Merge branch 'cleanup/divs' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
8407f553
FM
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
8b050d35 143 int index;
e02119d5 144 int ret;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
995946dd 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
149 ret = -EAGAIN;
150 goto out;
151 }
ff782e0a
JB
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
27cdeb70 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
157 }
158
2ecb7923 159 atomic_inc(&root->log_batch);
7237f183 160 atomic_inc(&root->log_writers);
8b050d35
MX
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 164 ctx->log_transid = root->log_transid;
8b050d35 165 }
7237f183
YZ
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
e87ac136
MX
169
170 ret = 0;
e02119d5 171 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 172 if (!root->fs_info->log_root_tree)
e02119d5 173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
e02119d5 179 ret = btrfs_add_log_tree(trans, root);
4a500fd1 180 if (ret)
e87ac136 181 goto out;
e02119d5 182 }
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 184 root->log_start_pid = current->pid;
2ecb7923 185 atomic_inc(&root->log_batch);
7237f183 186 atomic_inc(&root->log_writers);
8b050d35
MX
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 190 ctx->log_transid = root->log_transid;
8b050d35 191 }
e87ac136 192out:
7237f183 193 mutex_unlock(&root->log_mutex);
e87ac136 194 return ret;
e02119d5
CM
195}
196
197/*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202static int join_running_log_trans(struct btrfs_root *root)
203{
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
7237f183 210 mutex_lock(&root->log_mutex);
e02119d5
CM
211 if (root->log_root) {
212 ret = 0;
7237f183 213 atomic_inc(&root->log_writers);
e02119d5 214 }
7237f183 215 mutex_unlock(&root->log_mutex);
e02119d5
CM
216 return ret;
217}
218
12fcfd22
CM
219/*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224int btrfs_pin_log_trans(struct btrfs_root *root)
225{
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232}
233
e02119d5
CM
234/*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
143bede5 238void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 239{
7237f183
YZ
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
e02119d5
CM
245}
246
247
248/*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299{
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
b50c6e25
JB
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
afe5fea7 467 btrfs_truncate_item(root, path, item_size, 1);
143bede5 468 else if (found_size < item_size)
4b90c680 469 btrfs_extend_item(root, path,
143bede5 470 item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495
496 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 S_ISREG(btrfs_inode_mode(dst_eb, dst_item))) {
498 struct btrfs_map_token token;
499 u64 ino_size = btrfs_inode_size(eb, src_item);
500
501 btrfs_init_map_token(&token);
502 btrfs_set_token_inode_size(dst_eb, dst_item,
503 ino_size, &token);
504 }
e02119d5 505 goto no_copy;
1a4bcf47 506 }
e02119d5
CM
507
508 if (overwrite_root &&
509 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 save_old_i_size = 1;
512 saved_i_size = btrfs_inode_size(path->nodes[0],
513 dst_item);
514 }
515 }
516
517 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 src_ptr, item_size);
519
520 if (save_old_i_size) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 }
525
526 /* make sure the generation is filled in */
527 if (key->type == BTRFS_INODE_ITEM_KEY) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 btrfs_set_inode_generation(path->nodes[0], dst_item,
532 trans->transid);
533 }
534 }
535no_copy:
536 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 537 btrfs_release_path(path);
e02119d5
CM
538 return 0;
539}
540
541/*
542 * simple helper to read an inode off the disk from a given root
543 * This can only be called for subvolume roots and not for the log
544 */
545static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 u64 objectid)
547{
5d4f98a2 548 struct btrfs_key key;
e02119d5 549 struct inode *inode;
e02119d5 550
5d4f98a2
YZ
551 key.objectid = objectid;
552 key.type = BTRFS_INODE_ITEM_KEY;
553 key.offset = 0;
73f73415 554 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
555 if (IS_ERR(inode)) {
556 inode = NULL;
557 } else if (is_bad_inode(inode)) {
e02119d5
CM
558 iput(inode);
559 inode = NULL;
560 }
561 return inode;
562}
563
564/* replays a single extent in 'eb' at 'slot' with 'key' into the
565 * subvolume 'root'. path is released on entry and should be released
566 * on exit.
567 *
568 * extents in the log tree have not been allocated out of the extent
569 * tree yet. So, this completes the allocation, taking a reference
570 * as required if the extent already exists or creating a new extent
571 * if it isn't in the extent allocation tree yet.
572 *
573 * The extent is inserted into the file, dropping any existing extents
574 * from the file that overlap the new one.
575 */
576static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root,
578 struct btrfs_path *path,
579 struct extent_buffer *eb, int slot,
580 struct btrfs_key *key)
581{
582 int found_type;
e02119d5 583 u64 extent_end;
e02119d5 584 u64 start = key->offset;
4bc4bee4 585 u64 nbytes = 0;
e02119d5
CM
586 struct btrfs_file_extent_item *item;
587 struct inode *inode = NULL;
588 unsigned long size;
589 int ret = 0;
590
591 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
592 found_type = btrfs_file_extent_type(eb, item);
593
d899e052 594 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
595 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
596 nbytes = btrfs_file_extent_num_bytes(eb, item);
597 extent_end = start + nbytes;
598
599 /*
600 * We don't add to the inodes nbytes if we are prealloc or a
601 * hole.
602 */
603 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
604 nbytes = 0;
605 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 606 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 607 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 608 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
609 } else {
610 ret = 0;
611 goto out;
612 }
613
614 inode = read_one_inode(root, key->objectid);
615 if (!inode) {
616 ret = -EIO;
617 goto out;
618 }
619
620 /*
621 * first check to see if we already have this extent in the
622 * file. This must be done before the btrfs_drop_extents run
623 * so we don't try to drop this extent.
624 */
33345d01 625 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
626 start, 0);
627
d899e052
YZ
628 if (ret == 0 &&
629 (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
631 struct btrfs_file_extent_item cmp1;
632 struct btrfs_file_extent_item cmp2;
633 struct btrfs_file_extent_item *existing;
634 struct extent_buffer *leaf;
635
636 leaf = path->nodes[0];
637 existing = btrfs_item_ptr(leaf, path->slots[0],
638 struct btrfs_file_extent_item);
639
640 read_extent_buffer(eb, &cmp1, (unsigned long)item,
641 sizeof(cmp1));
642 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
643 sizeof(cmp2));
644
645 /*
646 * we already have a pointer to this exact extent,
647 * we don't have to do anything
648 */
649 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651 goto out;
652 }
653 }
b3b4aa74 654 btrfs_release_path(path);
e02119d5
CM
655
656 /* drop any overlapping extents */
2671485d 657 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
658 if (ret)
659 goto out;
e02119d5 660
07d400a6
YZ
661 if (found_type == BTRFS_FILE_EXTENT_REG ||
662 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 663 u64 offset;
07d400a6
YZ
664 unsigned long dest_offset;
665 struct btrfs_key ins;
666
667 ret = btrfs_insert_empty_item(trans, root, path, key,
668 sizeof(*item));
3650860b
JB
669 if (ret)
670 goto out;
07d400a6
YZ
671 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 path->slots[0]);
673 copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 (unsigned long)item, sizeof(*item));
675
676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 679 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
680
681 if (ins.objectid > 0) {
682 u64 csum_start;
683 u64 csum_end;
684 LIST_HEAD(ordered_sums);
685 /*
686 * is this extent already allocated in the extent
687 * allocation tree? If so, just add a reference
688 */
1a4ed8fd 689 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
690 ins.offset);
691 if (ret == 0) {
692 ret = btrfs_inc_extent_ref(trans, root,
693 ins.objectid, ins.offset,
5d4f98a2 694 0, root->root_key.objectid,
66d7e7f0 695 key->objectid, offset, 0);
b50c6e25
JB
696 if (ret)
697 goto out;
07d400a6
YZ
698 } else {
699 /*
700 * insert the extent pointer in the extent
701 * allocation tree
702 */
5d4f98a2
YZ
703 ret = btrfs_alloc_logged_file_extent(trans,
704 root, root->root_key.objectid,
705 key->objectid, offset, &ins);
b50c6e25
JB
706 if (ret)
707 goto out;
07d400a6 708 }
b3b4aa74 709 btrfs_release_path(path);
07d400a6
YZ
710
711 if (btrfs_file_extent_compression(eb, item)) {
712 csum_start = ins.objectid;
713 csum_end = csum_start + ins.offset;
714 } else {
715 csum_start = ins.objectid +
716 btrfs_file_extent_offset(eb, item);
717 csum_end = csum_start +
718 btrfs_file_extent_num_bytes(eb, item);
719 }
720
721 ret = btrfs_lookup_csums_range(root->log_root,
722 csum_start, csum_end - 1,
a2de733c 723 &ordered_sums, 0);
3650860b
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 while (!list_empty(&ordered_sums)) {
727 struct btrfs_ordered_sum *sums;
728 sums = list_entry(ordered_sums.next,
729 struct btrfs_ordered_sum,
730 list);
3650860b
JB
731 if (!ret)
732 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
733 root->fs_info->csum_root,
734 sums);
07d400a6
YZ
735 list_del(&sums->list);
736 kfree(sums);
737 }
3650860b
JB
738 if (ret)
739 goto out;
07d400a6 740 } else {
b3b4aa74 741 btrfs_release_path(path);
07d400a6
YZ
742 }
743 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
744 /* inline extents are easy, we just overwrite them */
745 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
746 if (ret)
747 goto out;
07d400a6 748 }
e02119d5 749
4bc4bee4 750 inode_add_bytes(inode, nbytes);
b9959295 751 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
752out:
753 if (inode)
754 iput(inode);
755 return ret;
756}
757
758/*
759 * when cleaning up conflicts between the directory names in the
760 * subvolume, directory names in the log and directory names in the
761 * inode back references, we may have to unlink inodes from directories.
762 *
763 * This is a helper function to do the unlink of a specific directory
764 * item
765 */
766static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
767 struct btrfs_root *root,
768 struct btrfs_path *path,
769 struct inode *dir,
770 struct btrfs_dir_item *di)
771{
772 struct inode *inode;
773 char *name;
774 int name_len;
775 struct extent_buffer *leaf;
776 struct btrfs_key location;
777 int ret;
778
779 leaf = path->nodes[0];
780
781 btrfs_dir_item_key_to_cpu(leaf, di, &location);
782 name_len = btrfs_dir_name_len(leaf, di);
783 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 784 if (!name)
785 return -ENOMEM;
786
e02119d5 787 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 788 btrfs_release_path(path);
e02119d5
CM
789
790 inode = read_one_inode(root, location.objectid);
c00e9493 791 if (!inode) {
3650860b
JB
792 ret = -EIO;
793 goto out;
c00e9493 794 }
e02119d5 795
ec051c0f 796 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
797 if (ret)
798 goto out;
12fcfd22 799
e02119d5 800 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
801 if (ret)
802 goto out;
ada9af21
FDBM
803 else
804 ret = btrfs_run_delayed_items(trans, root);
3650860b 805out:
e02119d5 806 kfree(name);
e02119d5
CM
807 iput(inode);
808 return ret;
809}
810
811/*
812 * helper function to see if a given name and sequence number found
813 * in an inode back reference are already in a directory and correctly
814 * point to this inode
815 */
816static noinline int inode_in_dir(struct btrfs_root *root,
817 struct btrfs_path *path,
818 u64 dirid, u64 objectid, u64 index,
819 const char *name, int name_len)
820{
821 struct btrfs_dir_item *di;
822 struct btrfs_key location;
823 int match = 0;
824
825 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
826 index, name, name_len, 0);
827 if (di && !IS_ERR(di)) {
828 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 if (location.objectid != objectid)
830 goto out;
831 } else
832 goto out;
b3b4aa74 833 btrfs_release_path(path);
e02119d5
CM
834
835 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
836 if (di && !IS_ERR(di)) {
837 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
838 if (location.objectid != objectid)
839 goto out;
840 } else
841 goto out;
842 match = 1;
843out:
b3b4aa74 844 btrfs_release_path(path);
e02119d5
CM
845 return match;
846}
847
848/*
849 * helper function to check a log tree for a named back reference in
850 * an inode. This is used to decide if a back reference that is
851 * found in the subvolume conflicts with what we find in the log.
852 *
853 * inode backreferences may have multiple refs in a single item,
854 * during replay we process one reference at a time, and we don't
855 * want to delete valid links to a file from the subvolume if that
856 * link is also in the log.
857 */
858static noinline int backref_in_log(struct btrfs_root *log,
859 struct btrfs_key *key,
f186373f 860 u64 ref_objectid,
df8d116f 861 const char *name, int namelen)
e02119d5
CM
862{
863 struct btrfs_path *path;
864 struct btrfs_inode_ref *ref;
865 unsigned long ptr;
866 unsigned long ptr_end;
867 unsigned long name_ptr;
868 int found_name_len;
869 int item_size;
870 int ret;
871 int match = 0;
872
873 path = btrfs_alloc_path();
2a29edc6 874 if (!path)
875 return -ENOMEM;
876
e02119d5
CM
877 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
878 if (ret != 0)
879 goto out;
880
e02119d5 881 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
882
883 if (key->type == BTRFS_INODE_EXTREF_KEY) {
884 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
885 name, namelen, NULL))
886 match = 1;
887
888 goto out;
889 }
890
891 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
892 ptr_end = ptr + item_size;
893 while (ptr < ptr_end) {
894 ref = (struct btrfs_inode_ref *)ptr;
895 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
896 if (found_name_len == namelen) {
897 name_ptr = (unsigned long)(ref + 1);
898 ret = memcmp_extent_buffer(path->nodes[0], name,
899 name_ptr, namelen);
900 if (ret == 0) {
901 match = 1;
902 goto out;
903 }
904 }
905 ptr = (unsigned long)(ref + 1) + found_name_len;
906 }
907out:
908 btrfs_free_path(path);
909 return match;
910}
911
5a1d7843 912static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 913 struct btrfs_root *root,
e02119d5 914 struct btrfs_path *path,
5a1d7843
JS
915 struct btrfs_root *log_root,
916 struct inode *dir, struct inode *inode,
5a1d7843 917 struct extent_buffer *eb,
f186373f
MF
918 u64 inode_objectid, u64 parent_objectid,
919 u64 ref_index, char *name, int namelen,
920 int *search_done)
e02119d5 921{
34f3e4f2 922 int ret;
f186373f
MF
923 char *victim_name;
924 int victim_name_len;
925 struct extent_buffer *leaf;
5a1d7843 926 struct btrfs_dir_item *di;
f186373f
MF
927 struct btrfs_key search_key;
928 struct btrfs_inode_extref *extref;
c622ae60 929
f186373f
MF
930again:
931 /* Search old style refs */
932 search_key.objectid = inode_objectid;
933 search_key.type = BTRFS_INODE_REF_KEY;
934 search_key.offset = parent_objectid;
935 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 936 if (ret == 0) {
e02119d5
CM
937 struct btrfs_inode_ref *victim_ref;
938 unsigned long ptr;
939 unsigned long ptr_end;
f186373f
MF
940
941 leaf = path->nodes[0];
e02119d5
CM
942
943 /* are we trying to overwrite a back ref for the root directory
944 * if so, just jump out, we're done
945 */
f186373f 946 if (search_key.objectid == search_key.offset)
5a1d7843 947 return 1;
e02119d5
CM
948
949 /* check all the names in this back reference to see
950 * if they are in the log. if so, we allow them to stay
951 * otherwise they must be unlinked as a conflict
952 */
953 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
954 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 955 while (ptr < ptr_end) {
e02119d5
CM
956 victim_ref = (struct btrfs_inode_ref *)ptr;
957 victim_name_len = btrfs_inode_ref_name_len(leaf,
958 victim_ref);
959 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
960 if (!victim_name)
961 return -ENOMEM;
e02119d5
CM
962
963 read_extent_buffer(leaf, victim_name,
964 (unsigned long)(victim_ref + 1),
965 victim_name_len);
966
f186373f
MF
967 if (!backref_in_log(log_root, &search_key,
968 parent_objectid,
969 victim_name,
e02119d5 970 victim_name_len)) {
8b558c5f 971 inc_nlink(inode);
b3b4aa74 972 btrfs_release_path(path);
12fcfd22 973
e02119d5
CM
974 ret = btrfs_unlink_inode(trans, root, dir,
975 inode, victim_name,
976 victim_name_len);
f186373f 977 kfree(victim_name);
3650860b
JB
978 if (ret)
979 return ret;
ada9af21
FDBM
980 ret = btrfs_run_delayed_items(trans, root);
981 if (ret)
982 return ret;
f186373f
MF
983 *search_done = 1;
984 goto again;
e02119d5
CM
985 }
986 kfree(victim_name);
f186373f 987
e02119d5
CM
988 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
989 }
e02119d5 990
c622ae60 991 /*
992 * NOTE: we have searched root tree and checked the
993 * coresponding ref, it does not need to check again.
