true. So we do a search in the log root for the inode
3347 * item.
3348 */
3349 key.objectid = btrfs_ino(inode);
3350 key.type = BTRFS_INODE_ITEM_KEY;
3351 key.offset = 0;
3352
3353 if (!path) {
3354 path = btrfs_alloc_path();
3355 if (!path)
3356 return -ENOMEM;
3357 }
3358
3359 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360
3361 if (path_in)
3362 btrfs_release_path(path);
3363 else
3364 btrfs_free_path(path);
1e0860f3 3365
6e8e777d 3366 /*
0f8ce498
FM
3367 * Logging an inode always results in logging its inode item. So if we
3368 * did not find the item we know the inode was not logged for sure.
6e8e777d 3369 */
0f8ce498
FM
3370 if (ret < 0) {
3371 return ret;
3372 } else if (ret > 0) {
3373 /*
3374 * Set logged_trans to a value greater than 0 and less then the
3375 * current transaction to avoid doing the search in future calls.
3376 */
3377 inode->logged_trans = trans->transid - 1;
3378 return 0;
3379 }
3380
3381 /*
3382 * The inode was previously logged and then evicted, set logged_trans to
3383 * the current transacion's ID, to avoid future tree searches as long as
3384 * the inode is not evicted again.
3385 */
3386 inode->logged_trans = trans->transid;
3387
3388 /*
3389 * If it's a directory, then we must set last_dir_index_offset to the
3390 * maximum possible value, so that the next attempt to log the inode does
3391 * not skip checking if dir index keys found in modified subvolume tree
3392 * leaves have been logged before, otherwise it would result in attempts
3393 * to insert duplicate dir index keys in the log tree. This must be done
3394 * because last_dir_index_offset is an in-memory only field, not persisted
3395 * in the inode item or any other on-disk structure, so its value is lost
3396 * once the inode is evicted.
3397 */
3398 if (S_ISDIR(inode->vfs_inode.i_mode))
3399 inode->last_dir_index_offset = (u64)-1;
803f0f64 3400
0f8ce498 3401 return 1;
803f0f64
FM
3402}
3403
839061fe
FM
3404/*
3405 * Delete a directory entry from the log if it exists.
3406 *
3407 * Returns < 0 on error
3408 * 1 if the entry does not exists
3409 * 0 if the entry existed and was successfully deleted
3410 */
3411static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *log,
3413 struct btrfs_path *path,
3414 u64 dir_ino,
6db75318 3415 const struct fscrypt_str *name,
839061fe
FM
3416 u64 index)
3417{
3418 struct btrfs_dir_item *di;
3419
3420 /*
3421 * We only log dir index items of a directory, so we don't need to look
3422 * for dir item keys.
3423 */
3424 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e43eec81 3425 index, name, -1);
839061fe
FM
3426 if (IS_ERR(di))
3427 return PTR_ERR(di);
3428 else if (!di)
3429 return 1;
3430
3431 /*
3432 * We do not need to update the size field of the directory's
3433 * inode item because on log replay we update the field to reflect
3434 * all existing entries in the directory (see overwrite_item()).
3435 */
3436 return btrfs_delete_one_dir_name(trans, log, path, di);
3437}
3438
e02119d5
CM
3439/*
3440 * If both a file and directory are logged, and unlinks or renames are
3441 * mixed in, we have a few interesting corners:
3442 *
3443 * create file X in dir Y
3444 * link file X to X.link in dir Y
3445 * fsync file X
3446 * unlink file X but leave X.link
3447 * fsync dir Y
3448 *
3449 * After a crash we would expect only X.link to exist. But file X
3450 * didn't get fsync'd again so the log has back refs for X and X.link.
3451 *
3452 * We solve this by removing directory entries and inode backrefs from the
3453 * log when a file that was logged in the current transaction is
3454 * unlinked. Any later fsync will include the updated log entries, and
3455 * we'll be able to reconstruct the proper directory items from backrefs.
3456 *
3457 * This optimizations allows us to avoid relogging the entire inode
3458 * or the entire directory.
3459 */
9a35fc95
JB
3460void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *root,
6db75318 3462 const struct fscrypt_str *name,
9a35fc95 3463 struct btrfs_inode *dir, u64 index)
e02119d5 3464{
e02119d5
CM
3465 struct btrfs_path *path;
3466 int ret;
e02119d5 3467
0f8ce498
FM
3468 ret = inode_logged(trans, dir, NULL);
3469 if (ret == 0)
3470 return;
3471 else if (ret < 0) {
3472 btrfs_set_log_full_commit(trans);
9a35fc95 3473 return;
0f8ce498 3474 }
3a5f1d45 3475
e02119d5
CM
3476 ret = join_running_log_trans(root);
3477 if (ret)
9a35fc95 3478 return;
e02119d5 3479
49f34d1f 3480 mutex_lock(&dir->log_mutex);
e02119d5 3481
e02119d5 3482 path = btrfs_alloc_path();
a62f44a5 3483 if (!path) {
839061fe 3484 ret = -ENOMEM;
a62f44a5
TI
3485 goto out_unlock;
3486 }
2a29edc6 3487
839061fe 3488 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
e43eec81 3489 name, index);
e02119d5 3490 btrfs_free_path(path);
a62f44a5 3491out_unlock:
49f34d1f 3492 mutex_unlock(&dir->log_mutex);
839061fe 3493 if (ret < 0)
90787766 3494 btrfs_set_log_full_commit(trans);
12fcfd22 3495 btrfs_end_log_trans(root);
e02119d5
CM
3496}
3497
3498/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3499void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500 struct btrfs_root *root,
6db75318 3501 const struct fscrypt_str *name,
9a35fc95 3502 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3503{
3504 struct btrfs_root *log;
3505 u64 index;
3506 int ret;
3507
0f8ce498
FM
3508 ret = inode_logged(trans, inode, NULL);
3509 if (ret == 0)
9a35fc95 3510 return;
0f8ce498
FM
3511 else if (ret < 0) {
3512 btrfs_set_log_full_commit(trans);
3513 return;
3514 }
3a5f1d45 3515
e02119d5
CM
3516 ret = join_running_log_trans(root);
3517 if (ret)
9a35fc95 3518 return;
e02119d5 3519 log = root->log_root;
a491abb2 3520 mutex_lock(&inode->log_mutex);
e02119d5 3521
e43eec81 3522 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
e02119d5 3523 dirid, &index);
a491abb2 3524 mutex_unlock(&inode->log_mutex);
9a35fc95 3525 if (ret < 0 && ret != -ENOENT)
90787766 3526 btrfs_set_log_full_commit(trans);
12fcfd22 3527 btrfs_end_log_trans(root);
e02119d5
CM
3528}
3529
3530/*
3531 * creates a range item in the log for 'dirid'. first_offset and
3532 * last_offset tell us which parts of the key space the log should
3533 * be considered authoritative for.
3534 */
3535static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *log,
3537 struct btrfs_path *path,
339d0354 3538 u64 dirid,
e02119d5
CM
3539 u64 first_offset, u64 last_offset)
3540{
3541 int ret;
3542 struct btrfs_key key;
3543 struct btrfs_dir_log_item *item;
3544
3545 key.objectid = dirid;
3546 key.offset = first_offset;
339d0354 3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3549 /*
3550 * -EEXIST is fine and can happen sporadically when we are logging a
3551 * directory and have concurrent insertions in the subvolume's tree for
3552 * items from other inodes and that result in pushing off some dir items
3553 * from one leaf to another in order to accommodate for the new items.
3554 * This results in logging the same dir index range key.
3555 */
3556 if (ret && ret != -EEXIST)
4a500fd1 3557 return ret;
e02119d5
CM
3558
3559 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 struct btrfs_dir_log_item);
750ee454
FM
3561 if (ret == -EEXIST) {
3562 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563
3564 /*
3565 * btrfs_del_dir_entries_in_log() might have been called during
3566 * an unlink between the initial insertion of this key and the
3567 * current update, or we might be logging a single entry deletion
3568 * during a rename, so set the new last_offset to the max value.
3569 */
3570 last_offset = max(last_offset, curr_end);
3571 }
e02119d5
CM
3572 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3574 btrfs_release_path(path);
e02119d5
CM
3575 return 0;
3576}
3577
086dcbfa
FM
3578static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *log,
3580 struct extent_buffer *src,
3581 struct btrfs_path *dst_path,
3582 int start_slot,
3583 int count)
3584{
3585 char *ins_data = NULL;
b7ef5f3a 3586 struct btrfs_item_batch batch;
086dcbfa 3587 struct extent_buffer *dst;
da1b811f
FM
3588 unsigned long src_offset;
3589 unsigned long dst_offset;
086dcbfa
FM
3590 struct btrfs_key key;
3591 u32 item_size;
3592 int ret;
3593 int i;
3594
3595 ASSERT(count > 0);
b7ef5f3a 3596 batch.nr = count;
086dcbfa
FM
3597
3598 if (count == 1) {
3599 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3600 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3601 batch.keys = &key;
3602 batch.data_sizes = &item_size;
3603 batch.total_data_size = item_size;
086dcbfa 3604 } else {
b7ef5f3a
FM
3605 struct btrfs_key *ins_keys;
3606 u32 *ins_sizes;
3607
086dcbfa
FM
3608 ins_data = kmalloc(count * sizeof(u32) +
3609 count * sizeof(struct btrfs_key), GFP_NOFS);
3610 if (!ins_data)
3611 return -ENOMEM;
3612
3613 ins_sizes = (u32 *)ins_data;
3614 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3615 batch.keys = ins_keys;
3616 batch.data_sizes = ins_sizes;
3617 batch.total_data_size = 0;
086dcbfa
FM
3618
3619 for (i = 0; i < count; i++) {
3620 const int slot = start_slot + i;
3621
3622 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3623 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3624 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3625 }
3626 }
3627
b7ef5f3a 3628 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3629 if (ret)
3630 goto out;
3631
3632 dst = dst_path->nodes[0];
da1b811f
FM
3633 /*
3634 * Copy all the items in bulk, in a single copy operation. Item data is
3635 * organized such that it's placed at the end of a leaf and from right
3636 * to left. For example, the data for the second item ends at an offset
3637 * that matches the offset where the data for the first item starts, the
3638 * data for the third item ends at an offset that matches the offset
3639 * where the data of the second items starts, and so on.
3640 * Therefore our source and destination start offsets for copy match the
3641 * offsets of the last items (highest slots).
3642 */
3643 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3644 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3645 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3646 btrfs_release_path(dst_path);
3647out:
3648 kfree(ins_data);
3649
3650 return ret;
3651}
3652
eb10d85e
FM
3653static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3654 struct btrfs_inode *inode,
3655 struct btrfs_path *path,
3656 struct btrfs_path *dst_path,
732d591a
FM
3657 struct btrfs_log_ctx *ctx,
3658 u64 *last_old_dentry_offset)
eb10d85e
FM
3659{
3660 struct btrfs_root *log = inode->root->log_root;
796787c9
FM
3661 struct extent_buffer *src;
3662 const int nritems = btrfs_header_nritems(path->nodes[0]);
eb10d85e 3663 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3664 bool last_found = false;
3665 int batch_start = 0;
3666 int batch_size = 0;
eb10d85e
FM
3667 int i;
3668
796787c9
FM
3669 /*
3670 * We need to clone the leaf, release the read lock on it, and use the
3671 * clone before modifying the log tree. See the comment at copy_items()
3672 * about why we need to do this.
3673 */
3674 src = btrfs_clone_extent_buffer(path->nodes[0]);
3675 if (!src)
3676 return -ENOMEM;
3677
3678 i = path->slots[0];
3679 btrfs_release_path(path);
3680 path->nodes[0] = src;
3681 path->slots[0] = i;
3682
3683 for (; i < nritems; i++) {
732d591a 3684 struct btrfs_dir_item *di;
eb10d85e 3685 struct btrfs_key key;
eb10d85e
FM
3686 int ret;
3687
3688 btrfs_item_key_to_cpu(src, &key, i);
3689
339d0354 3690 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3691 last_found = true;
3692 break;
3693 }
eb10d85e 3694
732d591a 3695 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
dc287224 3696 ctx->last_dir_item_offset = key.offset;
732d591a
FM
3697
3698 /*
3699 * Skip ranges of items that consist only of dir item keys created
3700 * in past transactions. However if we find a gap, we must log a
3701 * dir index range item for that gap, so that index keys in that
3702 * gap are deleted during log replay.
3703 */
3704 if (btrfs_dir_transid(src, di) < trans->transid) {
3705 if (key.offset > *last_old_dentry_offset + 1) {
3706 ret = insert_dir_log_key(trans, log, dst_path,
3707 ino, *last_old_dentry_offset + 1,
3708 key.offset - 1);
732d591a
FM
3709 if (ret < 0)
3710 return ret;
3711 }
3712
3713 *last_old_dentry_offset = key.offset;
3714 continue;
3715 }
193df624
FM
3716
3717 /* If we logged this dir index item before, we can skip it. */
3718 if (key.offset <= inode->last_dir_index_offset)
3719 continue;
3720
eb10d85e
FM
3721 /*
3722 * We must make sure that when we log a directory entry, the
3723 * corresponding inode, after log replay, has a matching link
3724 * count. For example:
3725 *
3726 * touch foo
3727 * mkdir mydir
3728 * sync
3729 * ln foo mydir/bar
3730 * xfs_io -c "fsync" mydir
3731 * <crash>
3732 * <mount fs and log replay>
3733 *
3734 * Would result in a fsync log that when replayed, our file inode
3735 * would have a link count of 1, but we get two directory entries
3736 * pointing to the same inode. After removing one of the names,
3737 * it would not be possible to remove the other name, which
3738 * resulted always in stale file handle errors, and would not be
3739 * possible to rmdir the parent directory, since its i_size could
3740 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3741 * resulting in -ENOTEMPTY errors.
3742 */
086dcbfa 3743 if (!ctx->log_new_dentries) {
086dcbfa
FM
3744 struct btrfs_key di_key;
3745
086dcbfa 3746 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3747 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3748 ctx->log_new_dentries = true;
3749 }
3750
086dcbfa
FM
3751 if (batch_size == 0)
3752 batch_start = i;
3753 batch_size++;
eb10d85e
FM
3754 }
3755
086dcbfa
FM
3756 if (batch_size > 0) {
3757 int ret;
3758
3759 ret = flush_dir_items_batch(trans, log, src, dst_path,
3760 batch_start, batch_size);
3761 if (ret < 0)
3762 return ret;
3763 }
3764
3765 return last_found ? 1 : 0;
eb10d85e
FM
3766}
3767
e02119d5
CM
3768/*
3769 * log all the items included in the current transaction for a given
3770 * directory. This also creates the range items in the log tree required
3771 * to replay anything deleted before the fsync
3772 */
3773static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3774 struct btrfs_inode *inode,
e02119d5 3775 struct btrfs_path *path,
339d0354 3776 struct btrfs_path *dst_path,
2f2ff0ee 3777 struct btrfs_log_ctx *ctx,
e02119d5
CM
3778 u64 min_offset, u64 *last_offset_ret)
3779{
3780 struct btrfs_key min_key;
90d04510 3781 struct btrfs_root *root = inode->root;
e02119d5 3782 struct btrfs_root *log = root->log_root;
4a500fd1 3783 int err = 0;
e02119d5 3784 int ret;
732d591a 3785 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3786 u64 last_offset = (u64)-1;
684a5773 3787 u64 ino = btrfs_ino(inode);
e02119d5 3788
33345d01 3789 min_key.objectid = ino;
339d0354 3790 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3791 min_key.offset = min_offset;
3792
6174d3cb 3793 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3794
3795 /*
3796 * we didn't find anything from this transaction, see if there
3797 * is anything at all
3798 */
339d0354
FM
3799 if (ret != 0 || min_key.objectid != ino ||
3800 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3801 min_key.objectid = ino;
339d0354 3802 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3803 min_key.offset = (u64)-1;
b3b4aa74 3804 btrfs_release_path(path);
e02119d5
CM
3805 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3806 if (ret < 0) {
b3b4aa74 3807 btrfs_release_path(path);
e02119d5
CM
3808 return ret;
3809 }
339d0354 3810 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3811
3812 /* if ret == 0 there are items for this type,
3813 * create a range to tell us the last key of this type.
3814 * otherwise, there are no items in this directory after
3815 * *min_offset, and we create a range to indicate that.
3816 */
3817 if (ret == 0) {
3818 struct btrfs_key tmp;
732d591a 3819
e02119d5
CM
3820 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3821 path->slots[0]);
339d0354 3822 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3823 last_old_dentry_offset = tmp.offset;
6d3d970b
FM
3824 } else if (ret < 0) {
3825 err = ret;
e02119d5 3826 }
6d3d970b 3827
e02119d5
CM
3828 goto done;
3829 }
3830
3831 /* go backward to find any previous key */
339d0354 3832 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3833 if (ret == 0) {
3834 struct btrfs_key tmp;
a450a4af 3835
e02119d5 3836 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
3837 /*
3838 * The dir index key before the first one we found that needs to
3839 * be logged might be in a previous leaf, and there might be a
3840 * gap between these keys, meaning that we had deletions that
3841 * happened. So the key range item we log (key type
3842 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3843 * previous key's offset plus 1, so that those deletes are replayed.
