Btrfs: fix unexpected result when dio reading corrupted blocks
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
ebb8765b 29#include "compression.h"
df2c95f3 30#include "qgroup.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
781feef7 40#define LOG_OTHER_INODE 2
e02119d5 41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
e02119d5 98
12fcfd22 99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 100 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
101 int inode_only,
102 const loff_t start,
8407f553
FM
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
e02119d5
CM
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
e02119d5
CM
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
e02119d5 145{
0b246afa 146 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 147 int ret = 0;
7237f183
YZ
148
149 mutex_lock(&root->log_mutex);
34eb2a52 150
7237f183 151 if (root->log_root) {
0b246afa 152 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
153 ret = -EAGAIN;
154 goto out;
155 }
34eb2a52 156
ff782e0a 157 if (!root->log_start_pid) {
27cdeb70 158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 159 root->log_start_pid = current->pid;
ff782e0a 160 } else if (root->log_start_pid != current->pid) {
27cdeb70 161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 162 }
34eb2a52 163 } else {
0b246afa
JM
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
168 if (ret)
169 goto out;
ff782e0a 170
e02119d5 171 ret = btrfs_add_log_tree(trans, root);
4a500fd1 172 if (ret)
e87ac136 173 goto out;
34eb2a52
Z
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
e02119d5 177 }
34eb2a52 178
2ecb7923 179 atomic_inc(&root->log_batch);
7237f183 180 atomic_inc(&root->log_writers);
8b050d35 181 if (ctx) {
34eb2a52 182 int index = root->log_transid % 2;
8b050d35 183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 184 ctx->log_transid = root->log_transid;
8b050d35 185 }
34eb2a52 186
e87ac136 187out:
7237f183 188 mutex_unlock(&root->log_mutex);
e87ac136 189 return ret;
e02119d5
CM
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
7237f183 205 mutex_lock(&root->log_mutex);
e02119d5
CM
206 if (root->log_root) {
207 ret = 0;
7237f183 208 atomic_inc(&root->log_writers);
e02119d5 209 }
7237f183 210 mutex_unlock(&root->log_mutex);
e02119d5
CM
211 return ret;
212}
213
12fcfd22
CM
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
e02119d5
CM
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
143bede5 233void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 234{
7237f183 235 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
7237f183
YZ
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
e02119d5
CM
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
0b246afa 297 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
298 int ret = 0;
299
8c2a1a30
JB
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
0b246afa 304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
04018de5 310 if (wc->pin)
2ff7e61e
JM
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
e02119d5 313
b50c6e25 314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 315 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 316 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
b50c6e25 322 return ret;
e02119d5
CM
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
2ff7e61e 345 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
4bc4bee4 353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
363 if (ret < 0)
364 return ret;
365
e02119d5
CM
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
b3b4aa74 375 btrfs_release_path(path);
e02119d5
CM
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 380 if (!dst_copy || !src_copy) {
b3b4aa74 381 btrfs_release_path(path);
2a29edc6 382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
e02119d5
CM
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
b3b4aa74 403 btrfs_release_path(path);
e02119d5
CM
404 return 0;
405 }
406
4bc4bee4
JB
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
d555438b 414 u32 mode;
4bc4bee4
JB
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
d555438b 434 u32 mode;
4bc4bee4
JB
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
451 }
452insert:
b3b4aa74 453 btrfs_release_path(path);
e02119d5 454 /* try to insert the key into the destination tree */
df8d116f 455 path->skip_release_on_error = 1;
e02119d5
CM
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
df8d116f 458 path->skip_release_on_error = 0;
e02119d5
CM
459
460 /* make sure any existing item is the correct size */
df8d116f 461 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
143bede5 465 if (found_size > item_size)
2ff7e61e 466 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 467 else if (found_size < item_size)
2ff7e61e 468 btrfs_extend_item(fs_info, path,
143bede5 469 item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
1a4bcf47
FM
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 494 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 495
2f2ff0ee
FM
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
1a4bcf47 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
1a4bcf47 506 struct btrfs_map_token token;
1a4bcf47
FM
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
e02119d5 512 goto no_copy;
1a4bcf47 513 }
e02119d5
CM
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 544 btrfs_release_path(path);
e02119d5
CM
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
5d4f98a2 555 struct btrfs_key key;
e02119d5 556 struct inode *inode;
e02119d5 557
5d4f98a2
YZ
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
73f73415 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
e02119d5
CM
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
0b246afa 589 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 590 int found_type;
e02119d5 591 u64 extent_end;
e02119d5 592 u64 start = key->offset;
4bc4bee4 593 u64 nbytes = 0;
e02119d5
CM
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
d899e052 602 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 614 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 616 extent_end = ALIGN(start + size,
0b246afa 617 fs_info->sectorsize);
e02119d5
CM
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
f85b7379
DS
634 ret = btrfs_lookup_file_extent(trans, root, path,
635 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 636
d899e052
YZ
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 659 btrfs_release_path(path);
e02119d5
CM
660 goto out;
661 }
662 }
b3b4aa74 663 btrfs_release_path(path);
e02119d5
CM
664
665 /* drop any overlapping extents */
2671485d 666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
667 if (ret)
668 goto out;
e02119d5 669
07d400a6
YZ
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 672 u64 offset;
07d400a6
YZ
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
3168021c
FM
676 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
677 btrfs_fs_incompat(fs_info, NO_HOLES))
678 goto update_inode;
679
07d400a6
YZ
680 ret = btrfs_insert_empty_item(trans, root, path, key,
681 sizeof(*item));
3650860b
JB
682 if (ret)
683 goto out;
07d400a6
YZ
684 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
685 path->slots[0]);
686 copy_extent_buffer(path->nodes[0], eb, dest_offset,
687 (unsigned long)item, sizeof(*item));
688
689 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
690 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
691 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 692 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 693
df2c95f3
QW
694 /*
695 * Manually record dirty extent, as here we did a shallow
696 * file extent item copy and skip normal backref update,
697 * but modifying extent tree all by ourselves.
698 * So need to manually record dirty extent for qgroup,
699 * as the owner of the file extent changed from log tree
700 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
701 */
0b246afa 702 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
703 btrfs_file_extent_disk_bytenr(eb, item),
704 btrfs_file_extent_disk_num_bytes(eb, item),
705 GFP_NOFS);
706 if (ret < 0)
707 goto out;
708
07d400a6
YZ
709 if (ins.objectid > 0) {
710 u64 csum_start;
711 u64 csum_end;
712 LIST_HEAD(ordered_sums);
713 /*
714 * is this extent already allocated in the extent
715 * allocation tree? If so, just add a reference
716 */
2ff7e61e 717 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
718 ins.offset);
719 if (ret == 0) {
2ff7e61e 720 ret = btrfs_inc_extent_ref(trans, fs_info,
07d400a6 721 ins.objectid, ins.offset,
5d4f98a2 722 0, root->root_key.objectid,
b06c4bf5 723 key->objectid, offset);
b50c6e25
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 } else {
727 /*
728 * insert the extent pointer in the extent
729 * allocation tree
730 */
5d4f98a2 731 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
732 fs_info,
733 root->root_key.objectid,
5d4f98a2 734 key->objectid, offset, &ins);
b50c6e25
JB
735 if (ret)
736 goto out;
07d400a6 737 }
b3b4aa74 738 btrfs_release_path(path);
07d400a6
YZ
739
740 if (btrfs_file_extent_compression(eb, item)) {
741 csum_start = ins.objectid;
742 csum_end = csum_start + ins.offset;
743 } else {
744 csum_start = ins.objectid +
745 btrfs_file_extent_offset(eb, item);
746 csum_end = csum_start +
747 btrfs_file_extent_num_bytes(eb, item);
748 }
749
750 ret = btrfs_lookup_csums_range(root->log_root,
751 csum_start, csum_end - 1,
a2de733c 752 &ordered_sums, 0);
3650860b
JB
753 if (ret)
754 goto out;
b84b8390
FM
755 /*
756 * Now delete all existing cums in the csum root that
757 * cover our range. We do this because we can have an
758 * extent that is completely referenced by one file
759 * extent item and partially referenced by another
760 * file extent item (like after using the clone or
761 * extent_same ioctls). In this case if we end up doing
762 * the replay of the one that partially references the
763 * extent first, and we do not do the csum deletion
764 * below, we can get 2 csum items in the csum tree that
765 * overlap each other. For example, imagine our log has
766 * the two following file extent items:
767 *
768 * key (257 EXTENT_DATA 409600)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 20480 nr 20480 ram 102400
771 *
772 * key (257 EXTENT_DATA 819200)
773 * extent data disk byte 12845056 nr 102400
774 * extent data offset 0 nr 102400 ram 102400
775 *
776 * Where the second one fully references the 100K extent
777 * that starts at disk byte 12845056, and the log tree
778 * has a single csum item that covers the entire range
779 * of the extent:
780 *
781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 *
783 * After the first file extent item is replayed, the
784 * csum tree gets the following csum item:
785 *
786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 *
788 * Which covers the 20K sub-range starting at offset 20K
789 * of our extent. Now when we replay the second file
790 * extent item, if we do not delete existing csum items
791 * that cover any of its blocks, we end up getting two
792 * csum items in our csum tree that overlap each other:
793 *
794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 *
797 * Which is a problem, because after this anyone trying
798 * to lookup up for the checksum of any block of our
799 * extent starting at an offset of 40K or higher, will
800 * end up looking at the second csum item only, which
801 * does not contain the checksum for any block starting
802 * at offset 40K or higher of our extent.
803 */
07d400a6
YZ
804 while (!list_empty(&ordered_sums)) {
805 struct btrfs_ordered_sum *sums;
806 sums = list_entry(ordered_sums.next,
807 struct btrfs_ordered_sum,
808 list);
b84b8390 809 if (!ret)
0b246afa 810 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
811 sums->bytenr,
812 sums->len);
3650860b
JB
813 if (!ret)
814 ret = btrfs_csum_file_blocks(trans,
0b246afa 815 fs_info->csum_root, sums);
07d400a6
YZ
816 list_del(&sums->list);
817 kfree(sums);
818 }
3650860b
JB
819 if (ret)
820 goto out;
07d400a6 821 } else {
b3b4aa74 822 btrfs_release_path(path);
07d400a6
YZ
823 }
824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 /* inline extents are easy, we just overwrite them */
826 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
827 if (ret)
828 goto out;
07d400a6 829 }
e02119d5 830
4bc4bee4 831 inode_add_bytes(inode, nbytes);
3168021c 832update_inode:
b9959295 833 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
834out:
835 if (inode)
836 iput(inode);
837 return ret;
838}
839
840/*
841 * when cleaning up conflicts between the directory names in the
842 * subvolume, directory names in the log and directory names in the
843 * inode back references, we may have to unlink inodes from directories.
844 *
845 * This is a helper function to do the unlink of a specific directory
846 * item
847 */
848static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
207e7d92 851 struct btrfs_inode *dir,
e02119d5
CM
852 struct btrfs_dir_item *di)
853{
2ff7e61e 854 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
855 struct inode *inode;
856 char *name;
857 int name_len;
858 struct extent_buffer *leaf;
859 struct btrfs_key location;
860 int ret;
861
862 leaf = path->nodes[0];
863
864 btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 name_len = btrfs_dir_name_len(leaf, di);
866 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 867 if (!name)
868 return -ENOMEM;
869
e02119d5 870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 871 btrfs_release_path(path);
e02119d5
CM
872
873 inode = read_one_inode(root, location.objectid);
c00e9493 874 if (!inode) {
3650860b
JB
875 ret = -EIO;
876 goto out;
c00e9493 877 }
e02119d5 878
ec051c0f 879 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
880 if (ret)
881 goto out;
12fcfd22 882
207e7d92
NB
883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 name_len);
3650860b
JB
885 if (ret)
886 goto out;
ada9af21 887 else
2ff7e61e 888 ret = btrfs_run_delayed_items(trans, fs_info);
3650860b 889out:
e02119d5 890 kfree(name);
e02119d5
CM
891 iput(inode);
892 return ret;
893}
894
895/*
896 * helper function to see if a given name and sequence number found
897 * in an inode back reference are already in a directory and correctly
898 * point to this inode
899 */
900static noinline int inode_in_dir(struct btrfs_root *root,
901 struct btrfs_path *path,
902 u64 dirid, u64 objectid, u64 index,
903 const char *name, int name_len)
904{
905 struct btrfs_dir_item *di;
906 struct btrfs_key location;
907 int match = 0;
908
909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 index, name, name_len, 0);
911 if (di && !IS_ERR(di)) {
912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 if (location.objectid != objectid)
914 goto out;
915 } else
916 goto out;
b3b4aa74 917 btrfs_release_path(path);
e02119d5
CM
918
919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 if (di && !IS_ERR(di)) {
921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 if (location.objectid != objectid)
923 goto out;
924 } else
925 goto out;
926 match = 1;
927out:
b3b4aa74 928 btrfs_release_path(path);
e02119d5
CM
929 return match;
930}
931
932/*
933 * helper function to check a log tree for a named back reference in
934 * an inode. This is used to decide if a back reference that is
935 * found in the subvolume conflicts with what we find in the log.
936 *
937 * inode backreferences may have multiple refs in a single item,
938 * during replay we process one reference at a time, and we don't
939 * want to delete valid links to a file from the subvolume if that
940 * link is also in the log.
941 */
942static noinline int backref_in_log(struct btrfs_root *log,
943 struct btrfs_key *key,
f186373f 944 u64 ref_objectid,
df8d116f 945 const char *name, int namelen)
e02119d5
CM
946{
947 struct btrfs_path *path;
948 struct btrfs_inode_ref *ref;
949 unsigned long ptr;
950 unsigned long ptr_end;
951 unsigned long name_ptr;
952 int found_name_len;
953 int item_size;
954 int ret;
955 int match = 0;
956
957 path = btrfs_alloc_path();
2a29edc6 958 if (!path)
959 return -ENOMEM;
960
e02119d5
CM
961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 if (ret != 0)
963 goto out;
964
e02119d5 965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
966
967 if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
969 name, namelen, NULL))
970 match = 1;
971
972 goto out;
973 }
974
975 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
976 ptr_end = ptr + item_size;
977 while (ptr < ptr_end) {
978 ref = (struct btrfs_inode_ref *)ptr;
979 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
980 if (found_name_len == namelen) {
981 name_ptr = (unsigned long)(ref + 1);
982 ret = memcmp_extent_buffer(path->nodes[0], name,
983 name_ptr, namelen);
984 if (ret == 0) {
985 match = 1;
986 goto out;
987 }
988 }
989 ptr = (unsigned long)(ref + 1) + found_name_len;
990 }
991out:
992 btrfs_free_path(path);
993 return match;
994}
995
5a1d7843 996static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 997 struct btrfs_root *root,
e02119d5 998 struct btrfs_path *path,
5a1d7843 999 struct btrfs_root *log_root,
94c91a1f
NB
1000 struct btrfs_inode *dir,
1001 struct btrfs_inode *inode,
f186373f
MF
1002 u64 inode_objectid, u64 parent_objectid,
1003 u64 ref_index, char *name, int namelen,
1004 int *search_done)
e02119d5 1005{
2ff7e61e 1006 struct btrfs_fs_info *fs_info = root->fs_info;
34f3e4f2 1007 int ret;
f186373f
MF
1008 char *victim_name;
1009 int victim_name_len;
1010 struct extent_buffer *leaf;
5a1d7843 1011 struct btrfs_dir_item *di;
f186373f
MF
1012 struct btrfs_key search_key;
1013 struct btrfs_inode_extref *extref;
c622ae60 1014
f186373f
MF
1015again:
1016 /* Search old style refs */
1017 search_key.objectid = inode_objectid;
1018 search_key.type = BTRFS_INODE_REF_KEY;
1019 search_key.offset = parent_objectid;
1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1021 if (ret == 0) {
e02119d5
CM
1022 struct btrfs_inode_ref *victim_ref;
1023 unsigned long ptr;
1024 unsigned long ptr_end;
f186373f
MF
1025
1026 leaf = path->nodes[0];
e02119d5
CM
1027
1028 /* are we trying to overwrite a back ref for the root directory
1029 * if so, just jump out, we're done
1030 */
f186373f 1031 if (search_key.objectid == search_key.offset)
5a1d7843 1032 return 1;
e02119d5
CM
1033
1034 /* check all the names in this back reference to see
1035 * if they are in the log. if so, we allow them to stay
1036 * otherwise they must be unlinked as a conflict
1037 */
1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1040 while (ptr < ptr_end) {
e02119d5
CM
1041 victim_ref = (struct btrfs_inode_ref *)ptr;
1042 victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 victim_ref);
1044 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1045 if (!victim_name)
1046 return -ENOMEM;
e02119d5
CM
1047
1048 read_extent_buffer(leaf, victim_name,
1049 (unsigned long)(victim_ref + 1),
1050 victim_name_len);
1051
f186373f
MF
1052 if (!backref_in_log(log_root, &search_key,
1053 parent_objectid,
1054 victim_name,
e02119d5 1055 victim_name_len)) {
94c91a1f 1056 inc_nlink(&inode->vfs_inode);
b3b4aa74 1057 btrfs_release_path(path);
12fcfd22 1058
94c91a1f 1059 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1060 victim_name, victim_name_len);
f186373f 1061 kfree(victim_name);
3650860b
JB
1062 if (ret)
1063 return ret;
2ff7e61e 1064 ret = btrfs_run_delayed_items(trans, fs_info);
ada9af21
FDBM
1065 if (ret)
1066 return ret;
f186373f
MF
1067 *search_done = 1;
1068 goto again;
e02119d5
CM
1069 }
1070 kfree(victim_name);
f186373f 1071
e02119d5
CM
1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 }
e02119d5 1074
c622ae60 1075 /*
1076 * NOTE: we have searched root tree and checked the
bb7ab3b9 1077 * corresponding ref, it does not need to check again.
c622ae60 1078 */
5a1d7843 1079 *search_done = 1;
e02119d5 1080 }
b3b4aa74 1081 btrfs_release_path(path);
e02119d5 1082
f186373f
MF
1083 /* Same search but for extended refs */
1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 inode_objectid, parent_objectid, 0,
1086 0);
1087 if (!IS_ERR_OR_NULL(extref)) {
1088 u32 item_size;
1089 u32 cur_offset = 0;
1090 unsigned long base;
1091 struct inode *victim_parent;
1092
1093 leaf = path->nodes[0];
1094
1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097
1098 while (cur_offset < item_size) {
dd9ef135 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1100
1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102
1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 goto next;
1105
1106 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1107 if (!victim_name)
1108 return -ENOMEM;
f186373f
MF
1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 victim_name_len);
1111
1112 search_key.objectid = inode_objectid;
1113 search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 search_key.offset = btrfs_extref_hash(parent_objectid,
1115 victim_name,
1116 victim_name_len);
1117 ret = 0;
1118 if (!backref_in_log(log_root, &search_key,
1119 parent_objectid, victim_name,
1120 victim_name_len)) {
1121 ret = -ENOENT;
1122 victim_parent = read_one_inode(root,
94c91a1f 1123 parent_objectid);
f186373f 1124 if (victim_parent) {
94c91a1f 1125 inc_nlink(&inode->vfs_inode);
f186373f
MF
1126 btrfs_release_path(path);
1127
1128 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1129 BTRFS_I(victim_parent),
94c91a1f 1130 inode,
4ec5934e
NB
1131 victim_name,
1132 victim_name_len);
ada9af21
FDBM
1133 if (!ret)
1134 ret = btrfs_run_delayed_items(
2ff7e61e
JM
1135 trans,
1136 fs_info);
f186373f 1137 }
f186373f
MF
1138 iput(victim_parent);
1139 kfree(victim_name);
3650860b
JB
1140 if (ret)
1141 return ret;
f186373f
MF
1142 *search_done = 1;
1143 goto again;
1144 }
1145 kfree(victim_name);
f186373f
MF
1146next:
1147 cur_offset += victim_name_len + sizeof(*extref);
1148 }
1149 *search_done = 1;
1150 }
1151 btrfs_release_path(path);
1152
34f3e4f2 1153 /* look for a conflicting sequence number */
94c91a1f 1154 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1155 ref_index, name, namelen, 0);
34f3e4f2 1156 if (di && !IS_ERR(di)) {
94c91a1f 1157 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1158 if (ret)
1159 return ret;
34f3e4f2 1160 }
1161 btrfs_release_path(path);
1162
1163 /* look for a conflicing name */
94c91a1f 1164 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1165 name, namelen, 0);
1166 if (di && !IS_ERR(di)) {
94c91a1f 1167 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1168 if (ret)
1169 return ret;
34f3e4f2 1170 }
1171 btrfs_release_path(path);
1172
5a1d7843
JS
1173 return 0;
1174}
e02119d5 1175
26a836ce
SY
1176static int extref_get_fields(struct extent_buffer *eb, int slot,
1177 unsigned long ref_ptr, u32 *namelen, char **name,
1178 u64 *index, u64 *parent_objectid)
f186373f
MF
1179{
1180 struct btrfs_inode_extref *extref;
1181
1182 extref = (struct btrfs_inode_extref *)ref_ptr;
1183
1184 *namelen = btrfs_inode_extref_name_len(eb, extref);
26a836ce
SY
1185 if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)&extref->name,
1186 *namelen))
1187 return -EIO;
1188
f186373f
MF
1189 *name = kmalloc(*namelen, GFP_NOFS);
1190 if (*name == NULL)
1191 return -ENOMEM;
1192
1193 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1194 *namelen);
1195
1196 *index = btrfs_inode_extref_index(eb, extref);
1197 if (parent_objectid)
1198 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1199
1200 return 0;
1201}
1202
26a836ce
SY
1203static int ref_get_fields(struct extent_buffer *eb, int slot,
1204 unsigned long ref_ptr, u32 *namelen, char **name,
1205 u64 *index)
f186373f
MF
1206{
1207 struct btrfs_inode_ref *ref;
1208
1209 ref = (struct btrfs_inode_ref *)ref_ptr;
1210
1211 *namelen = btrfs_inode_ref_name_len(eb, ref);
26a836ce
SY
1212 if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)(ref + 1),
1213 *namelen))
1214 return -EIO;
1215
f186373f
MF
1216 *name = kmalloc(*namelen, GFP_NOFS);
1217 if (*name == NULL)
1218 return -ENOMEM;
1219
1220 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1221
1222 *index = btrfs_inode_ref_index(eb, ref);
1223
1224 return 0;
1225}
1226
5a1d7843
JS
1227/*
1228 * replay one inode back reference item found in the log tree.
