btrfs: handle ENOENT in btrfs_uuid_tree_iterate
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
900c9981 20#include "inode-map.h"
e02119d5
CM
21
22/* magic values for the inode_only field in btrfs_log_inode:
23 *
24 * LOG_INODE_ALL means to log everything
25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
26 * during log replay
27 */
e13976cf
DS
28enum {
29 LOG_INODE_ALL,
30 LOG_INODE_EXISTS,
31 LOG_OTHER_INODE,
32 LOG_OTHER_INODE_ALL,
33};
e02119d5 34
12fcfd22
CM
35/*
36 * directory trouble cases
37 *
38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39 * log, we must force a full commit before doing an fsync of the directory
40 * where the unlink was done.
41 * ---> record transid of last unlink/rename per directory
42 *
43 * mkdir foo/some_dir
44 * normal commit
45 * rename foo/some_dir foo2/some_dir
46 * mkdir foo/some_dir
47 * fsync foo/some_dir/some_file
48 *
49 * The fsync above will unlink the original some_dir without recording
50 * it in its new location (foo2). After a crash, some_dir will be gone
51 * unless the fsync of some_file forces a full commit
52 *
53 * 2) we must log any new names for any file or dir that is in the fsync
54 * log. ---> check inode while renaming/linking.
55 *
56 * 2a) we must log any new names for any file or dir during rename
57 * when the directory they are being removed from was logged.
58 * ---> check inode and old parent dir during rename
59 *
60 * 2a is actually the more important variant. With the extra logging
61 * a crash might unlink the old name without recreating the new one
62 *
63 * 3) after a crash, we must go through any directories with a link count
64 * of zero and redo the rm -rf
65 *
66 * mkdir f1/foo
67 * normal commit
68 * rm -rf f1/foo
69 * fsync(f1)
70 *
71 * The directory f1 was fully removed from the FS, but fsync was never
72 * called on f1, only its parent dir. After a crash the rm -rf must
73 * be replayed. This must be able to recurse down the entire
74 * directory tree. The inode link count fixup code takes care of the
75 * ugly details.
76 */
77
e02119d5
CM
78/*
79 * stages for the tree walking. The first
80 * stage (0) is to only pin down the blocks we find
81 * the second stage (1) is to make sure that all the inodes
82 * we find in the log are created in the subvolume.
83 *
84 * The last stage is to deal with directories and links and extents
85 * and all the other fun semantics
86 */
e13976cf
DS
87enum {
88 LOG_WALK_PIN_ONLY,
89 LOG_WALK_REPLAY_INODES,
90 LOG_WALK_REPLAY_DIR_INDEX,
91 LOG_WALK_REPLAY_ALL,
92};
e02119d5 93
12fcfd22 94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 95 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
96 int inode_only,
97 const loff_t start,
8407f553
FM
98 const loff_t end,
99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
e02119d5
CM
108
109/*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
e02119d5
CM
132/*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
e02119d5 140{
0b246afa 141 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 142 int ret = 0;
7237f183
YZ
143
144 mutex_lock(&root->log_mutex);
34eb2a52 145
7237f183 146 if (root->log_root) {
4884b8e8 147 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
148 ret = -EAGAIN;
149 goto out;
150 }
34eb2a52 151
ff782e0a 152 if (!root->log_start_pid) {
27cdeb70 153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 154 root->log_start_pid = current->pid;
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 157 }
34eb2a52 158 } else {
0b246afa
JM
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
163 if (ret)
164 goto out;
ff782e0a 165
e02119d5 166 ret = btrfs_add_log_tree(trans, root);
4a500fd1 167 if (ret)
e87ac136 168 goto out;
34eb2a52
Z
169
170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 root->log_start_pid = current->pid;
e02119d5 172 }
34eb2a52 173
2ecb7923 174 atomic_inc(&root->log_batch);
7237f183 175 atomic_inc(&root->log_writers);
8b050d35 176 if (ctx) {
34eb2a52 177 int index = root->log_transid % 2;
8b050d35 178 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 179 ctx->log_transid = root->log_transid;
8b050d35 180 }
34eb2a52 181
e87ac136 182out:
7237f183 183 mutex_unlock(&root->log_mutex);
e87ac136 184 return ret;
e02119d5
CM
185}
186
187/*
188 * returns 0 if there was a log transaction running and we were able
189 * to join, or returns -ENOENT if there were not transactions
190 * in progress
191 */
192static int join_running_log_trans(struct btrfs_root *root)
193{
194 int ret = -ENOENT;
195
7237f183 196 mutex_lock(&root->log_mutex);
e02119d5
CM
197 if (root->log_root) {
198 ret = 0;
7237f183 199 atomic_inc(&root->log_writers);
e02119d5 200 }
7237f183 201 mutex_unlock(&root->log_mutex);
e02119d5
CM
202 return ret;
203}
204
12fcfd22
CM
205/*
206 * This either makes the current running log transaction wait
207 * until you call btrfs_end_log_trans() or it makes any future
208 * log transactions wait until you call btrfs_end_log_trans()
209 */
45128b08 210void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 211{
12fcfd22
CM
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
12fcfd22
CM
215}
216
e02119d5
CM
217/*
218 * indicate we're done making changes to the log tree
219 * and wake up anyone waiting to do a sync
220 */
143bede5 221void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 222{
7237f183 223 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
224 /* atomic_dec_and_test implies a barrier */
225 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 226 }
e02119d5
CM
227}
228
247462a5
DS
229static int btrfs_write_tree_block(struct extent_buffer *buf)
230{
231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 buf->start + buf->len - 1);
233}
234
235static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236{
237 filemap_fdatawait_range(buf->pages[0]->mapping,
238 buf->start, buf->start + buf->len - 1);
239}
e02119d5
CM
240
241/*
242 * the walk control struct is used to pass state down the chain when
243 * processing the log tree. The stage field tells us which part
244 * of the log tree processing we are currently doing. The others
245 * are state fields used for that specific part
246 */
247struct walk_control {
248 /* should we free the extent on disk when done? This is used
249 * at transaction commit time while freeing a log tree
250 */
251 int free;
252
253 /* should we write out the extent buffer? This is used
254 * while flushing the log tree to disk during a sync
255 */
256 int write;
257
258 /* should we wait for the extent buffer io to finish? Also used
259 * while flushing the log tree to disk for a sync
260 */
261 int wait;
262
263 /* pin only walk, we record which extents on disk belong to the
264 * log trees
265 */
266 int pin;
267
268 /* what stage of the replay code we're currently in */
269 int stage;
270
f2d72f42
FM
271 /*
272 * Ignore any items from the inode currently being processed. Needs
273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 * the LOG_WALK_REPLAY_INODES stage.
275 */
276 bool ignore_cur_inode;
277
e02119d5
CM
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 290 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
581c1760 298 struct walk_control *wc, u64 gen, int level)
e02119d5 299{
0b246afa 300 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
301 int ret = 0;
302
8c2a1a30
JB
303 /*
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
306 */
0b246afa 307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 308 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
309 if (ret)
310 return ret;
311 }
312
04018de5 313 if (wc->pin)
2ff7e61e
JM
314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 eb->len);
e02119d5 316
b50c6e25 317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 318 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 319 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
320 if (wc->write)
321 btrfs_write_tree_block(eb);
322 if (wc->wait)
323 btrfs_wait_tree_block_writeback(eb);
324 }
b50c6e25 325 return ret;
e02119d5
CM
326}
327
328/*
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
331 *
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
335 *
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
339 *
340 * If the key isn't in the destination yet, a new item is inserted.
341 */
342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root,
344 struct btrfs_path *path,
345 struct extent_buffer *eb, int slot,
346 struct btrfs_key *key)
347{
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
4bc4bee4 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
365 if (ret < 0)
366 return ret;
367
e02119d5
CM
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
b3b4aa74 377 btrfs_release_path(path);
e02119d5
CM
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 382 if (!dst_copy || !src_copy) {
b3b4aa74 383 btrfs_release_path(path);
2a29edc6 384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
e02119d5
CM
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
b3b4aa74 405 btrfs_release_path(path);
e02119d5
CM
406 return 0;
407 }
408
4bc4bee4
JB
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
d555438b 436 u32 mode;
4bc4bee4
JB
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
453 }
454insert:
b3b4aa74 455 btrfs_release_path(path);
e02119d5 456 /* try to insert the key into the destination tree */
df8d116f 457 path->skip_release_on_error = 1;
e02119d5
CM
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
df8d116f 460 path->skip_release_on_error = 0;
e02119d5
CM
461
462 /* make sure any existing item is the correct size */
df8d116f 463 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
143bede5 467 if (found_size > item_size)
78ac4f9e 468 btrfs_truncate_item(path, item_size, 1);
143bede5 469 else if (found_size < item_size)
c71dd880 470 btrfs_extend_item(path, item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 495 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 496
2f2ff0ee
FM
497 /*
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
503 */
1a4bcf47 504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
1a4bcf47 507 struct btrfs_map_token token;
1a4bcf47 508
c82f823c 509 btrfs_init_map_token(&token, dst_eb);
1a4bcf47
FM
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
512 }
e02119d5 513 goto no_copy;
1a4bcf47 514 }
e02119d5
CM
515
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
522 }
523 }
524
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
527
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 }
533
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
541 }
542 }
543no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 545 btrfs_release_path(path);
e02119d5
CM
546 return 0;
547}
548
549/*
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
552 */
553static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
555{
5d4f98a2 556 struct btrfs_key key;
e02119d5 557 struct inode *inode;
e02119d5 558
5d4f98a2
YZ
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
4c66e0d4 562 inode = btrfs_iget(root->fs_info->sb, &key, root);
2e19f1f9 563 if (IS_ERR(inode))
5d4f98a2 564 inode = NULL;
e02119d5
CM
565 return inode;
566}
567
568/* replays a single extent in 'eb' at 'slot' with 'key' into the
569 * subvolume 'root'. path is released on entry and should be released
570 * on exit.
571 *
572 * extents in the log tree have not been allocated out of the extent
573 * tree yet. So, this completes the allocation, taking a reference
574 * as required if the extent already exists or creating a new extent
575 * if it isn't in the extent allocation tree yet.
576 *
577 * The extent is inserted into the file, dropping any existing extents
578 * from the file that overlap the new one.
579 */
580static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 struct extent_buffer *eb, int slot,
584 struct btrfs_key *key)
585{
0b246afa 586 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 587 int found_type;
e02119d5 588 u64 extent_end;
e02119d5 589 u64 start = key->offset;
4bc4bee4 590 u64 nbytes = 0;
e02119d5
CM
591 struct btrfs_file_extent_item *item;
592 struct inode *inode = NULL;
593 unsigned long size;
594 int ret = 0;
595
596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 found_type = btrfs_file_extent_type(eb, item);
598
d899e052 599 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
600 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 nbytes = btrfs_file_extent_num_bytes(eb, item);
602 extent_end = start + nbytes;
603
604 /*
605 * We don't add to the inodes nbytes if we are prealloc or a
606 * hole.
607 */
608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 nbytes = 0;
610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 611 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 612 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 613 extent_end = ALIGN(start + size,
0b246afa 614 fs_info->sectorsize);
e02119d5
CM
615 } else {
616 ret = 0;
617 goto out;
618 }
619
620 inode = read_one_inode(root, key->objectid);
621 if (!inode) {
622 ret = -EIO;
623 goto out;
624 }
625
626 /*
627 * first check to see if we already have this extent in the
628 * file. This must be done before the btrfs_drop_extents run
629 * so we don't try to drop this extent.
630 */
f85b7379
DS
631 ret = btrfs_lookup_file_extent(trans, root, path,
632 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 633
d899e052
YZ
634 if (ret == 0 &&
635 (found_type == BTRFS_FILE_EXTENT_REG ||
636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
637 struct btrfs_file_extent_item cmp1;
638 struct btrfs_file_extent_item cmp2;
639 struct btrfs_file_extent_item *existing;
640 struct extent_buffer *leaf;
641
642 leaf = path->nodes[0];
643 existing = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_file_extent_item);
645
646 read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 sizeof(cmp1));
648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 sizeof(cmp2));
650
651 /*
652 * we already have a pointer to this exact extent,
653 * we don't have to do anything
654 */
655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 656 btrfs_release_path(path);
e02119d5
CM
657 goto out;
658 }
659 }
b3b4aa74 660 btrfs_release_path(path);
e02119d5
CM
661
662 /* drop any overlapping extents */
2671485d 663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
664 if (ret)
665 goto out;
e02119d5 666
07d400a6
YZ
667 if (found_type == BTRFS_FILE_EXTENT_REG ||
668 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 669 u64 offset;
07d400a6
YZ
670 unsigned long dest_offset;
671 struct btrfs_key ins;
672
3168021c
FM
673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 btrfs_fs_incompat(fs_info, NO_HOLES))
675 goto update_inode;
676
07d400a6
YZ
677 ret = btrfs_insert_empty_item(trans, root, path, key,
678 sizeof(*item));
3650860b
JB
679 if (ret)
680 goto out;
07d400a6
YZ
681 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 path->slots[0]);
683 copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 (unsigned long)item, sizeof(*item));
685
686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 689 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 690
df2c95f3
QW
691 /*
692 * Manually record dirty extent, as here we did a shallow
693 * file extent item copy and skip normal backref update,
694 * but modifying extent tree all by ourselves.