3844 */
3845 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3846 last_old_dentry_offset = tmp.offset;
6d3d970b
FM
3847 } else if (ret < 0) {
3848 err = ret;
3849 goto done;
e02119d5 3850 }
6d3d970b 3851
b3b4aa74 3852 btrfs_release_path(path);
e02119d5 3853
2cc83342 3854 /*
8bb6898d
FM
3855 * Find the first key from this transaction again or the one we were at
3856 * in the loop below in case we had to reschedule. We may be logging the
3857 * directory without holding its VFS lock, which happen when logging new
3858 * dentries (through log_new_dir_dentries()) or in some cases when we
3859 * need to log the parent directory of an inode. This means a dir index
3860 * key might be deleted from the inode's root, and therefore we may not
3861 * find it anymore. If we can't find it, just move to the next key. We
3862 * can not bail out and ignore, because if we do that we will simply
3863 * not log dir index keys that come after the one that was just deleted
3864 * and we can end up logging a dir index range that ends at (u64)-1
3865 * (@last_offset is initialized to that), resulting in removing dir
3866 * entries we should not remove at log replay time.
2cc83342 3867 */
bb56f02f 3868search:
e02119d5 3869 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
8bb6898d
FM
3870 if (ret > 0)
3871 ret = btrfs_next_item(root, path);
6d3d970b
FM
3872 if (ret < 0)
3873 err = ret;
8bb6898d 3874 /* If ret is 1, there are no more keys in the inode's root. */
2cc83342 3875 if (ret != 0)
e02119d5 3876 goto done;
e02119d5
CM
3877
3878 /*
3879 * we have a block from this transaction, log every item in it
3880 * from our directory
3881 */
d397712b 3882 while (1) {
732d591a
FM
3883 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3884 &last_old_dentry_offset);
eb10d85e
FM
3885 if (ret != 0) {
3886 if (ret < 0)
4a500fd1 3887 err = ret;
eb10d85e 3888 goto done;
e02119d5 3889 }
eb10d85e 3890 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3891
3892 /*
3893 * look ahead to the next item and see if it is also
3894 * from this directory and from this transaction
3895 */
3896 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3897 if (ret) {
3898 if (ret == 1)
3899 last_offset = (u64)-1;
3900 else
3901 err = ret;
e02119d5
CM
3902 goto done;
3903 }
eb10d85e 3904 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3905 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3906 last_offset = (u64)-1;
3907 goto done;
3908 }
3909 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
3910 /*
3911 * The next leaf was not changed in the current transaction
3912 * and has at least one dir index key.
3913 * We check for the next key because there might have been
3914 * one or more deletions between the last key we logged and
3915 * that next key. So the key range item we log (key type
3916 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3917 * offset minus 1, so that those deletes are replayed.
3918 */
3919 last_offset = min_key.offset - 1;
e02119d5
CM
3920 goto done;
3921 }
eb10d85e
FM
3922 if (need_resched()) {
3923 btrfs_release_path(path);
3924 cond_resched();
3925 goto search;
3926 }
e02119d5
CM
3927 }
3928done:
b3b4aa74
DS
3929 btrfs_release_path(path);
3930 btrfs_release_path(dst_path);
e02119d5 3931
4a500fd1
YZ
3932 if (err == 0) {
3933 *last_offset_ret = last_offset;
3934 /*
732d591a
FM
3935 * In case the leaf was changed in the current transaction but
3936 * all its dir items are from a past transaction, the last item
3937 * in the leaf is a dir item and there's no gap between that last
3938 * dir item and the first one on the next leaf (which did not
3939 * change in the current transaction), then we don't need to log
3940 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 3941 */
732d591a
FM
3942 ASSERT(last_old_dentry_offset <= last_offset);
3943 if (last_old_dentry_offset < last_offset) {
3944 ret = insert_dir_log_key(trans, log, path, ino,
3945 last_old_dentry_offset + 1,
3946 last_offset);
3947 if (ret)
3948 err = ret;
3949 }
4a500fd1
YZ
3950 }
3951 return err;
e02119d5
CM
3952}
3953
193df624
FM
3954/*
3955 * If the inode was logged before and it was evicted, then its
3956 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3957 * key offset. If that's the case, search for it and update the inode. This
3958 * is to avoid lookups in the log tree every time we try to insert a dir index
3959 * key from a leaf changed in the current transaction, and to allow us to always
3960 * do batch insertions of dir index keys.
3961 */
3962static int update_last_dir_index_offset(struct btrfs_inode *inode,
3963 struct btrfs_path *path,
3964 const struct btrfs_log_ctx *ctx)
3965{
3966 const u64 ino = btrfs_ino(inode);
3967 struct btrfs_key key;
3968 int ret;
3969
3970 lockdep_assert_held(&inode->log_mutex);
3971
3972 if (inode->last_dir_index_offset != (u64)-1)
3973 return 0;
3974
3975 if (!ctx->logged_before) {
3976 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3977 return 0;
3978 }
3979
3980 key.objectid = ino;
3981 key.type = BTRFS_DIR_INDEX_KEY;
3982 key.offset = (u64)-1;
3983
3984 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3985 /*
3986 * An error happened or we actually have an index key with an offset
3987 * value of (u64)-1. Bail out, we're done.
3988 */
3989 if (ret <= 0)
3990 goto out;
3991
3992 ret = 0;
3993 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3994
3995 /*
3996 * No dir index items, bail out and leave last_dir_index_offset with
3997 * the value right before the first valid index value.
3998 */
3999 if (path->slots[0] == 0)
4000 goto out;
4001
4002 /*
4003 * btrfs_search_slot() left us at one slot beyond the slot with the last
4004 * index key, or beyond the last key of the directory that is not an
4005 * index key. If we have an index key before, set last_dir_index_offset
4006 * to its offset value, otherwise leave it with a value right before the
4007 * first valid index value, as it means we have an empty directory.
4008 */
4009 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4010 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4011 inode->last_dir_index_offset = key.offset;
4012
4013out:
4014 btrfs_release_path(path);
4015
4016 return ret;
4017}
4018
e02119d5
CM
4019/*
4020 * logging directories is very similar to logging inodes, We find all the items
4021 * from the current transaction and write them to the log.
4022 *
4023 * The recovery code scans the directory in the subvolume, and if it finds a
4024 * key in the range logged that is not present in the log tree, then it means
4025 * that dir entry was unlinked during the transaction.
4026 *
4027 * In order for that scan to work, we must include one key smaller than
4028 * the smallest logged by this transaction and one key larger than the largest
4029 * key logged by this transaction.
4030 */
4031static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4032 struct btrfs_inode *inode,
e02119d5 4033 struct btrfs_path *path,
2f2ff0ee
FM
4034 struct btrfs_path *dst_path,
4035 struct btrfs_log_ctx *ctx)
e02119d5
CM
4036{
4037 u64 min_key;
4038 u64 max_key;
4039 int ret;
e02119d5 4040
193df624
FM
4041 ret = update_last_dir_index_offset(inode, path, ctx);
4042 if (ret)
4043 return ret;
4044
732d591a 4045 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4046 max_key = 0;
339d0354 4047 ctx->last_dir_item_offset = inode->last_dir_index_offset;
dc287224 4048
d397712b 4049 while (1) {
339d0354 4050 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4051 ctx, min_key, &max_key);
4a500fd1
YZ
4052 if (ret)
4053 return ret;
e02119d5
CM
4054 if (max_key == (u64)-1)
4055 break;
4056 min_key = max_key + 1;
4057 }
4058
339d0354
FM
4059 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4060
e02119d5
CM
4061 return 0;
4062}
4063
4064/*
4065 * a helper function to drop items from the log before we relog an
4066 * inode. max_key_type indicates the highest item type to remove.
4067 * This cannot be run for file data extents because it does not
4068 * free the extents they point to.
4069 */
88e221cd 4070static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4071 struct btrfs_root *log,
4072 struct btrfs_path *path,
88e221cd
FM
4073 struct btrfs_inode *inode,
4074 int max_key_type)
e02119d5
CM
4075{
4076 int ret;
4077 struct btrfs_key key;
4078 struct btrfs_key found_key;
18ec90d6 4079 int start_slot;
e02119d5 4080
88e221cd 4081 key.objectid = btrfs_ino(inode);
e02119d5
CM
4082 key.type = max_key_type;
4083 key.offset = (u64)-1;
4084
d397712b 4085 while (1) {
e02119d5 4086 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4087 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4088 if (ret < 0)
e02119d5
CM
4089 break;
4090
4091 if (path->slots[0] == 0)
4092 break;
4093
4094 path->slots[0]--;
4095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4096 path->slots[0]);
4097
88e221cd 4098 if (found_key.objectid != key.objectid)
e02119d5
CM
4099 break;
4100
18ec90d6
JB
4101 found_key.offset = 0;
4102 found_key.type = 0;
e3b83361 4103 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4104 if (ret < 0)
4105 break;
18ec90d6
JB
4106
4107 ret = btrfs_del_items(trans, log, path, start_slot,
4108 path->slots[0] - start_slot + 1);
4109 /*
4110 * If start slot isn't 0 then we don't need to re-search, we've
4111 * found the last guy with the objectid in this tree.
4112 */
4113 if (ret || start_slot != 0)
65a246c5 4114 break;
b3b4aa74 4115 btrfs_release_path(path);
e02119d5 4116 }
b3b4aa74 4117 btrfs_release_path(path);
5bdbeb21
JB
4118 if (ret > 0)
4119 ret = 0;
4a500fd1 4120 return ret;
e02119d5
CM
4121}
4122
8a2b3da1
FM
4123static int truncate_inode_items(struct btrfs_trans_handle *trans,
4124 struct btrfs_root *log_root,
4125 struct btrfs_inode *inode,
4126 u64 new_size, u32 min_type)
4127{
d9ac19c3
JB
4128 struct btrfs_truncate_control control = {
4129 .new_size = new_size,
487e81d2 4130 .ino = btrfs_ino(inode),
d9ac19c3 4131 .min_type = min_type,
5caa490e 4132 .skip_ref_updates = true,
d9ac19c3 4133 };
8a2b3da1 4134
8697b8f8 4135 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4136}
4137
94edf4ae
JB
4138static void fill_inode_item(struct btrfs_trans_handle *trans,
4139 struct extent_buffer *leaf,
4140 struct btrfs_inode_item *item,
1a4bcf47
FM
4141 struct inode *inode, int log_inode_only,
4142 u64 logged_isize)
94edf4ae 4143{
0b1c6cca 4144 struct btrfs_map_token token;
77eea05e 4145 u64 flags;
0b1c6cca 4146
c82f823c 4147 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4148
4149 if (log_inode_only) {
4150 /* set the generation to zero so the recover code
4151 * can tell the difference between an logging
4152 * just to say 'this inode exists' and a logging
4153 * to say 'update this inode with these values'
4154 */
cc4c13d5
DS
4155 btrfs_set_token_inode_generation(&token, item, 0);
4156 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4157 } else {
cc4c13d5
DS
4158 btrfs_set_token_inode_generation(&token, item,
4159 BTRFS_I(inode)->generation);
4160 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4161 }
4162
cc4c13d5
DS
4163 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4164 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4165 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4166 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4167
4168 btrfs_set_token_timespec_sec(&token, &item->atime,
4169 inode->i_atime.tv_sec);
4170 btrfs_set_token_timespec_nsec(&token, &item->atime,
4171 inode->i_atime.tv_nsec);
4172
4173 btrfs_set_token_timespec_sec(&token, &item->mtime,
4174 inode->i_mtime.tv_sec);
4175 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4176 inode->i_mtime.tv_nsec);
4177
4178 btrfs_set_token_timespec_sec(&token, &item->ctime,
4179 inode->i_ctime.tv_sec);
4180 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4181 inode->i_ctime.tv_nsec);
4182
e593e54e
FM
4183 /*
4184 * We do not need to set the nbytes field, in fact during a fast fsync
4185 * its value may not even be correct, since a fast fsync does not wait
4186 * for ordered extent completion, which is where we update nbytes, it
4187 * only waits for writeback to complete. During log replay as we find
4188 * file extent items and replay them, we adjust the nbytes field of the
4189 * inode item in subvolume tree as needed (see overwrite_item()).
4190 */
cc4c13d5
DS
4191
4192 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4193 btrfs_set_token_inode_transid(&token, item, trans->transid);
4194 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4195 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4196 BTRFS_I(inode)->ro_flags);
4197 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4198 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4199}
4200
a95249b3
JB
4201static int log_inode_item(struct btrfs_trans_handle *trans,
4202 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4203 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4204{
4205 struct btrfs_inode_item *inode_item;
a95249b3
JB
4206 int ret;
4207
2ac691d8
FM
4208 /*
4209 * If we are doing a fast fsync and the inode was logged before in the
4210 * current transaction, then we know the inode was previously logged and
4211 * it exists in the log tree. For performance reasons, in this case use
4212 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4213 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4214 * contention in case there are concurrent fsyncs for other inodes of the
4215 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4216 * already exists can also result in unnecessarily splitting a leaf.
4217 */
4218 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4219 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4220 ASSERT(ret <= 0);
4221 if (ret > 0)
4222 ret = -ENOENT;
4223 } else {
4224 /*
4225 * This means it is the first fsync in the current transaction,
4226 * so the inode item is not in the log and we need to insert it.
4227 * We can never get -EEXIST because we are only called for a fast
4228 * fsync and in case an inode eviction happens after the inode was
4229 * logged before in the current transaction, when we load again
4230 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4231 * flags and set ->logged_trans to 0.
4232 */
4233 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4234 sizeof(*inode_item));
4235 ASSERT(ret != -EEXIST);
4236 }
4237 if (ret)
a95249b3
JB
4238 return ret;
4239 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4240 struct btrfs_inode_item);
6d889a3b
NB
4241 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4242 0, 0);
a95249b3
JB
4243 btrfs_release_path(path);
4244 return 0;
4245}
4246
40e046ac 4247static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4248 struct btrfs_inode *inode,
40e046ac
FM
4249 struct btrfs_root *log_root,
4250 struct btrfs_ordered_sum *sums)
4251{
e289f03e
FM
4252 const u64 lock_end = sums->bytenr + sums->len - 1;
4253 struct extent_state *cached_state = NULL;
40e046ac
FM
4254 int ret;
4255
3ebac17c
FM
4256 /*
4257 * If this inode was not used for reflink operations in the current
4258 * transaction with new extents, then do the fast path, no need to
4259 * worry about logging checksum items with overlapping ranges.
4260 */
4261 if (inode->last_reflink_trans < trans->transid)
4262 return btrfs_csum_file_blocks(trans, log_root, sums);
4263
e289f03e
FM
4264 /*
4265 * Serialize logging for checksums. This is to avoid racing with the
4266 * same checksum being logged by another task that is logging another
4267 * file which happens to refer to the same extent as well. Such races
4268 * can leave checksum items in the log with overlapping ranges.
4269 */
570eb97b
JB
4270 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4271 &cached_state);
e289f03e
FM
4272 if (ret)
4273 return ret;
40e046ac
FM
4274 /*
4275 * Due to extent cloning, we might have logged a csum item that covers a
4276 * subrange of a cloned extent, and later we can end up logging a csum
4277 * item for a larger subrange of the same extent or the entire range.
4278 * This would leave csum items in the log tree that cover the same range
4279 * and break the searches for checksums in the log tree, resulting in
4280 * some checksums missing in the fs/subvolume tree. So just delete (or
4281 * trim and adjust) any existing csum items in the log for this range.
4282 */
4283 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4284 if (!ret)
4285 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4286
570eb97b
JB
4287 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4288 &cached_state);
e289f03e
FM
4289
4290 return ret;
40e046ac
FM
4291}
4292
31ff1cd2 4293static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4294 struct btrfs_inode *inode,
31ff1cd2 4295 struct btrfs_path *dst_path,
0e56315c 4296 struct btrfs_path *src_path,
1a4bcf47
FM
4297 int start_slot, int nr, int inode_only,
4298 u64 logged_isize)
31ff1cd2 4299{
44d70e19 4300 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4301 struct btrfs_file_extent_item *extent;
796787c9 4302 struct extent_buffer *src;
7f30c072 4303 int ret = 0;
31ff1cd2
CM
4304 struct btrfs_key *ins_keys;
4305 u32 *ins_sizes;
b7ef5f3a 4306 struct btrfs_item_batch batch;
31ff1cd2
CM
4307 char *ins_data;
4308 int i;
7f30c072 4309 int dst_index;
7f30c072
FM
4310 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4311 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4312
796787c9
FM
4313 /*
4314 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4315 * use the clone. This is because otherwise we would be changing the log
4316 * tree, to insert items from the subvolume tree or insert csum items,
4317 * while holding a read lock on a leaf from the subvolume tree, which
4318 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4319 *
4320 * 1) Modifying the log tree triggers an extent buffer allocation while
4321 * holding a write lock on a parent extent buffer from the log tree.
4322 * Allocating the pages for an extent buffer, or the extent buffer
4323 * struct, can trigger inode eviction and finally the inode eviction
4324 * will trigger a release/remove of a delayed node, which requires
4325 * taking the delayed node's mutex;
4326 *
4327 * 2) Allocating a metadata extent for a log tree can trigger the async
4328 * reclaim thread and make us wait for it to release enough space and
4329 * unblock our reservation ticket. The reclaim thread can start
4330 * flushing delayed items, and that in turn results in the need to
4331 * lock delayed node mutexes and in the need to write lock extent
4332 * buffers of a subvolume tree - all this while holding a write lock
4333 * on the parent extent buffer in the log tree.
4334 *
4335 * So one task in scenario 1) running in parallel with another task in
4336 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4337 * node mutex while having a read lock on a leaf from the subvolume,
4338 * while the other is holding the delayed node's mutex and wants to
4339 * write lock the same subvolume leaf for flushing delayed items.