1229 * eb, slot and key refer to the buffer and key found in the log tree.
1230 * root is the destination we are replaying into, and path is for temp
1231 * use by this function. (it should be released on return).
1232 */
1233static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1234 struct btrfs_root *root,
1235 struct btrfs_root *log,
1236 struct btrfs_path *path,
1237 struct extent_buffer *eb, int slot,
1238 struct btrfs_key *key)
1239{
03b2f08b
GB
1240 struct inode *dir = NULL;
1241 struct inode *inode = NULL;
5a1d7843
JS
1242 unsigned long ref_ptr;
1243 unsigned long ref_end;
03b2f08b 1244 char *name = NULL;
5a1d7843
JS
1245 int namelen;
1246 int ret;
1247 int search_done = 0;
f186373f
MF
1248 int log_ref_ver = 0;
1249 u64 parent_objectid;
1250 u64 inode_objectid;
f46dbe3d 1251 u64 ref_index = 0;
f186373f
MF
1252 int ref_struct_size;
1253
1254 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1255 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 struct btrfs_inode_extref *r;
1259
1260 ref_struct_size = sizeof(struct btrfs_inode_extref);
1261 log_ref_ver = 1;
1262 r = (struct btrfs_inode_extref *)ref_ptr;
1263 parent_objectid = btrfs_inode_extref_parent(eb, r);
1264 } else {
1265 ref_struct_size = sizeof(struct btrfs_inode_ref);
1266 parent_objectid = key->offset;
1267 }
1268 inode_objectid = key->objectid;
e02119d5 1269
5a1d7843
JS
1270 /*
1271 * it is possible that we didn't log all the parent directories
1272 * for a given inode. If we don't find the dir, just don't
1273 * copy the back ref in. The link count fixup code will take
1274 * care of the rest
1275 */
f186373f 1276 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1277 if (!dir) {
1278 ret = -ENOENT;
1279 goto out;
1280 }
5a1d7843 1281
f186373f 1282 inode = read_one_inode(root, inode_objectid);
5a1d7843 1283 if (!inode) {
03b2f08b
GB
1284 ret = -EIO;
1285 goto out;
5a1d7843
JS
1286 }
1287
5a1d7843 1288 while (ref_ptr < ref_end) {
f186373f 1289 if (log_ref_ver) {
26a836ce
SY
1290 ret = extref_get_fields(eb, slot, ref_ptr, &namelen,
1291 &name, &ref_index, &parent_objectid);
f186373f
MF
1292 /*
1293 * parent object can change from one array
1294 * item to another.
1295 */
1296 if (!dir)
1297 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1298 if (!dir) {
1299 ret = -ENOENT;
1300 goto out;
1301 }
f186373f 1302 } else {
26a836ce
SY
1303 ret = ref_get_fields(eb, slot, ref_ptr, &namelen,
1304 &name, &ref_index);
f186373f
MF
1305 }
1306 if (ret)
03b2f08b 1307 goto out;
5a1d7843
JS
1308
1309 /* if we already have a perfect match, we're done */
f85b7379
DS
1310 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1311 btrfs_ino(BTRFS_I(inode)), ref_index,
1312 name, namelen)) {
5a1d7843
JS
1313 /*
1314 * look for a conflicting back reference in the
1315 * metadata. if we find one we have to unlink that name
1316 * of the file before we add our new link. Later on, we
1317 * overwrite any existing back reference, and we don't
1318 * want to create dangling pointers in the directory.
1319 */
1320
1321 if (!search_done) {
1322 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1323 BTRFS_I(dir),
d75eefdf 1324 BTRFS_I(inode),
f186373f
MF
1325 inode_objectid,
1326 parent_objectid,
1327 ref_index, name, namelen,
5a1d7843 1328 &search_done);
03b2f08b
GB
1329 if (ret) {
1330 if (ret == 1)
1331 ret = 0;
3650860b
JB
1332 goto out;
1333 }
5a1d7843
JS
1334 }
1335
1336 /* insert our name */
db0a669f
NB
1337 ret = btrfs_add_link(trans, BTRFS_I(dir),
1338 BTRFS_I(inode),
1339 name, namelen, 0, ref_index);
3650860b
JB
1340 if (ret)
1341 goto out;
5a1d7843
JS
1342
1343 btrfs_update_inode(trans, root, inode);
1344 }
1345
f186373f 1346 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1347 kfree(name);
03b2f08b 1348 name = NULL;
f186373f
MF
1349 if (log_ref_ver) {
1350 iput(dir);
1351 dir = NULL;
1352 }
5a1d7843 1353 }
e02119d5
CM
1354
1355 /* finally write the back reference in the inode */
1356 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1357out:
b3b4aa74 1358 btrfs_release_path(path);
03b2f08b 1359 kfree(name);
e02119d5
CM
1360 iput(dir);
1361 iput(inode);
3650860b 1362 return ret;
e02119d5
CM
1363}
1364
c71bf099 1365static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1366 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1367{
1368 int ret;
381cf658 1369
9c4f61f0
DS
1370 ret = btrfs_insert_orphan_item(trans, root, ino);
1371 if (ret == -EEXIST)
1372 ret = 0;
381cf658 1373
c71bf099
YZ
1374 return ret;
1375}
1376
f186373f 1377static int count_inode_extrefs(struct btrfs_root *root,
36283658 1378 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1379{
1380 int ret = 0;
1381 int name_len;
1382 unsigned int nlink = 0;
1383 u32 item_size;
1384 u32 cur_offset = 0;
36283658 1385 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1386 u64 offset = 0;
1387 unsigned long ptr;
1388 struct btrfs_inode_extref *extref;
1389 struct extent_buffer *leaf;
1390
1391 while (1) {
1392 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1393 &extref, &offset);
1394 if (ret)
1395 break;
c71bf099 1396
f186373f
MF
1397 leaf = path->nodes[0];
1398 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1399 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1400 cur_offset = 0;
f186373f
MF
1401
1402 while (cur_offset < item_size) {
1403 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1404 name_len = btrfs_inode_extref_name_len(leaf, extref);
1405
1406 nlink++;
1407
1408 cur_offset += name_len + sizeof(*extref);
1409 }
1410
1411 offset++;
1412 btrfs_release_path(path);
1413 }
1414 btrfs_release_path(path);
1415
2c2c452b 1416 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1417 return ret;
1418 return nlink;
1419}
1420
1421static int count_inode_refs(struct btrfs_root *root,
f329e319 1422 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1423{
e02119d5
CM
1424 int ret;
1425 struct btrfs_key key;
f186373f 1426 unsigned int nlink = 0;
e02119d5
CM
1427 unsigned long ptr;
1428 unsigned long ptr_end;
1429 int name_len;
f329e319 1430 u64 ino = btrfs_ino(inode);
e02119d5 1431
33345d01 1432 key.objectid = ino;
e02119d5
CM
1433 key.type = BTRFS_INODE_REF_KEY;
1434 key.offset = (u64)-1;
1435
d397712b 1436 while (1) {
e02119d5
CM
1437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1438 if (ret < 0)
1439 break;
1440 if (ret > 0) {
1441 if (path->slots[0] == 0)
1442 break;
1443 path->slots[0]--;
1444 }
e93ae26f 1445process_slot:
e02119d5
CM
1446 btrfs_item_key_to_cpu(path->nodes[0], &key,
1447 path->slots[0]);
33345d01 1448 if (key.objectid != ino ||
e02119d5
CM
1449 key.type != BTRFS_INODE_REF_KEY)
1450 break;
1451 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1452 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1453 path->slots[0]);
d397712b 1454 while (ptr < ptr_end) {
e02119d5
CM
1455 struct btrfs_inode_ref *ref;
1456
1457 ref = (struct btrfs_inode_ref *)ptr;
1458 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1459 ref);
1460 ptr = (unsigned long)(ref + 1) + name_len;
1461 nlink++;
1462 }
1463
1464 if (key.offset == 0)
1465 break;
e93ae26f
FDBM
1466 if (path->slots[0] > 0) {
1467 path->slots[0]--;
1468 goto process_slot;
1469 }
e02119d5 1470 key.offset--;
b3b4aa74 1471 btrfs_release_path(path);
e02119d5 1472 }
b3b4aa74 1473 btrfs_release_path(path);
f186373f
MF
1474
1475 return nlink;
1476}
1477
1478/*
1479 * There are a few corners where the link count of the file can't
1480 * be properly maintained during replay. So, instead of adding
1481 * lots of complexity to the log code, we just scan the backrefs
1482 * for any file that has been through replay.
1483 *
1484 * The scan will update the link count on the inode to reflect the
1485 * number of back refs found. If it goes down to zero, the iput
1486 * will free the inode.
1487 */
1488static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 struct inode *inode)
1491{
1492 struct btrfs_path *path;
1493 int ret;
1494 u64 nlink = 0;
4a0cc7ca 1495 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1496
1497 path = btrfs_alloc_path();
1498 if (!path)
1499 return -ENOMEM;
1500
f329e319 1501 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1502 if (ret < 0)
1503 goto out;
1504
1505 nlink = ret;
1506
36283658 1507 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1508 if (ret < 0)
1509 goto out;
1510
1511 nlink += ret;
1512
1513 ret = 0;
1514
e02119d5 1515 if (nlink != inode->i_nlink) {
bfe86848 1516 set_nlink(inode, nlink);
e02119d5
CM
1517 btrfs_update_inode(trans, root, inode);
1518 }
8d5bf1cb 1519 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1520
c71bf099
YZ
1521 if (inode->i_nlink == 0) {
1522 if (S_ISDIR(inode->i_mode)) {
1523 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1524 ino, 1);
3650860b
JB
1525 if (ret)
1526 goto out;
c71bf099 1527 }
33345d01 1528 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1529 }
12fcfd22 1530
f186373f
MF
1531out:
1532 btrfs_free_path(path);
1533 return ret;
e02119d5
CM
1534}
1535
1536static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1537 struct btrfs_root *root,
1538 struct btrfs_path *path)
1539{
1540 int ret;
1541 struct btrfs_key key;
1542 struct inode *inode;
1543
1544 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1545 key.type = BTRFS_ORPHAN_ITEM_KEY;
1546 key.offset = (u64)-1;
d397712b 1547 while (1) {
e02119d5
CM
1548 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1549 if (ret < 0)
1550 break;
1551
1552 if (ret == 1) {
1553 if (path->slots[0] == 0)
1554 break;
1555 path->slots[0]--;
1556 }
1557
1558 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1559 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1560 key.type != BTRFS_ORPHAN_ITEM_KEY)
1561 break;
1562
1563 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1564 if (ret)
1565 goto out;
e02119d5 1566
b3b4aa74 1567 btrfs_release_path(path);
e02119d5 1568 inode = read_one_inode(root, key.offset);
c00e9493
TI
1569 if (!inode)
1570 return -EIO;
e02119d5
CM
1571
1572 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1573 iput(inode);
3650860b
JB
1574 if (ret)
1575 goto out;
e02119d5 1576
12fcfd22
CM
1577 /*
1578 * fixup on a directory may create new entries,
1579 * make sure we always look for the highset possible
1580 * offset
1581 */
1582 key.offset = (u64)-1;
e02119d5 1583 }
65a246c5
TI
1584 ret = 0;
1585out:
b3b4aa74 1586 btrfs_release_path(path);
65a246c5 1587 return ret;
e02119d5
CM
1588}
1589
1590
1591/*
1592 * record a given inode in the fixup dir so we can check its link
1593 * count when replay is done. The link count is incremented here
1594 * so the inode won't go away until we check it
1595 */
1596static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1597 struct btrfs_root *root,
1598 struct btrfs_path *path,
1599 u64 objectid)
1600{
1601 struct btrfs_key key;
1602 int ret = 0;
1603 struct inode *inode;
1604
1605 inode = read_one_inode(root, objectid);
c00e9493
TI
1606 if (!inode)
1607 return -EIO;
e02119d5
CM
1608
1609 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1610 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1611 key.offset = objectid;
1612
1613 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1614
b3b4aa74 1615 btrfs_release_path(path);
e02119d5 1616 if (ret == 0) {
9bf7a489
JB
1617 if (!inode->i_nlink)
1618 set_nlink(inode, 1);
1619 else
8b558c5f 1620 inc_nlink(inode);
b9959295 1621 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1622 } else if (ret == -EEXIST) {
1623 ret = 0;
1624 } else {
3650860b 1625 BUG(); /* Logic Error */
e02119d5
CM
1626 }
1627 iput(inode);
1628
1629 return ret;
1630}
1631
1632/*
1633 * when replaying the log for a directory, we only insert names
1634 * for inodes that actually exist. This means an fsync on a directory
1635 * does not implicitly fsync all the new files in it
1636 */
1637static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1638 struct btrfs_root *root,
e02119d5 1639 u64 dirid, u64 index,
60d53eb3 1640 char *name, int name_len,
e02119d5
CM
1641 struct btrfs_key *location)
1642{
1643 struct inode *inode;
1644 struct inode *dir;
1645 int ret;
1646
1647 inode = read_one_inode(root, location->objectid);
1648 if (!inode)
1649 return -ENOENT;
1650
1651 dir = read_one_inode(root, dirid);
1652 if (!dir) {
1653 iput(inode);
1654 return -EIO;
1655 }
d555438b 1656
db0a669f
NB
1657 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1658 name_len, 1, index);
e02119d5
CM
1659
1660 /* FIXME, put inode into FIXUP list */
1661
1662 iput(inode);
1663 iput(dir);
1664 return ret;
1665}
1666
df8d116f
FM
1667/*
1668 * Return true if an inode reference exists in the log for the given name,
1669 * inode and parent inode.
1670 */
1671static bool name_in_log_ref(struct btrfs_root *log_root,
1672 const char *name, const int name_len,
1673 const u64 dirid, const u64 ino)
1674{
1675 struct btrfs_key search_key;
1676
1677 search_key.objectid = ino;
1678 search_key.type = BTRFS_INODE_REF_KEY;
1679 search_key.offset = dirid;
1680 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1681 return true;
1682
1683 search_key.type = BTRFS_INODE_EXTREF_KEY;
1684 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1685 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1686 return true;
1687
1688 return false;
1689}
1690
e02119d5
CM
1691/*
1692 * take a single entry in a log directory item and replay it into
1693 * the subvolume.
1694 *
1695 * if a conflicting item exists in the subdirectory already,
1696 * the inode it points to is unlinked and put into the link count
1697 * fix up tree.
1698 *
1699 * If a name from the log points to a file or directory that does
1700 * not exist in the FS, it is skipped. fsyncs on directories
1701 * do not force down inodes inside that directory, just changes to the
1702 * names or unlinks in a directory.
bb53eda9
FM
1703 *
1704 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1705 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1706 */
1707static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1708 struct btrfs_root *root,
1709 struct btrfs_path *path,
1710 struct extent_buffer *eb,
1711 struct btrfs_dir_item *di,
1712 struct btrfs_key *key)
1713{
1714 char *name;
1715 int name_len;
1716 struct btrfs_dir_item *dst_di;
1717 struct btrfs_key found_key;
1718 struct btrfs_key log_key;
1719 struct inode *dir;
e02119d5 1720 u8 log_type;
4bef0848 1721 int exists;
3650860b 1722 int ret = 0;
d555438b 1723 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1724 bool name_added = false;
e02119d5
CM
1725
1726 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1727 if (!dir)
1728 return -EIO;
e02119d5
CM
1729
1730 name_len = btrfs_dir_name_len(eb, di);
1731 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1732 if (!name) {
1733 ret = -ENOMEM;
1734 goto out;
1735 }
2a29edc6 1736
e02119d5
CM
1737 log_type = btrfs_dir_type(eb, di);
1738 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1739 name_len);
1740
1741 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1742 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1743 if (exists == 0)
1744 exists = 1;
1745 else
1746 exists = 0;
b3b4aa74 1747 btrfs_release_path(path);
4bef0848 1748
e02119d5
CM
1749 if (key->type == BTRFS_DIR_ITEM_KEY) {
1750 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1751 name, name_len, 1);
d397712b 1752 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1753 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1754 key->objectid,
1755 key->offset, name,
1756 name_len, 1);
1757 } else {
3650860b
JB
1758 /* Corruption */
1759 ret = -EINVAL;
1760 goto out;
e02119d5 1761 }
c704005d 1762 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1763 /* we need a sequence number to insert, so we only
1764 * do inserts for the BTRFS_DIR_INDEX_KEY types
1765 */
1766 if (key->type != BTRFS_DIR_INDEX_KEY)
1767 goto out;
1768 goto insert;
1769 }
1770
1771 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1772 /* the existing item matches the logged item */
1773 if (found_key.objectid == log_key.objectid &&
1774 found_key.type == log_key.type &&
1775 found_key.offset == log_key.offset &&
1776 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1777 update_size = false;
e02119d5
CM
1778 goto out;
1779 }
1780
1781 /*
1782 * don't drop the conflicting directory entry if the inode
1783 * for the new entry doesn't exist
1784 */
4bef0848 1785 if (!exists)
e02119d5
CM
1786 goto out;
1787
207e7d92 1788 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1789 if (ret)
1790 goto out;
e02119d5
CM
1791
1792 if (key->type == BTRFS_DIR_INDEX_KEY)
1793 goto insert;
1794out:
b3b4aa74 1795 btrfs_release_path(path);
d555438b 1796 if (!ret && update_size) {
6ef06d27 1797 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1798 ret = btrfs_update_inode(trans, root, dir);
1799 }
e02119d5
CM
1800 kfree(name);
1801 iput(dir);
bb53eda9
FM
1802 if (!ret && name_added)
1803 ret = 1;
3650860b 1804 return ret;
e02119d5
CM
1805
1806insert:
df8d116f
FM
1807 if (name_in_log_ref(root->log_root, name, name_len,
1808 key->objectid, log_key.objectid)) {
1809 /* The dentry will be added later. */
1810 ret = 0;
1811 update_size = false;
1812 goto out;
1813 }
b3b4aa74 1814 btrfs_release_path(path);
60d53eb3
Z
1815 ret = insert_one_name(trans, root, key->objectid, key->offset,
1816 name, name_len, &log_key);
df8d116f 1817 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1818 goto out;
bb53eda9
FM
1819 if (!ret)
1820 name_added = true;
d555438b 1821 update_size = false;
3650860b 1822 ret = 0;
e02119d5
CM
1823 goto out;
1824}
1825
1826/*
1827 * find all the names in a directory item and reconcile them into
1828 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1829 * one name in a directory item, but the same code gets used for
1830 * both directory index types
1831 */
1832static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *root,
1834 struct btrfs_path *path,
1835 struct extent_buffer *eb, int slot,
1836 struct btrfs_key *key)
1837{
2ff7e61e 1838 struct btrfs_fs_info *fs_info = root->fs_info;
bb53eda9 1839 int ret = 0;
e02119d5
CM
1840 u32 item_size = btrfs_item_size_nr(eb, slot);
1841 struct btrfs_dir_item *di;
1842 int name_len;
1843 unsigned long ptr;
1844 unsigned long ptr_end;
bb53eda9 1845 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1846
1847 ptr = btrfs_item_ptr_offset(eb, slot);
1848 ptr_end = ptr + item_size;
d397712b 1849 while (ptr < ptr_end) {
e02119d5 1850 di = (struct btrfs_dir_item *)ptr;
e79a3327 1851 if (verify_dir_item(fs_info, eb, slot, di))
22a94d44 1852 return -EIO;
e02119d5
CM
1853 name_len = btrfs_dir_name_len(eb, di);
1854 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1855 if (ret < 0)
1856 break;
e02119d5
CM
1857 ptr = (unsigned long)(di + 1);
1858 ptr += name_len;
bb53eda9
FM
1859
1860 /*
1861 * If this entry refers to a non-directory (directories can not
1862 * have a link count > 1) and it was added in the transaction
1863 * that was not committed, make sure we fixup the link count of
1864 * the inode it the entry points to. Otherwise something like
1865 * the following would result in a directory pointing to an
1866 * inode with a wrong link that does not account for this dir
1867 * entry:
1868 *
1869 * mkdir testdir
1870 * touch testdir/foo
1871 * touch testdir/bar
1872 * sync
1873 *
1874 * ln testdir/bar testdir/bar_link
1875 * ln testdir/foo testdir/foo_link
1876 * xfs_io -c "fsync" testdir/bar
1877 *
1878 * <power failure>
1879 *
1880 * mount fs, log replay happens
1881 *
1882 * File foo would remain with a link count of 1 when it has two
1883 * entries pointing to it in the directory testdir. This would
1884 * make it impossible to ever delete the parent directory has
1885 * it would result in stale dentries that can never be deleted.