695 * So need to manually record dirty extent for qgroup,
696 * as the owner of the file extent changed from log tree
697 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 */
a95f3aaf 699 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
700 btrfs_file_extent_disk_bytenr(eb, item),
701 btrfs_file_extent_disk_num_bytes(eb, item),
702 GFP_NOFS);
703 if (ret < 0)
704 goto out;
705
07d400a6 706 if (ins.objectid > 0) {
82fa113f 707 struct btrfs_ref ref = { 0 };
07d400a6
YZ
708 u64 csum_start;
709 u64 csum_end;
710 LIST_HEAD(ordered_sums);
82fa113f 711
07d400a6
YZ
712 /*
713 * is this extent already allocated in the extent
714 * allocation tree? If so, just add a reference
715 */
2ff7e61e 716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
717 ins.offset);
718 if (ret == 0) {
82fa113f
QW
719 btrfs_init_generic_ref(&ref,
720 BTRFS_ADD_DELAYED_REF,
721 ins.objectid, ins.offset, 0);
722 btrfs_init_data_ref(&ref,
723 root->root_key.objectid,
b06c4bf5 724 key->objectid, offset);
82fa113f 725 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
726 if (ret)
727 goto out;
07d400a6
YZ
728 } else {
729 /*
730 * insert the extent pointer in the extent
731 * allocation tree
732 */
5d4f98a2 733 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 734 root->root_key.objectid,
5d4f98a2 735 key->objectid, offset, &ins);
b50c6e25
JB
736 if (ret)
737 goto out;
07d400a6 738 }
b3b4aa74 739 btrfs_release_path(path);
07d400a6
YZ
740
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
749 }
750
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
a2de733c 753 &ordered_sums, 0);
3650860b
JB
754 if (ret)
755 goto out;
b84b8390
FM
756 /*
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
768 *
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
772 *
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
776 *
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 *
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
786 *
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 *
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
794 *
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 *
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
804 */
07d400a6
YZ
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
b84b8390 810 if (!ret)
40e046ac
FM
811 ret = btrfs_del_csums(trans,
812 fs_info->csum_root,
5b4aacef
JM
813 sums->bytenr,
814 sums->len);
3650860b
JB
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
0b246afa 817 fs_info->csum_root, sums);
07d400a6
YZ
818 list_del(&sums->list);
819 kfree(sums);
820 }
3650860b
JB
821 if (ret)
822 goto out;
07d400a6 823 } else {
b3b4aa74 824 btrfs_release_path(path);
07d400a6
YZ
825 }
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
829 if (ret)
830 goto out;
07d400a6 831 }
e02119d5 832
4bc4bee4 833 inode_add_bytes(inode, nbytes);
3168021c 834update_inode:
b9959295 835 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
836out:
837 if (inode)
838 iput(inode);
839 return ret;
840}
841
842/*
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
846 *
847 * This is a helper function to do the unlink of a specific directory
848 * item
849 */
850static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
207e7d92 853 struct btrfs_inode *dir,
e02119d5
CM
854 struct btrfs_dir_item *di)
855{
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
862
863 leaf = path->nodes[0];
864
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 868 if (!name)
869 return -ENOMEM;
870
e02119d5 871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 872 btrfs_release_path(path);
e02119d5
CM
873
874 inode = read_one_inode(root, location.objectid);
c00e9493 875 if (!inode) {
3650860b
JB
876 ret = -EIO;
877 goto out;
c00e9493 878 }
e02119d5 879
ec051c0f 880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
881 if (ret)
882 goto out;
12fcfd22 883
207e7d92
NB
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
3650860b
JB
886 if (ret)
887 goto out;
ada9af21 888 else
e5c304e6 889 ret = btrfs_run_delayed_items(trans);
3650860b 890out:
e02119d5 891 kfree(name);
e02119d5
CM
892 iput(inode);
893 return ret;
894}
895
896/*
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
900 */
901static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
905{
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
909
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
b3b4aa74 918 btrfs_release_path(path);
e02119d5
CM
919
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928out:
b3b4aa74 929 btrfs_release_path(path);
e02119d5
CM
930 return match;
931}
932
933/*
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
937 *
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
942 */
943static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
f186373f 945 u64 ref_objectid,
df8d116f 946 const char *name, int namelen)
e02119d5
CM
947{
948 struct btrfs_path *path;
e02119d5 949 int ret;
e02119d5
CM
950
951 path = btrfs_alloc_path();
2a29edc6 952 if (!path)
953 return -ENOMEM;
954
e02119d5 955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
956 if (ret < 0) {
957 goto out;
958 } else if (ret == 1) {
89cbf5f6 959 ret = 0;
f186373f
MF
960 goto out;
961 }
962
89cbf5f6
NB
963 if (key->type == BTRFS_INODE_EXTREF_KEY)
964 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
965 path->slots[0],
966 ref_objectid,
967 name, namelen);
968 else
969 ret = !!btrfs_find_name_in_backref(path->nodes[0],
970 path->slots[0],
971 name, namelen);
e02119d5
CM
972out:
973 btrfs_free_path(path);
89cbf5f6 974 return ret;
e02119d5
CM
975}
976
5a1d7843 977static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 978 struct btrfs_root *root,
e02119d5 979 struct btrfs_path *path,
5a1d7843 980 struct btrfs_root *log_root,
94c91a1f
NB
981 struct btrfs_inode *dir,
982 struct btrfs_inode *inode,
f186373f
MF
983 u64 inode_objectid, u64 parent_objectid,
984 u64 ref_index, char *name, int namelen,
985 int *search_done)
e02119d5 986{
34f3e4f2 987 int ret;
f186373f
MF
988 char *victim_name;
989 int victim_name_len;
990 struct extent_buffer *leaf;
5a1d7843 991 struct btrfs_dir_item *di;
f186373f
MF
992 struct btrfs_key search_key;
993 struct btrfs_inode_extref *extref;
c622ae60 994
f186373f
MF
995again:
996 /* Search old style refs */
997 search_key.objectid = inode_objectid;
998 search_key.type = BTRFS_INODE_REF_KEY;
999 search_key.offset = parent_objectid;
1000 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1001 if (ret == 0) {
e02119d5
CM
1002 struct btrfs_inode_ref *victim_ref;
1003 unsigned long ptr;
1004 unsigned long ptr_end;
f186373f
MF
1005
1006 leaf = path->nodes[0];
e02119d5
CM
1007
1008 /* are we trying to overwrite a back ref for the root directory
1009 * if so, just jump out, we're done
1010 */
f186373f 1011 if (search_key.objectid == search_key.offset)
5a1d7843 1012 return 1;
e02119d5
CM
1013
1014 /* check all the names in this back reference to see
1015 * if they are in the log. if so, we allow them to stay
1016 * otherwise they must be unlinked as a conflict
1017 */
1018 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1019 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1020 while (ptr < ptr_end) {
e02119d5
CM
1021 victim_ref = (struct btrfs_inode_ref *)ptr;
1022 victim_name_len = btrfs_inode_ref_name_len(leaf,
1023 victim_ref);
1024 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1025 if (!victim_name)
1026 return -ENOMEM;
e02119d5
CM
1027
1028 read_extent_buffer(leaf, victim_name,
1029 (unsigned long)(victim_ref + 1),
1030 victim_name_len);
1031
d3316c82
NB
1032 ret = backref_in_log(log_root, &search_key,
1033 parent_objectid, victim_name,
1034 victim_name_len);
1035 if (ret < 0) {
1036 kfree(victim_name);
1037 return ret;
1038 } else if (!ret) {
94c91a1f 1039 inc_nlink(&inode->vfs_inode);
b3b4aa74 1040 btrfs_release_path(path);
12fcfd22 1041
94c91a1f 1042 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1043 victim_name, victim_name_len);
f186373f 1044 kfree(victim_name);
3650860b
JB
1045 if (ret)
1046 return ret;
e5c304e6 1047 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1048 if (ret)
1049 return ret;
f186373f
MF
1050 *search_done = 1;
1051 goto again;
e02119d5
CM
1052 }
1053 kfree(victim_name);
f186373f 1054
e02119d5
CM
1055 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1056 }
e02119d5 1057
c622ae60 1058 /*
1059 * NOTE: we have searched root tree and checked the
bb7ab3b9 1060 * corresponding ref, it does not need to check again.
c622ae60 1061 */
5a1d7843 1062 *search_done = 1;
e02119d5 1063 }
b3b4aa74 1064 btrfs_release_path(path);
e02119d5 1065
f186373f
MF
1066 /* Same search but for extended refs */
1067 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1068 inode_objectid, parent_objectid, 0,
1069 0);
1070 if (!IS_ERR_OR_NULL(extref)) {
1071 u32 item_size;
1072 u32 cur_offset = 0;
1073 unsigned long base;
1074 struct inode *victim_parent;
1075
1076 leaf = path->nodes[0];
1077
1078 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1079 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1080
1081 while (cur_offset < item_size) {
dd9ef135 1082 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1083
1084 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1085
1086 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1087 goto next;
1088
1089 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1090 if (!victim_name)
1091 return -ENOMEM;
f186373f
MF
1092 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1093 victim_name_len);
1094
1095 search_key.objectid = inode_objectid;
1096 search_key.type = BTRFS_INODE_EXTREF_KEY;
1097 search_key.offset = btrfs_extref_hash(parent_objectid,
1098 victim_name,
1099 victim_name_len);
d3316c82
NB
1100 ret = backref_in_log(log_root, &search_key,
1101 parent_objectid, victim_name,
1102 victim_name_len);
1103 if (ret < 0) {
1104 return ret;
1105 } else if (!ret) {
f186373f
MF
1106 ret = -ENOENT;
1107 victim_parent = read_one_inode(root,
94c91a1f 1108 parent_objectid);
f186373f 1109 if (victim_parent) {
94c91a1f 1110 inc_nlink(&inode->vfs_inode);
f186373f
MF
1111 btrfs_release_path(path);
1112
1113 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1114 BTRFS_I(victim_parent),
94c91a1f 1115 inode,
4ec5934e
NB
1116 victim_name,
1117 victim_name_len);
ada9af21
FDBM
1118 if (!ret)
1119 ret = btrfs_run_delayed_items(
e5c304e6 1120 trans);
f186373f 1121 }
f186373f
MF
1122 iput(victim_parent);
1123 kfree(victim_name);
3650860b
JB
1124 if (ret)
1125 return ret;
f186373f
MF
1126 *search_done = 1;
1127 goto again;
1128 }
1129 kfree(victim_name);
f186373f
MF
1130next:
1131 cur_offset += victim_name_len + sizeof(*extref);
1132 }
1133 *search_done = 1;
1134 }
1135 btrfs_release_path(path);
1136
34f3e4f2 1137 /* look for a conflicting sequence number */
94c91a1f 1138 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1139 ref_index, name, namelen, 0);
34f3e4f2 1140 if (di && !IS_ERR(di)) {
94c91a1f 1141 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1142 if (ret)
1143 return ret;
34f3e4f2 1144 }
1145 btrfs_release_path(path);
1146
52042d8e 1147 /* look for a conflicting name */
94c91a1f 1148 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1149 name, namelen, 0);
1150 if (di && !IS_ERR(di)) {
94c91a1f 1151 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1152 if (ret)
1153 return ret;
34f3e4f2 1154 }
1155 btrfs_release_path(path);
1156
5a1d7843
JS
1157 return 0;
1158}
e02119d5 1159
bae15d95
QW
1160static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 u32 *namelen, char **name, u64 *index,
1162 u64 *parent_objectid)
f186373f
MF
1163{
1164 struct btrfs_inode_extref *extref;
1165
1166 extref = (struct btrfs_inode_extref *)ref_ptr;
1167
1168 *namelen = btrfs_inode_extref_name_len(eb, extref);
1169 *name = kmalloc(*namelen, GFP_NOFS);
1170 if (*name == NULL)
1171 return -ENOMEM;
1172
1173 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174 *namelen);
1175
1f250e92
FM
1176 if (index)
1177 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1178 if (parent_objectid)
1179 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1180
1181 return 0;
1182}
1183
bae15d95
QW
1184static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 u32 *namelen, char **name, u64 *index)
f186373f
MF
1186{
1187 struct btrfs_inode_ref *ref;
1188
1189 ref = (struct btrfs_inode_ref *)ref_ptr;
1190
1191 *namelen = btrfs_inode_ref_name_len(eb, ref);
1192 *name = kmalloc(*namelen, GFP_NOFS);
1193 if (*name == NULL)
1194 return -ENOMEM;
1195
1196 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1197
1f250e92
FM
1198 if (index)
1199 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1200
1201 return 0;
1202}
1203
1f250e92
FM
1204/*
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1210 */
1211static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 struct btrfs_root *root,
1213 struct btrfs_path *path,
1214 struct btrfs_inode *inode,
1215 struct extent_buffer *log_eb,
1216 int log_slot,
1217 struct btrfs_key *key)
1218{
1219 int ret;
1220 unsigned long ref_ptr;
1221 unsigned long ref_end;
1222 struct extent_buffer *eb;
1223
1224again:
1225 btrfs_release_path(path);
1226 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227 if (ret > 0) {
1228 ret = 0;
1229 goto out;
1230 }
1231 if (ret < 0)
1232 goto out;
