btrfs: voluntarily relinquish cpu when doing a full fsync
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
e02119d5
CM
24
25/* magic values for the inode_only field in btrfs_log_inode:
26 *
27 * LOG_INODE_ALL means to log everything
28 * LOG_INODE_EXISTS means to log just enough to recreate the inode
29 * during log replay
30 */
e13976cf
DS
31enum {
32 LOG_INODE_ALL,
33 LOG_INODE_EXISTS,
34 LOG_OTHER_INODE,
35 LOG_OTHER_INODE_ALL,
36};
e02119d5 37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
e13976cf
DS
90enum {
91 LOG_WALK_PIN_ONLY,
92 LOG_WALK_REPLAY_INODES,
93 LOG_WALK_REPLAY_DIR_INDEX,
94 LOG_WALK_REPLAY_ALL,
95};
e02119d5 96
12fcfd22 97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 98 struct btrfs_inode *inode,
49dae1bc 99 int inode_only,
8407f553 100 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
fa1a0f42 109static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
0b246afa 143 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 144 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 145 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 146 int ret = 0;
fa1a0f42 147 bool created = false;
7237f183 148
47876f7c
FM
149 /*
150 * First check if the log root tree was already created. If not, create
151 * it before locking the root's log_mutex, just to keep lockdep happy.
152 */
153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 mutex_lock(&tree_root->log_mutex);
155 if (!fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 157 if (!ret) {
47876f7c 158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
159 created = true;
160 }
47876f7c
FM
161 }
162 mutex_unlock(&tree_root->log_mutex);
163 if (ret)
164 return ret;
165 }
166
7237f183 167 mutex_lock(&root->log_mutex);
34eb2a52 168
fa1a0f42 169again:
7237f183 170 if (root->log_root) {
fa1a0f42
NA
171 int index = (root->log_transid + 1) % 2;
172
4884b8e8 173 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
174 ret = -EAGAIN;
175 goto out;
176 }
34eb2a52 177
fa1a0f42
NA
178 if (zoned && atomic_read(&root->log_commit[index])) {
179 wait_log_commit(root, root->log_transid - 1);
180 goto again;
181 }
182
ff782e0a 183 if (!root->log_start_pid) {
27cdeb70 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 185 root->log_start_pid = current->pid;
ff782e0a 186 } else if (root->log_start_pid != current->pid) {
27cdeb70 187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 188 }
34eb2a52 189 } else {
fa1a0f42
NA
190 /*
191 * This means fs_info->log_root_tree was already created
192 * for some other FS trees. Do the full commit not to mix
193 * nodes from multiple log transactions to do sequential
194 * writing.
195 */
196 if (zoned && !created) {
197 ret = -EAGAIN;
198 goto out;
199 }
200
e02119d5 201 ret = btrfs_add_log_tree(trans, root);
4a500fd1 202 if (ret)
e87ac136 203 goto out;
34eb2a52 204
e7a79811 205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 root->log_start_pid = current->pid;
e02119d5 208 }
34eb2a52 209
7237f183 210 atomic_inc(&root->log_writers);
289cffcb 211 if (!ctx->logging_new_name) {
34eb2a52 212 int index = root->log_transid % 2;
8b050d35 213 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 214 ctx->log_transid = root->log_transid;
8b050d35 215 }
34eb2a52 216
e87ac136 217out:
7237f183 218 mutex_unlock(&root->log_mutex);
e87ac136 219 return ret;
e02119d5
CM
220}
221
222/*
223 * returns 0 if there was a log transaction running and we were able
224 * to join, or returns -ENOENT if there were not transactions
225 * in progress
226 */
227static int join_running_log_trans(struct btrfs_root *root)
228{
fa1a0f42 229 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
230 int ret = -ENOENT;
231
e7a79811
FM
232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 return ret;
234
7237f183 235 mutex_lock(&root->log_mutex);
fa1a0f42 236again:
e02119d5 237 if (root->log_root) {
fa1a0f42
NA
238 int index = (root->log_transid + 1) % 2;
239
e02119d5 240 ret = 0;
fa1a0f42
NA
241 if (zoned && atomic_read(&root->log_commit[index])) {
242 wait_log_commit(root, root->log_transid - 1);
243 goto again;
244 }
7237f183 245 atomic_inc(&root->log_writers);
e02119d5 246 }
7237f183 247 mutex_unlock(&root->log_mutex);
e02119d5
CM
248 return ret;
249}
250
12fcfd22
CM
251/*
252 * This either makes the current running log transaction wait
253 * until you call btrfs_end_log_trans() or it makes any future
254 * log transactions wait until you call btrfs_end_log_trans()
255 */
45128b08 256void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 257{
12fcfd22 258 atomic_inc(&root->log_writers);
12fcfd22
CM
259}
260
e02119d5
CM
261/*
262 * indicate we're done making changes to the log tree
263 * and wake up anyone waiting to do a sync
264 */
143bede5 265void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 266{
7237f183 267 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
268 /* atomic_dec_and_test implies a barrier */
269 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 270 }
e02119d5
CM
271}
272
247462a5
DS
273static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274{
275 filemap_fdatawait_range(buf->pages[0]->mapping,
276 buf->start, buf->start + buf->len - 1);
277}
e02119d5
CM
278
279/*
280 * the walk control struct is used to pass state down the chain when
281 * processing the log tree. The stage field tells us which part
282 * of the log tree processing we are currently doing. The others
283 * are state fields used for that specific part
284 */
285struct walk_control {
286 /* should we free the extent on disk when done? This is used
287 * at transaction commit time while freeing a log tree
288 */
289 int free;
290
e02119d5
CM
291 /* pin only walk, we record which extents on disk belong to the
292 * log trees
293 */
294 int pin;
295
296 /* what stage of the replay code we're currently in */
297 int stage;
298
f2d72f42
FM
299 /*
300 * Ignore any items from the inode currently being processed. Needs
301 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 * the LOG_WALK_REPLAY_INODES stage.
303 */
304 bool ignore_cur_inode;
305
e02119d5
CM
306 /* the root we are currently replaying */
307 struct btrfs_root *replay_dest;
308
309 /* the trans handle for the current replay */
310 struct btrfs_trans_handle *trans;
311
312 /* the function that gets used to process blocks we find in the
313 * tree. Note the extent_buffer might not be up to date when it is
314 * passed in, and it must be checked or read if you need the data
315 * inside it
316 */
317 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 318 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
319};
320
321/*
322 * process_func used to pin down extents, write them or wait on them
323 */
324static int process_one_buffer(struct btrfs_root *log,
325 struct extent_buffer *eb,
581c1760 326 struct walk_control *wc, u64 gen, int level)
e02119d5 327{
0b246afa 328 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
329 int ret = 0;
330
8c2a1a30
JB
331 /*
332 * If this fs is mixed then we need to be able to process the leaves to
333 * pin down any logged extents, so we have to read the block.
334 */
0b246afa 335 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 336 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
337 if (ret)
338 return ret;
339 }
340
c816d705 341 if (wc->pin) {
9fce5704 342 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 343 eb->len);
c816d705
FM
344 if (ret)
345 return ret;
e02119d5 346
c816d705
FM
347 if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 btrfs_header_level(eb) == 0)
bcdc428c 349 ret = btrfs_exclude_logged_extents(eb);
e02119d5 350 }
b50c6e25 351 return ret;
e02119d5
CM
352}
353
086dcbfa
FM
354static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 struct btrfs_path *path,
357 struct extent_buffer *eb, int slot,
358 struct btrfs_key *key)
e02119d5
CM
359{
360 int ret;
361 u32 item_size;
362 u64 saved_i_size = 0;
363 int save_old_i_size = 0;
364 unsigned long src_ptr;
365 unsigned long dst_ptr;
366 int overwrite_root = 0;
4bc4bee4 367 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
368
369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 overwrite_root = 1;
371
3212fa14 372 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
373 src_ptr = btrfs_item_ptr_offset(eb, slot);
374
086dcbfa
FM
375 /* Our caller must have done a search for the key for us. */
376 ASSERT(path->nodes[0] != NULL);
377
378 /*
379 * And the slot must point to the exact key or the slot where the key
380 * should be at (the first item with a key greater than 'key')
381 */
382 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 struct btrfs_key found_key;
384
385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 ret = btrfs_comp_cpu_keys(&found_key, key);
387 ASSERT(ret >= 0);
388 } else {
389 ret = 1;
390 }
4bc4bee4 391
e02119d5
CM
392 if (ret == 0) {
393 char *src_copy;
394 char *dst_copy;
3212fa14 395 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
396 path->slots[0]);
397 if (dst_size != item_size)
398 goto insert;
399
400 if (item_size == 0) {
b3b4aa74 401 btrfs_release_path(path);
e02119d5
CM
402 return 0;
403 }
404 dst_copy = kmalloc(item_size, GFP_NOFS);
405 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 406 if (!dst_copy || !src_copy) {
b3b4aa74 407 btrfs_release_path(path);
2a29edc6 408 kfree(dst_copy);
409 kfree(src_copy);
410 return -ENOMEM;
411 }
e02119d5
CM
412
413 read_extent_buffer(eb, src_copy, src_ptr, item_size);
414
415 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 item_size);
418 ret = memcmp(dst_copy, src_copy, item_size);
419
420 kfree(dst_copy);
421 kfree(src_copy);
422 /*
423 * they have the same contents, just return, this saves
424 * us from cowing blocks in the destination tree and doing
425 * extra writes that may not have been done by a previous
426 * sync
427 */
428 if (ret == 0) {
b3b4aa74 429 btrfs_release_path(path);
e02119d5
CM
430 return 0;
431 }
432
4bc4bee4
JB
433 /*
434 * We need to load the old nbytes into the inode so when we
435 * replay the extents we've logged we get the right nbytes.
436 */
437 if (inode_item) {
438 struct btrfs_inode_item *item;
439 u64 nbytes;
d555438b 440 u32 mode;
4bc4bee4
JB
441
442 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 struct btrfs_inode_item);
444 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 item = btrfs_item_ptr(eb, slot,
446 struct btrfs_inode_item);
447 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
448
449 /*
450 * If this is a directory we need to reset the i_size to
451 * 0 so that we can set it up properly when replaying
452 * the rest of the items in this log.
453 */
454 mode = btrfs_inode_mode(eb, item);
455 if (S_ISDIR(mode))
456 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
457 }
458 } else if (inode_item) {
459 struct btrfs_inode_item *item;
d555438b 460 u32 mode;
4bc4bee4
JB
461
462 /*
463 * New inode, set nbytes to 0 so that the nbytes comes out
464 * properly when we replay the extents.
465 */
466 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
468
469 /*
470 * If this is a directory we need to reset the i_size to 0 so
471 * that we can set it up properly when replaying the rest of
472 * the items in this log.
473 */
474 mode = btrfs_inode_mode(eb, item);
475 if (S_ISDIR(mode))
476 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
477 }
478insert:
b3b4aa74 479 btrfs_release_path(path);
e02119d5 480 /* try to insert the key into the destination tree */
df8d116f 481 path->skip_release_on_error = 1;
e02119d5
CM
482 ret = btrfs_insert_empty_item(trans, root, path,
483 key, item_size);
df8d116f 484 path->skip_release_on_error = 0;
e02119d5
CM
485
486 /* make sure any existing item is the correct size */
df8d116f 487 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 488 u32 found_size;
3212fa14 489 found_size = btrfs_item_size(path->nodes[0],
e02119d5 490 path->slots[0]);
143bede5 491 if (found_size > item_size)
78ac4f9e 492 btrfs_truncate_item(path, item_size, 1);
143bede5 493 else if (found_size < item_size)
c71dd880 494 btrfs_extend_item(path, item_size - found_size);
e02119d5 495 } else if (ret) {
4a500fd1 496 return ret;
e02119d5
CM
497 }
498 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 path->slots[0]);
500
501 /* don't overwrite an existing inode if the generation number
502 * was logged as zero. This is done when the tree logging code
503 * is just logging an inode to make sure it exists after recovery.
504 *
505 * Also, don't overwrite i_size on directories during replay.
506 * log replay inserts and removes directory items based on the
507 * state of the tree found in the subvolume, and i_size is modified
508 * as it goes
509 */
510 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 struct btrfs_inode_item *src_item;
512 struct btrfs_inode_item *dst_item;
513
514 src_item = (struct btrfs_inode_item *)src_ptr;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516
1a4bcf47
FM
517 if (btrfs_inode_generation(eb, src_item) == 0) {
518 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 519 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 520
2f2ff0ee
FM
521 /*
522 * For regular files an ino_size == 0 is used only when
523 * logging that an inode exists, as part of a directory
524 * fsync, and the inode wasn't fsynced before. In this
525 * case don't set the size of the inode in the fs/subvol
526 * tree, otherwise we would be throwing valid data away.
527 */
1a4bcf47 528 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 529 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
530 ino_size != 0)
531 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 532 goto no_copy;
1a4bcf47 533 }
e02119d5
CM
534
535 if (overwrite_root &&
536 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 save_old_i_size = 1;
539 saved_i_size = btrfs_inode_size(path->nodes[0],
540 dst_item);
541 }
542 }
543
544 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 src_ptr, item_size);
546
547 if (save_old_i_size) {
548 struct btrfs_inode_item *dst_item;
549 dst_item = (struct btrfs_inode_item *)dst_ptr;
550 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 }
552
553 /* make sure the generation is filled in */
554 if (key->type == BTRFS_INODE_ITEM_KEY) {
555 struct btrfs_inode_item *dst_item;
556 dst_item = (struct btrfs_inode_item *)dst_ptr;
557 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 btrfs_set_inode_generation(path->nodes[0], dst_item,
559 trans->transid);
560 }
561 }
562no_copy:
563 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 564 btrfs_release_path(path);
e02119d5
CM
565 return 0;
566}
567
086dcbfa
FM
568/*
569 * Item overwrite used by replay and tree logging. eb, slot and key all refer
570 * to the src data we are copying out.
571 *
572 * root is the tree we are copying into, and path is a scratch
573 * path for use in this function (it should be released on entry and
574 * will be released on exit).
575 *
576 * If the key is already in the destination tree the existing item is
577 * overwritten. If the existing item isn't big enough, it is extended.
578 * If it is too large, it is truncated.
579 *
580 * If the key isn't in the destination yet, a new item is inserted.
581 */
582static int overwrite_item(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
587{
588 int ret;
589
590 /* Look for the key in the destination tree. */
591 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 if (ret < 0)
593 return ret;
594
595 return do_overwrite_item(trans, root, path, eb, slot, key);
596}
597
e02119d5
CM
598/*
599 * simple helper to read an inode off the disk from a given root
600 * This can only be called for subvolume roots and not for the log
601 */
602static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 u64 objectid)
604{
605 struct inode *inode;
e02119d5 606
0202e83f 607 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 608 if (IS_ERR(inode))
5d4f98a2 609 inode = NULL;
e02119d5
CM
610 return inode;
611}
612
613/* replays a single extent in 'eb' at 'slot' with 'key' into the
614 * subvolume 'root'. path is released on entry and should be released
615 * on exit.
616 *
617 * extents in the log tree have not been allocated out of the extent
618 * tree yet. So, this completes the allocation, taking a reference
619 * as required if the extent already exists or creating a new extent
620 * if it isn't in the extent allocation tree yet.
621 *
622 * The extent is inserted into the file, dropping any existing extents
623 * from the file that overlap the new one.
624 */
625static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
627 struct btrfs_path *path,
628 struct extent_buffer *eb, int slot,
629 struct btrfs_key *key)
630{
5893dfb9 631 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 632 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 633 int found_type;
e02119d5 634 u64 extent_end;
e02119d5 635 u64 start = key->offset;
4bc4bee4 636 u64 nbytes = 0;
e02119d5
CM
637 struct btrfs_file_extent_item *item;
638 struct inode *inode = NULL;
639 unsigned long size;
640 int ret = 0;
641
642 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 found_type = btrfs_file_extent_type(eb, item);
644
d899e052 645 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
646 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 nbytes = btrfs_file_extent_num_bytes(eb, item);
648 extent_end = start + nbytes;
649
650 /*
651 * We don't add to the inodes nbytes if we are prealloc or a
652 * hole.
653 */
654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 nbytes = 0;
656 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 657 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 658 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 659 extent_end = ALIGN(start + size,
0b246afa 660 fs_info->sectorsize);
e02119d5
CM
661 } else {
662 ret = 0;
663 goto out;
664 }
665
666 inode = read_one_inode(root, key->objectid);
667 if (!inode) {
668 ret = -EIO;
669 goto out;
670 }
671
672 /*
673 * first check to see if we already have this extent in the
674 * file. This must be done before the btrfs_drop_extents run
675 * so we don't try to drop this extent.
676 */
f85b7379
DS
677 ret = btrfs_lookup_file_extent(trans, root, path,
678 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 679
d899e052
YZ
680 if (ret == 0 &&
681 (found_type == BTRFS_FILE_EXTENT_REG ||
682 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
683 struct btrfs_file_extent_item cmp1;
684 struct btrfs_file_extent_item cmp2;
685 struct btrfs_file_extent_item *existing;
686 struct extent_buffer *leaf;
687
688 leaf = path->nodes[0];
689 existing = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
691
692 read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 sizeof(cmp1));
694 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 sizeof(cmp2));
696
697 /*
698 * we already have a pointer to this exact extent,
699 * we don't have to do anything
700 */
701 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 702 btrfs_release_path(path);
e02119d5
CM
703 goto out;
704 }
705 }
b3b4aa74 706 btrfs_release_path(path);
e02119d5
CM
707
708 /* drop any overlapping extents */
5893dfb9
FM
709 drop_args.start = start;
710 drop_args.end = extent_end;
711 drop_args.drop_cache = true;
712 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
713 if (ret)
714 goto out;
e02119d5 715
07d400a6
YZ
716 if (found_type == BTRFS_FILE_EXTENT_REG ||
717 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 718 u64 offset;
07d400a6
YZ
719 unsigned long dest_offset;
720 struct btrfs_key ins;
721
3168021c
FM
722 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 btrfs_fs_incompat(fs_info, NO_HOLES))
724 goto update_inode;
725
07d400a6
YZ
726 ret = btrfs_insert_empty_item(trans, root, path, key,
727 sizeof(*item));
3650860b
JB
728 if (ret)
729 goto out;
07d400a6
YZ
730 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 path->slots[0]);
732 copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 (unsigned long)item, sizeof(*item));
734
735 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 738 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 739
df2c95f3
QW
740 /*
741 * Manually record dirty extent, as here we did a shallow
742 * file extent item copy and skip normal backref update,
743 * but modifying extent tree all by ourselves.
744 * So need to manually record dirty extent for qgroup,
745 * as the owner of the file extent changed from log tree
746 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 */
a95f3aaf 748 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
749 btrfs_file_extent_disk_bytenr(eb, item),
750 btrfs_file_extent_disk_num_bytes(eb, item),
751 GFP_NOFS);
752 if (ret < 0)
753 goto out;
754
07d400a6 755 if (ins.objectid > 0) {
82fa113f 756 struct btrfs_ref ref = { 0 };
07d400a6
YZ
757 u64 csum_start;
758 u64 csum_end;
759 LIST_HEAD(ordered_sums);
82fa113f 760
07d400a6
YZ
761 /*
762 * is this extent already allocated in the extent
763 * allocation tree? If so, just add a reference
764 */
2ff7e61e 765 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 766 ins.offset);
3736127a
MPS
767 if (ret < 0) {
768 goto out;
769 } else if (ret == 0) {
82fa113f
QW
770 btrfs_init_generic_ref(&ref,
771 BTRFS_ADD_DELAYED_REF,
772 ins.objectid, ins.offset, 0);
773 btrfs_init_data_ref(&ref,
774 root->root_key.objectid,
f42c5da6 775 key->objectid, offset, 0, false);
82fa113f 776 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
777 if (ret)
778 goto out;
07d400a6
YZ
779 } else {
780 /*
781 * insert the extent pointer in the extent
782 * allocation tree
783 */
5d4f98a2 784 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 785 root->root_key.objectid,
5d4f98a2 786 key->objectid, offset, &ins);
b50c6e25
JB
787 if (ret)
788 goto out;
07d400a6 789 }
b3b4aa74 790 btrfs_release_path(path);
07d400a6
YZ
791
792 if (btrfs_file_extent_compression(eb, item)) {
793 csum_start = ins.objectid;
794 csum_end = csum_start + ins.offset;
795 } else {
796 csum_start = ins.objectid +
797 btrfs_file_extent_offset(eb, item);
798 csum_end = csum_start +
799 btrfs_file_extent_num_bytes(eb, item);
800 }
801
802 ret = btrfs_lookup_csums_range(root->log_root,
803 csum_start, csum_end - 1,
a2de733c 804 &ordered_sums, 0);
3650860b
JB
805 if (ret)
806 goto out;
b84b8390
FM
807 /*
808 * Now delete all existing cums in the csum root that
809 * cover our range. We do this because we can have an
810 * extent that is completely referenced by one file
811 * extent item and partially referenced by another
812 * file extent item (like after using the clone or
813 * extent_same ioctls). In this case if we end up doing
814 * the replay of the one that partially references the
815 * extent first, and we do not do the csum deletion
816 * below, we can get 2 csum items in the csum tree that
817 * overlap each other. For example, imagine our log has
818 * the two following file extent items:
819 *
820 * key (257 EXTENT_DATA 409600)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 20480 nr 20480 ram 102400
823 *
824 * key (257 EXTENT_DATA 819200)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 0 nr 102400 ram 102400
827 *
828 * Where the second one fully references the 100K extent
829 * that starts at disk byte 12845056, and the log tree
830 * has a single csum item that covers the entire range
831 * of the extent:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 *
835 * After the first file extent item is replayed, the
836 * csum tree gets the following csum item:
837 *
838 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 *
840 * Which covers the 20K sub-range starting at offset 20K
841 * of our extent. Now when we replay the second file
842 * extent item, if we do not delete existing csum items
843 * that cover any of its blocks, we end up getting two
844 * csum items in our csum tree that overlap each other:
845 *
846 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 *
849 * Which is a problem, because after this anyone trying
850 * to lookup up for the checksum of any block of our
851 * extent starting at an offset of 40K or higher, will
852 * end up looking at the second csum item only, which
853 * does not contain the checksum for any block starting
854 * at offset 40K or higher of our extent.
855 */
07d400a6
YZ
856 while (!list_empty(&ordered_sums)) {
857 struct btrfs_ordered_sum *sums;
fc28b25e
JB
858 struct btrfs_root *csum_root;
859
07d400a6
YZ
860 sums = list_entry(ordered_sums.next,
861 struct btrfs_ordered_sum,
862 list);
fc28b25e
JB
863 csum_root = btrfs_csum_root(fs_info,
864 sums->bytenr);
b84b8390 865 if (!ret)
fc28b25e 866 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
867 sums->bytenr,
868 sums->len);
3650860b
JB
869 if (!ret)
870 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
871 csum_root,
872 sums);
07d400a6
YZ
873 list_del(&sums->list);
874 kfree(sums);
875 }
3650860b
JB
876 if (ret)
877 goto out;
07d400a6 878 } else {
b3b4aa74 879 btrfs_release_path(path);
07d400a6
YZ
880 }
881 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 /* inline extents are easy, we just overwrite them */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
884 if (ret)
885 goto out;
07d400a6 886 }
e02119d5 887
9ddc959e
JB
888 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 extent_end - start);
890 if (ret)
891 goto out;
892
3168021c 893update_inode:
2766ff61 894 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 895 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
896out:
897 if (inode)
898 iput(inode);
899 return ret;
900}
901
902/*
903 * when cleaning up conflicts between the directory names in the
904 * subvolume, directory names in the log and directory names in the
905 * inode back references, we may have to unlink inodes from directories.
906 *
907 * This is a helper function to do the unlink of a specific directory
908 * item
909 */
910static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 911 struct btrfs_path *path,
207e7d92 912 struct btrfs_inode *dir,
e02119d5
CM
913 struct btrfs_dir_item *di)
914{
9798ba24 915 struct btrfs_root *root = dir->root;
e02119d5
CM
916 struct inode *inode;
917 char *name;
918 int name_len;
919 struct extent_buffer *leaf;
920 struct btrfs_key location;
921 int ret;
922
923 leaf = path->nodes[0];
924
925 btrfs_dir_item_key_to_cpu(leaf, di, &location);
926 name_len = btrfs_dir_name_len(leaf, di);
927 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 928 if (!name)
929 return -ENOMEM;
930
e02119d5 931 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 932 btrfs_release_path(path);
e02119d5
CM
933
934 inode = read_one_inode(root, location.objectid);
c00e9493 935 if (!inode) {
3650860b
JB
936 ret = -EIO;
937 goto out;
c00e9493 938 }
e02119d5 939
ec051c0f 940 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
941 if (ret)
942 goto out;
12fcfd22 943
4467af88 944 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name,
207e7d92 945 name_len);
3650860b
JB
946 if (ret)
947 goto out;
ada9af21 948 else
e5c304e6 949 ret = btrfs_run_delayed_items(trans);
3650860b 950out:
e02119d5 951 kfree(name);
e02119d5
CM
952 iput(inode);
953 return ret;
954}
955
956/*
77a5b9e3
FM
957 * See if a given name and sequence number found in an inode back reference are
958 * already in a directory and correctly point to this inode.
959 *
960 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
961 * exists.
e02119d5
CM
962 */
963static noinline int inode_in_dir(struct btrfs_root *root,
964 struct btrfs_path *path,
965 u64 dirid, u64 objectid, u64 index,
966 const char *name, int name_len)
967{
968 struct btrfs_dir_item *di;
969 struct btrfs_key location;
77a5b9e3 970 int ret = 0;
e02119d5
CM
971
972 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
973 index, name, name_len, 0);
77a5b9e3 974 if (IS_ERR(di)) {
8dcbc261 975 ret = PTR_ERR(di);
77a5b9e3
FM
976 goto out;
977 } else if (di) {
e02119d5
CM
978 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
979 if (location.objectid != objectid)
980 goto out;
77a5b9e3 981 } else {
e02119d5 982 goto out;
77a5b9e3 983 }
e02119d5 984
77a5b9e3 985 btrfs_release_path(path);
e02119d5 986 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
77a5b9e3
FM
987 if (IS_ERR(di)) {
988 ret = PTR_ERR(di);
e02119d5 989 goto out;
77a5b9e3
FM
990 } else if (di) {
991 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
992 if (location.objectid == objectid)
993 ret = 1;
994 }
e02119d5 995out:
b3b4aa74 996 btrfs_release_path(path);
77a5b9e3 997 return ret;
e02119d5
CM
998}
999
1000/*
1001 * helper function to check a log tree for a named back reference in
1002 * an inode. This is used to decide if a back reference that is
1003 * found in the subvolume conflicts with what we find in the log.
1004 *
1005 * inode backreferences may have multiple refs in a single item,
1006 * during replay we process one reference at a time, and we don't
1007 * want to delete valid links to a file from the subvolume if that
1008 * link is also in the log.