1886 */
1887 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1888 struct btrfs_key di_key;
1889
1890 if (!fixup_path) {
1891 fixup_path = btrfs_alloc_path();
1892 if (!fixup_path) {
1893 ret = -ENOMEM;
1894 break;
1895 }
1896 }
1897
1898 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1899 ret = link_to_fixup_dir(trans, root, fixup_path,
1900 di_key.objectid);
1901 if (ret)
1902 break;
1903 }
1904 ret = 0;
e02119d5 1905 }
bb53eda9
FM
1906 btrfs_free_path(fixup_path);
1907 return ret;
e02119d5
CM
1908}
1909
1910/*
1911 * directory replay has two parts. There are the standard directory
1912 * items in the log copied from the subvolume, and range items
1913 * created in the log while the subvolume was logged.
1914 *
1915 * The range items tell us which parts of the key space the log
1916 * is authoritative for. During replay, if a key in the subvolume
1917 * directory is in a logged range item, but not actually in the log
1918 * that means it was deleted from the directory before the fsync
1919 * and should be removed.
1920 */
1921static noinline int find_dir_range(struct btrfs_root *root,
1922 struct btrfs_path *path,
1923 u64 dirid, int key_type,
1924 u64 *start_ret, u64 *end_ret)
1925{
1926 struct btrfs_key key;
1927 u64 found_end;
1928 struct btrfs_dir_log_item *item;
1929 int ret;
1930 int nritems;
1931
1932 if (*start_ret == (u64)-1)
1933 return 1;
1934
1935 key.objectid = dirid;
1936 key.type = key_type;
1937 key.offset = *start_ret;
1938
1939 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1940 if (ret < 0)
1941 goto out;
1942 if (ret > 0) {
1943 if (path->slots[0] == 0)
1944 goto out;
1945 path->slots[0]--;
1946 }
1947 if (ret != 0)
1948 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1949
1950 if (key.type != key_type || key.objectid != dirid) {
1951 ret = 1;
1952 goto next;
1953 }
1954 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1955 struct btrfs_dir_log_item);
1956 found_end = btrfs_dir_log_end(path->nodes[0], item);
1957
1958 if (*start_ret >= key.offset && *start_ret <= found_end) {
1959 ret = 0;
1960 *start_ret = key.offset;
1961 *end_ret = found_end;
1962 goto out;
1963 }
1964 ret = 1;
1965next:
1966 /* check the next slot in the tree to see if it is a valid item */
1967 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 1968 path->slots[0]++;
e02119d5
CM
1969 if (path->slots[0] >= nritems) {
1970 ret = btrfs_next_leaf(root, path);
1971 if (ret)
1972 goto out;
e02119d5
CM
1973 }
1974
1975 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1976
1977 if (key.type != key_type || key.objectid != dirid) {
1978 ret = 1;
1979 goto out;
1980 }
1981 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1982 struct btrfs_dir_log_item);
1983 found_end = btrfs_dir_log_end(path->nodes[0], item);
1984 *start_ret = key.offset;
1985 *end_ret = found_end;
1986 ret = 0;
1987out:
b3b4aa74 1988 btrfs_release_path(path);
e02119d5
CM
1989 return ret;
1990}
1991
1992/*
1993 * this looks for a given directory item in the log. If the directory
1994 * item is not in the log, the item is removed and the inode it points
1995 * to is unlinked
1996 */
1997static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1998 struct btrfs_root *root,
1999 struct btrfs_root *log,
2000 struct btrfs_path *path,
2001 struct btrfs_path *log_path,
2002 struct inode *dir,
2003 struct btrfs_key *dir_key)
2004{
2ff7e61e 2005 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2006 int ret;
2007 struct extent_buffer *eb;
2008 int slot;
2009 u32 item_size;
2010 struct btrfs_dir_item *di;
2011 struct btrfs_dir_item *log_di;
2012 int name_len;
2013 unsigned long ptr;
2014 unsigned long ptr_end;
2015 char *name;
2016 struct inode *inode;
2017 struct btrfs_key location;
2018
2019again:
2020 eb = path->nodes[0];
2021 slot = path->slots[0];
2022 item_size = btrfs_item_size_nr(eb, slot);
2023 ptr = btrfs_item_ptr_offset(eb, slot);
2024 ptr_end = ptr + item_size;
d397712b 2025 while (ptr < ptr_end) {
e02119d5 2026 di = (struct btrfs_dir_item *)ptr;
e79a3327 2027 if (verify_dir_item(fs_info, eb, slot, di)) {
22a94d44
JB
2028 ret = -EIO;
2029 goto out;
2030 }
2031
e02119d5
CM
2032 name_len = btrfs_dir_name_len(eb, di);
2033 name = kmalloc(name_len, GFP_NOFS);
2034 if (!name) {
2035 ret = -ENOMEM;
2036 goto out;
2037 }
2038 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2039 name_len);
2040 log_di = NULL;
12fcfd22 2041 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2042 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2043 dir_key->objectid,
2044 name, name_len, 0);
12fcfd22 2045 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2046 log_di = btrfs_lookup_dir_index_item(trans, log,
2047 log_path,
2048 dir_key->objectid,
2049 dir_key->offset,
2050 name, name_len, 0);
2051 }
269d040f 2052 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2053 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2054 btrfs_release_path(path);
2055 btrfs_release_path(log_path);
e02119d5 2056 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2057 if (!inode) {
2058 kfree(name);
2059 return -EIO;
2060 }
e02119d5
CM
2061
2062 ret = link_to_fixup_dir(trans, root,
2063 path, location.objectid);
3650860b
JB
2064 if (ret) {
2065 kfree(name);
2066 iput(inode);
2067 goto out;
2068 }
2069
8b558c5f 2070 inc_nlink(inode);
4ec5934e
NB
2071 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2072 BTRFS_I(inode), name, name_len);
3650860b 2073 if (!ret)
2ff7e61e 2074 ret = btrfs_run_delayed_items(trans, fs_info);
e02119d5
CM
2075 kfree(name);
2076 iput(inode);
3650860b
JB
2077 if (ret)
2078 goto out;
e02119d5
CM
2079
2080 /* there might still be more names under this key
2081 * check and repeat if required
2082 */
2083 ret = btrfs_search_slot(NULL, root, dir_key, path,
2084 0, 0);
2085 if (ret == 0)
2086 goto again;
2087 ret = 0;
2088 goto out;
269d040f
FDBM
2089 } else if (IS_ERR(log_di)) {
2090 kfree(name);
2091 return PTR_ERR(log_di);
e02119d5 2092 }
b3b4aa74 2093 btrfs_release_path(log_path);
e02119d5
CM
2094 kfree(name);
2095
2096 ptr = (unsigned long)(di + 1);
2097 ptr += name_len;
2098 }
2099 ret = 0;
2100out:
b3b4aa74
DS
2101 btrfs_release_path(path);
2102 btrfs_release_path(log_path);
e02119d5
CM
2103 return ret;
2104}
2105
4f764e51
FM
2106static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2107 struct btrfs_root *root,
2108 struct btrfs_root *log,
2109 struct btrfs_path *path,
2110 const u64 ino)
2111{
8ee8c2d6 2112 struct btrfs_fs_info *fs_info = root->fs_info;
4f764e51
FM
2113 struct btrfs_key search_key;
2114 struct btrfs_path *log_path;
2115 int i;
2116 int nritems;
2117 int ret;
2118
2119 log_path = btrfs_alloc_path();
2120 if (!log_path)
2121 return -ENOMEM;
2122
2123 search_key.objectid = ino;
2124 search_key.type = BTRFS_XATTR_ITEM_KEY;
2125 search_key.offset = 0;
2126again:
2127 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2128 if (ret < 0)
2129 goto out;
2130process_leaf:
2131 nritems = btrfs_header_nritems(path->nodes[0]);
2132 for (i = path->slots[0]; i < nritems; i++) {
2133 struct btrfs_key key;
2134 struct btrfs_dir_item *di;
2135 struct btrfs_dir_item *log_di;
2136 u32 total_size;
2137 u32 cur;
2138
2139 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2140 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2141 ret = 0;
2142 goto out;
2143 }
2144
2145 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2146 total_size = btrfs_item_size_nr(path->nodes[0], i);
2147 cur = 0;
2148 while (cur < total_size) {
2149 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2150 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2151 u32 this_len = sizeof(*di) + name_len + data_len;
2152 char *name;
2153
e33bf723 2154 ret = verify_dir_item(fs_info, path->nodes[0], i, di);
8ee8c2d6
SY
2155 if (ret) {
2156 ret = -EIO;
2157 goto out;
2158 }
4f764e51
FM
2159 name = kmalloc(name_len, GFP_NOFS);
2160 if (!name) {
2161 ret = -ENOMEM;
2162 goto out;
2163 }
2164 read_extent_buffer(path->nodes[0], name,
2165 (unsigned long)(di + 1), name_len);
2166
2167 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2168 name, name_len, 0);
2169 btrfs_release_path(log_path);
2170 if (!log_di) {
2171 /* Doesn't exist in log tree, so delete it. */
2172 btrfs_release_path(path);
2173 di = btrfs_lookup_xattr(trans, root, path, ino,
2174 name, name_len, -1);
2175 kfree(name);
2176 if (IS_ERR(di)) {
2177 ret = PTR_ERR(di);
2178 goto out;
2179 }
2180 ASSERT(di);
2181 ret = btrfs_delete_one_dir_name(trans, root,
2182 path, di);
2183 if (ret)
2184 goto out;
2185 btrfs_release_path(path);
2186 search_key = key;
2187 goto again;
2188 }
2189 kfree(name);
2190 if (IS_ERR(log_di)) {
2191 ret = PTR_ERR(log_di);
2192 goto out;
2193 }
2194 cur += this_len;
2195 di = (struct btrfs_dir_item *)((char *)di + this_len);
2196 }
2197 }
2198 ret = btrfs_next_leaf(root, path);
2199 if (ret > 0)
2200 ret = 0;
2201 else if (ret == 0)
2202 goto process_leaf;
2203out:
2204 btrfs_free_path(log_path);
2205 btrfs_release_path(path);
2206 return ret;
2207}
2208
2209
e02119d5
CM
2210/*
2211 * deletion replay happens before we copy any new directory items
2212 * out of the log or out of backreferences from inodes. It
2213 * scans the log to find ranges of keys that log is authoritative for,
2214 * and then scans the directory to find items in those ranges that are
2215 * not present in the log.
2216 *
2217 * Anything we don't find in the log is unlinked and removed from the
2218 * directory.
2219 */
2220static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2221 struct btrfs_root *root,
2222 struct btrfs_root *log,
2223 struct btrfs_path *path,
12fcfd22 2224 u64 dirid, int del_all)
e02119d5
CM
2225{
2226 u64 range_start;
2227 u64 range_end;
2228 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2229 int ret = 0;
2230 struct btrfs_key dir_key;
2231 struct btrfs_key found_key;
2232 struct btrfs_path *log_path;
2233 struct inode *dir;
2234
2235 dir_key.objectid = dirid;
2236 dir_key.type = BTRFS_DIR_ITEM_KEY;
2237 log_path = btrfs_alloc_path();
2238 if (!log_path)
2239 return -ENOMEM;
2240
2241 dir = read_one_inode(root, dirid);
2242 /* it isn't an error if the inode isn't there, that can happen
2243 * because we replay the deletes before we copy in the inode item
2244 * from the log
2245 */
2246 if (!dir) {
2247 btrfs_free_path(log_path);
2248 return 0;
2249 }
2250again:
2251 range_start = 0;
2252 range_end = 0;
d397712b 2253 while (1) {
12fcfd22
CM
2254 if (del_all)
2255 range_end = (u64)-1;
2256 else {
2257 ret = find_dir_range(log, path, dirid, key_type,
2258 &range_start, &range_end);
2259 if (ret != 0)
2260 break;
2261 }
e02119d5
CM
2262
2263 dir_key.offset = range_start;
d397712b 2264 while (1) {
e02119d5
CM
2265 int nritems;
2266 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2267 0, 0);
2268 if (ret < 0)
2269 goto out;
2270
2271 nritems = btrfs_header_nritems(path->nodes[0]);
2272 if (path->slots[0] >= nritems) {
2273 ret = btrfs_next_leaf(root, path);
2274 if (ret)
2275 break;
2276 }
2277 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2278 path->slots[0]);
2279 if (found_key.objectid != dirid ||
2280 found_key.type != dir_key.type)
2281 goto next_type;
2282
2283 if (found_key.offset > range_end)
2284 break;
2285
2286 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2287 log_path, dir,
2288 &found_key);
3650860b
JB
2289 if (ret)
2290 goto out;
e02119d5
CM
2291 if (found_key.offset == (u64)-1)
2292 break;
2293 dir_key.offset = found_key.offset + 1;
2294 }
b3b4aa74 2295 btrfs_release_path(path);
e02119d5
CM
2296 if (range_end == (u64)-1)
2297 break;
2298 range_start = range_end + 1;
2299 }
2300
2301next_type:
2302 ret = 0;
2303 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2304 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2305 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2306 btrfs_release_path(path);
e02119d5
CM
2307 goto again;
2308 }
2309out:
b3b4aa74 2310 btrfs_release_path(path);
e02119d5
CM
2311 btrfs_free_path(log_path);
2312 iput(dir);
2313 return ret;
2314}
2315
2316/*
2317 * the process_func used to replay items from the log tree. This
2318 * gets called in two different stages. The first stage just looks
2319 * for inodes and makes sure they are all copied into the subvolume.
2320 *
2321 * The second stage copies all the other item types from the log into
2322 * the subvolume. The two stage approach is slower, but gets rid of
2323 * lots of complexity around inodes referencing other inodes that exist
2324 * only in the log (references come from either directory items or inode
2325 * back refs).
2326 */
2327static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2328 struct walk_control *wc, u64 gen)
2329{
2330 int nritems;
2331 struct btrfs_path *path;
2332 struct btrfs_root *root = wc->replay_dest;
2333 struct btrfs_key key;
e02119d5
CM
2334 int level;
2335 int i;
2336 int ret;
2337
018642a1
TI
2338 ret = btrfs_read_buffer(eb, gen);
2339 if (ret)
2340 return ret;
e02119d5
CM
2341
2342 level = btrfs_header_level(eb);
2343
2344 if (level != 0)
2345 return 0;
2346
2347 path = btrfs_alloc_path();
1e5063d0
MF
2348 if (!path)
2349 return -ENOMEM;
e02119d5
CM
2350
2351 nritems = btrfs_header_nritems(eb);
2352 for (i = 0; i < nritems; i++) {
2353 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2354
2355 /* inode keys are done during the first stage */
2356 if (key.type == BTRFS_INODE_ITEM_KEY &&
2357 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2358 struct btrfs_inode_item *inode_item;
2359 u32 mode;
2360
2361 inode_item = btrfs_item_ptr(eb, i,
2362 struct btrfs_inode_item);
4f764e51
FM
2363 ret = replay_xattr_deletes(wc->trans, root, log,
2364 path, key.objectid);
2365 if (ret)
2366 break;
e02119d5
CM
2367 mode = btrfs_inode_mode(eb, inode_item);
2368 if (S_ISDIR(mode)) {
2369 ret = replay_dir_deletes(wc->trans,
12fcfd22 2370 root, log, path, key.objectid, 0);
b50c6e25
JB
2371 if (ret)
2372 break;
e02119d5
CM
2373 }
2374 ret = overwrite_item(wc->trans, root, path,
2375 eb, i, &key);
b50c6e25
JB
2376 if (ret)
2377 break;
e02119d5 2378
c71bf099 2379 /* for regular files, make sure corresponding
01327610 2380 * orphan item exist. extents past the new EOF
c71bf099 2381 * will be truncated later by orphan cleanup.
e02119d5
CM
2382 */
2383 if (S_ISREG(mode)) {
c71bf099
YZ
2384 ret = insert_orphan_item(wc->trans, root,
2385 key.objectid);
b50c6e25
JB
2386 if (ret)
2387 break;
e02119d5 2388 }
c71bf099 2389
e02119d5
CM
2390 ret = link_to_fixup_dir(wc->trans, root,
2391 path, key.objectid);
b50c6e25
JB
2392 if (ret)
2393 break;
e02119d5 2394 }
dd8e7217
JB
2395
2396 if (key.type == BTRFS_DIR_INDEX_KEY &&
2397 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2398 ret = replay_one_dir_item(wc->trans, root, path,
2399 eb, i, &key);
2400 if (ret)
2401 break;
2402 }
2403
e02119d5
CM
2404 if (wc->stage < LOG_WALK_REPLAY_ALL)
2405 continue;
2406
2407 /* these keys are simply copied */
2408 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2409 ret = overwrite_item(wc->trans, root, path,
2410 eb, i, &key);
b50c6e25
JB
2411 if (ret)
2412 break;
2da1c669
LB
2413 } else if (key.type == BTRFS_INODE_REF_KEY ||
2414 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2415 ret = add_inode_ref(wc->trans, root, log, path,
2416 eb, i, &key);
b50c6e25
JB
2417 if (ret && ret != -ENOENT)
2418 break;
2419 ret = 0;
e02119d5
CM
2420 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2421 ret = replay_one_extent(wc->trans, root, path,
2422 eb, i, &key);
b50c6e25
JB
2423 if (ret)
2424 break;
dd8e7217 2425 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2426 ret = replay_one_dir_item(wc->trans, root, path,
2427 eb, i, &key);
b50c6e25
JB
2428 if (ret)
2429 break;
e02119d5
CM
2430 }
2431 }
2432 btrfs_free_path(path);
b50c6e25 2433 return ret;
e02119d5
CM
2434}
2435
d397712b 2436static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2437 struct btrfs_root *root,
2438 struct btrfs_path *path, int *level,
2439 struct walk_control *wc)
2440{
0b246afa 2441 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2442 u64 root_owner;
e02119d5
CM
2443 u64 bytenr;
2444 u64 ptr_gen;
2445 struct extent_buffer *next;
2446 struct extent_buffer *cur;
2447 struct extent_buffer *parent;
2448 u32 blocksize;
2449 int ret = 0;
2450
2451 WARN_ON(*level < 0);
2452 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2453
d397712b 2454 while (*level > 0) {
e02119d5
CM
2455 WARN_ON(*level < 0);
2456 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2457 cur = path->nodes[*level];
2458
fae7f21c 2459 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2460
2461 if (path->slots[*level] >=
2462 btrfs_header_nritems(cur))
2463 break;
2464
2465 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2466 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2467 blocksize = fs_info->nodesize;
e02119d5
CM
2468
2469 parent = path->nodes[*level];
2470 root_owner = btrfs_header_owner(parent);
e02119d5 2471
2ff7e61e 2472 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2473 if (IS_ERR(next))
2474 return PTR_ERR(next);
e02119d5 2475
e02119d5 2476 if (*level == 1) {
1e5063d0 2477 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2478 if (ret) {
2479 free_extent_buffer(next);
1e5063d0 2480 return ret;
b50c6e25 2481 }
4a500fd1 2482
e02119d5
CM
2483 path->slots[*level]++;
2484 if (wc->free) {
018642a1
TI
2485 ret = btrfs_read_buffer(next, ptr_gen);
2486 if (ret) {
2487 free_extent_buffer(next);
2488 return ret;
2489 }
e02119d5 2490
681ae509
JB
2491 if (trans) {
2492 btrfs_tree_lock(next);
2493 btrfs_set_lock_blocking(next);
7c302b49 2494 clean_tree_block(fs_info, next);
681ae509
JB
2495 btrfs_wait_tree_block_writeback(next);
2496 btrfs_tree_unlock(next);
2497 }
e02119d5 2498
e02119d5
CM
2499 WARN_ON(root_owner !=
2500 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2501 ret = btrfs_free_and_pin_reserved_extent(
2502 fs_info, bytenr,
2503 blocksize);
3650860b
JB
2504 if (ret) {
2505 free_extent_buffer(next);
2506 return ret;
2507 }
e02119d5
CM
2508 }
2509 free_extent_buffer(next);
2510 continue;
2511 }
018642a1
TI
2512 ret = btrfs_read_buffer(next, ptr_gen);
2513 if (ret) {
2514 free_extent_buffer(next);
2515 return ret;
2516 }
e02119d5
CM
2517
2518 WARN_ON(*level <= 0);
2519 if (path->nodes[*level-1])
2520 free_extent_buffer(path->nodes[*level-1]);
2521 path->nodes[*level-1] = next;
2522 *level = btrfs_header_level(next);
2523 path->slots[*level] = 0;
2524 cond_resched();
2525 }
2526 WARN_ON(*level < 0);
2527 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2528
4a500fd1 2529 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2530
2531 cond_resched();
2532 return 0;
2533}
2534
d397712b 2535static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2536 struct btrfs_root *root,
2537 struct btrfs_path *path, int *level,
2538 struct walk_control *wc)
2539{
0b246afa 2540 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2541 u64 root_owner;
e02119d5
CM
2542 int i;
2543 int slot;
2544 int ret;
2545
d397712b 2546 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2547 slot = path->slots[i];
4a500fd1 2548 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2549 path->slots[i]++;
2550 *level = i;
2551 WARN_ON(*level == 0);
2552 return 0;
2553 } else {
31840ae1
ZY
2554 struct extent_buffer *parent;
2555 if (path->nodes[*level] == root->node)
2556 parent = path->nodes[*level];
2557 else
2558 parent = path->nodes[*level + 1];
2559
2560 root_owner = btrfs_header_owner(parent);
1e5063d0 2561 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2562 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2563 if (ret)
2564 return ret;
2565
e02119d5
CM
2566 if (wc->free) {
2567 struct extent_buffer *next;
2568
2569 next = path->nodes[*level];
2570
681ae509
JB
2571 if (trans) {
2572 btrfs_tree_lock(next);
2573 btrfs_set_lock_blocking(next);
7c302b49 2574 clean_tree_block(fs_info, next);
681ae509
JB
2575 btrfs_wait_tree_block_writeback(next);
2576 btrfs_tree_unlock(next);
2577 }
e02119d5 2578
e02119d5 2579 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2580 ret = btrfs_free_and_pin_reserved_extent(
2581 fs_info,
e02119d5 2582 path->nodes[*level]->start,
d00aff00 2583 path->nodes[*level]->len);
3650860b
JB
2584 if (ret)
2585 return ret;
e02119d5
CM
2586 }
2587 free_extent_buffer(path->nodes[*level]);
2588 path->nodes[*level] = NULL;
2589 *level = i + 1;
2590 }
2591 }
2592 return 1;
2593}
2594
2595/*
2596 * drop the reference count on the tree rooted at 'snap'. This traverses
2597 * the tree freeing any blocks that have a ref count of zero after being
2598 * decremented.