1233
1234 eb = path->nodes[0];
1235 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 while (ref_ptr < ref_end) {
1238 char *name = NULL;
1239 int namelen;
1240 u64 parent_id;
1241
1242 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244 NULL, &parent_id);
1245 } else {
1246 parent_id = key->offset;
1247 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL);
1249 }
1250 if (ret)
1251 goto out;
1252
1253 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1254 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255 parent_id, name,
1256 namelen);
1f250e92 1257 else
9bb8407f
NB
1258 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1259 name, namelen);
1f250e92
FM
1260
1261 if (!ret) {
1262 struct inode *dir;
1263
1264 btrfs_release_path(path);
1265 dir = read_one_inode(root, parent_id);
1266 if (!dir) {
1267 ret = -ENOENT;
1268 kfree(name);
1269 goto out;
1270 }
1271 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 inode, name, namelen);
1273 kfree(name);
1274 iput(dir);
1275 if (ret)
1276 goto out;
1277 goto again;
1278 }
1279
1280 kfree(name);
1281 ref_ptr += namelen;
1282 if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 ref_ptr += sizeof(struct btrfs_inode_extref);
1284 else
1285 ref_ptr += sizeof(struct btrfs_inode_ref);
1286 }
1287 ret = 0;
1288 out:
1289 btrfs_release_path(path);
1290 return ret;
1291}
1292
0d836392
FM
1293static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294 const u8 ref_type, const char *name,
1295 const int namelen)
1296{
1297 struct btrfs_key key;
1298 struct btrfs_path *path;
1299 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300 int ret;
1301
1302 path = btrfs_alloc_path();
1303 if (!path)
1304 return -ENOMEM;
1305
1306 key.objectid = btrfs_ino(BTRFS_I(inode));
1307 key.type = ref_type;
1308 if (key.type == BTRFS_INODE_REF_KEY)
1309 key.offset = parent_id;
1310 else
1311 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1312
1313 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314 if (ret < 0)
1315 goto out;
1316 if (ret > 0) {
1317 ret = 0;
1318 goto out;
1319 }
1320 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1321 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1322 path->slots[0], parent_id, name, namelen);
0d836392 1323 else
9bb8407f
NB
1324 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1325 name, namelen);
0d836392
FM
1326
1327out:
1328 btrfs_free_path(path);
1329 return ret;
1330}
1331
6b5fc433
FM
1332static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1333 struct inode *dir, struct inode *inode, const char *name,
1334 int namelen, u64 ref_index)
1335{
1336 struct btrfs_dir_item *dir_item;
1337 struct btrfs_key key;
1338 struct btrfs_path *path;
1339 struct inode *other_inode = NULL;
1340 int ret;
1341
1342 path = btrfs_alloc_path();
1343 if (!path)
1344 return -ENOMEM;
1345
1346 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1347 btrfs_ino(BTRFS_I(dir)),
1348 name, namelen, 0);
1349 if (!dir_item) {
1350 btrfs_release_path(path);
1351 goto add_link;
1352 } else if (IS_ERR(dir_item)) {
1353 ret = PTR_ERR(dir_item);
1354 goto out;
1355 }
1356
1357 /*
1358 * Our inode's dentry collides with the dentry of another inode which is
1359 * in the log but not yet processed since it has a higher inode number.
1360 * So delete that other dentry.
1361 */
1362 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1363 btrfs_release_path(path);
1364 other_inode = read_one_inode(root, key.objectid);
1365 if (!other_inode) {
1366 ret = -ENOENT;
1367 goto out;
1368 }
1369 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1370 name, namelen);
1371 if (ret)
1372 goto out;
1373 /*
1374 * If we dropped the link count to 0, bump it so that later the iput()
1375 * on the inode will not free it. We will fixup the link count later.
1376 */
1377 if (other_inode->i_nlink == 0)
1378 inc_nlink(other_inode);
1379
1380 ret = btrfs_run_delayed_items(trans);
1381 if (ret)
1382 goto out;
1383add_link:
1384 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1385 name, namelen, 0, ref_index);
1386out:
1387 iput(other_inode);
1388 btrfs_free_path(path);
1389
1390 return ret;
1391}
1392
5a1d7843
JS
1393/*
1394 * replay one inode back reference item found in the log tree.
1395 * eb, slot and key refer to the buffer and key found in the log tree.
1396 * root is the destination we are replaying into, and path is for temp
1397 * use by this function. (it should be released on return).
1398 */
1399static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct btrfs_root *log,
1402 struct btrfs_path *path,
1403 struct extent_buffer *eb, int slot,
1404 struct btrfs_key *key)
1405{
03b2f08b
GB
1406 struct inode *dir = NULL;
1407 struct inode *inode = NULL;
5a1d7843
JS
1408 unsigned long ref_ptr;
1409 unsigned long ref_end;
03b2f08b 1410 char *name = NULL;
5a1d7843
JS
1411 int namelen;
1412 int ret;
1413 int search_done = 0;
f186373f
MF
1414 int log_ref_ver = 0;
1415 u64 parent_objectid;
1416 u64 inode_objectid;
f46dbe3d 1417 u64 ref_index = 0;
f186373f
MF
1418 int ref_struct_size;
1419
1420 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1421 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1422
1423 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1424 struct btrfs_inode_extref *r;
1425
1426 ref_struct_size = sizeof(struct btrfs_inode_extref);
1427 log_ref_ver = 1;
1428 r = (struct btrfs_inode_extref *)ref_ptr;
1429 parent_objectid = btrfs_inode_extref_parent(eb, r);
1430 } else {
1431 ref_struct_size = sizeof(struct btrfs_inode_ref);
1432 parent_objectid = key->offset;
1433 }
1434 inode_objectid = key->objectid;
e02119d5 1435
5a1d7843
JS
1436 /*
1437 * it is possible that we didn't log all the parent directories
1438 * for a given inode. If we don't find the dir, just don't
1439 * copy the back ref in. The link count fixup code will take
1440 * care of the rest
1441 */
f186373f 1442 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1443 if (!dir) {
1444 ret = -ENOENT;
1445 goto out;
1446 }
5a1d7843 1447
f186373f 1448 inode = read_one_inode(root, inode_objectid);
5a1d7843 1449 if (!inode) {
03b2f08b
GB
1450 ret = -EIO;
1451 goto out;
5a1d7843
JS
1452 }
1453
5a1d7843 1454 while (ref_ptr < ref_end) {
f186373f 1455 if (log_ref_ver) {
bae15d95
QW
1456 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1457 &ref_index, &parent_objectid);
f186373f
MF
1458 /*
1459 * parent object can change from one array
1460 * item to another.
1461 */
1462 if (!dir)
1463 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1464 if (!dir) {
1465 ret = -ENOENT;
1466 goto out;
1467 }
f186373f 1468 } else {
bae15d95
QW
1469 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1470 &ref_index);
f186373f
MF
1471 }
1472 if (ret)
03b2f08b 1473 goto out;
5a1d7843
JS
1474
1475 /* if we already have a perfect match, we're done */
f85b7379
DS
1476 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1477 btrfs_ino(BTRFS_I(inode)), ref_index,
1478 name, namelen)) {
5a1d7843
JS
1479 /*
1480 * look for a conflicting back reference in the
1481 * metadata. if we find one we have to unlink that name
1482 * of the file before we add our new link. Later on, we
1483 * overwrite any existing back reference, and we don't
1484 * want to create dangling pointers in the directory.
1485 */
1486
1487 if (!search_done) {
1488 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1489 BTRFS_I(dir),
d75eefdf 1490 BTRFS_I(inode),
f186373f
MF
1491 inode_objectid,
1492 parent_objectid,
1493 ref_index, name, namelen,
5a1d7843 1494 &search_done);
03b2f08b
GB
1495 if (ret) {
1496 if (ret == 1)
1497 ret = 0;
3650860b
JB
1498 goto out;
1499 }
5a1d7843
JS
1500 }
1501
0d836392
FM
1502 /*
1503 * If a reference item already exists for this inode
1504 * with the same parent and name, but different index,
1505 * drop it and the corresponding directory index entries
1506 * from the parent before adding the new reference item
1507 * and dir index entries, otherwise we would fail with
1508 * -EEXIST returned from btrfs_add_link() below.
1509 */
1510 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1511 name, namelen);
1512 if (ret > 0) {
1513 ret = btrfs_unlink_inode(trans, root,
1514 BTRFS_I(dir),
1515 BTRFS_I(inode),
1516 name, namelen);
1517 /*
1518 * If we dropped the link count to 0, bump it so
1519 * that later the iput() on the inode will not
1520 * free it. We will fixup the link count later.
1521 */
1522 if (!ret && inode->i_nlink == 0)
1523 inc_nlink(inode);
1524 }
1525 if (ret < 0)
1526 goto out;
1527
5a1d7843 1528 /* insert our name */
6b5fc433
FM
1529 ret = add_link(trans, root, dir, inode, name, namelen,
1530 ref_index);
3650860b
JB
1531 if (ret)
1532 goto out;
5a1d7843
JS
1533
1534 btrfs_update_inode(trans, root, inode);
1535 }
1536
f186373f 1537 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1538 kfree(name);
03b2f08b 1539 name = NULL;
f186373f
MF
1540 if (log_ref_ver) {
1541 iput(dir);
1542 dir = NULL;
1543 }
5a1d7843 1544 }
e02119d5 1545
1f250e92
FM
1546 /*
1547 * Before we overwrite the inode reference item in the subvolume tree
1548 * with the item from the log tree, we must unlink all names from the
1549 * parent directory that are in the subvolume's tree inode reference
1550 * item, otherwise we end up with an inconsistent subvolume tree where
1551 * dir index entries exist for a name but there is no inode reference
1552 * item with the same name.
1553 */
1554 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1555 key);
1556 if (ret)
1557 goto out;
1558
e02119d5
CM
1559 /* finally write the back reference in the inode */
1560 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1561out:
b3b4aa74 1562 btrfs_release_path(path);
03b2f08b 1563 kfree(name);
e02119d5
CM
1564 iput(dir);
1565 iput(inode);
3650860b 1566 return ret;
e02119d5
CM
1567}
1568
c71bf099 1569static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1570 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1571{
1572 int ret;
381cf658 1573
9c4f61f0
DS
1574 ret = btrfs_insert_orphan_item(trans, root, ino);
1575 if (ret == -EEXIST)
1576 ret = 0;
381cf658 1577
c71bf099
YZ
1578 return ret;
1579}
1580
f186373f 1581static int count_inode_extrefs(struct btrfs_root *root,
36283658 1582 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1583{
1584 int ret = 0;
1585 int name_len;
1586 unsigned int nlink = 0;
1587 u32 item_size;
1588 u32 cur_offset = 0;
36283658 1589 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1590 u64 offset = 0;
1591 unsigned long ptr;
1592 struct btrfs_inode_extref *extref;
1593 struct extent_buffer *leaf;
1594
1595 while (1) {
1596 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1597 &extref, &offset);
1598 if (ret)
1599 break;
c71bf099 1600
f186373f
MF
1601 leaf = path->nodes[0];
1602 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1603 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1604 cur_offset = 0;
f186373f
MF
1605
1606 while (cur_offset < item_size) {
1607 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1608 name_len = btrfs_inode_extref_name_len(leaf, extref);
1609
1610 nlink++;
1611
1612 cur_offset += name_len + sizeof(*extref);
1613 }
1614
1615 offset++;
1616 btrfs_release_path(path);
1617 }
1618 btrfs_release_path(path);
1619
2c2c452b 1620 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1621 return ret;
1622 return nlink;
1623}
1624
1625static int count_inode_refs(struct btrfs_root *root,
f329e319 1626 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1627{
e02119d5
CM
1628 int ret;
1629 struct btrfs_key key;
f186373f 1630 unsigned int nlink = 0;
e02119d5
CM
1631 unsigned long ptr;
1632 unsigned long ptr_end;
1633 int name_len;
f329e319 1634 u64 ino = btrfs_ino(inode);
e02119d5 1635
33345d01 1636 key.objectid = ino;
e02119d5
CM
1637 key.type = BTRFS_INODE_REF_KEY;
1638 key.offset = (u64)-1;
1639
d397712b 1640 while (1) {
e02119d5
CM
1641 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1642 if (ret < 0)
1643 break;
1644 if (ret > 0) {
1645 if (path->slots[0] == 0)
1646 break;
1647 path->slots[0]--;
1648 }
e93ae26f 1649process_slot:
e02119d5
CM
1650 btrfs_item_key_to_cpu(path->nodes[0], &key,
1651 path->slots[0]);
33345d01 1652 if (key.objectid != ino ||
e02119d5
CM
1653 key.type != BTRFS_INODE_REF_KEY)
1654 break;
1655 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1656 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1657 path->slots[0]);
d397712b 1658 while (ptr < ptr_end) {
e02119d5
CM
1659 struct btrfs_inode_ref *ref;
1660
1661 ref = (struct btrfs_inode_ref *)ptr;
1662 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1663 ref);
1664 ptr = (unsigned long)(ref + 1) + name_len;
1665 nlink++;
1666 }
1667
1668 if (key.offset == 0)
1669 break;
e93ae26f
FDBM
1670 if (path->slots[0] > 0) {
1671 path->slots[0]--;
1672 goto process_slot;
1673 }
e02119d5 1674 key.offset--;
b3b4aa74 1675 btrfs_release_path(path);
e02119d5 1676 }
b3b4aa74 1677 btrfs_release_path(path);
f186373f
MF
1678
1679 return nlink;
1680}
1681
1682/*
1683 * There are a few corners where the link count of the file can't
1684 * be properly maintained during replay. So, instead of adding
1685 * lots of complexity to the log code, we just scan the backrefs
1686 * for any file that has been through replay.