1009 */
1010static noinline int backref_in_log(struct btrfs_root *log,
1011 struct btrfs_key *key,
f186373f 1012 u64 ref_objectid,
df8d116f 1013 const char *name, int namelen)
e02119d5
CM
1014{
1015 struct btrfs_path *path;
e02119d5 1016 int ret;
e02119d5
CM
1017
1018 path = btrfs_alloc_path();
2a29edc6 1019 if (!path)
1020 return -ENOMEM;
1021
e02119d5 1022 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1023 if (ret < 0) {
1024 goto out;
1025 } else if (ret == 1) {
89cbf5f6 1026 ret = 0;
f186373f
MF
1027 goto out;
1028 }
1029
89cbf5f6
NB
1030 if (key->type == BTRFS_INODE_EXTREF_KEY)
1031 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1032 path->slots[0],
1033 ref_objectid,
1034 name, namelen);
1035 else
1036 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1037 path->slots[0],
1038 name, namelen);
e02119d5
CM
1039out:
1040 btrfs_free_path(path);
89cbf5f6 1041 return ret;
e02119d5
CM
1042}
1043
5a1d7843 1044static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1045 struct btrfs_root *root,
e02119d5 1046 struct btrfs_path *path,
5a1d7843 1047 struct btrfs_root *log_root,
94c91a1f
NB
1048 struct btrfs_inode *dir,
1049 struct btrfs_inode *inode,
f186373f
MF
1050 u64 inode_objectid, u64 parent_objectid,
1051 u64 ref_index, char *name, int namelen,
1052 int *search_done)
e02119d5 1053{
34f3e4f2 1054 int ret;
f186373f
MF
1055 char *victim_name;
1056 int victim_name_len;
1057 struct extent_buffer *leaf;
5a1d7843 1058 struct btrfs_dir_item *di;
f186373f
MF
1059 struct btrfs_key search_key;
1060 struct btrfs_inode_extref *extref;
c622ae60 1061
f186373f
MF
1062again:
1063 /* Search old style refs */
1064 search_key.objectid = inode_objectid;
1065 search_key.type = BTRFS_INODE_REF_KEY;
1066 search_key.offset = parent_objectid;
1067 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1068 if (ret == 0) {
e02119d5
CM
1069 struct btrfs_inode_ref *victim_ref;
1070 unsigned long ptr;
1071 unsigned long ptr_end;
f186373f
MF
1072
1073 leaf = path->nodes[0];
e02119d5
CM
1074
1075 /* are we trying to overwrite a back ref for the root directory
1076 * if so, just jump out, we're done
1077 */
f186373f 1078 if (search_key.objectid == search_key.offset)
5a1d7843 1079 return 1;
e02119d5
CM
1080
1081 /* check all the names in this back reference to see
1082 * if they are in the log. if so, we allow them to stay
1083 * otherwise they must be unlinked as a conflict
1084 */
1085 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1086 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1087 while (ptr < ptr_end) {
e02119d5
CM
1088 victim_ref = (struct btrfs_inode_ref *)ptr;
1089 victim_name_len = btrfs_inode_ref_name_len(leaf,
1090 victim_ref);
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1092 if (!victim_name)
1093 return -ENOMEM;
e02119d5
CM
1094
1095 read_extent_buffer(leaf, victim_name,
1096 (unsigned long)(victim_ref + 1),
1097 victim_name_len);
1098
d3316c82
NB
1099 ret = backref_in_log(log_root, &search_key,
1100 parent_objectid, victim_name,
1101 victim_name_len);
1102 if (ret < 0) {
1103 kfree(victim_name);
1104 return ret;
1105 } else if (!ret) {
94c91a1f 1106 inc_nlink(&inode->vfs_inode);
b3b4aa74 1107 btrfs_release_path(path);
12fcfd22 1108
4467af88 1109 ret = btrfs_unlink_inode(trans, dir, inode,
4ec5934e 1110 victim_name, victim_name_len);
f186373f 1111 kfree(victim_name);
3650860b
JB
1112 if (ret)
1113 return ret;
e5c304e6 1114 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1115 if (ret)
1116 return ret;
f186373f
MF
1117 *search_done = 1;
1118 goto again;
e02119d5
CM
1119 }
1120 kfree(victim_name);
f186373f 1121
e02119d5
CM
1122 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1123 }
e02119d5 1124
c622ae60 1125 /*
1126 * NOTE: we have searched root tree and checked the
bb7ab3b9 1127 * corresponding ref, it does not need to check again.
c622ae60 1128 */
5a1d7843 1129 *search_done = 1;
e02119d5 1130 }
b3b4aa74 1131 btrfs_release_path(path);
e02119d5 1132
f186373f
MF
1133 /* Same search but for extended refs */
1134 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1135 inode_objectid, parent_objectid, 0,
1136 0);
1137 if (!IS_ERR_OR_NULL(extref)) {
1138 u32 item_size;
1139 u32 cur_offset = 0;
1140 unsigned long base;
1141 struct inode *victim_parent;
1142
1143 leaf = path->nodes[0];
1144
3212fa14 1145 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1146 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1147
1148 while (cur_offset < item_size) {
dd9ef135 1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1150
1151 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1152
1153 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1154 goto next;
1155
1156 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1157 if (!victim_name)
1158 return -ENOMEM;
f186373f
MF
1159 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1160 victim_name_len);
1161
1162 search_key.objectid = inode_objectid;
1163 search_key.type = BTRFS_INODE_EXTREF_KEY;
1164 search_key.offset = btrfs_extref_hash(parent_objectid,
1165 victim_name,
1166 victim_name_len);
d3316c82
NB
1167 ret = backref_in_log(log_root, &search_key,
1168 parent_objectid, victim_name,
1169 victim_name_len);
1170 if (ret < 0) {
f35838a6 1171 kfree(victim_name);
d3316c82
NB
1172 return ret;
1173 } else if (!ret) {
f186373f
MF
1174 ret = -ENOENT;
1175 victim_parent = read_one_inode(root,
94c91a1f 1176 parent_objectid);
f186373f 1177 if (victim_parent) {
94c91a1f 1178 inc_nlink(&inode->vfs_inode);
f186373f
MF
1179 btrfs_release_path(path);
1180
4467af88 1181 ret = btrfs_unlink_inode(trans,
4ec5934e 1182 BTRFS_I(victim_parent),
94c91a1f 1183 inode,
4ec5934e
NB
1184 victim_name,
1185 victim_name_len);
ada9af21
FDBM
1186 if (!ret)
1187 ret = btrfs_run_delayed_items(
e5c304e6 1188 trans);
f186373f 1189 }
f186373f
MF
1190 iput(victim_parent);
1191 kfree(victim_name);
3650860b
JB
1192 if (ret)
1193 return ret;
f186373f
MF
1194 *search_done = 1;
1195 goto again;
1196 }
1197 kfree(victim_name);
f186373f
MF
1198next:
1199 cur_offset += victim_name_len + sizeof(*extref);
1200 }
1201 *search_done = 1;
1202 }
1203 btrfs_release_path(path);
1204
34f3e4f2 1205 /* look for a conflicting sequence number */
94c91a1f 1206 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1207 ref_index, name, namelen, 0);
52db7779 1208 if (IS_ERR(di)) {
8dcbc261 1209 return PTR_ERR(di);
52db7779 1210 } else if (di) {
9798ba24 1211 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1212 if (ret)
1213 return ret;
34f3e4f2 1214 }
1215 btrfs_release_path(path);
1216
52042d8e 1217 /* look for a conflicting name */
94c91a1f 1218 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1219 name, namelen, 0);
52db7779
FM
1220 if (IS_ERR(di)) {
1221 return PTR_ERR(di);
1222 } else if (di) {
9798ba24 1223 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1224 if (ret)
1225 return ret;
34f3e4f2 1226 }
1227 btrfs_release_path(path);
1228
5a1d7843
JS
1229 return 0;
1230}
e02119d5 1231
bae15d95
QW
1232static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1233 u32 *namelen, char **name, u64 *index,
1234 u64 *parent_objectid)
f186373f
MF
1235{
1236 struct btrfs_inode_extref *extref;
1237
1238 extref = (struct btrfs_inode_extref *)ref_ptr;
1239
1240 *namelen = btrfs_inode_extref_name_len(eb, extref);
1241 *name = kmalloc(*namelen, GFP_NOFS);
1242 if (*name == NULL)
1243 return -ENOMEM;
1244
1245 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1246 *namelen);
1247
1f250e92
FM
1248 if (index)
1249 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1250 if (parent_objectid)
1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253 return 0;
1254}
1255
bae15d95
QW
1256static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 u32 *namelen, char **name, u64 *index)
f186373f
MF
1258{
1259 struct btrfs_inode_ref *ref;
1260
1261 ref = (struct btrfs_inode_ref *)ref_ptr;
1262
1263 *namelen = btrfs_inode_ref_name_len(eb, ref);
1264 *name = kmalloc(*namelen, GFP_NOFS);
1265 if (*name == NULL)
1266 return -ENOMEM;
1267
1268 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1269
1f250e92
FM
1270 if (index)
1271 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1272
1273 return 0;
1274}
1275
1f250e92
FM
1276/*
1277 * Take an inode reference item from the log tree and iterate all names from the
1278 * inode reference item in the subvolume tree with the same key (if it exists).
1279 * For any name that is not in the inode reference item from the log tree, do a
1280 * proper unlink of that name (that is, remove its entry from the inode
1281 * reference item and both dir index keys).
1282 */
1283static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1284 struct btrfs_root *root,
1285 struct btrfs_path *path,
1286 struct btrfs_inode *inode,
1287 struct extent_buffer *log_eb,
1288 int log_slot,
1289 struct btrfs_key *key)
1290{
1291 int ret;
1292 unsigned long ref_ptr;
1293 unsigned long ref_end;
1294 struct extent_buffer *eb;
1295
1296again:
1297 btrfs_release_path(path);
1298 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1299 if (ret > 0) {
1300 ret = 0;
1301 goto out;
1302 }
1303 if (ret < 0)
1304 goto out;
1305
1306 eb = path->nodes[0];
1307 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1308 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92
FM
1309 while (ref_ptr < ref_end) {
1310 char *name = NULL;
1311 int namelen;
1312 u64 parent_id;
1313
1314 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1315 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1316 NULL, &parent_id);
1317 } else {
1318 parent_id = key->offset;
1319 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1320 NULL);
1321 }
1322 if (ret)
1323 goto out;
1324
1325 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1326 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1327 parent_id, name,
1328 namelen);
1f250e92 1329 else
9bb8407f
NB
1330 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1331 name, namelen);
1f250e92
FM
1332
1333 if (!ret) {
1334 struct inode *dir;
1335
1336 btrfs_release_path(path);
1337 dir = read_one_inode(root, parent_id);
1338 if (!dir) {
1339 ret = -ENOENT;
1340 kfree(name);
1341 goto out;
1342 }
4467af88 1343 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
1f250e92
FM
1344 inode, name, namelen);
1345 kfree(name);
1346 iput(dir);
4751dc99
FM
1347 /*
1348 * Whenever we need to check if a name exists or not, we
1349 * check the subvolume tree. So after an unlink we must
1350 * run delayed items, so that future checks for a name
1351 * during log replay see that the name does not exists
1352 * anymore.
1353 */
1354 if (!ret)
1355 ret = btrfs_run_delayed_items(trans);
1f250e92
FM
1356 if (ret)
1357 goto out;
1358 goto again;
1359 }
1360
1361 kfree(name);
1362 ref_ptr += namelen;
1363 if (key->type == BTRFS_INODE_EXTREF_KEY)
1364 ref_ptr += sizeof(struct btrfs_inode_extref);
1365 else
1366 ref_ptr += sizeof(struct btrfs_inode_ref);
1367 }
1368 ret = 0;
1369 out:
1370 btrfs_release_path(path);
1371 return ret;
1372}
1373
0d836392
FM
1374static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1375 const u8 ref_type, const char *name,
1376 const int namelen)
1377{
1378 struct btrfs_key key;
1379 struct btrfs_path *path;
1380 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1381 int ret;
1382
1383 path = btrfs_alloc_path();
1384 if (!path)
1385 return -ENOMEM;
1386
1387 key.objectid = btrfs_ino(BTRFS_I(inode));
1388 key.type = ref_type;
1389 if (key.type == BTRFS_INODE_REF_KEY)
1390 key.offset = parent_id;
1391 else
1392 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1393
1394 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1395 if (ret < 0)
1396 goto out;
1397 if (ret > 0) {
1398 ret = 0;
1399 goto out;
1400 }
1401 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1402 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1403 path->slots[0], parent_id, name, namelen);
0d836392 1404 else
9bb8407f
NB
1405 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1406 name, namelen);
0d836392
FM
1407
1408out:
1409 btrfs_free_path(path);
1410 return ret;
1411}
1412
6d9cc072 1413static int add_link(struct btrfs_trans_handle *trans,
6b5fc433
FM
1414 struct inode *dir, struct inode *inode, const char *name,
1415 int namelen, u64 ref_index)
1416{
6d9cc072 1417 struct btrfs_root *root = BTRFS_I(dir)->root;
6b5fc433
FM
1418 struct btrfs_dir_item *dir_item;
1419 struct btrfs_key key;
1420 struct btrfs_path *path;
1421 struct inode *other_inode = NULL;
1422 int ret;
1423
1424 path = btrfs_alloc_path();
1425 if (!path)
1426 return -ENOMEM;
1427
1428 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1429 btrfs_ino(BTRFS_I(dir)),
1430 name, namelen, 0);
1431 if (!dir_item) {
1432 btrfs_release_path(path);
1433 goto add_link;
1434 } else if (IS_ERR(dir_item)) {
1435 ret = PTR_ERR(dir_item);
1436 goto out;
1437 }
1438
1439 /*
1440 * Our inode's dentry collides with the dentry of another inode which is
1441 * in the log but not yet processed since it has a higher inode number.
1442 * So delete that other dentry.
1443 */
1444 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1445 btrfs_release_path(path);
1446 other_inode = read_one_inode(root, key.objectid);
1447 if (!other_inode) {
1448 ret = -ENOENT;
1449 goto out;
1450 }
4467af88 1451 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode),
6b5fc433
FM
1452 name, namelen);
1453 if (ret)
1454 goto out;
1455 /*
1456 * If we dropped the link count to 0, bump it so that later the iput()
1457 * on the inode will not free it. We will fixup the link count later.
1458 */
1459 if (other_inode->i_nlink == 0)
1460 inc_nlink(other_inode);
1461
1462 ret = btrfs_run_delayed_items(trans);
1463 if (ret)
1464 goto out;
1465add_link:
1466 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1467 name, namelen, 0, ref_index);
1468out:
1469 iput(other_inode);
1470 btrfs_free_path(path);
1471
1472 return ret;
1473}
1474
5a1d7843
JS
1475/*
1476 * replay one inode back reference item found in the log tree.
1477 * eb, slot and key refer to the buffer and key found in the log tree.
1478 * root is the destination we are replaying into, and path is for temp
1479 * use by this function. (it should be released on return).
1480 */
1481static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root,
1483 struct btrfs_root *log,
1484 struct btrfs_path *path,
1485 struct extent_buffer *eb, int slot,
1486 struct btrfs_key *key)
1487{
03b2f08b
GB
1488 struct inode *dir = NULL;
1489 struct inode *inode = NULL;
5a1d7843
JS
1490 unsigned long ref_ptr;
1491 unsigned long ref_end;
03b2f08b 1492 char *name = NULL;
5a1d7843
JS
1493 int namelen;
1494 int ret;
1495 int search_done = 0;
f186373f
MF
1496 int log_ref_ver = 0;
1497 u64 parent_objectid;
1498 u64 inode_objectid;
f46dbe3d 1499 u64 ref_index = 0;
f186373f
MF
1500 int ref_struct_size;
1501
1502 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1503 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1504
1505 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1506 struct btrfs_inode_extref *r;
1507
1508 ref_struct_size = sizeof(struct btrfs_inode_extref);
1509 log_ref_ver = 1;
1510 r = (struct btrfs_inode_extref *)ref_ptr;
1511 parent_objectid = btrfs_inode_extref_parent(eb, r);
1512 } else {
1513 ref_struct_size = sizeof(struct btrfs_inode_ref);
1514 parent_objectid = key->offset;
1515 }
1516 inode_objectid = key->objectid;
e02119d5 1517
5a1d7843
JS
1518 /*
1519 * it is possible that we didn't log all the parent directories
1520 * for a given inode. If we don't find the dir, just don't
1521 * copy the back ref in. The link count fixup code will take
1522 * care of the rest
1523 */
f186373f 1524 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1525 if (!dir) {
1526 ret = -ENOENT;
1527 goto out;
1528 }
5a1d7843 1529
f186373f 1530 inode = read_one_inode(root, inode_objectid);
5a1d7843 1531 if (!inode) {
03b2f08b
GB
1532 ret = -EIO;
1533 goto out;
5a1d7843
JS
1534 }
1535
5a1d7843 1536 while (ref_ptr < ref_end) {
f186373f 1537 if (log_ref_ver) {
bae15d95
QW
1538 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1539 &ref_index, &parent_objectid);
f186373f
MF
1540 /*
1541 * parent object can change from one array
1542 * item to another.
1543 */
1544 if (!dir)
1545 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1546 if (!dir) {
1547 ret = -ENOENT;
1548 goto out;
1549 }
f186373f 1550 } else {
bae15d95
QW
1551 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1552 &ref_index);
f186373f
MF
1553 }
1554 if (ret)
03b2f08b 1555 goto out;
5a1d7843 1556
77a5b9e3
FM
1557 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1558 btrfs_ino(BTRFS_I(inode)), ref_index,
1559 name, namelen);
1560 if (ret < 0) {
1561 goto out;
1562 } else if (ret == 0) {
5a1d7843
JS
1563 /*
1564 * look for a conflicting back reference in the
1565 * metadata. if we find one we have to unlink that name
1566 * of the file before we add our new link. Later on, we
1567 * overwrite any existing back reference, and we don't
1568 * want to create dangling pointers in the directory.
1569 */
1570
1571 if (!search_done) {
1572 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1573 BTRFS_I(dir),
d75eefdf 1574 BTRFS_I(inode),
f186373f
MF
1575 inode_objectid,
1576 parent_objectid,
1577 ref_index, name, namelen,
5a1d7843 1578 &search_done);
03b2f08b
GB
1579 if (ret) {
1580 if (ret == 1)
1581 ret = 0;
3650860b
JB
1582 goto out;
1583 }
5a1d7843
JS
1584 }
1585
0d836392
FM
1586 /*
1587 * If a reference item already exists for this inode
1588 * with the same parent and name, but different index,
1589 * drop it and the corresponding directory index entries
1590 * from the parent before adding the new reference item
1591 * and dir index entries, otherwise we would fail with
1592 * -EEXIST returned from btrfs_add_link() below.
1593 */
1594 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1595 name, namelen);
1596 if (ret > 0) {
4467af88 1597 ret = btrfs_unlink_inode(trans,
0d836392
FM
1598 BTRFS_I(dir),
1599 BTRFS_I(inode),
1600 name, namelen);
1601 /*
1602 * If we dropped the link count to 0, bump it so
1603 * that later the iput() on the inode will not
1604 * free it. We will fixup the link count later.
1605 */
1606 if (!ret && inode->i_nlink == 0)
1607 inc_nlink(inode);
4751dc99
FM
1608 /*
1609 * Whenever we need to check if a name exists or
1610 * not, we check the subvolume tree. So after an
1611 * unlink we must run delayed items, so that future
1612 * checks for a name during log replay see that the
1613 * name does not exists anymore.
1614 */
1615 if (!ret)
1616 ret = btrfs_run_delayed_items(trans);
0d836392
FM
1617 }
1618 if (ret < 0)
1619 goto out;
1620
5a1d7843 1621 /* insert our name */
6d9cc072 1622 ret = add_link(trans, dir, inode, name, namelen,
6b5fc433 1623 ref_index);
3650860b
JB
1624 if (ret)
1625 goto out;
5a1d7843 1626
f96d4474
JB
1627 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1628 if (ret)
1629 goto out;
5a1d7843 1630 }
77a5b9e3 1631 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1632
f186373f 1633 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1634 kfree(name);
03b2f08b 1635 name = NULL;
f186373f
MF
1636 if (log_ref_ver) {
1637 iput(dir);
1638 dir = NULL;
1639 }
5a1d7843 1640 }
e02119d5 1641
1f250e92
FM
1642 /*
1643 * Before we overwrite the inode reference item in the subvolume tree
1644 * with the item from the log tree, we must unlink all names from the
1645 * parent directory that are in the subvolume's tree inode reference
1646 * item, otherwise we end up with an inconsistent subvolume tree where
1647 * dir index entries exist for a name but there is no inode reference
1648 * item with the same name.
1649 */
1650 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1651 key);
1652 if (ret)
1653 goto out;
1654
e02119d5
CM
1655 /* finally write the back reference in the inode */
1656 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1657out:
b3b4aa74 1658 btrfs_release_path(path);
03b2f08b 1659 kfree(name);
e02119d5
CM
1660 iput(dir);
1661 iput(inode);
3650860b 1662 return ret;
e02119d5
CM
1663}
1664
f186373f 1665static int count_inode_extrefs(struct btrfs_root *root,
36283658 1666 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1667{
1668 int ret = 0;
1669 int name_len;
1670 unsigned int nlink = 0;
1671 u32 item_size;
1672 u32 cur_offset = 0;
36283658 1673 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1674 u64 offset = 0;
1675 unsigned long ptr;
1676 struct btrfs_inode_extref *extref;
1677 struct extent_buffer *leaf;
1678
1679 while (1) {
1680 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1681 &extref, &offset);
1682 if (ret)
1683 break;
c71bf099 1684
f186373f 1685 leaf = path->nodes[0];
3212fa14 1686 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1688 cur_offset = 0;
f186373f
MF
1689
1690 while (cur_offset < item_size) {
1691 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1692 name_len = btrfs_inode_extref_name_len(leaf, extref);
1693
1694 nlink++;
1695
1696 cur_offset += name_len + sizeof(*extref);
1697 }
1698
1699 offset++;
1700 btrfs_release_path(path);
1701 }
1702 btrfs_release_path(path);
1703
2c2c452b 1704 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1705 return ret;
1706 return nlink;
1707}
1708
1709static int count_inode_refs(struct btrfs_root *root,
f329e319 1710 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1711{
e02119d5
CM
1712 int ret;
1713 struct btrfs_key key;
f186373f 1714 unsigned int nlink = 0;
e02119d5
CM
1715 unsigned long ptr;
1716 unsigned long ptr_end;
1717 int name_len;
f329e319 1718 u64 ino = btrfs_ino(inode);
e02119d5 1719
33345d01 1720 key.objectid = ino;
e02119d5
CM
1721 key.type = BTRFS_INODE_REF_KEY;
1722 key.offset = (u64)-1;
1723
d397712b 1724 while (1) {
e02119d5
CM
1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 if (ret < 0)
1727 break;
1728 if (ret > 0) {
1729 if (path->slots[0] == 0)
1730 break;
1731 path->slots[0]--;
1732 }
e93ae26f 1733process_slot:
e02119d5
CM
1734 btrfs_item_key_to_cpu(path->nodes[0], &key,
1735 path->slots[0]);
33345d01 1736 if (key.objectid != ino ||
e02119d5
CM
1737 key.type != BTRFS_INODE_REF_KEY)
1738 break;
1739 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1740 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1741 path->slots[0]);
d397712b 1742 while (ptr < ptr_end) {
e02119d5
CM
1743 struct btrfs_inode_ref *ref;
1744
1745 ref = (struct btrfs_inode_ref *)ptr;
1746 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1747 ref);
1748 ptr = (unsigned long)(ref + 1) + name_len;
1749 nlink++;
1750 }
1751
1752 if (key.offset == 0)
1753 break;
e93ae26f
FDBM
1754 if (path->slots[0] > 0) {
1755 path->slots[0]--;
1756 goto process_slot;
1757 }
e02119d5 1758 key.offset--;
b3b4aa74 1759 btrfs_release_path(path);
e02119d5 1760 }
b3b4aa74 1761 btrfs_release_path(path);
f186373f
MF
1762
1763 return nlink;
1764}
1765
1766/*
1767 * There are a few corners where the link count of the file can't
1768 * be properly maintained during replay. So, instead of adding
1769 * lots of complexity to the log code, we just scan the backrefs
1770 * for any file that has been through replay.
1771 *
1772 * The scan will update the link count on the inode to reflect the
1773 * number of back refs found. If it goes down to zero, the iput
1774 * will free the inode.
1775 */
1776static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1777 struct btrfs_root *root,
1778 struct inode *inode)
1779{
1780 struct btrfs_path *path;
1781 int ret;
1782 u64 nlink = 0;
4a0cc7ca 1783 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1784
1785 path = btrfs_alloc_path();
1786 if (!path)
1787 return -ENOMEM;
1788
f329e319 1789 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1790 if (ret < 0)
1791 goto out;
1792
1793 nlink = ret;
1794
36283658 1795 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1796 if (ret < 0)
1797 goto out;
1798
1799 nlink += ret;
1800
1801 ret = 0;
1802
e02119d5 1803 if (nlink != inode->i_nlink) {
bfe86848 1804 set_nlink(inode, nlink);
f96d4474
JB
1805 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1806 if (ret)
1807 goto out;
e02119d5 1808 }
8d5bf1cb 1809 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1810
c71bf099
YZ
1811 if (inode->i_nlink == 0) {
1812 if (S_ISDIR(inode->i_mode)) {
1813 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1814 ino, 1);
3650860b
JB
1815 if (ret)
1816 goto out;
c71bf099 1817 }
ecdcf3c2
NB
1818 ret = btrfs_insert_orphan_item(trans, root, ino);
1819 if (ret == -EEXIST)
1820 ret = 0;
12fcfd22 1821 }
12fcfd22 1822
f186373f
MF
1823out:
1824 btrfs_free_path(path);
1825 return ret;
e02119d5
CM
1826}
1827
1828static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root,
1830 struct btrfs_path *path)
1831{
1832 int ret;
1833 struct btrfs_key key;
1834 struct inode *inode;
1835
1836 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1837 key.type = BTRFS_ORPHAN_ITEM_KEY;
1838 key.offset = (u64)-1;
d397712b 1839 while (1) {
e02119d5
CM
1840 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1841 if (ret < 0)
1842 break;
1843
1844 if (ret == 1) {
011b28ac 1845 ret = 0;
e02119d5
CM
1846 if (path->slots[0] == 0)
1847 break;
1848 path->slots[0]--;
1849 }
1850
1851 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1852 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1853 key.type != BTRFS_ORPHAN_ITEM_KEY)
1854 break;
1855
1856 ret = btrfs_del_item(trans, root, path);
65a246c5 1857 if (ret)
011b28ac 1858 break;
e02119d5 1859
b3b4aa74 1860 btrfs_release_path(path);
e02119d5 1861 inode = read_one_inode(root, key.offset);
011b28ac
JB
1862 if (!inode) {
1863 ret = -EIO;
1864 break;
1865 }
e02119d5
CM
1866
1867 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1868 iput(inode);
3650860b 1869 if (ret)
011b28ac 1870 break;
e02119d5 1871
12fcfd22
CM
1872 /*
1873 * fixup on a directory may create new entries,
1874 * make sure we always look for the highset possible
1875 * offset
1876 */
1877 key.offset = (u64)-1;
e02119d5 1878 }
b3b4aa74 1879 btrfs_release_path(path);
65a246c5 1880 return ret;
e02119d5
CM
1881}
1882
1883
1884/*
1885 * record a given inode in the fixup dir so we can check its link
1886 * count when replay is done. The link count is incremented here
1887 * so the inode won't go away until we check it
1888 */
1889static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 u64 objectid)
1893{
1894 struct btrfs_key key;
1895 int ret = 0;
1896 struct inode *inode;
1897
1898 inode = read_one_inode(root, objectid);
c00e9493
TI
1899 if (!inode)
1900 return -EIO;
e02119d5
CM
1901
1902 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1903 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1904 key.offset = objectid;
1905
1906 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1907
b3b4aa74 1908 btrfs_release_path(path);
e02119d5 1909 if (ret == 0) {
9bf7a489
JB
1910 if (!inode->i_nlink)
1911 set_nlink(inode, 1);
1912 else
8b558c5f 1913 inc_nlink(inode);
9a56fcd1 1914 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1915 } else if (ret == -EEXIST) {
1916 ret = 0;
e02119d5
CM
1917 }
1918 iput(inode);
1919
1920 return ret;
1921}
1922
1923/*
1924 * when replaying the log for a directory, we only insert names
1925 * for inodes that actually exist. This means an fsync on a directory
1926 * does not implicitly fsync all the new files in it
1927 */
1928static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
e02119d5 1930 u64 dirid, u64 index,
60d53eb3 1931 char *name, int name_len,
e02119d5
CM
1932 struct btrfs_key *location)
1933{
1934 struct inode *inode;
1935 struct inode *dir;
1936 int ret;
1937
1938 inode = read_one_inode(root, location->objectid);
1939 if (!inode)
1940 return -ENOENT;
1941
1942 dir = read_one_inode(root, dirid);
1943 if (!dir) {
1944 iput(inode);
1945 return -EIO;
1946 }
d555438b 1947
db0a669f
NB
1948 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1949 name_len, 1, index);
e02119d5
CM
1950
1951 /* FIXME, put inode into FIXUP list */
1952
1953 iput(inode);
1954 iput(dir);
1955 return ret;
1956}
1957
339d0354
FM
1958static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1959 struct btrfs_inode *dir,
1960 struct btrfs_path *path,
1961 struct btrfs_dir_item *dst_di,
1962 const struct btrfs_key *log_key,
1963 u8 log_type,
1964 bool exists)
1965{
1966 struct btrfs_key found_key;
1967
1968 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1969 /* The existing dentry points to the same inode, don't delete it. */
1970 if (found_key.objectid == log_key->objectid &&
1971 found_key.type == log_key->type &&
1972 found_key.offset == log_key->offset &&
1973 btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1974 return 1;
1975
1976 /*
1977 * Don't drop the conflicting directory entry if the inode for the new
1978 * entry doesn't exist.