2599 */
2600static int walk_log_tree(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *log, struct walk_control *wc)
2602{
2ff7e61e 2603 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2604 int ret = 0;
2605 int wret;
2606 int level;
2607 struct btrfs_path *path;
e02119d5
CM
2608 int orig_level;
2609
2610 path = btrfs_alloc_path();
db5b493a
TI
2611 if (!path)
2612 return -ENOMEM;
e02119d5
CM
2613
2614 level = btrfs_header_level(log->node);
2615 orig_level = level;
2616 path->nodes[level] = log->node;
2617 extent_buffer_get(log->node);
2618 path->slots[level] = 0;
2619
d397712b 2620 while (1) {
e02119d5
CM
2621 wret = walk_down_log_tree(trans, log, path, &level, wc);
2622 if (wret > 0)
2623 break;
79787eaa 2624 if (wret < 0) {
e02119d5 2625 ret = wret;
79787eaa
JM
2626 goto out;
2627 }
e02119d5
CM
2628
2629 wret = walk_up_log_tree(trans, log, path, &level, wc);
2630 if (wret > 0)
2631 break;
79787eaa 2632 if (wret < 0) {
e02119d5 2633 ret = wret;
79787eaa
JM
2634 goto out;
2635 }
e02119d5
CM
2636 }
2637
2638 /* was the root node processed? if not, catch it here */
2639 if (path->nodes[orig_level]) {
79787eaa 2640 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2641 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2642 if (ret)
2643 goto out;
e02119d5
CM
2644 if (wc->free) {
2645 struct extent_buffer *next;
2646
2647 next = path->nodes[orig_level];
2648
681ae509
JB
2649 if (trans) {
2650 btrfs_tree_lock(next);
2651 btrfs_set_lock_blocking(next);
7c302b49 2652 clean_tree_block(fs_info, next);
681ae509
JB
2653 btrfs_wait_tree_block_writeback(next);
2654 btrfs_tree_unlock(next);
2655 }
e02119d5 2656
e02119d5
CM
2657 WARN_ON(log->root_key.objectid !=
2658 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2659 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2660 next->start, next->len);
3650860b
JB
2661 if (ret)
2662 goto out;
e02119d5
CM
2663 }
2664 }
2665
79787eaa 2666out:
e02119d5 2667 btrfs_free_path(path);
e02119d5
CM
2668 return ret;
2669}
2670
7237f183
YZ
2671/*
2672 * helper function to update the item for a given subvolumes log root
2673 * in the tree of log roots
2674 */
2675static int update_log_root(struct btrfs_trans_handle *trans,
2676 struct btrfs_root *log)
2677{
0b246afa 2678 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2679 int ret;
2680
2681 if (log->log_transid == 1) {
2682 /* insert root item on the first sync */
0b246afa 2683 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2684 &log->root_key, &log->root_item);
2685 } else {
0b246afa 2686 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2687 &log->root_key, &log->root_item);
2688 }
2689 return ret;
2690}
2691
60d53eb3 2692static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2693{
2694 DEFINE_WAIT(wait);
7237f183 2695 int index = transid % 2;
e02119d5 2696
7237f183
YZ
2697 /*
2698 * we only allow two pending log transactions at a time,
2699 * so we know that if ours is more than 2 older than the
2700 * current transaction, we're done
2701 */
e02119d5 2702 do {
7237f183
YZ
2703 prepare_to_wait(&root->log_commit_wait[index],
2704 &wait, TASK_UNINTERRUPTIBLE);
2705 mutex_unlock(&root->log_mutex);
12fcfd22 2706
d1433deb 2707 if (root->log_transid_committed < transid &&
7237f183
YZ
2708 atomic_read(&root->log_commit[index]))
2709 schedule();
12fcfd22 2710
7237f183
YZ
2711 finish_wait(&root->log_commit_wait[index], &wait);
2712 mutex_lock(&root->log_mutex);
d1433deb 2713 } while (root->log_transid_committed < transid &&
7237f183 2714 atomic_read(&root->log_commit[index]));
7237f183
YZ
2715}
2716
60d53eb3 2717static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2718{
2719 DEFINE_WAIT(wait);
8b050d35
MX
2720
2721 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2722 prepare_to_wait(&root->log_writer_wait,
2723 &wait, TASK_UNINTERRUPTIBLE);
2724 mutex_unlock(&root->log_mutex);
8b050d35 2725 if (atomic_read(&root->log_writers))
e02119d5 2726 schedule();
7237f183 2727 finish_wait(&root->log_writer_wait, &wait);
575849ec 2728 mutex_lock(&root->log_mutex);
7237f183 2729 }
e02119d5
CM
2730}
2731
8b050d35
MX
2732static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2733 struct btrfs_log_ctx *ctx)
2734{
2735 if (!ctx)
2736 return;
2737
2738 mutex_lock(&root->log_mutex);
2739 list_del_init(&ctx->list);
2740 mutex_unlock(&root->log_mutex);
2741}
2742
2743/*
2744 * Invoked in log mutex context, or be sure there is no other task which
2745 * can access the list.
2746 */
2747static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2748 int index, int error)
2749{
2750 struct btrfs_log_ctx *ctx;
570dd450 2751 struct btrfs_log_ctx *safe;
8b050d35 2752
570dd450
CM
2753 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2754 list_del_init(&ctx->list);
8b050d35 2755 ctx->log_ret = error;
570dd450 2756 }
8b050d35
MX
2757
2758 INIT_LIST_HEAD(&root->log_ctxs[index]);
2759}
2760
e02119d5
CM
2761/*
2762 * btrfs_sync_log does sends a given tree log down to the disk and
2763 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2764 * you know that any inodes previously logged are safely on disk only
2765 * if it returns 0.
2766 *
2767 * Any other return value means you need to call btrfs_commit_transaction.
2768 * Some of the edge cases for fsyncing directories that have had unlinks
2769 * or renames done in the past mean that sometimes the only safe
2770 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2771 * that has happened.
e02119d5
CM
2772 */
2773int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2774 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2775{
7237f183
YZ
2776 int index1;
2777 int index2;
8cef4e16 2778 int mark;
e02119d5 2779 int ret;
0b246afa 2780 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2781 struct btrfs_root *log = root->log_root;
0b246afa 2782 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2783 int log_transid = 0;
8b050d35 2784 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2785 struct blk_plug plug;
e02119d5 2786
7237f183 2787 mutex_lock(&root->log_mutex);
d1433deb
MX
2788 log_transid = ctx->log_transid;
2789 if (root->log_transid_committed >= log_transid) {
2790 mutex_unlock(&root->log_mutex);
2791 return ctx->log_ret;
2792 }
2793
2794 index1 = log_transid % 2;
7237f183 2795 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2796 wait_log_commit(root, log_transid);
7237f183 2797 mutex_unlock(&root->log_mutex);
8b050d35 2798 return ctx->log_ret;
e02119d5 2799 }
d1433deb 2800 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2801 atomic_set(&root->log_commit[index1], 1);
2802
2803 /* wait for previous tree log sync to complete */
2804 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2805 wait_log_commit(root, log_transid - 1);
48cab2e0 2806
86df7eb9 2807 while (1) {
2ecb7923 2808 int batch = atomic_read(&root->log_batch);
cd354ad6 2809 /* when we're on an ssd, just kick the log commit out */
0b246afa 2810 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2811 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2812 mutex_unlock(&root->log_mutex);
2813 schedule_timeout_uninterruptible(1);
2814 mutex_lock(&root->log_mutex);
2815 }
60d53eb3 2816 wait_for_writer(root);
2ecb7923 2817 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2818 break;
2819 }
e02119d5 2820
12fcfd22 2821 /* bail out if we need to do a full commit */
0b246afa 2822 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2823 ret = -EAGAIN;
2ab28f32 2824 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2825 mutex_unlock(&root->log_mutex);
2826 goto out;
2827 }
2828
8cef4e16
YZ
2829 if (log_transid % 2 == 0)
2830 mark = EXTENT_DIRTY;
2831 else
2832 mark = EXTENT_NEW;
2833
690587d1
CM
2834 /* we start IO on all the marked extents here, but we don't actually
2835 * wait for them until later.
2836 */
c6adc9cc 2837 blk_start_plug(&plug);
2ff7e61e 2838 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2839 if (ret) {
c6adc9cc 2840 blk_finish_plug(&plug);
66642832 2841 btrfs_abort_transaction(trans, ret);
2ab28f32 2842 btrfs_free_logged_extents(log, log_transid);
0b246afa 2843 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2844 mutex_unlock(&root->log_mutex);
2845 goto out;
2846 }
7237f183 2847
5d4f98a2 2848 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2849
7237f183
YZ
2850 root->log_transid++;
2851 log->log_transid = root->log_transid;
ff782e0a 2852 root->log_start_pid = 0;
7237f183 2853 /*
8cef4e16
YZ
2854 * IO has been started, blocks of the log tree have WRITTEN flag set
2855 * in their headers. new modifications of the log will be written to
2856 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2857 */
2858 mutex_unlock(&root->log_mutex);
2859
28a23593 2860 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2861
7237f183 2862 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2863 atomic_inc(&log_root_tree->log_batch);
7237f183 2864 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2865
2866 index2 = log_root_tree->log_transid % 2;
2867 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2868 root_log_ctx.log_transid = log_root_tree->log_transid;
2869
7237f183
YZ
2870 mutex_unlock(&log_root_tree->log_mutex);
2871
2872 ret = update_log_root(trans, log);
7237f183
YZ
2873
2874 mutex_lock(&log_root_tree->log_mutex);
2875 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2876 /*
2877 * Implicit memory barrier after atomic_dec_and_test
2878 */
7237f183
YZ
2879 if (waitqueue_active(&log_root_tree->log_writer_wait))
2880 wake_up(&log_root_tree->log_writer_wait);
2881 }
2882
4a500fd1 2883 if (ret) {
d1433deb
MX
2884 if (!list_empty(&root_log_ctx.list))
2885 list_del_init(&root_log_ctx.list);
2886
c6adc9cc 2887 blk_finish_plug(&plug);
0b246afa 2888 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2889
79787eaa 2890 if (ret != -ENOSPC) {
66642832 2891 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2892 mutex_unlock(&log_root_tree->log_mutex);
2893 goto out;
2894 }
bf89d38f 2895 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2896 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2897 mutex_unlock(&log_root_tree->log_mutex);
2898 ret = -EAGAIN;
2899 goto out;
2900 }
2901
d1433deb 2902 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2903 blk_finish_plug(&plug);
cbd60aa7 2904 list_del_init(&root_log_ctx.list);
d1433deb
MX
2905 mutex_unlock(&log_root_tree->log_mutex);
2906 ret = root_log_ctx.log_ret;
2907 goto out;
2908 }
8b050d35 2909
d1433deb 2910 index2 = root_log_ctx.log_transid % 2;
7237f183 2911 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2912 blk_finish_plug(&plug);
bf89d38f 2913 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 2914 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 2915 wait_log_commit(log_root_tree,
d1433deb 2916 root_log_ctx.log_transid);
7237f183 2917 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2918 if (!ret)
2919 ret = root_log_ctx.log_ret;
7237f183
YZ
2920 goto out;
2921 }
d1433deb 2922 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2923 atomic_set(&log_root_tree->log_commit[index2], 1);
2924
12fcfd22 2925 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 2926 wait_log_commit(log_root_tree,
d1433deb 2927 root_log_ctx.log_transid - 1);
12fcfd22
CM
2928 }
2929
60d53eb3 2930 wait_for_writer(log_root_tree);
7237f183 2931
12fcfd22
CM
2932 /*
2933 * now that we've moved on to the tree of log tree roots,
2934 * check the full commit flag again
2935 */
0b246afa 2936 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 2937 blk_finish_plug(&plug);
bf89d38f 2938 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2939 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2940 mutex_unlock(&log_root_tree->log_mutex);
2941 ret = -EAGAIN;
2942 goto out_wake_log_root;
2943 }
7237f183 2944
2ff7e61e 2945 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
2946 &log_root_tree->dirty_log_pages,
2947 EXTENT_DIRTY | EXTENT_NEW);
2948 blk_finish_plug(&plug);
79787eaa 2949 if (ret) {
0b246afa 2950 btrfs_set_log_full_commit(fs_info, trans);
66642832 2951 btrfs_abort_transaction(trans, ret);
2ab28f32 2952 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2953 mutex_unlock(&log_root_tree->log_mutex);
2954 goto out_wake_log_root;
2955 }
bf89d38f 2956 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 2957 if (!ret)
bf89d38f
JM
2958 ret = btrfs_wait_tree_log_extents(log_root_tree,
2959 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 2960 if (ret) {
0b246afa 2961 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
2962 btrfs_free_logged_extents(log, log_transid);
2963 mutex_unlock(&log_root_tree->log_mutex);
2964 goto out_wake_log_root;
2965 }
50d9aa99 2966 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2967
0b246afa
JM
2968 btrfs_set_super_log_root(fs_info->super_for_commit,
2969 log_root_tree->node->start);
2970 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2971 btrfs_header_level(log_root_tree->node));
e02119d5 2972
7237f183 2973 log_root_tree->log_transid++;
7237f183
YZ
2974 mutex_unlock(&log_root_tree->log_mutex);
2975
2976 /*
2977 * nobody else is going to jump in and write the the ctree
2978 * super here because the log_commit atomic below is protecting
2979 * us. We must be called with a transaction handle pinning
2980 * the running transaction open, so a full commit can't hop
2981 * in and cause problems either.
2982 */
eece6a9c 2983 ret = write_all_supers(fs_info, 1);
5af3e8cc 2984 if (ret) {
0b246afa 2985 btrfs_set_log_full_commit(fs_info, trans);
66642832 2986 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
2987 goto out_wake_log_root;
2988 }
7237f183 2989
257c62e1
CM
2990 mutex_lock(&root->log_mutex);
2991 if (root->last_log_commit < log_transid)
2992 root->last_log_commit = log_transid;
2993 mutex_unlock(&root->log_mutex);
2994
12fcfd22 2995out_wake_log_root:
570dd450 2996 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
2997 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2998
d1433deb 2999 log_root_tree->log_transid_committed++;
7237f183 3000 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3001 mutex_unlock(&log_root_tree->log_mutex);
3002
33a9eca7
DS
3003 /*
3004 * The barrier before waitqueue_active is implied by mutex_unlock
3005 */
7237f183
YZ
3006 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3007 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3008out:
d1433deb 3009 mutex_lock(&root->log_mutex);
570dd450 3010 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3011 root->log_transid_committed++;
7237f183 3012 atomic_set(&root->log_commit[index1], 0);
d1433deb 3013 mutex_unlock(&root->log_mutex);
8b050d35 3014
33a9eca7
DS
3015 /*
3016 * The barrier before waitqueue_active is implied by mutex_unlock
3017 */
7237f183
YZ
3018 if (waitqueue_active(&root->log_commit_wait[index1]))
3019 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3020 return ret;
e02119d5
CM
3021}
3022
4a500fd1
YZ
3023static void free_log_tree(struct btrfs_trans_handle *trans,
3024 struct btrfs_root *log)
e02119d5
CM
3025{
3026 int ret;
d0c803c4
CM
3027 u64 start;
3028 u64 end;
e02119d5
CM
3029 struct walk_control wc = {
3030 .free = 1,
3031 .process_func = process_one_buffer
3032 };
3033
681ae509
JB
3034 ret = walk_log_tree(trans, log, &wc);
3035 /* I don't think this can happen but just in case */
3036 if (ret)
66642832 3037 btrfs_abort_transaction(trans, ret);
e02119d5 3038
d397712b 3039 while (1) {
d0c803c4 3040 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
3041 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3042 NULL);
d0c803c4
CM
3043 if (ret)
3044 break;
3045
8cef4e16 3046 clear_extent_bits(&log->dirty_log_pages, start, end,
91166212 3047 EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
3048 }
3049
2ab28f32
JB
3050 /*
3051 * We may have short-circuited the log tree with the full commit logic
3052 * and left ordered extents on our list, so clear these out to keep us
3053 * from leaking inodes and memory.
3054 */
3055 btrfs_free_logged_extents(log, 0);
3056 btrfs_free_logged_extents(log, 1);
3057
7237f183
YZ
3058 free_extent_buffer(log->node);
3059 kfree(log);
4a500fd1
YZ
3060}
3061
3062/*
3063 * free all the extents used by the tree log. This should be called
3064 * at commit time of the full transaction
3065 */
3066int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3067{
3068 if (root->log_root) {
3069 free_log_tree(trans, root->log_root);
3070 root->log_root = NULL;
3071 }
3072 return 0;
3073}
3074
3075int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3076 struct btrfs_fs_info *fs_info)
3077{
3078 if (fs_info->log_root_tree) {
3079 free_log_tree(trans, fs_info->log_root_tree);
3080 fs_info->log_root_tree = NULL;
3081 }
e02119d5
CM
3082 return 0;
3083}
3084
e02119d5
CM
3085/*
3086 * If both a file and directory are logged, and unlinks or renames are
3087 * mixed in, we have a few interesting corners:
3088 *
3089 * create file X in dir Y
3090 * link file X to X.link in dir Y
3091 * fsync file X
3092 * unlink file X but leave X.link
3093 * fsync dir Y
3094 *
3095 * After a crash we would expect only X.link to exist. But file X
3096 * didn't get fsync'd again so the log has back refs for X and X.link.
3097 *
3098 * We solve this by removing directory entries and inode backrefs from the
3099 * log when a file that was logged in the current transaction is
3100 * unlinked. Any later fsync will include the updated log entries, and
3101 * we'll be able to reconstruct the proper directory items from backrefs.
3102 *
3103 * This optimizations allows us to avoid relogging the entire inode
3104 * or the entire directory.
3105 */
3106int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3107 struct btrfs_root *root,
3108 const char *name, int name_len,
49f34d1f 3109 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3110{
3111 struct btrfs_root *log;
3112 struct btrfs_dir_item *di;
3113 struct btrfs_path *path;
3114 int ret;
4a500fd1 3115 int err = 0;
e02119d5 3116 int bytes_del = 0;
49f34d1f 3117 u64 dir_ino = btrfs_ino(dir);
e02119d5 3118
49f34d1f 3119 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3120 return 0;
3121
e02119d5
CM
3122 ret = join_running_log_trans(root);
3123 if (ret)
3124 return 0;
3125
49f34d1f 3126 mutex_lock(&dir->log_mutex);
e02119d5
CM
3127
3128 log = root->log_root;
3129 path = btrfs_alloc_path();
a62f44a5
TI
3130 if (!path) {
3131 err = -ENOMEM;
3132 goto out_unlock;
3133 }
2a29edc6 3134
33345d01 3135 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3136 name, name_len, -1);
4a500fd1
YZ
3137 if (IS_ERR(di)) {
3138 err = PTR_ERR(di);
3139 goto fail;
3140 }
3141 if (di) {
e02119d5
CM
3142 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3143 bytes_del += name_len;
3650860b
JB
3144 if (ret) {
3145 err = ret;
3146 goto fail;
3147 }
e02119d5 3148 }
b3b4aa74 3149 btrfs_release_path(path);
33345d01 3150 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3151 index, name, name_len, -1);
4a500fd1
YZ
3152 if (IS_ERR(di)) {
3153 err = PTR_ERR(di);
3154 goto fail;
3155 }
3156 if (di) {
e02119d5
CM
3157 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3158 bytes_del += name_len;
3650860b
JB
3159 if (ret) {
3160 err = ret;
3161 goto fail;
3162 }
e02119d5
CM
3163 }
3164
3165 /* update the directory size in the log to reflect the names
3166 * we have removed
3167 */
3168 if (bytes_del) {
3169 struct btrfs_key key;
3170
33345d01 3171 key.objectid = dir_ino;
e02119d5
CM
3172 key.offset = 0;
3173 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3174 btrfs_release_path(path);
e02119d5
CM
3175
3176 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3177 if (ret < 0) {
3178 err = ret;
3179 goto fail;
3180 }
e02119d5
CM
3181 if (ret == 0) {
3182 struct btrfs_inode_item *item;
3183 u64 i_size;
3184
3185 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3186 struct btrfs_inode_item);
3187 i_size = btrfs_inode_size(path->nodes[0], item);
3188 if (i_size > bytes_del)
3189 i_size -= bytes_del;
3190 else
3191 i_size = 0;
3192 btrfs_set_inode_size(path->nodes[0], item, i_size);
3193 btrfs_mark_buffer_dirty(path->nodes[0]);
3194 } else
3195 ret = 0;
b3b4aa74 3196 btrfs_release_path(path);
e02119d5 3197 }
4a500fd1 3198fail:
e02119d5 3199 btrfs_free_path(path);
a62f44a5 3200out_unlock:
49f34d1f 3201 mutex_unlock(&dir->log_mutex);
4a500fd1 3202 if (ret == -ENOSPC) {
995946dd 3203 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3204 ret = 0;
79787eaa 3205 } else if (ret < 0)
66642832 3206 btrfs_abort_transaction(trans, ret);
79787eaa 3207
12fcfd22 3208 btrfs_end_log_trans(root);
e02119d5 3209
411fc6bc 3210 return err;
e02119d5
CM
3211}
3212
3213/* see comments for btrfs_del_dir_entries_in_log */
3214int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3215 struct btrfs_root *root,
3216 const char *name, int name_len,
a491abb2 3217 struct btrfs_inode *inode, u64 dirid)
e02119d5 3218{
0b246afa 3219 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3220 struct btrfs_root *log;
3221 u64 index;
3222 int ret;
3223
a491abb2 3224 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3225 return 0;
3226
e02119d5
CM
3227 ret = join_running_log_trans(root);
3228 if (ret)
3229 return 0;
3230 log = root->log_root;
a491abb2 3231 mutex_lock(&inode->log_mutex);
e02119d5 3232
a491abb2 3233 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3234 dirid, &index);
a491abb2 3235 mutex_unlock(&inode->log_mutex);
4a500fd1 3236 if (ret == -ENOSPC) {
0b246afa 3237 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3238 ret = 0;
79787eaa 3239 } else if (ret < 0 && ret != -ENOENT)
66642832 3240 btrfs_abort_transaction(trans, ret);
12fcfd22 3241 btrfs_end_log_trans(root);
e02119d5 3242
e02119d5
CM
3243 return ret;
3244}
3245
3246/*
3247 * creates a range item in the log for 'dirid'. first_offset and
3248 * last_offset tell us which parts of the key space the log should
3249 * be considered authoritative for.