1687 *
1688 * The scan will update the link count on the inode to reflect the
1689 * number of back refs found. If it goes down to zero, the iput
1690 * will free the inode.
1691 */
1692static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 struct inode *inode)
1695{
1696 struct btrfs_path *path;
1697 int ret;
1698 u64 nlink = 0;
4a0cc7ca 1699 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1700
1701 path = btrfs_alloc_path();
1702 if (!path)
1703 return -ENOMEM;
1704
f329e319 1705 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1706 if (ret < 0)
1707 goto out;
1708
1709 nlink = ret;
1710
36283658 1711 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1712 if (ret < 0)
1713 goto out;
1714
1715 nlink += ret;
1716
1717 ret = 0;
1718
e02119d5 1719 if (nlink != inode->i_nlink) {
bfe86848 1720 set_nlink(inode, nlink);
e02119d5
CM
1721 btrfs_update_inode(trans, root, inode);
1722 }
8d5bf1cb 1723 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1724
c71bf099
YZ
1725 if (inode->i_nlink == 0) {
1726 if (S_ISDIR(inode->i_mode)) {
1727 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1728 ino, 1);
3650860b
JB
1729 if (ret)
1730 goto out;
c71bf099 1731 }
33345d01 1732 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1733 }
12fcfd22 1734
f186373f
MF
1735out:
1736 btrfs_free_path(path);
1737 return ret;
e02119d5
CM
1738}
1739
1740static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path)
1743{
1744 int ret;
1745 struct btrfs_key key;
1746 struct inode *inode;
1747
1748 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1749 key.type = BTRFS_ORPHAN_ITEM_KEY;
1750 key.offset = (u64)-1;
d397712b 1751 while (1) {
e02119d5
CM
1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 if (ret < 0)
1754 break;
1755
1756 if (ret == 1) {
1757 if (path->slots[0] == 0)
1758 break;
1759 path->slots[0]--;
1760 }
1761
1762 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1763 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1764 key.type != BTRFS_ORPHAN_ITEM_KEY)
1765 break;
1766
1767 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1768 if (ret)
1769 goto out;
e02119d5 1770
b3b4aa74 1771 btrfs_release_path(path);
e02119d5 1772 inode = read_one_inode(root, key.offset);
c00e9493
TI
1773 if (!inode)
1774 return -EIO;
e02119d5
CM
1775
1776 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1777 iput(inode);
3650860b
JB
1778 if (ret)
1779 goto out;
e02119d5 1780
12fcfd22
CM
1781 /*
1782 * fixup on a directory may create new entries,
1783 * make sure we always look for the highset possible
1784 * offset
1785 */
1786 key.offset = (u64)-1;
e02119d5 1787 }
65a246c5
TI
1788 ret = 0;
1789out:
b3b4aa74 1790 btrfs_release_path(path);
65a246c5 1791 return ret;
e02119d5
CM
1792}
1793
1794
1795/*
1796 * record a given inode in the fixup dir so we can check its link
1797 * count when replay is done. The link count is incremented here
1798 * so the inode won't go away until we check it
1799 */
1800static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 u64 objectid)
1804{
1805 struct btrfs_key key;
1806 int ret = 0;
1807 struct inode *inode;
1808
1809 inode = read_one_inode(root, objectid);
c00e9493
TI
1810 if (!inode)
1811 return -EIO;
e02119d5
CM
1812
1813 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1814 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1815 key.offset = objectid;
1816
1817 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1818
b3b4aa74 1819 btrfs_release_path(path);
e02119d5 1820 if (ret == 0) {
9bf7a489
JB
1821 if (!inode->i_nlink)
1822 set_nlink(inode, 1);
1823 else
8b558c5f 1824 inc_nlink(inode);
b9959295 1825 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1826 } else if (ret == -EEXIST) {
1827 ret = 0;
1828 } else {
3650860b 1829 BUG(); /* Logic Error */
e02119d5
CM
1830 }
1831 iput(inode);
1832
1833 return ret;
1834}
1835
1836/*
1837 * when replaying the log for a directory, we only insert names
1838 * for inodes that actually exist. This means an fsync on a directory
1839 * does not implicitly fsync all the new files in it
1840 */
1841static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root,
e02119d5 1843 u64 dirid, u64 index,
60d53eb3 1844 char *name, int name_len,
e02119d5
CM
1845 struct btrfs_key *location)
1846{
1847 struct inode *inode;
1848 struct inode *dir;
1849 int ret;
1850
1851 inode = read_one_inode(root, location->objectid);
1852 if (!inode)
1853 return -ENOENT;
1854
1855 dir = read_one_inode(root, dirid);
1856 if (!dir) {
1857 iput(inode);
1858 return -EIO;
1859 }
d555438b 1860
db0a669f
NB
1861 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1862 name_len, 1, index);
e02119d5
CM
1863
1864 /* FIXME, put inode into FIXUP list */
1865
1866 iput(inode);
1867 iput(dir);
1868 return ret;
1869}
1870
1871/*
1872 * take a single entry in a log directory item and replay it into
1873 * the subvolume.
1874 *
1875 * if a conflicting item exists in the subdirectory already,
1876 * the inode it points to is unlinked and put into the link count
1877 * fix up tree.
1878 *
1879 * If a name from the log points to a file or directory that does
1880 * not exist in the FS, it is skipped. fsyncs on directories
1881 * do not force down inodes inside that directory, just changes to the
1882 * names or unlinks in a directory.
bb53eda9
FM
1883 *
1884 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1885 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1886 */
1887static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 struct btrfs_path *path,
1890 struct extent_buffer *eb,
1891 struct btrfs_dir_item *di,
1892 struct btrfs_key *key)
1893{
1894 char *name;
1895 int name_len;
1896 struct btrfs_dir_item *dst_di;
1897 struct btrfs_key found_key;
1898 struct btrfs_key log_key;
1899 struct inode *dir;
e02119d5 1900 u8 log_type;
4bef0848 1901 int exists;
3650860b 1902 int ret = 0;
d555438b 1903 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1904 bool name_added = false;
e02119d5
CM
1905
1906 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1907 if (!dir)
1908 return -EIO;
e02119d5
CM
1909
1910 name_len = btrfs_dir_name_len(eb, di);
1911 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1912 if (!name) {
1913 ret = -ENOMEM;
1914 goto out;
1915 }
2a29edc6 1916
e02119d5
CM
1917 log_type = btrfs_dir_type(eb, di);
1918 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1919 name_len);
1920
1921 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1922 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1923 if (exists == 0)
1924 exists = 1;
1925 else
1926 exists = 0;
b3b4aa74 1927 btrfs_release_path(path);
4bef0848 1928
e02119d5
CM
1929 if (key->type == BTRFS_DIR_ITEM_KEY) {
1930 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1931 name, name_len, 1);
d397712b 1932 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1933 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1934 key->objectid,
1935 key->offset, name,
1936 name_len, 1);
1937 } else {
3650860b
JB
1938 /* Corruption */
1939 ret = -EINVAL;
1940 goto out;
e02119d5 1941 }
c704005d 1942 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1943 /* we need a sequence number to insert, so we only
1944 * do inserts for the BTRFS_DIR_INDEX_KEY types
1945 */
1946 if (key->type != BTRFS_DIR_INDEX_KEY)
1947 goto out;
1948 goto insert;
1949 }
1950
1951 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1952 /* the existing item matches the logged item */
1953 if (found_key.objectid == log_key.objectid &&
1954 found_key.type == log_key.type &&
1955 found_key.offset == log_key.offset &&
1956 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1957 update_size = false;
e02119d5
CM
1958 goto out;
1959 }
1960
1961 /*
1962 * don't drop the conflicting directory entry if the inode
1963 * for the new entry doesn't exist
1964 */
4bef0848 1965 if (!exists)
e02119d5
CM
1966 goto out;
1967
207e7d92 1968 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1969 if (ret)
1970 goto out;
e02119d5
CM
1971
1972 if (key->type == BTRFS_DIR_INDEX_KEY)
1973 goto insert;
1974out:
b3b4aa74 1975 btrfs_release_path(path);
d555438b 1976 if (!ret && update_size) {
6ef06d27 1977 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1978 ret = btrfs_update_inode(trans, root, dir);
1979 }
e02119d5
CM
1980 kfree(name);
1981 iput(dir);
bb53eda9
FM
1982 if (!ret && name_added)
1983 ret = 1;
3650860b 1984 return ret;
e02119d5
CM
1985
1986insert:
725af92a
NB
1987 /*
1988 * Check if the inode reference exists in the log for the given name,
1989 * inode and parent inode
1990 */
1991 found_key.objectid = log_key.objectid;
1992 found_key.type = BTRFS_INODE_REF_KEY;
1993 found_key.offset = key->objectid;
1994 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1995 if (ret < 0) {
1996 goto out;
1997 } else if (ret) {
1998 /* The dentry will be added later. */
1999 ret = 0;
2000 update_size = false;
2001 goto out;
2002 }
2003
2004 found_key.objectid = log_key.objectid;
2005 found_key.type = BTRFS_INODE_EXTREF_KEY;
2006 found_key.offset = key->objectid;
2007 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2008 name_len);
2009 if (ret < 0) {
2010 goto out;
2011 } else if (ret) {
df8d116f
FM
2012 /* The dentry will be added later. */
2013 ret = 0;
2014 update_size = false;
2015 goto out;
2016 }
b3b4aa74 2017 btrfs_release_path(path);
60d53eb3
Z
2018 ret = insert_one_name(trans, root, key->objectid, key->offset,
2019 name, name_len, &log_key);
df8d116f 2020 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2021 goto out;
bb53eda9
FM
2022 if (!ret)
2023 name_added = true;
d555438b 2024 update_size = false;
3650860b 2025 ret = 0;
e02119d5
CM
2026 goto out;
2027}
2028
2029/*
2030 * find all the names in a directory item and reconcile them into
2031 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2032 * one name in a directory item, but the same code gets used for
2033 * both directory index types
2034 */
2035static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_path *path,
2038 struct extent_buffer *eb, int slot,
2039 struct btrfs_key *key)
2040{
bb53eda9 2041 int ret = 0;
e02119d5
CM
2042 u32 item_size = btrfs_item_size_nr(eb, slot);
2043 struct btrfs_dir_item *di;
2044 int name_len;
2045 unsigned long ptr;
2046 unsigned long ptr_end;
bb53eda9 2047 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2048
2049 ptr = btrfs_item_ptr_offset(eb, slot);
2050 ptr_end = ptr + item_size;
d397712b 2051 while (ptr < ptr_end) {
e02119d5
CM
2052 di = (struct btrfs_dir_item *)ptr;
2053 name_len = btrfs_dir_name_len(eb, di);
2054 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2055 if (ret < 0)
2056 break;
e02119d5
CM
2057 ptr = (unsigned long)(di + 1);
2058 ptr += name_len;
bb53eda9
FM
2059
2060 /*
2061 * If this entry refers to a non-directory (directories can not
2062 * have a link count > 1) and it was added in the transaction
2063 * that was not committed, make sure we fixup the link count of
2064 * the inode it the entry points to. Otherwise something like
2065 * the following would result in a directory pointing to an
2066 * inode with a wrong link that does not account for this dir
2067 * entry:
2068 *
2069 * mkdir testdir
2070 * touch testdir/foo
2071 * touch testdir/bar
2072 * sync
2073 *
2074 * ln testdir/bar testdir/bar_link
2075 * ln testdir/foo testdir/foo_link
2076 * xfs_io -c "fsync" testdir/bar
2077 *
2078 * <power failure>
2079 *
2080 * mount fs, log replay happens
2081 *
2082 * File foo would remain with a link count of 1 when it has two
2083 * entries pointing to it in the directory testdir. This would
2084 * make it impossible to ever delete the parent directory has
2085 * it would result in stale dentries that can never be deleted.