1979 */
1980 if (!exists)
1981 return 0;
1982
1983 return drop_one_dir_item(trans, path, dir, dst_di);
1984}
1985
e02119d5
CM
1986/*
1987 * take a single entry in a log directory item and replay it into
1988 * the subvolume.
1989 *
1990 * if a conflicting item exists in the subdirectory already,
1991 * the inode it points to is unlinked and put into the link count
1992 * fix up tree.
1993 *
1994 * If a name from the log points to a file or directory that does
1995 * not exist in the FS, it is skipped. fsyncs on directories
1996 * do not force down inodes inside that directory, just changes to the
1997 * names or unlinks in a directory.
bb53eda9
FM
1998 *
1999 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
2000 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
2001 */
2002static noinline int replay_one_name(struct btrfs_trans_handle *trans,
2003 struct btrfs_root *root,
2004 struct btrfs_path *path,
2005 struct extent_buffer *eb,
2006 struct btrfs_dir_item *di,
2007 struct btrfs_key *key)
2008{
2009 char *name;
2010 int name_len;
339d0354
FM
2011 struct btrfs_dir_item *dir_dst_di;
2012 struct btrfs_dir_item *index_dst_di;
2013 bool dir_dst_matches = false;
2014 bool index_dst_matches = false;
e02119d5 2015 struct btrfs_key log_key;
339d0354 2016 struct btrfs_key search_key;
e02119d5 2017 struct inode *dir;
e02119d5 2018 u8 log_type;
cfd31269
FM
2019 bool exists;
2020 int ret;
339d0354 2021 bool update_size = true;
bb53eda9 2022 bool name_added = false;
e02119d5
CM
2023
2024 dir = read_one_inode(root, key->objectid);
c00e9493
TI
2025 if (!dir)
2026 return -EIO;
e02119d5
CM
2027
2028 name_len = btrfs_dir_name_len(eb, di);
2029 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
2030 if (!name) {
2031 ret = -ENOMEM;
2032 goto out;
2033 }
2a29edc6 2034
e02119d5
CM
2035 log_type = btrfs_dir_type(eb, di);
2036 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2037 name_len);
2038
2039 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 2040 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 2041 btrfs_release_path(path);
cfd31269
FM
2042 if (ret < 0)
2043 goto out;
2044 exists = (ret == 0);
2045 ret = 0;
4bef0848 2046
339d0354
FM
2047 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2048 name, name_len, 1);
2049 if (IS_ERR(dir_dst_di)) {
2050 ret = PTR_ERR(dir_dst_di);
3650860b 2051 goto out;
339d0354
FM
2052 } else if (dir_dst_di) {
2053 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2054 dir_dst_di, &log_key, log_type,
2055 exists);
2056 if (ret < 0)
2057 goto out;
2058 dir_dst_matches = (ret == 1);
e02119d5 2059 }
e15ac641 2060
339d0354
FM
2061 btrfs_release_path(path);
2062
2063 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2064 key->objectid, key->offset,
2065 name, name_len, 1);
2066 if (IS_ERR(index_dst_di)) {
2067 ret = PTR_ERR(index_dst_di);
e15ac641 2068 goto out;
339d0354
FM
2069 } else if (index_dst_di) {
2070 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2071 index_dst_di, &log_key,
2072 log_type, exists);
2073 if (ret < 0)
e02119d5 2074 goto out;
339d0354 2075 index_dst_matches = (ret == 1);
e02119d5
CM
2076 }
2077
339d0354
FM
2078 btrfs_release_path(path);
2079
2080 if (dir_dst_matches && index_dst_matches) {
2081 ret = 0;
a2cc11db 2082 update_size = false;
e02119d5
CM
2083 goto out;
2084 }
2085
725af92a
NB
2086 /*
2087 * Check if the inode reference exists in the log for the given name,
2088 * inode and parent inode
2089 */
339d0354
FM
2090 search_key.objectid = log_key.objectid;
2091 search_key.type = BTRFS_INODE_REF_KEY;
2092 search_key.offset = key->objectid;
2093 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
725af92a
NB
2094 if (ret < 0) {
2095 goto out;
2096 } else if (ret) {
2097 /* The dentry will be added later. */
2098 ret = 0;
2099 update_size = false;
2100 goto out;
2101 }
2102
339d0354
FM
2103 search_key.objectid = log_key.objectid;
2104 search_key.type = BTRFS_INODE_EXTREF_KEY;
2105 search_key.offset = key->objectid;
2106 ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
725af92a
NB
2107 name_len);
2108 if (ret < 0) {
2109 goto out;
2110 } else if (ret) {
df8d116f
FM
2111 /* The dentry will be added later. */
2112 ret = 0;
2113 update_size = false;
2114 goto out;
2115 }
b3b4aa74 2116 btrfs_release_path(path);
60d53eb3
Z
2117 ret = insert_one_name(trans, root, key->objectid, key->offset,
2118 name, name_len, &log_key);
df8d116f 2119 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2120 goto out;
bb53eda9
FM
2121 if (!ret)
2122 name_added = true;
d555438b 2123 update_size = false;
3650860b 2124 ret = 0;
339d0354
FM
2125
2126out:
2127 if (!ret && update_size) {
2128 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2129 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2130 }
2131 kfree(name);
2132 iput(dir);
2133 if (!ret && name_added)
2134 ret = 1;
2135 return ret;
e02119d5
CM
2136}
2137
339d0354 2138/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
2139static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2140 struct btrfs_root *root,
2141 struct btrfs_path *path,
2142 struct extent_buffer *eb, int slot,
2143 struct btrfs_key *key)
2144{
339d0354 2145 int ret;
e02119d5 2146 struct btrfs_dir_item *di;
e02119d5 2147
339d0354
FM
2148 /* We only log dir index keys, which only contain a single dir item. */
2149 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 2150
339d0354
FM
2151 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2152 ret = replay_one_name(trans, root, path, eb, di, key);
2153 if (ret < 0)
2154 return ret;
bb53eda9 2155
339d0354
FM
2156 /*
2157 * If this entry refers to a non-directory (directories can not have a
2158 * link count > 1) and it was added in the transaction that was not
2159 * committed, make sure we fixup the link count of the inode the entry
2160 * points to. Otherwise something like the following would result in a
2161 * directory pointing to an inode with a wrong link that does not account
2162 * for this dir entry:
2163 *
2164 * mkdir testdir
2165 * touch testdir/foo
2166 * touch testdir/bar
2167 * sync
2168 *
2169 * ln testdir/bar testdir/bar_link
2170 * ln testdir/foo testdir/foo_link
2171 * xfs_io -c "fsync" testdir/bar
2172 *
2173 * <power failure>
2174 *
2175 * mount fs, log replay happens
2176 *
2177 * File foo would remain with a link count of 1 when it has two entries
2178 * pointing to it in the directory testdir. This would make it impossible
2179 * to ever delete the parent directory has it would result in stale
2180 * dentries that can never be deleted.
2181 */
2182 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2183 struct btrfs_path *fixup_path;
2184 struct btrfs_key di_key;
bb53eda9 2185
339d0354
FM
2186 fixup_path = btrfs_alloc_path();
2187 if (!fixup_path)
2188 return -ENOMEM;
2189
2190 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2191 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2192 btrfs_free_path(fixup_path);
e02119d5 2193 }
339d0354 2194
bb53eda9 2195 return ret;
e02119d5
CM
2196}
2197
2198/*
2199 * directory replay has two parts. There are the standard directory
2200 * items in the log copied from the subvolume, and range items
2201 * created in the log while the subvolume was logged.
2202 *
2203 * The range items tell us which parts of the key space the log
2204 * is authoritative for. During replay, if a key in the subvolume
2205 * directory is in a logged range item, but not actually in the log
2206 * that means it was deleted from the directory before the fsync
2207 * and should be removed.
2208 */
2209static noinline int find_dir_range(struct btrfs_root *root,
2210 struct btrfs_path *path,
ccae4a19 2211 u64 dirid,
e02119d5
CM
2212 u64 *start_ret, u64 *end_ret)
2213{
2214 struct btrfs_key key;
2215 u64 found_end;
2216 struct btrfs_dir_log_item *item;
2217 int ret;
2218 int nritems;
2219
2220 if (*start_ret == (u64)-1)
2221 return 1;
2222
2223 key.objectid = dirid;
ccae4a19 2224 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2225 key.offset = *start_ret;
2226
2227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 if (ret < 0)
2229 goto out;
2230 if (ret > 0) {
2231 if (path->slots[0] == 0)
2232 goto out;
2233 path->slots[0]--;
2234 }
2235 if (ret != 0)
2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
ccae4a19 2238 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2239 ret = 1;
2240 goto next;
2241 }
2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 struct btrfs_dir_log_item);
2244 found_end = btrfs_dir_log_end(path->nodes[0], item);
2245
2246 if (*start_ret >= key.offset && *start_ret <= found_end) {
2247 ret = 0;
2248 *start_ret = key.offset;
2249 *end_ret = found_end;
2250 goto out;
2251 }
2252 ret = 1;
2253next:
2254 /* check the next slot in the tree to see if it is a valid item */
2255 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2256 path->slots[0]++;
e02119d5
CM
2257 if (path->slots[0] >= nritems) {
2258 ret = btrfs_next_leaf(root, path);
2259 if (ret)
2260 goto out;
e02119d5
CM
2261 }
2262
2263 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2264
ccae4a19 2265 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2266 ret = 1;
2267 goto out;
2268 }
2269 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2270 struct btrfs_dir_log_item);
2271 found_end = btrfs_dir_log_end(path->nodes[0], item);
2272 *start_ret = key.offset;
2273 *end_ret = found_end;
2274 ret = 0;
2275out:
b3b4aa74 2276 btrfs_release_path(path);
e02119d5
CM
2277 return ret;
2278}
2279
2280/*
2281 * this looks for a given directory item in the log. If the directory
2282 * item is not in the log, the item is removed and the inode it points
2283 * to is unlinked
2284 */
2285static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2286 struct btrfs_root *log,
2287 struct btrfs_path *path,
2288 struct btrfs_path *log_path,
2289 struct inode *dir,
2290 struct btrfs_key *dir_key)
2291{
d1ed82f3 2292 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2293 int ret;
2294 struct extent_buffer *eb;
2295 int slot;
e02119d5 2296 struct btrfs_dir_item *di;
e02119d5 2297 int name_len;
e02119d5 2298 char *name;
ccae4a19 2299 struct inode *inode = NULL;
e02119d5
CM
2300 struct btrfs_key location;
2301
ccae4a19
FM
2302 /*
2303 * Currenly we only log dir index keys. Even if we replay a log created
2304 * by an older kernel that logged both dir index and dir item keys, all
2305 * we need to do is process the dir index keys, we (and our caller) can
2306 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2307 */
2308 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2309
e02119d5
CM
2310 eb = path->nodes[0];
2311 slot = path->slots[0];
ccae4a19
FM
2312 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2313 name_len = btrfs_dir_name_len(eb, di);
2314 name = kmalloc(name_len, GFP_NOFS);
2315 if (!name) {
2316 ret = -ENOMEM;
2317 goto out;
2318 }
e02119d5 2319
ccae4a19 2320 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
3650860b 2321
ccae4a19
FM
2322 if (log) {
2323 struct btrfs_dir_item *log_di;
e02119d5 2324
ccae4a19
FM
2325 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2326 dir_key->objectid,
2327 dir_key->offset,
2328 name, name_len, 0);
2329 if (IS_ERR(log_di)) {
2330 ret = PTR_ERR(log_di);
2331 goto out;
2332 } else if (log_di) {
2333 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2334 ret = 0;
2335 goto out;
2336 }
ccae4a19 2337 }
e02119d5 2338
ccae4a19
FM
2339 btrfs_dir_item_key_to_cpu(eb, di, &location);
2340 btrfs_release_path(path);
2341 btrfs_release_path(log_path);
2342 inode = read_one_inode(root, location.objectid);
2343 if (!inode) {
2344 ret = -EIO;
2345 goto out;
e02119d5 2346 }
ccae4a19
FM
2347
2348 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2349 if (ret)
2350 goto out;
2351
2352 inc_nlink(inode);
2353 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(inode), name,
2354 name_len);
2355 if (ret)
2356 goto out;
2357
2358 ret = btrfs_run_delayed_items(trans);
2359 if (ret)
2360 goto out;
2361
2362 /*
2363 * Unlike dir item keys, dir index keys can only have one name (entry) in
2364 * them, as there are no key collisions since each key has a unique offset
2365 * (an index number), so we're done.
2366 */
e02119d5 2367out:
b3b4aa74
DS
2368 btrfs_release_path(path);
2369 btrfs_release_path(log_path);
ccae4a19
FM
2370 kfree(name);
2371 iput(inode);
e02119d5
CM
2372 return ret;
2373}
2374
4f764e51
FM
2375static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root,
2377 struct btrfs_root *log,
2378 struct btrfs_path *path,
2379 const u64 ino)
2380{
2381 struct btrfs_key search_key;
2382 struct btrfs_path *log_path;
2383 int i;
2384 int nritems;
2385 int ret;
2386
2387 log_path = btrfs_alloc_path();
2388 if (!log_path)
2389 return -ENOMEM;
2390
2391 search_key.objectid = ino;
2392 search_key.type = BTRFS_XATTR_ITEM_KEY;
2393 search_key.offset = 0;
2394again:
2395 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2396 if (ret < 0)
2397 goto out;
2398process_leaf:
2399 nritems = btrfs_header_nritems(path->nodes[0]);
2400 for (i = path->slots[0]; i < nritems; i++) {
2401 struct btrfs_key key;
2402 struct btrfs_dir_item *di;
2403 struct btrfs_dir_item *log_di;
2404 u32 total_size;
2405 u32 cur;
2406
2407 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2408 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2409 ret = 0;
2410 goto out;
2411 }
2412
2413 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2414 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2415 cur = 0;
2416 while (cur < total_size) {
2417 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2418 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2419 u32 this_len = sizeof(*di) + name_len + data_len;
2420 char *name;
2421
2422 name = kmalloc(name_len, GFP_NOFS);
2423 if (!name) {
2424 ret = -ENOMEM;
2425 goto out;
2426 }
2427 read_extent_buffer(path->nodes[0], name,
2428 (unsigned long)(di + 1), name_len);
2429
2430 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2431 name, name_len, 0);
2432 btrfs_release_path(log_path);
2433 if (!log_di) {
2434 /* Doesn't exist in log tree, so delete it. */
2435 btrfs_release_path(path);
2436 di = btrfs_lookup_xattr(trans, root, path, ino,
2437 name, name_len, -1);
2438 kfree(name);
2439 if (IS_ERR(di)) {
2440 ret = PTR_ERR(di);
2441 goto out;
2442 }
2443 ASSERT(di);
2444 ret = btrfs_delete_one_dir_name(trans, root,
2445 path, di);
2446 if (ret)
2447 goto out;
2448 btrfs_release_path(path);
2449 search_key = key;
2450 goto again;
2451 }
2452 kfree(name);
2453 if (IS_ERR(log_di)) {
2454 ret = PTR_ERR(log_di);
2455 goto out;
2456 }
2457 cur += this_len;
2458 di = (struct btrfs_dir_item *)((char *)di + this_len);
2459 }
2460 }
2461 ret = btrfs_next_leaf(root, path);
2462 if (ret > 0)
2463 ret = 0;
2464 else if (ret == 0)
2465 goto process_leaf;
2466out:
2467 btrfs_free_path(log_path);
2468 btrfs_release_path(path);
2469 return ret;
2470}
2471
2472
e02119d5
CM
2473/*
2474 * deletion replay happens before we copy any new directory items
2475 * out of the log or out of backreferences from inodes. It
2476 * scans the log to find ranges of keys that log is authoritative for,
2477 * and then scans the directory to find items in those ranges that are
2478 * not present in the log.
2479 *
2480 * Anything we don't find in the log is unlinked and removed from the
2481 * directory.
2482 */
2483static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2484 struct btrfs_root *root,
2485 struct btrfs_root *log,
2486 struct btrfs_path *path,
12fcfd22 2487 u64 dirid, int del_all)
e02119d5
CM
2488{
2489 u64 range_start;
2490 u64 range_end;
e02119d5
CM
2491 int ret = 0;
2492 struct btrfs_key dir_key;
2493 struct btrfs_key found_key;
2494 struct btrfs_path *log_path;
2495 struct inode *dir;
2496
2497 dir_key.objectid = dirid;
ccae4a19 2498 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2499 log_path = btrfs_alloc_path();
2500 if (!log_path)
2501 return -ENOMEM;
2502
2503 dir = read_one_inode(root, dirid);
2504 /* it isn't an error if the inode isn't there, that can happen
2505 * because we replay the deletes before we copy in the inode item
2506 * from the log
2507 */
2508 if (!dir) {
2509 btrfs_free_path(log_path);
2510 return 0;
2511 }
ccae4a19 2512
e02119d5
CM
2513 range_start = 0;
2514 range_end = 0;
d397712b 2515 while (1) {
12fcfd22
CM
2516 if (del_all)
2517 range_end = (u64)-1;
2518 else {
ccae4a19 2519 ret = find_dir_range(log, path, dirid,
12fcfd22 2520 &range_start, &range_end);
10adb115
FM
2521 if (ret < 0)
2522 goto out;
2523 else if (ret > 0)
12fcfd22
CM
2524 break;
2525 }
e02119d5
CM
2526
2527 dir_key.offset = range_start;
d397712b 2528 while (1) {
e02119d5
CM
2529 int nritems;
2530 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2531 0, 0);
2532 if (ret < 0)
2533 goto out;
2534
2535 nritems = btrfs_header_nritems(path->nodes[0]);
2536 if (path->slots[0] >= nritems) {
2537 ret = btrfs_next_leaf(root, path);
b98def7c 2538 if (ret == 1)
e02119d5 2539 break;
b98def7c
LB
2540 else if (ret < 0)
2541 goto out;
e02119d5
CM
2542 }
2543 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2544 path->slots[0]);
2545 if (found_key.objectid != dirid ||
ccae4a19
FM
2546 found_key.type != dir_key.type) {
2547 ret = 0;
2548 goto out;
2549 }
e02119d5
CM
2550
2551 if (found_key.offset > range_end)
2552 break;
2553
d1ed82f3 2554 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2555 log_path, dir,
2556 &found_key);
3650860b
JB
2557 if (ret)
2558 goto out;
e02119d5
CM
2559 if (found_key.offset == (u64)-1)
2560 break;
2561 dir_key.offset = found_key.offset + 1;
2562 }
b3b4aa74 2563 btrfs_release_path(path);
e02119d5
CM
2564 if (range_end == (u64)-1)
2565 break;
2566 range_start = range_end + 1;
2567 }
e02119d5 2568 ret = 0;
e02119d5 2569out:
b3b4aa74 2570 btrfs_release_path(path);
e02119d5
CM
2571 btrfs_free_path(log_path);
2572 iput(dir);
2573 return ret;
2574}
2575
2576/*
2577 * the process_func used to replay items from the log tree. This
2578 * gets called in two different stages. The first stage just looks
2579 * for inodes and makes sure they are all copied into the subvolume.
2580 *
2581 * The second stage copies all the other item types from the log into
2582 * the subvolume. The two stage approach is slower, but gets rid of
2583 * lots of complexity around inodes referencing other inodes that exist
2584 * only in the log (references come from either directory items or inode
2585 * back refs).
2586 */
2587static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2588 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2589{
2590 int nritems;
2591 struct btrfs_path *path;
2592 struct btrfs_root *root = wc->replay_dest;
2593 struct btrfs_key key;
e02119d5
CM
2594 int i;
2595 int ret;
2596
581c1760 2597 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2598 if (ret)
2599 return ret;
e02119d5
CM
2600
2601 level = btrfs_header_level(eb);
2602
2603 if (level != 0)
2604 return 0;
2605
2606 path = btrfs_alloc_path();
1e5063d0
MF
2607 if (!path)
2608 return -ENOMEM;
e02119d5
CM
2609
2610 nritems = btrfs_header_nritems(eb);
2611 for (i = 0; i < nritems; i++) {
2612 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2613
2614 /* inode keys are done during the first stage */
2615 if (key.type == BTRFS_INODE_ITEM_KEY &&
2616 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2617 struct btrfs_inode_item *inode_item;
2618 u32 mode;
2619
2620 inode_item = btrfs_item_ptr(eb, i,
2621 struct btrfs_inode_item);
f2d72f42
FM
2622 /*
2623 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2624 * and never got linked before the fsync, skip it, as
2625 * replaying it is pointless since it would be deleted
2626 * later. We skip logging tmpfiles, but it's always
2627 * possible we are replaying a log created with a kernel
2628 * that used to log tmpfiles.
2629 */
2630 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2631 wc->ignore_cur_inode = true;
2632 continue;
2633 } else {
2634 wc->ignore_cur_inode = false;
2635 }
4f764e51
FM
2636 ret = replay_xattr_deletes(wc->trans, root, log,
2637 path, key.objectid);
2638 if (ret)
2639 break;
e02119d5
CM
2640 mode = btrfs_inode_mode(eb, inode_item);
2641 if (S_ISDIR(mode)) {
2642 ret = replay_dir_deletes(wc->trans,
12fcfd22 2643 root, log, path, key.objectid, 0);
b50c6e25
JB
2644 if (ret)
2645 break;
e02119d5
CM
2646 }
2647 ret = overwrite_item(wc->trans, root, path,
2648 eb, i, &key);
b50c6e25
JB
2649 if (ret)
2650 break;
e02119d5 2651
471d557a
FM
2652 /*
2653 * Before replaying extents, truncate the inode to its
2654 * size. We need to do it now and not after log replay
2655 * because before an fsync we can have prealloc extents
2656 * added beyond the inode's i_size. If we did it after,
2657 * through orphan cleanup for example, we would drop
2658 * those prealloc extents just after replaying them.
e02119d5
CM
2659 */
2660 if (S_ISREG(mode)) {
5893dfb9 2661 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2662 struct inode *inode;
2663 u64 from;
2664
2665 inode = read_one_inode(root, key.objectid);
2666 if (!inode) {
2667 ret = -EIO;
2668 break;
2669 }
2670 from = ALIGN(i_size_read(inode),
2671 root->fs_info->sectorsize);
5893dfb9
FM
2672 drop_args.start = from;
2673 drop_args.end = (u64)-1;
2674 drop_args.drop_cache = true;
2675 ret = btrfs_drop_extents(wc->trans, root,
2676 BTRFS_I(inode),
2677 &drop_args);
471d557a 2678 if (!ret) {
2766ff61
FM
2679 inode_sub_bytes(inode,
2680 drop_args.bytes_found);
f2d72f42 2681 /* Update the inode's nbytes. */
471d557a 2682 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2683 root, BTRFS_I(inode));
471d557a
FM
2684 }
2685 iput(inode);
b50c6e25
JB
2686 if (ret)
2687 break;
e02119d5 2688 }
c71bf099 2689
e02119d5
CM
2690 ret = link_to_fixup_dir(wc->trans, root,
2691 path, key.objectid);
b50c6e25
JB
2692 if (ret)
2693 break;
e02119d5 2694 }
dd8e7217 2695
f2d72f42
FM
2696 if (wc->ignore_cur_inode)
2697 continue;
2698
dd8e7217
JB
2699 if (key.type == BTRFS_DIR_INDEX_KEY &&
2700 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2701 ret = replay_one_dir_item(wc->trans, root, path,
2702 eb, i, &key);
2703 if (ret)
2704 break;
2705 }
2706
e02119d5
CM
2707 if (wc->stage < LOG_WALK_REPLAY_ALL)
2708 continue;
2709
2710 /* these keys are simply copied */
2711 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2712 ret = overwrite_item(wc->trans, root, path,
2713 eb, i, &key);
b50c6e25
JB
2714 if (ret)
2715 break;
2da1c669
LB
2716 } else if (key.type == BTRFS_INODE_REF_KEY ||
2717 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2718 ret = add_inode_ref(wc->trans, root, log, path,
2719 eb, i, &key);
b50c6e25
JB
2720 if (ret && ret != -ENOENT)
2721 break;
2722 ret = 0;
e02119d5
CM
2723 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2724 ret = replay_one_extent(wc->trans, root, path,
2725 eb, i, &key);
b50c6e25
JB
2726 if (ret)
2727 break;
e02119d5 2728 }
339d0354
FM
2729 /*
2730 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2731 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2732 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2733 * older kernel with such keys, ignore them.
2734 */
e02119d5
CM
2735 }
2736 btrfs_free_path(path);
b50c6e25 2737 return ret;
e02119d5
CM
2738}
2739
6787bb9f
NB
2740/*
2741 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2742 */
2743static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2744{
2745 struct btrfs_block_group *cache;
2746
2747 cache = btrfs_lookup_block_group(fs_info, start);
2748 if (!cache) {
2749 btrfs_err(fs_info, "unable to find block group for %llu", start);
2750 return;
2751 }
2752
2753 spin_lock(&cache->space_info->lock);
2754 spin_lock(&cache->lock);
2755 cache->reserved -= fs_info->nodesize;
2756 cache->space_info->bytes_reserved -= fs_info->nodesize;
2757 spin_unlock(&cache->lock);
2758 spin_unlock(&cache->space_info->lock);
2759
2760 btrfs_put_block_group(cache);
2761}
2762
d397712b 2763static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2764 struct btrfs_root *root,
2765 struct btrfs_path *path, int *level,
2766 struct walk_control *wc)
2767{
0b246afa 2768 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2769 u64 bytenr;
2770 u64 ptr_gen;
2771 struct extent_buffer *next;
2772 struct extent_buffer *cur;
e02119d5
CM
2773 u32 blocksize;
2774 int ret = 0;
2775
d397712b 2776 while (*level > 0) {
581c1760
QW
2777 struct btrfs_key first_key;
2778
e02119d5
CM
2779 cur = path->nodes[*level];
2780
fae7f21c 2781 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2782
2783 if (path->slots[*level] >=
2784 btrfs_header_nritems(cur))
2785 break;
2786
2787 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2788 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2789 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2790 blocksize = fs_info->nodesize;
e02119d5 2791
3fbaf258
JB
2792 next = btrfs_find_create_tree_block(fs_info, bytenr,
2793 btrfs_header_owner(cur),
2794 *level - 1);
c871b0f2
LB
2795 if (IS_ERR(next))
2796 return PTR_ERR(next);
e02119d5 2797
e02119d5 2798 if (*level == 1) {
581c1760
QW
2799 ret = wc->process_func(root, next, wc, ptr_gen,
2800 *level - 1);
b50c6e25
JB
2801 if (ret) {
2802 free_extent_buffer(next);
1e5063d0 2803 return ret;
b50c6e25 2804 }
4a500fd1 2805
e02119d5
CM
2806 path->slots[*level]++;
2807 if (wc->free) {
581c1760
QW
2808 ret = btrfs_read_buffer(next, ptr_gen,
2809 *level - 1, &first_key);
018642a1
TI
2810 if (ret) {
2811 free_extent_buffer(next);
2812 return ret;
2813 }
e02119d5 2814
681ae509
JB
2815 if (trans) {
2816 btrfs_tree_lock(next);
6a884d7d 2817 btrfs_clean_tree_block(next);
681ae509
JB
2818 btrfs_wait_tree_block_writeback(next);
2819 btrfs_tree_unlock(next);
7bfc1007 2820 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2821 bytenr, blocksize);
2822 if (ret) {
2823 free_extent_buffer(next);
2824 return ret;
2825 }
d3575156
NA
2826 btrfs_redirty_list_add(
2827 trans->transaction, next);
1846430c
LB
2828 } else {
2829 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2830 clear_extent_buffer_dirty(next);
10e958d5 2831 unaccount_log_buffer(fs_info, bytenr);
3650860b 2832 }
e02119d5
CM
2833 }
2834 free_extent_buffer(next);
2835 continue;
2836 }
581c1760 2837 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2838 if (ret) {
2839 free_extent_buffer(next);
2840 return ret;
2841 }
e02119d5 2842
e02119d5
CM
2843 if (path->nodes[*level-1])
2844 free_extent_buffer(path->nodes[*level-1]);
2845 path->nodes[*level-1] = next;
2846 *level = btrfs_header_level(next);
2847 path->slots[*level] = 0;
2848 cond_resched();
2849 }
4a500fd1 2850 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2851
2852 cond_resched();
2853 return 0;
2854}
2855
d397712b 2856static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2857 struct btrfs_root *root,
2858 struct btrfs_path *path, int *level,
2859 struct walk_control *wc)
2860{
0b246afa 2861 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2862 int i;
2863 int slot;
2864 int ret;
2865
d397712b 2866 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2867 slot = path->slots[i];
4a500fd1 2868 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2869 path->slots[i]++;
2870 *level = i;
2871 WARN_ON(*level == 0);
2872 return 0;
2873 } else {
1e5063d0 2874 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2875 btrfs_header_generation(path->nodes[*level]),
2876 *level);
1e5063d0
MF
2877 if (ret)
2878 return ret;
2879
e02119d5
CM
2880 if (wc->free) {
2881 struct extent_buffer *next;
2882
2883 next = path->nodes[*level];
2884
681ae509
JB
2885 if (trans) {
2886 btrfs_tree_lock(next);
6a884d7d 2887 btrfs_clean_tree_block(next);
681ae509
JB
2888 btrfs_wait_tree_block_writeback(next);
2889 btrfs_tree_unlock(next);
7bfc1007 2890 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2891 path->nodes[*level]->start,
2892 path->nodes[*level]->len);
2893 if (ret)
2894 return ret;
84c25448
NA
2895 btrfs_redirty_list_add(trans->transaction,
2896 next);
1846430c
LB
2897 } else {
2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 clear_extent_buffer_dirty(next);
e02119d5 2900
10e958d5
NB
2901 unaccount_log_buffer(fs_info,
2902 path->nodes[*level]->start);
2903 }
e02119d5
CM
2904 }
2905 free_extent_buffer(path->nodes[*level]);
2906 path->nodes[*level] = NULL;
2907 *level = i + 1;
2908 }
2909 }
2910 return 1;
2911}
2912
2913/*
2914 * drop the reference count on the tree rooted at 'snap'. This traverses
2915 * the tree freeing any blocks that have a ref count of zero after being
2916 * decremented.