3250 */
3251static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3252 struct btrfs_root *log,
3253 struct btrfs_path *path,
3254 int key_type, u64 dirid,
3255 u64 first_offset, u64 last_offset)
3256{
3257 int ret;
3258 struct btrfs_key key;
3259 struct btrfs_dir_log_item *item;
3260
3261 key.objectid = dirid;
3262 key.offset = first_offset;
3263 if (key_type == BTRFS_DIR_ITEM_KEY)
3264 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3265 else
3266 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3267 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3268 if (ret)
3269 return ret;
e02119d5
CM
3270
3271 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3272 struct btrfs_dir_log_item);
3273 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3274 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3275 btrfs_release_path(path);
e02119d5
CM
3276 return 0;
3277}
3278
3279/*
3280 * log all the items included in the current transaction for a given
3281 * directory. This also creates the range items in the log tree required
3282 * to replay anything deleted before the fsync
3283 */
3284static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3285 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3286 struct btrfs_path *path,
3287 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3288 struct btrfs_log_ctx *ctx,
e02119d5
CM
3289 u64 min_offset, u64 *last_offset_ret)
3290{
3291 struct btrfs_key min_key;
e02119d5
CM
3292 struct btrfs_root *log = root->log_root;
3293 struct extent_buffer *src;
4a500fd1 3294 int err = 0;
e02119d5
CM
3295 int ret;
3296 int i;
3297 int nritems;
3298 u64 first_offset = min_offset;
3299 u64 last_offset = (u64)-1;
684a5773 3300 u64 ino = btrfs_ino(inode);
e02119d5
CM
3301
3302 log = root->log_root;
e02119d5 3303
33345d01 3304 min_key.objectid = ino;
e02119d5
CM
3305 min_key.type = key_type;
3306 min_key.offset = min_offset;
3307
6174d3cb 3308 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3309
3310 /*
3311 * we didn't find anything from this transaction, see if there
3312 * is anything at all
3313 */
33345d01
LZ
3314 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3315 min_key.objectid = ino;
e02119d5
CM
3316 min_key.type = key_type;
3317 min_key.offset = (u64)-1;
b3b4aa74 3318 btrfs_release_path(path);
e02119d5
CM
3319 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3320 if (ret < 0) {
b3b4aa74 3321 btrfs_release_path(path);
e02119d5
CM
3322 return ret;
3323 }
33345d01 3324 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3325
3326 /* if ret == 0 there are items for this type,
3327 * create a range to tell us the last key of this type.
3328 * otherwise, there are no items in this directory after
3329 * *min_offset, and we create a range to indicate that.
3330 */
3331 if (ret == 0) {
3332 struct btrfs_key tmp;
3333 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3334 path->slots[0]);
d397712b 3335 if (key_type == tmp.type)
e02119d5 3336 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3337 }
3338 goto done;
3339 }
3340
3341 /* go backward to find any previous key */
33345d01 3342 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3343 if (ret == 0) {
3344 struct btrfs_key tmp;
3345 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3346 if (key_type == tmp.type) {
3347 first_offset = tmp.offset;
3348 ret = overwrite_item(trans, log, dst_path,
3349 path->nodes[0], path->slots[0],
3350 &tmp);
4a500fd1
YZ
3351 if (ret) {
3352 err = ret;
3353 goto done;
3354 }
e02119d5
CM
3355 }
3356 }
b3b4aa74 3357 btrfs_release_path(path);
e02119d5
CM
3358
3359 /* find the first key from this transaction again */
3360 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3361 if (WARN_ON(ret != 0))
e02119d5 3362 goto done;
e02119d5
CM
3363
3364 /*
3365 * we have a block from this transaction, log every item in it
3366 * from our directory
3367 */
d397712b 3368 while (1) {
e02119d5
CM
3369 struct btrfs_key tmp;
3370 src = path->nodes[0];
3371 nritems = btrfs_header_nritems(src);
3372 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3373 struct btrfs_dir_item *di;
3374
e02119d5
CM
3375 btrfs_item_key_to_cpu(src, &min_key, i);
3376
33345d01 3377 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3378 goto done;
3379 ret = overwrite_item(trans, log, dst_path, src, i,
3380 &min_key);
4a500fd1
YZ
3381 if (ret) {
3382 err = ret;
3383 goto done;
3384 }
2f2ff0ee
FM
3385
3386 /*
3387 * We must make sure that when we log a directory entry,
3388 * the corresponding inode, after log replay, has a
3389 * matching link count. For example:
3390 *
3391 * touch foo
3392 * mkdir mydir
3393 * sync
3394 * ln foo mydir/bar
3395 * xfs_io -c "fsync" mydir
3396 * <crash>
3397 * <mount fs and log replay>
3398 *
3399 * Would result in a fsync log that when replayed, our
3400 * file inode would have a link count of 1, but we get
3401 * two directory entries pointing to the same inode.
3402 * After removing one of the names, it would not be
3403 * possible to remove the other name, which resulted
3404 * always in stale file handle errors, and would not
3405 * be possible to rmdir the parent directory, since
3406 * its i_size could never decrement to the value
3407 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3408 */
3409 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3410 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3411 if (ctx &&
3412 (btrfs_dir_transid(src, di) == trans->transid ||
3413 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3414 tmp.type != BTRFS_ROOT_ITEM_KEY)
3415 ctx->log_new_dentries = true;
e02119d5
CM
3416 }
3417 path->slots[0] = nritems;
3418
3419 /*
3420 * look ahead to the next item and see if it is also
3421 * from this directory and from this transaction
3422 */
3423 ret = btrfs_next_leaf(root, path);
3424 if (ret == 1) {
3425 last_offset = (u64)-1;
3426 goto done;
3427 }
3428 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3429 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3430 last_offset = (u64)-1;
3431 goto done;
3432 }
3433 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3434 ret = overwrite_item(trans, log, dst_path,
3435 path->nodes[0], path->slots[0],
3436 &tmp);
4a500fd1
YZ
3437 if (ret)
3438 err = ret;
3439 else
3440 last_offset = tmp.offset;
e02119d5
CM
3441 goto done;
3442 }
3443 }
3444done:
b3b4aa74
DS
3445 btrfs_release_path(path);
3446 btrfs_release_path(dst_path);
e02119d5 3447
4a500fd1
YZ
3448 if (err == 0) {
3449 *last_offset_ret = last_offset;
3450 /*
3451 * insert the log range keys to indicate where the log
3452 * is valid
3453 */
3454 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3455 ino, first_offset, last_offset);
4a500fd1
YZ
3456 if (ret)
3457 err = ret;
3458 }
3459 return err;
e02119d5
CM
3460}
3461
3462/*
3463 * logging directories is very similar to logging inodes, We find all the items
3464 * from the current transaction and write them to the log.
3465 *
3466 * The recovery code scans the directory in the subvolume, and if it finds a
3467 * key in the range logged that is not present in the log tree, then it means
3468 * that dir entry was unlinked during the transaction.
3469 *
3470 * In order for that scan to work, we must include one key smaller than
3471 * the smallest logged by this transaction and one key larger than the largest
3472 * key logged by this transaction.
3473 */
3474static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3475 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3476 struct btrfs_path *path,
2f2ff0ee
FM
3477 struct btrfs_path *dst_path,
3478 struct btrfs_log_ctx *ctx)
e02119d5
CM
3479{
3480 u64 min_key;
3481 u64 max_key;
3482 int ret;
3483 int key_type = BTRFS_DIR_ITEM_KEY;
3484
3485again:
3486 min_key = 0;
3487 max_key = 0;
d397712b 3488 while (1) {
dbf39ea4
NB
3489 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3490 ctx, min_key, &max_key);
4a500fd1
YZ
3491 if (ret)
3492 return ret;
e02119d5
CM
3493 if (max_key == (u64)-1)
3494 break;
3495 min_key = max_key + 1;
3496 }
3497
3498 if (key_type == BTRFS_DIR_ITEM_KEY) {
3499 key_type = BTRFS_DIR_INDEX_KEY;
3500 goto again;
3501 }
3502 return 0;
3503}
3504
3505/*
3506 * a helper function to drop items from the log before we relog an
3507 * inode. max_key_type indicates the highest item type to remove.
3508 * This cannot be run for file data extents because it does not
3509 * free the extents they point to.
3510 */
3511static int drop_objectid_items(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *log,
3513 struct btrfs_path *path,
3514 u64 objectid, int max_key_type)
3515{
3516 int ret;
3517 struct btrfs_key key;
3518 struct btrfs_key found_key;
18ec90d6 3519 int start_slot;
e02119d5
CM
3520
3521 key.objectid = objectid;
3522 key.type = max_key_type;
3523 key.offset = (u64)-1;
3524
d397712b 3525 while (1) {
e02119d5 3526 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3527 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3528 if (ret < 0)
e02119d5
CM
3529 break;
3530
3531 if (path->slots[0] == 0)
3532 break;
3533
3534 path->slots[0]--;
3535 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3536 path->slots[0]);
3537
3538 if (found_key.objectid != objectid)
3539 break;
3540
18ec90d6
JB
3541 found_key.offset = 0;
3542 found_key.type = 0;
3543 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3544 &start_slot);
3545
3546 ret = btrfs_del_items(trans, log, path, start_slot,
3547 path->slots[0] - start_slot + 1);
3548 /*
3549 * If start slot isn't 0 then we don't need to re-search, we've
3550 * found the last guy with the objectid in this tree.
3551 */
3552 if (ret || start_slot != 0)
65a246c5 3553 break;
b3b4aa74 3554 btrfs_release_path(path);
e02119d5 3555 }
b3b4aa74 3556 btrfs_release_path(path);
5bdbeb21
JB
3557 if (ret > 0)
3558 ret = 0;
4a500fd1 3559 return ret;
e02119d5
CM
3560}
3561
94edf4ae
JB
3562static void fill_inode_item(struct btrfs_trans_handle *trans,
3563 struct extent_buffer *leaf,
3564 struct btrfs_inode_item *item,
1a4bcf47
FM
3565 struct inode *inode, int log_inode_only,
3566 u64 logged_isize)
94edf4ae 3567{
0b1c6cca
JB
3568 struct btrfs_map_token token;
3569
3570 btrfs_init_map_token(&token);
94edf4ae
JB
3571
3572 if (log_inode_only) {
3573 /* set the generation to zero so the recover code
3574 * can tell the difference between an logging
3575 * just to say 'this inode exists' and a logging
3576 * to say 'update this inode with these values'
3577 */
0b1c6cca 3578 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3579 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3580 } else {
0b1c6cca
JB
3581 btrfs_set_token_inode_generation(leaf, item,
3582 BTRFS_I(inode)->generation,
3583 &token);
3584 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3585 }
3586
3587 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3588 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3589 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3590 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3591
a937b979 3592 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3593 inode->i_atime.tv_sec, &token);
a937b979 3594 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3595 inode->i_atime.tv_nsec, &token);
3596
a937b979 3597 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3598 inode->i_mtime.tv_sec, &token);
a937b979 3599 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3600 inode->i_mtime.tv_nsec, &token);
3601
a937b979 3602 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3603 inode->i_ctime.tv_sec, &token);
a937b979 3604 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3605 inode->i_ctime.tv_nsec, &token);
3606
3607 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3608 &token);
3609
3610 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3611 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3612 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3613 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3614 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3615}
3616
a95249b3
JB
3617static int log_inode_item(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3619 struct btrfs_inode *inode)
a95249b3
JB
3620{
3621 struct btrfs_inode_item *inode_item;
a95249b3
JB
3622 int ret;
3623
efd0c405 3624 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3625 &inode->location, sizeof(*inode_item));
a95249b3
JB
3626 if (ret && ret != -EEXIST)
3627 return ret;
3628 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3629 struct btrfs_inode_item);
6d889a3b
NB
3630 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3631 0, 0);
a95249b3
JB
3632 btrfs_release_path(path);
3633 return 0;
3634}
3635
31ff1cd2 3636static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3637 struct btrfs_inode *inode,
31ff1cd2 3638 struct btrfs_path *dst_path,
16e7549f 3639 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3640 int start_slot, int nr, int inode_only,
3641 u64 logged_isize)
31ff1cd2 3642{
44d70e19 3643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3644 unsigned long src_offset;
3645 unsigned long dst_offset;
44d70e19 3646 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3647 struct btrfs_file_extent_item *extent;
3648 struct btrfs_inode_item *inode_item;
16e7549f
JB
3649 struct extent_buffer *src = src_path->nodes[0];
3650 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3651 int ret;
3652 struct btrfs_key *ins_keys;
3653 u32 *ins_sizes;
3654 char *ins_data;
3655 int i;
d20f7043 3656 struct list_head ordered_sums;
44d70e19 3657 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3658 bool has_extents = false;
74121f7c 3659 bool need_find_last_extent = true;
16e7549f 3660 bool done = false;
d20f7043
CM
3661
3662 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3663
3664 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3665 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3666 if (!ins_data)
3667 return -ENOMEM;
3668
16e7549f
JB
3669 first_key.objectid = (u64)-1;
3670
31ff1cd2
CM
3671 ins_sizes = (u32 *)ins_data;
3672 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3673
3674 for (i = 0; i < nr; i++) {
3675 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3676 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3677 }
3678 ret = btrfs_insert_empty_items(trans, log, dst_path,
3679 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3680 if (ret) {
3681 kfree(ins_data);
3682 return ret;
3683 }
31ff1cd2 3684
5d4f98a2 3685 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3686 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3687 dst_path->slots[0]);
3688
3689 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3690
0dde10be 3691 if (i == nr - 1)
16e7549f
JB
3692 last_key = ins_keys[i];
3693
94edf4ae 3694 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3695 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3696 dst_path->slots[0],
3697 struct btrfs_inode_item);
94edf4ae 3698 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3699 &inode->vfs_inode,
3700 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3701 logged_isize);
94edf4ae
JB
3702 } else {
3703 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3704 src_offset, ins_sizes[i]);
31ff1cd2 3705 }
94edf4ae 3706
16e7549f
JB
3707 /*
3708 * We set need_find_last_extent here in case we know we were
3709 * processing other items and then walk into the first extent in
3710 * the inode. If we don't hit an extent then nothing changes,
3711 * we'll do the last search the next time around.
3712 */
3713 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3714 has_extents = true;
74121f7c 3715 if (first_key.objectid == (u64)-1)
16e7549f
JB
3716 first_key = ins_keys[i];
3717 } else {
3718 need_find_last_extent = false;
3719 }
3720
31ff1cd2
CM
3721 /* take a reference on file data extents so that truncates
3722 * or deletes of this inode don't have to relog the inode
3723 * again
3724 */
962a298f 3725 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3726 !skip_csum) {
31ff1cd2
CM
3727 int found_type;
3728 extent = btrfs_item_ptr(src, start_slot + i,
3729 struct btrfs_file_extent_item);
3730
8e531cdf 3731 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3732 continue;
3733
31ff1cd2 3734 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3735 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3736 u64 ds, dl, cs, cl;
3737 ds = btrfs_file_extent_disk_bytenr(src,
3738 extent);
3739 /* ds == 0 is a hole */
3740 if (ds == 0)
3741 continue;
3742
3743 dl = btrfs_file_extent_disk_num_bytes(src,
3744 extent);
3745 cs = btrfs_file_extent_offset(src, extent);
3746 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3747 extent);
580afd76
CM
3748 if (btrfs_file_extent_compression(src,
3749 extent)) {
3750 cs = 0;
3751 cl = dl;
3752 }
5d4f98a2
YZ
3753
3754 ret = btrfs_lookup_csums_range(
0b246afa 3755 fs_info->csum_root,
5d4f98a2 3756 ds + cs, ds + cs + cl - 1,
a2de733c 3757 &ordered_sums, 0);
3650860b
JB
3758 if (ret) {
3759 btrfs_release_path(dst_path);
3760 kfree(ins_data);
3761 return ret;
3762 }
31ff1cd2
CM
3763 }
3764 }
31ff1cd2
CM
3765 }
3766
3767 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3768 btrfs_release_path(dst_path);
31ff1cd2 3769 kfree(ins_data);
d20f7043
CM
3770
3771 /*
3772 * we have to do this after the loop above to avoid changing the
3773 * log tree while trying to change the log tree.
3774 */
4a500fd1 3775 ret = 0;
d397712b 3776 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3777 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3778 struct btrfs_ordered_sum,
3779 list);
4a500fd1
YZ
3780 if (!ret)
3781 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3782 list_del(&sums->list);
3783 kfree(sums);
3784 }
16e7549f
JB
3785
3786 if (!has_extents)
3787 return ret;
3788
74121f7c
FM
3789 if (need_find_last_extent && *last_extent == first_key.offset) {
3790 /*
3791 * We don't have any leafs between our current one and the one
3792 * we processed before that can have file extent items for our
3793 * inode (and have a generation number smaller than our current
3794 * transaction id).
3795 */
3796 need_find_last_extent = false;
3797 }
3798
16e7549f
JB
3799 /*
3800 * Because we use btrfs_search_forward we could skip leaves that were
3801 * not modified and then assume *last_extent is valid when it really
3802 * isn't. So back up to the previous leaf and read the end of the last
3803 * extent before we go and fill in holes.
3804 */
3805 if (need_find_last_extent) {
3806 u64 len;
3807
44d70e19 3808 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3809 if (ret < 0)
3810 return ret;
3811 if (ret)
3812 goto fill_holes;
3813 if (src_path->slots[0])
3814 src_path->slots[0]--;
3815 src = src_path->nodes[0];
3816 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3817 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3818 key.type != BTRFS_EXTENT_DATA_KEY)
3819 goto fill_holes;
3820 extent = btrfs_item_ptr(src, src_path->slots[0],
3821 struct btrfs_file_extent_item);
3822 if (btrfs_file_extent_type(src, extent) ==
3823 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3824 len = btrfs_file_extent_inline_len(src,
3825 src_path->slots[0],
3826 extent);
16e7549f 3827 *last_extent = ALIGN(key.offset + len,
0b246afa 3828 fs_info->sectorsize);
16e7549f
JB
3829 } else {
3830 len = btrfs_file_extent_num_bytes(src, extent);
3831 *last_extent = key.offset + len;
3832 }
3833 }
3834fill_holes:
3835 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3836 * things could have happened
3837 *
3838 * 1) A merge could have happened, so we could currently be on a leaf
3839 * that holds what we were copying in the first place.
3840 * 2) A split could have happened, and now not all of the items we want
3841 * are on the same leaf.
3842 *
3843 * So we need to adjust how we search for holes, we need to drop the
3844 * path and re-search for the first extent key we found, and then walk
3845 * forward until we hit the last one we copied.
3846 */
3847 if (need_find_last_extent) {
3848 /* btrfs_prev_leaf could return 1 without releasing the path */
3849 btrfs_release_path(src_path);
f85b7379
DS
3850 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3851 src_path, 0, 0);
16e7549f
JB
3852 if (ret < 0)
3853 return ret;
3854 ASSERT(ret == 0);
3855 src = src_path->nodes[0];
3856 i = src_path->slots[0];
3857 } else {
3858 i = start_slot;
3859 }
3860
3861 /*
3862 * Ok so here we need to go through and fill in any holes we may have
3863 * to make sure that holes are punched for those areas in case they had
3864 * extents previously.