994 */
5a1d7843 995 *search_done = 1;
e02119d5 996 }
b3b4aa74 997 btrfs_release_path(path);
e02119d5 998
f186373f
MF
999 /* Same search but for extended refs */
1000 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1001 inode_objectid, parent_objectid, 0,
1002 0);
1003 if (!IS_ERR_OR_NULL(extref)) {
1004 u32 item_size;
1005 u32 cur_offset = 0;
1006 unsigned long base;
1007 struct inode *victim_parent;
1008
1009 leaf = path->nodes[0];
1010
1011 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1012 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1013
1014 while (cur_offset < item_size) {
dd9ef135 1015 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1016
1017 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1018
1019 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1020 goto next;
1021
1022 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1023 if (!victim_name)
1024 return -ENOMEM;
f186373f
MF
1025 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1026 victim_name_len);
1027
1028 search_key.objectid = inode_objectid;
1029 search_key.type = BTRFS_INODE_EXTREF_KEY;
1030 search_key.offset = btrfs_extref_hash(parent_objectid,
1031 victim_name,
1032 victim_name_len);
1033 ret = 0;
1034 if (!backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len)) {
1037 ret = -ENOENT;
1038 victim_parent = read_one_inode(root,
1039 parent_objectid);
1040 if (victim_parent) {
8b558c5f 1041 inc_nlink(inode);
f186373f
MF
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root,
1045 victim_parent,
1046 inode,
1047 victim_name,
1048 victim_name_len);
ada9af21
FDBM
1049 if (!ret)
1050 ret = btrfs_run_delayed_items(
1051 trans, root);
f186373f 1052 }
f186373f
MF
1053 iput(victim_parent);
1054 kfree(victim_name);
3650860b
JB
1055 if (ret)
1056 return ret;
f186373f
MF
1057 *search_done = 1;
1058 goto again;
1059 }
1060 kfree(victim_name);
3650860b
JB
1061 if (ret)
1062 return ret;
f186373f
MF
1063next:
1064 cur_offset += victim_name_len + sizeof(*extref);
1065 }
1066 *search_done = 1;
1067 }
1068 btrfs_release_path(path);
1069
34f3e4f2 1070 /* look for a conflicting sequence number */
1071 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1072 ref_index, name, namelen, 0);
34f3e4f2 1073 if (di && !IS_ERR(di)) {
1074 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1075 if (ret)
1076 return ret;
34f3e4f2 1077 }
1078 btrfs_release_path(path);
1079
1080 /* look for a conflicing name */
1081 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1082 name, namelen, 0);
1083 if (di && !IS_ERR(di)) {
1084 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1085 if (ret)
1086 return ret;
34f3e4f2 1087 }
1088 btrfs_release_path(path);
1089
5a1d7843
JS
1090 return 0;
1091}
e02119d5 1092
f186373f
MF
1093static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1094 u32 *namelen, char **name, u64 *index,
1095 u64 *parent_objectid)
1096{
1097 struct btrfs_inode_extref *extref;
1098
1099 extref = (struct btrfs_inode_extref *)ref_ptr;
1100
1101 *namelen = btrfs_inode_extref_name_len(eb, extref);
1102 *name = kmalloc(*namelen, GFP_NOFS);
1103 if (*name == NULL)
1104 return -ENOMEM;
1105
1106 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1107 *namelen);
1108
1109 *index = btrfs_inode_extref_index(eb, extref);
1110 if (parent_objectid)
1111 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1112
1113 return 0;
1114}
1115
1116static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1117 u32 *namelen, char **name, u64 *index)
1118{
1119 struct btrfs_inode_ref *ref;
1120
1121 ref = (struct btrfs_inode_ref *)ref_ptr;
1122
1123 *namelen = btrfs_inode_ref_name_len(eb, ref);
1124 *name = kmalloc(*namelen, GFP_NOFS);
1125 if (*name == NULL)
1126 return -ENOMEM;
1127
1128 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1129
1130 *index = btrfs_inode_ref_index(eb, ref);
1131
1132 return 0;
1133}
1134
5a1d7843
JS
1135/*
1136 * replay one inode back reference item found in the log tree.
1137 * eb, slot and key refer to the buffer and key found in the log tree.
1138 * root is the destination we are replaying into, and path is for temp
1139 * use by this function. (it should be released on return).
1140 */
1141static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_root *log,
1144 struct btrfs_path *path,
1145 struct extent_buffer *eb, int slot,
1146 struct btrfs_key *key)
1147{
03b2f08b
GB
1148 struct inode *dir = NULL;
1149 struct inode *inode = NULL;
5a1d7843
JS
1150 unsigned long ref_ptr;
1151 unsigned long ref_end;
03b2f08b 1152 char *name = NULL;
5a1d7843
JS
1153 int namelen;
1154 int ret;
1155 int search_done = 0;
f186373f
MF
1156 int log_ref_ver = 0;
1157 u64 parent_objectid;
1158 u64 inode_objectid;
f46dbe3d 1159 u64 ref_index = 0;
f186373f
MF
1160 int ref_struct_size;
1161
1162 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1163 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1164
1165 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1166 struct btrfs_inode_extref *r;
1167
1168 ref_struct_size = sizeof(struct btrfs_inode_extref);
1169 log_ref_ver = 1;
1170 r = (struct btrfs_inode_extref *)ref_ptr;
1171 parent_objectid = btrfs_inode_extref_parent(eb, r);
1172 } else {
1173 ref_struct_size = sizeof(struct btrfs_inode_ref);
1174 parent_objectid = key->offset;
1175 }
1176 inode_objectid = key->objectid;
e02119d5 1177
5a1d7843
JS
1178 /*
1179 * it is possible that we didn't log all the parent directories
1180 * for a given inode. If we don't find the dir, just don't
1181 * copy the back ref in. The link count fixup code will take
1182 * care of the rest
1183 */
f186373f 1184 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1185 if (!dir) {
1186 ret = -ENOENT;
1187 goto out;
1188 }
5a1d7843 1189
f186373f 1190 inode = read_one_inode(root, inode_objectid);
5a1d7843 1191 if (!inode) {
03b2f08b
GB
1192 ret = -EIO;
1193 goto out;
5a1d7843
JS
1194 }
1195
5a1d7843 1196 while (ref_ptr < ref_end) {
f186373f
MF
1197 if (log_ref_ver) {
1198 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1199 &ref_index, &parent_objectid);
1200 /*
1201 * parent object can change from one array
1202 * item to another.
1203 */
1204 if (!dir)
1205 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1206 if (!dir) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
f186373f
MF
1210 } else {
1211 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1212 &ref_index);
1213 }
1214 if (ret)
03b2f08b 1215 goto out;
5a1d7843
JS
1216
1217 /* if we already have a perfect match, we're done */
1218 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1219 ref_index, name, namelen)) {
5a1d7843
JS
1220 /*
1221 * look for a conflicting back reference in the
1222 * metadata. if we find one we have to unlink that name
1223 * of the file before we add our new link. Later on, we
1224 * overwrite any existing back reference, and we don't
1225 * want to create dangling pointers in the directory.
1226 */
1227
1228 if (!search_done) {
1229 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1230 dir, inode, eb,
1231 inode_objectid,
1232 parent_objectid,
1233 ref_index, name, namelen,
5a1d7843 1234 &search_done);
03b2f08b
GB
1235 if (ret) {
1236 if (ret == 1)
1237 ret = 0;
3650860b
JB
1238 goto out;
1239 }
5a1d7843
JS
1240 }
1241
1242 /* insert our name */
1243 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1244 0, ref_index);
3650860b
JB
1245 if (ret)
1246 goto out;
5a1d7843
JS
1247
1248 btrfs_update_inode(trans, root, inode);
1249 }
1250
f186373f 1251 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1252 kfree(name);
03b2f08b 1253 name = NULL;
f186373f
MF
1254 if (log_ref_ver) {
1255 iput(dir);
1256 dir = NULL;
1257 }
5a1d7843 1258 }
e02119d5
CM
1259
1260 /* finally write the back reference in the inode */
1261 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1262out:
b3b4aa74 1263 btrfs_release_path(path);
03b2f08b 1264 kfree(name);
e02119d5
CM
1265 iput(dir);
1266 iput(inode);
3650860b 1267 return ret;
e02119d5
CM
1268}
1269
c71bf099 1270static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1271 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1272{
1273 int ret;
381cf658 1274
9c4f61f0
DS
1275 ret = btrfs_insert_orphan_item(trans, root, ino);
1276 if (ret == -EEXIST)
1277 ret = 0;
381cf658 1278
c71bf099
YZ
1279 return ret;
1280}
1281
f186373f
MF
1282static int count_inode_extrefs(struct btrfs_root *root,
1283 struct inode *inode, struct btrfs_path *path)
1284{
1285 int ret = 0;
1286 int name_len;
1287 unsigned int nlink = 0;
1288 u32 item_size;
1289 u32 cur_offset = 0;
1290 u64 inode_objectid = btrfs_ino(inode);
1291 u64 offset = 0;
1292 unsigned long ptr;
1293 struct btrfs_inode_extref *extref;
1294 struct extent_buffer *leaf;
1295
1296 while (1) {
1297 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1298 &extref, &offset);
1299 if (ret)
1300 break;
c71bf099 1301
f186373f
MF
1302 leaf = path->nodes[0];
1303 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1304 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1305 cur_offset = 0;
f186373f
MF
1306
1307 while (cur_offset < item_size) {
1308 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1309 name_len = btrfs_inode_extref_name_len(leaf, extref);
1310
1311 nlink++;
1312
1313 cur_offset += name_len + sizeof(*extref);
1314 }
1315
1316 offset++;
1317 btrfs_release_path(path);
1318 }
1319 btrfs_release_path(path);
1320
2c2c452b 1321 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1322 return ret;
1323 return nlink;
1324}
1325
1326static int count_inode_refs(struct btrfs_root *root,
1327 struct inode *inode, struct btrfs_path *path)
e02119d5 1328{
e02119d5
CM
1329 int ret;
1330 struct btrfs_key key;
f186373f 1331 unsigned int nlink = 0;
e02119d5
CM
1332 unsigned long ptr;
1333 unsigned long ptr_end;
1334 int name_len;
33345d01 1335 u64 ino = btrfs_ino(inode);
e02119d5 1336
33345d01 1337 key.objectid = ino;
e02119d5
CM
1338 key.type = BTRFS_INODE_REF_KEY;
1339 key.offset = (u64)-1;
1340
d397712b 1341 while (1) {
e02119d5
CM
1342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1343 if (ret < 0)
1344 break;
1345 if (ret > 0) {
1346 if (path->slots[0] == 0)
1347 break;
1348 path->slots[0]--;
1349 }
e93ae26f 1350process_slot:
e02119d5
CM
1351 btrfs_item_key_to_cpu(path->nodes[0], &key,
1352 path->slots[0]);
33345d01 1353 if (key.objectid != ino ||
e02119d5
CM
1354 key.type != BTRFS_INODE_REF_KEY)
1355 break;
1356 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1357 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1358 path->slots[0]);
d397712b 1359 while (ptr < ptr_end) {
e02119d5
CM
1360 struct btrfs_inode_ref *ref;
1361
1362 ref = (struct btrfs_inode_ref *)ptr;
1363 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1364 ref);
1365 ptr = (unsigned long)(ref + 1) + name_len;
1366 nlink++;
1367 }
1368
1369 if (key.offset == 0)
1370 break;
e93ae26f
FDBM
1371 if (path->slots[0] > 0) {
1372 path->slots[0]--;
1373 goto process_slot;
1374 }
e02119d5 1375 key.offset--;
b3b4aa74 1376 btrfs_release_path(path);
e02119d5 1377 }
b3b4aa74 1378 btrfs_release_path(path);
f186373f
MF
1379
1380 return nlink;
1381}
1382
1383/*
1384 * There are a few corners where the link count of the file can't
1385 * be properly maintained during replay. So, instead of adding
1386 * lots of complexity to the log code, we just scan the backrefs
1387 * for any file that has been through replay.
1388 *
1389 * The scan will update the link count on the inode to reflect the
1390 * number of back refs found. If it goes down to zero, the iput
1391 * will free the inode.
1392 */
1393static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct inode *inode)
1396{
1397 struct btrfs_path *path;
1398 int ret;
1399 u64 nlink = 0;
1400 u64 ino = btrfs_ino(inode);
1401
1402 path = btrfs_alloc_path();
1403 if (!path)
1404 return -ENOMEM;
1405
1406 ret = count_inode_refs(root, inode, path);
1407 if (ret < 0)
1408 goto out;
1409
1410 nlink = ret;
1411
1412 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1413 if (ret < 0)
1414 goto out;
1415
1416 nlink += ret;
1417
1418 ret = 0;
1419
e02119d5 1420 if (nlink != inode->i_nlink) {
bfe86848 1421 set_nlink(inode, nlink);
e02119d5
CM
1422 btrfs_update_inode(trans, root, inode);
1423 }
8d5bf1cb 1424 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1425
c71bf099
YZ
1426 if (inode->i_nlink == 0) {
1427 if (S_ISDIR(inode->i_mode)) {
1428 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1429 ino, 1);
3650860b
JB
1430 if (ret)
1431 goto out;
c71bf099 1432 }
33345d01 1433 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1434 }
12fcfd22 1435
f186373f
MF
1436out:
1437 btrfs_free_path(path);
1438 return ret;
e02119d5
CM
1439}
1440
1441static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1442 struct btrfs_root *root,
1443 struct btrfs_path *path)
1444{
1445 int ret;
1446 struct btrfs_key key;
1447 struct inode *inode;
1448
1449 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1450 key.type = BTRFS_ORPHAN_ITEM_KEY;
1451 key.offset = (u64)-1;
d397712b 1452 while (1) {
e02119d5
CM
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret < 0)
1455 break;
1456
1457 if (ret == 1) {
1458 if (path->slots[0] == 0)
1459 break;
1460 path->slots[0]--;
1461 }
1462
1463 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1464 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1465 key.type != BTRFS_ORPHAN_ITEM_KEY)
1466 break;
1467
1468 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1469 if (ret)
1470 goto out;
e02119d5 1471
b3b4aa74 1472 btrfs_release_path(path);
e02119d5 1473 inode = read_one_inode(root, key.offset);
c00e9493
TI
1474 if (!inode)
1475 return -EIO;
e02119d5
CM
1476
1477 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1478 iput(inode);
3650860b
JB
1479 if (ret)
1480 goto out;
e02119d5 1481
12fcfd22
CM
1482 /*
1483 * fixup on a directory may create new entries,
1484 * make sure we always look for the highset possible
1485 * offset
1486 */
1487 key.offset = (u64)-1;
e02119d5 1488 }
65a246c5
TI
1489 ret = 0;
1490out:
b3b4aa74 1491 btrfs_release_path(path);
65a246c5 1492 return ret;
e02119d5
CM
1493}
1494
1495
1496/*
1497 * record a given inode in the fixup dir so we can check its link
1498 * count when replay is done. The link count is incremented here
1499 * so the inode won't go away until we check it
1500 */
1501static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1502 struct btrfs_root *root,
1503 struct btrfs_path *path,
1504 u64 objectid)
1505{
1506 struct btrfs_key key;
1507 int ret = 0;
1508 struct inode *inode;
1509
1510 inode = read_one_inode(root, objectid);
c00e9493
TI
1511 if (!inode)
1512 return -EIO;
e02119d5
CM
1513
1514 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1515 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1516 key.offset = objectid;
1517
1518 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1519
b3b4aa74 1520 btrfs_release_path(path);
e02119d5 1521 if (ret == 0) {
9bf7a489
JB
1522 if (!inode->i_nlink)
1523 set_nlink(inode, 1);
1524 else
8b558c5f 1525 inc_nlink(inode);
b9959295 1526 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1527 } else if (ret == -EEXIST) {
1528 ret = 0;
1529 } else {
3650860b 1530 BUG(); /* Logic Error */
e02119d5
CM
1531 }
1532 iput(inode);
1533
1534 return ret;
1535}
1536
1537/*
1538 * when replaying the log for a directory, we only insert names
1539 * for inodes that actually exist. This means an fsync on a directory
1540 * does not implicitly fsync all the new files in it
1541 */
1542static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1543 struct btrfs_root *root,
1544 struct btrfs_path *path,
1545 u64 dirid, u64 index,
1546 char *name, int name_len, u8 type,
1547 struct btrfs_key *location)
1548{
1549 struct inode *inode;
1550 struct inode *dir;
1551 int ret;
1552
1553 inode = read_one_inode(root, location->objectid);
1554 if (!inode)
1555 return -ENOENT;
1556
1557 dir = read_one_inode(root, dirid);
1558 if (!dir) {
1559 iput(inode);
1560 return -EIO;
1561 }
d555438b 1562
e02119d5
CM
1563 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1564
1565 /* FIXME, put inode into FIXUP list */
1566
1567 iput(inode);
1568 iput(dir);
1569 return ret;
1570}
1571
df8d116f
FM
1572/*
1573 * Return true if an inode reference exists in the log for the given name,
1574 * inode and parent inode.
1575 */
1576static bool name_in_log_ref(struct btrfs_root *log_root,
1577 const char *name, const int name_len,
1578 const u64 dirid, const u64 ino)
1579{
1580 struct btrfs_key search_key;
1581
1582 search_key.objectid = ino;
1583 search_key.type = BTRFS_INODE_REF_KEY;
1584 search_key.offset = dirid;
1585 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1586 return true;
1587
1588 search_key.type = BTRFS_INODE_EXTREF_KEY;
1589 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1590 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1591 return true;
1592
1593 return false;
1594}
1595
e02119d5
CM
1596/*
1597 * take a single entry in a log directory item and replay it into
1598 * the subvolume.
1599 *
1600 * if a conflicting item exists in the subdirectory already,
1601 * the inode it points to is unlinked and put into the link count
1602 * fix up tree.