2917 */
2918static int walk_log_tree(struct btrfs_trans_handle *trans,
2919 struct btrfs_root *log, struct walk_control *wc)
2920{
2ff7e61e 2921 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2922 int ret = 0;
2923 int wret;
2924 int level;
2925 struct btrfs_path *path;
e02119d5
CM
2926 int orig_level;
2927
2928 path = btrfs_alloc_path();
db5b493a
TI
2929 if (!path)
2930 return -ENOMEM;
e02119d5
CM
2931
2932 level = btrfs_header_level(log->node);
2933 orig_level = level;
2934 path->nodes[level] = log->node;
67439dad 2935 atomic_inc(&log->node->refs);
e02119d5
CM
2936 path->slots[level] = 0;
2937
d397712b 2938 while (1) {
e02119d5
CM
2939 wret = walk_down_log_tree(trans, log, path, &level, wc);
2940 if (wret > 0)
2941 break;
79787eaa 2942 if (wret < 0) {
e02119d5 2943 ret = wret;
79787eaa
JM
2944 goto out;
2945 }
e02119d5
CM
2946
2947 wret = walk_up_log_tree(trans, log, path, &level, wc);
2948 if (wret > 0)
2949 break;
79787eaa 2950 if (wret < 0) {
e02119d5 2951 ret = wret;
79787eaa
JM
2952 goto out;
2953 }
e02119d5
CM
2954 }
2955
2956 /* was the root node processed? if not, catch it here */
2957 if (path->nodes[orig_level]) {
79787eaa 2958 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2959 btrfs_header_generation(path->nodes[orig_level]),
2960 orig_level);
79787eaa
JM
2961 if (ret)
2962 goto out;
e02119d5
CM
2963 if (wc->free) {
2964 struct extent_buffer *next;
2965
2966 next = path->nodes[orig_level];
2967
681ae509
JB
2968 if (trans) {
2969 btrfs_tree_lock(next);
6a884d7d 2970 btrfs_clean_tree_block(next);
681ae509
JB
2971 btrfs_wait_tree_block_writeback(next);
2972 btrfs_tree_unlock(next);
7bfc1007 2973 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2974 next->start, next->len);
2975 if (ret)
2976 goto out;
84c25448 2977 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2978 } else {
2979 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2980 clear_extent_buffer_dirty(next);
10e958d5 2981 unaccount_log_buffer(fs_info, next->start);
681ae509 2982 }
e02119d5
CM
2983 }
2984 }
2985
79787eaa 2986out:
e02119d5 2987 btrfs_free_path(path);
e02119d5
CM
2988 return ret;
2989}
2990
7237f183
YZ
2991/*
2992 * helper function to update the item for a given subvolumes log root
2993 * in the tree of log roots
2994 */
2995static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2996 struct btrfs_root *log,
2997 struct btrfs_root_item *root_item)
7237f183 2998{
0b246afa 2999 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
3000 int ret;
3001
3002 if (log->log_transid == 1) {
3003 /* insert root item on the first sync */
0b246afa 3004 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 3005 &log->root_key, root_item);
7237f183 3006 } else {
0b246afa 3007 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 3008 &log->root_key, root_item);
7237f183
YZ
3009 }
3010 return ret;
3011}
3012
60d53eb3 3013static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
3014{
3015 DEFINE_WAIT(wait);
7237f183 3016 int index = transid % 2;
e02119d5 3017
7237f183
YZ
3018 /*
3019 * we only allow two pending log transactions at a time,
3020 * so we know that if ours is more than 2 older than the
3021 * current transaction, we're done
3022 */
49e83f57 3023 for (;;) {
7237f183
YZ
3024 prepare_to_wait(&root->log_commit_wait[index],
3025 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 3026
49e83f57
LB
3027 if (!(root->log_transid_committed < transid &&
3028 atomic_read(&root->log_commit[index])))
3029 break;
12fcfd22 3030
49e83f57
LB
3031 mutex_unlock(&root->log_mutex);
3032 schedule();
7237f183 3033 mutex_lock(&root->log_mutex);
49e83f57
LB
3034 }
3035 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
3036}
3037
60d53eb3 3038static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3039{
3040 DEFINE_WAIT(wait);
8b050d35 3041
49e83f57
LB
3042 for (;;) {
3043 prepare_to_wait(&root->log_writer_wait, &wait,
3044 TASK_UNINTERRUPTIBLE);
3045 if (!atomic_read(&root->log_writers))
3046 break;
3047
7237f183 3048 mutex_unlock(&root->log_mutex);
49e83f57 3049 schedule();
575849ec 3050 mutex_lock(&root->log_mutex);
7237f183 3051 }
49e83f57 3052 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3053}
3054
8b050d35
MX
3055static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3056 struct btrfs_log_ctx *ctx)
3057{
8b050d35
MX
3058 mutex_lock(&root->log_mutex);
3059 list_del_init(&ctx->list);
3060 mutex_unlock(&root->log_mutex);
3061}
3062
3063/*
3064 * Invoked in log mutex context, or be sure there is no other task which
3065 * can access the list.
3066 */
3067static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3068 int index, int error)
3069{
3070 struct btrfs_log_ctx *ctx;
570dd450 3071 struct btrfs_log_ctx *safe;
8b050d35 3072
570dd450
CM
3073 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3074 list_del_init(&ctx->list);
8b050d35 3075 ctx->log_ret = error;
570dd450 3076 }
8b050d35
MX
3077}
3078
e02119d5
CM
3079/*
3080 * btrfs_sync_log does sends a given tree log down to the disk and
3081 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3082 * you know that any inodes previously logged are safely on disk only
3083 * if it returns 0.
3084 *
3085 * Any other return value means you need to call btrfs_commit_transaction.
3086 * Some of the edge cases for fsyncing directories that have had unlinks
3087 * or renames done in the past mean that sometimes the only safe
3088 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3089 * that has happened.
e02119d5
CM
3090 */
3091int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3092 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3093{
7237f183
YZ
3094 int index1;
3095 int index2;
8cef4e16 3096 int mark;
e02119d5 3097 int ret;
0b246afa 3098 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3099 struct btrfs_root *log = root->log_root;
0b246afa 3100 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3101 struct btrfs_root_item new_root_item;
bb14a59b 3102 int log_transid = 0;
8b050d35 3103 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3104 struct blk_plug plug;
47876f7c
FM
3105 u64 log_root_start;
3106 u64 log_root_level;
e02119d5 3107
7237f183 3108 mutex_lock(&root->log_mutex);
d1433deb
MX
3109 log_transid = ctx->log_transid;
3110 if (root->log_transid_committed >= log_transid) {
3111 mutex_unlock(&root->log_mutex);
3112 return ctx->log_ret;
3113 }
3114
3115 index1 = log_transid % 2;
7237f183 3116 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3117 wait_log_commit(root, log_transid);
7237f183 3118 mutex_unlock(&root->log_mutex);
8b050d35 3119 return ctx->log_ret;
e02119d5 3120 }
d1433deb 3121 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3122 atomic_set(&root->log_commit[index1], 1);
3123
3124 /* wait for previous tree log sync to complete */
3125 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3126 wait_log_commit(root, log_transid - 1);
48cab2e0 3127
86df7eb9 3128 while (1) {
2ecb7923 3129 int batch = atomic_read(&root->log_batch);
cd354ad6 3130 /* when we're on an ssd, just kick the log commit out */
0b246afa 3131 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3132 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3133 mutex_unlock(&root->log_mutex);
3134 schedule_timeout_uninterruptible(1);
3135 mutex_lock(&root->log_mutex);
3136 }
60d53eb3 3137 wait_for_writer(root);
2ecb7923 3138 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3139 break;
3140 }
e02119d5 3141
12fcfd22 3142 /* bail out if we need to do a full commit */
4884b8e8 3143 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3144 ret = -EAGAIN;
3145 mutex_unlock(&root->log_mutex);
3146 goto out;
3147 }
3148
8cef4e16
YZ
3149 if (log_transid % 2 == 0)
3150 mark = EXTENT_DIRTY;
3151 else
3152 mark = EXTENT_NEW;
3153
690587d1
CM
3154 /* we start IO on all the marked extents here, but we don't actually
3155 * wait for them until later.
3156 */
c6adc9cc 3157 blk_start_plug(&plug);
2ff7e61e 3158 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3159 /*
3160 * -EAGAIN happens when someone, e.g., a concurrent transaction
3161 * commit, writes a dirty extent in this tree-log commit. This
3162 * concurrent write will create a hole writing out the extents,
3163 * and we cannot proceed on a zoned filesystem, requiring
3164 * sequential writing. While we can bail out to a full commit
3165 * here, but we can continue hoping the concurrent writing fills
3166 * the hole.
3167 */
3168 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3169 ret = 0;
79787eaa 3170 if (ret) {
c6adc9cc 3171 blk_finish_plug(&plug);
66642832 3172 btrfs_abort_transaction(trans, ret);
90787766 3173 btrfs_set_log_full_commit(trans);
79787eaa
JM
3174 mutex_unlock(&root->log_mutex);
3175 goto out;
3176 }
7237f183 3177
4203e968
JB
3178 /*
3179 * We _must_ update under the root->log_mutex in order to make sure we
3180 * have a consistent view of the log root we are trying to commit at
3181 * this moment.
3182 *
3183 * We _must_ copy this into a local copy, because we are not holding the
3184 * log_root_tree->log_mutex yet. This is important because when we
3185 * commit the log_root_tree we must have a consistent view of the
3186 * log_root_tree when we update the super block to point at the
3187 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3188 * with the commit and possibly point at the new block which we may not
3189 * have written out.
3190 */
5d4f98a2 3191 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3192 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3193
7237f183
YZ
3194 root->log_transid++;
3195 log->log_transid = root->log_transid;
ff782e0a 3196 root->log_start_pid = 0;
7237f183 3197 /*
8cef4e16
YZ
3198 * IO has been started, blocks of the log tree have WRITTEN flag set
3199 * in their headers. new modifications of the log will be written to
3200 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3201 */
3202 mutex_unlock(&root->log_mutex);
3203
3ddebf27 3204 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3205 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3206 if (!log_root_tree->node) {
3207 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3208 if (ret) {
ea32af47 3209 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3210 goto out;
3211 }
3212 }
e75f9fd1 3213 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3214 }
3215
e75f9fd1
NA
3216 btrfs_init_log_ctx(&root_log_ctx, NULL);
3217
3218 mutex_lock(&log_root_tree->log_mutex);
3219
e3d3b415
FM
3220 index2 = log_root_tree->log_transid % 2;
3221 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3222 root_log_ctx.log_transid = log_root_tree->log_transid;
3223
4203e968
JB
3224 /*
3225 * Now we are safe to update the log_root_tree because we're under the
3226 * log_mutex, and we're a current writer so we're holding the commit
3227 * open until we drop the log_mutex.
3228 */
3229 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3230 if (ret) {
d1433deb
MX
3231 if (!list_empty(&root_log_ctx.list))
3232 list_del_init(&root_log_ctx.list);
3233
c6adc9cc 3234 blk_finish_plug(&plug);
90787766 3235 btrfs_set_log_full_commit(trans);
995946dd 3236
79787eaa 3237 if (ret != -ENOSPC) {
66642832 3238 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3239 mutex_unlock(&log_root_tree->log_mutex);
3240 goto out;
3241 }
bf89d38f 3242 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3243 mutex_unlock(&log_root_tree->log_mutex);
3244 ret = -EAGAIN;
3245 goto out;
3246 }
3247
d1433deb 3248 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3249 blk_finish_plug(&plug);
cbd60aa7 3250 list_del_init(&root_log_ctx.list);
d1433deb
MX
3251 mutex_unlock(&log_root_tree->log_mutex);
3252 ret = root_log_ctx.log_ret;
3253 goto out;
3254 }
8b050d35 3255
d1433deb 3256 index2 = root_log_ctx.log_transid % 2;
7237f183 3257 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3258 blk_finish_plug(&plug);
bf89d38f 3259 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3260 wait_log_commit(log_root_tree,
d1433deb 3261 root_log_ctx.log_transid);
7237f183 3262 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3263 if (!ret)
3264 ret = root_log_ctx.log_ret;
7237f183
YZ
3265 goto out;
3266 }
d1433deb 3267 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3268 atomic_set(&log_root_tree->log_commit[index2], 1);
3269
12fcfd22 3270 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3271 wait_log_commit(log_root_tree,
d1433deb 3272 root_log_ctx.log_transid - 1);
12fcfd22
CM
3273 }
3274
12fcfd22
CM
3275 /*
3276 * now that we've moved on to the tree of log tree roots,
3277 * check the full commit flag again
3278 */
4884b8e8 3279 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3280 blk_finish_plug(&plug);
bf89d38f 3281 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3282 mutex_unlock(&log_root_tree->log_mutex);
3283 ret = -EAGAIN;
3284 goto out_wake_log_root;
3285 }
7237f183 3286
2ff7e61e 3287 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3288 &log_root_tree->dirty_log_pages,
3289 EXTENT_DIRTY | EXTENT_NEW);
3290 blk_finish_plug(&plug);
b528f467
NA
3291 /*
3292 * As described above, -EAGAIN indicates a hole in the extents. We
3293 * cannot wait for these write outs since the waiting cause a
3294 * deadlock. Bail out to the full commit instead.
3295 */
3296 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3297 btrfs_set_log_full_commit(trans);
3298 btrfs_wait_tree_log_extents(log, mark);
3299 mutex_unlock(&log_root_tree->log_mutex);
3300 goto out_wake_log_root;
3301 } else if (ret) {
90787766 3302 btrfs_set_log_full_commit(trans);
66642832 3303 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3304 mutex_unlock(&log_root_tree->log_mutex);
3305 goto out_wake_log_root;
3306 }
bf89d38f 3307 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3308 if (!ret)
bf89d38f
JM
3309 ret = btrfs_wait_tree_log_extents(log_root_tree,
3310 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3311 if (ret) {
90787766 3312 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3313 mutex_unlock(&log_root_tree->log_mutex);
3314 goto out_wake_log_root;
3315 }
e02119d5 3316
47876f7c
FM
3317 log_root_start = log_root_tree->node->start;
3318 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3319 log_root_tree->log_transid++;
7237f183
YZ
3320 mutex_unlock(&log_root_tree->log_mutex);
3321
3322 /*
47876f7c
FM
3323 * Here we are guaranteed that nobody is going to write the superblock
3324 * for the current transaction before us and that neither we do write
3325 * our superblock before the previous transaction finishes its commit
3326 * and writes its superblock, because:
3327 *
3328 * 1) We are holding a handle on the current transaction, so no body
3329 * can commit it until we release the handle;
3330 *
3331 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3332 * if the previous transaction is still committing, and hasn't yet
3333 * written its superblock, we wait for it to do it, because a
3334 * transaction commit acquires the tree_log_mutex when the commit
3335 * begins and releases it only after writing its superblock.
7237f183 3336 */
47876f7c 3337 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3338
3339 /*
3340 * The previous transaction writeout phase could have failed, and thus
3341 * marked the fs in an error state. We must not commit here, as we
3342 * could have updated our generation in the super_for_commit and
3343 * writing the super here would result in transid mismatches. If there
3344 * is an error here just bail.
3345 */
84961539 3346 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3347 ret = -EIO;
3348 btrfs_set_log_full_commit(trans);
3349 btrfs_abort_transaction(trans, ret);
3350 mutex_unlock(&fs_info->tree_log_mutex);
3351 goto out_wake_log_root;
3352 }
3353
47876f7c
FM
3354 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3355 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3356 ret = write_all_supers(fs_info, 1);
47876f7c 3357 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3358 if (ret) {
90787766 3359 btrfs_set_log_full_commit(trans);
66642832 3360 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3361 goto out_wake_log_root;
3362 }
7237f183 3363
e1a6d264
FM
3364 /*
3365 * We know there can only be one task here, since we have not yet set
3366 * root->log_commit[index1] to 0 and any task attempting to sync the
3367 * log must wait for the previous log transaction to commit if it's
3368 * still in progress or wait for the current log transaction commit if
3369 * someone else already started it. We use <= and not < because the
3370 * first log transaction has an ID of 0.
3371 */
3372 ASSERT(root->last_log_commit <= log_transid);
3373 root->last_log_commit = log_transid;
257c62e1 3374
12fcfd22 3375out_wake_log_root:
570dd450 3376 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3377 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3378
d1433deb 3379 log_root_tree->log_transid_committed++;
7237f183 3380 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3381 mutex_unlock(&log_root_tree->log_mutex);
3382
33a9eca7 3383 /*
093258e6
DS
3384 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3385 * all the updates above are seen by the woken threads. It might not be
3386 * necessary, but proving that seems to be hard.
33a9eca7 3387 */
093258e6 3388 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3389out:
d1433deb 3390 mutex_lock(&root->log_mutex);
570dd450 3391 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3392 root->log_transid_committed++;
7237f183 3393 atomic_set(&root->log_commit[index1], 0);
d1433deb 3394 mutex_unlock(&root->log_mutex);
8b050d35 3395
33a9eca7 3396 /*
093258e6
DS
3397 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3398 * all the updates above are seen by the woken threads. It might not be
3399 * necessary, but proving that seems to be hard.
33a9eca7 3400 */
093258e6 3401 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3402 return ret;
e02119d5
CM
3403}
3404
4a500fd1
YZ
3405static void free_log_tree(struct btrfs_trans_handle *trans,
3406 struct btrfs_root *log)
e02119d5
CM
3407{
3408 int ret;
e02119d5
CM
3409 struct walk_control wc = {
3410 .free = 1,
3411 .process_func = process_one_buffer
3412 };
3413
3ddebf27
NA
3414 if (log->node) {
3415 ret = walk_log_tree(trans, log, &wc);
3416 if (ret) {
40cdc509
FM
3417 /*
3418 * We weren't able to traverse the entire log tree, the
3419 * typical scenario is getting an -EIO when reading an
3420 * extent buffer of the tree, due to a previous writeback
3421 * failure of it.
3422 */
3423 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3424 &log->fs_info->fs_state);
3425
3426 /*
3427 * Some extent buffers of the log tree may still be dirty
3428 * and not yet written back to storage, because we may
3429 * have updates to a log tree without syncing a log tree,
3430 * such as during rename and link operations. So flush
3431 * them out and wait for their writeback to complete, so
3432 * that we properly cleanup their state and pages.
3433 */
3434 btrfs_write_marked_extents(log->fs_info,
3435 &log->dirty_log_pages,
3436 EXTENT_DIRTY | EXTENT_NEW);
3437 btrfs_wait_tree_log_extents(log,
3438 EXTENT_DIRTY | EXTENT_NEW);
3439
3ddebf27
NA
3440 if (trans)
3441 btrfs_abort_transaction(trans, ret);
3442 else
3443 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3444 }
374b0e2d 3445 }
e02119d5 3446
59b0713a
FM
3447 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3448 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3449 extent_io_tree_release(&log->log_csum_range);
d3575156 3450
00246528 3451 btrfs_put_root(log);
4a500fd1
YZ
3452}
3453
3454/*
3455 * free all the extents used by the tree log. This should be called
3456 * at commit time of the full transaction
3457 */
3458int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3459{
3460 if (root->log_root) {
3461 free_log_tree(trans, root->log_root);
3462 root->log_root = NULL;
e7a79811 3463 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3464 }
3465 return 0;
3466}
3467
3468int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3469 struct btrfs_fs_info *fs_info)
3470{
3471 if (fs_info->log_root_tree) {
3472 free_log_tree(trans, fs_info->log_root_tree);
3473 fs_info->log_root_tree = NULL;
47876f7c 3474 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3475 }
e02119d5
CM
3476 return 0;
3477}
3478
803f0f64 3479/*
0f8ce498
FM
3480 * Check if an inode was logged in the current transaction. This correctly deals
3481 * with the case where the inode was logged but has a logged_trans of 0, which
3482 * happens if the inode is evicted and loaded again, as logged_trans is an in
3483 * memory only field (not persisted).
3484 *
3485 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3486 * and < 0 on error.
803f0f64 3487 */
0f8ce498
FM
3488static int inode_logged(struct btrfs_trans_handle *trans,
3489 struct btrfs_inode *inode,
3490 struct btrfs_path *path_in)
803f0f64 3491{
0f8ce498
FM
3492 struct btrfs_path *path = path_in;
3493 struct btrfs_key key;
3494 int ret;
3495
803f0f64 3496 if (inode->logged_trans == trans->transid)
0f8ce498 3497 return 1;
803f0f64 3498
0f8ce498
FM
3499 /*
3500 * If logged_trans is not 0, then we know the inode logged was not logged
3501 * in this transaction, so we can return false right away.
3502 */
3503 if (inode->logged_trans > 0)
3504 return 0;
3505
3506 /*
3507 * If no log tree was created for this root in this transaction, then
3508 * the inode can not have been logged in this transaction. In that case
3509 * set logged_trans to anything greater than 0 and less than the current
3510 * transaction's ID, to avoid the search below in a future call in case
3511 * a log tree gets created after this.
3512 */
3513 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3514 inode->logged_trans = trans->transid - 1;
3515 return 0;
3516 }
3517
3518 /*
3519 * We have a log tree and the inode's logged_trans is 0. We can't tell
3520 * for sure if the inode was logged before in this transaction by looking
3521 * only at logged_trans. We could be pessimistic and assume it was, but
3522 * that can lead to unnecessarily logging an inode during rename and link
3523 * operations, and then further updating the log in followup rename and
3524 * link operations, specially if it's a directory, which adds latency
3525 * visible to applications doing a series of rename or link operations.
3526 *
3527 * A logged_trans of 0 here can mean several things:
3528 *
3529 * 1) The inode was never logged since the filesystem was mounted, and may
3530 * or may have not been evicted and loaded again;
3531 *
3532 * 2) The inode was logged in a previous transaction, then evicted and
3533 * then loaded again;
3534 *
3535 * 3) The inode was logged in the current transaction, then evicted and
3536 * then loaded again.
3537 *
3538 * For cases 1) and 2) we don't want to return true, but we need to detect
3539 * case 3) and return true. So we do a search in the log root for the inode
3540 * item.
3541 */
3542 key.objectid = btrfs_ino(inode);
3543 key.type = BTRFS_INODE_ITEM_KEY;
3544 key.offset = 0;
3545
3546 if (!path) {
3547 path = btrfs_alloc_path();
3548 if (!path)
3549 return -ENOMEM;
3550 }
3551
3552 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3553
3554 if (path_in)
3555 btrfs_release_path(path);
3556 else
3557 btrfs_free_path(path);
1e0860f3 3558
6e8e777d 3559 /*
0f8ce498
FM
3560 * Logging an inode always results in logging its inode item. So if we
3561 * did not find the item we know the inode was not logged for sure.
6e8e777d 3562 */
0f8ce498
FM
3563 if (ret < 0) {
3564 return ret;
3565 } else if (ret > 0) {
3566 /*
3567 * Set logged_trans to a value greater than 0 and less then the
3568 * current transaction to avoid doing the search in future calls.
3569 */
3570 inode->logged_trans = trans->transid - 1;
3571 return 0;
3572 }
3573
3574 /*
3575 * The inode was previously logged and then evicted, set logged_trans to
3576 * the current transacion's ID, to avoid future tree searches as long as
3577 * the inode is not evicted again.
3578 */
3579 inode->logged_trans = trans->transid;
3580
3581 /*
3582 * If it's a directory, then we must set last_dir_index_offset to the
3583 * maximum possible value, so that the next attempt to log the inode does
3584 * not skip checking if dir index keys found in modified subvolume tree
3585 * leaves have been logged before, otherwise it would result in attempts
3586 * to insert duplicate dir index keys in the log tree. This must be done
3587 * because last_dir_index_offset is an in-memory only field, not persisted
3588 * in the inode item or any other on-disk structure, so its value is lost
3589 * once the inode is evicted.
3590 */
3591 if (S_ISDIR(inode->vfs_inode.i_mode))
3592 inode->last_dir_index_offset = (u64)-1;
803f0f64 3593
0f8ce498 3594 return 1;
803f0f64
FM
3595}
3596
839061fe
FM
3597/*
3598 * Delete a directory entry from the log if it exists.
3599 *
3600 * Returns < 0 on error
3601 * 1 if the entry does not exists
3602 * 0 if the entry existed and was successfully deleted
3603 */
3604static int del_logged_dentry(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log,
3606 struct btrfs_path *path,
3607 u64 dir_ino,
3608 const char *name, int name_len,
3609 u64 index)
3610{
3611 struct btrfs_dir_item *di;
3612
3613 /*
3614 * We only log dir index items of a directory, so we don't need to look
3615 * for dir item keys.
3616 */
3617 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3618 index, name, name_len, -1);
3619 if (IS_ERR(di))
3620 return PTR_ERR(di);
3621 else if (!di)
3622 return 1;
3623
3624 /*
3625 * We do not need to update the size field of the directory's
3626 * inode item because on log replay we update the field to reflect
3627 * all existing entries in the directory (see overwrite_item()).
3628 */
3629 return btrfs_delete_one_dir_name(trans, log, path, di);
3630}
3631
e02119d5
CM
3632/*
3633 * If both a file and directory are logged, and unlinks or renames are
3634 * mixed in, we have a few interesting corners:
3635 *
3636 * create file X in dir Y
3637 * link file X to X.link in dir Y
3638 * fsync file X
3639 * unlink file X but leave X.link
3640 * fsync dir Y
3641 *
3642 * After a crash we would expect only X.link to exist. But file X
3643 * didn't get fsync'd again so the log has back refs for X and X.link.
3644 *
3645 * We solve this by removing directory entries and inode backrefs from the
3646 * log when a file that was logged in the current transaction is
3647 * unlinked. Any later fsync will include the updated log entries, and
3648 * we'll be able to reconstruct the proper directory items from backrefs.
3649 *
3650 * This optimizations allows us to avoid relogging the entire inode
3651 * or the entire directory.