3865 */
3866 while (!done) {
3867 u64 offset, len;
3868 u64 extent_end;
3869
3870 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3871 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3872 if (ret < 0)
3873 return ret;
3874 ASSERT(ret == 0);
3875 src = src_path->nodes[0];
3876 i = 0;
3877 }
3878
3879 btrfs_item_key_to_cpu(src, &key, i);
3880 if (!btrfs_comp_cpu_keys(&key, &last_key))
3881 done = true;
44d70e19 3882 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3883 key.type != BTRFS_EXTENT_DATA_KEY) {
3884 i++;
3885 continue;
3886 }
3887 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3888 if (btrfs_file_extent_type(src, extent) ==
3889 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3890 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3891 extent_end = ALIGN(key.offset + len,
0b246afa 3892 fs_info->sectorsize);
16e7549f
JB
3893 } else {
3894 len = btrfs_file_extent_num_bytes(src, extent);
3895 extent_end = key.offset + len;
3896 }
3897 i++;
3898
3899 if (*last_extent == key.offset) {
3900 *last_extent = extent_end;
3901 continue;
3902 }
3903 offset = *last_extent;
3904 len = key.offset - *last_extent;
44d70e19 3905 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 3906 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
3907 if (ret)
3908 break;
74121f7c 3909 *last_extent = extent_end;
16e7549f
JB
3910 }
3911 /*
3912 * Need to let the callers know we dropped the path so they should
3913 * re-search.
3914 */
3915 if (!ret && need_find_last_extent)
3916 ret = 1;
4a500fd1 3917 return ret;
31ff1cd2
CM
3918}
3919
5dc562c5
JB
3920static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3921{
3922 struct extent_map *em1, *em2;
3923
3924 em1 = list_entry(a, struct extent_map, list);
3925 em2 = list_entry(b, struct extent_map, list);
3926
3927 if (em1->start < em2->start)
3928 return -1;
3929 else if (em1->start > em2->start)
3930 return 1;
3931 return 0;
3932}
3933
8407f553
FM
3934static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3935 struct inode *inode,
3936 struct btrfs_root *root,
3937 const struct extent_map *em,
3938 const struct list_head *logged_list,
3939 bool *ordered_io_error)
5dc562c5 3940{
0b246afa 3941 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 3942 struct btrfs_ordered_extent *ordered;
8407f553 3943 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3944 u64 mod_start = em->mod_start;
3945 u64 mod_len = em->mod_len;
8407f553 3946 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3947 u64 csum_offset;
3948 u64 csum_len;
8407f553
FM
3949 LIST_HEAD(ordered_sums);
3950 int ret = 0;
0aa4a17d 3951
8407f553 3952 *ordered_io_error = false;
0aa4a17d 3953
8407f553
FM
3954 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3955 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3956 return 0;
5dc562c5 3957
2ab28f32 3958 /*
8407f553
FM
3959 * Wait far any ordered extent that covers our extent map. If it
3960 * finishes without an error, first check and see if our csums are on
3961 * our outstanding ordered extents.
2ab28f32 3962 */
827463c4 3963 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3964 struct btrfs_ordered_sum *sum;
3965
3966 if (!mod_len)
3967 break;
3968
2ab28f32
JB
3969 if (ordered->file_offset + ordered->len <= mod_start ||
3970 mod_start + mod_len <= ordered->file_offset)
3971 continue;
3972
8407f553
FM
3973 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3974 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3975 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3976 const u64 start = ordered->file_offset;
3977 const u64 end = ordered->file_offset + ordered->len - 1;
3978
3979 WARN_ON(ordered->inode != inode);
3980 filemap_fdatawrite_range(inode->i_mapping, start, end);
3981 }
3982
3983 wait_event(ordered->wait,
3984 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3985 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3986
3987 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3988 /*
3989 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3990 * i_mapping flags, so that the next fsync won't get
3991 * an outdated io error too.
3992 */
f0312210 3993 filemap_check_errors(inode->i_mapping);
8407f553
FM
3994 *ordered_io_error = true;
3995 break;
3996 }
2ab28f32
JB
3997 /*
3998 * We are going to copy all the csums on this ordered extent, so
3999 * go ahead and adjust mod_start and mod_len in case this
4000 * ordered extent has already been logged.
4001 */
4002 if (ordered->file_offset > mod_start) {
4003 if (ordered->file_offset + ordered->len >=
4004 mod_start + mod_len)
4005 mod_len = ordered->file_offset - mod_start;
4006 /*
4007 * If we have this case
4008 *
4009 * |--------- logged extent ---------|
4010 * |----- ordered extent ----|
4011 *
4012 * Just don't mess with mod_start and mod_len, we'll
4013 * just end up logging more csums than we need and it
4014 * will be ok.
4015 */
4016 } else {
4017 if (ordered->file_offset + ordered->len <
4018 mod_start + mod_len) {
4019 mod_len = (mod_start + mod_len) -
4020 (ordered->file_offset + ordered->len);
4021 mod_start = ordered->file_offset +
4022 ordered->len;
4023 } else {
4024 mod_len = 0;
4025 }
4026 }
4027
8407f553
FM
4028 if (skip_csum)
4029 continue;
4030
2ab28f32
JB
4031 /*
4032 * To keep us from looping for the above case of an ordered
4033 * extent that falls inside of the logged extent.
4034 */
4035 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4036 &ordered->flags))
4037 continue;
2ab28f32 4038
2ab28f32
JB
4039 list_for_each_entry(sum, &ordered->list, list) {
4040 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4041 if (ret)
8407f553 4042 break;
2ab28f32 4043 }
2ab28f32 4044 }
2ab28f32 4045
8407f553 4046 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4047 return ret;
4048
488111aa
FDBM
4049 if (em->compress_type) {
4050 csum_offset = 0;
8407f553 4051 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4052 } else {
4053 csum_offset = mod_start - em->start;
4054 csum_len = mod_len;
4055 }
2ab28f32 4056
70c8a91c 4057 /* block start is already adjusted for the file extent offset. */
0b246afa 4058 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4059 em->block_start + csum_offset,
4060 em->block_start + csum_offset +
4061 csum_len - 1, &ordered_sums, 0);
4062 if (ret)
4063 return ret;
5dc562c5 4064
70c8a91c
JB
4065 while (!list_empty(&ordered_sums)) {
4066 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4067 struct btrfs_ordered_sum,
4068 list);
4069 if (!ret)
4070 ret = btrfs_csum_file_blocks(trans, log, sums);
4071 list_del(&sums->list);
4072 kfree(sums);
5dc562c5
JB
4073 }
4074
70c8a91c 4075 return ret;
5dc562c5
JB
4076}
4077
8407f553 4078static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4079 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4080 const struct extent_map *em,
4081 struct btrfs_path *path,
4082 const struct list_head *logged_list,
4083 struct btrfs_log_ctx *ctx)
4084{
4085 struct btrfs_root *log = root->log_root;
4086 struct btrfs_file_extent_item *fi;
4087 struct extent_buffer *leaf;
4088 struct btrfs_map_token token;
4089 struct btrfs_key key;
4090 u64 extent_offset = em->start - em->orig_start;
4091 u64 block_len;
4092 int ret;
4093 int extent_inserted = 0;
4094 bool ordered_io_err = false;
4095
f85b7379
DS
4096 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4097 logged_list, &ordered_io_err);
8407f553
FM
4098 if (ret)
4099 return ret;
4100
4101 if (ordered_io_err) {
4102 ctx->io_err = -EIO;
4103 return 0;
4104 }
4105
4106 btrfs_init_map_token(&token);
4107
9d122629 4108 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4109 em->start + em->len, NULL, 0, 1,
4110 sizeof(*fi), &extent_inserted);
4111 if (ret)
4112 return ret;
4113
4114 if (!extent_inserted) {
9d122629 4115 key.objectid = btrfs_ino(inode);
8407f553
FM
4116 key.type = BTRFS_EXTENT_DATA_KEY;
4117 key.offset = em->start;
4118
4119 ret = btrfs_insert_empty_item(trans, log, path, &key,
4120 sizeof(*fi));
4121 if (ret)
4122 return ret;
4123 }
4124 leaf = path->nodes[0];
4125 fi = btrfs_item_ptr(leaf, path->slots[0],
4126 struct btrfs_file_extent_item);
4127
50d9aa99 4128 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4129 &token);
4130 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4131 btrfs_set_token_file_extent_type(leaf, fi,
4132 BTRFS_FILE_EXTENT_PREALLOC,
4133 &token);
4134 else
4135 btrfs_set_token_file_extent_type(leaf, fi,
4136 BTRFS_FILE_EXTENT_REG,
4137 &token);
4138
4139 block_len = max(em->block_len, em->orig_block_len);
4140 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4141 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4142 em->block_start,
4143 &token);
4144 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4145 &token);
4146 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4147 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4148 em->block_start -
4149 extent_offset, &token);
4150 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4151 &token);
4152 } else {
4153 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4154 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4155 &token);
4156 }
4157
4158 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4159 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4160 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4161 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4162 &token);
4163 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4164 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4165 btrfs_mark_buffer_dirty(leaf);
4166
4167 btrfs_release_path(path);
4168
4169 return ret;
4170}
4171
5dc562c5
JB
4172static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root,
9d122629 4174 struct btrfs_inode *inode,
827463c4 4175 struct btrfs_path *path,
8407f553 4176 struct list_head *logged_list,
de0ee0ed
FM
4177 struct btrfs_log_ctx *ctx,
4178 const u64 start,
4179 const u64 end)
5dc562c5 4180{
5dc562c5
JB
4181 struct extent_map *em, *n;
4182 struct list_head extents;
9d122629 4183 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4184 u64 test_gen;
4185 int ret = 0;
2ab28f32 4186 int num = 0;
5dc562c5
JB
4187
4188 INIT_LIST_HEAD(&extents);
4189
9d122629 4190 down_write(&inode->dio_sem);
5dc562c5
JB
4191 write_lock(&tree->lock);
4192 test_gen = root->fs_info->last_trans_committed;
4193
4194 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4195 list_del_init(&em->list);
2ab28f32
JB
4196
4197 /*
4198 * Just an arbitrary number, this can be really CPU intensive
4199 * once we start getting a lot of extents, and really once we
4200 * have a bunch of extents we just want to commit since it will
4201 * be faster.
4202 */
4203 if (++num > 32768) {
4204 list_del_init(&tree->modified_extents);
4205 ret = -EFBIG;
4206 goto process;
4207 }
4208
5dc562c5
JB
4209 if (em->generation <= test_gen)
4210 continue;
ff44c6e3 4211 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4212 refcount_inc(&em->refs);
ff44c6e3 4213 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4214 list_add_tail(&em->list, &extents);
2ab28f32 4215 num++;
5dc562c5
JB
4216 }
4217
4218 list_sort(NULL, &extents, extent_cmp);
9d122629 4219 btrfs_get_logged_extents(inode, logged_list, start, end);
de0ee0ed 4220 /*
5f9a8a51
FM
4221 * Some ordered extents started by fsync might have completed
4222 * before we could collect them into the list logged_list, which
4223 * means they're gone, not in our logged_list nor in the inode's
4224 * ordered tree. We want the application/user space to know an
4225 * error happened while attempting to persist file data so that
4226 * it can take proper action. If such error happened, we leave
4227 * without writing to the log tree and the fsync must report the
4228 * file data write error and not commit the current transaction.
de0ee0ed 4229 */
9d122629 4230 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4231 if (ret)
4232 ctx->io_err = ret;
2ab28f32 4233process:
5dc562c5
JB
4234 while (!list_empty(&extents)) {
4235 em = list_entry(extents.next, struct extent_map, list);
4236
4237 list_del_init(&em->list);
4238
4239 /*
4240 * If we had an error we just need to delete everybody from our
4241 * private list.
4242 */
ff44c6e3 4243 if (ret) {
201a9038 4244 clear_em_logging(tree, em);
ff44c6e3 4245 free_extent_map(em);
5dc562c5 4246 continue;
ff44c6e3
JB
4247 }
4248
4249 write_unlock(&tree->lock);
5dc562c5 4250
8407f553
FM
4251 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4252 ctx);
ff44c6e3 4253 write_lock(&tree->lock);
201a9038
JB
4254 clear_em_logging(tree, em);
4255 free_extent_map(em);
5dc562c5 4256 }
ff44c6e3
JB
4257 WARN_ON(!list_empty(&extents));
4258 write_unlock(&tree->lock);
9d122629 4259 up_write(&inode->dio_sem);
5dc562c5 4260
5dc562c5 4261 btrfs_release_path(path);
5dc562c5
JB
4262 return ret;
4263}
4264
481b01c0 4265static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4266 struct btrfs_path *path, u64 *size_ret)
4267{
4268 struct btrfs_key key;
4269 int ret;
4270
481b01c0 4271 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4272 key.type = BTRFS_INODE_ITEM_KEY;
4273 key.offset = 0;
4274
4275 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4276 if (ret < 0) {
4277 return ret;
4278 } else if (ret > 0) {
2f2ff0ee 4279 *size_ret = 0;
1a4bcf47
FM
4280 } else {
4281 struct btrfs_inode_item *item;
4282
4283 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4284 struct btrfs_inode_item);
4285 *size_ret = btrfs_inode_size(path->nodes[0], item);
4286 }
4287
4288 btrfs_release_path(path);
4289 return 0;
4290}
4291
36283bf7
FM
4292/*
4293 * At the moment we always log all xattrs. This is to figure out at log replay
4294 * time which xattrs must have their deletion replayed. If a xattr is missing
4295 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4296 * because if a xattr is deleted, the inode is fsynced and a power failure
4297 * happens, causing the log to be replayed the next time the fs is mounted,
4298 * we want the xattr to not exist anymore (same behaviour as other filesystems
4299 * with a journal, ext3/4, xfs, f2fs, etc).
4300 */
4301static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4302 struct btrfs_root *root,
1a93c36a 4303 struct btrfs_inode *inode,
36283bf7
FM
4304 struct btrfs_path *path,
4305 struct btrfs_path *dst_path)
4306{
4307 int ret;
4308 struct btrfs_key key;
1a93c36a 4309 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4310 int ins_nr = 0;
4311 int start_slot = 0;
4312
4313 key.objectid = ino;
4314 key.type = BTRFS_XATTR_ITEM_KEY;
4315 key.offset = 0;
4316
4317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4318 if (ret < 0)
4319 return ret;
4320
4321 while (true) {
4322 int slot = path->slots[0];
4323 struct extent_buffer *leaf = path->nodes[0];
4324 int nritems = btrfs_header_nritems(leaf);
4325
4326 if (slot >= nritems) {
4327 if (ins_nr > 0) {
4328 u64 last_extent = 0;
4329
1a93c36a 4330 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4331 &last_extent, start_slot,
4332 ins_nr, 1, 0);
4333 /* can't be 1, extent items aren't processed */
4334 ASSERT(ret <= 0);
4335 if (ret < 0)
4336 return ret;
4337 ins_nr = 0;
4338 }
4339 ret = btrfs_next_leaf(root, path);
4340 if (ret < 0)
4341 return ret;
4342 else if (ret > 0)
4343 break;
4344 continue;
4345 }
4346
4347 btrfs_item_key_to_cpu(leaf, &key, slot);
4348 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4349 break;
4350
4351 if (ins_nr == 0)
4352 start_slot = slot;
4353 ins_nr++;
4354 path->slots[0]++;
4355 cond_resched();
4356 }
4357 if (ins_nr > 0) {
4358 u64 last_extent = 0;
4359
1a93c36a 4360 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4361 &last_extent, start_slot,
4362 ins_nr, 1, 0);
4363 /* can't be 1, extent items aren't processed */
4364 ASSERT(ret <= 0);
4365 if (ret < 0)
4366 return ret;
4367 }
4368
4369 return 0;
4370}
4371
a89ca6f2
FM
4372/*
4373 * If the no holes feature is enabled we need to make sure any hole between the
4374 * last extent and the i_size of our inode is explicitly marked in the log. This
4375 * is to make sure that doing something like:
4376 *
4377 * 1) create file with 128Kb of data
4378 * 2) truncate file to 64Kb
4379 * 3) truncate file to 256Kb
4380 * 4) fsync file
4381 * 5) <crash/power failure>
4382 * 6) mount fs and trigger log replay
4383 *
4384 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4385 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4386 * file correspond to a hole. The presence of explicit holes in a log tree is
4387 * what guarantees that log replay will remove/adjust file extent items in the
4388 * fs/subvol tree.
4389 *
4390 * Here we do not need to care about holes between extents, that is already done
4391 * by copy_items(). We also only need to do this in the full sync path, where we
4392 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4393 * lookup the list of modified extent maps and if any represents a hole, we
4394 * insert a corresponding extent representing a hole in the log tree.
4395 */
4396static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4397 struct btrfs_root *root,
a0308dd7 4398 struct btrfs_inode *inode,
a89ca6f2
FM
4399 struct btrfs_path *path)
4400{
0b246afa 4401 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4402 int ret;
4403 struct btrfs_key key;
4404 u64 hole_start;
4405 u64 hole_size;
4406 struct extent_buffer *leaf;
4407 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4408 const u64 ino = btrfs_ino(inode);
4409 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4410
0b246afa 4411 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4412 return 0;
4413
4414 key.objectid = ino;
4415 key.type = BTRFS_EXTENT_DATA_KEY;
4416 key.offset = (u64)-1;
4417
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 ASSERT(ret != 0);
4420 if (ret < 0)
4421 return ret;
4422
4423 ASSERT(path->slots[0] > 0);
4424 path->slots[0]--;
4425 leaf = path->nodes[0];
4426 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4427
4428 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4429 /* inode does not have any extents */
4430 hole_start = 0;
4431 hole_size = i_size;
4432 } else {
4433 struct btrfs_file_extent_item *extent;
4434 u64 len;
4435
4436 /*
4437 * If there's an extent beyond i_size, an explicit hole was
4438 * already inserted by copy_items().
4439 */
4440 if (key.offset >= i_size)
4441 return 0;
4442
4443 extent = btrfs_item_ptr(leaf, path->slots[0],
4444 struct btrfs_file_extent_item);
4445
4446 if (btrfs_file_extent_type(leaf, extent) ==
4447 BTRFS_FILE_EXTENT_INLINE) {
4448 len = btrfs_file_extent_inline_len(leaf,
4449 path->slots[0],
4450 extent);
6399fb5a
FM
4451 ASSERT(len == i_size ||
4452 (len == fs_info->sectorsize &&
4453 btrfs_file_extent_compression(leaf, extent) !=
4454 BTRFS_COMPRESS_NONE));
a89ca6f2
FM
4455 return 0;
4456 }
4457
4458 len = btrfs_file_extent_num_bytes(leaf, extent);
4459 /* Last extent goes beyond i_size, no need to log a hole. */
4460 if (key.offset + len > i_size)
4461 return 0;
4462 hole_start = key.offset + len;
4463 hole_size = i_size - hole_start;
4464 }
4465 btrfs_release_path(path);
4466
4467 /* Last extent ends at i_size. */
4468 if (hole_size == 0)
4469 return 0;
4470
0b246afa 4471 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4472 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4473 hole_size, 0, hole_size, 0, 0, 0);
4474 return ret;
4475}
4476
56f23fdb
FM
4477/*
4478 * When we are logging a new inode X, check if it doesn't have a reference that
4479 * matches the reference from some other inode Y created in a past transaction
4480 * and that was renamed in the current transaction. If we don't do this, then at
4481 * log replay time we can lose inode Y (and all its files if it's a directory):
4482 *
4483 * mkdir /mnt/x
4484 * echo "hello world" > /mnt/x/foobar
4485 * sync
4486 * mv /mnt/x /mnt/y
4487 * mkdir /mnt/x # or touch /mnt/x
4488 * xfs_io -c fsync /mnt/x
4489 * <power fail>
4490 * mount fs, trigger log replay
4491 *
4492 * After the log replay procedure, we would lose the first directory and all its
4493 * files (file foobar).
4494 * For the case where inode Y is not a directory we simply end up losing it:
4495 *
4496 * echo "123" > /mnt/foo
4497 * sync
4498 * mv /mnt/foo /mnt/bar
4499 * echo "abc" > /mnt/foo
4500 * xfs_io -c fsync /mnt/foo
4501 * <power fail>
4502 *
4503 * We also need this for cases where a snapshot entry is replaced by some other
4504 * entry (file or directory) otherwise we end up with an unreplayable log due to
4505 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4506 * if it were a regular entry:
4507 *
4508 * mkdir /mnt/x
4509 * btrfs subvolume snapshot /mnt /mnt/x/snap
4510 * btrfs subvolume delete /mnt/x/snap
4511 * rmdir /mnt/x
4512 * mkdir /mnt/x
4513 * fsync /mnt/x or fsync some new file inside it
4514 * <power fail>
4515 *
4516 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4517 * the same transaction.