1603 *
1604 * If a name from the log points to a file or directory that does
1605 * not exist in the FS, it is skipped. fsyncs on directories
1606 * do not force down inodes inside that directory, just changes to the
1607 * names or unlinks in a directory.
1608 */
1609static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root,
1611 struct btrfs_path *path,
1612 struct extent_buffer *eb,
1613 struct btrfs_dir_item *di,
1614 struct btrfs_key *key)
1615{
1616 char *name;
1617 int name_len;
1618 struct btrfs_dir_item *dst_di;
1619 struct btrfs_key found_key;
1620 struct btrfs_key log_key;
1621 struct inode *dir;
e02119d5 1622 u8 log_type;
4bef0848 1623 int exists;
3650860b 1624 int ret = 0;
d555438b 1625 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1626
1627 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1628 if (!dir)
1629 return -EIO;
e02119d5
CM
1630
1631 name_len = btrfs_dir_name_len(eb, di);
1632 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1633 if (!name) {
1634 ret = -ENOMEM;
1635 goto out;
1636 }
2a29edc6 1637
e02119d5
CM
1638 log_type = btrfs_dir_type(eb, di);
1639 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1640 name_len);
1641
1642 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1643 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1644 if (exists == 0)
1645 exists = 1;
1646 else
1647 exists = 0;
b3b4aa74 1648 btrfs_release_path(path);
4bef0848 1649
e02119d5
CM
1650 if (key->type == BTRFS_DIR_ITEM_KEY) {
1651 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1652 name, name_len, 1);
d397712b 1653 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1654 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1655 key->objectid,
1656 key->offset, name,
1657 name_len, 1);
1658 } else {
3650860b
JB
1659 /* Corruption */
1660 ret = -EINVAL;
1661 goto out;
e02119d5 1662 }
c704005d 1663 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1664 /* we need a sequence number to insert, so we only
1665 * do inserts for the BTRFS_DIR_INDEX_KEY types
1666 */
1667 if (key->type != BTRFS_DIR_INDEX_KEY)
1668 goto out;
1669 goto insert;
1670 }
1671
1672 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1673 /* the existing item matches the logged item */
1674 if (found_key.objectid == log_key.objectid &&
1675 found_key.type == log_key.type &&
1676 found_key.offset == log_key.offset &&
1677 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1678 update_size = false;
e02119d5
CM
1679 goto out;
1680 }
1681
1682 /*
1683 * don't drop the conflicting directory entry if the inode
1684 * for the new entry doesn't exist
1685 */
4bef0848 1686 if (!exists)
e02119d5
CM
1687 goto out;
1688
e02119d5 1689 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1690 if (ret)
1691 goto out;
e02119d5
CM
1692
1693 if (key->type == BTRFS_DIR_INDEX_KEY)
1694 goto insert;
1695out:
b3b4aa74 1696 btrfs_release_path(path);
d555438b
JB
1697 if (!ret && update_size) {
1698 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1699 ret = btrfs_update_inode(trans, root, dir);
1700 }
e02119d5
CM
1701 kfree(name);
1702 iput(dir);
3650860b 1703 return ret;
e02119d5
CM
1704
1705insert:
df8d116f
FM
1706 if (name_in_log_ref(root->log_root, name, name_len,
1707 key->objectid, log_key.objectid)) {
1708 /* The dentry will be added later. */
1709 ret = 0;
1710 update_size = false;
1711 goto out;
1712 }
b3b4aa74 1713 btrfs_release_path(path);
e02119d5
CM
1714 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1715 name, name_len, log_type, &log_key);
df8d116f 1716 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1717 goto out;
d555438b 1718 update_size = false;
3650860b 1719 ret = 0;
e02119d5
CM
1720 goto out;
1721}
1722
1723/*
1724 * find all the names in a directory item and reconcile them into
1725 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1726 * one name in a directory item, but the same code gets used for
1727 * both directory index types
1728 */
1729static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1730 struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 struct extent_buffer *eb, int slot,
1733 struct btrfs_key *key)
1734{
1735 int ret;
1736 u32 item_size = btrfs_item_size_nr(eb, slot);
1737 struct btrfs_dir_item *di;
1738 int name_len;
1739 unsigned long ptr;
1740 unsigned long ptr_end;
1741
1742 ptr = btrfs_item_ptr_offset(eb, slot);
1743 ptr_end = ptr + item_size;
d397712b 1744 while (ptr < ptr_end) {
e02119d5 1745 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1746 if (verify_dir_item(root, eb, di))
1747 return -EIO;
e02119d5
CM
1748 name_len = btrfs_dir_name_len(eb, di);
1749 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1750 if (ret)
1751 return ret;
e02119d5
CM
1752 ptr = (unsigned long)(di + 1);
1753 ptr += name_len;
1754 }
1755 return 0;
1756}
1757
1758/*
1759 * directory replay has two parts. There are the standard directory
1760 * items in the log copied from the subvolume, and range items
1761 * created in the log while the subvolume was logged.
1762 *
1763 * The range items tell us which parts of the key space the log
1764 * is authoritative for. During replay, if a key in the subvolume
1765 * directory is in a logged range item, but not actually in the log
1766 * that means it was deleted from the directory before the fsync
1767 * and should be removed.
1768 */
1769static noinline int find_dir_range(struct btrfs_root *root,
1770 struct btrfs_path *path,
1771 u64 dirid, int key_type,
1772 u64 *start_ret, u64 *end_ret)
1773{
1774 struct btrfs_key key;
1775 u64 found_end;
1776 struct btrfs_dir_log_item *item;
1777 int ret;
1778 int nritems;
1779
1780 if (*start_ret == (u64)-1)
1781 return 1;
1782
1783 key.objectid = dirid;
1784 key.type = key_type;
1785 key.offset = *start_ret;
1786
1787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1788 if (ret < 0)
1789 goto out;
1790 if (ret > 0) {
1791 if (path->slots[0] == 0)
1792 goto out;
1793 path->slots[0]--;
1794 }
1795 if (ret != 0)
1796 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1797
1798 if (key.type != key_type || key.objectid != dirid) {
1799 ret = 1;
1800 goto next;
1801 }
1802 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1803 struct btrfs_dir_log_item);
1804 found_end = btrfs_dir_log_end(path->nodes[0], item);
1805
1806 if (*start_ret >= key.offset && *start_ret <= found_end) {
1807 ret = 0;
1808 *start_ret = key.offset;
1809 *end_ret = found_end;
1810 goto out;
1811 }
1812 ret = 1;
1813next:
1814 /* check the next slot in the tree to see if it is a valid item */
1815 nritems = btrfs_header_nritems(path->nodes[0]);
1816 if (path->slots[0] >= nritems) {
1817 ret = btrfs_next_leaf(root, path);
1818 if (ret)
1819 goto out;
1820 } else {
1821 path->slots[0]++;
1822 }
1823
1824 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1825
1826 if (key.type != key_type || key.objectid != dirid) {
1827 ret = 1;
1828 goto out;
1829 }
1830 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1831 struct btrfs_dir_log_item);
1832 found_end = btrfs_dir_log_end(path->nodes[0], item);
1833 *start_ret = key.offset;
1834 *end_ret = found_end;
1835 ret = 0;
1836out:
b3b4aa74 1837 btrfs_release_path(path);
e02119d5
CM
1838 return ret;
1839}
1840
1841/*
1842 * this looks for a given directory item in the log. If the directory
1843 * item is not in the log, the item is removed and the inode it points
1844 * to is unlinked
1845 */
1846static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_root *log,
1849 struct btrfs_path *path,
1850 struct btrfs_path *log_path,
1851 struct inode *dir,
1852 struct btrfs_key *dir_key)
1853{
1854 int ret;
1855 struct extent_buffer *eb;
1856 int slot;
1857 u32 item_size;
1858 struct btrfs_dir_item *di;
1859 struct btrfs_dir_item *log_di;
1860 int name_len;
1861 unsigned long ptr;
1862 unsigned long ptr_end;
1863 char *name;
1864 struct inode *inode;
1865 struct btrfs_key location;
1866
1867again:
1868 eb = path->nodes[0];
1869 slot = path->slots[0];
1870 item_size = btrfs_item_size_nr(eb, slot);
1871 ptr = btrfs_item_ptr_offset(eb, slot);
1872 ptr_end = ptr + item_size;
d397712b 1873 while (ptr < ptr_end) {
e02119d5 1874 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1875 if (verify_dir_item(root, eb, di)) {
1876 ret = -EIO;
1877 goto out;
1878 }
1879
e02119d5
CM
1880 name_len = btrfs_dir_name_len(eb, di);
1881 name = kmalloc(name_len, GFP_NOFS);
1882 if (!name) {
1883 ret = -ENOMEM;
1884 goto out;
1885 }
1886 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1887 name_len);
1888 log_di = NULL;
12fcfd22 1889 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1890 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1891 dir_key->objectid,
1892 name, name_len, 0);
12fcfd22 1893 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1894 log_di = btrfs_lookup_dir_index_item(trans, log,
1895 log_path,
1896 dir_key->objectid,
1897 dir_key->offset,
1898 name, name_len, 0);
1899 }
269d040f 1900 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1901 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1902 btrfs_release_path(path);
1903 btrfs_release_path(log_path);
e02119d5 1904 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1905 if (!inode) {
1906 kfree(name);
1907 return -EIO;
1908 }
e02119d5
CM
1909
1910 ret = link_to_fixup_dir(trans, root,
1911 path, location.objectid);
3650860b
JB
1912 if (ret) {
1913 kfree(name);
1914 iput(inode);
1915 goto out;
1916 }
1917
8b558c5f 1918 inc_nlink(inode);
e02119d5
CM
1919 ret = btrfs_unlink_inode(trans, root, dir, inode,
1920 name, name_len);
3650860b 1921 if (!ret)
ada9af21 1922 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1923 kfree(name);
1924 iput(inode);
3650860b
JB
1925 if (ret)
1926 goto out;
e02119d5
CM
1927
1928 /* there might still be more names under this key
1929 * check and repeat if required
1930 */
1931 ret = btrfs_search_slot(NULL, root, dir_key, path,
1932 0, 0);
1933 if (ret == 0)
1934 goto again;
1935 ret = 0;
1936 goto out;
269d040f
FDBM
1937 } else if (IS_ERR(log_di)) {
1938 kfree(name);
1939 return PTR_ERR(log_di);
e02119d5 1940 }
b3b4aa74 1941 btrfs_release_path(log_path);
e02119d5
CM
1942 kfree(name);
1943
1944 ptr = (unsigned long)(di + 1);
1945 ptr += name_len;
1946 }
1947 ret = 0;
1948out:
b3b4aa74
DS
1949 btrfs_release_path(path);
1950 btrfs_release_path(log_path);
e02119d5
CM
1951 return ret;
1952}
1953
1954/*
1955 * deletion replay happens before we copy any new directory items
1956 * out of the log or out of backreferences from inodes. It
1957 * scans the log to find ranges of keys that log is authoritative for,
1958 * and then scans the directory to find items in those ranges that are
1959 * not present in the log.
1960 *
1961 * Anything we don't find in the log is unlinked and removed from the
1962 * directory.
1963 */
1964static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root,
1966 struct btrfs_root *log,
1967 struct btrfs_path *path,
12fcfd22 1968 u64 dirid, int del_all)
e02119d5
CM
1969{
1970 u64 range_start;
1971 u64 range_end;
1972 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1973 int ret = 0;
1974 struct btrfs_key dir_key;
1975 struct btrfs_key found_key;
1976 struct btrfs_path *log_path;
1977 struct inode *dir;
1978
1979 dir_key.objectid = dirid;
1980 dir_key.type = BTRFS_DIR_ITEM_KEY;
1981 log_path = btrfs_alloc_path();
1982 if (!log_path)
1983 return -ENOMEM;
1984
1985 dir = read_one_inode(root, dirid);
1986 /* it isn't an error if the inode isn't there, that can happen
1987 * because we replay the deletes before we copy in the inode item
1988 * from the log
1989 */
1990 if (!dir) {
1991 btrfs_free_path(log_path);
1992 return 0;
1993 }
1994again:
1995 range_start = 0;
1996 range_end = 0;
d397712b 1997 while (1) {
12fcfd22
CM
1998 if (del_all)
1999 range_end = (u64)-1;
2000 else {
2001 ret = find_dir_range(log, path, dirid, key_type,
2002 &range_start, &range_end);
2003 if (ret != 0)
2004 break;
2005 }
e02119d5
CM
2006
2007 dir_key.offset = range_start;
d397712b 2008 while (1) {
e02119d5
CM
2009 int nritems;
2010 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2011 0, 0);
2012 if (ret < 0)
2013 goto out;
2014
2015 nritems = btrfs_header_nritems(path->nodes[0]);
2016 if (path->slots[0] >= nritems) {
2017 ret = btrfs_next_leaf(root, path);
2018 if (ret)
2019 break;
2020 }
2021 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2022 path->slots[0]);
2023 if (found_key.objectid != dirid ||
2024 found_key.type != dir_key.type)
2025 goto next_type;
2026
2027 if (found_key.offset > range_end)
2028 break;
2029
2030 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2031 log_path, dir,
2032 &found_key);
3650860b
JB
2033 if (ret)
2034 goto out;
e02119d5
CM
2035 if (found_key.offset == (u64)-1)
2036 break;
2037 dir_key.offset = found_key.offset + 1;
2038 }
b3b4aa74 2039 btrfs_release_path(path);
e02119d5
CM
2040 if (range_end == (u64)-1)
2041 break;
2042 range_start = range_end + 1;
2043 }
2044
2045next_type:
2046 ret = 0;
2047 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2048 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2049 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2050 btrfs_release_path(path);
e02119d5
CM
2051 goto again;
2052 }
2053out:
b3b4aa74 2054 btrfs_release_path(path);
e02119d5
CM
2055 btrfs_free_path(log_path);
2056 iput(dir);
2057 return ret;
2058}
2059
2060/*
2061 * the process_func used to replay items from the log tree. This
2062 * gets called in two different stages. The first stage just looks
2063 * for inodes and makes sure they are all copied into the subvolume.
2064 *
2065 * The second stage copies all the other item types from the log into
2066 * the subvolume. The two stage approach is slower, but gets rid of
2067 * lots of complexity around inodes referencing other inodes that exist
2068 * only in the log (references come from either directory items or inode
2069 * back refs).
2070 */
2071static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2072 struct walk_control *wc, u64 gen)
2073{
2074 int nritems;
2075 struct btrfs_path *path;
2076 struct btrfs_root *root = wc->replay_dest;
2077 struct btrfs_key key;
e02119d5
CM
2078 int level;
2079 int i;
2080 int ret;
2081
018642a1
TI
2082 ret = btrfs_read_buffer(eb, gen);
2083 if (ret)
2084 return ret;
e02119d5
CM
2085
2086 level = btrfs_header_level(eb);
2087
2088 if (level != 0)
2089 return 0;
2090
2091 path = btrfs_alloc_path();
1e5063d0
MF
2092 if (!path)
2093 return -ENOMEM;
e02119d5
CM
2094
2095 nritems = btrfs_header_nritems(eb);
2096 for (i = 0; i < nritems; i++) {
2097 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2098
2099 /* inode keys are done during the first stage */
2100 if (key.type == BTRFS_INODE_ITEM_KEY &&
2101 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2102 struct btrfs_inode_item *inode_item;
2103 u32 mode;
2104
2105 inode_item = btrfs_item_ptr(eb, i,
2106 struct btrfs_inode_item);
2107 mode = btrfs_inode_mode(eb, inode_item);
2108 if (S_ISDIR(mode)) {
2109 ret = replay_dir_deletes(wc->trans,
12fcfd22 2110 root, log, path, key.objectid, 0);
b50c6e25
JB
2111 if (ret)
2112 break;
e02119d5
CM
2113 }
2114 ret = overwrite_item(wc->trans, root, path,
2115 eb, i, &key);
b50c6e25
JB
2116 if (ret)
2117 break;
e02119d5 2118
c71bf099
YZ
2119 /* for regular files, make sure corresponding
2120 * orhpan item exist. extents past the new EOF
2121 * will be truncated later by orphan cleanup.