4340 */
4341 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4342 if (!src)
4343 return -ENOMEM;
4344
4345 i = src_path->slots[0];
4346 btrfs_release_path(src_path);
4347 src_path->nodes[0] = src;
4348 src_path->slots[0] = i;
4349
31ff1cd2
CM
4350 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4351 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4352 if (!ins_data)
4353 return -ENOMEM;
4354
31ff1cd2
CM
4355 ins_sizes = (u32 *)ins_data;
4356 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4357 batch.keys = ins_keys;
4358 batch.data_sizes = ins_sizes;
4359 batch.total_data_size = 0;
7f30c072 4360 batch.nr = 0;
31ff1cd2 4361
7f30c072 4362 dst_index = 0;
31ff1cd2 4363 for (i = 0; i < nr; i++) {
7f30c072
FM
4364 const int src_slot = start_slot + i;
4365 struct btrfs_root *csum_root;
5b7ce5e2
FM
4366 struct btrfs_ordered_sum *sums;
4367 struct btrfs_ordered_sum *sums_next;
4368 LIST_HEAD(ordered_sums);
7f30c072
FM
4369 u64 disk_bytenr;
4370 u64 disk_num_bytes;
4371 u64 extent_offset;
4372 u64 extent_num_bytes;
4373 bool is_old_extent;
4374
4375 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4376
4377 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4378 goto add_to_batch;
4379
4380 extent = btrfs_item_ptr(src, src_slot,
4381 struct btrfs_file_extent_item);
4382
4383 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4384 trans->transid);
4385
4386 /*
4387 * Don't copy extents from past generations. That would make us
4388 * log a lot more metadata for common cases like doing only a
4389 * few random writes into a file and then fsync it for the first
4390 * time or after the full sync flag is set on the inode. We can
4391 * get leaves full of extent items, most of which are from past
4392 * generations, so we can skip them - as long as the inode has
4393 * not been the target of a reflink operation in this transaction,
4394 * as in that case it might have had file extent items with old
4395 * generations copied into it. We also must always log prealloc
4396 * extents that start at or beyond eof, otherwise we would lose
4397 * them on log replay.
4398 */
4399 if (is_old_extent &&
4400 ins_keys[dst_index].offset < i_size &&
4401 inode->last_reflink_trans < trans->transid)
4402 continue;
4403
4404 if (skip_csum)
4405 goto add_to_batch;
4406
4407 /* Only regular extents have checksums. */
4408 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4409 goto add_to_batch;
4410
4411 /*
4412 * If it's an extent created in a past transaction, then its
4413 * checksums are already accessible from the committed csum tree,
4414 * no need to log them.
4415 */
4416 if (is_old_extent)
4417 goto add_to_batch;
4418
4419 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4420 /* If it's an explicit hole, there are no checksums. */
4421 if (disk_bytenr == 0)
4422 goto add_to_batch;
4423
4424 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4425
4426 if (btrfs_file_extent_compression(src, extent)) {
4427 extent_offset = 0;
4428 extent_num_bytes = disk_num_bytes;
4429 } else {
4430 extent_offset = btrfs_file_extent_offset(src, extent);
4431 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4432 }
4433
4434 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4435 disk_bytenr += extent_offset;
97e38239
QW
4436 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4437 disk_bytenr + extent_num_bytes - 1,
4438 &ordered_sums, 0, false);
7f30c072
FM
4439 if (ret)
4440 goto out;
4441
5b7ce5e2
FM
4442 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4443 if (!ret)
4444 ret = log_csums(trans, inode, log, sums);
4445 list_del(&sums->list);
4446 kfree(sums);
4447 }
4448 if (ret)
4449 goto out;
4450
7f30c072
FM
4451add_to_batch:
4452 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4453 batch.total_data_size += ins_sizes[dst_index];
4454 batch.nr++;
4455 dst_index++;
31ff1cd2 4456 }
7f30c072
FM
4457
4458 /*
4459 * We have a leaf full of old extent items that don't need to be logged,
4460 * so we don't need to do anything.
4461 */
4462 if (batch.nr == 0)
4463 goto out;
4464
b7ef5f3a 4465 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4466 if (ret)
4467 goto out;
4468
4469 dst_index = 0;
4470 for (i = 0; i < nr; i++) {
4471 const int src_slot = start_slot + i;
4472 const int dst_slot = dst_path->slots[0] + dst_index;
4473 struct btrfs_key key;
4474 unsigned long src_offset;
4475 unsigned long dst_offset;
4476
4477 /*
4478 * We're done, all the remaining items in the source leaf
4479 * correspond to old file extent items.
4480 */
4481 if (dst_index >= batch.nr)
4482 break;
4483
4484 btrfs_item_key_to_cpu(src, &key, src_slot);
4485
4486 if (key.type != BTRFS_EXTENT_DATA_KEY)
4487 goto copy_item;
31ff1cd2 4488
7f30c072
FM
4489 extent = btrfs_item_ptr(src, src_slot,
4490 struct btrfs_file_extent_item);
31ff1cd2 4491
7f30c072
FM
4492 /* See the comment in the previous loop, same logic. */
4493 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4494 key.offset < i_size &&
4495 inode->last_reflink_trans < trans->transid)
4496 continue;
4497
4498copy_item:
4499 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4500 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4501
7f30c072
FM
4502 if (key.type == BTRFS_INODE_ITEM_KEY) {
4503 struct btrfs_inode_item *inode_item;
4504
4505 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4506 struct btrfs_inode_item);
94edf4ae 4507 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4508 &inode->vfs_inode,
4509 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4510 logged_isize);
94edf4ae
JB
4511 } else {
4512 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4513 src_offset, ins_sizes[dst_index]);
31ff1cd2 4514 }
94edf4ae 4515
7f30c072 4516 dst_index++;
31ff1cd2
CM
4517 }
4518
4519 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4520 btrfs_release_path(dst_path);
7f30c072 4521out:
31ff1cd2 4522 kfree(ins_data);
d20f7043 4523
4a500fd1 4524 return ret;
31ff1cd2
CM
4525}
4526
4f0f586b
ST
4527static int extent_cmp(void *priv, const struct list_head *a,
4528 const struct list_head *b)
5dc562c5 4529{
214cc184 4530 const struct extent_map *em1, *em2;
5dc562c5
JB
4531
4532 em1 = list_entry(a, struct extent_map, list);
4533 em2 = list_entry(b, struct extent_map, list);
4534
4535 if (em1->start < em2->start)
4536 return -1;
4537 else if (em1->start > em2->start)
4538 return 1;
4539 return 0;
4540}
4541
e7175a69
JB
4542static int log_extent_csums(struct btrfs_trans_handle *trans,
4543 struct btrfs_inode *inode,
a9ecb653 4544 struct btrfs_root *log_root,
48778179
FM
4545 const struct extent_map *em,
4546 struct btrfs_log_ctx *ctx)
5dc562c5 4547{
48778179 4548 struct btrfs_ordered_extent *ordered;
fc28b25e 4549 struct btrfs_root *csum_root;
2ab28f32
JB
4550 u64 csum_offset;
4551 u64 csum_len;
48778179
FM
4552 u64 mod_start = em->mod_start;
4553 u64 mod_len = em->mod_len;
8407f553
FM
4554 LIST_HEAD(ordered_sums);
4555 int ret = 0;
0aa4a17d 4556
e7175a69
JB
4557 if (inode->flags & BTRFS_INODE_NODATASUM ||
4558 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4559 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4560 return 0;
5dc562c5 4561
48778179
FM
4562 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4563 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4564 const u64 mod_end = mod_start + mod_len;
4565 struct btrfs_ordered_sum *sums;
4566
4567 if (mod_len == 0)
4568 break;
4569
4570 if (ordered_end <= mod_start)
4571 continue;
4572 if (mod_end <= ordered->file_offset)
4573 break;
4574
4575 /*
4576 * We are going to copy all the csums on this ordered extent, so
4577 * go ahead and adjust mod_start and mod_len in case this ordered
4578 * extent has already been logged.
4579 */
4580 if (ordered->file_offset > mod_start) {
4581 if (ordered_end >= mod_end)
4582 mod_len = ordered->file_offset - mod_start;
4583 /*
4584 * If we have this case
4585 *
4586 * |--------- logged extent ---------|
4587 * |----- ordered extent ----|
4588 *
4589 * Just don't mess with mod_start and mod_len, we'll
4590 * just end up logging more csums than we need and it
4591 * will be ok.
4592 */
4593 } else {
4594 if (ordered_end < mod_end) {
4595 mod_len = mod_end - ordered_end;
4596 mod_start = ordered_end;
4597 } else {
4598 mod_len = 0;
4599 }
4600 }
4601
4602 /*
4603 * To keep us from looping for the above case of an ordered
4604 * extent that falls inside of the logged extent.
4605 */
4606 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4607 continue;
4608
4609 list_for_each_entry(sums, &ordered->list, list) {
4610 ret = log_csums(trans, inode, log_root, sums);
4611 if (ret)
4612 return ret;
4613 }
4614 }
4615
4616 /* We're done, found all csums in the ordered extents. */
4617 if (mod_len == 0)
4618 return 0;
4619
e7175a69 4620 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4621 if (em->compress_type) {
4622 csum_offset = 0;
8407f553 4623 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4624 } else {
48778179
FM
4625 csum_offset = mod_start - em->start;
4626 csum_len = mod_len;
488111aa 4627 }
2ab28f32 4628
70c8a91c 4629 /* block start is already adjusted for the file extent offset. */
fc28b25e 4630 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
97e38239
QW
4631 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4632 em->block_start + csum_offset +
4633 csum_len - 1, &ordered_sums, 0, false);
70c8a91c
JB
4634 if (ret)
4635 return ret;
5dc562c5 4636
70c8a91c
JB
4637 while (!list_empty(&ordered_sums)) {
4638 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4639 struct btrfs_ordered_sum,
4640 list);
4641 if (!ret)
3ebac17c 4642 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4643 list_del(&sums->list);
4644 kfree(sums);
5dc562c5
JB
4645 }
4646
70c8a91c 4647 return ret;
5dc562c5
JB
4648}
4649
8407f553 4650static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4651 struct btrfs_inode *inode,
8407f553
FM
4652 const struct extent_map *em,
4653 struct btrfs_path *path,
8407f553
FM
4654 struct btrfs_log_ctx *ctx)
4655{
5893dfb9 4656 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4657 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4658 struct btrfs_file_extent_item fi = { 0 };
8407f553 4659 struct extent_buffer *leaf;
8407f553
FM
4660 struct btrfs_key key;
4661 u64 extent_offset = em->start - em->orig_start;
4662 u64 block_len;
4663 int ret;
8407f553 4664
e1f53ed8
FM
4665 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4666 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4667 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4668 else
4669 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4670
4671 block_len = max(em->block_len, em->orig_block_len);
4672 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4673 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4674 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4675 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4676 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4677 extent_offset);
4678 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4679 }
4680
4681 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4682 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4683 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4684 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4685
48778179 4686 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4687 if (ret)
4688 return ret;
4689
5328b2a7
FM
4690 /*
4691 * If this is the first time we are logging the inode in the current
4692 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4693 * because it does a deletion search, which always acquires write locks
4694 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4695 * but also adds significant contention in a log tree, since log trees
4696 * are small, with a root at level 2 or 3 at most, due to their short
4697 * life span.
4698 */
0f8ce498 4699 if (ctx->logged_before) {
5328b2a7
FM
4700 drop_args.path = path;
4701 drop_args.start = em->start;
4702 drop_args.end = em->start + em->len;
4703 drop_args.replace_extent = true;
e1f53ed8 4704 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4705 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4706 if (ret)
4707 return ret;
4708 }
8407f553 4709
5893dfb9 4710 if (!drop_args.extent_inserted) {
9d122629 4711 key.objectid = btrfs_ino(inode);
8407f553
FM
4712 key.type = BTRFS_EXTENT_DATA_KEY;
4713 key.offset = em->start;
4714
4715 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4716 sizeof(fi));
8407f553
FM
4717 if (ret)
4718 return ret;
4719 }
4720 leaf = path->nodes[0];
e1f53ed8
FM
4721 write_extent_buffer(leaf, &fi,
4722 btrfs_item_ptr_offset(leaf, path->slots[0]),
4723 sizeof(fi));
8407f553
FM
4724 btrfs_mark_buffer_dirty(leaf);
4725
4726 btrfs_release_path(path);
4727
4728 return ret;
4729}
4730
31d11b83
FM
4731/*
4732 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4733 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4734 * subvolume's root instead of iterating the inode's extent map tree because
4735 * otherwise we can log incorrect extent items based on extent map conversion.
4736 * That can happen due to the fact that extent maps are merged when they
4737 * are not in the extent map tree's list of modified extents.
4738 */
4739static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4740 struct btrfs_inode *inode,
4741 struct btrfs_path *path)
4742{
4743 struct btrfs_root *root = inode->root;
4744 struct btrfs_key key;
4745 const u64 i_size = i_size_read(&inode->vfs_inode);
4746 const u64 ino = btrfs_ino(inode);
4747 struct btrfs_path *dst_path = NULL;
0e56315c 4748 bool dropped_extents = false;
f135cea3
FM
4749 u64 truncate_offset = i_size;
4750 struct extent_buffer *leaf;
4751 int slot;
31d11b83
FM
4752 int ins_nr = 0;
4753 int start_slot;
4754 int ret;
4755
4756 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4757 return 0;
4758
4759 key.objectid = ino;
4760 key.type = BTRFS_EXTENT_DATA_KEY;
4761 key.offset = i_size;
4762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4763 if (ret < 0)
4764 goto out;
4765
f135cea3
FM
4766 /*
4767 * We must check if there is a prealloc extent that starts before the
4768 * i_size and crosses the i_size boundary. This is to ensure later we
4769 * truncate down to the end of that extent and not to the i_size, as
4770 * otherwise we end up losing part of the prealloc extent after a log
4771 * replay and with an implicit hole if there is another prealloc extent
4772 * that starts at an offset beyond i_size.
4773 */
4774 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4775 if (ret < 0)
4776 goto out;
4777
4778 if (ret == 0) {
4779 struct btrfs_file_extent_item *ei;
4780
4781 leaf = path->nodes[0];
4782 slot = path->slots[0];
4783 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4784
4785 if (btrfs_file_extent_type(leaf, ei) ==
4786 BTRFS_FILE_EXTENT_PREALLOC) {
4787 u64 extent_end;
4788
4789 btrfs_item_key_to_cpu(leaf, &key, slot);
4790 extent_end = key.offset +
4791 btrfs_file_extent_num_bytes(leaf, ei);
4792
4793 if (extent_end > i_size)
4794 truncate_offset = extent_end;
4795 }
4796 } else {
4797 ret = 0;
4798 }
4799
31d11b83 4800 while (true) {
f135cea3
FM
4801 leaf = path->nodes[0];
4802 slot = path->slots[0];
31d11b83
FM
4803
4804 if (slot >= btrfs_header_nritems(leaf)) {
4805 if (ins_nr > 0) {
4806 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4807 start_slot, ins_nr, 1, 0);
31d11b83
FM
4808 if (ret < 0)
4809 goto out;
4810 ins_nr = 0;
4811 }
4812 ret = btrfs_next_leaf(root, path);
4813 if (ret < 0)
4814 goto out;
4815 if (ret > 0) {
4816 ret = 0;
4817 break;
4818 }
4819 continue;
4820 }
4821
4822 btrfs_item_key_to_cpu(leaf, &key, slot);
4823 if (key.objectid > ino)
4824 break;
4825 if (WARN_ON_ONCE(key.objectid < ino) ||
4826 key.type < BTRFS_EXTENT_DATA_KEY ||
4827 key.offset < i_size) {
4828 path->slots[0]++;
4829 continue;
4830 }
0e56315c 4831 if (!dropped_extents) {
31d11b83
FM
4832 /*
4833 * Avoid logging extent items logged in past fsync calls
4834 * and leading to duplicate keys in the log tree.
4835 */
8a2b3da1
FM
4836 ret = truncate_inode_items(trans, root->log_root, inode,
4837 truncate_offset,
4838 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4839 if (ret)
4840 goto out;
0e56315c 4841 dropped_extents = true;
31d11b83
FM
4842 }
4843 if (ins_nr == 0)
4844 start_slot = slot;
4845 ins_nr++;
4846 path->slots[0]++;
4847 if (!dst_path) {
4848 dst_path = btrfs_alloc_path();
4849 if (!dst_path) {
4850 ret = -ENOMEM;
4851 goto out;
4852 }
4853 }
4854 }
0bc2d3c0 4855 if (ins_nr > 0)
0e56315c 4856 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4857 start_slot, ins_nr, 1, 0);
31d11b83
FM
4858out:
4859 btrfs_release_path(path);
4860 btrfs_free_path(dst_path);
4861 return ret;
4862}
4863
5dc562c5 4864static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4865 struct btrfs_inode *inode,
827463c4 4866 struct btrfs_path *path,
48778179 4867 struct btrfs_log_ctx *ctx)
5dc562c5 4868{
48778179
FM
4869 struct btrfs_ordered_extent *ordered;
4870 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4871 struct extent_map *em, *n;
4872 struct list_head extents;
9d122629 4873 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4874 int ret = 0;
2ab28f32 4875 int num = 0;
5dc562c5
JB
4876
4877 INIT_LIST_HEAD(&extents);
4878
5dc562c5 4879 write_lock(&tree->lock);
5dc562c5
JB
4880
4881 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4882 list_del_init(&em->list);
2ab28f32
JB
4883 /*
4884 * Just an arbitrary number, this can be really CPU intensive
4885 * once we start getting a lot of extents, and really once we
4886 * have a bunch of extents we just want to commit since it will
4887 * be faster.
4888 */
4889 if (++num > 32768) {
4890 list_del_init(&tree->modified_extents);
4891 ret = -EFBIG;
4892 goto process;
4893 }
4894
5f96bfb7 4895 if (em->generation < trans->transid)
5dc562c5 4896 continue;
8c6c5928 4897
31d11b83
FM
4898 /* We log prealloc extents beyond eof later. */
4899 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4900 em->start >= i_size_read(&inode->vfs_inode))
4901 continue;
4902
ff44c6e3 4903 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4904 refcount_inc(&em->refs);
ff44c6e3 4905 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4906 list_add_tail(&em->list, &extents);
2ab28f32 4907 num++;
5dc562c5
JB
4908 }
4909
4910 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4911process:
5dc562c5
JB
4912 while (!list_empty(&extents)) {
4913 em = list_entry(extents.next, struct extent_map, list);
4914
4915 list_del_init(&em->list);
4916
4917 /*
4918 * If we had an error we just need to delete everybody from our
4919 * private list.