3652 */
9a35fc95
JB
3653void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3654 struct btrfs_root *root,
3655 const char *name, int name_len,
3656 struct btrfs_inode *dir, u64 index)
e02119d5 3657{
e02119d5
CM
3658 struct btrfs_path *path;
3659 int ret;
e02119d5 3660
0f8ce498
FM
3661 ret = inode_logged(trans, dir, NULL);
3662 if (ret == 0)
3663 return;
3664 else if (ret < 0) {
3665 btrfs_set_log_full_commit(trans);
9a35fc95 3666 return;
0f8ce498 3667 }
3a5f1d45 3668
e02119d5
CM
3669 ret = join_running_log_trans(root);
3670 if (ret)
9a35fc95 3671 return;
e02119d5 3672
49f34d1f 3673 mutex_lock(&dir->log_mutex);
e02119d5 3674
e02119d5 3675 path = btrfs_alloc_path();
a62f44a5 3676 if (!path) {
839061fe 3677 ret = -ENOMEM;
a62f44a5
TI
3678 goto out_unlock;
3679 }
2a29edc6 3680
839061fe
FM
3681 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3682 name, name_len, index);
e02119d5 3683 btrfs_free_path(path);
a62f44a5 3684out_unlock:
49f34d1f 3685 mutex_unlock(&dir->log_mutex);
839061fe 3686 if (ret < 0)
90787766 3687 btrfs_set_log_full_commit(trans);
12fcfd22 3688 btrfs_end_log_trans(root);
e02119d5
CM
3689}
3690
3691/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3692void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3693 struct btrfs_root *root,
3694 const char *name, int name_len,
3695 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3696{
3697 struct btrfs_root *log;
3698 u64 index;
3699 int ret;
3700
0f8ce498
FM
3701 ret = inode_logged(trans, inode, NULL);
3702 if (ret == 0)
9a35fc95 3703 return;
0f8ce498
FM
3704 else if (ret < 0) {
3705 btrfs_set_log_full_commit(trans);
3706 return;
3707 }
3a5f1d45 3708
e02119d5
CM
3709 ret = join_running_log_trans(root);
3710 if (ret)
9a35fc95 3711 return;
e02119d5 3712 log = root->log_root;
a491abb2 3713 mutex_lock(&inode->log_mutex);
e02119d5 3714
a491abb2 3715 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3716 dirid, &index);
a491abb2 3717 mutex_unlock(&inode->log_mutex);
9a35fc95 3718 if (ret < 0 && ret != -ENOENT)
90787766 3719 btrfs_set_log_full_commit(trans);
12fcfd22 3720 btrfs_end_log_trans(root);
e02119d5
CM
3721}
3722
3723/*
3724 * creates a range item in the log for 'dirid'. first_offset and
3725 * last_offset tell us which parts of the key space the log should
3726 * be considered authoritative for.
3727 */
3728static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *log,
3730 struct btrfs_path *path,
339d0354 3731 u64 dirid,
e02119d5
CM
3732 u64 first_offset, u64 last_offset)
3733{
3734 int ret;
3735 struct btrfs_key key;
3736 struct btrfs_dir_log_item *item;
3737
3738 key.objectid = dirid;
3739 key.offset = first_offset;
339d0354 3740 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3741 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3742 if (ret)
3743 return ret;
e02119d5
CM
3744
3745 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3746 struct btrfs_dir_log_item);
3747 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3748 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3749 btrfs_release_path(path);
e02119d5
CM
3750 return 0;
3751}
3752
086dcbfa
FM
3753static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3754 struct btrfs_root *log,
3755 struct extent_buffer *src,
3756 struct btrfs_path *dst_path,
3757 int start_slot,
3758 int count)
3759{
3760 char *ins_data = NULL;
b7ef5f3a 3761 struct btrfs_item_batch batch;
086dcbfa 3762 struct extent_buffer *dst;
da1b811f
FM
3763 unsigned long src_offset;
3764 unsigned long dst_offset;
086dcbfa
FM
3765 struct btrfs_key key;
3766 u32 item_size;
3767 int ret;
3768 int i;
3769
3770 ASSERT(count > 0);
b7ef5f3a 3771 batch.nr = count;
086dcbfa
FM
3772
3773 if (count == 1) {
3774 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3775 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3776 batch.keys = &key;
3777 batch.data_sizes = &item_size;
3778 batch.total_data_size = item_size;
086dcbfa 3779 } else {
b7ef5f3a
FM
3780 struct btrfs_key *ins_keys;
3781 u32 *ins_sizes;
3782
086dcbfa
FM
3783 ins_data = kmalloc(count * sizeof(u32) +
3784 count * sizeof(struct btrfs_key), GFP_NOFS);
3785 if (!ins_data)
3786 return -ENOMEM;
3787
3788 ins_sizes = (u32 *)ins_data;
3789 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3790 batch.keys = ins_keys;
3791 batch.data_sizes = ins_sizes;
3792 batch.total_data_size = 0;
086dcbfa
FM
3793
3794 for (i = 0; i < count; i++) {
3795 const int slot = start_slot + i;
3796
3797 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3798 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3799 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3800 }
3801 }
3802
b7ef5f3a 3803 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3804 if (ret)
3805 goto out;
3806
3807 dst = dst_path->nodes[0];
da1b811f
FM
3808 /*
3809 * Copy all the items in bulk, in a single copy operation. Item data is
3810 * organized such that it's placed at the end of a leaf and from right
3811 * to left. For example, the data for the second item ends at an offset
3812 * that matches the offset where the data for the first item starts, the
3813 * data for the third item ends at an offset that matches the offset
3814 * where the data of the second items starts, and so on.
3815 * Therefore our source and destination start offsets for copy match the
3816 * offsets of the last items (highest slots).
3817 */
3818 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3819 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3820 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3821 btrfs_release_path(dst_path);
3822out:
3823 kfree(ins_data);
3824
3825 return ret;
3826}
3827
eb10d85e
FM
3828static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3829 struct btrfs_inode *inode,
3830 struct btrfs_path *path,
3831 struct btrfs_path *dst_path,
732d591a
FM
3832 struct btrfs_log_ctx *ctx,
3833 u64 *last_old_dentry_offset)
eb10d85e
FM
3834{
3835 struct btrfs_root *log = inode->root->log_root;
3836 struct extent_buffer *src = path->nodes[0];
3837 const int nritems = btrfs_header_nritems(src);
3838 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3839 bool last_found = false;
3840 int batch_start = 0;
3841 int batch_size = 0;
eb10d85e
FM
3842 int i;
3843
3844 for (i = path->slots[0]; i < nritems; i++) {
732d591a 3845 struct btrfs_dir_item *di;
eb10d85e 3846 struct btrfs_key key;
eb10d85e
FM
3847 int ret;
3848
3849 btrfs_item_key_to_cpu(src, &key, i);
3850
339d0354 3851 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3852 last_found = true;
3853 break;
3854 }
eb10d85e 3855
732d591a 3856 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
dc287224 3857 ctx->last_dir_item_offset = key.offset;
732d591a
FM
3858
3859 /*
3860 * Skip ranges of items that consist only of dir item keys created
3861 * in past transactions. However if we find a gap, we must log a
3862 * dir index range item for that gap, so that index keys in that
3863 * gap are deleted during log replay.
3864 */
3865 if (btrfs_dir_transid(src, di) < trans->transid) {
3866 if (key.offset > *last_old_dentry_offset + 1) {
3867 ret = insert_dir_log_key(trans, log, dst_path,
3868 ino, *last_old_dentry_offset + 1,
3869 key.offset - 1);
3870 /*
3871 * -EEXIST should never happen because when we
3872 * log a directory in full mode (LOG_INODE_ALL)
3873 * we drop all BTRFS_DIR_LOG_INDEX_KEY keys from
3874 * the log tree.
3875 */
3876 ASSERT(ret != -EEXIST);
3877 if (ret < 0)
3878 return ret;
3879 }
3880
3881 *last_old_dentry_offset = key.offset;
3882 continue;
3883 }
eb10d85e
FM
3884 /*
3885 * We must make sure that when we log a directory entry, the
3886 * corresponding inode, after log replay, has a matching link
3887 * count. For example:
3888 *
3889 * touch foo
3890 * mkdir mydir
3891 * sync
3892 * ln foo mydir/bar
3893 * xfs_io -c "fsync" mydir
3894 * <crash>
3895 * <mount fs and log replay>
3896 *
3897 * Would result in a fsync log that when replayed, our file inode
3898 * would have a link count of 1, but we get two directory entries
3899 * pointing to the same inode. After removing one of the names,
3900 * it would not be possible to remove the other name, which
3901 * resulted always in stale file handle errors, and would not be
3902 * possible to rmdir the parent directory, since its i_size could
3903 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3904 * resulting in -ENOTEMPTY errors.
3905 */
086dcbfa 3906 if (!ctx->log_new_dentries) {
086dcbfa
FM
3907 struct btrfs_key di_key;
3908
086dcbfa 3909 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3910 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3911 ctx->log_new_dentries = true;
3912 }
3913
0f8ce498 3914 if (!ctx->logged_before)
086dcbfa 3915 goto add_to_batch;
dc287224
FM
3916
3917 /*
3918 * If we were logged before and have logged dir items, we can skip
3919 * checking if any item with a key offset larger than the last one
3920 * we logged is in the log tree, saving time and avoiding adding
0f8ce498
FM
3921 * contention on the log tree. We can only rely on the value of
3922 * last_dir_index_offset when we know for sure that the inode was
3923 * previously logged in the current transaction.
dc287224 3924 */
339d0354 3925 if (key.offset > inode->last_dir_index_offset)
dc287224 3926 goto add_to_batch;
086dcbfa
FM
3927 /*
3928 * Check if the key was already logged before. If not we can add
3929 * it to a batch for bulk insertion.
3930 */
3931 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3932 if (ret < 0) {
3933 return ret;
3934 } else if (ret > 0) {
3935 btrfs_release_path(dst_path);
3936 goto add_to_batch;
3937 }
3938
3939 /*
3940 * Item exists in the log. Overwrite the item in the log if it
3941 * has different content or do nothing if it has exactly the same
3942 * content. And then flush the current batch if any - do it after
3943 * overwriting the current item, or we would deadlock otherwise,
3944 * since we are holding a path for the existing item.
3945 */
3946 ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3947 if (ret < 0)
3948 return ret;
3949
3950 if (batch_size > 0) {
3951 ret = flush_dir_items_batch(trans, log, src, dst_path,
3952 batch_start, batch_size);
3953 if (ret < 0)
3954 return ret;
3955 batch_size = 0;
3956 }
3957 continue;
3958add_to_batch:
3959 if (batch_size == 0)
3960 batch_start = i;
3961 batch_size++;
eb10d85e
FM
3962 }
3963
086dcbfa
FM
3964 if (batch_size > 0) {
3965 int ret;
3966
3967 ret = flush_dir_items_batch(trans, log, src, dst_path,
3968 batch_start, batch_size);
3969 if (ret < 0)
3970 return ret;
3971 }
3972
3973 return last_found ? 1 : 0;
eb10d85e
FM
3974}
3975
e02119d5
CM
3976/*
3977 * log all the items included in the current transaction for a given
3978 * directory. This also creates the range items in the log tree required
3979 * to replay anything deleted before the fsync
3980 */
3981static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3982 struct btrfs_inode *inode,
e02119d5 3983 struct btrfs_path *path,
339d0354 3984 struct btrfs_path *dst_path,
2f2ff0ee 3985 struct btrfs_log_ctx *ctx,
e02119d5
CM
3986 u64 min_offset, u64 *last_offset_ret)
3987{
3988 struct btrfs_key min_key;
90d04510 3989 struct btrfs_root *root = inode->root;
e02119d5 3990 struct btrfs_root *log = root->log_root;
4a500fd1 3991 int err = 0;
e02119d5 3992 int ret;
732d591a 3993 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3994 u64 last_offset = (u64)-1;
684a5773 3995 u64 ino = btrfs_ino(inode);
e02119d5 3996
33345d01 3997 min_key.objectid = ino;
339d0354 3998 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3999 min_key.offset = min_offset;
4000
6174d3cb 4001 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
4002
4003 /*
4004 * we didn't find anything from this transaction, see if there
4005 * is anything at all
4006 */
339d0354
FM
4007 if (ret != 0 || min_key.objectid != ino ||
4008 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 4009 min_key.objectid = ino;
339d0354 4010 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 4011 min_key.offset = (u64)-1;
b3b4aa74 4012 btrfs_release_path(path);
e02119d5
CM
4013 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4014 if (ret < 0) {
b3b4aa74 4015 btrfs_release_path(path);
e02119d5
CM
4016 return ret;
4017 }
339d0354 4018 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
4019
4020 /* if ret == 0 there are items for this type,
4021 * create a range to tell us the last key of this type.
4022 * otherwise, there are no items in this directory after
4023 * *min_offset, and we create a range to indicate that.
4024 */
4025 if (ret == 0) {
4026 struct btrfs_key tmp;
732d591a 4027
e02119d5
CM
4028 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4029 path->slots[0]);
339d0354 4030 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 4031 last_old_dentry_offset = tmp.offset;
e02119d5
CM
4032 }
4033 goto done;
4034 }
4035
4036 /* go backward to find any previous key */
339d0354 4037 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
4038 if (ret == 0) {
4039 struct btrfs_key tmp;
a450a4af 4040
e02119d5 4041 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
4042 /*
4043 * The dir index key before the first one we found that needs to
4044 * be logged might be in a previous leaf, and there might be a
4045 * gap between these keys, meaning that we had deletions that
4046 * happened. So the key range item we log (key type
4047 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4048 * previous key's offset plus 1, so that those deletes are replayed.
4049 */
4050 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 4051 last_old_dentry_offset = tmp.offset;
e02119d5 4052 }
b3b4aa74 4053 btrfs_release_path(path);
e02119d5 4054
2cc83342
JB
4055 /*
4056 * Find the first key from this transaction again. See the note for
4057 * log_new_dir_dentries, if we're logging a directory recursively we
4058 * won't be holding its i_mutex, which means we can modify the directory
4059 * while we're logging it. If we remove an entry between our first
4060 * search and this search we'll not find the key again and can just
4061 * bail.
4062 */
bb56f02f 4063search:
e02119d5 4064 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 4065 if (ret != 0)
e02119d5 4066 goto done;
e02119d5
CM
4067
4068 /*
4069 * we have a block from this transaction, log every item in it
4070 * from our directory
4071 */
d397712b 4072 while (1) {
732d591a
FM
4073 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4074 &last_old_dentry_offset);
eb10d85e
FM
4075 if (ret != 0) {
4076 if (ret < 0)
4a500fd1 4077 err = ret;
eb10d85e 4078 goto done;
e02119d5 4079 }
eb10d85e 4080 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
4081
4082 /*
4083 * look ahead to the next item and see if it is also
4084 * from this directory and from this transaction
4085 */
4086 ret = btrfs_next_leaf(root, path);
80c0b421
LB
4087 if (ret) {
4088 if (ret == 1)
4089 last_offset = (u64)-1;
4090 else
4091 err = ret;
e02119d5
CM
4092 goto done;
4093 }
eb10d85e 4094 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 4095 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
4096 last_offset = (u64)-1;
4097 goto done;
4098 }
4099 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
4100 /*
4101 * The next leaf was not changed in the current transaction
4102 * and has at least one dir index key.
4103 * We check for the next key because there might have been
4104 * one or more deletions between the last key we logged and
4105 * that next key. So the key range item we log (key type
4106 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4107 * offset minus 1, so that those deletes are replayed.
4108 */
4109 last_offset = min_key.offset - 1;
e02119d5
CM
4110 goto done;
4111 }
eb10d85e
FM
4112 if (need_resched()) {
4113 btrfs_release_path(path);
4114 cond_resched();
4115 goto search;
4116 }
e02119d5
CM
4117 }
4118done:
b3b4aa74
DS
4119 btrfs_release_path(path);
4120 btrfs_release_path(dst_path);
e02119d5 4121
4a500fd1
YZ
4122 if (err == 0) {
4123 *last_offset_ret = last_offset;
4124 /*
732d591a
FM
4125 * In case the leaf was changed in the current transaction but
4126 * all its dir items are from a past transaction, the last item
4127 * in the leaf is a dir item and there's no gap between that last
4128 * dir item and the first one on the next leaf (which did not
4129 * change in the current transaction), then we don't need to log
4130 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 4131 */
732d591a
FM
4132 ASSERT(last_old_dentry_offset <= last_offset);
4133 if (last_old_dentry_offset < last_offset) {
4134 ret = insert_dir_log_key(trans, log, path, ino,
4135 last_old_dentry_offset + 1,
4136 last_offset);
4137 if (ret)
4138 err = ret;
4139 }
4a500fd1
YZ
4140 }
4141 return err;
e02119d5
CM
4142}
4143
4144/*
4145 * logging directories is very similar to logging inodes, We find all the items
4146 * from the current transaction and write them to the log.
4147 *
4148 * The recovery code scans the directory in the subvolume, and if it finds a
4149 * key in the range logged that is not present in the log tree, then it means
4150 * that dir entry was unlinked during the transaction.
4151 *
4152 * In order for that scan to work, we must include one key smaller than
4153 * the smallest logged by this transaction and one key larger than the largest
4154 * key logged by this transaction.
4155 */
4156static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4157 struct btrfs_inode *inode,
e02119d5 4158 struct btrfs_path *path,
2f2ff0ee
FM
4159 struct btrfs_path *dst_path,
4160 struct btrfs_log_ctx *ctx)
e02119d5
CM
4161{
4162 u64 min_key;
4163 u64 max_key;
4164 int ret;
e02119d5 4165
732d591a 4166 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4167 max_key = 0;
339d0354 4168 ctx->last_dir_item_offset = inode->last_dir_index_offset;
dc287224 4169
d397712b 4170 while (1) {
339d0354 4171 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4172 ctx, min_key, &max_key);
4a500fd1
YZ
4173 if (ret)
4174 return ret;
e02119d5
CM
4175 if (max_key == (u64)-1)
4176 break;
4177 min_key = max_key + 1;
4178 }
4179
339d0354
FM
4180 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4181
e02119d5
CM
4182 return 0;
4183}
4184
4185/*
4186 * a helper function to drop items from the log before we relog an
4187 * inode. max_key_type indicates the highest item type to remove.
4188 * This cannot be run for file data extents because it does not
4189 * free the extents they point to.
4190 */
88e221cd 4191static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4192 struct btrfs_root *log,
4193 struct btrfs_path *path,
88e221cd
FM
4194 struct btrfs_inode *inode,
4195 int max_key_type)
e02119d5
CM
4196{
4197 int ret;
4198 struct btrfs_key key;
4199 struct btrfs_key found_key;
18ec90d6 4200 int start_slot;
e02119d5 4201
88e221cd 4202 key.objectid = btrfs_ino(inode);
e02119d5
CM
4203 key.type = max_key_type;
4204 key.offset = (u64)-1;
4205
d397712b 4206 while (1) {
e02119d5 4207 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4208 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4209 if (ret < 0)
e02119d5
CM
4210 break;
4211
4212 if (path->slots[0] == 0)
4213 break;
4214
4215 path->slots[0]--;
4216 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4217 path->slots[0]);
4218
88e221cd 4219 if (found_key.objectid != key.objectid)
e02119d5
CM
4220 break;
4221
18ec90d6
JB
4222 found_key.offset = 0;
4223 found_key.type = 0;
e3b83361 4224 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4225 if (ret < 0)
4226 break;
18ec90d6
JB
4227
4228 ret = btrfs_del_items(trans, log, path, start_slot,
4229 path->slots[0] - start_slot + 1);
4230 /*
4231 * If start slot isn't 0 then we don't need to re-search, we've
4232 * found the last guy with the objectid in this tree.
4233 */
4234 if (ret || start_slot != 0)
65a246c5 4235 break;
b3b4aa74 4236 btrfs_release_path(path);
e02119d5 4237 }
b3b4aa74 4238 btrfs_release_path(path);
5bdbeb21
JB
4239 if (ret > 0)
4240 ret = 0;
4a500fd1 4241 return ret;
e02119d5
CM
4242}
4243
8a2b3da1
FM
4244static int truncate_inode_items(struct btrfs_trans_handle *trans,
4245 struct btrfs_root *log_root,
4246 struct btrfs_inode *inode,
4247 u64 new_size, u32 min_type)
4248{
d9ac19c3
JB
4249 struct btrfs_truncate_control control = {
4250 .new_size = new_size,
487e81d2 4251 .ino = btrfs_ino(inode),
d9ac19c3 4252 .min_type = min_type,
5caa490e 4253 .skip_ref_updates = true,
d9ac19c3 4254 };
8a2b3da1 4255
8697b8f8 4256 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4257}
4258
94edf4ae
JB
4259static void fill_inode_item(struct btrfs_trans_handle *trans,
4260 struct extent_buffer *leaf,
4261 struct btrfs_inode_item *item,
1a4bcf47
FM
4262 struct inode *inode, int log_inode_only,
4263 u64 logged_isize)
94edf4ae 4264{
0b1c6cca 4265 struct btrfs_map_token token;
77eea05e 4266 u64 flags;
0b1c6cca 4267
c82f823c 4268 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4269
4270 if (log_inode_only) {
4271 /* set the generation to zero so the recover code
4272 * can tell the difference between an logging
4273 * just to say 'this inode exists' and a logging
4274 * to say 'update this inode with these values'
4275 */
cc4c13d5
DS
4276 btrfs_set_token_inode_generation(&token, item, 0);
4277 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4278 } else {
cc4c13d5
DS
4279 btrfs_set_token_inode_generation(&token, item,
4280 BTRFS_I(inode)->generation);
4281 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4282 }
4283
cc4c13d5
DS
4284 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4285 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4286 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4287 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4288
4289 btrfs_set_token_timespec_sec(&token, &item->atime,
4290 inode->i_atime.tv_sec);
4291 btrfs_set_token_timespec_nsec(&token, &item->atime,
4292 inode->i_atime.tv_nsec);
4293
4294 btrfs_set_token_timespec_sec(&token, &item->mtime,
4295 inode->i_mtime.tv_sec);
4296 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4297 inode->i_mtime.tv_nsec);
4298
4299 btrfs_set_token_timespec_sec(&token, &item->ctime,
4300 inode->i_ctime.tv_sec);
4301 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4302 inode->i_ctime.tv_nsec);
4303
e593e54e
FM
4304 /*
4305 * We do not need to set the nbytes field, in fact during a fast fsync
4306 * its value may not even be correct, since a fast fsync does not wait
4307 * for ordered extent completion, which is where we update nbytes, it
4308 * only waits for writeback to complete. During log replay as we find
4309 * file extent items and replay them, we adjust the nbytes field of the
4310 * inode item in subvolume tree as needed (see overwrite_item()).
4311 */
cc4c13d5
DS
4312
4313 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4314 btrfs_set_token_inode_transid(&token, item, trans->transid);
4315 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4316 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4317 BTRFS_I(inode)->ro_flags);
4318 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4319 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4320}
4321
a95249b3
JB
4322static int log_inode_item(struct btrfs_trans_handle *trans,
4323 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4324 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4325{
4326 struct btrfs_inode_item *inode_item;
a95249b3
JB
4327 int ret;
4328
2ac691d8
FM
4329 /*
4330 * If we are doing a fast fsync and the inode was logged before in the
4331 * current transaction, then we know the inode was previously logged and
4332 * it exists in the log tree. For performance reasons, in this case use
4333 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4334 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4335 * contention in case there are concurrent fsyncs for other inodes of the
4336 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4337 * already exists can also result in unnecessarily splitting a leaf.
4338 */
4339 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4340 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4341 ASSERT(ret <= 0);
4342 if (ret > 0)
4343 ret = -ENOENT;
4344 } else {
4345 /*
4346 * This means it is the first fsync in the current transaction,
4347 * so the inode item is not in the log and we need to insert it.
4348 * We can never get -EEXIST because we are only called for a fast
4349 * fsync and in case an inode eviction happens after the inode was
4350 * logged before in the current transaction, when we load again
4351 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4352 * flags and set ->logged_trans to 0.
4353 */
4354 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4355 sizeof(*inode_item));
4356 ASSERT(ret != -EEXIST);
4357 }
4358 if (ret)
a95249b3
JB
4359 return ret;
4360 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4361 struct btrfs_inode_item);
6d889a3b
NB
4362 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4363 0, 0);
a95249b3
JB
4364 btrfs_release_path(path);
4365 return 0;
4366}
4367
40e046ac 4368static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4369 struct btrfs_inode *inode,
40e046ac
FM
4370 struct btrfs_root *log_root,
4371 struct btrfs_ordered_sum *sums)
4372{
e289f03e
FM
4373 const u64 lock_end = sums->bytenr + sums->len - 1;
4374 struct extent_state *cached_state = NULL;
40e046ac
FM
4375 int ret;
4376
3ebac17c
FM
4377 /*
4378 * If this inode was not used for reflink operations in the current
4379 * transaction with new extents, then do the fast path, no need to
4380 * worry about logging checksum items with overlapping ranges.
4381 */
4382 if (inode->last_reflink_trans < trans->transid)
4383 return btrfs_csum_file_blocks(trans, log_root, sums);
4384
e289f03e
FM
4385 /*
4386 * Serialize logging for checksums. This is to avoid racing with the
4387 * same checksum being logged by another task that is logging another
4388 * file which happens to refer to the same extent as well. Such races
4389 * can leave checksum items in the log with overlapping ranges.
4390 */
4391 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4392 lock_end, &cached_state);
4393 if (ret)
4394 return ret;
40e046ac
FM
4395 /*
4396 * Due to extent cloning, we might have logged a csum item that covers a
4397 * subrange of a cloned extent, and later we can end up logging a csum
4398 * item for a larger subrange of the same extent or the entire range.
4399 * This would leave csum items in the log tree that cover the same range
4400 * and break the searches for checksums in the log tree, resulting in
4401 * some checksums missing in the fs/subvolume tree. So just delete (or
4402 * trim and adjust) any existing csum items in the log for this range.
4403 */
4404 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4405 if (!ret)
4406 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4407
e289f03e
FM
4408 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4409 &cached_state);
4410
4411 return ret;
40e046ac
FM
4412}
4413
31ff1cd2 4414static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4415 struct btrfs_inode *inode,
31ff1cd2 4416 struct btrfs_path *dst_path,
0e56315c 4417 struct btrfs_path *src_path,
1a4bcf47
FM
4418 int start_slot, int nr, int inode_only,
4419 u64 logged_isize)
31ff1cd2 4420{
44d70e19 4421 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4422 struct btrfs_file_extent_item *extent;
16e7549f 4423 struct extent_buffer *src = src_path->nodes[0];
7f30c072 4424 int ret = 0;
31ff1cd2
CM
4425 struct btrfs_key *ins_keys;
4426 u32 *ins_sizes;
b7ef5f3a 4427 struct btrfs_item_batch batch;
31ff1cd2
CM
4428 char *ins_data;
4429 int i;
7f30c072 4430 int dst_index;
7f30c072
FM
4431 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4432 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4433
31ff1cd2
CM
4434 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4435 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4436 if (!ins_data)
4437 return -ENOMEM;
4438
31ff1cd2
CM
4439 ins_sizes = (u32 *)ins_data;
4440 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4441 batch.keys = ins_keys;
4442 batch.data_sizes = ins_sizes;
4443 batch.total_data_size = 0;
7f30c072 4444 batch.nr = 0;
31ff1cd2 4445
7f30c072 4446 dst_index = 0;
31ff1cd2 4447 for (i = 0; i < nr; i++) {
7f30c072
FM
4448 const int src_slot = start_slot + i;
4449 struct btrfs_root *csum_root;
5b7ce5e2
FM
4450 struct btrfs_ordered_sum *sums;
4451 struct btrfs_ordered_sum *sums_next;
4452 LIST_HEAD(ordered_sums);
7f30c072
FM
4453 u64 disk_bytenr;
4454 u64 disk_num_bytes;
4455 u64 extent_offset;
4456 u64 extent_num_bytes;
4457 bool is_old_extent;
4458
4459 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4460
4461 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4462 goto add_to_batch;
4463
4464 extent = btrfs_item_ptr(src, src_slot,
4465 struct btrfs_file_extent_item);
4466
4467 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4468 trans->transid);
4469
4470 /*
4471 * Don't copy extents from past generations. That would make us
4472 * log a lot more metadata for common cases like doing only a
4473 * few random writes into a file and then fsync it for the first
4474 * time or after the full sync flag is set on the inode. We can
4475 * get leaves full of extent items, most of which are from past
4476 * generations, so we can skip them - as long as the inode has
4477 * not been the target of a reflink operation in this transaction,
4478 * as in that case it might have had file extent items with old
4479 * generations copied into it. We also must always log prealloc
4480 * extents that start at or beyond eof, otherwise we would lose
4481 * them on log replay.
4482 */
4483 if (is_old_extent &&
4484 ins_keys[dst_index].offset < i_size &&
4485 inode->last_reflink_trans < trans->transid)
4486 continue;
4487
4488 if (skip_csum)
4489 goto add_to_batch;
4490
4491 /* Only regular extents have checksums. */
4492 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4493 goto add_to_batch;
4494
4495 /*
4496 * If it's an extent created in a past transaction, then its
4497 * checksums are already accessible from the committed csum tree,
4498 * no need to log them.