e02119d5
CM
2122 */
2123 if (S_ISREG(mode)) {
c71bf099
YZ
2124 ret = insert_orphan_item(wc->trans, root,
2125 key.objectid);
b50c6e25
JB
2126 if (ret)
2127 break;
e02119d5 2128 }
c71bf099 2129
e02119d5
CM
2130 ret = link_to_fixup_dir(wc->trans, root,
2131 path, key.objectid);
b50c6e25
JB
2132 if (ret)
2133 break;
e02119d5 2134 }
dd8e7217
JB
2135
2136 if (key.type == BTRFS_DIR_INDEX_KEY &&
2137 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2138 ret = replay_one_dir_item(wc->trans, root, path,
2139 eb, i, &key);
2140 if (ret)
2141 break;
2142 }
2143
e02119d5
CM
2144 if (wc->stage < LOG_WALK_REPLAY_ALL)
2145 continue;
2146
2147 /* these keys are simply copied */
2148 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2149 ret = overwrite_item(wc->trans, root, path,
2150 eb, i, &key);
b50c6e25
JB
2151 if (ret)
2152 break;
2da1c669
LB
2153 } else if (key.type == BTRFS_INODE_REF_KEY ||
2154 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2155 ret = add_inode_ref(wc->trans, root, log, path,
2156 eb, i, &key);
b50c6e25
JB
2157 if (ret && ret != -ENOENT)
2158 break;
2159 ret = 0;
e02119d5
CM
2160 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2161 ret = replay_one_extent(wc->trans, root, path,
2162 eb, i, &key);
b50c6e25
JB
2163 if (ret)
2164 break;
dd8e7217 2165 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2166 ret = replay_one_dir_item(wc->trans, root, path,
2167 eb, i, &key);
b50c6e25
JB
2168 if (ret)
2169 break;
e02119d5
CM
2170 }
2171 }
2172 btrfs_free_path(path);
b50c6e25 2173 return ret;
e02119d5
CM
2174}
2175
d397712b 2176static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2177 struct btrfs_root *root,
2178 struct btrfs_path *path, int *level,
2179 struct walk_control *wc)
2180{
2181 u64 root_owner;
e02119d5
CM
2182 u64 bytenr;
2183 u64 ptr_gen;
2184 struct extent_buffer *next;
2185 struct extent_buffer *cur;
2186 struct extent_buffer *parent;
2187 u32 blocksize;
2188 int ret = 0;
2189
2190 WARN_ON(*level < 0);
2191 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2192
d397712b 2193 while (*level > 0) {
e02119d5
CM
2194 WARN_ON(*level < 0);
2195 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2196 cur = path->nodes[*level];
2197
fae7f21c 2198 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2199
2200 if (path->slots[*level] >=
2201 btrfs_header_nritems(cur))
2202 break;
2203
2204 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2205 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2206 blocksize = root->nodesize;
e02119d5
CM
2207
2208 parent = path->nodes[*level];
2209 root_owner = btrfs_header_owner(parent);
e02119d5 2210
a83fffb7 2211 next = btrfs_find_create_tree_block(root, bytenr);
2a29edc6 2212 if (!next)
2213 return -ENOMEM;
e02119d5 2214
e02119d5 2215 if (*level == 1) {
1e5063d0 2216 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2217 if (ret) {
2218 free_extent_buffer(next);
1e5063d0 2219 return ret;
b50c6e25 2220 }
4a500fd1 2221
e02119d5
CM
2222 path->slots[*level]++;
2223 if (wc->free) {
018642a1
TI
2224 ret = btrfs_read_buffer(next, ptr_gen);
2225 if (ret) {
2226 free_extent_buffer(next);
2227 return ret;
2228 }
e02119d5 2229
681ae509
JB
2230 if (trans) {
2231 btrfs_tree_lock(next);
2232 btrfs_set_lock_blocking(next);
01d58472
DD
2233 clean_tree_block(trans, root->fs_info,
2234 next);
681ae509
JB
2235 btrfs_wait_tree_block_writeback(next);
2236 btrfs_tree_unlock(next);
2237 }
e02119d5 2238
e02119d5
CM
2239 WARN_ON(root_owner !=
2240 BTRFS_TREE_LOG_OBJECTID);
e688b725 2241 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2242 bytenr, blocksize);
3650860b
JB
2243 if (ret) {
2244 free_extent_buffer(next);
2245 return ret;
2246 }
e02119d5
CM
2247 }
2248 free_extent_buffer(next);
2249 continue;
2250 }
018642a1
TI
2251 ret = btrfs_read_buffer(next, ptr_gen);
2252 if (ret) {
2253 free_extent_buffer(next);
2254 return ret;
2255 }
e02119d5
CM
2256
2257 WARN_ON(*level <= 0);
2258 if (path->nodes[*level-1])
2259 free_extent_buffer(path->nodes[*level-1]);
2260 path->nodes[*level-1] = next;
2261 *level = btrfs_header_level(next);
2262 path->slots[*level] = 0;
2263 cond_resched();
2264 }
2265 WARN_ON(*level < 0);
2266 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2267
4a500fd1 2268 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2269
2270 cond_resched();
2271 return 0;
2272}
2273
d397712b 2274static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2275 struct btrfs_root *root,
2276 struct btrfs_path *path, int *level,
2277 struct walk_control *wc)
2278{
2279 u64 root_owner;
e02119d5
CM
2280 int i;
2281 int slot;
2282 int ret;
2283
d397712b 2284 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2285 slot = path->slots[i];
4a500fd1 2286 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2287 path->slots[i]++;
2288 *level = i;
2289 WARN_ON(*level == 0);
2290 return 0;
2291 } else {
31840ae1
ZY
2292 struct extent_buffer *parent;
2293 if (path->nodes[*level] == root->node)
2294 parent = path->nodes[*level];
2295 else
2296 parent = path->nodes[*level + 1];
2297
2298 root_owner = btrfs_header_owner(parent);
1e5063d0 2299 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2300 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2301 if (ret)
2302 return ret;
2303
e02119d5
CM
2304 if (wc->free) {
2305 struct extent_buffer *next;
2306
2307 next = path->nodes[*level];
2308
681ae509
JB
2309 if (trans) {
2310 btrfs_tree_lock(next);
2311 btrfs_set_lock_blocking(next);
01d58472
DD
2312 clean_tree_block(trans, root->fs_info,
2313 next);
681ae509
JB
2314 btrfs_wait_tree_block_writeback(next);
2315 btrfs_tree_unlock(next);
2316 }
e02119d5 2317
e02119d5 2318 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2319 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2320 path->nodes[*level]->start,
d00aff00 2321 path->nodes[*level]->len);
3650860b
JB
2322 if (ret)
2323 return ret;
e02119d5
CM
2324 }
2325 free_extent_buffer(path->nodes[*level]);
2326 path->nodes[*level] = NULL;
2327 *level = i + 1;
2328 }
2329 }
2330 return 1;
2331}
2332
2333/*
2334 * drop the reference count on the tree rooted at 'snap'. This traverses
2335 * the tree freeing any blocks that have a ref count of zero after being
2336 * decremented.
2337 */
2338static int walk_log_tree(struct btrfs_trans_handle *trans,
2339 struct btrfs_root *log, struct walk_control *wc)
2340{
2341 int ret = 0;
2342 int wret;
2343 int level;
2344 struct btrfs_path *path;
e02119d5
CM
2345 int orig_level;
2346
2347 path = btrfs_alloc_path();
db5b493a
TI
2348 if (!path)
2349 return -ENOMEM;
e02119d5
CM
2350
2351 level = btrfs_header_level(log->node);
2352 orig_level = level;
2353 path->nodes[level] = log->node;
2354 extent_buffer_get(log->node);
2355 path->slots[level] = 0;
2356
d397712b 2357 while (1) {
e02119d5
CM
2358 wret = walk_down_log_tree(trans, log, path, &level, wc);
2359 if (wret > 0)
2360 break;
79787eaa 2361 if (wret < 0) {
e02119d5 2362 ret = wret;
79787eaa
JM
2363 goto out;
2364 }
e02119d5
CM
2365
2366 wret = walk_up_log_tree(trans, log, path, &level, wc);
2367 if (wret > 0)
2368 break;
79787eaa 2369 if (wret < 0) {
e02119d5 2370 ret = wret;
79787eaa
JM
2371 goto out;
2372 }
e02119d5
CM
2373 }
2374
2375 /* was the root node processed? if not, catch it here */
2376 if (path->nodes[orig_level]) {
79787eaa 2377 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2378 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2379 if (ret)
2380 goto out;
e02119d5
CM
2381 if (wc->free) {
2382 struct extent_buffer *next;
2383
2384 next = path->nodes[orig_level];
2385
681ae509
JB
2386 if (trans) {
2387 btrfs_tree_lock(next);
2388 btrfs_set_lock_blocking(next);
01d58472 2389 clean_tree_block(trans, log->fs_info, next);
681ae509
JB
2390 btrfs_wait_tree_block_writeback(next);
2391 btrfs_tree_unlock(next);
2392 }
e02119d5 2393
e02119d5
CM
2394 WARN_ON(log->root_key.objectid !=
2395 BTRFS_TREE_LOG_OBJECTID);
e688b725 2396 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2397 next->len);
3650860b
JB
2398 if (ret)
2399 goto out;
e02119d5
CM
2400 }
2401 }
2402
79787eaa 2403out:
e02119d5 2404 btrfs_free_path(path);
e02119d5
CM
2405 return ret;
2406}
2407
7237f183
YZ
2408/*
2409 * helper function to update the item for a given subvolumes log root
2410 * in the tree of log roots
2411 */
2412static int update_log_root(struct btrfs_trans_handle *trans,
2413 struct btrfs_root *log)
2414{
2415 int ret;
2416
2417 if (log->log_transid == 1) {
2418 /* insert root item on the first sync */
2419 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2420 &log->root_key, &log->root_item);
2421 } else {
2422 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2423 &log->root_key, &log->root_item);
2424 }
2425 return ret;
2426}
2427
8b050d35
MX
2428static void wait_log_commit(struct btrfs_trans_handle *trans,
2429 struct btrfs_root *root, int transid)
e02119d5
CM
2430{
2431 DEFINE_WAIT(wait);
7237f183 2432 int index = transid % 2;
e02119d5 2433
7237f183
YZ
2434 /*
2435 * we only allow two pending log transactions at a time,
2436 * so we know that if ours is more than 2 older than the
2437 * current transaction, we're done
2438 */
e02119d5 2439 do {
7237f183
YZ
2440 prepare_to_wait(&root->log_commit_wait[index],
2441 &wait, TASK_UNINTERRUPTIBLE);
2442 mutex_unlock(&root->log_mutex);
12fcfd22 2443
d1433deb 2444 if (root->log_transid_committed < transid &&
7237f183
YZ
2445 atomic_read(&root->log_commit[index]))
2446 schedule();
12fcfd22 2447
7237f183
YZ
2448 finish_wait(&root->log_commit_wait[index], &wait);
2449 mutex_lock(&root->log_mutex);
d1433deb 2450 } while (root->log_transid_committed < transid &&
7237f183 2451 atomic_read(&root->log_commit[index]));
7237f183
YZ
2452}
2453
143bede5
JM
2454static void wait_for_writer(struct btrfs_trans_handle *trans,
2455 struct btrfs_root *root)
7237f183
YZ
2456{
2457 DEFINE_WAIT(wait);
8b050d35
MX
2458
2459 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2460 prepare_to_wait(&root->log_writer_wait,
2461 &wait, TASK_UNINTERRUPTIBLE);
2462 mutex_unlock(&root->log_mutex);
8b050d35 2463 if (atomic_read(&root->log_writers))
e02119d5 2464 schedule();
7237f183 2465 finish_wait(&root->log_writer_wait, &wait);
575849ec 2466 mutex_lock(&root->log_mutex);
7237f183 2467 }
e02119d5
CM
2468}
2469
8b050d35
MX
2470static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2471 struct btrfs_log_ctx *ctx)
2472{
2473 if (!ctx)
2474 return;
2475
2476 mutex_lock(&root->log_mutex);
2477 list_del_init(&ctx->list);
2478 mutex_unlock(&root->log_mutex);
2479}
2480
2481/*
2482 * Invoked in log mutex context, or be sure there is no other task which
2483 * can access the list.
2484 */
2485static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2486 int index, int error)
2487{
2488 struct btrfs_log_ctx *ctx;
2489
2490 if (!error) {
2491 INIT_LIST_HEAD(&root->log_ctxs[index]);
2492 return;
2493 }
2494
2495 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2496 ctx->log_ret = error;
2497
2498 INIT_LIST_HEAD(&root->log_ctxs[index]);
2499}
2500
e02119d5
CM
2501/*
2502 * btrfs_sync_log does sends a given tree log down to the disk and
2503 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2504 * you know that any inodes previously logged are safely on disk only
2505 * if it returns 0.
2506 *
2507 * Any other return value means you need to call btrfs_commit_transaction.
2508 * Some of the edge cases for fsyncing directories that have had unlinks
2509 * or renames done in the past mean that sometimes the only safe
2510 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2511 * that has happened.
e02119d5
CM
2512 */
2513int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2514 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2515{
7237f183
YZ
2516 int index1;
2517 int index2;
8cef4e16 2518 int mark;
e02119d5 2519 int ret;
e02119d5 2520 struct btrfs_root *log = root->log_root;
7237f183 2521 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2522 int log_transid = 0;
8b050d35 2523 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2524 struct blk_plug plug;
e02119d5 2525
7237f183 2526 mutex_lock(&root->log_mutex);
d1433deb
MX
2527 log_transid = ctx->log_transid;
2528 if (root->log_transid_committed >= log_transid) {
2529 mutex_unlock(&root->log_mutex);
2530 return ctx->log_ret;
2531 }
2532
2533 index1 = log_transid % 2;
7237f183 2534 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2535 wait_log_commit(trans, root, log_transid);
7237f183 2536 mutex_unlock(&root->log_mutex);
8b050d35 2537 return ctx->log_ret;
e02119d5 2538 }
d1433deb 2539 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2540 atomic_set(&root->log_commit[index1], 1);
2541
2542 /* wait for previous tree log sync to complete */
2543 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2544 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2545
86df7eb9 2546 while (1) {
2ecb7923 2547 int batch = atomic_read(&root->log_batch);
cd354ad6 2548 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2549 if (!btrfs_test_opt(root, SSD) &&
2550 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2551 mutex_unlock(&root->log_mutex);
2552 schedule_timeout_uninterruptible(1);
2553 mutex_lock(&root->log_mutex);
2554 }
12fcfd22 2555 wait_for_writer(trans, root);
2ecb7923 2556 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2557 break;
2558 }
e02119d5 2559
12fcfd22 2560 /* bail out if we need to do a full commit */
995946dd 2561 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2562 ret = -EAGAIN;
2ab28f32 2563 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2564 mutex_unlock(&root->log_mutex);
2565 goto out;
2566 }
2567
8cef4e16
YZ
2568 if (log_transid % 2 == 0)
2569 mark = EXTENT_DIRTY;
2570 else
2571 mark = EXTENT_NEW;
2572
690587d1
CM
2573 /* we start IO on all the marked extents here, but we don't actually
2574 * wait for them until later.
2575 */
c6adc9cc 2576 blk_start_plug(&plug);
8cef4e16 2577 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2578 if (ret) {
c6adc9cc 2579 blk_finish_plug(&plug);
79787eaa 2580 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2581 btrfs_free_logged_extents(log, log_transid);
995946dd 2582 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2583 mutex_unlock(&root->log_mutex);
2584 goto out;
2585 }
7237f183 2586
5d4f98a2 2587 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2588
7237f183
YZ
2589 root->log_transid++;
2590 log->log_transid = root->log_transid;
ff782e0a 2591 root->log_start_pid = 0;
7237f183 2592 /*
8cef4e16
YZ
2593 * IO has been started, blocks of the log tree have WRITTEN flag set
2594 * in their headers. new modifications of the log will be written to
2595 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2596 */
2597 mutex_unlock(&root->log_mutex);
2598
d1433deb
MX
2599 btrfs_init_log_ctx(&root_log_ctx);
2600
7237f183 2601 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2602 atomic_inc(&log_root_tree->log_batch);
7237f183 2603 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2604
2605 index2 = log_root_tree->log_transid % 2;
2606 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2607 root_log_ctx.log_transid = log_root_tree->log_transid;
2608
7237f183
YZ
2609 mutex_unlock(&log_root_tree->log_mutex);
2610
2611 ret = update_log_root(trans, log);
7237f183
YZ
2612
2613 mutex_lock(&log_root_tree->log_mutex);
2614 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2615 smp_mb();
2616 if (waitqueue_active(&log_root_tree->log_writer_wait))
2617 wake_up(&log_root_tree->log_writer_wait);
2618 }
2619
4a500fd1 2620 if (ret) {
d1433deb
MX
2621 if (!list_empty(&root_log_ctx.list))
2622 list_del_init(&root_log_ctx.list);
2623
c6adc9cc 2624 blk_finish_plug(&plug);
995946dd
MX
2625 btrfs_set_log_full_commit(root->fs_info, trans);
2626
79787eaa
JM
2627 if (ret != -ENOSPC) {
2628 btrfs_abort_transaction(trans, root, ret);
2629 mutex_unlock(&log_root_tree->log_mutex);
2630 goto out;
2631 }
4a500fd1 2632 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2633 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2634 mutex_unlock(&log_root_tree->log_mutex);
2635 ret = -EAGAIN;
2636 goto out;
2637 }
2638
d1433deb 2639 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2640 blk_finish_plug(&plug);
d1433deb
MX
2641 mutex_unlock(&log_root_tree->log_mutex);
2642 ret = root_log_ctx.log_ret;
2643 goto out;
2644 }
8b050d35 2645
d1433deb 2646 index2 = root_log_ctx.log_transid % 2;
7237f183 2647 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2648 blk_finish_plug(&plug);
5ab5e44a
FM
2649 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2650 mark);
50d9aa99 2651 btrfs_wait_logged_extents(trans, log, log_transid);
8b050d35 2652 wait_log_commit(trans, log_root_tree,
d1433deb 2653 root_log_ctx.log_transid);
7237f183 2654 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2655 if (!ret)
2656 ret = root_log_ctx.log_ret;
7237f183
YZ
2657 goto out;
2658 }
d1433deb 2659 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2660 atomic_set(&log_root_tree->log_commit[index2], 1);
2661
12fcfd22
CM
2662 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2663 wait_log_commit(trans, log_root_tree,
d1433deb 2664 root_log_ctx.log_transid - 1);
12fcfd22
CM
2665 }
2666
2667 wait_for_writer(trans, log_root_tree);
7237f183 2668
12fcfd22
CM
2669 /*
2670 * now that we've moved on to the tree of log tree roots,
2671 * check the full commit flag again
2672 */
995946dd 2673 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2674 blk_finish_plug(&plug);
8cef4e16 2675 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2676 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2677 mutex_unlock(&log_root_tree->log_mutex);
2678 ret = -EAGAIN;
2679 goto out_wake_log_root;
2680 }
7237f183 2681
c6adc9cc
MX
2682 ret = btrfs_write_marked_extents(log_root_tree,
2683 &log_root_tree->dirty_log_pages,
2684 EXTENT_DIRTY | EXTENT_NEW);
2685 blk_finish_plug(&plug);
79787eaa 2686 if (ret) {
995946dd 2687 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2688 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2689 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2690 mutex_unlock(&log_root_tree->log_mutex);
2691 goto out_wake_log_root;
2692 }
5ab5e44a
FM
2693 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2694 if (!ret)
2695 ret = btrfs_wait_marked_extents(log_root_tree,
2696 &log_root_tree->dirty_log_pages,
2697 EXTENT_NEW | EXTENT_DIRTY);
2698 if (ret) {
2699 btrfs_set_log_full_commit(root->fs_info, trans);
2700 btrfs_free_logged_extents(log, log_transid);
2701 mutex_unlock(&log_root_tree->log_mutex);
2702 goto out_wake_log_root;
2703 }
50d9aa99 2704 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2705
6c41761f 2706 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2707 log_root_tree->node->start);
6c41761f 2708 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2709 btrfs_header_level(log_root_tree->node));
e02119d5 2710
7237f183 2711 log_root_tree->log_transid++;
7237f183
YZ
2712 mutex_unlock(&log_root_tree->log_mutex);
2713
2714 /*
2715 * nobody else is going to jump in and write the the ctree
2716 * super here because the log_commit atomic below is protecting
2717 * us. We must be called with a transaction handle pinning
2718 * the running transaction open, so a full commit can't hop
2719 * in and cause problems either.