4518 */
4519static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4520 const int slot,
4521 const struct btrfs_key *key,
4791c8f1 4522 struct btrfs_inode *inode,
44f714da 4523 u64 *other_ino)
56f23fdb
FM
4524{
4525 int ret;
4526 struct btrfs_path *search_path;
4527 char *name = NULL;
4528 u32 name_len = 0;
4529 u32 item_size = btrfs_item_size_nr(eb, slot);
4530 u32 cur_offset = 0;
4531 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4532
4533 search_path = btrfs_alloc_path();
4534 if (!search_path)
4535 return -ENOMEM;
4536 search_path->search_commit_root = 1;
4537 search_path->skip_locking = 1;
4538
4539 while (cur_offset < item_size) {
4540 u64 parent;
4541 u32 this_name_len;
4542 u32 this_len;
4543 unsigned long name_ptr;
4544 struct btrfs_dir_item *di;
4545
4546 if (key->type == BTRFS_INODE_REF_KEY) {
4547 struct btrfs_inode_ref *iref;
4548
4549 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4550 parent = key->offset;
4551 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4552 name_ptr = (unsigned long)(iref + 1);
4553 this_len = sizeof(*iref) + this_name_len;
4554 } else {
4555 struct btrfs_inode_extref *extref;
4556
4557 extref = (struct btrfs_inode_extref *)(ptr +
4558 cur_offset);
4559 parent = btrfs_inode_extref_parent(eb, extref);
4560 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4561 name_ptr = (unsigned long)&extref->name;
4562 this_len = sizeof(*extref) + this_name_len;
4563 }
4564
3c1d4184
SY
4565 ret = btrfs_is_name_len_valid(eb, slot, name_ptr,
4566 this_name_len);
4567 if (!ret) {
4568 ret = -EIO;
4569 goto out;
4570 }
56f23fdb
FM
4571 if (this_name_len > name_len) {
4572 char *new_name;
4573
4574 new_name = krealloc(name, this_name_len, GFP_NOFS);
4575 if (!new_name) {
4576 ret = -ENOMEM;
4577 goto out;
4578 }
4579 name_len = this_name_len;
4580 name = new_name;
4581 }
4582
4583 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4584 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4585 parent, name, this_name_len, 0);
56f23fdb 4586 if (di && !IS_ERR(di)) {
44f714da
FM
4587 struct btrfs_key di_key;
4588
4589 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4590 di, &di_key);
4591 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4592 ret = 1;
4593 *other_ino = di_key.objectid;
4594 } else {
4595 ret = -EAGAIN;
4596 }
56f23fdb
FM
4597 goto out;
4598 } else if (IS_ERR(di)) {
4599 ret = PTR_ERR(di);
4600 goto out;
4601 }
4602 btrfs_release_path(search_path);
4603
4604 cur_offset += this_len;
4605 }
4606 ret = 0;
4607out:
4608 btrfs_free_path(search_path);
4609 kfree(name);
4610 return ret;
4611}
4612
e02119d5
CM
4613/* log a single inode in the tree log.
4614 * At least one parent directory for this inode must exist in the tree
4615 * or be logged already.
4616 *
4617 * Any items from this inode changed by the current transaction are copied
4618 * to the log tree. An extra reference is taken on any extents in this
4619 * file, allowing us to avoid a whole pile of corner cases around logging
4620 * blocks that have been removed from the tree.
4621 *
4622 * See LOG_INODE_ALL and related defines for a description of what inode_only
4623 * does.
4624 *
4625 * This handles both files and directories.
4626 */
12fcfd22 4627static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4628 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4629 int inode_only,
4630 const loff_t start,
8407f553
FM
4631 const loff_t end,
4632 struct btrfs_log_ctx *ctx)
e02119d5 4633{
0b246afa 4634 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4635 struct btrfs_path *path;
4636 struct btrfs_path *dst_path;
4637 struct btrfs_key min_key;
4638 struct btrfs_key max_key;
4639 struct btrfs_root *log = root->log_root;
31ff1cd2 4640 struct extent_buffer *src = NULL;
827463c4 4641 LIST_HEAD(logged_list);
16e7549f 4642 u64 last_extent = 0;
4a500fd1 4643 int err = 0;
e02119d5 4644 int ret;
3a5f1d45 4645 int nritems;
31ff1cd2
CM
4646 int ins_start_slot = 0;
4647 int ins_nr;
5dc562c5 4648 bool fast_search = false;
a59108a7
NB
4649 u64 ino = btrfs_ino(inode);
4650 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4651 u64 logged_isize = 0;
e4545de5 4652 bool need_log_inode_item = true;
e02119d5 4653
e02119d5 4654 path = btrfs_alloc_path();
5df67083
TI
4655 if (!path)
4656 return -ENOMEM;
e02119d5 4657 dst_path = btrfs_alloc_path();
5df67083
TI
4658 if (!dst_path) {
4659 btrfs_free_path(path);
4660 return -ENOMEM;
4661 }
e02119d5 4662
33345d01 4663 min_key.objectid = ino;
e02119d5
CM
4664 min_key.type = BTRFS_INODE_ITEM_KEY;
4665 min_key.offset = 0;
4666
33345d01 4667 max_key.objectid = ino;
12fcfd22 4668
12fcfd22 4669
5dc562c5 4670 /* today the code can only do partial logging of directories */
a59108a7 4671 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4672 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4673 &inode->runtime_flags) &&
781feef7 4674 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4675 max_key.type = BTRFS_XATTR_ITEM_KEY;
4676 else
4677 max_key.type = (u8)-1;
4678 max_key.offset = (u64)-1;
4679
2c2c452b
FM
4680 /*
4681 * Only run delayed items if we are a dir or a new file.
4682 * Otherwise commit the delayed inode only, which is needed in
4683 * order for the log replay code to mark inodes for link count
4684 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4685 */
a59108a7
NB
4686 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4687 inode->generation > fs_info->last_trans_committed)
4688 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4689 else
a59108a7 4690 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4691
4692 if (ret) {
4693 btrfs_free_path(path);
4694 btrfs_free_path(dst_path);
4695 return ret;
16cdcec7
MX
4696 }
4697
781feef7
LB
4698 if (inode_only == LOG_OTHER_INODE) {
4699 inode_only = LOG_INODE_EXISTS;
a59108a7 4700 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4701 } else {
a59108a7 4702 mutex_lock(&inode->log_mutex);
781feef7 4703 }
e02119d5
CM
4704
4705 /*
4706 * a brute force approach to making sure we get the most uptodate
4707 * copies of everything.
4708 */
a59108a7 4709 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4710 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4711
4f764e51
FM
4712 if (inode_only == LOG_INODE_EXISTS)
4713 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4714 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4715 } else {
1a4bcf47
FM
4716 if (inode_only == LOG_INODE_EXISTS) {
4717 /*
4718 * Make sure the new inode item we write to the log has
4719 * the same isize as the current one (if it exists).
4720 * This is necessary to prevent data loss after log
4721 * replay, and also to prevent doing a wrong expanding
4722 * truncate - for e.g. create file, write 4K into offset
4723 * 0, fsync, write 4K into offset 4096, add hard link,
4724 * fsync some other file (to sync log), power fail - if
4725 * we use the inode's current i_size, after log replay
4726 * we get a 8Kb file, with the last 4Kb extent as a hole
4727 * (zeroes), as if an expanding truncate happened,
4728 * instead of getting a file of 4Kb only.
4729 */
a59108a7 4730 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4731 if (err)
4732 goto out_unlock;
4733 }
a742994a 4734 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4735 &inode->runtime_flags)) {
a742994a 4736 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4737 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4738 ret = drop_objectid_items(trans, log, path, ino,
4739 max_key.type);
4740 } else {
4741 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4742 &inode->runtime_flags);
a742994a 4743 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4744 &inode->runtime_flags);
28ed1345
CM
4745 while(1) {
4746 ret = btrfs_truncate_inode_items(trans,
a59108a7 4747 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4748 if (ret != -EAGAIN)
4749 break;
4750 }
a742994a 4751 }
4f764e51 4752 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4753 &inode->runtime_flags) ||
6cfab851 4754 inode_only == LOG_INODE_EXISTS) {
4f764e51 4755 if (inode_only == LOG_INODE_ALL)
183f37fa 4756 fast_search = true;
4f764e51 4757 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4758 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4759 max_key.type);
a95249b3
JB
4760 } else {
4761 if (inode_only == LOG_INODE_ALL)
4762 fast_search = true;
a95249b3 4763 goto log_extents;
5dc562c5 4764 }
a95249b3 4765
e02119d5 4766 }
4a500fd1
YZ
4767 if (ret) {
4768 err = ret;
4769 goto out_unlock;
4770 }
e02119d5 4771
d397712b 4772 while (1) {
31ff1cd2 4773 ins_nr = 0;
6174d3cb 4774 ret = btrfs_search_forward(root, &min_key,
de78b51a 4775 path, trans->transid);
fb770ae4
LB
4776 if (ret < 0) {
4777 err = ret;
4778 goto out_unlock;
4779 }
e02119d5
CM
4780 if (ret != 0)
4781 break;
3a5f1d45 4782again:
31ff1cd2 4783 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4784 if (min_key.objectid != ino)
e02119d5
CM
4785 break;
4786 if (min_key.type > max_key.type)
4787 break;
31ff1cd2 4788
e4545de5
FM
4789 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4790 need_log_inode_item = false;
4791
56f23fdb
FM
4792 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4793 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4794 inode->generation == trans->transid) {
44f714da
FM
4795 u64 other_ino = 0;
4796
56f23fdb 4797 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4798 path->slots[0], &min_key, inode,
4799 &other_ino);
56f23fdb
FM
4800 if (ret < 0) {
4801 err = ret;
4802 goto out_unlock;
28a23593 4803 } else if (ret > 0 && ctx &&
4a0cc7ca 4804 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4805 struct btrfs_key inode_key;
4806 struct inode *other_inode;
4807
4808 if (ins_nr > 0) {
4809 ins_nr++;
4810 } else {
4811 ins_nr = 1;
4812 ins_start_slot = path->slots[0];
4813 }
a59108a7 4814 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
4815 &last_extent, ins_start_slot,
4816 ins_nr, inode_only,
4817 logged_isize);
4818 if (ret < 0) {
4819 err = ret;
4820 goto out_unlock;
4821 }
4822 ins_nr = 0;
4823 btrfs_release_path(path);
4824 inode_key.objectid = other_ino;
4825 inode_key.type = BTRFS_INODE_ITEM_KEY;
4826 inode_key.offset = 0;
0b246afa 4827 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4828 &inode_key, root,
4829 NULL);
4830 /*
4831 * If the other inode that had a conflicting dir
4832 * entry was deleted in the current transaction,
4833 * we don't need to do more work nor fallback to
4834 * a transaction commit.
4835 */
4836 if (IS_ERR(other_inode) &&
4837 PTR_ERR(other_inode) == -ENOENT) {
4838 goto next_key;
4839 } else if (IS_ERR(other_inode)) {
4840 err = PTR_ERR(other_inode);
4841 goto out_unlock;
4842 }
4843 /*
4844 * We are safe logging the other inode without
4845 * acquiring its i_mutex as long as we log with
4846 * the LOG_INODE_EXISTS mode. We're safe against
4847 * concurrent renames of the other inode as well
4848 * because during a rename we pin the log and
4849 * update the log with the new name before we
4850 * unpin it.
4851 */
a59108a7
NB
4852 err = btrfs_log_inode(trans, root,
4853 BTRFS_I(other_inode),
4854 LOG_OTHER_INODE, 0, LLONG_MAX,
4855 ctx);
44f714da
FM
4856 iput(other_inode);
4857 if (err)
4858 goto out_unlock;
4859 else
4860 goto next_key;
56f23fdb
FM
4861 }
4862 }
4863
36283bf7
FM
4864 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4865 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4866 if (ins_nr == 0)
4867 goto next_slot;
a59108a7 4868 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4869 &last_extent, ins_start_slot,
4870 ins_nr, inode_only, logged_isize);
4871 if (ret < 0) {
4872 err = ret;
4873 goto out_unlock;
4874 }
4875 ins_nr = 0;
4876 if (ret) {
4877 btrfs_release_path(path);
4878 continue;
4879 }
4880 goto next_slot;
4881 }
4882
e02119d5 4883 src = path->nodes[0];
31ff1cd2
CM
4884 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4885 ins_nr++;
4886 goto next_slot;
4887 } else if (!ins_nr) {
4888 ins_start_slot = path->slots[0];
4889 ins_nr = 1;
4890 goto next_slot;
e02119d5
CM
4891 }
4892
a59108a7 4893 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4894 ins_start_slot, ins_nr, inode_only,
4895 logged_isize);
16e7549f 4896 if (ret < 0) {
4a500fd1
YZ
4897 err = ret;
4898 goto out_unlock;
a71db86e
RV
4899 }
4900 if (ret) {
16e7549f
JB
4901 ins_nr = 0;
4902 btrfs_release_path(path);
4903 continue;
4a500fd1 4904 }
31ff1cd2
CM
4905 ins_nr = 1;
4906 ins_start_slot = path->slots[0];
4907next_slot:
e02119d5 4908
3a5f1d45
CM
4909 nritems = btrfs_header_nritems(path->nodes[0]);
4910 path->slots[0]++;
4911 if (path->slots[0] < nritems) {
4912 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4913 path->slots[0]);
4914 goto again;
4915 }
31ff1cd2 4916 if (ins_nr) {
a59108a7 4917 ret = copy_items(trans, inode, dst_path, path,
16e7549f 4918 &last_extent, ins_start_slot,
1a4bcf47 4919 ins_nr, inode_only, logged_isize);
16e7549f 4920 if (ret < 0) {
4a500fd1
YZ
4921 err = ret;
4922 goto out_unlock;
4923 }
16e7549f 4924 ret = 0;
31ff1cd2
CM
4925 ins_nr = 0;
4926 }
b3b4aa74 4927 btrfs_release_path(path);
44f714da 4928next_key:
3d41d702 4929 if (min_key.offset < (u64)-1) {
e02119d5 4930 min_key.offset++;
3d41d702 4931 } else if (min_key.type < max_key.type) {
e02119d5 4932 min_key.type++;
3d41d702
FDBM
4933 min_key.offset = 0;
4934 } else {
e02119d5 4935 break;
3d41d702 4936 }
e02119d5 4937 }
31ff1cd2 4938 if (ins_nr) {
a59108a7 4939 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4940 ins_start_slot, ins_nr, inode_only,
4941 logged_isize);
16e7549f 4942 if (ret < 0) {
4a500fd1
YZ
4943 err = ret;
4944 goto out_unlock;
4945 }
16e7549f 4946 ret = 0;
31ff1cd2
CM
4947 ins_nr = 0;
4948 }
5dc562c5 4949
36283bf7
FM
4950 btrfs_release_path(path);
4951 btrfs_release_path(dst_path);
a59108a7 4952 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
4953 if (err)
4954 goto out_unlock;
a89ca6f2
FM
4955 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4956 btrfs_release_path(path);
4957 btrfs_release_path(dst_path);
a59108a7 4958 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
4959 if (err)
4960 goto out_unlock;
4961 }
a95249b3 4962log_extents:
f3b15ccd
JB
4963 btrfs_release_path(path);
4964 btrfs_release_path(dst_path);
e4545de5 4965 if (need_log_inode_item) {
a59108a7 4966 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
4967 if (err)
4968 goto out_unlock;
4969 }
5dc562c5 4970 if (fast_search) {
a59108a7 4971 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 4972 &logged_list, ctx, start, end);
5dc562c5
JB
4973 if (ret) {
4974 err = ret;
4975 goto out_unlock;
4976 }
d006a048 4977 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4978 struct extent_map *em, *n;
4979
49dae1bc
FM
4980 write_lock(&em_tree->lock);
4981 /*
4982 * We can't just remove every em if we're called for a ranged
4983 * fsync - that is, one that doesn't cover the whole possible
4984 * file range (0 to LLONG_MAX). This is because we can have
4985 * em's that fall outside the range we're logging and therefore
4986 * their ordered operations haven't completed yet
4987 * (btrfs_finish_ordered_io() not invoked yet). This means we
4988 * didn't get their respective file extent item in the fs/subvol
4989 * tree yet, and need to let the next fast fsync (one which
4990 * consults the list of modified extent maps) find the em so
4991 * that it logs a matching file extent item and waits for the
4992 * respective ordered operation to complete (if it's still
4993 * running).
4994 *
4995 * Removing every em outside the range we're logging would make
4996 * the next fast fsync not log their matching file extent items,
4997 * therefore making us lose data after a log replay.
4998 */
4999 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5000 list) {
5001 const u64 mod_end = em->mod_start + em->mod_len - 1;
5002
5003 if (em->mod_start >= start && mod_end <= end)
5004 list_del_init(&em->list);
5005 }
5006 write_unlock(&em_tree->lock);
5dc562c5
JB
5007 }
5008
a59108a7
NB
5009 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5010 ret = log_directory_changes(trans, root, inode, path, dst_path,
5011 ctx);
4a500fd1
YZ
5012 if (ret) {
5013 err = ret;
5014 goto out_unlock;
5015 }
e02119d5 5016 }
49dae1bc 5017
a59108a7
NB
5018 spin_lock(&inode->lock);
5019 inode->logged_trans = trans->transid;
5020 inode->last_log_commit = inode->last_sub_trans;
5021 spin_unlock(&inode->lock);
4a500fd1 5022out_unlock:
827463c4
MX
5023 if (unlikely(err))
5024 btrfs_put_logged_extents(&logged_list);
5025 else
5026 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5027 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5028
5029 btrfs_free_path(path);
5030 btrfs_free_path(dst_path);
4a500fd1 5031 return err;
e02119d5
CM
5032}
5033
2be63d5c
FM
5034/*
5035 * Check if we must fallback to a transaction commit when logging an inode.
5036 * This must be called after logging the inode and is used only in the context
5037 * when fsyncing an inode requires the need to log some other inode - in which
5038 * case we can't lock the i_mutex of each other inode we need to log as that
5039 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5040 * log inodes up or down in the hierarchy) or rename operations for example. So
5041 * we take the log_mutex of the inode after we have logged it and then check for
5042 * its last_unlink_trans value - this is safe because any task setting
5043 * last_unlink_trans must take the log_mutex and it must do this before it does
5044 * the actual unlink operation, so if we do this check before a concurrent task
5045 * sets last_unlink_trans it means we've logged a consistent version/state of
5046 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5047 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5048 * we logged the inode or it might have also done the unlink).
5049 */
5050static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5051 struct btrfs_inode *inode)
2be63d5c 5052{
ab1717b2 5053 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5054 bool ret = false;
5055
ab1717b2
NB
5056 mutex_lock(&inode->log_mutex);
5057 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5058 /*
5059 * Make sure any commits to the log are forced to be full
5060 * commits.
5061 */
5062 btrfs_set_log_full_commit(fs_info, trans);
5063 ret = true;
5064 }
ab1717b2 5065 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5066
5067 return ret;
5068}
5069
12fcfd22
CM
5070/*
5071 * follow the dentry parent pointers up the chain and see if any
5072 * of the directories in it require a full commit before they can
5073 * be logged. Returns zero if nothing special needs to be done or 1 if
5074 * a full commit is required.
5075 */
5076static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5077 struct btrfs_inode *inode,
12fcfd22
CM
5078 struct dentry *parent,
5079 struct super_block *sb,
5080 u64 last_committed)
e02119d5 5081{
12fcfd22 5082 int ret = 0;
6a912213 5083 struct dentry *old_parent = NULL;
aefa6115 5084 struct btrfs_inode *orig_inode = inode;
e02119d5 5085
af4176b4
CM
5086 /*
5087 * for regular files, if its inode is already on disk, we don't
5088 * have to worry about the parents at all. This is because
5089 * we can use the last_unlink_trans field to record renames
5090 * and other fun in this file.
5091 */
aefa6115
NB
5092 if (S_ISREG(inode->vfs_inode.i_mode) &&
5093 inode->generation <= last_committed &&
5094 inode->last_unlink_trans <= last_committed)
5095 goto out;
af4176b4 5096
aefa6115 5097 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5098 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5099 goto out;
aefa6115 5100 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5101 }
5102
5103 while (1) {
de2b530b
JB
5104 /*
5105 * If we are logging a directory then we start with our inode,
01327610 5106 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5107 * logged_trans so that further down in the log code we don't
5108 * think this inode has already been logged.
5109 */
5110 if (inode != orig_inode)
aefa6115 5111 inode->logged_trans = trans->transid;
12fcfd22
CM
5112 smp_mb();
5113
aefa6115 5114 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5115 ret = 1;
5116 break;
5117 }
5118
fc64005c 5119 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5120 break;
5121
44f714da 5122 if (IS_ROOT(parent)) {
aefa6115
NB
5123 inode = BTRFS_I(d_inode(parent));
5124 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5125 ret = 1;
12fcfd22 5126 break;
44f714da 5127 }
12fcfd22 5128
6a912213
JB
5129 parent = dget_parent(parent);
5130 dput(old_parent);
5131 old_parent = parent;
aefa6115 5132 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5133
5134 }
6a912213 5135 dput(old_parent);
12fcfd22 5136out:
e02119d5
CM
5137 return ret;
5138}
5139
2f2ff0ee
FM
5140struct btrfs_dir_list {
5141 u64 ino;
5142 struct list_head list;
5143};
5144
5145/*
5146 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5147 * details about the why it is needed.
5148 * This is a recursive operation - if an existing dentry corresponds to a
5149 * directory, that directory's new entries are logged too (same behaviour as
5150 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5151 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5152 * complains about the following circular lock dependency / possible deadlock:
5153 *
5154 * CPU0 CPU1
5155 * ---- ----
5156 * lock(&type->i_mutex_dir_key#3/2);
5157 * lock(sb_internal#2);
5158 * lock(&type->i_mutex_dir_key#3/2);
5159 * lock(&sb->s_type->i_mutex_key#14);
5160 *
5161 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5162 * sb_start_intwrite() in btrfs_start_transaction().
5163 * Not locking i_mutex of the inodes is still safe because:
5164 *
5165 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5166 * that while logging the inode new references (names) are added or removed
5167 * from the inode, leaving the logged inode item with a link count that does
5168 * not match the number of logged inode reference items. This is fine because
5169 * at log replay time we compute the real number of links and correct the
5170 * link count in the inode item (see replay_one_buffer() and
5171 * link_to_fixup_dir());
5172 *
5173 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5174 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5175 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5176 * has a size that doesn't match the sum of the lengths of all the logged
5177 * names. This does not result in a problem because if a dir_item key is
5178 * logged but its matching dir_index key is not logged, at log replay time we
5179 * don't use it to replay the respective name (see replay_one_name()). On the
5180 * other hand if only the dir_index key ends up being logged, the respective
5181 * name is added to the fs/subvol tree with both the dir_item and dir_index
5182 * keys created (see replay_one_name()).