4499 */
4500 if (is_old_extent)
4501 goto add_to_batch;
4502
4503 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4504 /* If it's an explicit hole, there are no checksums. */
4505 if (disk_bytenr == 0)
4506 goto add_to_batch;
4507
4508 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4509
4510 if (btrfs_file_extent_compression(src, extent)) {
4511 extent_offset = 0;
4512 extent_num_bytes = disk_num_bytes;
4513 } else {
4514 extent_offset = btrfs_file_extent_offset(src, extent);
4515 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4516 }
4517
4518 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4519 disk_bytenr += extent_offset;
4520 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4521 disk_bytenr + extent_num_bytes - 1,
4522 &ordered_sums, 0);
4523 if (ret)
4524 goto out;
4525
5b7ce5e2
FM
4526 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4527 if (!ret)
4528 ret = log_csums(trans, inode, log, sums);
4529 list_del(&sums->list);
4530 kfree(sums);
4531 }
4532 if (ret)
4533 goto out;
4534
7f30c072
FM
4535add_to_batch:
4536 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4537 batch.total_data_size += ins_sizes[dst_index];
4538 batch.nr++;
4539 dst_index++;
31ff1cd2 4540 }
7f30c072
FM
4541
4542 /*
4543 * We have a leaf full of old extent items that don't need to be logged,
4544 * so we don't need to do anything.
4545 */
4546 if (batch.nr == 0)
4547 goto out;
4548
b7ef5f3a 4549 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4550 if (ret)
4551 goto out;
4552
4553 dst_index = 0;
4554 for (i = 0; i < nr; i++) {
4555 const int src_slot = start_slot + i;
4556 const int dst_slot = dst_path->slots[0] + dst_index;
4557 struct btrfs_key key;
4558 unsigned long src_offset;
4559 unsigned long dst_offset;
4560
4561 /*
4562 * We're done, all the remaining items in the source leaf
4563 * correspond to old file extent items.
4564 */
4565 if (dst_index >= batch.nr)
4566 break;
4567
4568 btrfs_item_key_to_cpu(src, &key, src_slot);
4569
4570 if (key.type != BTRFS_EXTENT_DATA_KEY)
4571 goto copy_item;
31ff1cd2 4572
7f30c072
FM
4573 extent = btrfs_item_ptr(src, src_slot,
4574 struct btrfs_file_extent_item);
31ff1cd2 4575
7f30c072
FM
4576 /* See the comment in the previous loop, same logic. */
4577 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4578 key.offset < i_size &&
4579 inode->last_reflink_trans < trans->transid)
4580 continue;
4581
4582copy_item:
4583 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4584 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4585
7f30c072
FM
4586 if (key.type == BTRFS_INODE_ITEM_KEY) {
4587 struct btrfs_inode_item *inode_item;
4588
4589 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4590 struct btrfs_inode_item);
94edf4ae 4591 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4592 &inode->vfs_inode,
4593 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4594 logged_isize);
94edf4ae
JB
4595 } else {
4596 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4597 src_offset, ins_sizes[dst_index]);
31ff1cd2 4598 }
94edf4ae 4599
7f30c072 4600 dst_index++;
31ff1cd2
CM
4601 }
4602
4603 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4604 btrfs_release_path(dst_path);
7f30c072 4605out:
31ff1cd2 4606 kfree(ins_data);
d20f7043 4607
4a500fd1 4608 return ret;
31ff1cd2
CM
4609}
4610
4f0f586b
ST
4611static int extent_cmp(void *priv, const struct list_head *a,
4612 const struct list_head *b)
5dc562c5 4613{
214cc184 4614 const struct extent_map *em1, *em2;
5dc562c5
JB
4615
4616 em1 = list_entry(a, struct extent_map, list);
4617 em2 = list_entry(b, struct extent_map, list);
4618
4619 if (em1->start < em2->start)
4620 return -1;
4621 else if (em1->start > em2->start)
4622 return 1;
4623 return 0;
4624}
4625
e7175a69
JB
4626static int log_extent_csums(struct btrfs_trans_handle *trans,
4627 struct btrfs_inode *inode,
a9ecb653 4628 struct btrfs_root *log_root,
48778179
FM
4629 const struct extent_map *em,
4630 struct btrfs_log_ctx *ctx)
5dc562c5 4631{
48778179 4632 struct btrfs_ordered_extent *ordered;
fc28b25e 4633 struct btrfs_root *csum_root;
2ab28f32
JB
4634 u64 csum_offset;
4635 u64 csum_len;
48778179
FM
4636 u64 mod_start = em->mod_start;
4637 u64 mod_len = em->mod_len;
8407f553
FM
4638 LIST_HEAD(ordered_sums);
4639 int ret = 0;
0aa4a17d 4640
e7175a69
JB
4641 if (inode->flags & BTRFS_INODE_NODATASUM ||
4642 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4643 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4644 return 0;
5dc562c5 4645
48778179
FM
4646 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4647 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4648 const u64 mod_end = mod_start + mod_len;
4649 struct btrfs_ordered_sum *sums;
4650
4651 if (mod_len == 0)
4652 break;
4653
4654 if (ordered_end <= mod_start)
4655 continue;
4656 if (mod_end <= ordered->file_offset)
4657 break;
4658
4659 /*
4660 * We are going to copy all the csums on this ordered extent, so
4661 * go ahead and adjust mod_start and mod_len in case this ordered
4662 * extent has already been logged.
4663 */
4664 if (ordered->file_offset > mod_start) {
4665 if (ordered_end >= mod_end)
4666 mod_len = ordered->file_offset - mod_start;
4667 /*
4668 * If we have this case
4669 *
4670 * |--------- logged extent ---------|
4671 * |----- ordered extent ----|
4672 *
4673 * Just don't mess with mod_start and mod_len, we'll
4674 * just end up logging more csums than we need and it
4675 * will be ok.
4676 */
4677 } else {
4678 if (ordered_end < mod_end) {
4679 mod_len = mod_end - ordered_end;
4680 mod_start = ordered_end;
4681 } else {
4682 mod_len = 0;
4683 }
4684 }
4685
4686 /*
4687 * To keep us from looping for the above case of an ordered
4688 * extent that falls inside of the logged extent.
4689 */
4690 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4691 continue;
4692
4693 list_for_each_entry(sums, &ordered->list, list) {
4694 ret = log_csums(trans, inode, log_root, sums);
4695 if (ret)
4696 return ret;
4697 }
4698 }
4699
4700 /* We're done, found all csums in the ordered extents. */
4701 if (mod_len == 0)
4702 return 0;
4703
e7175a69 4704 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4705 if (em->compress_type) {
4706 csum_offset = 0;
8407f553 4707 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4708 } else {
48778179
FM
4709 csum_offset = mod_start - em->start;
4710 csum_len = mod_len;
488111aa 4711 }
2ab28f32 4712
70c8a91c 4713 /* block start is already adjusted for the file extent offset. */
fc28b25e
JB
4714 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4715 ret = btrfs_lookup_csums_range(csum_root,
70c8a91c
JB
4716 em->block_start + csum_offset,
4717 em->block_start + csum_offset +
4718 csum_len - 1, &ordered_sums, 0);
4719 if (ret)
4720 return ret;
5dc562c5 4721
70c8a91c
JB
4722 while (!list_empty(&ordered_sums)) {
4723 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4724 struct btrfs_ordered_sum,
4725 list);
4726 if (!ret)
3ebac17c 4727 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4728 list_del(&sums->list);
4729 kfree(sums);
5dc562c5
JB
4730 }
4731
70c8a91c 4732 return ret;
5dc562c5
JB
4733}
4734
8407f553 4735static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4736 struct btrfs_inode *inode,
8407f553
FM
4737 const struct extent_map *em,
4738 struct btrfs_path *path,
8407f553
FM
4739 struct btrfs_log_ctx *ctx)
4740{
5893dfb9 4741 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4742 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4743 struct btrfs_file_extent_item fi = { 0 };
8407f553 4744 struct extent_buffer *leaf;
8407f553
FM
4745 struct btrfs_key key;
4746 u64 extent_offset = em->start - em->orig_start;
4747 u64 block_len;
4748 int ret;
8407f553 4749
e1f53ed8
FM
4750 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4751 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4752 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4753 else
4754 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4755
4756 block_len = max(em->block_len, em->orig_block_len);
4757 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4758 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4759 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4760 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4761 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4762 extent_offset);
4763 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4764 }
4765
4766 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4767 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4768 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4769 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4770
48778179 4771 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4772 if (ret)
4773 return ret;
4774
5328b2a7
FM
4775 /*
4776 * If this is the first time we are logging the inode in the current
4777 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4778 * because it does a deletion search, which always acquires write locks
4779 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4780 * but also adds significant contention in a log tree, since log trees
4781 * are small, with a root at level 2 or 3 at most, due to their short
4782 * life span.
4783 */
0f8ce498 4784 if (ctx->logged_before) {
5328b2a7
FM
4785 drop_args.path = path;
4786 drop_args.start = em->start;
4787 drop_args.end = em->start + em->len;
4788 drop_args.replace_extent = true;
e1f53ed8 4789 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4790 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4791 if (ret)
4792 return ret;
4793 }
8407f553 4794
5893dfb9 4795 if (!drop_args.extent_inserted) {
9d122629 4796 key.objectid = btrfs_ino(inode);
8407f553
FM
4797 key.type = BTRFS_EXTENT_DATA_KEY;
4798 key.offset = em->start;
4799
4800 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4801 sizeof(fi));
8407f553
FM
4802 if (ret)
4803 return ret;
4804 }
4805 leaf = path->nodes[0];
e1f53ed8
FM
4806 write_extent_buffer(leaf, &fi,
4807 btrfs_item_ptr_offset(leaf, path->slots[0]),
4808 sizeof(fi));
8407f553
FM
4809 btrfs_mark_buffer_dirty(leaf);
4810
4811 btrfs_release_path(path);
4812
4813 return ret;
4814}
4815
31d11b83
FM
4816/*
4817 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4818 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4819 * subvolume's root instead of iterating the inode's extent map tree because
4820 * otherwise we can log incorrect extent items based on extent map conversion.
4821 * That can happen due to the fact that extent maps are merged when they
4822 * are not in the extent map tree's list of modified extents.
4823 */
4824static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4825 struct btrfs_inode *inode,
4826 struct btrfs_path *path)
4827{
4828 struct btrfs_root *root = inode->root;
4829 struct btrfs_key key;
4830 const u64 i_size = i_size_read(&inode->vfs_inode);
4831 const u64 ino = btrfs_ino(inode);
4832 struct btrfs_path *dst_path = NULL;
0e56315c 4833 bool dropped_extents = false;
f135cea3
FM
4834 u64 truncate_offset = i_size;
4835 struct extent_buffer *leaf;
4836 int slot;
31d11b83
FM
4837 int ins_nr = 0;
4838 int start_slot;
4839 int ret;
4840
4841 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4842 return 0;
4843
4844 key.objectid = ino;
4845 key.type = BTRFS_EXTENT_DATA_KEY;
4846 key.offset = i_size;
4847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4848 if (ret < 0)
4849 goto out;
4850
f135cea3
FM
4851 /*
4852 * We must check if there is a prealloc extent that starts before the
4853 * i_size and crosses the i_size boundary. This is to ensure later we
4854 * truncate down to the end of that extent and not to the i_size, as
4855 * otherwise we end up losing part of the prealloc extent after a log
4856 * replay and with an implicit hole if there is another prealloc extent
4857 * that starts at an offset beyond i_size.
4858 */
4859 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4860 if (ret < 0)
4861 goto out;
4862
4863 if (ret == 0) {
4864 struct btrfs_file_extent_item *ei;
4865
4866 leaf = path->nodes[0];
4867 slot = path->slots[0];
4868 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4869
4870 if (btrfs_file_extent_type(leaf, ei) ==
4871 BTRFS_FILE_EXTENT_PREALLOC) {
4872 u64 extent_end;
4873
4874 btrfs_item_key_to_cpu(leaf, &key, slot);
4875 extent_end = key.offset +
4876 btrfs_file_extent_num_bytes(leaf, ei);
4877
4878 if (extent_end > i_size)
4879 truncate_offset = extent_end;
4880 }
4881 } else {
4882 ret = 0;
4883 }
4884
31d11b83 4885 while (true) {
f135cea3
FM
4886 leaf = path->nodes[0];
4887 slot = path->slots[0];
31d11b83
FM
4888
4889 if (slot >= btrfs_header_nritems(leaf)) {
4890 if (ins_nr > 0) {
4891 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4892 start_slot, ins_nr, 1, 0);
31d11b83
FM
4893 if (ret < 0)
4894 goto out;
4895 ins_nr = 0;
4896 }
4897 ret = btrfs_next_leaf(root, path);
4898 if (ret < 0)
4899 goto out;
4900 if (ret > 0) {
4901 ret = 0;
4902 break;
4903 }
4904 continue;
4905 }
4906
4907 btrfs_item_key_to_cpu(leaf, &key, slot);
4908 if (key.objectid > ino)
4909 break;
4910 if (WARN_ON_ONCE(key.objectid < ino) ||
4911 key.type < BTRFS_EXTENT_DATA_KEY ||
4912 key.offset < i_size) {
4913 path->slots[0]++;
4914 continue;
4915 }
0e56315c 4916 if (!dropped_extents) {
31d11b83
FM
4917 /*
4918 * Avoid logging extent items logged in past fsync calls
4919 * and leading to duplicate keys in the log tree.
4920 */
8a2b3da1
FM
4921 ret = truncate_inode_items(trans, root->log_root, inode,
4922 truncate_offset,
4923 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4924 if (ret)
4925 goto out;
0e56315c 4926 dropped_extents = true;
31d11b83
FM
4927 }
4928 if (ins_nr == 0)
4929 start_slot = slot;
4930 ins_nr++;
4931 path->slots[0]++;
4932 if (!dst_path) {
4933 dst_path = btrfs_alloc_path();
4934 if (!dst_path) {
4935 ret = -ENOMEM;
4936 goto out;
4937 }
4938 }
4939 }
0bc2d3c0 4940 if (ins_nr > 0)
0e56315c 4941 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4942 start_slot, ins_nr, 1, 0);
31d11b83
FM
4943out:
4944 btrfs_release_path(path);
4945 btrfs_free_path(dst_path);
4946 return ret;
4947}
4948
5dc562c5 4949static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4950 struct btrfs_inode *inode,
827463c4 4951 struct btrfs_path *path,
48778179 4952 struct btrfs_log_ctx *ctx)
5dc562c5 4953{
48778179
FM
4954 struct btrfs_ordered_extent *ordered;
4955 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4956 struct extent_map *em, *n;
4957 struct list_head extents;
9d122629 4958 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4959 int ret = 0;
2ab28f32 4960 int num = 0;
5dc562c5
JB
4961
4962 INIT_LIST_HEAD(&extents);
4963
5dc562c5 4964 write_lock(&tree->lock);
5dc562c5
JB
4965
4966 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4967 list_del_init(&em->list);
2ab28f32
JB
4968 /*
4969 * Just an arbitrary number, this can be really CPU intensive
4970 * once we start getting a lot of extents, and really once we
4971 * have a bunch of extents we just want to commit since it will
4972 * be faster.
4973 */
4974 if (++num > 32768) {
4975 list_del_init(&tree->modified_extents);
4976 ret = -EFBIG;
4977 goto process;
4978 }
4979
5f96bfb7 4980 if (em->generation < trans->transid)
5dc562c5 4981 continue;
8c6c5928 4982
31d11b83
FM
4983 /* We log prealloc extents beyond eof later. */
4984 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4985 em->start >= i_size_read(&inode->vfs_inode))
4986 continue;
4987
ff44c6e3 4988 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4989 refcount_inc(&em->refs);
ff44c6e3 4990 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4991 list_add_tail(&em->list, &extents);
2ab28f32 4992 num++;
5dc562c5
JB
4993 }
4994
4995 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4996process:
5dc562c5
JB
4997 while (!list_empty(&extents)) {
4998 em = list_entry(extents.next, struct extent_map, list);
4999
5000 list_del_init(&em->list);
5001
5002 /*
5003 * If we had an error we just need to delete everybody from our
5004 * private list.
5005 */
ff44c6e3 5006 if (ret) {
201a9038 5007 clear_em_logging(tree, em);
ff44c6e3 5008 free_extent_map(em);
5dc562c5 5009 continue;
ff44c6e3
JB
5010 }
5011
5012 write_unlock(&tree->lock);
5dc562c5 5013
90d04510 5014 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 5015 write_lock(&tree->lock);
201a9038
JB
5016 clear_em_logging(tree, em);
5017 free_extent_map(em);
5dc562c5 5018 }
ff44c6e3
JB
5019 WARN_ON(!list_empty(&extents));
5020 write_unlock(&tree->lock);
5dc562c5 5021
31d11b83
FM
5022 if (!ret)
5023 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
5024 if (ret)
5025 return ret;
31d11b83 5026
48778179
FM
5027 /*
5028 * We have logged all extents successfully, now make sure the commit of
5029 * the current transaction waits for the ordered extents to complete
5030 * before it commits and wipes out the log trees, otherwise we would
5031 * lose data if an ordered extents completes after the transaction
5032 * commits and a power failure happens after the transaction commit.
5033 */
5034 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5035 list_del_init(&ordered->log_list);
5036 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5037
5038 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5039 spin_lock_irq(&inode->ordered_tree.lock);
5040 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5041 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5042 atomic_inc(&trans->transaction->pending_ordered);
5043 }
5044 spin_unlock_irq(&inode->ordered_tree.lock);
5045 }
5046 btrfs_put_ordered_extent(ordered);
5047 }
5048
5049 return 0;
5dc562c5
JB
5050}
5051
481b01c0 5052static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
5053 struct btrfs_path *path, u64 *size_ret)
5054{
5055 struct btrfs_key key;
5056 int ret;
5057
481b01c0 5058 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
5059 key.type = BTRFS_INODE_ITEM_KEY;
5060 key.offset = 0;
5061
5062 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5063 if (ret < 0) {
5064 return ret;
5065 } else if (ret > 0) {
2f2ff0ee 5066 *size_ret = 0;
1a4bcf47
FM
5067 } else {
5068 struct btrfs_inode_item *item;
5069
5070 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5071 struct btrfs_inode_item);
5072 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
5073 /*
5074 * If the in-memory inode's i_size is smaller then the inode
5075 * size stored in the btree, return the inode's i_size, so
5076 * that we get a correct inode size after replaying the log
5077 * when before a power failure we had a shrinking truncate
5078 * followed by addition of a new name (rename / new hard link).
5079 * Otherwise return the inode size from the btree, to avoid
5080 * data loss when replaying a log due to previously doing a
5081 * write that expands the inode's size and logging a new name
5082 * immediately after.
5083 */
5084 if (*size_ret > inode->vfs_inode.i_size)
5085 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5086 }
5087
5088 btrfs_release_path(path);
5089 return 0;
5090}
5091
36283bf7
FM
5092/*
5093 * At the moment we always log all xattrs. This is to figure out at log replay
5094 * time which xattrs must have their deletion replayed. If a xattr is missing
5095 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5096 * because if a xattr is deleted, the inode is fsynced and a power failure
5097 * happens, causing the log to be replayed the next time the fs is mounted,
5098 * we want the xattr to not exist anymore (same behaviour as other filesystems
5099 * with a journal, ext3/4, xfs, f2fs, etc).
5100 */
5101static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5102 struct btrfs_inode *inode,
36283bf7
FM
5103 struct btrfs_path *path,
5104 struct btrfs_path *dst_path)
5105{
90d04510 5106 struct btrfs_root *root = inode->root;
36283bf7
FM
5107 int ret;
5108 struct btrfs_key key;
1a93c36a 5109 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5110 int ins_nr = 0;
5111 int start_slot = 0;
f2f121ab
FM
5112 bool found_xattrs = false;
5113
5114 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5115 return 0;
36283bf7
FM
5116
5117 key.objectid = ino;
5118 key.type = BTRFS_XATTR_ITEM_KEY;
5119 key.offset = 0;
5120
5121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5122 if (ret < 0)
5123 return ret;
5124
5125 while (true) {
5126 int slot = path->slots[0];
5127 struct extent_buffer *leaf = path->nodes[0];
5128 int nritems = btrfs_header_nritems(leaf);
5129
5130 if (slot >= nritems) {
5131 if (ins_nr > 0) {
1a93c36a 5132 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5133 start_slot, ins_nr, 1, 0);
36283bf7
FM
5134 if (ret < 0)
5135 return ret;
5136 ins_nr = 0;
5137 }
5138 ret = btrfs_next_leaf(root, path);
5139 if (ret < 0)
5140 return ret;
5141 else if (ret > 0)
5142 break;
5143 continue;
5144 }
5145
5146 btrfs_item_key_to_cpu(leaf, &key, slot);
5147 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5148 break;
5149
5150 if (ins_nr == 0)
5151 start_slot = slot;
5152 ins_nr++;
5153 path->slots[0]++;
f2f121ab 5154 found_xattrs = true;
36283bf7
FM
5155 cond_resched();
5156 }
5157 if (ins_nr > 0) {
1a93c36a 5158 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5159 start_slot, ins_nr, 1, 0);
36283bf7
FM
5160 if (ret < 0)
5161 return ret;
5162 }
5163
f2f121ab
FM
5164 if (!found_xattrs)
5165 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5166
36283bf7
FM
5167 return 0;
5168}
5169
a89ca6f2 5170/*
0e56315c
FM
5171 * When using the NO_HOLES feature if we punched a hole that causes the
5172 * deletion of entire leafs or all the extent items of the first leaf (the one
5173 * that contains the inode item and references) we may end up not processing
5174 * any extents, because there are no leafs with a generation matching the
5175 * current transaction that have extent items for our inode. So we need to find
5176 * if any holes exist and then log them. We also need to log holes after any
5177 * truncate operation that changes the inode's size.
a89ca6f2 5178 */
0e56315c 5179static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5180 struct btrfs_inode *inode,
7af59743 5181 struct btrfs_path *path)
a89ca6f2 5182{
90d04510 5183 struct btrfs_root *root = inode->root;
0b246afa 5184 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5185 struct btrfs_key key;
a0308dd7
NB
5186 const u64 ino = btrfs_ino(inode);
5187 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5188 u64 prev_extent_end = 0;
0e56315c 5189 int ret;
a89ca6f2 5190
0e56315c 5191 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5192 return 0;
5193
5194 key.objectid = ino;
5195 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5196 key.offset = 0;
a89ca6f2
FM
5197
5198 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5199 if (ret < 0)
5200 return ret;
5201
0e56315c 5202 while (true) {
0e56315c 5203 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5204
0e56315c
FM
5205 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5206 ret = btrfs_next_leaf(root, path);
5207 if (ret < 0)
5208 return ret;
5209 if (ret > 0) {
5210 ret = 0;
5211 break;
5212 }
5213 leaf = path->nodes[0];
5214 }
5215
5216 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5217 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5218 break;
5219
5220 /* We have a hole, log it. */
5221 if (prev_extent_end < key.offset) {
7af59743 5222 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5223
5224 /*
5225 * Release the path to avoid deadlocks with other code
5226 * paths that search the root while holding locks on
5227 * leafs from the log root.
5228 */
5229 btrfs_release_path(path);
5230 ret = btrfs_insert_file_extent(trans, root->log_root,
5231 ino, prev_extent_end, 0,
5232 0, hole_len, 0, hole_len,
5233 0, 0, 0);
5234 if (ret < 0)
5235 return ret;
5236
5237 /*
5238 * Search for the same key again in the root. Since it's
5239 * an extent item and we are holding the inode lock, the
5240 * key must still exist. If it doesn't just emit warning
5241 * and return an error to fall back to a transaction
5242 * commit.
5243 */
5244 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5245 if (ret < 0)
5246 return ret;
5247 if (WARN_ON(ret > 0))
5248 return -ENOENT;
5249 leaf = path->nodes[0];
5250 }
a89ca6f2 5251
7af59743 5252 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5253 path->slots[0]++;
5254 cond_resched();
a89ca6f2 5255 }
a89ca6f2 5256
7af59743 5257 if (prev_extent_end < i_size) {
0e56315c 5258 u64 hole_len;
a89ca6f2 5259
0e56315c 5260 btrfs_release_path(path);
7af59743 5261 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
5262 ret = btrfs_insert_file_extent(trans, root->log_root,
5263 ino, prev_extent_end, 0, 0,
5264 hole_len, 0, hole_len,
5265 0, 0, 0);
5266 if (ret < 0)
5267 return ret;
5268 }
5269
5270 return 0;
a89ca6f2
FM
5271}
5272
56f23fdb
FM
5273/*
5274 * When we are logging a new inode X, check if it doesn't have a reference that
5275 * matches the reference from some other inode Y created in a past transaction
5276 * and that was renamed in the current transaction. If we don't do this, then at
5277 * log replay time we can lose inode Y (and all its files if it's a directory):
5278 *
5279 * mkdir /mnt/x
5280 * echo "hello world" > /mnt/x/foobar
5281 * sync
5282 * mv /mnt/x /mnt/y
5283 * mkdir /mnt/x # or touch /mnt/x
5284 * xfs_io -c fsync /mnt/x
5285 * <power fail>
5286 * mount fs, trigger log replay
5287 *
5288 * After the log replay procedure, we would lose the first directory and all its
5289 * files (file foobar).
5290 * For the case where inode Y is not a directory we simply end up losing it:
5291 *
5292 * echo "123" > /mnt/foo
5293 * sync
5294 * mv /mnt/foo /mnt/bar
5295 * echo "abc" > /mnt/foo
5296 * xfs_io -c fsync /mnt/foo
5297 * <power fail>
5298 *
5299 * We also need this for cases where a snapshot entry is replaced by some other
5300 * entry (file or directory) otherwise we end up with an unreplayable log due to
5301 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5302 * if it were a regular entry:
5303 *
5304 * mkdir /mnt/x
5305 * btrfs subvolume snapshot /mnt /mnt/x/snap
5306 * btrfs subvolume delete /mnt/x/snap
5307 * rmdir /mnt/x
5308 * mkdir /mnt/x
5309 * fsync /mnt/x or fsync some new file inside it
5310 * <power fail>
5311 *
5312 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5313 * the same transaction.
5314 */
5315static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5316 const int slot,
5317 const struct btrfs_key *key,
4791c8f1 5318 struct btrfs_inode *inode,
a3baaf0d 5319 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5320{
5321 int ret;
5322 struct btrfs_path *search_path;
5323 char *name = NULL;
5324 u32 name_len = 0;
3212fa14 5325 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5326 u32 cur_offset = 0;
5327 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5328
5329 search_path = btrfs_alloc_path();
5330 if (!search_path)
5331 return -ENOMEM;
5332 search_path->search_commit_root = 1;
5333 search_path->skip_locking = 1;
5334
5335 while (cur_offset < item_size) {
5336 u64 parent;
5337 u32 this_name_len;
5338 u32 this_len;
5339 unsigned long name_ptr;
5340 struct btrfs_dir_item *di;
5341
5342 if (key->type == BTRFS_INODE_REF_KEY) {
5343 struct btrfs_inode_ref *iref;
5344
5345 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5346 parent = key->offset;
5347 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5348 name_ptr = (unsigned long)(iref + 1);
5349 this_len = sizeof(*iref) + this_name_len;
5350 } else {
5351 struct btrfs_inode_extref *extref;
5352
5353 extref = (struct btrfs_inode_extref *)(ptr +
5354 cur_offset);
5355 parent = btrfs_inode_extref_parent(eb, extref);
5356 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5357 name_ptr = (unsigned long)&extref->name;
5358 this_len = sizeof(*extref) + this_name_len;
5359 }
5360
5361 if (this_name_len > name_len) {
5362 char *new_name;
5363
5364 new_name = krealloc(name, this_name_len, GFP_NOFS);
5365 if (!new_name) {
5366 ret = -ENOMEM;
5367 goto out;
5368 }
5369 name_len = this_name_len;
5370 name = new_name;
5371 }
5372
5373 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
5374 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5375 parent, name, this_name_len, 0);
56f23fdb 5376 if (di && !IS_ERR(di)) {
44f714da
FM
5377 struct btrfs_key di_key;
5378
5379 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5380 di, &di_key);
5381 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5382 if (di_key.objectid != key->objectid) {
5383 ret = 1;
5384 *other_ino = di_key.objectid;
a3baaf0d 5385 *other_parent = parent;
6b5fc433
FM
5386 } else {
5387 ret = 0;
5388 }
44f714da
FM
5389 } else {
5390 ret = -EAGAIN;
5391 }
56f23fdb
FM
5392 goto out;
5393 } else if (IS_ERR(di)) {
5394 ret = PTR_ERR(di);
5395 goto out;
5396 }
5397 btrfs_release_path(search_path);
5398
5399 cur_offset += this_len;
5400 }
5401 ret = 0;
5402out:
5403 btrfs_free_path(search_path);
5404 kfree(name);
5405 return ret;
5406}
5407
6b5fc433
FM
5408struct btrfs_ino_list {
5409 u64 ino;
a3baaf0d 5410 u64 parent;
6b5fc433
FM
5411 struct list_head list;
5412};
5413
5414static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5415 struct btrfs_root *root,
5416 struct btrfs_path *path,
5417 struct btrfs_log_ctx *ctx,
a3baaf0d 5418 u64 ino, u64 parent)
6b5fc433
FM
5419{
5420 struct btrfs_ino_list *ino_elem;
5421 LIST_HEAD(inode_list);
5422 int ret = 0;
5423
5424 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5425 if (!ino_elem)
5426 return -ENOMEM;
5427 ino_elem->ino = ino;
a3baaf0d 5428 ino_elem->parent = parent;
6b5fc433
FM
5429 list_add_tail(&ino_elem->list, &inode_list);
5430
5431 while (!list_empty(&inode_list)) {
5432 struct btrfs_fs_info *fs_info = root->fs_info;
5433 struct btrfs_key key;
5434 struct inode *inode;
5435
5436 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5437 list);
5438 ino = ino_elem->ino;
a3baaf0d 5439 parent = ino_elem->parent;
6b5fc433
FM
5440 list_del(&ino_elem->list);
5441 kfree(ino_elem);
5442 if (ret)
5443 continue;
5444
5445 btrfs_release_path(path);
5446
0202e83f 5447 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5448 /*
5449 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5450 * deleted in the current transaction, we need to log its parent
5451 * directory.