4920 */
ff44c6e3 4921 if (ret) {
201a9038 4922 clear_em_logging(tree, em);
ff44c6e3 4923 free_extent_map(em);
5dc562c5 4924 continue;
ff44c6e3
JB
4925 }
4926
4927 write_unlock(&tree->lock);
5dc562c5 4928
90d04510 4929 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4930 write_lock(&tree->lock);
201a9038
JB
4931 clear_em_logging(tree, em);
4932 free_extent_map(em);
5dc562c5 4933 }
ff44c6e3
JB
4934 WARN_ON(!list_empty(&extents));
4935 write_unlock(&tree->lock);
5dc562c5 4936
31d11b83
FM
4937 if (!ret)
4938 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4939 if (ret)
4940 return ret;
31d11b83 4941
48778179
FM
4942 /*
4943 * We have logged all extents successfully, now make sure the commit of
4944 * the current transaction waits for the ordered extents to complete
4945 * before it commits and wipes out the log trees, otherwise we would
4946 * lose data if an ordered extents completes after the transaction
4947 * commits and a power failure happens after the transaction commit.
4948 */
4949 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4950 list_del_init(&ordered->log_list);
4951 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4952
4953 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4954 spin_lock_irq(&inode->ordered_tree.lock);
4955 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4956 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4957 atomic_inc(&trans->transaction->pending_ordered);
4958 }
4959 spin_unlock_irq(&inode->ordered_tree.lock);
4960 }
4961 btrfs_put_ordered_extent(ordered);
4962 }
4963
4964 return 0;
5dc562c5
JB
4965}
4966
481b01c0 4967static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4968 struct btrfs_path *path, u64 *size_ret)
4969{
4970 struct btrfs_key key;
4971 int ret;
4972
481b01c0 4973 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4974 key.type = BTRFS_INODE_ITEM_KEY;
4975 key.offset = 0;
4976
4977 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4978 if (ret < 0) {
4979 return ret;
4980 } else if (ret > 0) {
2f2ff0ee 4981 *size_ret = 0;
1a4bcf47
FM
4982 } else {
4983 struct btrfs_inode_item *item;
4984
4985 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4986 struct btrfs_inode_item);
4987 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4988 /*
4989 * If the in-memory inode's i_size is smaller then the inode
4990 * size stored in the btree, return the inode's i_size, so
4991 * that we get a correct inode size after replaying the log
4992 * when before a power failure we had a shrinking truncate
4993 * followed by addition of a new name (rename / new hard link).
4994 * Otherwise return the inode size from the btree, to avoid
4995 * data loss when replaying a log due to previously doing a
4996 * write that expands the inode's size and logging a new name
4997 * immediately after.
4998 */
4999 if (*size_ret > inode->vfs_inode.i_size)
5000 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5001 }
5002
5003 btrfs_release_path(path);
5004 return 0;
5005}
5006
36283bf7
FM
5007/*
5008 * At the moment we always log all xattrs. This is to figure out at log replay
5009 * time which xattrs must have their deletion replayed. If a xattr is missing
5010 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5011 * because if a xattr is deleted, the inode is fsynced and a power failure
5012 * happens, causing the log to be replayed the next time the fs is mounted,
5013 * we want the xattr to not exist anymore (same behaviour as other filesystems
5014 * with a journal, ext3/4, xfs, f2fs, etc).
5015 */
5016static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5017 struct btrfs_inode *inode,
36283bf7
FM
5018 struct btrfs_path *path,
5019 struct btrfs_path *dst_path)
5020{
90d04510 5021 struct btrfs_root *root = inode->root;
36283bf7
FM
5022 int ret;
5023 struct btrfs_key key;
1a93c36a 5024 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5025 int ins_nr = 0;
5026 int start_slot = 0;
f2f121ab
FM
5027 bool found_xattrs = false;
5028
5029 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5030 return 0;
36283bf7
FM
5031
5032 key.objectid = ino;
5033 key.type = BTRFS_XATTR_ITEM_KEY;
5034 key.offset = 0;
5035
5036 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5037 if (ret < 0)
5038 return ret;
5039
5040 while (true) {
5041 int slot = path->slots[0];
5042 struct extent_buffer *leaf = path->nodes[0];
5043 int nritems = btrfs_header_nritems(leaf);
5044
5045 if (slot >= nritems) {
5046 if (ins_nr > 0) {
1a93c36a 5047 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5048 start_slot, ins_nr, 1, 0);
36283bf7
FM
5049 if (ret < 0)
5050 return ret;
5051 ins_nr = 0;
5052 }
5053 ret = btrfs_next_leaf(root, path);
5054 if (ret < 0)
5055 return ret;
5056 else if (ret > 0)
5057 break;
5058 continue;
5059 }
5060
5061 btrfs_item_key_to_cpu(leaf, &key, slot);
5062 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5063 break;
5064
5065 if (ins_nr == 0)
5066 start_slot = slot;
5067 ins_nr++;
5068 path->slots[0]++;
f2f121ab 5069 found_xattrs = true;
36283bf7
FM
5070 cond_resched();
5071 }
5072 if (ins_nr > 0) {
1a93c36a 5073 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5074 start_slot, ins_nr, 1, 0);
36283bf7
FM
5075 if (ret < 0)
5076 return ret;
5077 }
5078
f2f121ab
FM
5079 if (!found_xattrs)
5080 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5081
36283bf7
FM
5082 return 0;
5083}
5084
a89ca6f2 5085/*
0e56315c
FM
5086 * When using the NO_HOLES feature if we punched a hole that causes the
5087 * deletion of entire leafs or all the extent items of the first leaf (the one
5088 * that contains the inode item and references) we may end up not processing
5089 * any extents, because there are no leafs with a generation matching the
5090 * current transaction that have extent items for our inode. So we need to find
5091 * if any holes exist and then log them. We also need to log holes after any
5092 * truncate operation that changes the inode's size.
a89ca6f2 5093 */
0e56315c 5094static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5095 struct btrfs_inode *inode,
7af59743 5096 struct btrfs_path *path)
a89ca6f2 5097{
90d04510 5098 struct btrfs_root *root = inode->root;
0b246afa 5099 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5100 struct btrfs_key key;
a0308dd7
NB
5101 const u64 ino = btrfs_ino(inode);
5102 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5103 u64 prev_extent_end = 0;
0e56315c 5104 int ret;
a89ca6f2 5105
0e56315c 5106 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5107 return 0;
5108
5109 key.objectid = ino;
5110 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5111 key.offset = 0;
a89ca6f2
FM
5112
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5114 if (ret < 0)
5115 return ret;
5116
0e56315c 5117 while (true) {
0e56315c 5118 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5119
0e56315c
FM
5120 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5121 ret = btrfs_next_leaf(root, path);
5122 if (ret < 0)
5123 return ret;
5124 if (ret > 0) {
5125 ret = 0;
5126 break;
5127 }
5128 leaf = path->nodes[0];
5129 }
5130
5131 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5132 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5133 break;
5134
5135 /* We have a hole, log it. */
5136 if (prev_extent_end < key.offset) {
7af59743 5137 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5138
5139 /*
5140 * Release the path to avoid deadlocks with other code
5141 * paths that search the root while holding locks on
5142 * leafs from the log root.
5143 */
5144 btrfs_release_path(path);
d1f68ba0
OS
5145 ret = btrfs_insert_hole_extent(trans, root->log_root,
5146 ino, prev_extent_end,
5147 hole_len);
0e56315c
FM
5148 if (ret < 0)
5149 return ret;
5150
5151 /*
5152 * Search for the same key again in the root. Since it's
5153 * an extent item and we are holding the inode lock, the
5154 * key must still exist. If it doesn't just emit warning
5155 * and return an error to fall back to a transaction
5156 * commit.
5157 */
5158 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5159 if (ret < 0)
5160 return ret;
5161 if (WARN_ON(ret > 0))
5162 return -ENOENT;
5163 leaf = path->nodes[0];
5164 }
a89ca6f2 5165
7af59743 5166 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5167 path->slots[0]++;
5168 cond_resched();
a89ca6f2 5169 }
a89ca6f2 5170
7af59743 5171 if (prev_extent_end < i_size) {
0e56315c 5172 u64 hole_len;
a89ca6f2 5173
0e56315c 5174 btrfs_release_path(path);
7af59743 5175 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
d1f68ba0
OS
5176 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5177 prev_extent_end, hole_len);
0e56315c
FM
5178 if (ret < 0)
5179 return ret;
5180 }
5181
5182 return 0;
a89ca6f2
FM
5183}
5184
56f23fdb
FM
5185/*
5186 * When we are logging a new inode X, check if it doesn't have a reference that
5187 * matches the reference from some other inode Y created in a past transaction
5188 * and that was renamed in the current transaction. If we don't do this, then at
5189 * log replay time we can lose inode Y (and all its files if it's a directory):
5190 *
5191 * mkdir /mnt/x
5192 * echo "hello world" > /mnt/x/foobar
5193 * sync
5194 * mv /mnt/x /mnt/y
5195 * mkdir /mnt/x # or touch /mnt/x
5196 * xfs_io -c fsync /mnt/x
5197 * <power fail>
5198 * mount fs, trigger log replay
5199 *
5200 * After the log replay procedure, we would lose the first directory and all its
5201 * files (file foobar).
5202 * For the case where inode Y is not a directory we simply end up losing it:
5203 *
5204 * echo "123" > /mnt/foo
5205 * sync
5206 * mv /mnt/foo /mnt/bar
5207 * echo "abc" > /mnt/foo
5208 * xfs_io -c fsync /mnt/foo
5209 * <power fail>
5210 *
5211 * We also need this for cases where a snapshot entry is replaced by some other
5212 * entry (file or directory) otherwise we end up with an unreplayable log due to
5213 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5214 * if it were a regular entry:
5215 *
5216 * mkdir /mnt/x
5217 * btrfs subvolume snapshot /mnt /mnt/x/snap
5218 * btrfs subvolume delete /mnt/x/snap
5219 * rmdir /mnt/x
5220 * mkdir /mnt/x
5221 * fsync /mnt/x or fsync some new file inside it
5222 * <power fail>
5223 *
5224 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5225 * the same transaction.
5226 */
5227static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5228 const int slot,
5229 const struct btrfs_key *key,
4791c8f1 5230 struct btrfs_inode *inode,
a3baaf0d 5231 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5232{
5233 int ret;
5234 struct btrfs_path *search_path;
5235 char *name = NULL;
5236 u32 name_len = 0;
3212fa14 5237 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5238 u32 cur_offset = 0;
5239 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5240
5241 search_path = btrfs_alloc_path();
5242 if (!search_path)
5243 return -ENOMEM;
5244 search_path->search_commit_root = 1;
5245 search_path->skip_locking = 1;
5246
5247 while (cur_offset < item_size) {
5248 u64 parent;
5249 u32 this_name_len;
5250 u32 this_len;
5251 unsigned long name_ptr;
5252 struct btrfs_dir_item *di;
6db75318 5253 struct fscrypt_str name_str;
56f23fdb
FM
5254
5255 if (key->type == BTRFS_INODE_REF_KEY) {
5256 struct btrfs_inode_ref *iref;
5257
5258 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5259 parent = key->offset;
5260 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5261 name_ptr = (unsigned long)(iref + 1);
5262 this_len = sizeof(*iref) + this_name_len;
5263 } else {
5264 struct btrfs_inode_extref *extref;
5265
5266 extref = (struct btrfs_inode_extref *)(ptr +
5267 cur_offset);
5268 parent = btrfs_inode_extref_parent(eb, extref);
5269 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5270 name_ptr = (unsigned long)&extref->name;
5271 this_len = sizeof(*extref) + this_name_len;
5272 }
5273
5274 if (this_name_len > name_len) {
5275 char *new_name;
5276
5277 new_name = krealloc(name, this_name_len, GFP_NOFS);
5278 if (!new_name) {
5279 ret = -ENOMEM;
5280 goto out;
5281 }
5282 name_len = this_name_len;
5283 name = new_name;
5284 }
5285
5286 read_extent_buffer(eb, name, name_ptr, this_name_len);
e43eec81
STD
5287
5288 name_str.name = name;
5289 name_str.len = this_name_len;
4791c8f1 5290 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
e43eec81 5291 parent, &name_str, 0);
56f23fdb 5292 if (di && !IS_ERR(di)) {
44f714da
FM
5293 struct btrfs_key di_key;
5294
5295 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5296 di, &di_key);
5297 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5298 if (di_key.objectid != key->objectid) {
5299 ret = 1;
5300 *other_ino = di_key.objectid;
a3baaf0d 5301 *other_parent = parent;
6b5fc433
FM
5302 } else {
5303 ret = 0;
5304 }
44f714da
FM
5305 } else {
5306 ret = -EAGAIN;
5307 }
56f23fdb
FM
5308 goto out;
5309 } else if (IS_ERR(di)) {
5310 ret = PTR_ERR(di);
5311 goto out;
5312 }
5313 btrfs_release_path(search_path);
5314
5315 cur_offset += this_len;
5316 }
5317 ret = 0;
5318out:
5319 btrfs_free_path(search_path);
5320 kfree(name);
5321 return ret;
5322}
5323
a3751024
FM
5324/*
5325 * Check if we need to log an inode. This is used in contexts where while
5326 * logging an inode we need to log another inode (either that it exists or in
5327 * full mode). This is used instead of btrfs_inode_in_log() because the later
5328 * requires the inode to be in the log and have the log transaction committed,
5329 * while here we do not care if the log transaction was already committed - our
5330 * caller will commit the log later - and we want to avoid logging an inode
5331 * multiple times when multiple tasks have joined the same log transaction.
5332 */
5333static bool need_log_inode(const struct btrfs_trans_handle *trans,
5334 const struct btrfs_inode *inode)
5335{
5336 /*
5337 * If a directory was not modified, no dentries added or removed, we can
5338 * and should avoid logging it.
5339 */
5340 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5341 return false;
5342
5343 /*
5344 * If this inode does not have new/updated/deleted xattrs since the last
5345 * time it was logged and is flagged as logged in the current transaction,
5346 * we can skip logging it. As for new/deleted names, those are updated in
5347 * the log by link/unlink/rename operations.
5348 * In case the inode was logged and then evicted and reloaded, its
5349 * logged_trans will be 0, in which case we have to fully log it since
5350 * logged_trans is a transient field, not persisted.
5351 */
5352 if (inode->logged_trans == trans->transid &&
5353 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5354 return false;
5355
5356 return true;
5357}
5358
f6d86dbe
FM
5359struct btrfs_dir_list {
5360 u64 ino;
5361 struct list_head list;
5362};
5363
5364/*
5365 * Log the inodes of the new dentries of a directory.
5366 * See process_dir_items_leaf() for details about why it is needed.
5367 * This is a recursive operation - if an existing dentry corresponds to a
5368 * directory, that directory's new entries are logged too (same behaviour as
5369 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5370 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5371 * complains about the following circular lock dependency / possible deadlock:
5372 *
5373 * CPU0 CPU1
5374 * ---- ----
5375 * lock(&type->i_mutex_dir_key#3/2);
5376 * lock(sb_internal#2);
5377 * lock(&type->i_mutex_dir_key#3/2);
5378 * lock(&sb->s_type->i_mutex_key#14);
5379 *
5380 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5381 * sb_start_intwrite() in btrfs_start_transaction().
5382 * Not acquiring the VFS lock of the inodes is still safe because:
5383 *
5384 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5385 * that while logging the inode new references (names) are added or removed
5386 * from the inode, leaving the logged inode item with a link count that does
5387 * not match the number of logged inode reference items. This is fine because
5388 * at log replay time we compute the real number of links and correct the
5389 * link count in the inode item (see replay_one_buffer() and
5390 * link_to_fixup_dir());
5391 *
5392 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5393 * while logging the inode's items new index items (key type
5394 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5395 * has a size that doesn't match the sum of the lengths of all the logged
5396 * names - this is ok, not a problem, because at log replay time we set the
5397 * directory's i_size to the correct value (see replay_one_name() and
3a8d1db3 5398 * overwrite_item()).
f6d86dbe
FM
5399 */
5400static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5401 struct btrfs_inode *start_inode,
5402 struct btrfs_log_ctx *ctx)
5403{
5404 struct btrfs_root *root = start_inode->root;
5405 struct btrfs_fs_info *fs_info = root->fs_info;
5406 struct btrfs_path *path;
5407 LIST_HEAD(dir_list);
5408 struct btrfs_dir_list *dir_elem;
5409 u64 ino = btrfs_ino(start_inode);
5410 int ret = 0;
5411
5412 /*
5413 * If we are logging a new name, as part of a link or rename operation,
5414 * don't bother logging new dentries, as we just want to log the names
5415 * of an inode and that any new parents exist.