2086 */
2087 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2088 struct btrfs_key di_key;
2089
2090 if (!fixup_path) {
2091 fixup_path = btrfs_alloc_path();
2092 if (!fixup_path) {
2093 ret = -ENOMEM;
2094 break;
2095 }
2096 }
2097
2098 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2099 ret = link_to_fixup_dir(trans, root, fixup_path,
2100 di_key.objectid);
2101 if (ret)
2102 break;
2103 }
2104 ret = 0;
e02119d5 2105 }
bb53eda9
FM
2106 btrfs_free_path(fixup_path);
2107 return ret;
e02119d5
CM
2108}
2109
2110/*
2111 * directory replay has two parts. There are the standard directory
2112 * items in the log copied from the subvolume, and range items
2113 * created in the log while the subvolume was logged.
2114 *
2115 * The range items tell us which parts of the key space the log
2116 * is authoritative for. During replay, if a key in the subvolume
2117 * directory is in a logged range item, but not actually in the log
2118 * that means it was deleted from the directory before the fsync
2119 * and should be removed.
2120 */
2121static noinline int find_dir_range(struct btrfs_root *root,
2122 struct btrfs_path *path,
2123 u64 dirid, int key_type,
2124 u64 *start_ret, u64 *end_ret)
2125{
2126 struct btrfs_key key;
2127 u64 found_end;
2128 struct btrfs_dir_log_item *item;
2129 int ret;
2130 int nritems;
2131
2132 if (*start_ret == (u64)-1)
2133 return 1;
2134
2135 key.objectid = dirid;
2136 key.type = key_type;
2137 key.offset = *start_ret;
2138
2139 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 if (ret < 0)
2141 goto out;
2142 if (ret > 0) {
2143 if (path->slots[0] == 0)
2144 goto out;
2145 path->slots[0]--;
2146 }
2147 if (ret != 0)
2148 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2149
2150 if (key.type != key_type || key.objectid != dirid) {
2151 ret = 1;
2152 goto next;
2153 }
2154 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2155 struct btrfs_dir_log_item);
2156 found_end = btrfs_dir_log_end(path->nodes[0], item);
2157
2158 if (*start_ret >= key.offset && *start_ret <= found_end) {
2159 ret = 0;
2160 *start_ret = key.offset;
2161 *end_ret = found_end;
2162 goto out;
2163 }
2164 ret = 1;
2165next:
2166 /* check the next slot in the tree to see if it is a valid item */
2167 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2168 path->slots[0]++;
e02119d5
CM
2169 if (path->slots[0] >= nritems) {
2170 ret = btrfs_next_leaf(root, path);
2171 if (ret)
2172 goto out;
e02119d5
CM
2173 }
2174
2175 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2176
2177 if (key.type != key_type || key.objectid != dirid) {
2178 ret = 1;
2179 goto out;
2180 }
2181 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2182 struct btrfs_dir_log_item);
2183 found_end = btrfs_dir_log_end(path->nodes[0], item);
2184 *start_ret = key.offset;
2185 *end_ret = found_end;
2186 ret = 0;
2187out:
b3b4aa74 2188 btrfs_release_path(path);
e02119d5
CM
2189 return ret;
2190}
2191
2192/*
2193 * this looks for a given directory item in the log. If the directory
2194 * item is not in the log, the item is removed and the inode it points
2195 * to is unlinked
2196 */
2197static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *root,
2199 struct btrfs_root *log,
2200 struct btrfs_path *path,
2201 struct btrfs_path *log_path,
2202 struct inode *dir,
2203 struct btrfs_key *dir_key)
2204{
2205 int ret;
2206 struct extent_buffer *eb;
2207 int slot;
2208 u32 item_size;
2209 struct btrfs_dir_item *di;
2210 struct btrfs_dir_item *log_di;
2211 int name_len;
2212 unsigned long ptr;
2213 unsigned long ptr_end;
2214 char *name;
2215 struct inode *inode;
2216 struct btrfs_key location;
2217
2218again:
2219 eb = path->nodes[0];
2220 slot = path->slots[0];
2221 item_size = btrfs_item_size_nr(eb, slot);
2222 ptr = btrfs_item_ptr_offset(eb, slot);
2223 ptr_end = ptr + item_size;
d397712b 2224 while (ptr < ptr_end) {
e02119d5
CM
2225 di = (struct btrfs_dir_item *)ptr;
2226 name_len = btrfs_dir_name_len(eb, di);
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2233 name_len);
2234 log_di = NULL;
12fcfd22 2235 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2236 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2237 dir_key->objectid,
2238 name, name_len, 0);
12fcfd22 2239 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2240 log_di = btrfs_lookup_dir_index_item(trans, log,
2241 log_path,
2242 dir_key->objectid,
2243 dir_key->offset,
2244 name, name_len, 0);
2245 }
8d9e220c 2246 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2247 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2248 btrfs_release_path(path);
2249 btrfs_release_path(log_path);
e02119d5 2250 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2251 if (!inode) {
2252 kfree(name);
2253 return -EIO;
2254 }
e02119d5
CM
2255
2256 ret = link_to_fixup_dir(trans, root,
2257 path, location.objectid);
3650860b
JB
2258 if (ret) {
2259 kfree(name);
2260 iput(inode);
2261 goto out;
2262 }
2263
8b558c5f 2264 inc_nlink(inode);
4ec5934e
NB
2265 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2266 BTRFS_I(inode), name, name_len);
3650860b 2267 if (!ret)
e5c304e6 2268 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2269 kfree(name);
2270 iput(inode);
3650860b
JB
2271 if (ret)
2272 goto out;
e02119d5
CM
2273
2274 /* there might still be more names under this key
2275 * check and repeat if required
2276 */
2277 ret = btrfs_search_slot(NULL, root, dir_key, path,
2278 0, 0);
2279 if (ret == 0)
2280 goto again;
2281 ret = 0;
2282 goto out;
269d040f
FDBM
2283 } else if (IS_ERR(log_di)) {
2284 kfree(name);
2285 return PTR_ERR(log_di);
e02119d5 2286 }
b3b4aa74 2287 btrfs_release_path(log_path);
e02119d5
CM
2288 kfree(name);
2289
2290 ptr = (unsigned long)(di + 1);
2291 ptr += name_len;
2292 }
2293 ret = 0;
2294out:
b3b4aa74
DS
2295 btrfs_release_path(path);
2296 btrfs_release_path(log_path);
e02119d5
CM
2297 return ret;
2298}
2299
4f764e51
FM
2300static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_root *log,
2303 struct btrfs_path *path,
2304 const u64 ino)
2305{
2306 struct btrfs_key search_key;
2307 struct btrfs_path *log_path;
2308 int i;
2309 int nritems;
2310 int ret;
2311
2312 log_path = btrfs_alloc_path();
2313 if (!log_path)
2314 return -ENOMEM;
2315
2316 search_key.objectid = ino;
2317 search_key.type = BTRFS_XATTR_ITEM_KEY;
2318 search_key.offset = 0;
2319again:
2320 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2321 if (ret < 0)
2322 goto out;
2323process_leaf:
2324 nritems = btrfs_header_nritems(path->nodes[0]);
2325 for (i = path->slots[0]; i < nritems; i++) {
2326 struct btrfs_key key;
2327 struct btrfs_dir_item *di;
2328 struct btrfs_dir_item *log_di;
2329 u32 total_size;
2330 u32 cur;
2331
2332 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2333 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2334 ret = 0;
2335 goto out;
2336 }
2337
2338 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2339 total_size = btrfs_item_size_nr(path->nodes[0], i);
2340 cur = 0;
2341 while (cur < total_size) {
2342 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2343 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2344 u32 this_len = sizeof(*di) + name_len + data_len;
2345 char *name;
2346
2347 name = kmalloc(name_len, GFP_NOFS);
2348 if (!name) {
2349 ret = -ENOMEM;
2350 goto out;
2351 }
2352 read_extent_buffer(path->nodes[0], name,
2353 (unsigned long)(di + 1), name_len);
2354
2355 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2356 name, name_len, 0);
2357 btrfs_release_path(log_path);
2358 if (!log_di) {
2359 /* Doesn't exist in log tree, so delete it. */
2360 btrfs_release_path(path);
2361 di = btrfs_lookup_xattr(trans, root, path, ino,
2362 name, name_len, -1);
2363 kfree(name);
2364 if (IS_ERR(di)) {
2365 ret = PTR_ERR(di);
2366 goto out;
2367 }
2368 ASSERT(di);
2369 ret = btrfs_delete_one_dir_name(trans, root,
2370 path, di);
2371 if (ret)
2372 goto out;
2373 btrfs_release_path(path);
2374 search_key = key;
2375 goto again;
2376 }
2377 kfree(name);
2378 if (IS_ERR(log_di)) {
2379 ret = PTR_ERR(log_di);
2380 goto out;
2381 }
2382 cur += this_len;
2383 di = (struct btrfs_dir_item *)((char *)di + this_len);
2384 }
2385 }
2386 ret = btrfs_next_leaf(root, path);
2387 if (ret > 0)
2388 ret = 0;
2389 else if (ret == 0)
2390 goto process_leaf;
2391out:
2392 btrfs_free_path(log_path);
2393 btrfs_release_path(path);
2394 return ret;
2395}
2396
2397
e02119d5
CM
2398/*
2399 * deletion replay happens before we copy any new directory items
2400 * out of the log or out of backreferences from inodes. It
2401 * scans the log to find ranges of keys that log is authoritative for,
2402 * and then scans the directory to find items in those ranges that are
2403 * not present in the log.
2404 *
2405 * Anything we don't find in the log is unlinked and removed from the
2406 * directory.
2407 */
2408static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2409 struct btrfs_root *root,
2410 struct btrfs_root *log,
2411 struct btrfs_path *path,
12fcfd22 2412 u64 dirid, int del_all)
e02119d5
CM
2413{
2414 u64 range_start;
2415 u64 range_end;
2416 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2417 int ret = 0;
2418 struct btrfs_key dir_key;
2419 struct btrfs_key found_key;
2420 struct btrfs_path *log_path;
2421 struct inode *dir;
2422
2423 dir_key.objectid = dirid;
2424 dir_key.type = BTRFS_DIR_ITEM_KEY;
2425 log_path = btrfs_alloc_path();
2426 if (!log_path)
2427 return -ENOMEM;
2428
2429 dir = read_one_inode(root, dirid);
2430 /* it isn't an error if the inode isn't there, that can happen
2431 * because we replay the deletes before we copy in the inode item
2432 * from the log
2433 */
2434 if (!dir) {
2435 btrfs_free_path(log_path);
2436 return 0;
2437 }
2438again:
2439 range_start = 0;
2440 range_end = 0;
d397712b 2441 while (1) {
12fcfd22
CM
2442 if (del_all)
2443 range_end = (u64)-1;
2444 else {
2445 ret = find_dir_range(log, path, dirid, key_type,
2446 &range_start, &range_end);
2447 if (ret != 0)
2448 break;
2449 }
e02119d5
CM
2450
2451 dir_key.offset = range_start;
d397712b 2452 while (1) {
e02119d5
CM
2453 int nritems;
2454 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2455 0, 0);
2456 if (ret < 0)
2457 goto out;
2458
2459 nritems = btrfs_header_nritems(path->nodes[0]);
2460 if (path->slots[0] >= nritems) {
2461 ret = btrfs_next_leaf(root, path);
b98def7c 2462 if (ret == 1)
e02119d5 2463 break;
b98def7c
LB
2464 else if (ret < 0)
2465 goto out;
e02119d5
CM
2466 }
2467 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2468 path->slots[0]);
2469 if (found_key.objectid != dirid ||
2470 found_key.type != dir_key.type)
2471 goto next_type;
2472
2473 if (found_key.offset > range_end)
2474 break;
2475
2476 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2477 log_path, dir,
2478 &found_key);
3650860b
JB
2479 if (ret)
2480 goto out;
e02119d5
CM
2481 if (found_key.offset == (u64)-1)
2482 break;
2483 dir_key.offset = found_key.offset + 1;
2484 }
b3b4aa74 2485 btrfs_release_path(path);
e02119d5
CM
2486 if (range_end == (u64)-1)
2487 break;
2488 range_start = range_end + 1;
2489 }
2490
2491next_type:
2492 ret = 0;
2493 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2494 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2495 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2496 btrfs_release_path(path);
e02119d5
CM
2497 goto again;
2498 }
2499out:
b3b4aa74 2500 btrfs_release_path(path);
e02119d5
CM
2501 btrfs_free_path(log_path);
2502 iput(dir);
2503 return ret;
2504}
2505
2506/*
2507 * the process_func used to replay items from the log tree. This
2508 * gets called in two different stages. The first stage just looks
2509 * for inodes and makes sure they are all copied into the subvolume.