6b5fc433
FM
5452 */
5453 if (IS_ERR(inode)) {
5454 ret = PTR_ERR(inode);
a3baaf0d 5455 if (ret == -ENOENT) {
0202e83f 5456 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5457 if (IS_ERR(inode)) {
5458 ret = PTR_ERR(inode);
5459 } else {
90d04510 5460 ret = btrfs_log_inode(trans,
a3baaf0d
FM
5461 BTRFS_I(inode),
5462 LOG_OTHER_INODE_ALL,
48778179 5463 ctx);
410f954c 5464 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5465 }
5466 }
6b5fc433
FM
5467 continue;
5468 }
b5e4ff9d
FM
5469 /*
5470 * If the inode was already logged skip it - otherwise we can
5471 * hit an infinite loop. Example:
5472 *
5473 * From the commit root (previous transaction) we have the
5474 * following inodes:
5475 *
5476 * inode 257 a directory
5477 * inode 258 with references "zz" and "zz_link" on inode 257
5478 * inode 259 with reference "a" on inode 257
5479 *
5480 * And in the current (uncommitted) transaction we have:
5481 *
5482 * inode 257 a directory, unchanged
5483 * inode 258 with references "a" and "a2" on inode 257
5484 * inode 259 with reference "zz_link" on inode 257
5485 * inode 261 with reference "zz" on inode 257
5486 *
5487 * When logging inode 261 the following infinite loop could
5488 * happen if we don't skip already logged inodes:
5489 *
5490 * - we detect inode 258 as a conflicting inode, with inode 261
5491 * on reference "zz", and log it;
5492 *
5493 * - we detect inode 259 as a conflicting inode, with inode 258
5494 * on reference "a", and log it;
5495 *
5496 * - we detect inode 258 as a conflicting inode, with inode 259
5497 * on reference "zz_link", and log it - again! After this we
5498 * repeat the above steps forever.
5499 */
5500 spin_lock(&BTRFS_I(inode)->lock);
5501 /*
5502 * Check the inode's logged_trans only instead of
5503 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5504 * the inode is not updated when we only log that it exists (see
5505 * btrfs_log_inode()).
b5e4ff9d
FM
5506 */
5507 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5508 spin_unlock(&BTRFS_I(inode)->lock);
5509 btrfs_add_delayed_iput(inode);
5510 continue;
5511 }
5512 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5513 /*
5514 * We are safe logging the other inode without acquiring its
5515 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5516 * are safe against concurrent renames of the other inode as
5517 * well because during a rename we pin the log and update the
5518 * log with the new name before we unpin it.
5519 */
90d04510 5520 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
6b5fc433 5521 if (ret) {
410f954c 5522 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5523 continue;
5524 }
5525
5526 key.objectid = ino;
5527 key.type = BTRFS_INODE_REF_KEY;
5528 key.offset = 0;
5529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5530 if (ret < 0) {
410f954c 5531 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5532 continue;
5533 }
5534
5535 while (true) {
5536 struct extent_buffer *leaf = path->nodes[0];
5537 int slot = path->slots[0];
5538 u64 other_ino = 0;
a3baaf0d 5539 u64 other_parent = 0;
6b5fc433
FM
5540
5541 if (slot >= btrfs_header_nritems(leaf)) {
5542 ret = btrfs_next_leaf(root, path);
5543 if (ret < 0) {
5544 break;
5545 } else if (ret > 0) {
5546 ret = 0;
5547 break;
5548 }
5549 continue;
5550 }
5551
5552 btrfs_item_key_to_cpu(leaf, &key, slot);
5553 if (key.objectid != ino ||
5554 (key.type != BTRFS_INODE_REF_KEY &&
5555 key.type != BTRFS_INODE_EXTREF_KEY)) {
5556 ret = 0;
5557 break;
5558 }
5559
5560 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5561 BTRFS_I(inode), &other_ino,
5562 &other_parent);
6b5fc433
FM
5563 if (ret < 0)
5564 break;
5565 if (ret > 0) {
5566 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5567 if (!ino_elem) {
5568 ret = -ENOMEM;
5569 break;
5570 }
5571 ino_elem->ino = other_ino;
a3baaf0d 5572 ino_elem->parent = other_parent;
6b5fc433
FM
5573 list_add_tail(&ino_elem->list, &inode_list);
5574 ret = 0;
5575 }
5576 path->slots[0]++;
5577 }
410f954c 5578 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5579 }
5580
5581 return ret;
5582}
5583
da447009
FM
5584static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5585 struct btrfs_inode *inode,
5586 struct btrfs_key *min_key,
5587 const struct btrfs_key *max_key,
5588 struct btrfs_path *path,
5589 struct btrfs_path *dst_path,
5590 const u64 logged_isize,
5591 const bool recursive_logging,
5592 const int inode_only,
5593 struct btrfs_log_ctx *ctx,
5594 bool *need_log_inode_item)
5595{
d9947887 5596 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5597 struct btrfs_root *root = inode->root;
5598 int ins_start_slot = 0;
5599 int ins_nr = 0;
5600 int ret;
5601
5602 while (1) {
5603 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5604 if (ret < 0)
5605 return ret;
5606 if (ret > 0) {
5607 ret = 0;
5608 break;
5609 }
5610again:
5611 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5612 if (min_key->objectid != max_key->objectid)
5613 break;
5614 if (min_key->type > max_key->type)
5615 break;
5616
d9947887 5617 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5618 *need_log_inode_item = false;
d9947887
FM
5619 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5620 min_key->offset >= i_size) {
5621 /*
5622 * Extents at and beyond eof are logged with
5623 * btrfs_log_prealloc_extents().
5624 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5625 * and no keys greater than that, so bail out.
5626 */
5627 break;
5628 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5629 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5630 inode->generation == trans->transid &&
5631 !recursive_logging) {
da447009
FM
5632 u64 other_ino = 0;
5633 u64 other_parent = 0;
5634
5635 ret = btrfs_check_ref_name_override(path->nodes[0],
5636 path->slots[0], min_key, inode,
5637 &other_ino, &other_parent);
5638 if (ret < 0) {
5639 return ret;
289cffcb 5640 } else if (ret > 0 &&
da447009
FM
5641 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5642 if (ins_nr > 0) {
5643 ins_nr++;
5644 } else {
5645 ins_nr = 1;
5646 ins_start_slot = path->slots[0];
5647 }
5648 ret = copy_items(trans, inode, dst_path, path,
5649 ins_start_slot, ins_nr,
5650 inode_only, logged_isize);
5651 if (ret < 0)
5652 return ret;
5653 ins_nr = 0;
5654
5655 ret = log_conflicting_inodes(trans, root, path,
5656 ctx, other_ino, other_parent);
5657 if (ret)
5658 return ret;
5659 btrfs_release_path(path);
5660 goto next_key;
5661 }
d9947887
FM
5662 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5663 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5664 if (ins_nr == 0)
5665 goto next_slot;
5666 ret = copy_items(trans, inode, dst_path, path,
5667 ins_start_slot,
5668 ins_nr, inode_only, logged_isize);
5669 if (ret < 0)
5670 return ret;
5671 ins_nr = 0;
5672 goto next_slot;
5673 }
5674
5675 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5676 ins_nr++;
5677 goto next_slot;
5678 } else if (!ins_nr) {
5679 ins_start_slot = path->slots[0];
5680 ins_nr = 1;
5681 goto next_slot;
5682 }
5683
5684 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5685 ins_nr, inode_only, logged_isize);
5686 if (ret < 0)
5687 return ret;
5688 ins_nr = 1;
5689 ins_start_slot = path->slots[0];
5690next_slot:
5691 path->slots[0]++;
5692 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5693 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5694 path->slots[0]);
5695 goto again;
5696 }
5697 if (ins_nr) {
5698 ret = copy_items(trans, inode, dst_path, path,
5699 ins_start_slot, ins_nr, inode_only,
5700 logged_isize);
5701 if (ret < 0)
5702 return ret;
5703 ins_nr = 0;
5704 }
5705 btrfs_release_path(path);
5706next_key:
5707 if (min_key->offset < (u64)-1) {
5708 min_key->offset++;
5709 } else if (min_key->type < max_key->type) {
5710 min_key->type++;
5711 min_key->offset = 0;
5712 } else {
5713 break;
5714 }
96acb375
FM
5715
5716 /*
5717 * We may process many leaves full of items for our inode, so
5718 * avoid monopolizing a cpu for too long by rescheduling while
5719 * not holding locks on any tree.
5720 */
5721 cond_resched();
da447009 5722 }
d9947887 5723 if (ins_nr) {
da447009
FM
5724 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5725 ins_nr, inode_only, logged_isize);
d9947887
FM
5726 if (ret)
5727 return ret;
5728 }
5729
5730 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5731 /*
5732 * Release the path because otherwise we might attempt to double
5733 * lock the same leaf with btrfs_log_prealloc_extents() below.
5734 */
5735 btrfs_release_path(path);
5736 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5737 }
da447009
FM
5738
5739 return ret;
5740}
5741
e02119d5
CM
5742/* log a single inode in the tree log.
5743 * At least one parent directory for this inode must exist in the tree
5744 * or be logged already.
5745 *
5746 * Any items from this inode changed by the current transaction are copied
5747 * to the log tree. An extra reference is taken on any extents in this
5748 * file, allowing us to avoid a whole pile of corner cases around logging
5749 * blocks that have been removed from the tree.
5750 *
5751 * See LOG_INODE_ALL and related defines for a description of what inode_only
5752 * does.
5753 *
5754 * This handles both files and directories.
5755 */
12fcfd22 5756static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 5757 struct btrfs_inode *inode,
49dae1bc 5758 int inode_only,
8407f553 5759 struct btrfs_log_ctx *ctx)
e02119d5
CM
5760{
5761 struct btrfs_path *path;
5762 struct btrfs_path *dst_path;
5763 struct btrfs_key min_key;
5764 struct btrfs_key max_key;
90d04510 5765 struct btrfs_root *log = inode->root->log_root;
65faced5 5766 int ret;
5dc562c5 5767 bool fast_search = false;
a59108a7
NB
5768 u64 ino = btrfs_ino(inode);
5769 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5770 u64 logged_isize = 0;
e4545de5 5771 bool need_log_inode_item = true;
9a8fca62 5772 bool xattrs_logged = false;
a3baaf0d 5773 bool recursive_logging = false;
2ac691d8 5774 bool inode_item_dropped = true;
0f8ce498 5775 const bool orig_logged_before = ctx->logged_before;
e02119d5 5776
e02119d5 5777 path = btrfs_alloc_path();
5df67083
TI
5778 if (!path)
5779 return -ENOMEM;
e02119d5 5780 dst_path = btrfs_alloc_path();
5df67083
TI
5781 if (!dst_path) {
5782 btrfs_free_path(path);
5783 return -ENOMEM;
5784 }
e02119d5 5785
33345d01 5786 min_key.objectid = ino;
e02119d5
CM
5787 min_key.type = BTRFS_INODE_ITEM_KEY;
5788 min_key.offset = 0;
5789
33345d01 5790 max_key.objectid = ino;
12fcfd22 5791
12fcfd22 5792
5dc562c5 5793 /* today the code can only do partial logging of directories */
a59108a7 5794 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5795 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5796 &inode->runtime_flags) &&
781feef7 5797 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5798 max_key.type = BTRFS_XATTR_ITEM_KEY;
5799 else
5800 max_key.type = (u8)-1;
5801 max_key.offset = (u64)-1;
5802
2c2c452b 5803 /*
5aa7d1a7
FM
5804 * Only run delayed items if we are a directory. We want to make sure
5805 * all directory indexes hit the fs/subvolume tree so we can find them
5806 * and figure out which index ranges have to be logged.
2c2c452b 5807 */
f6df27dd 5808 if (S_ISDIR(inode->vfs_inode.i_mode)) {
65faced5
FM
5809 ret = btrfs_commit_inode_delayed_items(trans, inode);
5810 if (ret)
f6df27dd 5811 goto out;
16cdcec7
MX
5812 }
5813
a3baaf0d
FM
5814 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5815 recursive_logging = true;
5816 if (inode_only == LOG_OTHER_INODE)
5817 inode_only = LOG_INODE_EXISTS;
5818 else
5819 inode_only = LOG_INODE_ALL;
a59108a7 5820 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5821 } else {
a59108a7 5822 mutex_lock(&inode->log_mutex);
781feef7 5823 }
e02119d5 5824
0f8ce498
FM
5825 /*
5826 * Before logging the inode item, cache the value returned by
5827 * inode_logged(), because after that we have the need to figure out if
5828 * the inode was previously logged in this transaction.
5829 */
5830 ret = inode_logged(trans, inode, path);
65faced5 5831 if (ret < 0)
0f8ce498 5832 goto out_unlock;
0f8ce498 5833 ctx->logged_before = (ret == 1);
65faced5 5834 ret = 0;
0f8ce498 5835
64d6b281
FM
5836 /*
5837 * This is for cases where logging a directory could result in losing a
5838 * a file after replaying the log. For example, if we move a file from a
5839 * directory A to a directory B, then fsync directory A, we have no way
5840 * to known the file was moved from A to B, so logging just A would
5841 * result in losing the file after a log replay.
5842 */
5843 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5844 inode_only == LOG_INODE_ALL &&
5845 inode->last_unlink_trans >= trans->transid) {
5846 btrfs_set_log_full_commit(trans);
65faced5 5847 ret = 1;
64d6b281
FM
5848 goto out_unlock;
5849 }
5850
e02119d5
CM
5851 /*
5852 * a brute force approach to making sure we get the most uptodate
5853 * copies of everything.
5854 */
a59108a7 5855 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5856 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5857
ab12313a 5858 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5859 if (inode_only == LOG_INODE_EXISTS)
5860 max_key_type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5861 if (ctx->logged_before)
5862 ret = drop_inode_items(trans, log, path, inode,
5863 max_key_type);
e02119d5 5864 } else {
0f8ce498 5865 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
5866 /*
5867 * Make sure the new inode item we write to the log has
5868 * the same isize as the current one (if it exists).
5869 * This is necessary to prevent data loss after log
5870 * replay, and also to prevent doing a wrong expanding
5871 * truncate - for e.g. create file, write 4K into offset
5872 * 0, fsync, write 4K into offset 4096, add hard link,
5873 * fsync some other file (to sync log), power fail - if
5874 * we use the inode's current i_size, after log replay
5875 * we get a 8Kb file, with the last 4Kb extent as a hole
5876 * (zeroes), as if an expanding truncate happened,
5877 * instead of getting a file of 4Kb only.
5878 */
65faced5
FM
5879 ret = logged_inode_size(log, inode, path, &logged_isize);
5880 if (ret)
1a4bcf47
FM
5881 goto out_unlock;
5882 }
a742994a 5883 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5884 &inode->runtime_flags)) {
a742994a 5885 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5886 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5887 if (ctx->logged_before)
5888 ret = drop_inode_items(trans, log, path,
5889 inode, max_key.type);
a742994a
FM
5890 } else {
5891 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5892 &inode->runtime_flags);
a742994a 5893 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5894 &inode->runtime_flags);
0f8ce498 5895 if (ctx->logged_before)
4934a815
FM
5896 ret = truncate_inode_items(trans, log,
5897 inode, 0, 0);
a742994a 5898 }
4f764e51 5899 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5900 &inode->runtime_flags) ||
6cfab851 5901 inode_only == LOG_INODE_EXISTS) {
4f764e51 5902 if (inode_only == LOG_INODE_ALL)
183f37fa 5903 fast_search = true;
4f764e51 5904 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
5905 if (ctx->logged_before)
5906 ret = drop_inode_items(trans, log, path, inode,
5907 max_key.type);
a95249b3
JB
5908 } else {
5909 if (inode_only == LOG_INODE_ALL)
5910 fast_search = true;
2ac691d8 5911 inode_item_dropped = false;
a95249b3 5912 goto log_extents;
5dc562c5 5913 }
a95249b3 5914
e02119d5 5915 }
65faced5 5916 if (ret)
4a500fd1 5917 goto out_unlock;
e02119d5 5918
65faced5 5919 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 5920 path, dst_path, logged_isize,
7af59743
FM
5921 recursive_logging, inode_only, ctx,
5922 &need_log_inode_item);
65faced5 5923 if (ret)
da447009 5924 goto out_unlock;
5dc562c5 5925
36283bf7
FM
5926 btrfs_release_path(path);
5927 btrfs_release_path(dst_path);
65faced5
FM
5928 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5929 if (ret)
36283bf7 5930 goto out_unlock;
9a8fca62 5931 xattrs_logged = true;
a89ca6f2
FM
5932 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5933 btrfs_release_path(path);
5934 btrfs_release_path(dst_path);
65faced5
FM
5935 ret = btrfs_log_holes(trans, inode, path);
5936 if (ret)
a89ca6f2
FM
5937 goto out_unlock;
5938 }
a95249b3 5939log_extents:
f3b15ccd
JB
5940 btrfs_release_path(path);
5941 btrfs_release_path(dst_path);
e4545de5 5942 if (need_log_inode_item) {
65faced5
FM
5943 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5944 if (ret)
b590b839
FM
5945 goto out_unlock;
5946 /*
5947 * If we are doing a fast fsync and the inode was logged before
5948 * in this transaction, we don't need to log the xattrs because
5949 * they were logged before. If xattrs were added, changed or
5950 * deleted since the last time we logged the inode, then we have
5951 * already logged them because the inode had the runtime flag
5952 * BTRFS_INODE_COPY_EVERYTHING set.
5953 */
5954 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
5955 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5956 if (ret)
b590b839 5957 goto out_unlock;
9a8fca62
FM
5958 btrfs_release_path(path);
5959 }
e4545de5 5960 }
5dc562c5 5961 if (fast_search) {
90d04510 5962 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 5963 if (ret)
5dc562c5 5964 goto out_unlock;
d006a048 5965 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5966 struct extent_map *em, *n;
5967
49dae1bc 5968 write_lock(&em_tree->lock);
48778179
FM
5969 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5970 list_del_init(&em->list);
49dae1bc 5971 write_unlock(&em_tree->lock);
5dc562c5
JB
5972 }
5973
a59108a7 5974 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
90d04510 5975 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 5976 if (ret)
4a500fd1 5977 goto out_unlock;
e02119d5 5978 }
49dae1bc 5979
130341be
FM
5980 spin_lock(&inode->lock);
5981 inode->logged_trans = trans->transid;
d1d832a0 5982 /*
130341be
FM
5983 * Don't update last_log_commit if we logged that an inode exists.
5984 * We do this for three reasons:
5985 *
5986 * 1) We might have had buffered writes to this inode that were
5987 * flushed and had their ordered extents completed in this
5988 * transaction, but we did not previously log the inode with
5989 * LOG_INODE_ALL. Later the inode was evicted and after that
5990 * it was loaded again and this LOG_INODE_EXISTS log operation
5991 * happened. We must make sure that if an explicit fsync against
5992 * the inode is performed later, it logs the new extents, an
5993 * updated inode item, etc, and syncs the log. The same logic
5994 * applies to direct IO writes instead of buffered writes.
5995 *
5996 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5997 * is logged with an i_size of 0 or whatever value was logged
5998 * before. If later the i_size of the inode is increased by a
5999 * truncate operation, the log is synced through an fsync of
6000 * some other inode and then finally an explicit fsync against
6001 * this inode is made, we must make sure this fsync logs the
6002 * inode with the new i_size, the hole between old i_size and
6003 * the new i_size, and syncs the log.
6004 *
6005 * 3) If we are logging that an ancestor inode exists as part of
6006 * logging a new name from a link or rename operation, don't update
6007 * its last_log_commit - otherwise if an explicit fsync is made
6008 * against an ancestor, the fsync considers the inode in the log
6009 * and doesn't sync the log, resulting in the ancestor missing after
6010 * a power failure unless the log was synced as part of an fsync
6011 * against any other unrelated inode.
d1d832a0 6012 */
130341be
FM
6013 if (inode_only != LOG_INODE_EXISTS)
6014 inode->last_log_commit = inode->last_sub_trans;
6015 spin_unlock(&inode->lock);
4a500fd1 6016out_unlock:
a59108a7 6017 mutex_unlock(&inode->log_mutex);
f6df27dd 6018out:
e02119d5
CM
6019 btrfs_free_path(path);
6020 btrfs_free_path(dst_path);
0f8ce498
FM
6021
6022 if (recursive_logging)
6023 ctx->logged_before = orig_logged_before;
6024
65faced5 6025 return ret;
e02119d5
CM
6026}
6027
ab12313a
FM
6028/*
6029 * Check if we need to log an inode. This is used in contexts where while
6030 * logging an inode we need to log another inode (either that it exists or in
6031 * full mode). This is used instead of btrfs_inode_in_log() because the later
6032 * requires the inode to be in the log and have the log transaction committed,
6033 * while here we do not care if the log transaction was already committed - our
6034 * caller will commit the log later - and we want to avoid logging an inode
6035 * multiple times when multiple tasks have joined the same log transaction.
6036 */
6037static bool need_log_inode(struct btrfs_trans_handle *trans,
6038 struct btrfs_inode *inode)
6039{
8be2ba2e
FM
6040 /*
6041 * If a directory was not modified, no dentries added or removed, we can
6042 * and should avoid logging it.
6043 */
6044 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
6045 return false;
6046
ab12313a
FM
6047 /*
6048 * If this inode does not have new/updated/deleted xattrs since the last
6049 * time it was logged and is flagged as logged in the current transaction,
6050 * we can skip logging it. As for new/deleted names, those are updated in
6051 * the log by link/unlink/rename operations.
6052 * In case the inode was logged and then evicted and reloaded, its
6053 * logged_trans will be 0, in which case we have to fully log it since
6054 * logged_trans is a transient field, not persisted.
6055 */
6056 if (inode->logged_trans == trans->transid &&
6057 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
6058 return false;
6059
6060 return true;
6061}
6062
2f2ff0ee
FM
6063struct btrfs_dir_list {
6064 u64 ino;
6065 struct list_head list;
6066};
6067
6068/*
6069 * Log the inodes of the new dentries of a directory. See log_dir_items() for
6070 * details about the why it is needed.
6071 * This is a recursive operation - if an existing dentry corresponds to a
6072 * directory, that directory's new entries are logged too (same behaviour as
6073 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
6074 * the dentries point to we do not lock their i_mutex, otherwise lockdep
6075 * complains about the following circular lock dependency / possible deadlock:
6076 *
6077 * CPU0 CPU1
6078 * ---- ----
6079 * lock(&type->i_mutex_dir_key#3/2);
6080 * lock(sb_internal#2);
6081 * lock(&type->i_mutex_dir_key#3/2);
6082 * lock(&sb->s_type->i_mutex_key#14);
6083 *
6084 * Where sb_internal is the lock (a counter that works as a lock) acquired by
6085 * sb_start_intwrite() in btrfs_start_transaction().
6086 * Not locking i_mutex of the inodes is still safe because:
6087 *
6088 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
6089 * that while logging the inode new references (names) are added or removed
6090 * from the inode, leaving the logged inode item with a link count that does
6091 * not match the number of logged inode reference items. This is fine because
6092 * at log replay time we compute the real number of links and correct the
6093 * link count in the inode item (see replay_one_buffer() and
6094 * link_to_fixup_dir());
6095 *
6096 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
339d0354
FM
6097 * while logging the inode's items new index items (key type
6098 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
2f2ff0ee 6099 * has a size that doesn't match the sum of the lengths of all the logged
339d0354
FM
6100 * names - this is ok, not a problem, because at log replay time we set the
6101 * directory's i_size to the correct value (see replay_one_name() and
6102 * do_overwrite_item()).
2f2ff0ee
FM
6103 */
6104static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
6105 struct btrfs_root *root,
51cc0d32 6106 struct btrfs_inode *start_inode,
2f2ff0ee
FM
6107 struct btrfs_log_ctx *ctx)
6108{
0b246afa 6109 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
6110 struct btrfs_path *path;
6111 LIST_HEAD(dir_list);
6112 struct btrfs_dir_list *dir_elem;
6113 int ret = 0;
6114
c48792c6
FM
6115 /*
6116 * If we are logging a new name, as part of a link or rename operation,
6117 * don't bother logging new dentries, as we just want to log the names
6118 * of an inode and that any new parents exist.