5416 */
5417 if (ctx->logging_new_name)
5418 return 0;
5419
5420 path = btrfs_alloc_path();
5421 if (!path)
5422 return -ENOMEM;
5423
5424 while (true) {
5425 struct extent_buffer *leaf;
5426 struct btrfs_key min_key;
5427 bool continue_curr_inode = true;
5428 int nritems;
5429 int i;
5430
5431 min_key.objectid = ino;
5432 min_key.type = BTRFS_DIR_INDEX_KEY;
5433 min_key.offset = 0;
5434again:
5435 btrfs_release_path(path);
5436 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5437 if (ret < 0) {
5438 break;
5439 } else if (ret > 0) {
5440 ret = 0;
5441 goto next;
5442 }
5443
5444 leaf = path->nodes[0];
5445 nritems = btrfs_header_nritems(leaf);
5446 for (i = path->slots[0]; i < nritems; i++) {
5447 struct btrfs_dir_item *di;
5448 struct btrfs_key di_key;
5449 struct inode *di_inode;
5450 int log_mode = LOG_INODE_EXISTS;
5451 int type;
5452
5453 btrfs_item_key_to_cpu(leaf, &min_key, i);
5454 if (min_key.objectid != ino ||
5455 min_key.type != BTRFS_DIR_INDEX_KEY) {
5456 continue_curr_inode = false;
5457 break;
5458 }
5459
5460 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
94a48aef 5461 type = btrfs_dir_ftype(leaf, di);
f6d86dbe
FM
5462 if (btrfs_dir_transid(leaf, di) < trans->transid)
5463 continue;
5464 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5465 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5466 continue;
5467
5468 btrfs_release_path(path);
5469 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5470 if (IS_ERR(di_inode)) {
5471 ret = PTR_ERR(di_inode);
5472 goto out;
5473 }
5474
5475 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 5476 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5477 break;
5478 }
5479
5480 ctx->log_new_dentries = false;
5481 if (type == BTRFS_FT_DIR)
5482 log_mode = LOG_INODE_ALL;
5483 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5484 log_mode, ctx);
e55cf7ca 5485 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5486 if (ret)
5487 goto out;
5488 if (ctx->log_new_dentries) {
5489 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5490 if (!dir_elem) {
5491 ret = -ENOMEM;
5492 goto out;
5493 }
5494 dir_elem->ino = di_key.objectid;
5495 list_add_tail(&dir_elem->list, &dir_list);
5496 }
5497 break;
5498 }
5499
5500 if (continue_curr_inode && min_key.offset < (u64)-1) {
5501 min_key.offset++;
5502 goto again;
5503 }
5504
5505next:
5506 if (list_empty(&dir_list))
5507 break;
5508
5509 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5510 ino = dir_elem->ino;
5511 list_del(&dir_elem->list);
5512 kfree(dir_elem);
5513 }
5514out:
5515 btrfs_free_path(path);
5516 if (ret) {
5517 struct btrfs_dir_list *next;
5518
5519 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5520 kfree(dir_elem);
5521 }
5522
5523 return ret;
5524}
5525
6b5fc433
FM
5526struct btrfs_ino_list {
5527 u64 ino;
a3baaf0d 5528 u64 parent;
6b5fc433
FM
5529 struct list_head list;
5530};
5531
e09d94c9
FM
5532static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5533{
5534 struct btrfs_ino_list *curr;
5535 struct btrfs_ino_list *next;
5536
5537 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5538 list_del(&curr->list);
5539 kfree(curr);
5540 }
5541}
5542
5557a069
FM
5543static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5544 struct btrfs_path *path)
5545{
5546 struct btrfs_key key;
5547 int ret;
5548
5549 key.objectid = ino;
5550 key.type = BTRFS_INODE_ITEM_KEY;
5551 key.offset = 0;
5552
5553 path->search_commit_root = 1;
5554 path->skip_locking = 1;
5555
5556 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5557 if (WARN_ON_ONCE(ret > 0)) {
5558 /*
5559 * We have previously found the inode through the commit root
5560 * so this should not happen. If it does, just error out and
5561 * fallback to a transaction commit.
5562 */
5563 ret = -ENOENT;
5564 } else if (ret == 0) {
5565 struct btrfs_inode_item *item;
5566
5567 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5568 struct btrfs_inode_item);
5569 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5570 ret = 1;
5571 }
5572
5573 btrfs_release_path(path);
5574 path->search_commit_root = 0;
5575 path->skip_locking = 0;
5576
5577 return ret;
5578}
5579
e09d94c9
FM
5580static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5581 struct btrfs_root *root,
5557a069 5582 struct btrfs_path *path,
e09d94c9
FM
5583 u64 ino, u64 parent,
5584 struct btrfs_log_ctx *ctx)
6b5fc433
FM
5585{
5586 struct btrfs_ino_list *ino_elem;
e09d94c9
FM
5587 struct inode *inode;
5588
5589 /*
5590 * It's rare to have a lot of conflicting inodes, in practice it is not
5591 * common to have more than 1 or 2. We don't want to collect too many,
5592 * as we could end up logging too many inodes (even if only in
5593 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5594 * commits.
5595 */
94cd63ae
FM
5596 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5597 btrfs_set_log_full_commit(trans);
e09d94c9 5598 return BTRFS_LOG_FORCE_COMMIT;
94cd63ae 5599 }
e09d94c9
FM
5600
5601 inode = btrfs_iget(root->fs_info->sb, ino, root);
5602 /*
5603 * If the other inode that had a conflicting dir entry was deleted in
5557a069
FM
5604 * the current transaction then we either:
5605 *
5606 * 1) Log the parent directory (later after adding it to the list) if
5607 * the inode is a directory. This is because it may be a deleted
5608 * subvolume/snapshot or it may be a regular directory that had
5609 * deleted subvolumes/snapshots (or subdirectories that had them),
5610 * and at the moment we can't deal with dropping subvolumes/snapshots
5611 * during log replay. So we just log the parent, which will result in
5612 * a fallback to a transaction commit if we are dealing with those
5613 * cases (last_unlink_trans will match the current transaction);
5614 *
5615 * 2) Do nothing if it's not a directory. During log replay we simply
5616 * unlink the conflicting dentry from the parent directory and then
5617 * add the dentry for our inode. Like this we can avoid logging the
5618 * parent directory (and maybe fallback to a transaction commit in
5619 * case it has a last_unlink_trans == trans->transid, due to moving
5620 * some inode from it to some other directory).
e09d94c9
FM
5621 */
5622 if (IS_ERR(inode)) {
5623 int ret = PTR_ERR(inode);
5624
5625 if (ret != -ENOENT)
5626 return ret;
5627
5557a069
FM
5628 ret = conflicting_inode_is_dir(root, ino, path);
5629 /* Not a directory or we got an error. */
5630 if (ret <= 0)
5631 return ret;
5632
5633 /* Conflicting inode is a directory, so we'll log its parent. */
e09d94c9
FM
5634 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5635 if (!ino_elem)
5636 return -ENOMEM;
5637 ino_elem->ino = ino;
5638 ino_elem->parent = parent;
5639 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5640 ctx->num_conflict_inodes++;
5641
5642 return 0;
5643 }
5644
5645 /*
5646 * If the inode was already logged skip it - otherwise we can hit an
5647 * infinite loop. Example:
5648 *
5649 * From the commit root (previous transaction) we have the following
5650 * inodes:
5651 *
5652 * inode 257 a directory
5653 * inode 258 with references "zz" and "zz_link" on inode 257
5654 * inode 259 with reference "a" on inode 257
5655 *
5656 * And in the current (uncommitted) transaction we have:
5657 *
5658 * inode 257 a directory, unchanged
5659 * inode 258 with references "a" and "a2" on inode 257
5660 * inode 259 with reference "zz_link" on inode 257
5661 * inode 261 with reference "zz" on inode 257
5662 *
5663 * When logging inode 261 the following infinite loop could
5664 * happen if we don't skip already logged inodes:
5665 *
5666 * - we detect inode 258 as a conflicting inode, with inode 261
5667 * on reference "zz", and log it;
5668 *
5669 * - we detect inode 259 as a conflicting inode, with inode 258
5670 * on reference "a", and log it;
5671 *
5672 * - we detect inode 258 as a conflicting inode, with inode 259
5673 * on reference "zz_link", and log it - again! After this we
5674 * repeat the above steps forever.
5675 *
5676 * Here we can use need_log_inode() because we only need to log the
5677 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5678 * so that the log ends up with the new name and without the old name.
5679 */
5680 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5681 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5682 return 0;
5683 }
5684
e55cf7ca 5685 btrfs_add_delayed_iput(BTRFS_I(inode));
6b5fc433
FM
5686
5687 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5688 if (!ino_elem)
5689 return -ENOMEM;
5690 ino_elem->ino = ino;
a3baaf0d 5691 ino_elem->parent = parent;
e09d94c9
FM
5692 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5693 ctx->num_conflict_inodes++;
6b5fc433 5694
e09d94c9
FM
5695 return 0;
5696}
6b5fc433 5697
e09d94c9
FM
5698static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5699 struct btrfs_root *root,
5700 struct btrfs_log_ctx *ctx)
5701{
5702 struct btrfs_fs_info *fs_info = root->fs_info;
5703 int ret = 0;
6b5fc433 5704
e09d94c9
FM
5705 /*
5706 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5707 * otherwise we could have unbounded recursion of btrfs_log_inode()
5708 * calls. This check guarantees we can have only 1 level of recursion.
5709 */
5710 if (ctx->logging_conflict_inodes)
5711 return 0;
5712
5713 ctx->logging_conflict_inodes = true;
5714
5715 /*
5716 * New conflicting inodes may be found and added to the list while we
5717 * are logging a conflicting inode, so keep iterating while the list is
5718 * not empty.
5719 */
5720 while (!list_empty(&ctx->conflict_inodes)) {
5721 struct btrfs_ino_list *curr;
5722 struct inode *inode;
5723 u64 ino;
5724 u64 parent;
5725
5726 curr = list_first_entry(&ctx->conflict_inodes,
5727 struct btrfs_ino_list, list);
5728 ino = curr->ino;
5729 parent = curr->parent;
5730 list_del(&curr->list);
5731 kfree(curr);
6b5fc433 5732
0202e83f 5733 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5734 /*
5735 * If the other inode that had a conflicting dir entry was
a3baaf0d 5736 * deleted in the current transaction, we need to log its parent
e09d94c9 5737 * directory. See the comment at add_conflicting_inode().
6b5fc433
FM
5738 */
5739 if (IS_ERR(inode)) {
5740 ret = PTR_ERR(inode);
e09d94c9
FM
5741 if (ret != -ENOENT)
5742 break;
5743
5744 inode = btrfs_iget(fs_info->sb, parent, root);
5745 if (IS_ERR(inode)) {
5746 ret = PTR_ERR(inode);
5747 break;
a3baaf0d 5748 }
e09d94c9
FM
5749
5750 /*
5751 * Always log the directory, we cannot make this
5752 * conditional on need_log_inode() because the directory
5753 * might have been logged in LOG_INODE_EXISTS mode or
5754 * the dir index of the conflicting inode is not in a
5755 * dir index key range logged for the directory. So we
5756 * must make sure the deletion is recorded.
5757 */
5758 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5759 LOG_INODE_ALL, ctx);
e55cf7ca 5760 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5761 if (ret)
5762 break;
6b5fc433
FM
5763 continue;
5764 }
e09d94c9 5765
b5e4ff9d 5766 /*
e09d94c9
FM
5767 * Here we can use need_log_inode() because we only need to log
5768 * the inode in LOG_INODE_EXISTS mode and rename operations
5769 * update the log, so that the log ends up with the new name and
5770 * without the old name.
b5e4ff9d 5771 *
e09d94c9
FM
5772 * We did this check at add_conflicting_inode(), but here we do
5773 * it again because if some other task logged the inode after
5774 * that, we can avoid doing it again.
b5e4ff9d 5775 */
e09d94c9 5776 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5777 btrfs_add_delayed_iput(BTRFS_I(inode));
b5e4ff9d
FM
5778 continue;
5779 }
e09d94c9 5780
6b5fc433
FM
5781 /*
5782 * We are safe logging the other inode without acquiring its
5783 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5784 * are safe against concurrent renames of the other inode as
5785 * well because during a rename we pin the log and update the
5786 * log with the new name before we unpin it.
5787 */
e09d94c9 5788 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
e55cf7ca 5789 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5790 if (ret)
5791 break;
6b5fc433
FM
5792 }
5793
e09d94c9
FM
5794 ctx->logging_conflict_inodes = false;
5795 if (ret)
5796 free_conflicting_inodes(ctx);
5797
6b5fc433
FM
5798 return ret;
5799}
5800
da447009
FM
5801static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5802 struct btrfs_inode *inode,
5803 struct btrfs_key *min_key,
5804 const struct btrfs_key *max_key,
5805 struct btrfs_path *path,
5806 struct btrfs_path *dst_path,
5807 const u64 logged_isize,
da447009
FM
5808 const int inode_only,
5809 struct btrfs_log_ctx *ctx,
5810 bool *need_log_inode_item)
5811{
d9947887 5812 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5813 struct btrfs_root *root = inode->root;
5814 int ins_start_slot = 0;
5815 int ins_nr = 0;
5816 int ret;
5817
5818 while (1) {
5819 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5820 if (ret < 0)
5821 return ret;
5822 if (ret > 0) {
5823 ret = 0;
5824 break;
5825 }
5826again:
5827 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5828 if (min_key->objectid != max_key->objectid)
5829 break;
5830 if (min_key->type > max_key->type)
5831 break;
5832
d9947887 5833 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5834 *need_log_inode_item = false;
d9947887
FM
5835 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5836 min_key->offset >= i_size) {
5837 /*
5838 * Extents at and beyond eof are logged with
5839 * btrfs_log_prealloc_extents().
5840 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5841 * and no keys greater than that, so bail out.
5842 */
5843 break;
5844 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5845 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
e09d94c9
FM
5846 (inode->generation == trans->transid ||
5847 ctx->logging_conflict_inodes)) {
da447009
FM
5848 u64 other_ino = 0;
5849 u64 other_parent = 0;
5850
5851 ret = btrfs_check_ref_name_override(path->nodes[0],
5852 path->slots[0], min_key, inode,
5853 &other_ino, &other_parent);
5854 if (ret < 0) {
5855 return ret;
289cffcb 5856 } else if (ret > 0 &&
da447009
FM
5857 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5858 if (ins_nr > 0) {
5859 ins_nr++;
5860 } else {
5861 ins_nr = 1;
5862 ins_start_slot = path->slots[0];
5863 }
5864 ret = copy_items(trans, inode, dst_path, path,
5865 ins_start_slot, ins_nr,
5866 inode_only, logged_isize);
5867 if (ret < 0)
5868 return ret;
5869 ins_nr = 0;
5870
e09d94c9 5871 btrfs_release_path(path);
5557a069 5872 ret = add_conflicting_inode(trans, root, path,
e09d94c9
FM
5873 other_ino,
5874 other_parent, ctx);
da447009
FM
5875 if (ret)
5876 return ret;
da447009
FM
5877 goto next_key;
5878 }
d9947887
FM
5879 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5880 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5881 if (ins_nr == 0)
5882 goto next_slot;
5883 ret = copy_items(trans, inode, dst_path, path,
5884 ins_start_slot,
5885 ins_nr, inode_only, logged_isize);
5886 if (ret < 0)
5887 return ret;
5888 ins_nr = 0;
5889 goto next_slot;
5890 }
5891
5892 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5893 ins_nr++;
5894 goto next_slot;
5895 } else if (!ins_nr) {
5896 ins_start_slot = path->slots[0];
5897 ins_nr = 1;
5898 goto next_slot;
5899 }
5900
5901 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5902 ins_nr, inode_only, logged_isize);
5903 if (ret < 0)
5904 return ret;
5905 ins_nr = 1;
5906 ins_start_slot = path->slots[0];
5907next_slot:
5908 path->slots[0]++;
5909 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5910 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5911 path->slots[0]);
5912 goto again;
5913 }
5914 if (ins_nr) {
5915 ret = copy_items(trans, inode, dst_path, path,
5916 ins_start_slot, ins_nr, inode_only,
5917 logged_isize);
5918 if (ret < 0)
5919 return ret;
5920 ins_nr = 0;
5921 }
5922 btrfs_release_path(path);
5923next_key:
5924 if (min_key->offset < (u64)-1) {
5925 min_key->offset++;
5926 } else if (min_key->type < max_key->type) {
5927 min_key->type++;
5928 min_key->offset = 0;
5929 } else {
5930 break;
5931 }
96acb375
FM
5932
5933 /*
5934 * We may process many leaves full of items for our inode, so
5935 * avoid monopolizing a cpu for too long by rescheduling while
5936 * not holding locks on any tree.
5937 */
5938 cond_resched();
da447009 5939 }
d9947887 5940 if (ins_nr) {
da447009
FM
5941 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5942 ins_nr, inode_only, logged_isize);
d9947887
FM
5943 if (ret)
5944 return ret;
5945 }
5946
5947 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5948 /*
5949 * Release the path because otherwise we might attempt to double
5950 * lock the same leaf with btrfs_log_prealloc_extents() below.
5951 */
5952 btrfs_release_path(path);
5953 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5954 }
da447009
FM
5955
5956 return ret;
5957}
5958
30b80f3c
FM
5959static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5960 struct btrfs_root *log,
5961 struct btrfs_path *path,
5962 const struct btrfs_item_batch *batch,
5963 const struct btrfs_delayed_item *first_item)
5964{
5965 const struct btrfs_delayed_item *curr = first_item;
5966 int ret;
5967
5968 ret = btrfs_insert_empty_items(trans, log, path, batch);
5969 if (ret)
5970 return ret;
5971
5972 for (int i = 0; i < batch->nr; i++) {
5973 char *data_ptr;
5974
5975 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5976 write_extent_buffer(path->nodes[0], &curr->data,
5977 (unsigned long)data_ptr, curr->data_len);
5978 curr = list_next_entry(curr, log_list);
5979 path->slots[0]++;
5980 }
5981
5982 btrfs_release_path(path);
5983
5984 return 0;
5985}
5986
5987static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5988 struct btrfs_inode *inode,
5989 struct btrfs_path *path,
5990 const struct list_head *delayed_ins_list,
5991 struct btrfs_log_ctx *ctx)
5992{
5993 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5994 const int max_batch_size = 195;
5995 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5996 const u64 ino = btrfs_ino(inode);
5997 struct btrfs_root *log = inode->root->log_root;
5998 struct btrfs_item_batch batch = {
5999 .nr = 0,
6000 .total_data_size = 0,
6001 };
6002 const struct btrfs_delayed_item *first = NULL;
6003 const struct btrfs_delayed_item *curr;
6004 char *ins_data;
6005 struct btrfs_key *ins_keys;
6006 u32 *ins_sizes;
6007 u64 curr_batch_size = 0;
6008 int batch_idx = 0;
6009 int ret;
6010
6011 /* We are adding dir index items to the log tree. */
6012 lockdep_assert_held(&inode->log_mutex);
6013
6014 /*
6015 * We collect delayed items before copying index keys from the subvolume
6016 * to the log tree. However just after we collected them, they may have
6017 * been flushed (all of them or just some of them), and therefore we
6018 * could have copied them from the subvolume tree to the log tree.