2720 */
5af3e8cc 2721 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2722 if (ret) {
995946dd 2723 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2724 btrfs_abort_transaction(trans, root, ret);
2725 goto out_wake_log_root;
2726 }
7237f183 2727
257c62e1
CM
2728 mutex_lock(&root->log_mutex);
2729 if (root->last_log_commit < log_transid)
2730 root->last_log_commit = log_transid;
2731 mutex_unlock(&root->log_mutex);
2732
12fcfd22 2733out_wake_log_root:
8b050d35
MX
2734 /*
2735 * We needn't get log_mutex here because we are sure all
2736 * the other tasks are blocked.
2737 */
2738 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2739
d1433deb
MX
2740 mutex_lock(&log_root_tree->log_mutex);
2741 log_root_tree->log_transid_committed++;
7237f183 2742 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2743 mutex_unlock(&log_root_tree->log_mutex);
2744
7237f183
YZ
2745 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2746 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2747out:
8b050d35
MX
2748 /* See above. */
2749 btrfs_remove_all_log_ctxs(root, index1, ret);
2750
d1433deb
MX
2751 mutex_lock(&root->log_mutex);
2752 root->log_transid_committed++;
7237f183 2753 atomic_set(&root->log_commit[index1], 0);
d1433deb 2754 mutex_unlock(&root->log_mutex);
8b050d35 2755
7237f183
YZ
2756 if (waitqueue_active(&root->log_commit_wait[index1]))
2757 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2758 return ret;
e02119d5
CM
2759}
2760
4a500fd1
YZ
2761static void free_log_tree(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *log)
e02119d5
CM
2763{
2764 int ret;
d0c803c4
CM
2765 u64 start;
2766 u64 end;
e02119d5
CM
2767 struct walk_control wc = {
2768 .free = 1,
2769 .process_func = process_one_buffer
2770 };
2771
681ae509
JB
2772 ret = walk_log_tree(trans, log, &wc);
2773 /* I don't think this can happen but just in case */
2774 if (ret)
2775 btrfs_abort_transaction(trans, log, ret);
e02119d5 2776
d397712b 2777 while (1) {
d0c803c4 2778 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2779 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2780 NULL);
d0c803c4
CM
2781 if (ret)
2782 break;
2783
8cef4e16
YZ
2784 clear_extent_bits(&log->dirty_log_pages, start, end,
2785 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2786 }
2787
2ab28f32
JB
2788 /*
2789 * We may have short-circuited the log tree with the full commit logic
2790 * and left ordered extents on our list, so clear these out to keep us
2791 * from leaking inodes and memory.
2792 */
2793 btrfs_free_logged_extents(log, 0);
2794 btrfs_free_logged_extents(log, 1);
2795
7237f183
YZ
2796 free_extent_buffer(log->node);
2797 kfree(log);
4a500fd1
YZ
2798}
2799
2800/*
2801 * free all the extents used by the tree log. This should be called
2802 * at commit time of the full transaction
2803 */
2804int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2805{
2806 if (root->log_root) {
2807 free_log_tree(trans, root->log_root);
2808 root->log_root = NULL;
2809 }
2810 return 0;
2811}
2812
2813int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2814 struct btrfs_fs_info *fs_info)
2815{
2816 if (fs_info->log_root_tree) {
2817 free_log_tree(trans, fs_info->log_root_tree);
2818 fs_info->log_root_tree = NULL;
2819 }
e02119d5
CM
2820 return 0;
2821}
2822
e02119d5
CM
2823/*
2824 * If both a file and directory are logged, and unlinks or renames are
2825 * mixed in, we have a few interesting corners:
2826 *
2827 * create file X in dir Y
2828 * link file X to X.link in dir Y
2829 * fsync file X
2830 * unlink file X but leave X.link
2831 * fsync dir Y
2832 *
2833 * After a crash we would expect only X.link to exist. But file X
2834 * didn't get fsync'd again so the log has back refs for X and X.link.
2835 *
2836 * We solve this by removing directory entries and inode backrefs from the
2837 * log when a file that was logged in the current transaction is
2838 * unlinked. Any later fsync will include the updated log entries, and
2839 * we'll be able to reconstruct the proper directory items from backrefs.
2840 *
2841 * This optimizations allows us to avoid relogging the entire inode
2842 * or the entire directory.
2843 */
2844int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 const char *name, int name_len,
2847 struct inode *dir, u64 index)
2848{
2849 struct btrfs_root *log;
2850 struct btrfs_dir_item *di;
2851 struct btrfs_path *path;
2852 int ret;
4a500fd1 2853 int err = 0;
e02119d5 2854 int bytes_del = 0;
33345d01 2855 u64 dir_ino = btrfs_ino(dir);
e02119d5 2856
3a5f1d45
CM
2857 if (BTRFS_I(dir)->logged_trans < trans->transid)
2858 return 0;
2859
e02119d5
CM
2860 ret = join_running_log_trans(root);
2861 if (ret)
2862 return 0;
2863
2864 mutex_lock(&BTRFS_I(dir)->log_mutex);
2865
2866 log = root->log_root;
2867 path = btrfs_alloc_path();
a62f44a5
TI
2868 if (!path) {
2869 err = -ENOMEM;
2870 goto out_unlock;
2871 }
2a29edc6 2872
33345d01 2873 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2874 name, name_len, -1);
4a500fd1
YZ
2875 if (IS_ERR(di)) {
2876 err = PTR_ERR(di);
2877 goto fail;
2878 }
2879 if (di) {
e02119d5
CM
2880 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2881 bytes_del += name_len;
3650860b
JB
2882 if (ret) {
2883 err = ret;
2884 goto fail;
2885 }
e02119d5 2886 }
b3b4aa74 2887 btrfs_release_path(path);
33345d01 2888 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2889 index, name, name_len, -1);
4a500fd1
YZ
2890 if (IS_ERR(di)) {
2891 err = PTR_ERR(di);
2892 goto fail;
2893 }
2894 if (di) {
e02119d5
CM
2895 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2896 bytes_del += name_len;
3650860b
JB
2897 if (ret) {
2898 err = ret;
2899 goto fail;
2900 }
e02119d5
CM
2901 }
2902
2903 /* update the directory size in the log to reflect the names
2904 * we have removed
2905 */
2906 if (bytes_del) {
2907 struct btrfs_key key;
2908
33345d01 2909 key.objectid = dir_ino;
e02119d5
CM
2910 key.offset = 0;
2911 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2912 btrfs_release_path(path);
e02119d5
CM
2913
2914 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2915 if (ret < 0) {
2916 err = ret;
2917 goto fail;
2918 }
e02119d5
CM
2919 if (ret == 0) {
2920 struct btrfs_inode_item *item;
2921 u64 i_size;
2922
2923 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2924 struct btrfs_inode_item);
2925 i_size = btrfs_inode_size(path->nodes[0], item);
2926 if (i_size > bytes_del)
2927 i_size -= bytes_del;
2928 else
2929 i_size = 0;
2930 btrfs_set_inode_size(path->nodes[0], item, i_size);
2931 btrfs_mark_buffer_dirty(path->nodes[0]);
2932 } else
2933 ret = 0;
b3b4aa74 2934 btrfs_release_path(path);
e02119d5 2935 }
4a500fd1 2936fail:
e02119d5 2937 btrfs_free_path(path);
a62f44a5 2938out_unlock:
e02119d5 2939 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 2940 if (ret == -ENOSPC) {
995946dd 2941 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2942 ret = 0;
79787eaa
JM
2943 } else if (ret < 0)
2944 btrfs_abort_transaction(trans, root, ret);
2945
12fcfd22 2946 btrfs_end_log_trans(root);
e02119d5 2947
411fc6bc 2948 return err;
e02119d5
CM
2949}
2950
2951/* see comments for btrfs_del_dir_entries_in_log */
2952int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root,
2954 const char *name, int name_len,
2955 struct inode *inode, u64 dirid)
2956{
2957 struct btrfs_root *log;
2958 u64 index;
2959 int ret;
2960
3a5f1d45
CM
2961 if (BTRFS_I(inode)->logged_trans < trans->transid)
2962 return 0;
2963
e02119d5
CM
2964 ret = join_running_log_trans(root);
2965 if (ret)
2966 return 0;
2967 log = root->log_root;
2968 mutex_lock(&BTRFS_I(inode)->log_mutex);
2969
33345d01 2970 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2971 dirid, &index);
2972 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 2973 if (ret == -ENOSPC) {
995946dd 2974 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2975 ret = 0;
79787eaa
JM
2976 } else if (ret < 0 && ret != -ENOENT)
2977 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2978 btrfs_end_log_trans(root);
e02119d5 2979
e02119d5
CM
2980 return ret;
2981}
2982
2983/*
2984 * creates a range item in the log for 'dirid'. first_offset and
2985 * last_offset tell us which parts of the key space the log should
2986 * be considered authoritative for.
2987 */
2988static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2989 struct btrfs_root *log,
2990 struct btrfs_path *path,
2991 int key_type, u64 dirid,
2992 u64 first_offset, u64 last_offset)
2993{
2994 int ret;
2995 struct btrfs_key key;
2996 struct btrfs_dir_log_item *item;
2997
2998 key.objectid = dirid;
2999 key.offset = first_offset;
3000 if (key_type == BTRFS_DIR_ITEM_KEY)
3001 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3002 else
3003 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3004 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3005 if (ret)
3006 return ret;
e02119d5
CM
3007
3008 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3009 struct btrfs_dir_log_item);
3010 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3011 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3012 btrfs_release_path(path);
e02119d5
CM
3013 return 0;
3014}
3015
3016/*
3017 * log all the items included in the current transaction for a given
3018 * directory. This also creates the range items in the log tree required
3019 * to replay anything deleted before the fsync
3020 */
3021static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3022 struct btrfs_root *root, struct inode *inode,
3023 struct btrfs_path *path,
3024 struct btrfs_path *dst_path, int key_type,
3025 u64 min_offset, u64 *last_offset_ret)
3026{
3027 struct btrfs_key min_key;
e02119d5
CM
3028 struct btrfs_root *log = root->log_root;
3029 struct extent_buffer *src;
4a500fd1 3030 int err = 0;
e02119d5
CM
3031 int ret;
3032 int i;
3033 int nritems;
3034 u64 first_offset = min_offset;
3035 u64 last_offset = (u64)-1;
33345d01 3036 u64 ino = btrfs_ino(inode);
e02119d5
CM
3037
3038 log = root->log_root;
e02119d5 3039
33345d01 3040 min_key.objectid = ino;
e02119d5
CM
3041 min_key.type = key_type;
3042 min_key.offset = min_offset;
3043
6174d3cb 3044 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3045
3046 /*
3047 * we didn't find anything from this transaction, see if there
3048 * is anything at all
3049 */
33345d01
LZ
3050 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3051 min_key.objectid = ino;
e02119d5
CM
3052 min_key.type = key_type;
3053 min_key.offset = (u64)-1;
b3b4aa74 3054 btrfs_release_path(path);
e02119d5
CM
3055 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3056 if (ret < 0) {
b3b4aa74 3057 btrfs_release_path(path);
e02119d5
CM
3058 return ret;
3059 }
33345d01 3060 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3061
3062 /* if ret == 0 there are items for this type,
3063 * create a range to tell us the last key of this type.
3064 * otherwise, there are no items in this directory after
3065 * *min_offset, and we create a range to indicate that.
3066 */
3067 if (ret == 0) {
3068 struct btrfs_key tmp;
3069 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3070 path->slots[0]);
d397712b 3071 if (key_type == tmp.type)
e02119d5 3072 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3073 }
3074 goto done;
3075 }
3076
3077 /* go backward to find any previous key */
33345d01 3078 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3079 if (ret == 0) {
3080 struct btrfs_key tmp;
3081 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3082 if (key_type == tmp.type) {
3083 first_offset = tmp.offset;
3084 ret = overwrite_item(trans, log, dst_path,
3085 path->nodes[0], path->slots[0],
3086 &tmp);
4a500fd1
YZ
3087 if (ret) {
3088 err = ret;
3089 goto done;
3090 }
e02119d5
CM
3091 }
3092 }
b3b4aa74 3093 btrfs_release_path(path);
e02119d5
CM
3094
3095 /* find the first key from this transaction again */
3096 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3097 if (WARN_ON(ret != 0))
e02119d5 3098 goto done;
e02119d5
CM
3099
3100 /*
3101 * we have a block from this transaction, log every item in it
3102 * from our directory
3103 */
d397712b 3104 while (1) {
e02119d5
CM
3105 struct btrfs_key tmp;
3106 src = path->nodes[0];
3107 nritems = btrfs_header_nritems(src);
3108 for (i = path->slots[0]; i < nritems; i++) {
3109 btrfs_item_key_to_cpu(src, &min_key, i);
3110
33345d01 3111 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3112 goto done;
3113 ret = overwrite_item(trans, log, dst_path, src, i,
3114 &min_key);
4a500fd1
YZ
3115 if (ret) {
3116 err = ret;
3117 goto done;
3118 }
e02119d5
CM
3119 }
3120 path->slots[0] = nritems;
3121
3122 /*
3123 * look ahead to the next item and see if it is also
3124 * from this directory and from this transaction
3125 */
3126 ret = btrfs_next_leaf(root, path);
3127 if (ret == 1) {
3128 last_offset = (u64)-1;
3129 goto done;
3130 }
3131 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3132 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3133 last_offset = (u64)-1;
3134 goto done;
3135 }
3136 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3137 ret = overwrite_item(trans, log, dst_path,
3138 path->nodes[0], path->slots[0],
3139 &tmp);
4a500fd1
YZ
3140 if (ret)
3141 err = ret;
3142 else
3143 last_offset = tmp.offset;
e02119d5
CM
3144 goto done;
3145 }
3146 }
3147done:
b3b4aa74
DS
3148 btrfs_release_path(path);
3149 btrfs_release_path(dst_path);
e02119d5 3150
4a500fd1
YZ
3151 if (err == 0) {
3152 *last_offset_ret = last_offset;
3153 /*
3154 * insert the log range keys to indicate where the log
3155 * is valid
3156 */
3157 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3158 ino, first_offset, last_offset);
4a500fd1
YZ
3159 if (ret)
3160 err = ret;
3161 }
3162 return err;
e02119d5
CM
3163}
3164
3165/*
3166 * logging directories is very similar to logging inodes, We find all the items
3167 * from the current transaction and write them to the log.
3168 *
3169 * The recovery code scans the directory in the subvolume, and if it finds a
3170 * key in the range logged that is not present in the log tree, then it means
3171 * that dir entry was unlinked during the transaction.
3172 *
3173 * In order for that scan to work, we must include one key smaller than
3174 * the smallest logged by this transaction and one key larger than the largest
3175 * key logged by this transaction.