6119 */
6120 if (ctx->logging_new_name)
6121 return 0;
6122
2f2ff0ee
FM
6123 path = btrfs_alloc_path();
6124 if (!path)
6125 return -ENOMEM;
6126
6127 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
6128 if (!dir_elem) {
6129 btrfs_free_path(path);
6130 return -ENOMEM;
6131 }
51cc0d32 6132 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
6133 list_add_tail(&dir_elem->list, &dir_list);
6134
6135 while (!list_empty(&dir_list)) {
6136 struct extent_buffer *leaf;
6137 struct btrfs_key min_key;
6138 int nritems;
6139 int i;
6140
6141 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
6142 list);
6143 if (ret)
6144 goto next_dir_inode;
6145
6146 min_key.objectid = dir_elem->ino;
339d0354 6147 min_key.type = BTRFS_DIR_INDEX_KEY;
2f2ff0ee
FM
6148 min_key.offset = 0;
6149again:
6150 btrfs_release_path(path);
732d591a 6151 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2f2ff0ee
FM
6152 if (ret < 0) {
6153 goto next_dir_inode;
6154 } else if (ret > 0) {
6155 ret = 0;
6156 goto next_dir_inode;
6157 }
6158
2f2ff0ee
FM
6159 leaf = path->nodes[0];
6160 nritems = btrfs_header_nritems(leaf);
6161 for (i = path->slots[0]; i < nritems; i++) {
6162 struct btrfs_dir_item *di;
6163 struct btrfs_key di_key;
6164 struct inode *di_inode;
6165 struct btrfs_dir_list *new_dir_elem;
6166 int log_mode = LOG_INODE_EXISTS;
6167 int type;
6168
6169 btrfs_item_key_to_cpu(leaf, &min_key, i);
6170 if (min_key.objectid != dir_elem->ino ||
339d0354 6171 min_key.type != BTRFS_DIR_INDEX_KEY)
2f2ff0ee
FM
6172 goto next_dir_inode;
6173
6174 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
6175 type = btrfs_dir_type(leaf, di);
de6bc7f5 6176 if (btrfs_dir_transid(leaf, di) < trans->transid)
2f2ff0ee
FM
6177 continue;
6178 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
6179 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
6180 continue;
6181
ec125cfb 6182 btrfs_release_path(path);
0202e83f 6183 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
6184 if (IS_ERR(di_inode)) {
6185 ret = PTR_ERR(di_inode);
6186 goto next_dir_inode;
6187 }
6188
0e44cb3f 6189 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 6190 btrfs_add_delayed_iput(di_inode);
ec125cfb 6191 break;
2f2ff0ee
FM
6192 }
6193
6194 ctx->log_new_dentries = false;
3f9749f6 6195 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 6196 log_mode = LOG_INODE_ALL;
90d04510 6197 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
48778179 6198 log_mode, ctx);
410f954c 6199 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
6200 if (ret)
6201 goto next_dir_inode;
6202 if (ctx->log_new_dentries) {
6203 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6204 GFP_NOFS);
6205 if (!new_dir_elem) {
6206 ret = -ENOMEM;
6207 goto next_dir_inode;
6208 }
6209 new_dir_elem->ino = di_key.objectid;
6210 list_add_tail(&new_dir_elem->list, &dir_list);
6211 }
6212 break;
6213 }
2f2ff0ee
FM
6214 if (min_key.offset < (u64)-1) {
6215 min_key.offset++;
6216 goto again;
6217 }
6218next_dir_inode:
6219 list_del(&dir_elem->list);
6220 kfree(dir_elem);
6221 }
6222
6223 btrfs_free_path(path);
6224 return ret;
6225}
6226
18aa0922 6227static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6228 struct btrfs_inode *inode,
18aa0922
FM
6229 struct btrfs_log_ctx *ctx)
6230{
3ffbd68c 6231 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6232 int ret;
6233 struct btrfs_path *path;
6234 struct btrfs_key key;
d0a0b78d
NB
6235 struct btrfs_root *root = inode->root;
6236 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6237
6238 path = btrfs_alloc_path();
6239 if (!path)
6240 return -ENOMEM;
6241 path->skip_locking = 1;
6242 path->search_commit_root = 1;
6243
6244 key.objectid = ino;
6245 key.type = BTRFS_INODE_REF_KEY;
6246 key.offset = 0;
6247 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6248 if (ret < 0)
6249 goto out;
6250
6251 while (true) {
6252 struct extent_buffer *leaf = path->nodes[0];
6253 int slot = path->slots[0];
6254 u32 cur_offset = 0;
6255 u32 item_size;
6256 unsigned long ptr;
6257
6258 if (slot >= btrfs_header_nritems(leaf)) {
6259 ret = btrfs_next_leaf(root, path);
6260 if (ret < 0)
6261 goto out;
6262 else if (ret > 0)
6263 break;
6264 continue;
6265 }
6266
6267 btrfs_item_key_to_cpu(leaf, &key, slot);
6268 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6269 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6270 break;
6271
3212fa14 6272 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6273 ptr = btrfs_item_ptr_offset(leaf, slot);
6274 while (cur_offset < item_size) {
6275 struct btrfs_key inode_key;
6276 struct inode *dir_inode;
6277
6278 inode_key.type = BTRFS_INODE_ITEM_KEY;
6279 inode_key.offset = 0;
6280
6281 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6282 struct btrfs_inode_extref *extref;
6283
6284 extref = (struct btrfs_inode_extref *)
6285 (ptr + cur_offset);
6286 inode_key.objectid = btrfs_inode_extref_parent(
6287 leaf, extref);
6288 cur_offset += sizeof(*extref);
6289 cur_offset += btrfs_inode_extref_name_len(leaf,
6290 extref);
6291 } else {
6292 inode_key.objectid = key.offset;
6293 cur_offset = item_size;
6294 }
6295
0202e83f
DS
6296 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6297 root);
0f375eed
FM
6298 /*
6299 * If the parent inode was deleted, return an error to
6300 * fallback to a transaction commit. This is to prevent
6301 * getting an inode that was moved from one parent A to
6302 * a parent B, got its former parent A deleted and then
6303 * it got fsync'ed, from existing at both parents after
6304 * a log replay (and the old parent still existing).
6305 * Example:
6306 *
6307 * mkdir /mnt/A
6308 * mkdir /mnt/B
6309 * touch /mnt/B/bar
6310 * sync
6311 * mv /mnt/B/bar /mnt/A/bar
6312 * mv -T /mnt/A /mnt/B
6313 * fsync /mnt/B/bar
6314 * <power fail>
6315 *
6316 * If we ignore the old parent B which got deleted,
6317 * after a log replay we would have file bar linked
6318 * at both parents and the old parent B would still
6319 * exist.
6320 */
6321 if (IS_ERR(dir_inode)) {
6322 ret = PTR_ERR(dir_inode);
6323 goto out;
6324 }
18aa0922 6325
3e6a86a1
FM
6326 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6327 btrfs_add_delayed_iput(dir_inode);
6328 continue;
6329 }
6330
289cffcb 6331 ctx->log_new_dentries = false;
90d04510 6332 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6333 LOG_INODE_ALL, ctx);
289cffcb 6334 if (!ret && ctx->log_new_dentries)
657ed1aa 6335 ret = log_new_dir_dentries(trans, root,
f85b7379 6336 BTRFS_I(dir_inode), ctx);
410f954c 6337 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
6338 if (ret)
6339 goto out;
6340 }
6341 path->slots[0]++;
6342 }
6343 ret = 0;
6344out:
6345 btrfs_free_path(path);
6346 return ret;
6347}
6348
b8aa330d
FM
6349static int log_new_ancestors(struct btrfs_trans_handle *trans,
6350 struct btrfs_root *root,
6351 struct btrfs_path *path,
6352 struct btrfs_log_ctx *ctx)
6353{
6354 struct btrfs_key found_key;
6355
6356 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6357
6358 while (true) {
6359 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6360 struct extent_buffer *leaf = path->nodes[0];
6361 int slot = path->slots[0];
6362 struct btrfs_key search_key;
6363 struct inode *inode;
0202e83f 6364 u64 ino;
b8aa330d
FM
6365 int ret = 0;
6366
6367 btrfs_release_path(path);
6368
0202e83f
DS
6369 ino = found_key.offset;
6370
b8aa330d
FM
6371 search_key.objectid = found_key.offset;
6372 search_key.type = BTRFS_INODE_ITEM_KEY;
6373 search_key.offset = 0;
0202e83f 6374 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6375 if (IS_ERR(inode))
6376 return PTR_ERR(inode);
6377
ab12313a
FM
6378 if (BTRFS_I(inode)->generation >= trans->transid &&
6379 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6380 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6381 LOG_INODE_EXISTS, ctx);
410f954c 6382 btrfs_add_delayed_iput(inode);
b8aa330d
FM
6383 if (ret)
6384 return ret;
6385
6386 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6387 break;
6388
6389 search_key.type = BTRFS_INODE_REF_KEY;
6390 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6391 if (ret < 0)
6392 return ret;
6393
6394 leaf = path->nodes[0];
6395 slot = path->slots[0];
6396 if (slot >= btrfs_header_nritems(leaf)) {
6397 ret = btrfs_next_leaf(root, path);
6398 if (ret < 0)
6399 return ret;
6400 else if (ret > 0)
6401 return -ENOENT;
6402 leaf = path->nodes[0];
6403 slot = path->slots[0];
6404 }
6405
6406 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6407 if (found_key.objectid != search_key.objectid ||
6408 found_key.type != BTRFS_INODE_REF_KEY)
6409 return -ENOENT;
6410 }
6411 return 0;
6412}
6413
6414static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6415 struct btrfs_inode *inode,
6416 struct dentry *parent,
6417 struct btrfs_log_ctx *ctx)
6418{
6419 struct btrfs_root *root = inode->root;
b8aa330d
FM
6420 struct dentry *old_parent = NULL;
6421 struct super_block *sb = inode->vfs_inode.i_sb;
6422 int ret = 0;
6423
6424 while (true) {
6425 if (!parent || d_really_is_negative(parent) ||
6426 sb != parent->d_sb)
6427 break;
6428
6429 inode = BTRFS_I(d_inode(parent));
6430 if (root != inode->root)
6431 break;
6432
ab12313a
FM
6433 if (inode->generation >= trans->transid &&
6434 need_log_inode(trans, inode)) {
90d04510 6435 ret = btrfs_log_inode(trans, inode,
48778179 6436 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6437 if (ret)
6438 break;
6439 }
6440 if (IS_ROOT(parent))
6441 break;
6442
6443 parent = dget_parent(parent);
6444 dput(old_parent);
6445 old_parent = parent;
6446 }
6447 dput(old_parent);
6448
6449 return ret;
6450}
6451
6452static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6453 struct btrfs_inode *inode,
6454 struct dentry *parent,
6455 struct btrfs_log_ctx *ctx)
6456{
6457 struct btrfs_root *root = inode->root;
6458 const u64 ino = btrfs_ino(inode);
6459 struct btrfs_path *path;
6460 struct btrfs_key search_key;
6461 int ret;
6462
6463 /*
6464 * For a single hard link case, go through a fast path that does not
6465 * need to iterate the fs/subvolume tree.
6466 */
6467 if (inode->vfs_inode.i_nlink < 2)
6468 return log_new_ancestors_fast(trans, inode, parent, ctx);
6469
6470 path = btrfs_alloc_path();
6471 if (!path)
6472 return -ENOMEM;
6473
6474 search_key.objectid = ino;
6475 search_key.type = BTRFS_INODE_REF_KEY;
6476 search_key.offset = 0;
6477again:
6478 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6479 if (ret < 0)
6480 goto out;
6481 if (ret == 0)
6482 path->slots[0]++;
6483
6484 while (true) {
6485 struct extent_buffer *leaf = path->nodes[0];
6486 int slot = path->slots[0];
6487 struct btrfs_key found_key;
6488
6489 if (slot >= btrfs_header_nritems(leaf)) {
6490 ret = btrfs_next_leaf(root, path);
6491 if (ret < 0)
6492 goto out;
6493 else if (ret > 0)
6494 break;
6495 continue;
6496 }
6497
6498 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6499 if (found_key.objectid != ino ||
6500 found_key.type > BTRFS_INODE_EXTREF_KEY)
6501 break;
6502
6503 /*
6504 * Don't deal with extended references because they are rare
6505 * cases and too complex to deal with (we would need to keep
6506 * track of which subitem we are processing for each item in
6507 * this loop, etc). So just return some error to fallback to
6508 * a transaction commit.
6509 */
6510 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6511 ret = -EMLINK;
6512 goto out;
6513 }
6514
6515 /*
6516 * Logging ancestors needs to do more searches on the fs/subvol
6517 * tree, so it releases the path as needed to avoid deadlocks.
6518 * Keep track of the last inode ref key and resume from that key
6519 * after logging all new ancestors for the current hard link.
6520 */
6521 memcpy(&search_key, &found_key, sizeof(search_key));
6522
6523 ret = log_new_ancestors(trans, root, path, ctx);
6524 if (ret)
6525 goto out;
6526 btrfs_release_path(path);
6527 goto again;
6528 }
6529 ret = 0;
6530out:
6531 btrfs_free_path(path);
6532 return ret;
6533}
6534
e02119d5
CM
6535/*
6536 * helper function around btrfs_log_inode to make sure newly created
6537 * parent directories also end up in the log. A minimal inode and backref
6538 * only logging is done of any parent directories that are older than
6539 * the last committed transaction
6540 */
48a3b636 6541static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6542 struct btrfs_inode *inode,
49dae1bc 6543 struct dentry *parent,
41a1eada 6544 int inode_only,
8b050d35 6545 struct btrfs_log_ctx *ctx)
e02119d5 6546{
f882274b 6547 struct btrfs_root *root = inode->root;
0b246afa 6548 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6549 int ret = 0;
2f2ff0ee 6550 bool log_dentries = false;
12fcfd22 6551
0b246afa 6552 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6553 ret = 1;
6554 goto end_no_trans;
6555 }
6556
f882274b 6557 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6558 ret = 1;
6559 goto end_no_trans;
6560 }
6561
f2d72f42
FM
6562 /*
6563 * Skip already logged inodes or inodes corresponding to tmpfiles
6564 * (since logging them is pointless, a link count of 0 means they
6565 * will never be accessible).
6566 */
626e9f41
FM
6567 if ((btrfs_inode_in_log(inode, trans->transid) &&
6568 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6569 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6570 ret = BTRFS_NO_LOG_SYNC;
6571 goto end_no_trans;
6572 }
6573
8b050d35 6574 ret = start_log_trans(trans, root, ctx);
4a500fd1 6575 if (ret)
e87ac136 6576 goto end_no_trans;
e02119d5 6577
90d04510 6578 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
6579 if (ret)
6580 goto end_trans;
12fcfd22 6581
af4176b4
CM
6582 /*
6583 * for regular files, if its inode is already on disk, we don't
6584 * have to worry about the parents at all. This is because
6585 * we can use the last_unlink_trans field to record renames
6586 * and other fun in this file.
6587 */
19df27a9 6588 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6589 inode->generation < trans->transid &&
6590 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6591 ret = 0;
6592 goto end_trans;
6593 }
af4176b4 6594
289cffcb 6595 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
6596 log_dentries = true;
6597
18aa0922 6598 /*
01327610 6599 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6600 * inodes are fully logged. This is to prevent leaving dangling
6601 * directory index entries in directories that were our parents but are
6602 * not anymore. Not doing this results in old parent directory being
6603 * impossible to delete after log replay (rmdir will always fail with
6604 * error -ENOTEMPTY).
6605 *
6606 * Example 1:
6607 *
6608 * mkdir testdir
6609 * touch testdir/foo
6610 * ln testdir/foo testdir/bar
6611 * sync
6612 * unlink testdir/bar
6613 * xfs_io -c fsync testdir/foo
6614 * <power failure>
6615 * mount fs, triggers log replay
6616 *
6617 * If we don't log the parent directory (testdir), after log replay the
6618 * directory still has an entry pointing to the file inode using the bar
6619 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6620 * the file inode has a link count of 1.
6621 *
6622 * Example 2:
6623 *
6624 * mkdir testdir
6625 * touch foo
6626 * ln foo testdir/foo2
6627 * ln foo testdir/foo3
6628 * sync
6629 * unlink testdir/foo3
6630 * xfs_io -c fsync foo
6631 * <power failure>
6632 * mount fs, triggers log replay
6633 *
6634 * Similar as the first example, after log replay the parent directory
6635 * testdir still has an entry pointing to the inode file with name foo3
6636 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6637 * and has a link count of 2.
6638 */
47d3db41 6639 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6640 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6641 if (ret)
6642 goto end_trans;
6643 }
6644
b8aa330d
FM
6645 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6646 if (ret)
41bd6067 6647 goto end_trans;
76dda93c 6648
2f2ff0ee 6649 if (log_dentries)
b8aa330d 6650 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6651 else
6652 ret = 0;
4a500fd1
YZ
6653end_trans:
6654 if (ret < 0) {
90787766 6655 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6656 ret = 1;
6657 }
8b050d35
MX
6658
6659 if (ret)
6660 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6661 btrfs_end_log_trans(root);
6662end_no_trans:
6663 return ret;
e02119d5
CM
6664}
6665
6666/*
6667 * it is not safe to log dentry if the chunk root has added new
6668 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6669 * If this returns 1, you must commit the transaction to safely get your
6670 * data on disk.
6671 */
6672int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6673 struct dentry *dentry,
8b050d35 6674 struct btrfs_log_ctx *ctx)
e02119d5 6675{
6a912213
JB
6676 struct dentry *parent = dget_parent(dentry);
6677 int ret;
6678
f882274b 6679 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6680 LOG_INODE_ALL, ctx);
6a912213
JB
6681 dput(parent);
6682
6683 return ret;
e02119d5
CM
6684}
6685
6686/*
6687 * should be called during mount to recover any replay any log trees
6688 * from the FS
6689 */
6690int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6691{
6692 int ret;
6693 struct btrfs_path *path;
6694 struct btrfs_trans_handle *trans;
6695 struct btrfs_key key;
6696 struct btrfs_key found_key;
e02119d5
CM
6697 struct btrfs_root *log;
6698 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6699 struct walk_control wc = {
6700 .process_func = process_one_buffer,
430a6626 6701 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6702 };
6703
e02119d5 6704 path = btrfs_alloc_path();
db5b493a
TI
6705 if (!path)
6706 return -ENOMEM;
6707
afcdd129 6708 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6709
4a500fd1 6710 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6711 if (IS_ERR(trans)) {
6712 ret = PTR_ERR(trans);
6713 goto error;
6714 }
e02119d5
CM
6715
6716 wc.trans = trans;
6717 wc.pin = 1;
6718
db5b493a 6719 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6720 if (ret) {
ba51e2a1 6721 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6722 goto error;
6723 }
e02119d5
CM
6724
6725again:
6726 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6727 key.offset = (u64)-1;
962a298f 6728 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6729
d397712b 6730 while (1) {
e02119d5 6731 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6732
6733 if (ret < 0) {
ba51e2a1 6734 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6735 goto error;
6736 }
e02119d5
CM
6737 if (ret > 0) {
6738 if (path->slots[0] == 0)
6739 break;
6740 path->slots[0]--;
6741 }
6742 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6743 path->slots[0]);
b3b4aa74 6744 btrfs_release_path(path);
e02119d5
CM
6745 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6746 break;
6747
62a2c73e 6748 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6749 if (IS_ERR(log)) {
6750 ret = PTR_ERR(log);
ba51e2a1 6751 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6752 goto error;
6753 }
e02119d5 6754
56e9357a
DS
6755 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6756 true);
79787eaa
JM
6757 if (IS_ERR(wc.replay_dest)) {
6758 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6759
6760 /*
6761 * We didn't find the subvol, likely because it was
6762 * deleted. This is ok, simply skip this log and go to
6763 * the next one.
6764 *
6765 * We need to exclude the root because we can't have
6766 * other log replays overwriting this log as we'll read
6767 * it back in a few more times. This will keep our
6768 * block from being modified, and we'll just bail for
6769 * each subsequent pass.
6770 */
6771 if (ret == -ENOENT)
9fce5704 6772 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6773 log->node->start,
6774 log->node->len);
00246528 6775 btrfs_put_root(log);
9bc574de
JB
6776
6777 if (!ret)
6778 goto next;
ba51e2a1 6779 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6780 goto error;
6781 }
e02119d5 6782
07d400a6 6783 wc.replay_dest->log_root = log;
2002ae11
JB
6784 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6785 if (ret)
6786 /* The loop needs to continue due to the root refs */
ba51e2a1 6787 btrfs_abort_transaction(trans, ret);
2002ae11
JB
6788 else
6789 ret = walk_log_tree(trans, log, &wc);
e02119d5 6790
b50c6e25 6791 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6792 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6793 path);
ba51e2a1
JB
6794 if (ret)
6795 btrfs_abort_transaction(trans, ret);
e02119d5
CM
6796 }
6797
900c9981
LB
6798 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6799 struct btrfs_root *root = wc.replay_dest;
6800
6801 btrfs_release_path(path);
6802
6803 /*
6804 * We have just replayed everything, and the highest
6805 * objectid of fs roots probably has changed in case
6806 * some inode_item's got replayed.
6807 *
6808 * root->objectid_mutex is not acquired as log replay
6809 * could only happen during mount.
6810 */
453e4873 6811 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
6812 if (ret)
6813 btrfs_abort_transaction(trans, ret);
900c9981
LB
6814 }
6815
07d400a6 6816 wc.replay_dest->log_root = NULL;
00246528 6817 btrfs_put_root(wc.replay_dest);
00246528 6818 btrfs_put_root(log);
e02119d5 6819
b50c6e25
JB
6820 if (ret)
6821 goto error;
9bc574de 6822next:
e02119d5
CM
6823 if (found_key.offset == 0)
6824 break;
9bc574de 6825 key.offset = found_key.offset - 1;
e02119d5 6826 }
b3b4aa74 6827 btrfs_release_path(path);
e02119d5
CM
6828
6829 /* step one is to pin it all, step two is to replay just inodes */
6830 if (wc.pin) {
6831 wc.pin = 0;
6832 wc.process_func = replay_one_buffer;
6833 wc.stage = LOG_WALK_REPLAY_INODES;
6834 goto again;
6835 }
6836 /* step three is to replay everything */
6837 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6838 wc.stage++;
6839 goto again;
6840 }
6841
6842 btrfs_free_path(path);
6843
abefa55a 6844 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6845 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6846 if (ret)
6847 return ret;
6848
e02119d5 6849 log_root_tree->log_root = NULL;
afcdd129 6850 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6851 btrfs_put_root(log_root_tree);
79787eaa 6852
abefa55a 6853 return 0;
79787eaa 6854error:
b50c6e25 6855 if (wc.trans)
3a45bb20 6856 btrfs_end_transaction(wc.trans);
1aeb6b56 6857 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6858 btrfs_free_path(path);
6859 return ret;
e02119d5 6860}
12fcfd22
CM
6861
6862/*
6863 * there are some corner cases where we want to force a full
6864 * commit instead of allowing a directory to be logged.
6865 *
6866 * They revolve around files there were unlinked from the directory, and
6867 * this function updates the parent directory so that a full commit is
6868 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6869 *
6870 * Must be called before the unlink operations (updates to the subvolume tree,
6871 * inodes, etc) are done.
12fcfd22
CM
6872 */
6873void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6874 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6875 int for_rename)
6876{
af4176b4
CM
6877 /*
6878 * when we're logging a file, if it hasn't been renamed
6879 * or unlinked, and its inode is fully committed on disk,
6880 * we don't have to worry about walking up the directory chain
6881 * to log its parents.
6882 *
6883 * So, we use the last_unlink_trans field to put this transid
6884 * into the file. When the file is logged we check it and
6885 * don't log the parents if the file is fully on disk.
6886 */
4176bdbf
NB
6887 mutex_lock(&inode->log_mutex);
6888 inode->last_unlink_trans = trans->transid;
6889 mutex_unlock(&inode->log_mutex);
af4176b4 6890
12fcfd22
CM
6891 /*
6892 * if this directory was already logged any new
6893 * names for this file/dir will get recorded
6894 */
4176bdbf 6895 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6896 return;
6897
6898 /*
6899 * if the inode we're about to unlink was logged,
6900 * the log will be properly updated for any new names
6901 */
4176bdbf 6902 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6903 return;
6904
6905 /*
6906 * when renaming files across directories, if the directory
6907 * there we're unlinking from gets fsync'd later on, there's
6908 * no way to find the destination directory later and fsync it
6909 * properly. So, we have to be conservative and force commits
6910 * so the new name gets discovered.
6911 */
6912 if (for_rename)
6913 goto record;
6914
6915 /* we can safely do the unlink without any special recording */
6916 return;
6917
6918record:
4176bdbf
NB
6919 mutex_lock(&dir->log_mutex);
6920 dir->last_unlink_trans = trans->transid;
6921 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6922}
6923
6924/*
6925 * Make sure that if someone attempts to fsync the parent directory of a deleted
6926 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6927 * that after replaying the log tree of the parent directory's root we will not
6928 * see the snapshot anymore and at log replay time we will not see any log tree
6929 * corresponding to the deleted snapshot's root, which could lead to replaying
6930 * it after replaying the log tree of the parent directory (which would replay
6931 * the snapshot delete operation).
2be63d5c
FM
6932 *
6933 * Must be called before the actual snapshot destroy operation (updates to the
6934 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6935 */
6936void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6937 struct btrfs_inode *dir)
1ec9a1ae 6938{
43663557
NB
6939 mutex_lock(&dir->log_mutex);
6940 dir->last_unlink_trans = trans->transid;
6941 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6942}
6943
d5f5bd54
FM
6944/**
6945 * Update the log after adding a new name for an inode.
6946 *
6947 * @trans: Transaction handle.
6948 * @old_dentry: The dentry associated with the old name and the old
6949 * parent directory.
6950 * @old_dir: The inode of the previous parent directory for the case
6951 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
6952 * @old_dir_index: The index number associated with the old name, meaningful
6953 * only for rename operations (when @old_dir is not NULL).
6954 * Ignored for link operations.
d5f5bd54
FM
6955 * @parent: The dentry associated with the directory under which the
6956 * new name is located.
6957 *
6958 * Call this after adding a new name for an inode, as a result of a link or
6959 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 6960 */
75b463d2 6961void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 6962 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 6963 u64 old_dir_index, struct dentry *parent)
12fcfd22 6964{
d5f5bd54 6965 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 6966 struct btrfs_root *root = inode->root;
75b463d2 6967 struct btrfs_log_ctx ctx;
259c4b96 6968 bool log_pinned = false;
0f8ce498 6969 int ret;
12fcfd22 6970
af4176b4
CM
6971 /*
6972 * this will force the logging code to walk the dentry chain
6973 * up for the file
6974 */
9a6509c4 6975 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6976 inode->last_unlink_trans = trans->transid;
af4176b4 6977
12fcfd22
CM
6978 /*
6979 * if this inode hasn't been logged and directory we're renaming it
6980 * from hasn't been logged, we don't need to log it
6981 */
0f8ce498
FM
6982 ret = inode_logged(trans, inode, NULL);
6983 if (ret < 0) {
6984 goto out;
6985 } else if (ret == 0) {
6986 if (!old_dir)
6987 return;
6988 /*
6989 * If the inode was not logged and we are doing a rename (old_dir is not
6990 * NULL), check if old_dir was logged - if it was not we can return and
6991 * do nothing.
6992 */
6993 ret = inode_logged(trans, old_dir, NULL);
6994 if (ret < 0)
6995 goto out;
6996 else if (ret == 0)
6997 return;
6998 }
6999 ret = 0;
12fcfd22 7000
54a40fc3
FM
7001 /*
7002 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7003 * was previously logged, make sure that on log replay we get the old
7004 * dir entry deleted. This is needed because we will also log the new
7005 * name of the renamed inode, so we need to make sure that after log
7006 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7007 */
88d2beec
FM
7008 if (old_dir && old_dir->logged_trans == trans->transid) {
7009 struct btrfs_root *log = old_dir->root->log_root;
7010 struct btrfs_path *path;
88d2beec
FM
7011
7012 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7013
259c4b96
FM
7014 /*
7015 * We have two inodes to update in the log, the old directory and
7016 * the inode that got renamed, so we must pin the log to prevent
7017 * anyone from syncing the log until we have updated both inodes
7018 * in the log.
7019 */
7020 log_pinned = true;
7021 btrfs_pin_log_trans(root);
7022
88d2beec
FM
7023 path = btrfs_alloc_path();
7024 if (!path) {
259c4b96
FM
7025 ret = -ENOMEM;
7026 goto out;
88d2beec
FM
7027 }
7028
7029 /*
7030 * Other concurrent task might be logging the old directory,
7031 * as it can be triggered when logging other inode that had or
7032 * still has a dentry in the old directory. So take the old
7033 * directory's log_mutex to prevent getting an -EEXIST when
7034 * logging a key to record the deletion, or having that other
7035 * task logging the old directory get an -EEXIST if it attempts
7036 * to log the same key after we just did it. In both cases that
7037 * would result in falling back to a transaction commit.
7038 */
7039 mutex_lock(&old_dir->log_mutex);
7040 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7041 old_dentry->d_name.name,
7042 old_dentry->d_name.len, old_dir_index);
7043 if (ret > 0) {
7044 /*
7045 * The dentry does not exist in the log, so record its
7046 * deletion.
7047 */
7048 btrfs_release_path(path);
7049 ret = insert_dir_log_key(trans, log, path,
7050 btrfs_ino(old_dir),
7051 old_dir_index, old_dir_index);
7052 }
7053 mutex_unlock(&old_dir->log_mutex);
7054
7055 btrfs_free_path(path);
259c4b96
FM
7056 if (ret < 0)
7057 goto out;
88d2beec 7058 }
54a40fc3 7059
75b463d2
FM
7060 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7061 ctx.logging_new_name = true;
7062 /*
7063 * We don't care about the return value. If we fail to log the new name
7064 * then we know the next attempt to sync the log will fallback to a full
7065 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7066 * we don't need to worry about getting a log committed that has an
7067 * inconsistent state after a rename operation.
7068 */
48778179 7069 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
259c4b96 7070out:
0f8ce498
FM
7071 /*
7072 * If an error happened mark the log for a full commit because it's not
7073 * consistent and up to date or we couldn't find out if one of the
7074 * inodes was logged before in this transaction. Do it before unpinning
7075 * the log, to avoid any races with someone else trying to commit it.
7076 */
7077 if (ret < 0)
7078 btrfs_set_log_full_commit(trans);
7079 if (log_pinned)
259c4b96 7080 btrfs_end_log_trans(root);
12fcfd22
CM
7081}
7082