6019 * So find the first delayed item that was not yet logged (they are
6020 * sorted by index number).
6021 */
6022 list_for_each_entry(curr, delayed_ins_list, log_list) {
6023 if (curr->index > inode->last_dir_index_offset) {
6024 first = curr;
6025 break;
6026 }
6027 }
6028
6029 /* Empty list or all delayed items were already logged. */
6030 if (!first)
6031 return 0;
6032
6033 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6034 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6035 if (!ins_data)
6036 return -ENOMEM;
6037 ins_sizes = (u32 *)ins_data;
6038 batch.data_sizes = ins_sizes;
6039 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6040 batch.keys = ins_keys;
6041
6042 curr = first;
6043 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6044 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6045
6046 if (curr_batch_size + curr_size > leaf_data_size ||
6047 batch.nr == max_batch_size) {
6048 ret = insert_delayed_items_batch(trans, log, path,
6049 &batch, first);
6050 if (ret)
6051 goto out;
6052 batch_idx = 0;
6053 batch.nr = 0;
6054 batch.total_data_size = 0;
6055 curr_batch_size = 0;
6056 first = curr;
6057 }
6058
6059 ins_sizes[batch_idx] = curr->data_len;
6060 ins_keys[batch_idx].objectid = ino;
6061 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6062 ins_keys[batch_idx].offset = curr->index;
6063 curr_batch_size += curr_size;
6064 batch.total_data_size += curr->data_len;
6065 batch.nr++;
6066 batch_idx++;
6067 curr = list_next_entry(curr, log_list);
6068 }
6069
6070 ASSERT(batch.nr >= 1);
6071 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6072
6073 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6074 log_list);
6075 inode->last_dir_index_offset = curr->index;
6076out:
6077 kfree(ins_data);
6078
6079 return ret;
6080}
6081
6082static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6083 struct btrfs_inode *inode,
6084 struct btrfs_path *path,
6085 const struct list_head *delayed_del_list,
6086 struct btrfs_log_ctx *ctx)
6087{
6088 const u64 ino = btrfs_ino(inode);
6089 const struct btrfs_delayed_item *curr;
6090
6091 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6092 log_list);
6093
6094 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6095 u64 first_dir_index = curr->index;
6096 u64 last_dir_index;
6097 const struct btrfs_delayed_item *next;
6098 int ret;
6099
6100 /*
6101 * Find a range of consecutive dir index items to delete. Like
6102 * this we log a single dir range item spanning several contiguous
6103 * dir items instead of logging one range item per dir index item.
6104 */
6105 next = list_next_entry(curr, log_list);
6106 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6107 if (next->index != curr->index + 1)
6108 break;
6109 curr = next;
6110 next = list_next_entry(next, log_list);
6111 }
6112
6113 last_dir_index = curr->index;
6114 ASSERT(last_dir_index >= first_dir_index);
6115
6116 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6117 ino, first_dir_index, last_dir_index);
6118 if (ret)
6119 return ret;
6120 curr = list_next_entry(curr, log_list);
6121 }
6122
6123 return 0;
6124}
6125
6126static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6127 struct btrfs_inode *inode,
6128 struct btrfs_path *path,
6129 struct btrfs_log_ctx *ctx,
6130 const struct list_head *delayed_del_list,
6131 const struct btrfs_delayed_item *first,
6132 const struct btrfs_delayed_item **last_ret)
6133{
6134 const struct btrfs_delayed_item *next;
6135 struct extent_buffer *leaf = path->nodes[0];
6136 const int last_slot = btrfs_header_nritems(leaf) - 1;
6137 int slot = path->slots[0] + 1;
6138 const u64 ino = btrfs_ino(inode);
6139
6140 next = list_next_entry(first, log_list);
6141
6142 while (slot < last_slot &&
6143 !list_entry_is_head(next, delayed_del_list, log_list)) {
6144 struct btrfs_key key;
6145
6146 btrfs_item_key_to_cpu(leaf, &key, slot);
6147 if (key.objectid != ino ||
6148 key.type != BTRFS_DIR_INDEX_KEY ||
6149 key.offset != next->index)
6150 break;
6151
6152 slot++;
6153 *last_ret = next;
6154 next = list_next_entry(next, log_list);
6155 }
6156
6157 return btrfs_del_items(trans, inode->root->log_root, path,
6158 path->slots[0], slot - path->slots[0]);
6159}
6160
6161static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6162 struct btrfs_inode *inode,
6163 struct btrfs_path *path,
6164 const struct list_head *delayed_del_list,
6165 struct btrfs_log_ctx *ctx)
6166{
6167 struct btrfs_root *log = inode->root->log_root;
6168 const struct btrfs_delayed_item *curr;
6169 u64 last_range_start;
6170 u64 last_range_end = 0;
6171 struct btrfs_key key;
6172
6173 key.objectid = btrfs_ino(inode);
6174 key.type = BTRFS_DIR_INDEX_KEY;
6175 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6176 log_list);
6177
6178 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6179 const struct btrfs_delayed_item *last = curr;
6180 u64 first_dir_index = curr->index;
6181 u64 last_dir_index;
6182 bool deleted_items = false;
6183 int ret;
6184
6185 key.offset = curr->index;
6186 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6187 if (ret < 0) {
6188 return ret;
6189 } else if (ret == 0) {
6190 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6191 delayed_del_list, curr,
6192 &last);
6193 if (ret)
6194 return ret;
6195 deleted_items = true;
6196 }
6197
6198 btrfs_release_path(path);
6199
6200 /*
6201 * If we deleted items from the leaf, it means we have a range
6202 * item logging their range, so no need to add one or update an
6203 * existing one. Otherwise we have to log a dir range item.
6204 */
6205 if (deleted_items)
6206 goto next_batch;
6207
6208 last_dir_index = last->index;
6209 ASSERT(last_dir_index >= first_dir_index);
6210 /*
6211 * If this range starts right after where the previous one ends,
6212 * then we want to reuse the previous range item and change its
6213 * end offset to the end of this range. This is just to minimize
6214 * leaf space usage, by avoiding adding a new range item.
6215 */
6216 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6217 first_dir_index = last_range_start;
6218
6219 ret = insert_dir_log_key(trans, log, path, key.objectid,
6220 first_dir_index, last_dir_index);
6221 if (ret)
6222 return ret;
6223
6224 last_range_start = first_dir_index;
6225 last_range_end = last_dir_index;
6226next_batch:
6227 curr = list_next_entry(last, log_list);
6228 }
6229
6230 return 0;
6231}
6232
6233static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6234 struct btrfs_inode *inode,
6235 struct btrfs_path *path,
6236 const struct list_head *delayed_del_list,
6237 struct btrfs_log_ctx *ctx)
6238{
6239 /*
6240 * We are deleting dir index items from the log tree or adding range
6241 * items to it.
6242 */
6243 lockdep_assert_held(&inode->log_mutex);
6244
6245 if (list_empty(delayed_del_list))
6246 return 0;
6247
6248 if (ctx->logged_before)
6249 return log_delayed_deletions_incremental(trans, inode, path,
6250 delayed_del_list, ctx);
6251
6252 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6253 ctx);
6254}
6255
6256/*
6257 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6258 * items instead of the subvolume tree.
6259 */
6260static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6261 struct btrfs_inode *inode,
6262 const struct list_head *delayed_ins_list,
6263 struct btrfs_log_ctx *ctx)
6264{
6265 const bool orig_log_new_dentries = ctx->log_new_dentries;
6266 struct btrfs_fs_info *fs_info = trans->fs_info;
6267 struct btrfs_delayed_item *item;
6268 int ret = 0;
6269
6270 /*
6271 * No need for the log mutex, plus to avoid potential deadlocks or
6272 * lockdep annotations due to nesting of delayed inode mutexes and log
6273 * mutexes.
6274 */
6275 lockdep_assert_not_held(&inode->log_mutex);
6276
6277 ASSERT(!ctx->logging_new_delayed_dentries);
6278 ctx->logging_new_delayed_dentries = true;
6279
6280 list_for_each_entry(item, delayed_ins_list, log_list) {
6281 struct btrfs_dir_item *dir_item;
6282 struct inode *di_inode;
6283 struct btrfs_key key;
6284 int log_mode = LOG_INODE_EXISTS;
6285
6286 dir_item = (struct btrfs_dir_item *)item->data;
6287 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6288
6289 if (key.type == BTRFS_ROOT_ITEM_KEY)
6290 continue;
6291
6292 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6293 if (IS_ERR(di_inode)) {
6294 ret = PTR_ERR(di_inode);
6295 break;
6296 }
6297
6298 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 6299 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6300 continue;
6301 }
6302
94a48aef 6303 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
30b80f3c
FM
6304 log_mode = LOG_INODE_ALL;
6305
6306 ctx->log_new_dentries = false;
6307 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6308
6309 if (!ret && ctx->log_new_dentries)
6310 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6311
e55cf7ca 6312 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6313
6314 if (ret)
6315 break;
6316 }
6317
6318 ctx->log_new_dentries = orig_log_new_dentries;
6319 ctx->logging_new_delayed_dentries = false;
6320
6321 return ret;
6322}
6323
e02119d5
CM
6324/* log a single inode in the tree log.
6325 * At least one parent directory for this inode must exist in the tree
6326 * or be logged already.
6327 *
6328 * Any items from this inode changed by the current transaction are copied
6329 * to the log tree. An extra reference is taken on any extents in this
6330 * file, allowing us to avoid a whole pile of corner cases around logging
6331 * blocks that have been removed from the tree.
6332 *
6333 * See LOG_INODE_ALL and related defines for a description of what inode_only
6334 * does.
6335 *
6336 * This handles both files and directories.
6337 */
12fcfd22 6338static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 6339 struct btrfs_inode *inode,
49dae1bc 6340 int inode_only,
8407f553 6341 struct btrfs_log_ctx *ctx)
e02119d5
CM
6342{
6343 struct btrfs_path *path;
6344 struct btrfs_path *dst_path;
6345 struct btrfs_key min_key;
6346 struct btrfs_key max_key;
90d04510 6347 struct btrfs_root *log = inode->root->log_root;
65faced5 6348 int ret;
5dc562c5 6349 bool fast_search = false;
a59108a7
NB
6350 u64 ino = btrfs_ino(inode);
6351 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 6352 u64 logged_isize = 0;
e4545de5 6353 bool need_log_inode_item = true;
9a8fca62 6354 bool xattrs_logged = false;
2ac691d8 6355 bool inode_item_dropped = true;
30b80f3c
FM
6356 bool full_dir_logging = false;
6357 LIST_HEAD(delayed_ins_list);
6358 LIST_HEAD(delayed_del_list);
e02119d5 6359
e02119d5 6360 path = btrfs_alloc_path();
5df67083
TI
6361 if (!path)
6362 return -ENOMEM;
e02119d5 6363 dst_path = btrfs_alloc_path();
5df67083
TI
6364 if (!dst_path) {
6365 btrfs_free_path(path);
6366 return -ENOMEM;
6367 }
e02119d5 6368
33345d01 6369 min_key.objectid = ino;
e02119d5
CM
6370 min_key.type = BTRFS_INODE_ITEM_KEY;
6371 min_key.offset = 0;
6372
33345d01 6373 max_key.objectid = ino;
12fcfd22 6374
12fcfd22 6375
5dc562c5 6376 /* today the code can only do partial logging of directories */
a59108a7 6377 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 6378 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6379 &inode->runtime_flags) &&
781feef7 6380 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
6381 max_key.type = BTRFS_XATTR_ITEM_KEY;
6382 else
6383 max_key.type = (u8)-1;
6384 max_key.offset = (u64)-1;
6385
30b80f3c
FM
6386 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6387 full_dir_logging = true;
6388
2c2c452b 6389 /*
30b80f3c
FM
6390 * If we are logging a directory while we are logging dentries of the
6391 * delayed items of some other inode, then we need to flush the delayed
6392 * items of this directory and not log the delayed items directly. This
6393 * is to prevent more than one level of recursion into btrfs_log_inode()
6394 * by having something like this:
6395 *
6396 * $ mkdir -p a/b/c/d/e/f/g/h/...
6397 * $ xfs_io -c "fsync" a
6398 *
6399 * Where all directories in the path did not exist before and are
6400 * created in the current transaction.
6401 * So in such a case we directly log the delayed items of the main
6402 * directory ("a") without flushing them first, while for each of its
6403 * subdirectories we flush their delayed items before logging them.
6404 * This prevents a potential unbounded recursion like this:
6405 *
6406 * btrfs_log_inode()
6407 * log_new_delayed_dentries()
6408 * btrfs_log_inode()
6409 * log_new_delayed_dentries()
6410 * btrfs_log_inode()
6411 * log_new_delayed_dentries()
6412 * (...)
6413 *
6414 * We have thresholds for the maximum number of delayed items to have in
6415 * memory, and once they are hit, the items are flushed asynchronously.
6416 * However the limit is quite high, so lets prevent deep levels of
6417 * recursion to happen by limiting the maximum depth to be 1.
2c2c452b 6418 */
30b80f3c 6419 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
65faced5
FM
6420 ret = btrfs_commit_inode_delayed_items(trans, inode);
6421 if (ret)
f6df27dd 6422 goto out;
16cdcec7
MX
6423 }
6424
e09d94c9 6425 mutex_lock(&inode->log_mutex);
e02119d5 6426
d0e64a98
FM
6427 /*
6428 * For symlinks, we must always log their content, which is stored in an
6429 * inline extent, otherwise we could end up with an empty symlink after
6430 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6431 * one attempts to create an empty symlink).
6432 * We don't need to worry about flushing delalloc, because when we create
6433 * the inline extent when the symlink is created (we never have delalloc
6434 * for symlinks).
6435 */
6436 if (S_ISLNK(inode->vfs_inode.i_mode))
6437 inode_only = LOG_INODE_ALL;
6438
0f8ce498
FM
6439 /*
6440 * Before logging the inode item, cache the value returned by
6441 * inode_logged(), because after that we have the need to figure out if
6442 * the inode was previously logged in this transaction.
6443 */
6444 ret = inode_logged(trans, inode, path);
65faced5 6445 if (ret < 0)
0f8ce498 6446 goto out_unlock;
0f8ce498 6447 ctx->logged_before = (ret == 1);
65faced5 6448 ret = 0;
0f8ce498 6449
64d6b281
FM
6450 /*
6451 * This is for cases where logging a directory could result in losing a
6452 * a file after replaying the log. For example, if we move a file from a
6453 * directory A to a directory B, then fsync directory A, we have no way
6454 * to known the file was moved from A to B, so logging just A would
6455 * result in losing the file after a log replay.
6456 */
30b80f3c 6457 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
64d6b281 6458 btrfs_set_log_full_commit(trans);
f31f09f6 6459 ret = BTRFS_LOG_FORCE_COMMIT;
64d6b281
FM
6460 goto out_unlock;
6461 }
6462
e02119d5
CM
6463 /*
6464 * a brute force approach to making sure we get the most uptodate
6465 * copies of everything.
6466 */
a59108a7 6467 if (S_ISDIR(inode->vfs_inode.i_mode)) {
ab12313a 6468 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
0f8ce498
FM
6469 if (ctx->logged_before)
6470 ret = drop_inode_items(trans, log, path, inode,
04fc7d51 6471 BTRFS_XATTR_ITEM_KEY);
e02119d5 6472 } else {
0f8ce498 6473 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
6474 /*
6475 * Make sure the new inode item we write to the log has
6476 * the same isize as the current one (if it exists).
6477 * This is necessary to prevent data loss after log
6478 * replay, and also to prevent doing a wrong expanding
6479 * truncate - for e.g. create file, write 4K into offset
6480 * 0, fsync, write 4K into offset 4096, add hard link,
6481 * fsync some other file (to sync log), power fail - if
6482 * we use the inode's current i_size, after log replay
6483 * we get a 8Kb file, with the last 4Kb extent as a hole
6484 * (zeroes), as if an expanding truncate happened,
6485 * instead of getting a file of 4Kb only.