2510 *
2511 * The second stage copies all the other item types from the log into
2512 * the subvolume. The two stage approach is slower, but gets rid of
2513 * lots of complexity around inodes referencing other inodes that exist
2514 * only in the log (references come from either directory items or inode
2515 * back refs).
2516 */
2517static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2518 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2519{
2520 int nritems;
2521 struct btrfs_path *path;
2522 struct btrfs_root *root = wc->replay_dest;
2523 struct btrfs_key key;
e02119d5
CM
2524 int i;
2525 int ret;
2526
581c1760 2527 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2528 if (ret)
2529 return ret;
e02119d5
CM
2530
2531 level = btrfs_header_level(eb);
2532
2533 if (level != 0)
2534 return 0;
2535
2536 path = btrfs_alloc_path();
1e5063d0
MF
2537 if (!path)
2538 return -ENOMEM;
e02119d5
CM
2539
2540 nritems = btrfs_header_nritems(eb);
2541 for (i = 0; i < nritems; i++) {
2542 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2543
2544 /* inode keys are done during the first stage */
2545 if (key.type == BTRFS_INODE_ITEM_KEY &&
2546 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2547 struct btrfs_inode_item *inode_item;
2548 u32 mode;
2549
2550 inode_item = btrfs_item_ptr(eb, i,
2551 struct btrfs_inode_item);
f2d72f42
FM
2552 /*
2553 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2554 * and never got linked before the fsync, skip it, as
2555 * replaying it is pointless since it would be deleted
2556 * later. We skip logging tmpfiles, but it's always
2557 * possible we are replaying a log created with a kernel
2558 * that used to log tmpfiles.
2559 */
2560 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2561 wc->ignore_cur_inode = true;
2562 continue;
2563 } else {
2564 wc->ignore_cur_inode = false;
2565 }
4f764e51
FM
2566 ret = replay_xattr_deletes(wc->trans, root, log,
2567 path, key.objectid);
2568 if (ret)
2569 break;
e02119d5
CM
2570 mode = btrfs_inode_mode(eb, inode_item);
2571 if (S_ISDIR(mode)) {
2572 ret = replay_dir_deletes(wc->trans,
12fcfd22 2573 root, log, path, key.objectid, 0);
b50c6e25
JB
2574 if (ret)
2575 break;
e02119d5
CM
2576 }
2577 ret = overwrite_item(wc->trans, root, path,
2578 eb, i, &key);
b50c6e25
JB
2579 if (ret)
2580 break;
e02119d5 2581
471d557a
FM
2582 /*
2583 * Before replaying extents, truncate the inode to its
2584 * size. We need to do it now and not after log replay
2585 * because before an fsync we can have prealloc extents
2586 * added beyond the inode's i_size. If we did it after,
2587 * through orphan cleanup for example, we would drop
2588 * those prealloc extents just after replaying them.
e02119d5
CM
2589 */
2590 if (S_ISREG(mode)) {
471d557a
FM
2591 struct inode *inode;
2592 u64 from;
2593
2594 inode = read_one_inode(root, key.objectid);
2595 if (!inode) {
2596 ret = -EIO;
2597 break;
2598 }
2599 from = ALIGN(i_size_read(inode),
2600 root->fs_info->sectorsize);
2601 ret = btrfs_drop_extents(wc->trans, root, inode,
2602 from, (u64)-1, 1);
471d557a 2603 if (!ret) {
f2d72f42 2604 /* Update the inode's nbytes. */
471d557a
FM
2605 ret = btrfs_update_inode(wc->trans,
2606 root, inode);
2607 }
2608 iput(inode);
b50c6e25
JB
2609 if (ret)
2610 break;
e02119d5 2611 }
c71bf099 2612
e02119d5
CM
2613 ret = link_to_fixup_dir(wc->trans, root,
2614 path, key.objectid);
b50c6e25
JB
2615 if (ret)
2616 break;
e02119d5 2617 }
dd8e7217 2618
f2d72f42
FM
2619 if (wc->ignore_cur_inode)
2620 continue;
2621
dd8e7217
JB
2622 if (key.type == BTRFS_DIR_INDEX_KEY &&
2623 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2624 ret = replay_one_dir_item(wc->trans, root, path,
2625 eb, i, &key);
2626 if (ret)
2627 break;
2628 }
2629
e02119d5
CM
2630 if (wc->stage < LOG_WALK_REPLAY_ALL)
2631 continue;
2632
2633 /* these keys are simply copied */
2634 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2635 ret = overwrite_item(wc->trans, root, path,
2636 eb, i, &key);
b50c6e25
JB
2637 if (ret)
2638 break;
2da1c669
LB
2639 } else if (key.type == BTRFS_INODE_REF_KEY ||
2640 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2641 ret = add_inode_ref(wc->trans, root, log, path,
2642 eb, i, &key);
b50c6e25
JB
2643 if (ret && ret != -ENOENT)
2644 break;
2645 ret = 0;
e02119d5
CM
2646 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2647 ret = replay_one_extent(wc->trans, root, path,
2648 eb, i, &key);
b50c6e25
JB
2649 if (ret)
2650 break;
dd8e7217 2651 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2652 ret = replay_one_dir_item(wc->trans, root, path,
2653 eb, i, &key);
b50c6e25
JB
2654 if (ret)
2655 break;
e02119d5
CM
2656 }
2657 }
2658 btrfs_free_path(path);
b50c6e25 2659 return ret;
e02119d5
CM
2660}
2661
d397712b 2662static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2663 struct btrfs_root *root,
2664 struct btrfs_path *path, int *level,
2665 struct walk_control *wc)
2666{
0b246afa 2667 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2668 u64 root_owner;
e02119d5
CM
2669 u64 bytenr;
2670 u64 ptr_gen;
2671 struct extent_buffer *next;
2672 struct extent_buffer *cur;
2673 struct extent_buffer *parent;
2674 u32 blocksize;
2675 int ret = 0;
2676
2677 WARN_ON(*level < 0);
2678 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2679
d397712b 2680 while (*level > 0) {
581c1760
QW
2681 struct btrfs_key first_key;
2682
e02119d5
CM
2683 WARN_ON(*level < 0);
2684 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2685 cur = path->nodes[*level];
2686
fae7f21c 2687 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2688
2689 if (path->slots[*level] >=
2690 btrfs_header_nritems(cur))
2691 break;
2692
2693 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2694 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2695 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2696 blocksize = fs_info->nodesize;
e02119d5
CM
2697
2698 parent = path->nodes[*level];
2699 root_owner = btrfs_header_owner(parent);
e02119d5 2700
2ff7e61e 2701 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2702 if (IS_ERR(next))
2703 return PTR_ERR(next);
e02119d5 2704
e02119d5 2705 if (*level == 1) {
581c1760
QW
2706 ret = wc->process_func(root, next, wc, ptr_gen,
2707 *level - 1);
b50c6e25
JB
2708 if (ret) {
2709 free_extent_buffer(next);
1e5063d0 2710 return ret;
b50c6e25 2711 }
4a500fd1 2712
e02119d5
CM
2713 path->slots[*level]++;
2714 if (wc->free) {
581c1760
QW
2715 ret = btrfs_read_buffer(next, ptr_gen,
2716 *level - 1, &first_key);
018642a1
TI
2717 if (ret) {
2718 free_extent_buffer(next);
2719 return ret;
2720 }
e02119d5 2721
681ae509
JB
2722 if (trans) {
2723 btrfs_tree_lock(next);
8bead258 2724 btrfs_set_lock_blocking_write(next);
6a884d7d 2725 btrfs_clean_tree_block(next);
681ae509
JB
2726 btrfs_wait_tree_block_writeback(next);
2727 btrfs_tree_unlock(next);
1846430c
LB
2728 } else {
2729 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2730 clear_extent_buffer_dirty(next);
681ae509 2731 }
e02119d5 2732
e02119d5
CM
2733 WARN_ON(root_owner !=
2734 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2735 ret = btrfs_free_and_pin_reserved_extent(
2736 fs_info, bytenr,
2737 blocksize);
3650860b
JB
2738 if (ret) {
2739 free_extent_buffer(next);
2740 return ret;
2741 }
e02119d5
CM
2742 }
2743 free_extent_buffer(next);
2744 continue;
2745 }
581c1760 2746 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2747 if (ret) {
2748 free_extent_buffer(next);
2749 return ret;
2750 }
e02119d5
CM
2751
2752 WARN_ON(*level <= 0);
2753 if (path->nodes[*level-1])
2754 free_extent_buffer(path->nodes[*level-1]);
2755 path->nodes[*level-1] = next;
2756 *level = btrfs_header_level(next);
2757 path->slots[*level] = 0;
2758 cond_resched();
2759 }
2760 WARN_ON(*level < 0);
2761 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2762
4a500fd1 2763 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2764
2765 cond_resched();
2766 return 0;
2767}
2768
d397712b 2769static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2770 struct btrfs_root *root,
2771 struct btrfs_path *path, int *level,
2772 struct walk_control *wc)
2773{
0b246afa 2774 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2775 u64 root_owner;
e02119d5
CM
2776 int i;
2777 int slot;
2778 int ret;
2779
d397712b 2780 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2781 slot = path->slots[i];
4a500fd1 2782 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2783 path->slots[i]++;
2784 *level = i;
2785 WARN_ON(*level == 0);
2786 return 0;
2787 } else {
31840ae1
ZY
2788 struct extent_buffer *parent;
2789 if (path->nodes[*level] == root->node)
2790 parent = path->nodes[*level];
2791 else
2792 parent = path->nodes[*level + 1];
2793
2794 root_owner = btrfs_header_owner(parent);
1e5063d0 2795 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
1e5063d0
MF
2798 if (ret)
2799 return ret;
2800
e02119d5
CM
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
681ae509
JB
2806 if (trans) {
2807 btrfs_tree_lock(next);
8bead258 2808 btrfs_set_lock_blocking_write(next);
6a884d7d 2809 btrfs_clean_tree_block(next);
681ae509
JB
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
1846430c
LB
2812 } else {
2813 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2814 clear_extent_buffer_dirty(next);
681ae509 2815 }
e02119d5 2816
e02119d5 2817 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2818 ret = btrfs_free_and_pin_reserved_extent(
2819 fs_info,
e02119d5 2820 path->nodes[*level]->start,
d00aff00 2821 path->nodes[*level]->len);
3650860b
JB
2822 if (ret)
2823 return ret;
e02119d5
CM
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2ff7e61e 2841 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
e02119d5
CM
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
db5b493a
TI
2849 if (!path)
2850 return -ENOMEM;
e02119d5
CM
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
67439dad 2855 atomic_inc(&log->node->refs);
e02119d5
CM
2856 path->slots[level] = 0;
2857
d397712b 2858 while (1) {
e02119d5
CM
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
79787eaa 2862 if (wret < 0) {
e02119d5 2863 ret = wret;
79787eaa
JM
2864 goto out;
2865 }
e02119d5
CM
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
79787eaa 2870 if (wret < 0) {
e02119d5 2871 ret = wret;
79787eaa
JM
2872 goto out;
2873 }
e02119d5
CM
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
79787eaa 2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
79787eaa
JM
2881 if (ret)
2882 goto out;
e02119d5
CM
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
681ae509
JB
2888 if (trans) {
2889 btrfs_tree_lock(next);
8bead258 2890 btrfs_set_lock_blocking_write(next);
6a884d7d 2891 btrfs_clean_tree_block(next);
681ae509
JB
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
1846430c
LB
2894 } else {
2895 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 clear_extent_buffer_dirty(next);
681ae509 2897 }
e02119d5 2898
e02119d5
CM
2899 WARN_ON(log->root_key.objectid !=
2900 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2901 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2902 next->start, next->len);
3650860b
JB
2903 if (ret)
2904 goto out;
e02119d5
CM
2905 }
2906 }
2907
79787eaa 2908out:
e02119d5 2909 btrfs_free_path(path);
e02119d5
CM
2910 return ret;
2911}
2912
7237f183
YZ
2913/*
2914 * helper function to update the item for a given subvolumes log root
2915 * in the tree of log roots
2916 */
2917static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2918 struct btrfs_root *log,
2919 struct btrfs_root_item *root_item)
7237f183 2920{
0b246afa 2921 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2922 int ret;
2923
2924 if (log->log_transid == 1) {
2925 /* insert root item on the first sync */
0b246afa 2926 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2927 &log->root_key, root_item);
7237f183 2928 } else {
0b246afa 2929 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2930 &log->root_key, root_item);
7237f183
YZ
2931 }
2932 return ret;
2933}
2934
60d53eb3 2935static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2936{
2937 DEFINE_WAIT(wait);
7237f183 2938 int index = transid % 2;
e02119d5 2939
7237f183
YZ
2940 /*
2941 * we only allow two pending log transactions at a time,
2942 * so we know that if ours is more than 2 older than the
2943 * current transaction, we're done
2944 */
49e83f57 2945 for (;;) {
7237f183
YZ
2946 prepare_to_wait(&root->log_commit_wait[index],
2947 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2948
49e83f57
LB
2949 if (!(root->log_transid_committed < transid &&
2950 atomic_read(&root->log_commit[index])))
2951 break;
12fcfd22 2952
49e83f57
LB
2953 mutex_unlock(&root->log_mutex);
2954 schedule();
7237f183 2955 mutex_lock(&root->log_mutex);
49e83f57
LB
2956 }
2957 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2958}
2959
60d53eb3 2960static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2961{
2962 DEFINE_WAIT(wait);
8b050d35 2963
49e83f57
LB
2964 for (;;) {
2965 prepare_to_wait(&root->log_writer_wait, &wait,
2966 TASK_UNINTERRUPTIBLE);
2967 if (!atomic_read(&root->log_writers))
2968 break;
2969
7237f183 2970 mutex_unlock(&root->log_mutex);
49e83f57 2971 schedule();
575849ec 2972 mutex_lock(&root->log_mutex);
7237f183 2973 }
49e83f57 2974 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2975}
2976
8b050d35
MX
2977static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2978 struct btrfs_log_ctx *ctx)
2979{
2980 if (!ctx)
2981 return;
2982
2983 mutex_lock(&root->log_mutex);
2984 list_del_init(&ctx->list);
2985 mutex_unlock(&root->log_mutex);
2986}
2987
2988/*
2989 * Invoked in log mutex context, or be sure there is no other task which
2990 * can access the list.