5183 * The directory's inode item with a wrong i_size is not a problem as well,
5184 * since we don't use it at log replay time to set the i_size in the inode
5185 * item of the fs/subvol tree (see overwrite_item()).
5186 */
5187static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5188 struct btrfs_root *root,
51cc0d32 5189 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5190 struct btrfs_log_ctx *ctx)
5191{
0b246afa 5192 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5193 struct btrfs_root *log = root->log_root;
5194 struct btrfs_path *path;
5195 LIST_HEAD(dir_list);
5196 struct btrfs_dir_list *dir_elem;
5197 int ret = 0;
5198
5199 path = btrfs_alloc_path();
5200 if (!path)
5201 return -ENOMEM;
5202
5203 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5204 if (!dir_elem) {
5205 btrfs_free_path(path);
5206 return -ENOMEM;
5207 }
51cc0d32 5208 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5209 list_add_tail(&dir_elem->list, &dir_list);
5210
5211 while (!list_empty(&dir_list)) {
5212 struct extent_buffer *leaf;
5213 struct btrfs_key min_key;
5214 int nritems;
5215 int i;
5216
5217 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5218 list);
5219 if (ret)
5220 goto next_dir_inode;
5221
5222 min_key.objectid = dir_elem->ino;
5223 min_key.type = BTRFS_DIR_ITEM_KEY;
5224 min_key.offset = 0;
5225again:
5226 btrfs_release_path(path);
5227 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5228 if (ret < 0) {
5229 goto next_dir_inode;
5230 } else if (ret > 0) {
5231 ret = 0;
5232 goto next_dir_inode;
5233 }
5234
5235process_leaf:
5236 leaf = path->nodes[0];
5237 nritems = btrfs_header_nritems(leaf);
5238 for (i = path->slots[0]; i < nritems; i++) {
5239 struct btrfs_dir_item *di;
5240 struct btrfs_key di_key;
5241 struct inode *di_inode;
5242 struct btrfs_dir_list *new_dir_elem;
5243 int log_mode = LOG_INODE_EXISTS;
5244 int type;
5245
5246 btrfs_item_key_to_cpu(leaf, &min_key, i);
5247 if (min_key.objectid != dir_elem->ino ||
5248 min_key.type != BTRFS_DIR_ITEM_KEY)
5249 goto next_dir_inode;
5250
5251 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5252 type = btrfs_dir_type(leaf, di);
5253 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5254 type != BTRFS_FT_DIR)
5255 continue;
5256 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5257 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5258 continue;
5259
ec125cfb 5260 btrfs_release_path(path);
0b246afa 5261 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5262 if (IS_ERR(di_inode)) {
5263 ret = PTR_ERR(di_inode);
5264 goto next_dir_inode;
5265 }
5266
0f8939b8 5267 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5268 iput(di_inode);
ec125cfb 5269 break;
2f2ff0ee
FM
5270 }
5271
5272 ctx->log_new_dentries = false;
3f9749f6 5273 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5274 log_mode = LOG_INODE_ALL;
a59108a7 5275 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5276 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5277 if (!ret &&
ab1717b2 5278 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5279 ret = 1;
2f2ff0ee
FM
5280 iput(di_inode);
5281 if (ret)
5282 goto next_dir_inode;
5283 if (ctx->log_new_dentries) {
5284 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5285 GFP_NOFS);
5286 if (!new_dir_elem) {
5287 ret = -ENOMEM;
5288 goto next_dir_inode;
5289 }
5290 new_dir_elem->ino = di_key.objectid;
5291 list_add_tail(&new_dir_elem->list, &dir_list);
5292 }
5293 break;
5294 }
5295 if (i == nritems) {
5296 ret = btrfs_next_leaf(log, path);
5297 if (ret < 0) {
5298 goto next_dir_inode;
5299 } else if (ret > 0) {
5300 ret = 0;
5301 goto next_dir_inode;
5302 }
5303 goto process_leaf;
5304 }
5305 if (min_key.offset < (u64)-1) {
5306 min_key.offset++;
5307 goto again;
5308 }
5309next_dir_inode:
5310 list_del(&dir_elem->list);
5311 kfree(dir_elem);
5312 }
5313
5314 btrfs_free_path(path);
5315 return ret;
5316}
5317
18aa0922 5318static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5319 struct btrfs_inode *inode,
18aa0922
FM
5320 struct btrfs_log_ctx *ctx)
5321{
d0a0b78d 5322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5323 int ret;
5324 struct btrfs_path *path;
5325 struct btrfs_key key;
d0a0b78d
NB
5326 struct btrfs_root *root = inode->root;
5327 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5328
5329 path = btrfs_alloc_path();
5330 if (!path)
5331 return -ENOMEM;
5332 path->skip_locking = 1;
5333 path->search_commit_root = 1;
5334
5335 key.objectid = ino;
5336 key.type = BTRFS_INODE_REF_KEY;
5337 key.offset = 0;
5338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5339 if (ret < 0)
5340 goto out;
5341
5342 while (true) {
5343 struct extent_buffer *leaf = path->nodes[0];
5344 int slot = path->slots[0];
5345 u32 cur_offset = 0;
5346 u32 item_size;
5347 unsigned long ptr;
5348
5349 if (slot >= btrfs_header_nritems(leaf)) {
5350 ret = btrfs_next_leaf(root, path);
5351 if (ret < 0)
5352 goto out;
5353 else if (ret > 0)
5354 break;
5355 continue;
5356 }
5357
5358 btrfs_item_key_to_cpu(leaf, &key, slot);
5359 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5360 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5361 break;
5362
5363 item_size = btrfs_item_size_nr(leaf, slot);
5364 ptr = btrfs_item_ptr_offset(leaf, slot);
5365 while (cur_offset < item_size) {
5366 struct btrfs_key inode_key;
5367 struct inode *dir_inode;
5368
5369 inode_key.type = BTRFS_INODE_ITEM_KEY;
5370 inode_key.offset = 0;
5371
5372 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5373 struct btrfs_inode_extref *extref;
5374
5375 extref = (struct btrfs_inode_extref *)
5376 (ptr + cur_offset);
5377 inode_key.objectid = btrfs_inode_extref_parent(
5378 leaf, extref);
5379 cur_offset += sizeof(*extref);
5380 cur_offset += btrfs_inode_extref_name_len(leaf,
5381 extref);
5382 } else {
5383 inode_key.objectid = key.offset;
5384 cur_offset = item_size;
5385 }
5386
0b246afa 5387 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5388 root, NULL);
5389 /* If parent inode was deleted, skip it. */
5390 if (IS_ERR(dir_inode))
5391 continue;
5392
657ed1aa
FM
5393 if (ctx)
5394 ctx->log_new_dentries = false;
a59108a7 5395 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5396 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5397 if (!ret &&
ab1717b2 5398 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5399 ret = 1;
657ed1aa
FM
5400 if (!ret && ctx && ctx->log_new_dentries)
5401 ret = log_new_dir_dentries(trans, root,
f85b7379 5402 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5403 iput(dir_inode);
5404 if (ret)
5405 goto out;
5406 }
5407 path->slots[0]++;
5408 }
5409 ret = 0;
5410out:
5411 btrfs_free_path(path);
5412 return ret;
5413}
5414
e02119d5
CM
5415/*
5416 * helper function around btrfs_log_inode to make sure newly created
5417 * parent directories also end up in the log. A minimal inode and backref
5418 * only logging is done of any parent directories that are older than
5419 * the last committed transaction
5420 */
48a3b636 5421static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9
NB
5422 struct btrfs_root *root,
5423 struct btrfs_inode *inode,
49dae1bc
FM
5424 struct dentry *parent,
5425 const loff_t start,
5426 const loff_t end,
5427 int exists_only,
8b050d35 5428 struct btrfs_log_ctx *ctx)
e02119d5 5429{
0b246afa 5430 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 5431 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 5432 struct super_block *sb;
6a912213 5433 struct dentry *old_parent = NULL;
12fcfd22 5434 int ret = 0;
0b246afa 5435 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5436 bool log_dentries = false;
19df27a9 5437 struct btrfs_inode *orig_inode = inode;
12fcfd22 5438
19df27a9 5439 sb = inode->vfs_inode.i_sb;
12fcfd22 5440
0b246afa 5441 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5442 ret = 1;
5443 goto end_no_trans;
5444 }
5445
995946dd
MX
5446 /*
5447 * The prev transaction commit doesn't complete, we need do
5448 * full commit by ourselves.
5449 */
0b246afa
JM
5450 if (fs_info->last_trans_log_full_commit >
5451 fs_info->last_trans_committed) {
12fcfd22
CM
5452 ret = 1;
5453 goto end_no_trans;
5454 }
5455
19df27a9 5456 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5457 ret = 1;
5458 goto end_no_trans;
5459 }
5460
19df27a9
NB
5461 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5462 last_committed);
12fcfd22
CM
5463 if (ret)
5464 goto end_no_trans;
e02119d5 5465
19df27a9 5466 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5467 ret = BTRFS_NO_LOG_SYNC;
5468 goto end_no_trans;
5469 }
5470
8b050d35 5471 ret = start_log_trans(trans, root, ctx);
4a500fd1 5472 if (ret)
e87ac136 5473 goto end_no_trans;
e02119d5 5474
19df27a9 5475 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5476 if (ret)
5477 goto end_trans;
12fcfd22 5478
af4176b4
CM
5479 /*
5480 * for regular files, if its inode is already on disk, we don't
5481 * have to worry about the parents at all. This is because
5482 * we can use the last_unlink_trans field to record renames
5483 * and other fun in this file.
5484 */
19df27a9
NB
5485 if (S_ISREG(inode->vfs_inode.i_mode) &&
5486 inode->generation <= last_committed &&
5487 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5488 ret = 0;
5489 goto end_trans;
5490 }
af4176b4 5491
19df27a9 5492 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5493 log_dentries = true;
5494
18aa0922 5495 /*
01327610 5496 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5497 * inodes are fully logged. This is to prevent leaving dangling
5498 * directory index entries in directories that were our parents but are
5499 * not anymore. Not doing this results in old parent directory being
5500 * impossible to delete after log replay (rmdir will always fail with
5501 * error -ENOTEMPTY).
5502 *
5503 * Example 1:
5504 *
5505 * mkdir testdir
5506 * touch testdir/foo
5507 * ln testdir/foo testdir/bar
5508 * sync
5509 * unlink testdir/bar
5510 * xfs_io -c fsync testdir/foo
5511 * <power failure>
5512 * mount fs, triggers log replay
5513 *
5514 * If we don't log the parent directory (testdir), after log replay the
5515 * directory still has an entry pointing to the file inode using the bar
5516 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5517 * the file inode has a link count of 1.
5518 *
5519 * Example 2:
5520 *
5521 * mkdir testdir
5522 * touch foo
5523 * ln foo testdir/foo2
5524 * ln foo testdir/foo3
5525 * sync
5526 * unlink testdir/foo3
5527 * xfs_io -c fsync foo
5528 * <power failure>
5529 * mount fs, triggers log replay
5530 *
5531 * Similar as the first example, after log replay the parent directory
5532 * testdir still has an entry pointing to the inode file with name foo3
5533 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5534 * and has a link count of 2.
5535 */
19df27a9 5536 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5537 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5538 if (ret)
5539 goto end_trans;
5540 }
5541
12fcfd22 5542 while (1) {
fc64005c 5543 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5544 break;
5545
19df27a9
NB
5546 inode = BTRFS_I(d_inode(parent));
5547 if (root != inode->root)
76dda93c
YZ
5548 break;
5549
19df27a9
NB
5550 if (inode->generation > last_committed) {
5551 ret = btrfs_log_inode(trans, root, inode,
5552 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5553 if (ret)
5554 goto end_trans;
12fcfd22 5555 }
76dda93c 5556 if (IS_ROOT(parent))
e02119d5 5557 break;
12fcfd22 5558
6a912213
JB
5559 parent = dget_parent(parent);
5560 dput(old_parent);
5561 old_parent = parent;
e02119d5 5562 }
2f2ff0ee 5563 if (log_dentries)
19df27a9 5564 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5565 else
5566 ret = 0;
4a500fd1 5567end_trans:
6a912213 5568 dput(old_parent);
4a500fd1 5569 if (ret < 0) {
0b246afa 5570 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5571 ret = 1;
5572 }
8b050d35
MX
5573
5574 if (ret)
5575 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5576 btrfs_end_log_trans(root);
5577end_no_trans:
5578 return ret;
e02119d5
CM
5579}
5580
5581/*
5582 * it is not safe to log dentry if the chunk root has added new
5583 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5584 * If this returns 1, you must commit the transaction to safely get your
5585 * data on disk.
5586 */
5587int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5588 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5589 const loff_t start,
5590 const loff_t end,
8b050d35 5591 struct btrfs_log_ctx *ctx)
e02119d5 5592{
6a912213
JB
5593 struct dentry *parent = dget_parent(dentry);
5594 int ret;
5595
19df27a9
NB
5596 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5597 parent, start, end, 0, ctx);
6a912213
JB
5598 dput(parent);
5599
5600 return ret;
e02119d5
CM
5601}
5602
5603/*
5604 * should be called during mount to recover any replay any log trees
5605 * from the FS
5606 */
5607int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5608{
5609 int ret;
5610 struct btrfs_path *path;
5611 struct btrfs_trans_handle *trans;
5612 struct btrfs_key key;
5613 struct btrfs_key found_key;
5614 struct btrfs_key tmp_key;
5615 struct btrfs_root *log;
5616 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5617 struct walk_control wc = {
5618 .process_func = process_one_buffer,
5619 .stage = 0,
5620 };
5621
e02119d5 5622 path = btrfs_alloc_path();
db5b493a
TI
5623 if (!path)
5624 return -ENOMEM;
5625
afcdd129 5626 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5627
4a500fd1 5628 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5629 if (IS_ERR(trans)) {
5630 ret = PTR_ERR(trans);
5631 goto error;
5632 }
e02119d5
CM
5633
5634 wc.trans = trans;
5635 wc.pin = 1;
5636
db5b493a 5637 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5638 if (ret) {
5d163e0e
JM
5639 btrfs_handle_fs_error(fs_info, ret,
5640 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5641 goto error;
5642 }
e02119d5
CM
5643
5644again:
5645 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5646 key.offset = (u64)-1;
962a298f 5647 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5648
d397712b 5649 while (1) {
e02119d5 5650 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5651
5652 if (ret < 0) {
34d97007 5653 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5654 "Couldn't find tree log root.");
5655 goto error;
5656 }
e02119d5
CM
5657 if (ret > 0) {
5658 if (path->slots[0] == 0)
5659 break;
5660 path->slots[0]--;
5661 }
5662 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5663 path->slots[0]);
b3b4aa74 5664 btrfs_release_path(path);
e02119d5
CM
5665 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5666 break;
5667
cb517eab 5668 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5669 if (IS_ERR(log)) {
5670 ret = PTR_ERR(log);
34d97007 5671 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5672 "Couldn't read tree log root.");
5673 goto error;
5674 }
e02119d5
CM
5675
5676 tmp_key.objectid = found_key.offset;
5677 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5678 tmp_key.offset = (u64)-1;
5679
5680 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5681 if (IS_ERR(wc.replay_dest)) {
5682 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5683 free_extent_buffer(log->node);
5684 free_extent_buffer(log->commit_root);
5685 kfree(log);
5d163e0e
JM
5686 btrfs_handle_fs_error(fs_info, ret,
5687 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5688 goto error;
5689 }
e02119d5 5690
07d400a6 5691 wc.replay_dest->log_root = log;
5d4f98a2 5692 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5693 ret = walk_log_tree(trans, log, &wc);
e02119d5 5694
b50c6e25 5695 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5696 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5697 path);
e02119d5
CM
5698 }
5699
5700 key.offset = found_key.offset - 1;
07d400a6 5701 wc.replay_dest->log_root = NULL;
e02119d5 5702 free_extent_buffer(log->node);
b263c2c8 5703 free_extent_buffer(log->commit_root);
e02119d5
CM
5704 kfree(log);
5705
b50c6e25
JB
5706 if (ret)
5707 goto error;
5708
e02119d5
CM
5709 if (found_key.offset == 0)
5710 break;
5711 }
b3b4aa74 5712 btrfs_release_path(path);
e02119d5
CM
5713
5714 /* step one is to pin it all, step two is to replay just inodes */
5715 if (wc.pin) {
5716 wc.pin = 0;
5717 wc.process_func = replay_one_buffer;
5718 wc.stage = LOG_WALK_REPLAY_INODES;
5719 goto again;
5720 }
5721 /* step three is to replay everything */
5722 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5723 wc.stage++;
5724 goto again;
5725 }
5726
5727 btrfs_free_path(path);
5728
abefa55a 5729 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5730 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5731 if (ret)
5732 return ret;
5733
e02119d5
CM
5734 free_extent_buffer(log_root_tree->node);
5735 log_root_tree->log_root = NULL;
afcdd129 5736 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5737 kfree(log_root_tree);
79787eaa 5738
abefa55a 5739 return 0;
79787eaa 5740error:
b50c6e25 5741 if (wc.trans)
3a45bb20 5742 btrfs_end_transaction(wc.trans);
79787eaa
JM
5743 btrfs_free_path(path);
5744 return ret;
e02119d5 5745}
12fcfd22
CM
5746
5747/*
5748 * there are some corner cases where we want to force a full
5749 * commit instead of allowing a directory to be logged.
5750 *
5751 * They revolve around files there were unlinked from the directory, and
5752 * this function updates the parent directory so that a full commit is
5753 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5754 *
5755 * Must be called before the unlink operations (updates to the subvolume tree,
5756 * inodes, etc) are done.
12fcfd22
CM
5757 */
5758void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5759 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5760 int for_rename)
5761{
af4176b4
CM
5762 /*
5763 * when we're logging a file, if it hasn't been renamed
5764 * or unlinked, and its inode is fully committed on disk,
5765 * we don't have to worry about walking up the directory chain
5766 * to log its parents.
5767 *
5768 * So, we use the last_unlink_trans field to put this transid
5769 * into the file. When the file is logged we check it and
5770 * don't log the parents if the file is fully on disk.
5771 */
4176bdbf
NB
5772 mutex_lock(&inode->log_mutex);
5773 inode->last_unlink_trans = trans->transid;
5774 mutex_unlock(&inode->log_mutex);
af4176b4 5775
12fcfd22
CM
5776 /*
5777 * if this directory was already logged any new
5778 * names for this file/dir will get recorded
5779 */
5780 smp_mb();
4176bdbf 5781 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5782 return;
5783
5784 /*
5785 * if the inode we're about to unlink was logged,
5786 * the log will be properly updated for any new names
5787 */
4176bdbf 5788 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5789 return;
5790
5791 /*
5792 * when renaming files across directories, if the directory
5793 * there we're unlinking from gets fsync'd later on, there's
5794 * no way to find the destination directory later and fsync it
5795 * properly. So, we have to be conservative and force commits
5796 * so the new name gets discovered.
5797 */
5798 if (for_rename)
5799 goto record;
5800
5801 /* we can safely do the unlink without any special recording */
5802 return;
5803
5804record:
4176bdbf
NB
5805 mutex_lock(&dir->log_mutex);
5806 dir->last_unlink_trans = trans->transid;
5807 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
5808}
5809
5810/*
5811 * Make sure that if someone attempts to fsync the parent directory of a deleted
5812 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5813 * that after replaying the log tree of the parent directory's root we will not
5814 * see the snapshot anymore and at log replay time we will not see any log tree
5815 * corresponding to the deleted snapshot's root, which could lead to replaying
5816 * it after replaying the log tree of the parent directory (which would replay
5817 * the snapshot delete operation).
2be63d5c
FM
5818 *
5819 * Must be called before the actual snapshot destroy operation (updates to the
5820 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5821 */
5822void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 5823 struct btrfs_inode *dir)
1ec9a1ae 5824{
43663557
NB
5825 mutex_lock(&dir->log_mutex);
5826 dir->last_unlink_trans = trans->transid;
5827 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
5828}
5829
5830/*
5831 * Call this after adding a new name for a file and it will properly
5832 * update the log to reflect the new name.
5833 *
5834 * It will return zero if all goes well, and it will return 1 if a
5835 * full transaction commit is required.
5836 */
5837int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 5838 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
5839 struct dentry *parent)
5840{
9ca5fbfb 5841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
f85b7379 5842 struct btrfs_root *root = inode->root;
12fcfd22 5843
af4176b4
CM
5844 /*
5845 * this will force the logging code to walk the dentry chain
5846 * up for the file
5847 */
9ca5fbfb
NB
5848 if (S_ISREG(inode->vfs_inode.i_mode))
5849 inode->last_unlink_trans = trans->transid;
af4176b4 5850
12fcfd22
CM
5851 /*
5852 * if this inode hasn't been logged and directory we're renaming it
5853 * from hasn't been logged, we don't need to log it
5854 */
9ca5fbfb
NB
5855 if (inode->logged_trans <= fs_info->last_trans_committed &&
5856 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
5857 return 0;
5858
19df27a9 5859 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
49dae1bc 5860 LLONG_MAX, 1, NULL);
12fcfd22
CM
5861}
5862