6486 */
65faced5
FM
6487 ret = logged_inode_size(log, inode, path, &logged_isize);
6488 if (ret)
1a4bcf47
FM
6489 goto out_unlock;
6490 }
a742994a 6491 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6492 &inode->runtime_flags)) {
a742994a 6493 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 6494 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6495 if (ctx->logged_before)
6496 ret = drop_inode_items(trans, log, path,
6497 inode, max_key.type);
a742994a
FM
6498 } else {
6499 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6500 &inode->runtime_flags);
a742994a 6501 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6502 &inode->runtime_flags);
0f8ce498 6503 if (ctx->logged_before)
4934a815
FM
6504 ret = truncate_inode_items(trans, log,
6505 inode, 0, 0);
a742994a 6506 }
4f764e51 6507 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6508 &inode->runtime_flags) ||
6cfab851 6509 inode_only == LOG_INODE_EXISTS) {
4f764e51 6510 if (inode_only == LOG_INODE_ALL)
183f37fa 6511 fast_search = true;
4f764e51 6512 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6513 if (ctx->logged_before)
6514 ret = drop_inode_items(trans, log, path, inode,
6515 max_key.type);
a95249b3
JB
6516 } else {
6517 if (inode_only == LOG_INODE_ALL)
6518 fast_search = true;
2ac691d8 6519 inode_item_dropped = false;
a95249b3 6520 goto log_extents;
5dc562c5 6521 }
a95249b3 6522
e02119d5 6523 }
65faced5 6524 if (ret)
4a500fd1 6525 goto out_unlock;
e02119d5 6526
30b80f3c
FM
6527 /*
6528 * If we are logging a directory in full mode, collect the delayed items
6529 * before iterating the subvolume tree, so that we don't miss any new
6530 * dir index items in case they get flushed while or right after we are
6531 * iterating the subvolume tree.
6532 */
6533 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6534 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6535 &delayed_del_list);
6536
65faced5 6537 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 6538 path, dst_path, logged_isize,
e09d94c9 6539 inode_only, ctx,
7af59743 6540 &need_log_inode_item);
65faced5 6541 if (ret)
da447009 6542 goto out_unlock;
5dc562c5 6543
36283bf7
FM
6544 btrfs_release_path(path);
6545 btrfs_release_path(dst_path);
65faced5
FM
6546 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6547 if (ret)
36283bf7 6548 goto out_unlock;
9a8fca62 6549 xattrs_logged = true;
a89ca6f2
FM
6550 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6551 btrfs_release_path(path);
6552 btrfs_release_path(dst_path);
65faced5
FM
6553 ret = btrfs_log_holes(trans, inode, path);
6554 if (ret)
a89ca6f2
FM
6555 goto out_unlock;
6556 }
a95249b3 6557log_extents:
f3b15ccd
JB
6558 btrfs_release_path(path);
6559 btrfs_release_path(dst_path);
e4545de5 6560 if (need_log_inode_item) {
65faced5
FM
6561 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6562 if (ret)
b590b839
FM
6563 goto out_unlock;
6564 /*
6565 * If we are doing a fast fsync and the inode was logged before
6566 * in this transaction, we don't need to log the xattrs because
6567 * they were logged before. If xattrs were added, changed or
6568 * deleted since the last time we logged the inode, then we have
6569 * already logged them because the inode had the runtime flag
6570 * BTRFS_INODE_COPY_EVERYTHING set.
6571 */
6572 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
6573 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6574 if (ret)
b590b839 6575 goto out_unlock;
9a8fca62
FM
6576 btrfs_release_path(path);
6577 }
e4545de5 6578 }
5dc562c5 6579 if (fast_search) {
90d04510 6580 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 6581 if (ret)
5dc562c5 6582 goto out_unlock;
d006a048 6583 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
6584 struct extent_map *em, *n;
6585
49dae1bc 6586 write_lock(&em_tree->lock);
48778179
FM
6587 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6588 list_del_init(&em->list);
49dae1bc 6589 write_unlock(&em_tree->lock);
5dc562c5
JB
6590 }
6591
30b80f3c 6592 if (full_dir_logging) {
90d04510 6593 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 6594 if (ret)
4a500fd1 6595 goto out_unlock;
30b80f3c
FM
6596 ret = log_delayed_insertion_items(trans, inode, path,
6597 &delayed_ins_list, ctx);
6598 if (ret)
6599 goto out_unlock;
6600 ret = log_delayed_deletion_items(trans, inode, path,
6601 &delayed_del_list, ctx);
6602 if (ret)
6603 goto out_unlock;
e02119d5 6604 }
49dae1bc 6605
130341be
FM
6606 spin_lock(&inode->lock);
6607 inode->logged_trans = trans->transid;
d1d832a0 6608 /*
130341be
FM
6609 * Don't update last_log_commit if we logged that an inode exists.
6610 * We do this for three reasons:
6611 *
6612 * 1) We might have had buffered writes to this inode that were
6613 * flushed and had their ordered extents completed in this
6614 * transaction, but we did not previously log the inode with
6615 * LOG_INODE_ALL. Later the inode was evicted and after that
6616 * it was loaded again and this LOG_INODE_EXISTS log operation
6617 * happened. We must make sure that if an explicit fsync against
6618 * the inode is performed later, it logs the new extents, an
6619 * updated inode item, etc, and syncs the log. The same logic
6620 * applies to direct IO writes instead of buffered writes.
6621 *
6622 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6623 * is logged with an i_size of 0 or whatever value was logged
6624 * before. If later the i_size of the inode is increased by a
6625 * truncate operation, the log is synced through an fsync of
6626 * some other inode and then finally an explicit fsync against
6627 * this inode is made, we must make sure this fsync logs the
6628 * inode with the new i_size, the hole between old i_size and
6629 * the new i_size, and syncs the log.
6630 *
6631 * 3) If we are logging that an ancestor inode exists as part of
6632 * logging a new name from a link or rename operation, don't update
6633 * its last_log_commit - otherwise if an explicit fsync is made
6634 * against an ancestor, the fsync considers the inode in the log
6635 * and doesn't sync the log, resulting in the ancestor missing after
6636 * a power failure unless the log was synced as part of an fsync
6637 * against any other unrelated inode.
d1d832a0 6638 */
130341be
FM
6639 if (inode_only != LOG_INODE_EXISTS)
6640 inode->last_log_commit = inode->last_sub_trans;
6641 spin_unlock(&inode->lock);
23e3337f
FM
6642
6643 /*
6644 * Reset the last_reflink_trans so that the next fsync does not need to
6645 * go through the slower path when logging extents and their checksums.
6646 */
6647 if (inode_only == LOG_INODE_ALL)
6648 inode->last_reflink_trans = 0;
6649
4a500fd1 6650out_unlock:
a59108a7 6651 mutex_unlock(&inode->log_mutex);
f6df27dd 6652out:
e02119d5
CM
6653 btrfs_free_path(path);
6654 btrfs_free_path(dst_path);
0f8ce498 6655
e09d94c9
FM
6656 if (ret)
6657 free_conflicting_inodes(ctx);
6658 else
6659 ret = log_conflicting_inodes(trans, inode->root, ctx);
0f8ce498 6660
30b80f3c
FM
6661 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6662 if (!ret)
6663 ret = log_new_delayed_dentries(trans, inode,
6664 &delayed_ins_list, ctx);
6665
6666 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6667 &delayed_del_list);
6668 }
6669
65faced5 6670 return ret;
e02119d5
CM
6671}
6672
18aa0922 6673static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6674 struct btrfs_inode *inode,
18aa0922
FM
6675 struct btrfs_log_ctx *ctx)
6676{
3ffbd68c 6677 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6678 int ret;
6679 struct btrfs_path *path;
6680 struct btrfs_key key;
d0a0b78d
NB
6681 struct btrfs_root *root = inode->root;
6682 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6683
6684 path = btrfs_alloc_path();
6685 if (!path)
6686 return -ENOMEM;
6687 path->skip_locking = 1;
6688 path->search_commit_root = 1;
6689
6690 key.objectid = ino;
6691 key.type = BTRFS_INODE_REF_KEY;
6692 key.offset = 0;
6693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6694 if (ret < 0)
6695 goto out;
6696
6697 while (true) {
6698 struct extent_buffer *leaf = path->nodes[0];
6699 int slot = path->slots[0];
6700 u32 cur_offset = 0;
6701 u32 item_size;
6702 unsigned long ptr;
6703
6704 if (slot >= btrfs_header_nritems(leaf)) {
6705 ret = btrfs_next_leaf(root, path);
6706 if (ret < 0)
6707 goto out;
6708 else if (ret > 0)
6709 break;
6710 continue;
6711 }
6712
6713 btrfs_item_key_to_cpu(leaf, &key, slot);
6714 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6715 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6716 break;
6717
3212fa14 6718 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6719 ptr = btrfs_item_ptr_offset(leaf, slot);
6720 while (cur_offset < item_size) {
6721 struct btrfs_key inode_key;
6722 struct inode *dir_inode;
6723
6724 inode_key.type = BTRFS_INODE_ITEM_KEY;
6725 inode_key.offset = 0;
6726
6727 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6728 struct btrfs_inode_extref *extref;
6729
6730 extref = (struct btrfs_inode_extref *)
6731 (ptr + cur_offset);
6732 inode_key.objectid = btrfs_inode_extref_parent(
6733 leaf, extref);
6734 cur_offset += sizeof(*extref);
6735 cur_offset += btrfs_inode_extref_name_len(leaf,
6736 extref);
6737 } else {
6738 inode_key.objectid = key.offset;
6739 cur_offset = item_size;
6740 }
6741
0202e83f
DS
6742 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6743 root);
0f375eed
FM
6744 /*
6745 * If the parent inode was deleted, return an error to
6746 * fallback to a transaction commit. This is to prevent
6747 * getting an inode that was moved from one parent A to
6748 * a parent B, got its former parent A deleted and then
6749 * it got fsync'ed, from existing at both parents after
6750 * a log replay (and the old parent still existing).
6751 * Example:
6752 *
6753 * mkdir /mnt/A
6754 * mkdir /mnt/B
6755 * touch /mnt/B/bar
6756 * sync
6757 * mv /mnt/B/bar /mnt/A/bar
6758 * mv -T /mnt/A /mnt/B
6759 * fsync /mnt/B/bar
6760 * <power fail>
6761 *
6762 * If we ignore the old parent B which got deleted,
6763 * after a log replay we would have file bar linked
6764 * at both parents and the old parent B would still
6765 * exist.
6766 */
6767 if (IS_ERR(dir_inode)) {
6768 ret = PTR_ERR(dir_inode);
6769 goto out;
6770 }
18aa0922 6771
3e6a86a1 6772 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
e55cf7ca 6773 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
3e6a86a1
FM
6774 continue;
6775 }
6776
289cffcb 6777 ctx->log_new_dentries = false;
90d04510 6778 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6779 LOG_INODE_ALL, ctx);
289cffcb 6780 if (!ret && ctx->log_new_dentries)
8786a6d7 6781 ret = log_new_dir_dentries(trans,
f85b7379 6782 BTRFS_I(dir_inode), ctx);
e55cf7ca 6783 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
18aa0922
FM
6784 if (ret)
6785 goto out;
6786 }
6787 path->slots[0]++;
6788 }
6789 ret = 0;
6790out:
6791 btrfs_free_path(path);
6792 return ret;
6793}
6794
b8aa330d
FM
6795static int log_new_ancestors(struct btrfs_trans_handle *trans,
6796 struct btrfs_root *root,
6797 struct btrfs_path *path,
6798 struct btrfs_log_ctx *ctx)
6799{
6800 struct btrfs_key found_key;
6801
6802 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6803
6804 while (true) {
6805 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6806 struct extent_buffer *leaf = path->nodes[0];
6807 int slot = path->slots[0];
6808 struct btrfs_key search_key;
6809 struct inode *inode;
0202e83f 6810 u64 ino;
b8aa330d
FM
6811 int ret = 0;
6812
6813 btrfs_release_path(path);
6814
0202e83f
DS
6815 ino = found_key.offset;
6816
b8aa330d
FM
6817 search_key.objectid = found_key.offset;
6818 search_key.type = BTRFS_INODE_ITEM_KEY;
6819 search_key.offset = 0;
0202e83f 6820 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6821 if (IS_ERR(inode))
6822 return PTR_ERR(inode);
6823
ab12313a
FM
6824 if (BTRFS_I(inode)->generation >= trans->transid &&
6825 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6826 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6827 LOG_INODE_EXISTS, ctx);
e55cf7ca 6828 btrfs_add_delayed_iput(BTRFS_I(inode));
b8aa330d
FM
6829 if (ret)
6830 return ret;
6831
6832 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6833 break;
6834
6835 search_key.type = BTRFS_INODE_REF_KEY;
6836 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6837 if (ret < 0)
6838 return ret;
6839
6840 leaf = path->nodes[0];
6841 slot = path->slots[0];
6842 if (slot >= btrfs_header_nritems(leaf)) {
6843 ret = btrfs_next_leaf(root, path);
6844 if (ret < 0)
6845 return ret;
6846 else if (ret > 0)
6847 return -ENOENT;
6848 leaf = path->nodes[0];
6849 slot = path->slots[0];
6850 }
6851
6852 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6853 if (found_key.objectid != search_key.objectid ||
6854 found_key.type != BTRFS_INODE_REF_KEY)
6855 return -ENOENT;
6856 }
6857 return 0;
6858}
6859
6860static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6861 struct btrfs_inode *inode,
6862 struct dentry *parent,
6863 struct btrfs_log_ctx *ctx)
6864{
6865 struct btrfs_root *root = inode->root;
b8aa330d
FM
6866 struct dentry *old_parent = NULL;
6867 struct super_block *sb = inode->vfs_inode.i_sb;
6868 int ret = 0;
6869
6870 while (true) {
6871 if (!parent || d_really_is_negative(parent) ||
6872 sb != parent->d_sb)
6873 break;
6874
6875 inode = BTRFS_I(d_inode(parent));
6876 if (root != inode->root)
6877 break;
6878
ab12313a
FM
6879 if (inode->generation >= trans->transid &&
6880 need_log_inode(trans, inode)) {
90d04510 6881 ret = btrfs_log_inode(trans, inode,
48778179 6882 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6883 if (ret)
6884 break;
6885 }
6886 if (IS_ROOT(parent))
6887 break;
6888
6889 parent = dget_parent(parent);
6890 dput(old_parent);
6891 old_parent = parent;
6892 }
6893 dput(old_parent);
6894
6895 return ret;
6896}
6897
6898static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6899 struct btrfs_inode *inode,
6900 struct dentry *parent,
6901 struct btrfs_log_ctx *ctx)
6902{
6903 struct btrfs_root *root = inode->root;
6904 const u64 ino = btrfs_ino(inode);
6905 struct btrfs_path *path;
6906 struct btrfs_key search_key;
6907 int ret;
6908
6909 /*
6910 * For a single hard link case, go through a fast path that does not
6911 * need to iterate the fs/subvolume tree.
6912 */
6913 if (inode->vfs_inode.i_nlink < 2)
6914 return log_new_ancestors_fast(trans, inode, parent, ctx);
6915
6916 path = btrfs_alloc_path();
6917 if (!path)
6918 return -ENOMEM;
6919
6920 search_key.objectid = ino;
6921 search_key.type = BTRFS_INODE_REF_KEY;
6922 search_key.offset = 0;
6923again:
6924 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6925 if (ret < 0)
6926 goto out;
6927 if (ret == 0)
6928 path->slots[0]++;
6929
6930 while (true) {
6931 struct extent_buffer *leaf = path->nodes[0];
6932 int slot = path->slots[0];
6933 struct btrfs_key found_key;
6934
6935 if (slot >= btrfs_header_nritems(leaf)) {
6936 ret = btrfs_next_leaf(root, path);
6937 if (ret < 0)
6938 goto out;
6939 else if (ret > 0)
6940 break;
6941 continue;
6942 }
6943
6944 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6945 if (found_key.objectid != ino ||
6946 found_key.type > BTRFS_INODE_EXTREF_KEY)
6947 break;
6948
6949 /*
6950 * Don't deal with extended references because they are rare
6951 * cases and too complex to deal with (we would need to keep
6952 * track of which subitem we are processing for each item in
6953 * this loop, etc). So just return some error to fallback to
6954 * a transaction commit.
6955 */
6956 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6957 ret = -EMLINK;
6958 goto out;
6959 }
6960
6961 /*
6962 * Logging ancestors needs to do more searches on the fs/subvol
6963 * tree, so it releases the path as needed to avoid deadlocks.
6964 * Keep track of the last inode ref key and resume from that key
6965 * after logging all new ancestors for the current hard link.
6966 */
6967 memcpy(&search_key, &found_key, sizeof(search_key));
6968
6969 ret = log_new_ancestors(trans, root, path, ctx);
6970 if (ret)
6971 goto out;
6972 btrfs_release_path(path);
6973 goto again;
6974 }
6975 ret = 0;
6976out:
6977 btrfs_free_path(path);
6978 return ret;
6979}
6980
e02119d5
CM
6981/*
6982 * helper function around btrfs_log_inode to make sure newly created
6983 * parent directories also end up in the log. A minimal inode and backref
6984 * only logging is done of any parent directories that are older than
6985 * the last committed transaction
6986 */
48a3b636 6987static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6988 struct btrfs_inode *inode,
49dae1bc 6989 struct dentry *parent,
41a1eada 6990 int inode_only,
8b050d35 6991 struct btrfs_log_ctx *ctx)
e02119d5 6992{
f882274b 6993 struct btrfs_root *root = inode->root;
0b246afa 6994 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6995 int ret = 0;
2f2ff0ee 6996 bool log_dentries = false;
12fcfd22 6997
0b246afa 6998 if (btrfs_test_opt(fs_info, NOTREELOG)) {
f31f09f6 6999 ret = BTRFS_LOG_FORCE_COMMIT;
3a5e1404
SW
7000 goto end_no_trans;
7001 }
7002
f882274b 7003 if (btrfs_root_refs(&root->root_item) == 0) {
f31f09f6 7004 ret = BTRFS_LOG_FORCE_COMMIT;
76dda93c
YZ
7005 goto end_no_trans;
7006 }
7007
f2d72f42
FM
7008 /*
7009 * Skip already logged inodes or inodes corresponding to tmpfiles
7010 * (since logging them is pointless, a link count of 0 means they
7011 * will never be accessible).