2991 */
2992static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2993 int index, int error)
2994{
2995 struct btrfs_log_ctx *ctx;
570dd450 2996 struct btrfs_log_ctx *safe;
8b050d35 2997
570dd450
CM
2998 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2999 list_del_init(&ctx->list);
8b050d35 3000 ctx->log_ret = error;
570dd450 3001 }
8b050d35
MX
3002
3003 INIT_LIST_HEAD(&root->log_ctxs[index]);
3004}
3005
e02119d5
CM
3006/*
3007 * btrfs_sync_log does sends a given tree log down to the disk and
3008 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3009 * you know that any inodes previously logged are safely on disk only
3010 * if it returns 0.
3011 *
3012 * Any other return value means you need to call btrfs_commit_transaction.
3013 * Some of the edge cases for fsyncing directories that have had unlinks
3014 * or renames done in the past mean that sometimes the only safe
3015 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3016 * that has happened.
e02119d5
CM
3017 */
3018int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3019 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3020{
7237f183
YZ
3021 int index1;
3022 int index2;
8cef4e16 3023 int mark;
e02119d5 3024 int ret;
0b246afa 3025 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3026 struct btrfs_root *log = root->log_root;
0b246afa 3027 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3028 struct btrfs_root_item new_root_item;
bb14a59b 3029 int log_transid = 0;
8b050d35 3030 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3031 struct blk_plug plug;
e02119d5 3032
7237f183 3033 mutex_lock(&root->log_mutex);
d1433deb
MX
3034 log_transid = ctx->log_transid;
3035 if (root->log_transid_committed >= log_transid) {
3036 mutex_unlock(&root->log_mutex);
3037 return ctx->log_ret;
3038 }
3039
3040 index1 = log_transid % 2;
7237f183 3041 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3042 wait_log_commit(root, log_transid);
7237f183 3043 mutex_unlock(&root->log_mutex);
8b050d35 3044 return ctx->log_ret;
e02119d5 3045 }
d1433deb 3046 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3047 atomic_set(&root->log_commit[index1], 1);
3048
3049 /* wait for previous tree log sync to complete */
3050 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3051 wait_log_commit(root, log_transid - 1);
48cab2e0 3052
86df7eb9 3053 while (1) {
2ecb7923 3054 int batch = atomic_read(&root->log_batch);
cd354ad6 3055 /* when we're on an ssd, just kick the log commit out */
0b246afa 3056 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3057 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3058 mutex_unlock(&root->log_mutex);
3059 schedule_timeout_uninterruptible(1);
3060 mutex_lock(&root->log_mutex);
3061 }
60d53eb3 3062 wait_for_writer(root);
2ecb7923 3063 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3064 break;
3065 }
e02119d5 3066
12fcfd22 3067 /* bail out if we need to do a full commit */
4884b8e8 3068 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3069 ret = -EAGAIN;
3070 mutex_unlock(&root->log_mutex);
3071 goto out;
3072 }
3073
8cef4e16
YZ
3074 if (log_transid % 2 == 0)
3075 mark = EXTENT_DIRTY;
3076 else
3077 mark = EXTENT_NEW;
3078
690587d1
CM
3079 /* we start IO on all the marked extents here, but we don't actually
3080 * wait for them until later.
3081 */
c6adc9cc 3082 blk_start_plug(&plug);
2ff7e61e 3083 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3084 if (ret) {
c6adc9cc 3085 blk_finish_plug(&plug);
66642832 3086 btrfs_abort_transaction(trans, ret);
90787766 3087 btrfs_set_log_full_commit(trans);
79787eaa
JM
3088 mutex_unlock(&root->log_mutex);
3089 goto out;
3090 }
7237f183 3091
4203e968
JB
3092 /*
3093 * We _must_ update under the root->log_mutex in order to make sure we
3094 * have a consistent view of the log root we are trying to commit at
3095 * this moment.
3096 *
3097 * We _must_ copy this into a local copy, because we are not holding the
3098 * log_root_tree->log_mutex yet. This is important because when we
3099 * commit the log_root_tree we must have a consistent view of the
3100 * log_root_tree when we update the super block to point at the
3101 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3102 * with the commit and possibly point at the new block which we may not
3103 * have written out.
3104 */
5d4f98a2 3105 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3106 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3107
7237f183
YZ
3108 root->log_transid++;
3109 log->log_transid = root->log_transid;
ff782e0a 3110 root->log_start_pid = 0;
7237f183 3111 /*
8cef4e16
YZ
3112 * IO has been started, blocks of the log tree have WRITTEN flag set
3113 * in their headers. new modifications of the log will be written to
3114 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3115 */
3116 mutex_unlock(&root->log_mutex);
3117
28a23593 3118 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3119
7237f183 3120 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3121 atomic_inc(&log_root_tree->log_batch);
7237f183 3122 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3123
3124 index2 = log_root_tree->log_transid % 2;
3125 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3126 root_log_ctx.log_transid = log_root_tree->log_transid;
3127
7237f183
YZ
3128 mutex_unlock(&log_root_tree->log_mutex);
3129
7237f183 3130 mutex_lock(&log_root_tree->log_mutex);
4203e968
JB
3131
3132 /*
3133 * Now we are safe to update the log_root_tree because we're under the
3134 * log_mutex, and we're a current writer so we're holding the commit
3135 * open until we drop the log_mutex.
3136 */
3137 ret = update_log_root(trans, log, &new_root_item);
3138
7237f183 3139 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3140 /* atomic_dec_and_test implies a barrier */
3141 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3142 }
3143
4a500fd1 3144 if (ret) {
d1433deb
MX
3145 if (!list_empty(&root_log_ctx.list))
3146 list_del_init(&root_log_ctx.list);
3147
c6adc9cc 3148 blk_finish_plug(&plug);
90787766 3149 btrfs_set_log_full_commit(trans);
995946dd 3150
79787eaa 3151 if (ret != -ENOSPC) {
66642832 3152 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3153 mutex_unlock(&log_root_tree->log_mutex);
3154 goto out;
3155 }
bf89d38f 3156 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3157 mutex_unlock(&log_root_tree->log_mutex);
3158 ret = -EAGAIN;
3159 goto out;
3160 }
3161
d1433deb 3162 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3163 blk_finish_plug(&plug);
cbd60aa7 3164 list_del_init(&root_log_ctx.list);
d1433deb
MX
3165 mutex_unlock(&log_root_tree->log_mutex);
3166 ret = root_log_ctx.log_ret;
3167 goto out;
3168 }
8b050d35 3169
d1433deb 3170 index2 = root_log_ctx.log_transid % 2;
7237f183 3171 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3172 blk_finish_plug(&plug);
bf89d38f 3173 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3174 wait_log_commit(log_root_tree,
d1433deb 3175 root_log_ctx.log_transid);
7237f183 3176 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3177 if (!ret)
3178 ret = root_log_ctx.log_ret;
7237f183
YZ
3179 goto out;
3180 }
d1433deb 3181 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3182 atomic_set(&log_root_tree->log_commit[index2], 1);
3183
12fcfd22 3184 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3185 wait_log_commit(log_root_tree,
d1433deb 3186 root_log_ctx.log_transid - 1);
12fcfd22
CM
3187 }
3188
60d53eb3 3189 wait_for_writer(log_root_tree);
7237f183 3190
12fcfd22
CM
3191 /*
3192 * now that we've moved on to the tree of log tree roots,
3193 * check the full commit flag again
3194 */
4884b8e8 3195 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3196 blk_finish_plug(&plug);
bf89d38f 3197 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3198 mutex_unlock(&log_root_tree->log_mutex);
3199 ret = -EAGAIN;
3200 goto out_wake_log_root;
3201 }
7237f183 3202
2ff7e61e 3203 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3204 &log_root_tree->dirty_log_pages,
3205 EXTENT_DIRTY | EXTENT_NEW);
3206 blk_finish_plug(&plug);
79787eaa 3207 if (ret) {
90787766 3208 btrfs_set_log_full_commit(trans);
66642832 3209 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3210 mutex_unlock(&log_root_tree->log_mutex);
3211 goto out_wake_log_root;
3212 }
bf89d38f 3213 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3214 if (!ret)
bf89d38f
JM
3215 ret = btrfs_wait_tree_log_extents(log_root_tree,
3216 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3217 if (ret) {
90787766 3218 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3219 mutex_unlock(&log_root_tree->log_mutex);
3220 goto out_wake_log_root;
3221 }
e02119d5 3222
0b246afa
JM
3223 btrfs_set_super_log_root(fs_info->super_for_commit,
3224 log_root_tree->node->start);
3225 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3226 btrfs_header_level(log_root_tree->node));
e02119d5 3227
7237f183 3228 log_root_tree->log_transid++;
7237f183
YZ
3229 mutex_unlock(&log_root_tree->log_mutex);
3230
3231 /*
52042d8e 3232 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3233 * super here because the log_commit atomic below is protecting
3234 * us. We must be called with a transaction handle pinning
3235 * the running transaction open, so a full commit can't hop
3236 * in and cause problems either.
3237 */
eece6a9c 3238 ret = write_all_supers(fs_info, 1);
5af3e8cc 3239 if (ret) {
90787766 3240 btrfs_set_log_full_commit(trans);
66642832 3241 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3242 goto out_wake_log_root;
3243 }
7237f183 3244
257c62e1
CM
3245 mutex_lock(&root->log_mutex);
3246 if (root->last_log_commit < log_transid)
3247 root->last_log_commit = log_transid;
3248 mutex_unlock(&root->log_mutex);
3249
12fcfd22 3250out_wake_log_root:
570dd450 3251 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3252 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3253
d1433deb 3254 log_root_tree->log_transid_committed++;
7237f183 3255 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3256 mutex_unlock(&log_root_tree->log_mutex);
3257
33a9eca7 3258 /*
093258e6
DS
3259 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3260 * all the updates above are seen by the woken threads. It might not be
3261 * necessary, but proving that seems to be hard.
33a9eca7 3262 */
093258e6 3263 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3264out:
d1433deb 3265 mutex_lock(&root->log_mutex);
570dd450 3266 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3267 root->log_transid_committed++;
7237f183 3268 atomic_set(&root->log_commit[index1], 0);
d1433deb 3269 mutex_unlock(&root->log_mutex);
8b050d35 3270
33a9eca7 3271 /*
093258e6
DS
3272 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3273 * all the updates above are seen by the woken threads. It might not be
3274 * necessary, but proving that seems to be hard.