3176 */
3177static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3178 struct btrfs_root *root, struct inode *inode,
3179 struct btrfs_path *path,
3180 struct btrfs_path *dst_path)
3181{
3182 u64 min_key;
3183 u64 max_key;
3184 int ret;
3185 int key_type = BTRFS_DIR_ITEM_KEY;
3186
3187again:
3188 min_key = 0;
3189 max_key = 0;
d397712b 3190 while (1) {
e02119d5
CM
3191 ret = log_dir_items(trans, root, inode, path,
3192 dst_path, key_type, min_key,
3193 &max_key);
4a500fd1
YZ
3194 if (ret)
3195 return ret;
e02119d5
CM
3196 if (max_key == (u64)-1)
3197 break;
3198 min_key = max_key + 1;
3199 }
3200
3201 if (key_type == BTRFS_DIR_ITEM_KEY) {
3202 key_type = BTRFS_DIR_INDEX_KEY;
3203 goto again;
3204 }
3205 return 0;
3206}
3207
3208/*
3209 * a helper function to drop items from the log before we relog an
3210 * inode. max_key_type indicates the highest item type to remove.
3211 * This cannot be run for file data extents because it does not
3212 * free the extents they point to.
3213 */
3214static int drop_objectid_items(struct btrfs_trans_handle *trans,
3215 struct btrfs_root *log,
3216 struct btrfs_path *path,
3217 u64 objectid, int max_key_type)
3218{
3219 int ret;
3220 struct btrfs_key key;
3221 struct btrfs_key found_key;
18ec90d6 3222 int start_slot;
e02119d5
CM
3223
3224 key.objectid = objectid;
3225 key.type = max_key_type;
3226 key.offset = (u64)-1;
3227
d397712b 3228 while (1) {
e02119d5 3229 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3230 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3231 if (ret < 0)
e02119d5
CM
3232 break;
3233
3234 if (path->slots[0] == 0)
3235 break;
3236
3237 path->slots[0]--;
3238 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3239 path->slots[0]);
3240
3241 if (found_key.objectid != objectid)
3242 break;
3243
18ec90d6
JB
3244 found_key.offset = 0;
3245 found_key.type = 0;
3246 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3247 &start_slot);
3248
3249 ret = btrfs_del_items(trans, log, path, start_slot,
3250 path->slots[0] - start_slot + 1);
3251 /*
3252 * If start slot isn't 0 then we don't need to re-search, we've
3253 * found the last guy with the objectid in this tree.
3254 */
3255 if (ret || start_slot != 0)
65a246c5 3256 break;
b3b4aa74 3257 btrfs_release_path(path);
e02119d5 3258 }
b3b4aa74 3259 btrfs_release_path(path);
5bdbeb21
JB
3260 if (ret > 0)
3261 ret = 0;
4a500fd1 3262 return ret;
e02119d5
CM
3263}
3264
94edf4ae
JB
3265static void fill_inode_item(struct btrfs_trans_handle *trans,
3266 struct extent_buffer *leaf,
3267 struct btrfs_inode_item *item,
1a4bcf47
FM
3268 struct inode *inode, int log_inode_only,
3269 u64 logged_isize)
94edf4ae 3270{
0b1c6cca
JB
3271 struct btrfs_map_token token;
3272
3273 btrfs_init_map_token(&token);
94edf4ae
JB
3274
3275 if (log_inode_only) {
3276 /* set the generation to zero so the recover code
3277 * can tell the difference between an logging
3278 * just to say 'this inode exists' and a logging
3279 * to say 'update this inode with these values'
3280 */
0b1c6cca 3281 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3282 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3283 } else {
0b1c6cca
JB
3284 btrfs_set_token_inode_generation(leaf, item,
3285 BTRFS_I(inode)->generation,
3286 &token);
3287 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3288 }
3289
3290 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3291 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3292 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3293 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3294
a937b979 3295 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3296 inode->i_atime.tv_sec, &token);
a937b979 3297 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3298 inode->i_atime.tv_nsec, &token);
3299
a937b979 3300 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3301 inode->i_mtime.tv_sec, &token);
a937b979 3302 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3303 inode->i_mtime.tv_nsec, &token);
3304
a937b979 3305 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3306 inode->i_ctime.tv_sec, &token);
a937b979 3307 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3308 inode->i_ctime.tv_nsec, &token);
3309
3310 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3311 &token);
3312
3313 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3314 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3315 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3316 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3317 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3318}
3319
a95249b3
JB
3320static int log_inode_item(struct btrfs_trans_handle *trans,
3321 struct btrfs_root *log, struct btrfs_path *path,
3322 struct inode *inode)
3323{
3324 struct btrfs_inode_item *inode_item;
a95249b3
JB
3325 int ret;
3326
efd0c405
FDBM
3327 ret = btrfs_insert_empty_item(trans, log, path,
3328 &BTRFS_I(inode)->location,
a95249b3
JB
3329 sizeof(*inode_item));
3330 if (ret && ret != -EEXIST)
3331 return ret;
3332 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3333 struct btrfs_inode_item);
1a4bcf47 3334 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3335 btrfs_release_path(path);
3336 return 0;
3337}
3338
31ff1cd2 3339static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3340 struct inode *inode,
31ff1cd2 3341 struct btrfs_path *dst_path,
16e7549f 3342 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3343 int start_slot, int nr, int inode_only,
3344 u64 logged_isize)
31ff1cd2
CM
3345{
3346 unsigned long src_offset;
3347 unsigned long dst_offset;
d2794405 3348 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3349 struct btrfs_file_extent_item *extent;
3350 struct btrfs_inode_item *inode_item;
16e7549f
JB
3351 struct extent_buffer *src = src_path->nodes[0];
3352 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3353 int ret;
3354 struct btrfs_key *ins_keys;
3355 u32 *ins_sizes;
3356 char *ins_data;
3357 int i;
d20f7043 3358 struct list_head ordered_sums;
d2794405 3359 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3360 bool has_extents = false;
74121f7c 3361 bool need_find_last_extent = true;
16e7549f 3362 bool done = false;
d20f7043
CM
3363
3364 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3365
3366 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3367 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3368 if (!ins_data)
3369 return -ENOMEM;
3370
16e7549f
JB
3371 first_key.objectid = (u64)-1;
3372
31ff1cd2
CM
3373 ins_sizes = (u32 *)ins_data;
3374 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3375
3376 for (i = 0; i < nr; i++) {
3377 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3378 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3379 }
3380 ret = btrfs_insert_empty_items(trans, log, dst_path,
3381 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3382 if (ret) {
3383 kfree(ins_data);
3384 return ret;
3385 }
31ff1cd2 3386
5d4f98a2 3387 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3388 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3389 dst_path->slots[0]);
3390
3391 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3392
16e7549f
JB
3393 if ((i == (nr - 1)))
3394 last_key = ins_keys[i];
3395
94edf4ae 3396 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3397 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3398 dst_path->slots[0],
3399 struct btrfs_inode_item);
94edf4ae 3400 fill_inode_item(trans, dst_path->nodes[0], inode_item,
1a4bcf47
FM
3401 inode, inode_only == LOG_INODE_EXISTS,
3402 logged_isize);
94edf4ae
JB
3403 } else {
3404 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3405 src_offset, ins_sizes[i]);
31ff1cd2 3406 }
94edf4ae 3407
16e7549f
JB
3408 /*
3409 * We set need_find_last_extent here in case we know we were
3410 * processing other items and then walk into the first extent in
3411 * the inode. If we don't hit an extent then nothing changes,
3412 * we'll do the last search the next time around.
3413 */
3414 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3415 has_extents = true;
74121f7c 3416 if (first_key.objectid == (u64)-1)
16e7549f
JB
3417 first_key = ins_keys[i];
3418 } else {
3419 need_find_last_extent = false;
3420 }
3421
31ff1cd2
CM
3422 /* take a reference on file data extents so that truncates
3423 * or deletes of this inode don't have to relog the inode
3424 * again
3425 */
962a298f 3426 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3427 !skip_csum) {
31ff1cd2
CM
3428 int found_type;
3429 extent = btrfs_item_ptr(src, start_slot + i,
3430 struct btrfs_file_extent_item);
3431
8e531cdf 3432 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3433 continue;
3434
31ff1cd2 3435 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3436 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3437 u64 ds, dl, cs, cl;
3438 ds = btrfs_file_extent_disk_bytenr(src,
3439 extent);
3440 /* ds == 0 is a hole */
3441 if (ds == 0)
3442 continue;
3443
3444 dl = btrfs_file_extent_disk_num_bytes(src,
3445 extent);
3446 cs = btrfs_file_extent_offset(src, extent);
3447 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3448 extent);
580afd76
CM
3449 if (btrfs_file_extent_compression(src,
3450 extent)) {
3451 cs = 0;
3452 cl = dl;
3453 }
5d4f98a2
YZ
3454
3455 ret = btrfs_lookup_csums_range(
3456 log->fs_info->csum_root,
3457 ds + cs, ds + cs + cl - 1,
a2de733c 3458 &ordered_sums, 0);
3650860b
JB
3459 if (ret) {
3460 btrfs_release_path(dst_path);
3461 kfree(ins_data);
3462 return ret;
3463 }
31ff1cd2
CM
3464 }
3465 }
31ff1cd2
CM
3466 }
3467
3468 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3469 btrfs_release_path(dst_path);
31ff1cd2 3470 kfree(ins_data);
d20f7043
CM
3471
3472 /*
3473 * we have to do this after the loop above to avoid changing the
3474 * log tree while trying to change the log tree.
3475 */
4a500fd1 3476 ret = 0;
d397712b 3477 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3478 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3479 struct btrfs_ordered_sum,
3480 list);
4a500fd1
YZ
3481 if (!ret)
3482 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3483 list_del(&sums->list);
3484 kfree(sums);
3485 }
16e7549f
JB
3486
3487 if (!has_extents)
3488 return ret;
3489
74121f7c
FM
3490 if (need_find_last_extent && *last_extent == first_key.offset) {
3491 /*
3492 * We don't have any leafs between our current one and the one
3493 * we processed before that can have file extent items for our
3494 * inode (and have a generation number smaller than our current
3495 * transaction id).
3496 */
3497 need_find_last_extent = false;
3498 }
3499
16e7549f
JB
3500 /*
3501 * Because we use btrfs_search_forward we could skip leaves that were
3502 * not modified and then assume *last_extent is valid when it really
3503 * isn't. So back up to the previous leaf and read the end of the last
3504 * extent before we go and fill in holes.
3505 */
3506 if (need_find_last_extent) {
3507 u64 len;
3508
3509 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3510 if (ret < 0)
3511 return ret;
3512 if (ret)
3513 goto fill_holes;
3514 if (src_path->slots[0])
3515 src_path->slots[0]--;
3516 src = src_path->nodes[0];
3517 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3518 if (key.objectid != btrfs_ino(inode) ||
3519 key.type != BTRFS_EXTENT_DATA_KEY)
3520 goto fill_holes;
3521 extent = btrfs_item_ptr(src, src_path->slots[0],
3522 struct btrfs_file_extent_item);
3523 if (btrfs_file_extent_type(src, extent) ==
3524 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3525 len = btrfs_file_extent_inline_len(src,
3526 src_path->slots[0],
3527 extent);
16e7549f
JB
3528 *last_extent = ALIGN(key.offset + len,
3529 log->sectorsize);
3530 } else {
3531 len = btrfs_file_extent_num_bytes(src, extent);
3532 *last_extent = key.offset + len;
3533 }
3534 }
3535fill_holes:
3536 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3537 * things could have happened
3538 *
3539 * 1) A merge could have happened, so we could currently be on a leaf
3540 * that holds what we were copying in the first place.
3541 * 2) A split could have happened, and now not all of the items we want
3542 * are on the same leaf.
3543 *
3544 * So we need to adjust how we search for holes, we need to drop the
3545 * path and re-search for the first extent key we found, and then walk
3546 * forward until we hit the last one we copied.
3547 */
3548 if (need_find_last_extent) {
3549 /* btrfs_prev_leaf could return 1 without releasing the path */
3550 btrfs_release_path(src_path);
3551 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3552 src_path, 0, 0);
3553 if (ret < 0)
3554 return ret;
3555 ASSERT(ret == 0);
3556 src = src_path->nodes[0];
3557 i = src_path->slots[0];
3558 } else {
3559 i = start_slot;
3560 }
3561
3562 /*
3563 * Ok so here we need to go through and fill in any holes we may have
3564 * to make sure that holes are punched for those areas in case they had
3565 * extents previously.
3566 */
3567 while (!done) {
3568 u64 offset, len;
3569 u64 extent_end;
3570
3571 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3572 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3573 if (ret < 0)
3574 return ret;
3575 ASSERT(ret == 0);
3576 src = src_path->nodes[0];
3577 i = 0;
3578 }
3579
3580 btrfs_item_key_to_cpu(src, &key, i);
3581 if (!btrfs_comp_cpu_keys(&key, &last_key))
3582 done = true;
3583 if (key.objectid != btrfs_ino(inode) ||
3584 key.type != BTRFS_EXTENT_DATA_KEY) {
3585 i++;
3586 continue;
3587 }
3588 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3589 if (btrfs_file_extent_type(src, extent) ==
3590 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3591 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3592 extent_end = ALIGN(key.offset + len, log->sectorsize);
3593 } else {
3594 len = btrfs_file_extent_num_bytes(src, extent);
3595 extent_end = key.offset + len;
3596 }
3597 i++;
3598
3599 if (*last_extent == key.offset) {
3600 *last_extent = extent_end;
3601 continue;
3602 }
3603 offset = *last_extent;
3604 len = key.offset - *last_extent;
3605 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3606 offset, 0, 0, len, 0, len, 0,
3607 0, 0);
3608 if (ret)
3609 break;
74121f7c 3610 *last_extent = extent_end;
16e7549f
JB
3611 }
3612 /*
3613 * Need to let the callers know we dropped the path so they should
3614 * re-search.
3615 */
3616 if (!ret && need_find_last_extent)
3617 ret = 1;
4a500fd1 3618 return ret;
31ff1cd2
CM
3619}
3620
5dc562c5
JB
3621static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3622{
3623 struct extent_map *em1, *em2;
3624
3625 em1 = list_entry(a, struct extent_map, list);
3626 em2 = list_entry(b, struct extent_map, list);
3627
3628 if (em1->start < em2->start)
3629 return -1;
3630 else if (em1->start > em2->start)
3631 return 1;
3632 return 0;
3633}
3634
8407f553
FM
3635static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3636 struct inode *inode,
3637 struct btrfs_root *root,
3638 const struct extent_map *em,
3639 const struct list_head *logged_list,
3640 bool *ordered_io_error)
5dc562c5 3641{
2ab28f32 3642 struct btrfs_ordered_extent *ordered;
8407f553 3643 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3644 u64 mod_start = em->mod_start;
3645 u64 mod_len = em->mod_len;
8407f553 3646 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3647 u64 csum_offset;
3648 u64 csum_len;
8407f553
FM
3649 LIST_HEAD(ordered_sums);
3650 int ret = 0;
0aa4a17d 3651
8407f553 3652 *ordered_io_error = false;
0aa4a17d 3653
8407f553
FM
3654 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3655 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3656 return 0;
5dc562c5 3657
2ab28f32 3658 /*
8407f553
FM
3659 * Wait far any ordered extent that covers our extent map. If it
3660 * finishes without an error, first check and see if our csums are on
3661 * our outstanding ordered extents.
2ab28f32 3662 */
827463c4 3663 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3664 struct btrfs_ordered_sum *sum;
3665
3666 if (!mod_len)
3667 break;
3668
2ab28f32
JB
3669 if (ordered->file_offset + ordered->len <= mod_start ||
3670 mod_start + mod_len <= ordered->file_offset)
3671 continue;
3672
8407f553
FM
3673 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3674 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3675 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3676 const u64 start = ordered->file_offset;
3677 const u64 end = ordered->file_offset + ordered->len - 1;
3678
3679 WARN_ON(ordered->inode != inode);
3680 filemap_fdatawrite_range(inode->i_mapping, start, end);
3681 }
3682
3683 wait_event(ordered->wait,
3684 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3685 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3686
3687 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3688 /*
3689 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3690 * i_mapping flags, so that the next fsync won't get
3691 * an outdated io error too.
3692 */
3693 btrfs_inode_check_errors(inode);
8407f553
FM
3694 *ordered_io_error = true;
3695 break;
3696 }
2ab28f32
JB
3697 /*
3698 * We are going to copy all the csums on this ordered extent, so
3699 * go ahead and adjust mod_start and mod_len in case this
3700 * ordered extent has already been logged.
3701 */
3702 if (ordered->file_offset > mod_start) {
3703 if (ordered->file_offset + ordered->len >=
3704 mod_start + mod_len)
3705 mod_len = ordered->file_offset - mod_start;
3706 /*
3707 * If we have this case
3708 *
3709 * |--------- logged extent ---------|
3710 * |----- ordered extent ----|
3711 *
3712 * Just don't mess with mod_start and mod_len, we'll
3713 * just end up logging more csums than we need and it
3714 * will be ok.
3715 */
3716 } else {
3717 if (ordered->file_offset + ordered->len <
3718 mod_start + mod_len) {
3719 mod_len = (mod_start + mod_len) -
3720 (ordered->file_offset + ordered->len);
3721 mod_start = ordered->file_offset +
3722 ordered->len;
3723 } else {
3724 mod_len = 0;
3725 }
3726 }
3727
8407f553
FM
3728 if (skip_csum)
3729 continue;
3730
2ab28f32
JB
3731 /*
3732 * To keep us from looping for the above case of an ordered
3733 * extent that falls inside of the logged extent.