7012 */
626e9f41
FM
7013 if ((btrfs_inode_in_log(inode, trans->transid) &&
7014 list_empty(&ctx->ordered_extents)) ||
f2d72f42 7015 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
7016 ret = BTRFS_NO_LOG_SYNC;
7017 goto end_no_trans;
7018 }
7019
8b050d35 7020 ret = start_log_trans(trans, root, ctx);
4a500fd1 7021 if (ret)
e87ac136 7022 goto end_no_trans;
e02119d5 7023
90d04510 7024 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
7025 if (ret)
7026 goto end_trans;
12fcfd22 7027
af4176b4
CM
7028 /*
7029 * for regular files, if its inode is already on disk, we don't
7030 * have to worry about the parents at all. This is because
7031 * we can use the last_unlink_trans field to record renames
7032 * and other fun in this file.
7033 */
19df27a9 7034 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
7035 inode->generation < trans->transid &&
7036 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
7037 ret = 0;
7038 goto end_trans;
7039 }
af4176b4 7040
289cffcb 7041 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
7042 log_dentries = true;
7043
18aa0922 7044 /*
01327610 7045 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
7046 * inodes are fully logged. This is to prevent leaving dangling
7047 * directory index entries in directories that were our parents but are
7048 * not anymore. Not doing this results in old parent directory being
7049 * impossible to delete after log replay (rmdir will always fail with
7050 * error -ENOTEMPTY).
7051 *
7052 * Example 1:
7053 *
7054 * mkdir testdir
7055 * touch testdir/foo
7056 * ln testdir/foo testdir/bar
7057 * sync
7058 * unlink testdir/bar
7059 * xfs_io -c fsync testdir/foo
7060 * <power failure>
7061 * mount fs, triggers log replay
7062 *
7063 * If we don't log the parent directory (testdir), after log replay the
7064 * directory still has an entry pointing to the file inode using the bar
7065 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7066 * the file inode has a link count of 1.
7067 *
7068 * Example 2:
7069 *
7070 * mkdir testdir
7071 * touch foo
7072 * ln foo testdir/foo2
7073 * ln foo testdir/foo3
7074 * sync
7075 * unlink testdir/foo3
7076 * xfs_io -c fsync foo
7077 * <power failure>
7078 * mount fs, triggers log replay
7079 *
7080 * Similar as the first example, after log replay the parent directory
7081 * testdir still has an entry pointing to the inode file with name foo3
7082 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7083 * and has a link count of 2.
7084 */
47d3db41 7085 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 7086 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
7087 if (ret)
7088 goto end_trans;
7089 }
7090
b8aa330d
FM
7091 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7092 if (ret)
41bd6067 7093 goto end_trans;
76dda93c 7094
2f2ff0ee 7095 if (log_dentries)
8786a6d7 7096 ret = log_new_dir_dentries(trans, inode, ctx);
2f2ff0ee
FM
7097 else
7098 ret = 0;
4a500fd1
YZ
7099end_trans:
7100 if (ret < 0) {
90787766 7101 btrfs_set_log_full_commit(trans);
f31f09f6 7102 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1 7103 }
8b050d35
MX
7104
7105 if (ret)
7106 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
7107 btrfs_end_log_trans(root);
7108end_no_trans:
7109 return ret;
e02119d5
CM
7110}
7111
7112/*
7113 * it is not safe to log dentry if the chunk root has added new
7114 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7115 * If this returns 1, you must commit the transaction to safely get your
7116 * data on disk.
7117 */
7118int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 7119 struct dentry *dentry,
8b050d35 7120 struct btrfs_log_ctx *ctx)
e02119d5 7121{
6a912213
JB
7122 struct dentry *parent = dget_parent(dentry);
7123 int ret;
7124
f882274b 7125 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 7126 LOG_INODE_ALL, ctx);
6a912213
JB
7127 dput(parent);
7128
7129 return ret;
e02119d5
CM
7130}
7131
7132/*
7133 * should be called during mount to recover any replay any log trees
7134 * from the FS
7135 */
7136int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7137{
7138 int ret;
7139 struct btrfs_path *path;
7140 struct btrfs_trans_handle *trans;
7141 struct btrfs_key key;
7142 struct btrfs_key found_key;
e02119d5
CM
7143 struct btrfs_root *log;
7144 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7145 struct walk_control wc = {
7146 .process_func = process_one_buffer,
430a6626 7147 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
7148 };
7149
e02119d5 7150 path = btrfs_alloc_path();
db5b493a
TI
7151 if (!path)
7152 return -ENOMEM;
7153
afcdd129 7154 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 7155
4a500fd1 7156 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
7157 if (IS_ERR(trans)) {
7158 ret = PTR_ERR(trans);
7159 goto error;
7160 }
e02119d5
CM
7161
7162 wc.trans = trans;
7163 wc.pin = 1;
7164
db5b493a 7165 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 7166 if (ret) {
ba51e2a1 7167 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7168 goto error;
7169 }
e02119d5
CM
7170
7171again:
7172 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7173 key.offset = (u64)-1;
962a298f 7174 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 7175
d397712b 7176 while (1) {
e02119d5 7177 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
7178
7179 if (ret < 0) {
ba51e2a1 7180 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7181 goto error;
7182 }
e02119d5
CM
7183 if (ret > 0) {
7184 if (path->slots[0] == 0)
7185 break;
7186 path->slots[0]--;
7187 }
7188 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7189 path->slots[0]);
b3b4aa74 7190 btrfs_release_path(path);
e02119d5
CM
7191 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7192 break;
7193
62a2c73e 7194 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
7195 if (IS_ERR(log)) {
7196 ret = PTR_ERR(log);
ba51e2a1 7197 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7198 goto error;
7199 }
e02119d5 7200
56e9357a
DS
7201 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7202 true);
79787eaa
JM
7203 if (IS_ERR(wc.replay_dest)) {
7204 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
7205
7206 /*
7207 * We didn't find the subvol, likely because it was
7208 * deleted. This is ok, simply skip this log and go to
7209 * the next one.
7210 *
7211 * We need to exclude the root because we can't have
7212 * other log replays overwriting this log as we'll read
7213 * it back in a few more times. This will keep our
7214 * block from being modified, and we'll just bail for
7215 * each subsequent pass.
7216 */
7217 if (ret == -ENOENT)
9fce5704 7218 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
7219 log->node->start,
7220 log->node->len);
00246528 7221 btrfs_put_root(log);
9bc574de
JB
7222
7223 if (!ret)
7224 goto next;
ba51e2a1 7225 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7226 goto error;
7227 }
e02119d5 7228
07d400a6 7229 wc.replay_dest->log_root = log;
2002ae11
JB
7230 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7231 if (ret)
7232 /* The loop needs to continue due to the root refs */
ba51e2a1 7233 btrfs_abort_transaction(trans, ret);
2002ae11
JB
7234 else
7235 ret = walk_log_tree(trans, log, &wc);
e02119d5 7236
b50c6e25 7237 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
7238 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7239 path);
ba51e2a1
JB
7240 if (ret)
7241 btrfs_abort_transaction(trans, ret);
e02119d5
CM
7242 }
7243
900c9981
LB
7244 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7245 struct btrfs_root *root = wc.replay_dest;
7246
7247 btrfs_release_path(path);
7248
7249 /*
7250 * We have just replayed everything, and the highest
7251 * objectid of fs roots probably has changed in case
7252 * some inode_item's got replayed.
7253 *
7254 * root->objectid_mutex is not acquired as log replay
7255 * could only happen during mount.
7256 */
453e4873 7257 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
7258 if (ret)
7259 btrfs_abort_transaction(trans, ret);
900c9981
LB
7260 }
7261
07d400a6 7262 wc.replay_dest->log_root = NULL;
00246528 7263 btrfs_put_root(wc.replay_dest);
00246528 7264 btrfs_put_root(log);
e02119d5 7265
b50c6e25
JB
7266 if (ret)
7267 goto error;
9bc574de 7268next:
e02119d5
CM
7269 if (found_key.offset == 0)
7270 break;
9bc574de 7271 key.offset = found_key.offset - 1;
e02119d5 7272 }
b3b4aa74 7273 btrfs_release_path(path);
e02119d5
CM
7274
7275 /* step one is to pin it all, step two is to replay just inodes */
7276 if (wc.pin) {
7277 wc.pin = 0;
7278 wc.process_func = replay_one_buffer;
7279 wc.stage = LOG_WALK_REPLAY_INODES;
7280 goto again;
7281 }
7282 /* step three is to replay everything */
7283 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7284 wc.stage++;
7285 goto again;
7286 }
7287
7288 btrfs_free_path(path);
7289
abefa55a 7290 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 7291 ret = btrfs_commit_transaction(trans);
abefa55a
JB
7292 if (ret)
7293 return ret;
7294
e02119d5 7295 log_root_tree->log_root = NULL;
afcdd129 7296 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 7297 btrfs_put_root(log_root_tree);
79787eaa 7298
abefa55a 7299 return 0;
79787eaa 7300error:
b50c6e25 7301 if (wc.trans)
3a45bb20 7302 btrfs_end_transaction(wc.trans);
1aeb6b56 7303 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
7304 btrfs_free_path(path);
7305 return ret;
e02119d5 7306}
12fcfd22
CM
7307
7308/*
7309 * there are some corner cases where we want to force a full
7310 * commit instead of allowing a directory to be logged.
7311 *
7312 * They revolve around files there were unlinked from the directory, and
7313 * this function updates the parent directory so that a full commit is
7314 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
7315 *
7316 * Must be called before the unlink operations (updates to the subvolume tree,
7317 * inodes, etc) are done.
12fcfd22
CM
7318 */
7319void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 7320 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
7321 int for_rename)
7322{
af4176b4
CM
7323 /*
7324 * when we're logging a file, if it hasn't been renamed
7325 * or unlinked, and its inode is fully committed on disk,
7326 * we don't have to worry about walking up the directory chain
7327 * to log its parents.
7328 *
7329 * So, we use the last_unlink_trans field to put this transid
7330 * into the file. When the file is logged we check it and
7331 * don't log the parents if the file is fully on disk.
7332 */
4176bdbf
NB
7333 mutex_lock(&inode->log_mutex);
7334 inode->last_unlink_trans = trans->transid;
7335 mutex_unlock(&inode->log_mutex);
af4176b4 7336
12fcfd22
CM
7337 /*
7338 * if this directory was already logged any new
7339 * names for this file/dir will get recorded
7340 */
4176bdbf 7341 if (dir->logged_trans == trans->transid)
12fcfd22
CM
7342 return;
7343
7344 /*
7345 * if the inode we're about to unlink was logged,
7346 * the log will be properly updated for any new names
7347 */
4176bdbf 7348 if (inode->logged_trans == trans->transid)
12fcfd22
CM
7349 return;
7350
7351 /*
7352 * when renaming files across directories, if the directory
7353 * there we're unlinking from gets fsync'd later on, there's
7354 * no way to find the destination directory later and fsync it
7355 * properly. So, we have to be conservative and force commits
7356 * so the new name gets discovered.
7357 */
7358 if (for_rename)
7359 goto record;
7360
7361 /* we can safely do the unlink without any special recording */
7362 return;
7363
7364record:
4176bdbf
NB
7365 mutex_lock(&dir->log_mutex);
7366 dir->last_unlink_trans = trans->transid;
7367 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
7368}
7369
7370/*
7371 * Make sure that if someone attempts to fsync the parent directory of a deleted
7372 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7373 * that after replaying the log tree of the parent directory's root we will not
7374 * see the snapshot anymore and at log replay time we will not see any log tree
7375 * corresponding to the deleted snapshot's root, which could lead to replaying
7376 * it after replaying the log tree of the parent directory (which would replay
7377 * the snapshot delete operation).
2be63d5c
FM
7378 *
7379 * Must be called before the actual snapshot destroy operation (updates to the
7380 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
7381 */
7382void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 7383 struct btrfs_inode *dir)
1ec9a1ae 7384{
43663557
NB
7385 mutex_lock(&dir->log_mutex);
7386 dir->last_unlink_trans = trans->transid;
7387 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
7388}
7389
43dd529a 7390/*
d5f5bd54
FM
7391 * Update the log after adding a new name for an inode.
7392 *
7393 * @trans: Transaction handle.
7394 * @old_dentry: The dentry associated with the old name and the old
7395 * parent directory.
7396 * @old_dir: The inode of the previous parent directory for the case
7397 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
7398 * @old_dir_index: The index number associated with the old name, meaningful
7399 * only for rename operations (when @old_dir is not NULL).
7400 * Ignored for link operations.
d5f5bd54
FM
7401 * @parent: The dentry associated with the directory under which the
7402 * new name is located.
7403 *
7404 * Call this after adding a new name for an inode, as a result of a link or
7405 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 7406 */
75b463d2 7407void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 7408 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 7409 u64 old_dir_index, struct dentry *parent)
12fcfd22 7410{
d5f5bd54 7411 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 7412 struct btrfs_root *root = inode->root;
75b463d2 7413 struct btrfs_log_ctx ctx;
259c4b96 7414 bool log_pinned = false;
0f8ce498 7415 int ret;
12fcfd22 7416
af4176b4
CM
7417 /*
7418 * this will force the logging code to walk the dentry chain
7419 * up for the file
7420 */
9a6509c4 7421 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 7422 inode->last_unlink_trans = trans->transid;
af4176b4 7423
12fcfd22
CM
7424 /*
7425 * if this inode hasn't been logged and directory we're renaming it
7426 * from hasn't been logged, we don't need to log it
7427 */
0f8ce498
FM
7428 ret = inode_logged(trans, inode, NULL);
7429 if (ret < 0) {
7430 goto out;
7431 } else if (ret == 0) {
7432 if (!old_dir)
7433 return;
7434 /*
7435 * If the inode was not logged and we are doing a rename (old_dir is not
7436 * NULL), check if old_dir was logged - if it was not we can return and
7437 * do nothing.
7438 */
7439 ret = inode_logged(trans, old_dir, NULL);
7440 if (ret < 0)
7441 goto out;
7442 else if (ret == 0)
7443 return;
7444 }
7445 ret = 0;
12fcfd22 7446
54a40fc3
FM
7447 /*
7448 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7449 * was previously logged, make sure that on log replay we get the old
7450 * dir entry deleted. This is needed because we will also log the new
7451 * name of the renamed inode, so we need to make sure that after log
7452 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7453 */
88d2beec
FM
7454 if (old_dir && old_dir->logged_trans == trans->transid) {
7455 struct btrfs_root *log = old_dir->root->log_root;
7456 struct btrfs_path *path;
ab3c5c18 7457 struct fscrypt_name fname;
88d2beec
FM
7458
7459 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7460
ab3c5c18
STD
7461 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7462 &old_dentry->d_name, 0, &fname);
7463 if (ret)
7464 goto out;
259c4b96
FM
7465 /*
7466 * We have two inodes to update in the log, the old directory and
7467 * the inode that got renamed, so we must pin the log to prevent
7468 * anyone from syncing the log until we have updated both inodes
7469 * in the log.
7470 */
723df2bc
FM
7471 ret = join_running_log_trans(root);
7472 /*
7473 * At least one of the inodes was logged before, so this should
7474 * not fail, but if it does, it's not serious, just bail out and
7475 * mark the log for a full commit.
7476 */
fee4c199
FM
7477 if (WARN_ON_ONCE(ret < 0)) {
7478 fscrypt_free_filename(&fname);
723df2bc 7479 goto out;
fee4c199
FM
7480 }
7481
259c4b96 7482 log_pinned = true;
259c4b96 7483
88d2beec
FM
7484 path = btrfs_alloc_path();
7485 if (!path) {
259c4b96 7486 ret = -ENOMEM;
ab3c5c18 7487 fscrypt_free_filename(&fname);
259c4b96 7488 goto out;
88d2beec
FM
7489 }
7490
7491 /*
7492 * Other concurrent task might be logging the old directory,
7493 * as it can be triggered when logging other inode that had or
750ee454
FM
7494 * still has a dentry in the old directory. We lock the old
7495 * directory's log_mutex to ensure the deletion of the old
7496 * name is persisted, because during directory logging we
7497 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7498 * the old name's dir index item is in the delayed items, so
7499 * it could be missed by an in progress directory logging.
88d2beec
FM
7500 */
7501 mutex_lock(&old_dir->log_mutex);
7502 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
6db75318 7503 &fname.disk_name, old_dir_index);
88d2beec
FM
7504 if (ret > 0) {
7505 /*
7506 * The dentry does not exist in the log, so record its
7507 * deletion.
7508 */
7509 btrfs_release_path(path);
7510 ret = insert_dir_log_key(trans, log, path,
7511 btrfs_ino(old_dir),
7512 old_dir_index, old_dir_index);
7513 }
7514 mutex_unlock(&old_dir->log_mutex);
7515
7516 btrfs_free_path(path);
ab3c5c18 7517 fscrypt_free_filename(&fname);
259c4b96
FM
7518 if (ret < 0)
7519 goto out;
88d2beec 7520 }
54a40fc3 7521
75b463d2
FM
7522 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7523 ctx.logging_new_name = true;
7524 /*
7525 * We don't care about the return value. If we fail to log the new name
7526 * then we know the next attempt to sync the log will fallback to a full
7527 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7528 * we don't need to worry about getting a log committed that has an
7529 * inconsistent state after a rename operation.
7530 */
48778179 7531 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
e09d94c9 7532 ASSERT(list_empty(&ctx.conflict_inodes));
259c4b96 7533out:
0f8ce498
FM
7534 /*
7535 * If an error happened mark the log for a full commit because it's not
7536 * consistent and up to date or we couldn't find out if one of the
7537 * inodes was logged before in this transaction. Do it before unpinning
7538 * the log, to avoid any races with someone else trying to commit it.
7539 */
7540 if (ret < 0)
7541 btrfs_set_log_full_commit(trans);
7542 if (log_pinned)
259c4b96 7543 btrfs_end_log_trans(root);
12fcfd22
CM
7544}
7545