3734 */
3735 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3736 &ordered->flags))
3737 continue;
2ab28f32 3738
23c671a5
MX
3739 if (ordered->csum_bytes_left) {
3740 btrfs_start_ordered_extent(inode, ordered, 0);
3741 wait_event(ordered->wait,
3742 ordered->csum_bytes_left == 0);
3743 }
2ab28f32
JB
3744
3745 list_for_each_entry(sum, &ordered->list, list) {
3746 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3747 if (ret)
8407f553 3748 break;
2ab28f32 3749 }
2ab28f32 3750 }
2ab28f32 3751
8407f553 3752 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
3753 return ret;
3754
488111aa
FDBM
3755 if (em->compress_type) {
3756 csum_offset = 0;
8407f553 3757 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
3758 } else {
3759 csum_offset = mod_start - em->start;
3760 csum_len = mod_len;
3761 }
2ab28f32 3762
70c8a91c
JB
3763 /* block start is already adjusted for the file extent offset. */
3764 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3765 em->block_start + csum_offset,
3766 em->block_start + csum_offset +
3767 csum_len - 1, &ordered_sums, 0);
3768 if (ret)
3769 return ret;
5dc562c5 3770
70c8a91c
JB
3771 while (!list_empty(&ordered_sums)) {
3772 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3773 struct btrfs_ordered_sum,
3774 list);
3775 if (!ret)
3776 ret = btrfs_csum_file_blocks(trans, log, sums);
3777 list_del(&sums->list);
3778 kfree(sums);
5dc562c5
JB
3779 }
3780
70c8a91c 3781 return ret;
5dc562c5
JB
3782}
3783
8407f553
FM
3784static int log_one_extent(struct btrfs_trans_handle *trans,
3785 struct inode *inode, struct btrfs_root *root,
3786 const struct extent_map *em,
3787 struct btrfs_path *path,
3788 const struct list_head *logged_list,
3789 struct btrfs_log_ctx *ctx)
3790{
3791 struct btrfs_root *log = root->log_root;
3792 struct btrfs_file_extent_item *fi;
3793 struct extent_buffer *leaf;
3794 struct btrfs_map_token token;
3795 struct btrfs_key key;
3796 u64 extent_offset = em->start - em->orig_start;
3797 u64 block_len;
3798 int ret;
3799 int extent_inserted = 0;
3800 bool ordered_io_err = false;
3801
3802 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3803 &ordered_io_err);
3804 if (ret)
3805 return ret;
3806
3807 if (ordered_io_err) {
3808 ctx->io_err = -EIO;
3809 return 0;
3810 }
3811
3812 btrfs_init_map_token(&token);
3813
3814 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3815 em->start + em->len, NULL, 0, 1,
3816 sizeof(*fi), &extent_inserted);
3817 if (ret)
3818 return ret;
3819
3820 if (!extent_inserted) {
3821 key.objectid = btrfs_ino(inode);
3822 key.type = BTRFS_EXTENT_DATA_KEY;
3823 key.offset = em->start;
3824
3825 ret = btrfs_insert_empty_item(trans, log, path, &key,
3826 sizeof(*fi));
3827 if (ret)
3828 return ret;
3829 }
3830 leaf = path->nodes[0];
3831 fi = btrfs_item_ptr(leaf, path->slots[0],
3832 struct btrfs_file_extent_item);
3833
50d9aa99 3834 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
3835 &token);
3836 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3837 btrfs_set_token_file_extent_type(leaf, fi,
3838 BTRFS_FILE_EXTENT_PREALLOC,
3839 &token);
3840 else
3841 btrfs_set_token_file_extent_type(leaf, fi,
3842 BTRFS_FILE_EXTENT_REG,
3843 &token);
3844
3845 block_len = max(em->block_len, em->orig_block_len);
3846 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3847 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3848 em->block_start,
3849 &token);
3850 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3851 &token);
3852 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3853 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3854 em->block_start -
3855 extent_offset, &token);
3856 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3857 &token);
3858 } else {
3859 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3860 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3861 &token);
3862 }
3863
3864 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3865 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3866 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3867 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3868 &token);
3869 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3870 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3871 btrfs_mark_buffer_dirty(leaf);
3872
3873 btrfs_release_path(path);
3874
3875 return ret;
3876}
3877
5dc562c5
JB
3878static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3879 struct btrfs_root *root,
3880 struct inode *inode,
827463c4 3881 struct btrfs_path *path,
8407f553
FM
3882 struct list_head *logged_list,
3883 struct btrfs_log_ctx *ctx)
5dc562c5 3884{
5dc562c5
JB
3885 struct extent_map *em, *n;
3886 struct list_head extents;
3887 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3888 u64 test_gen;
3889 int ret = 0;
2ab28f32 3890 int num = 0;
5dc562c5
JB
3891
3892 INIT_LIST_HEAD(&extents);
3893
5dc562c5
JB
3894 write_lock(&tree->lock);
3895 test_gen = root->fs_info->last_trans_committed;
3896
3897 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3898 list_del_init(&em->list);
2ab28f32
JB
3899
3900 /*
3901 * Just an arbitrary number, this can be really CPU intensive
3902 * once we start getting a lot of extents, and really once we
3903 * have a bunch of extents we just want to commit since it will
3904 * be faster.
3905 */
3906 if (++num > 32768) {
3907 list_del_init(&tree->modified_extents);
3908 ret = -EFBIG;
3909 goto process;
3910 }
3911
5dc562c5
JB
3912 if (em->generation <= test_gen)
3913 continue;
ff44c6e3
JB
3914 /* Need a ref to keep it from getting evicted from cache */
3915 atomic_inc(&em->refs);
3916 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3917 list_add_tail(&em->list, &extents);
2ab28f32 3918 num++;
5dc562c5
JB
3919 }
3920
3921 list_sort(NULL, &extents, extent_cmp);
3922
2ab28f32 3923process:
5dc562c5
JB
3924 while (!list_empty(&extents)) {
3925 em = list_entry(extents.next, struct extent_map, list);
3926
3927 list_del_init(&em->list);
3928
3929 /*
3930 * If we had an error we just need to delete everybody from our
3931 * private list.
3932 */
ff44c6e3 3933 if (ret) {
201a9038 3934 clear_em_logging(tree, em);
ff44c6e3 3935 free_extent_map(em);
5dc562c5 3936 continue;
ff44c6e3
JB
3937 }
3938
3939 write_unlock(&tree->lock);
5dc562c5 3940
8407f553
FM
3941 ret = log_one_extent(trans, inode, root, em, path, logged_list,
3942 ctx);
ff44c6e3 3943 write_lock(&tree->lock);
201a9038
JB
3944 clear_em_logging(tree, em);
3945 free_extent_map(em);
5dc562c5 3946 }
ff44c6e3
JB
3947 WARN_ON(!list_empty(&extents));
3948 write_unlock(&tree->lock);
5dc562c5 3949
5dc562c5 3950 btrfs_release_path(path);
5dc562c5
JB
3951 return ret;
3952}
3953
1a4bcf47
FM
3954static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
3955 struct btrfs_path *path, u64 *size_ret)
3956{
3957 struct btrfs_key key;
3958 int ret;
3959
3960 key.objectid = btrfs_ino(inode);
3961 key.type = BTRFS_INODE_ITEM_KEY;
3962 key.offset = 0;
3963
3964 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
3965 if (ret < 0) {
3966 return ret;
3967 } else if (ret > 0) {
3968 *size_ret = i_size_read(inode);
3969 } else {
3970 struct btrfs_inode_item *item;
3971
3972 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3973 struct btrfs_inode_item);
3974 *size_ret = btrfs_inode_size(path->nodes[0], item);
3975 }
3976
3977 btrfs_release_path(path);
3978 return 0;
3979}
3980
e02119d5
CM
3981/* log a single inode in the tree log.
3982 * At least one parent directory for this inode must exist in the tree
3983 * or be logged already.
3984 *
3985 * Any items from this inode changed by the current transaction are copied
3986 * to the log tree. An extra reference is taken on any extents in this
3987 * file, allowing us to avoid a whole pile of corner cases around logging
3988 * blocks that have been removed from the tree.
3989 *
3990 * See LOG_INODE_ALL and related defines for a description of what inode_only
3991 * does.
3992 *
3993 * This handles both files and directories.
3994 */
12fcfd22 3995static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
3996 struct btrfs_root *root, struct inode *inode,
3997 int inode_only,
3998 const loff_t start,
8407f553
FM
3999 const loff_t end,
4000 struct btrfs_log_ctx *ctx)
e02119d5
CM
4001{
4002 struct btrfs_path *path;
4003 struct btrfs_path *dst_path;
4004 struct btrfs_key min_key;
4005 struct btrfs_key max_key;
4006 struct btrfs_root *log = root->log_root;
31ff1cd2 4007 struct extent_buffer *src = NULL;
827463c4 4008 LIST_HEAD(logged_list);
16e7549f 4009 u64 last_extent = 0;
4a500fd1 4010 int err = 0;
e02119d5 4011 int ret;
3a5f1d45 4012 int nritems;
31ff1cd2
CM
4013 int ins_start_slot = 0;
4014 int ins_nr;
5dc562c5 4015 bool fast_search = false;
33345d01 4016 u64 ino = btrfs_ino(inode);
49dae1bc 4017 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4018 u64 logged_isize = 0;
e02119d5 4019
e02119d5 4020 path = btrfs_alloc_path();
5df67083
TI
4021 if (!path)
4022 return -ENOMEM;
e02119d5 4023 dst_path = btrfs_alloc_path();
5df67083
TI
4024 if (!dst_path) {
4025 btrfs_free_path(path);
4026 return -ENOMEM;
4027 }
e02119d5 4028
33345d01 4029 min_key.objectid = ino;
e02119d5
CM
4030 min_key.type = BTRFS_INODE_ITEM_KEY;
4031 min_key.offset = 0;
4032
33345d01 4033 max_key.objectid = ino;
12fcfd22 4034
12fcfd22 4035
5dc562c5 4036 /* today the code can only do partial logging of directories */
5269b67e
MX
4037 if (S_ISDIR(inode->i_mode) ||
4038 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4039 &BTRFS_I(inode)->runtime_flags) &&
4040 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
4041 max_key.type = BTRFS_XATTR_ITEM_KEY;
4042 else
4043 max_key.type = (u8)-1;
4044 max_key.offset = (u64)-1;
4045
2c2c452b
FM
4046 /*
4047 * Only run delayed items if we are a dir or a new file.
4048 * Otherwise commit the delayed inode only, which is needed in
4049 * order for the log replay code to mark inodes for link count
4050 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4051 */
94edf4ae 4052 if (S_ISDIR(inode->i_mode) ||
2c2c452b 4053 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
94edf4ae 4054 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
4055 else
4056 ret = btrfs_commit_inode_delayed_inode(inode);
4057
4058 if (ret) {
4059 btrfs_free_path(path);
4060 btrfs_free_path(dst_path);
4061 return ret;
16cdcec7
MX
4062 }
4063
e02119d5
CM
4064 mutex_lock(&BTRFS_I(inode)->log_mutex);
4065
0870295b 4066 btrfs_get_logged_extents(inode, &logged_list, start, end);
2ab28f32 4067
e02119d5
CM
4068 /*
4069 * a brute force approach to making sure we get the most uptodate
4070 * copies of everything.
4071 */
4072 if (S_ISDIR(inode->i_mode)) {
4073 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4074
a742994a
FM
4075 if (inode_only == LOG_INODE_EXISTS) {
4076 max_key_type = BTRFS_INODE_EXTREF_KEY;
4077 max_key.type = max_key_type;
4078 }
33345d01 4079 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4080 } else {
1a4bcf47
FM
4081 if (inode_only == LOG_INODE_EXISTS) {
4082 /*
4083 * Make sure the new inode item we write to the log has
4084 * the same isize as the current one (if it exists).
4085 * This is necessary to prevent data loss after log
4086 * replay, and also to prevent doing a wrong expanding
4087 * truncate - for e.g. create file, write 4K into offset
4088 * 0, fsync, write 4K into offset 4096, add hard link,
4089 * fsync some other file (to sync log), power fail - if
4090 * we use the inode's current i_size, after log replay
4091 * we get a 8Kb file, with the last 4Kb extent as a hole
4092 * (zeroes), as if an expanding truncate happened,
4093 * instead of getting a file of 4Kb only.
4094 */
4095 err = logged_inode_size(log, inode, path,
4096 &logged_isize);
4097 if (err)
4098 goto out_unlock;
4099 }
a742994a
FM
4100 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4101 &BTRFS_I(inode)->runtime_flags)) {
4102 if (inode_only == LOG_INODE_EXISTS) {
4103 max_key.type = BTRFS_INODE_EXTREF_KEY;
4104 ret = drop_objectid_items(trans, log, path, ino,
4105 max_key.type);
4106 } else {
4107 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4108 &BTRFS_I(inode)->runtime_flags);
4109 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4110 &BTRFS_I(inode)->runtime_flags);
4111 ret = btrfs_truncate_inode_items(trans, log,
4112 inode, 0, 0);
4113 }
4114 } else if (test_bit(BTRFS_INODE_COPY_EVERYTHING,
4115 &BTRFS_I(inode)->runtime_flags) ||
6cfab851 4116 inode_only == LOG_INODE_EXISTS) {
a742994a
FM
4117 if (inode_only == LOG_INODE_ALL) {
4118 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4119 &BTRFS_I(inode)->runtime_flags);
183f37fa 4120 fast_search = true;
a742994a
FM
4121 max_key.type = BTRFS_XATTR_ITEM_KEY;
4122 } else {
4123 max_key.type = BTRFS_INODE_EXTREF_KEY;
4124 }
5dc562c5 4125 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4126 max_key.type);
a95249b3
JB
4127 } else {
4128 if (inode_only == LOG_INODE_ALL)
4129 fast_search = true;
4130 ret = log_inode_item(trans, log, dst_path, inode);
4131 if (ret) {
4132 err = ret;
4133 goto out_unlock;
4134 }
4135 goto log_extents;
5dc562c5 4136 }
a95249b3 4137
e02119d5 4138 }
4a500fd1
YZ
4139 if (ret) {
4140 err = ret;
4141 goto out_unlock;
4142 }
e02119d5 4143
d397712b 4144 while (1) {
31ff1cd2 4145 ins_nr = 0;
6174d3cb 4146 ret = btrfs_search_forward(root, &min_key,
de78b51a 4147 path, trans->transid);
e02119d5
CM
4148 if (ret != 0)
4149 break;
3a5f1d45 4150again:
31ff1cd2 4151 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4152 if (min_key.objectid != ino)
e02119d5
CM
4153 break;
4154 if (min_key.type > max_key.type)
4155 break;
31ff1cd2 4156
e02119d5 4157 src = path->nodes[0];
31ff1cd2
CM
4158 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4159 ins_nr++;
4160 goto next_slot;
4161 } else if (!ins_nr) {
4162 ins_start_slot = path->slots[0];
4163 ins_nr = 1;
4164 goto next_slot;
e02119d5
CM
4165 }
4166
16e7549f 4167 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4168 ins_start_slot, ins_nr, inode_only,
4169 logged_isize);
16e7549f 4170 if (ret < 0) {
4a500fd1
YZ
4171 err = ret;
4172 goto out_unlock;
a71db86e
RV
4173 }
4174 if (ret) {
16e7549f
JB
4175 ins_nr = 0;
4176 btrfs_release_path(path);
4177 continue;
4a500fd1 4178 }
31ff1cd2
CM
4179 ins_nr = 1;
4180 ins_start_slot = path->slots[0];
4181next_slot:
e02119d5 4182
3a5f1d45
CM
4183 nritems = btrfs_header_nritems(path->nodes[0]);
4184 path->slots[0]++;
4185 if (path->slots[0] < nritems) {
4186 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4187 path->slots[0]);
4188 goto again;
4189 }
31ff1cd2 4190 if (ins_nr) {
16e7549f
JB
4191 ret = copy_items(trans, inode, dst_path, path,
4192 &last_extent, ins_start_slot,
1a4bcf47 4193 ins_nr, inode_only, logged_isize);
16e7549f 4194 if (ret < 0) {
4a500fd1
YZ
4195 err = ret;
4196 goto out_unlock;
4197 }
16e7549f 4198 ret = 0;
31ff1cd2
CM
4199 ins_nr = 0;
4200 }
b3b4aa74 4201 btrfs_release_path(path);
3a5f1d45 4202
3d41d702 4203 if (min_key.offset < (u64)-1) {
e02119d5 4204 min_key.offset++;
3d41d702 4205 } else if (min_key.type < max_key.type) {
e02119d5 4206 min_key.type++;
3d41d702
FDBM
4207 min_key.offset = 0;
4208 } else {
e02119d5 4209 break;
3d41d702 4210 }
e02119d5 4211 }
31ff1cd2 4212 if (ins_nr) {
16e7549f 4213 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4214 ins_start_slot, ins_nr, inode_only,
4215 logged_isize);
16e7549f 4216 if (ret < 0) {
4a500fd1
YZ
4217 err = ret;
4218 goto out_unlock;
4219 }
16e7549f 4220 ret = 0;
31ff1cd2
CM
4221 ins_nr = 0;
4222 }
5dc562c5 4223
a95249b3 4224log_extents:
f3b15ccd
JB
4225 btrfs_release_path(path);
4226 btrfs_release_path(dst_path);
5dc562c5 4227 if (fast_search) {
b38ef71c
FM
4228 /*
4229 * Some ordered extents started by fsync might have completed
4230 * before we collected the ordered extents in logged_list, which
4231 * means they're gone, not in our logged_list nor in the inode's
4232 * ordered tree. We want the application/user space to know an
4233 * error happened while attempting to persist file data so that
4234 * it can take proper action. If such error happened, we leave
4235 * without writing to the log tree and the fsync must report the
4236 * file data write error and not commit the current transaction.
4237 */
4238 err = btrfs_inode_check_errors(inode);
4239 if (err) {
4240 ctx->io_err = err;
4241 goto out_unlock;
4242 }
827463c4 4243 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
8407f553 4244 &logged_list, ctx);
5dc562c5
JB
4245 if (ret) {
4246 err = ret;
4247 goto out_unlock;
4248 }
d006a048 4249 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4250 struct extent_map *em, *n;
4251
49dae1bc
FM
4252 write_lock(&em_tree->lock);
4253 /*
4254 * We can't just remove every em if we're called for a ranged
4255 * fsync - that is, one that doesn't cover the whole possible
4256 * file range (0 to LLONG_MAX). This is because we can have
4257 * em's that fall outside the range we're logging and therefore
4258 * their ordered operations haven't completed yet
4259 * (btrfs_finish_ordered_io() not invoked yet). This means we
4260 * didn't get their respective file extent item in the fs/subvol
4261 * tree yet, and need to let the next fast fsync (one which
4262 * consults the list of modified extent maps) find the em so
4263 * that it logs a matching file extent item and waits for the
4264 * respective ordered operation to complete (if it's still
4265 * running).
4266 *
4267 * Removing every em outside the range we're logging would make
4268 * the next fast fsync not log their matching file extent items,
4269 * therefore making us lose data after a log replay.
4270 */
4271 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4272 list) {
4273 const u64 mod_end = em->mod_start + em->mod_len - 1;
4274
4275 if (em->mod_start >= start && mod_end <= end)
4276 list_del_init(&em->list);
4277 }
4278 write_unlock(&em_tree->lock);
5dc562c5
JB
4279 }
4280
9623f9a3 4281 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4282 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4283 if (ret) {
4284 err = ret;
4285 goto out_unlock;
4286 }
e02119d5 4287 }
49dae1bc 4288
125c4cf9
FM
4289 BTRFS_I(inode)->logged_trans = trans->transid;
4290 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 4291out_unlock:
827463c4
MX
4292 if (unlikely(err))
4293 btrfs_put_logged_extents(&logged_list);
4294 else
4295 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4296 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4297
4298 btrfs_free_path(path);
4299 btrfs_free_path(dst_path);
4a500fd1 4300 return err;
e02119d5
CM
4301}
4302
12fcfd22
CM
4303/*
4304 * follow the dentry parent pointers up the chain and see if any
4305 * of the directories in it require a full commit before they can
4306 * be logged. Returns zero if nothing special needs to be done or 1 if
4307 * a full commit is required.
4308 */
4309static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4310 struct inode *inode,
4311 struct dentry *parent,
4312 struct super_block *sb,
4313 u64 last_committed)
e02119d5 4314{
12fcfd22
CM
4315 int ret = 0;
4316 struct btrfs_root *root;
6a912213 4317 struct dentry *old_parent = NULL;
de2b530b 4318 struct inode *orig_inode = inode;
e02119d5 4319
af4176b4
CM
4320 /*
4321 * for regular files, if its inode is already on disk, we don't
4322 * have to worry about the parents at all. This is because
4323 * we can use the last_unlink_trans field to record renames
4324 * and other fun in this file.
4325 */
4326 if (S_ISREG(inode->i_mode) &&
4327 BTRFS_I(inode)->generation <= last_committed &&
4328 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4329 goto out;
4330
12fcfd22
CM
4331 if (!S_ISDIR(inode->i_mode)) {
4332 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4333 goto out;
4334 inode = parent->d_inode;
4335 }
4336
4337 while (1) {
de2b530b
JB
4338 /*
4339 * If we are logging a directory then we start with our inode,
4340 * not our parents inode, so we need to skipp setting the
4341 * logged_trans so that further down in the log code we don't
4342 * think this inode has already been logged.
4343 */
4344 if (inode != orig_inode)
4345 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4346 smp_mb();
4347
4348 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4349 root = BTRFS_I(inode)->root;
4350
4351 /*
4352 * make sure any commits to the log are forced
4353 * to be full commits
4354 */
995946dd 4355 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4356 ret = 1;
4357 break;
4358 }
4359
4360 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4361 break;
4362
76dda93c 4363 if (IS_ROOT(parent))
12fcfd22
CM
4364 break;
4365
6a912213
JB
4366 parent = dget_parent(parent);
4367 dput(old_parent);
4368 old_parent = parent;
12fcfd22
CM
4369 inode = parent->d_inode;
4370
4371 }
6a912213 4372 dput(old_parent);
12fcfd22 4373out:
e02119d5
CM
4374 return ret;
4375}
4376
4377/*
4378 * helper function around btrfs_log_inode to make sure newly created
4379 * parent directories also end up in the log. A minimal inode and backref
4380 * only logging is done of any parent directories that are older than
4381 * the last committed transaction
4382 */
48a3b636
ES
4383static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4384 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
4385 struct dentry *parent,
4386 const loff_t start,
4387 const loff_t end,
4388 int exists_only,
8b050d35 4389 struct btrfs_log_ctx *ctx)
e02119d5 4390{
12fcfd22 4391 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4392 struct super_block *sb;
6a912213 4393 struct dentry *old_parent = NULL;
12fcfd22
CM
4394 int ret = 0;
4395 u64 last_committed = root->fs_info->last_trans_committed;
d36808e0
FM
4396 const struct dentry * const first_parent = parent;
4397 const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4398 last_committed);
12fcfd22
CM
4399
4400 sb = inode->i_sb;
4401
3a5e1404
SW
4402 if (btrfs_test_opt(root, NOTREELOG)) {
4403 ret = 1;
4404 goto end_no_trans;
4405 }
4406
995946dd
MX
4407 /*
4408 * The prev transaction commit doesn't complete, we need do
4409 * full commit by ourselves.
4410 */
12fcfd22
CM
4411 if (root->fs_info->last_trans_log_full_commit >
4412 root->fs_info->last_trans_committed) {
4413 ret = 1;
4414 goto end_no_trans;
4415 }
4416
76dda93c
YZ
4417 if (root != BTRFS_I(inode)->root ||
4418 btrfs_root_refs(&root->root_item) == 0) {
4419 ret = 1;
4420 goto end_no_trans;
4421 }
4422
12fcfd22
CM
4423 ret = check_parent_dirs_for_sync(trans, inode, parent,
4424 sb, last_committed);
4425 if (ret)
4426 goto end_no_trans;
e02119d5 4427
22ee6985 4428 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4429 ret = BTRFS_NO_LOG_SYNC;
4430 goto end_no_trans;
4431 }
4432
8b050d35 4433 ret = start_log_trans(trans, root, ctx);
4a500fd1 4434 if (ret)
e87ac136 4435 goto end_no_trans;
e02119d5 4436
8407f553 4437 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
4438 if (ret)
4439 goto end_trans;
12fcfd22 4440
af4176b4
CM
4441 /*
4442 * for regular files, if its inode is already on disk, we don't
4443 * have to worry about the parents at all. This is because
4444 * we can use the last_unlink_trans field to record renames
4445 * and other fun in this file.
4446 */
4447 if (S_ISREG(inode->i_mode) &&
4448 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4449 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4450 ret = 0;
4451 goto end_trans;
4452 }
af4176b4 4453
12fcfd22
CM
4454 while (1) {
4455 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4456 break;
4457
12fcfd22 4458 inode = parent->d_inode;
76dda93c
YZ
4459 if (root != BTRFS_I(inode)->root)
4460 break;
4461
d36808e0
FM
4462 /*
4463 * On unlink we must make sure our immediate parent directory
4464 * inode is fully logged. This is to prevent leaving dangling
4465 * directory index entries and a wrong directory inode's i_size.
4466 * Not doing so can result in a directory being impossible to
4467 * delete after log replay (rmdir will always fail with error
4468 * -ENOTEMPTY).
4469 */
4470 if (did_unlink && parent == first_parent)
4471 inode_only = LOG_INODE_ALL;
4472 else
4473 inode_only = LOG_INODE_EXISTS;
4474
12fcfd22 4475 if (BTRFS_I(inode)->generation >
d36808e0
FM
4476 root->fs_info->last_trans_committed ||
4477 inode_only == LOG_INODE_ALL) {
49dae1bc 4478 ret = btrfs_log_inode(trans, root, inode, inode_only,
8407f553 4479 0, LLONG_MAX, ctx);
4a500fd1
YZ
4480 if (ret)
4481 goto end_trans;
12fcfd22 4482 }
76dda93c 4483 if (IS_ROOT(parent))
e02119d5 4484 break;
12fcfd22 4485
6a912213
JB
4486 parent = dget_parent(parent);
4487 dput(old_parent);
4488 old_parent = parent;
e02119d5 4489 }
12fcfd22 4490 ret = 0;
4a500fd1 4491end_trans:
6a912213 4492 dput(old_parent);
4a500fd1 4493 if (ret < 0) {
995946dd 4494 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
4495 ret = 1;
4496 }
8b050d35
MX
4497
4498 if (ret)
4499 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4500 btrfs_end_log_trans(root);
4501end_no_trans:
4502 return ret;
e02119d5
CM
4503}
4504
4505/*
4506 * it is not safe to log dentry if the chunk root has added new
4507 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4508 * If this returns 1, you must commit the transaction to safely get your
4509 * data on disk.
4510 */
4511int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 4512 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
4513 const loff_t start,
4514 const loff_t end,
8b050d35 4515 struct btrfs_log_ctx *ctx)
e02119d5 4516{
6a912213
JB
4517 struct dentry *parent = dget_parent(dentry);
4518 int ret;
4519
8b050d35 4520 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
49dae1bc 4521 start, end, 0, ctx);
6a912213
JB
4522 dput(parent);
4523
4524 return ret;
e02119d5
CM
4525}
4526
4527/*
4528 * should be called during mount to recover any replay any log trees
4529 * from the FS
4530 */
4531int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4532{
4533 int ret;
4534 struct btrfs_path *path;
4535 struct btrfs_trans_handle *trans;
4536 struct btrfs_key key;
4537 struct btrfs_key found_key;
4538 struct btrfs_key tmp_key;
4539 struct btrfs_root *log;
4540 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4541 struct walk_control wc = {
4542 .process_func = process_one_buffer,
4543 .stage = 0,
4544 };
4545
e02119d5 4546 path = btrfs_alloc_path();
db5b493a
TI
4547 if (!path)
4548 return -ENOMEM;
4549
4550 fs_info->log_root_recovering = 1;
e02119d5 4551
4a500fd1 4552 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4553 if (IS_ERR(trans)) {
4554 ret = PTR_ERR(trans);
4555 goto error;
4556 }
e02119d5
CM
4557
4558 wc.trans = trans;
4559 wc.pin = 1;
4560
db5b493a 4561 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4562 if (ret) {
4563 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4564 "recovering log root tree.");
4565 goto error;
4566 }
e02119d5
CM
4567
4568again:
4569 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4570 key.offset = (u64)-1;
962a298f 4571 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 4572
d397712b 4573 while (1) {
e02119d5 4574 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4575
4576 if (ret < 0) {
4577 btrfs_error(fs_info, ret,
4578 "Couldn't find tree log root.");
4579 goto error;
4580 }
e02119d5
CM
4581 if (ret > 0) {
4582 if (path->slots[0] == 0)
4583 break;
4584 path->slots[0]--;
4585 }
4586 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4587 path->slots[0]);
b3b4aa74 4588 btrfs_release_path(path);
e02119d5
CM
4589 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4590 break;
4591
cb517eab 4592 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4593 if (IS_ERR(log)) {
4594 ret = PTR_ERR(log);
4595 btrfs_error(fs_info, ret,
4596 "Couldn't read tree log root.");
4597 goto error;
4598 }
e02119d5
CM
4599
4600 tmp_key.objectid = found_key.offset;
4601 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4602 tmp_key.offset = (u64)-1;
4603
4604 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4605 if (IS_ERR(wc.replay_dest)) {
4606 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4607 free_extent_buffer(log->node);
4608 free_extent_buffer(log->commit_root);
4609 kfree(log);
79787eaa
JM
4610 btrfs_error(fs_info, ret, "Couldn't read target root "
4611 "for tree log recovery.");
4612 goto error;
4613 }
e02119d5 4614
07d400a6 4615 wc.replay_dest->log_root = log;
5d4f98a2 4616 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4617 ret = walk_log_tree(trans, log, &wc);
e02119d5 4618
b50c6e25 4619 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4620 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4621 path);
e02119d5
CM
4622 }
4623
4624 key.offset = found_key.offset - 1;
07d400a6 4625 wc.replay_dest->log_root = NULL;
e02119d5 4626 free_extent_buffer(log->node);
b263c2c8 4627 free_extent_buffer(log->commit_root);
e02119d5
CM
4628 kfree(log);
4629
b50c6e25
JB
4630 if (ret)
4631 goto error;
4632
e02119d5
CM
4633 if (found_key.offset == 0)
4634 break;
4635 }
b3b4aa74 4636 btrfs_release_path(path);
e02119d5
CM
4637
4638 /* step one is to pin it all, step two is to replay just inodes */
4639 if (wc.pin) {
4640 wc.pin = 0;
4641 wc.process_func = replay_one_buffer;
4642 wc.stage = LOG_WALK_REPLAY_INODES;
4643 goto again;
4644 }
4645 /* step three is to replay everything */
4646 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4647 wc.stage++;
4648 goto again;
4649 }
4650
4651 btrfs_free_path(path);
4652
abefa55a
JB
4653 /* step 4: commit the transaction, which also unpins the blocks */
4654 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4655 if (ret)
4656 return ret;
4657
e02119d5
CM
4658 free_extent_buffer(log_root_tree->node);
4659 log_root_tree->log_root = NULL;
4660 fs_info->log_root_recovering = 0;
e02119d5 4661 kfree(log_root_tree);
79787eaa 4662
abefa55a 4663 return 0;
79787eaa 4664error:
b50c6e25
JB
4665 if (wc.trans)
4666 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4667 btrfs_free_path(path);
4668 return ret;
e02119d5 4669}
12fcfd22
CM
4670
4671/*
4672 * there are some corner cases where we want to force a full
4673 * commit instead of allowing a directory to be logged.
4674 *
4675 * They revolve around files there were unlinked from the directory, and
4676 * this function updates the parent directory so that a full commit is
4677 * properly done if it is fsync'd later after the unlinks are done.
4678 */
4679void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4680 struct inode *dir, struct inode *inode,
4681 int for_rename)
4682{
af4176b4
CM
4683 /*
4684 * when we're logging a file, if it hasn't been renamed
4685 * or unlinked, and its inode is fully committed on disk,
4686 * we don't have to worry about walking up the directory chain
4687 * to log its parents.
4688 *
4689 * So, we use the last_unlink_trans field to put this transid
4690 * into the file. When the file is logged we check it and
4691 * don't log the parents if the file is fully on disk.
4692 */
4693 if (S_ISREG(inode->i_mode))
4694 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4695
12fcfd22
CM
4696 /*
4697 * if this directory was already logged any new
4698 * names for this file/dir will get recorded
4699 */
4700 smp_mb();
4701 if (BTRFS_I(dir)->logged_trans == trans->transid)
4702 return;
4703
4704 /*
4705 * if the inode we're about to unlink was logged,
4706 * the log will be properly updated for any new names
4707 */
4708 if (BTRFS_I(inode)->logged_trans == trans->transid)
4709 return;
4710
4711 /*
4712 * when renaming files across directories, if the directory
4713 * there we're unlinking from gets fsync'd later on, there's
4714 * no way to find the destination directory later and fsync it
4715 * properly. So, we have to be conservative and force commits
4716 * so the new name gets discovered.
4717 */
4718 if (for_rename)
4719 goto record;
4720
4721 /* we can safely do the unlink without any special recording */
4722 return;
4723
4724record:
4725 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4726}
4727
4728/*
4729 * Call this after adding a new name for a file and it will properly
4730 * update the log to reflect the new name.
4731 *
4732 * It will return zero if all goes well, and it will return 1 if a
4733 * full transaction commit is required.
4734 */
4735int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4736 struct inode *inode, struct inode *old_dir,
4737 struct dentry *parent)
4738{
4739 struct btrfs_root * root = BTRFS_I(inode)->root;
4740
af4176b4
CM
4741 /*
4742 * this will force the logging code to walk the dentry chain
4743 * up for the file
4744 */
4745 if (S_ISREG(inode->i_mode))
4746 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4747
12fcfd22
CM
4748 /*
4749 * if this inode hasn't been logged and directory we're renaming it
4750 * from hasn't been logged, we don't need to log it
4751 */
4752 if (BTRFS_I(inode)->logged_trans <=
4753 root->fs_info->last_trans_committed &&
4754 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4755 root->fs_info->last_trans_committed))
4756 return 0;
4757
49dae1bc
FM
4758 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4759 LLONG_MAX, 1, NULL);
12fcfd22
CM
4760}
4761