33a9eca7 3275 */
093258e6 3276 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3277 return ret;
e02119d5
CM
3278}
3279
4a500fd1
YZ
3280static void free_log_tree(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *log)
e02119d5
CM
3282{
3283 int ret;
e02119d5
CM
3284 struct walk_control wc = {
3285 .free = 1,
3286 .process_func = process_one_buffer
3287 };
3288
681ae509 3289 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3290 if (ret) {
3291 if (trans)
3292 btrfs_abort_transaction(trans, ret);
3293 else
3294 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3295 }
e02119d5 3296
59b0713a
FM
3297 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3298 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
7237f183
YZ
3299 free_extent_buffer(log->node);
3300 kfree(log);
4a500fd1
YZ
3301}
3302
3303/*
3304 * free all the extents used by the tree log. This should be called
3305 * at commit time of the full transaction
3306 */
3307int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3308{
3309 if (root->log_root) {
3310 free_log_tree(trans, root->log_root);
3311 root->log_root = NULL;
3312 }
3313 return 0;
3314}
3315
3316int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3317 struct btrfs_fs_info *fs_info)
3318{
3319 if (fs_info->log_root_tree) {
3320 free_log_tree(trans, fs_info->log_root_tree);
3321 fs_info->log_root_tree = NULL;
3322 }
e02119d5
CM
3323 return 0;
3324}
3325
803f0f64
FM
3326/*
3327 * Check if an inode was logged in the current transaction. We can't always rely
3328 * on an inode's logged_trans value, because it's an in-memory only field and
3329 * therefore not persisted. This means that its value is lost if the inode gets
3330 * evicted and loaded again from disk (in which case it has a value of 0, and
3331 * certainly it is smaller then any possible transaction ID), when that happens
3332 * the full_sync flag is set in the inode's runtime flags, so on that case we
3333 * assume eviction happened and ignore the logged_trans value, assuming the
3334 * worst case, that the inode was logged before in the current transaction.
3335 */
3336static bool inode_logged(struct btrfs_trans_handle *trans,
3337 struct btrfs_inode *inode)
3338{
3339 if (inode->logged_trans == trans->transid)
3340 return true;
3341
3342 if (inode->last_trans == trans->transid &&
3343 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3344 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3345 return true;
3346
3347 return false;
3348}
3349
e02119d5
CM
3350/*
3351 * If both a file and directory are logged, and unlinks or renames are
3352 * mixed in, we have a few interesting corners:
3353 *
3354 * create file X in dir Y
3355 * link file X to X.link in dir Y
3356 * fsync file X
3357 * unlink file X but leave X.link
3358 * fsync dir Y
3359 *
3360 * After a crash we would expect only X.link to exist. But file X
3361 * didn't get fsync'd again so the log has back refs for X and X.link.
3362 *
3363 * We solve this by removing directory entries and inode backrefs from the
3364 * log when a file that was logged in the current transaction is
3365 * unlinked. Any later fsync will include the updated log entries, and
3366 * we'll be able to reconstruct the proper directory items from backrefs.
3367 *
3368 * This optimizations allows us to avoid relogging the entire inode
3369 * or the entire directory.
3370 */
3371int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3372 struct btrfs_root *root,
3373 const char *name, int name_len,
49f34d1f 3374 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3375{
3376 struct btrfs_root *log;
3377 struct btrfs_dir_item *di;
3378 struct btrfs_path *path;
3379 int ret;
4a500fd1 3380 int err = 0;
e02119d5 3381 int bytes_del = 0;
49f34d1f 3382 u64 dir_ino = btrfs_ino(dir);
e02119d5 3383
803f0f64 3384 if (!inode_logged(trans, dir))
3a5f1d45
CM
3385 return 0;
3386
e02119d5
CM
3387 ret = join_running_log_trans(root);
3388 if (ret)
3389 return 0;
3390
49f34d1f 3391 mutex_lock(&dir->log_mutex);
e02119d5
CM
3392
3393 log = root->log_root;
3394 path = btrfs_alloc_path();
a62f44a5
TI
3395 if (!path) {
3396 err = -ENOMEM;
3397 goto out_unlock;
3398 }
2a29edc6 3399
33345d01 3400 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3401 name, name_len, -1);
4a500fd1
YZ
3402 if (IS_ERR(di)) {
3403 err = PTR_ERR(di);
3404 goto fail;
3405 }
3406 if (di) {
e02119d5
CM
3407 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 bytes_del += name_len;
3650860b
JB
3409 if (ret) {
3410 err = ret;
3411 goto fail;
3412 }
e02119d5 3413 }
b3b4aa74 3414 btrfs_release_path(path);
33345d01 3415 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3416 index, name, name_len, -1);
4a500fd1
YZ
3417 if (IS_ERR(di)) {
3418 err = PTR_ERR(di);
3419 goto fail;
3420 }
3421 if (di) {
e02119d5
CM
3422 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3423 bytes_del += name_len;
3650860b
JB
3424 if (ret) {
3425 err = ret;
3426 goto fail;
3427 }
e02119d5
CM
3428 }
3429
3430 /* update the directory size in the log to reflect the names
3431 * we have removed
3432 */
3433 if (bytes_del) {
3434 struct btrfs_key key;
3435
33345d01 3436 key.objectid = dir_ino;
e02119d5
CM
3437 key.offset = 0;
3438 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3439 btrfs_release_path(path);
e02119d5
CM
3440
3441 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3442 if (ret < 0) {
3443 err = ret;
3444 goto fail;
3445 }
e02119d5
CM
3446 if (ret == 0) {
3447 struct btrfs_inode_item *item;
3448 u64 i_size;
3449
3450 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3451 struct btrfs_inode_item);
3452 i_size = btrfs_inode_size(path->nodes[0], item);
3453 if (i_size > bytes_del)
3454 i_size -= bytes_del;
3455 else
3456 i_size = 0;
3457 btrfs_set_inode_size(path->nodes[0], item, i_size);
3458 btrfs_mark_buffer_dirty(path->nodes[0]);
3459 } else
3460 ret = 0;
b3b4aa74 3461 btrfs_release_path(path);
e02119d5 3462 }
4a500fd1 3463fail:
e02119d5 3464 btrfs_free_path(path);
a62f44a5 3465out_unlock:
49f34d1f 3466 mutex_unlock(&dir->log_mutex);
4a500fd1 3467 if (ret == -ENOSPC) {
90787766 3468 btrfs_set_log_full_commit(trans);
4a500fd1 3469 ret = 0;
79787eaa 3470 } else if (ret < 0)
66642832 3471 btrfs_abort_transaction(trans, ret);
79787eaa 3472
12fcfd22 3473 btrfs_end_log_trans(root);
e02119d5 3474
411fc6bc 3475 return err;
e02119d5
CM
3476}
3477
3478/* see comments for btrfs_del_dir_entries_in_log */
3479int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3480 struct btrfs_root *root,
3481 const char *name, int name_len,
a491abb2 3482 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3483{
3484 struct btrfs_root *log;
3485 u64 index;
3486 int ret;
3487
803f0f64 3488 if (!inode_logged(trans, inode))
3a5f1d45
CM
3489 return 0;
3490
e02119d5
CM
3491 ret = join_running_log_trans(root);
3492 if (ret)
3493 return 0;
3494 log = root->log_root;
a491abb2 3495 mutex_lock(&inode->log_mutex);
e02119d5 3496
a491abb2 3497 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3498 dirid, &index);
a491abb2 3499 mutex_unlock(&inode->log_mutex);
4a500fd1 3500 if (ret == -ENOSPC) {
90787766 3501 btrfs_set_log_full_commit(trans);
4a500fd1 3502 ret = 0;
79787eaa 3503 } else if (ret < 0 && ret != -ENOENT)
66642832 3504 btrfs_abort_transaction(trans, ret);
12fcfd22 3505 btrfs_end_log_trans(root);
e02119d5 3506
e02119d5
CM
3507 return ret;
3508}
3509
3510/*
3511 * creates a range item in the log for 'dirid'. first_offset and
3512 * last_offset tell us which parts of the key space the log should
3513 * be considered authoritative for.
3514 */
3515static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3516 struct btrfs_root *log,
3517 struct btrfs_path *path,
3518 int key_type, u64 dirid,
3519 u64 first_offset, u64 last_offset)
3520{
3521 int ret;
3522 struct btrfs_key key;
3523 struct btrfs_dir_log_item *item;
3524
3525 key.objectid = dirid;
3526 key.offset = first_offset;
3527 if (key_type == BTRFS_DIR_ITEM_KEY)
3528 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3529 else
3530 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3531 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3532 if (ret)
3533 return ret;
e02119d5
CM
3534
3535 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3536 struct btrfs_dir_log_item);
3537 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3538 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3539 btrfs_release_path(path);
e02119d5
CM
3540 return 0;
3541}
3542
3543/*
3544 * log all the items included in the current transaction for a given
3545 * directory. This also creates the range items in the log tree required
3546 * to replay anything deleted before the fsync
3547 */
3548static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3549 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3550 struct btrfs_path *path,
3551 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3552 struct btrfs_log_ctx *ctx,
e02119d5
CM
3553 u64 min_offset, u64 *last_offset_ret)
3554{
3555 struct btrfs_key min_key;
e02119d5
CM
3556 struct btrfs_root *log = root->log_root;
3557 struct extent_buffer *src;
4a500fd1 3558 int err = 0;
e02119d5
CM
3559 int ret;
3560 int i;
3561 int nritems;
3562 u64 first_offset = min_offset;
3563 u64 last_offset = (u64)-1;
684a5773 3564 u64 ino = btrfs_ino(inode);
e02119d5
CM
3565
3566 log = root->log_root;
e02119d5 3567
33345d01 3568 min_key.objectid = ino;
e02119d5
CM
3569 min_key.type = key_type;
3570 min_key.offset = min_offset;
3571
6174d3cb 3572 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3573
3574 /*
3575 * we didn't find anything from this transaction, see if there
3576 * is anything at all
3577 */
33345d01
LZ
3578 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3579 min_key.objectid = ino;
e02119d5
CM
3580 min_key.type = key_type;
3581 min_key.offset = (u64)-1;
b3b4aa74 3582 btrfs_release_path(path);
e02119d5
CM
3583 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3584 if (ret < 0) {
b3b4aa74 3585 btrfs_release_path(path);
e02119d5
CM
3586 return ret;
3587 }
33345d01 3588 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3589
3590 /* if ret == 0 there are items for this type,
3591 * create a range to tell us the last key of this type.
3592 * otherwise, there are no items in this directory after
3593 * *min_offset, and we create a range to indicate that.
3594 */
3595 if (ret == 0) {
3596 struct btrfs_key tmp;
3597 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3598 path->slots[0]);
d397712b 3599 if (key_type == tmp.type)
e02119d5 3600 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3601 }
3602 goto done;
3603 }
3604
3605 /* go backward to find any previous key */
33345d01 3606 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3607 if (ret == 0) {
3608 struct btrfs_key tmp;
3609 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3610 if (key_type == tmp.type) {
3611 first_offset = tmp.offset;
3612 ret = overwrite_item(trans, log, dst_path,
3613 path->nodes[0], path->slots[0],
3614 &tmp);
4a500fd1
YZ
3615 if (ret) {
3616 err = ret;
3617 goto done;
3618 }
e02119d5
CM
3619 }
3620 }
b3b4aa74 3621 btrfs_release_path(path);
e02119d5 3622
2cc83342
JB
3623 /*
3624 * Find the first key from this transaction again. See the note for
3625 * log_new_dir_dentries, if we're logging a directory recursively we
3626 * won't be holding its i_mutex, which means we can modify the directory
3627 * while we're logging it. If we remove an entry between our first
3628 * search and this search we'll not find the key again and can just
3629 * bail.
3630 */
e02119d5 3631 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3632 if (ret != 0)
e02119d5 3633 goto done;
e02119d5
CM
3634
3635 /*
3636 * we have a block from this transaction, log every item in it
3637 * from our directory
3638 */
d397712b 3639 while (1) {
e02119d5
CM
3640 struct btrfs_key tmp;
3641 src = path->nodes[0];
3642 nritems = btrfs_header_nritems(src);
3643 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3644 struct btrfs_dir_item *di;
3645
e02119d5
CM
3646 btrfs_item_key_to_cpu(src, &min_key, i);
3647
33345d01 3648 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3649 goto done;
3650 ret = overwrite_item(trans, log, dst_path, src, i,
3651 &min_key);
4a500fd1
YZ
3652 if (ret) {
3653 err = ret;
3654 goto done;
3655 }
2f2ff0ee
FM
3656
3657 /*
3658 * We must make sure that when we log a directory entry,
3659 * the corresponding inode, after log replay, has a
3660 * matching link count. For example:
3661 *
3662 * touch foo
3663 * mkdir mydir
3664 * sync
3665 * ln foo mydir/bar
3666 * xfs_io -c "fsync" mydir
3667 * <crash>
3668 * <mount fs and log replay>
3669 *
3670 * Would result in a fsync log that when replayed, our
3671 * file inode would have a link count of 1, but we get
3672 * two directory entries pointing to the same inode.
3673 * After removing one of the names, it would not be
3674 * possible to remove the other name, which resulted
3675 * always in stale file handle errors, and would not
3676 * be possible to rmdir the parent directory, since
3677 * its i_size could never decrement to the value
3678 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3679 */
3680 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3681 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3682 if (ctx &&
3683 (btrfs_dir_transid(src, di) == trans->transid ||
3684 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3685 tmp.type != BTRFS_ROOT_ITEM_KEY)
3686 ctx->log_new_dentries = true;
e02119d5
CM
3687 }
3688 path->slots[0] = nritems;
3689
3690 /*
3691 * look ahead to the next item and see if it is also
3692 * from this directory and from this transaction
3693 */
3694 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3695 if (ret) {
3696 if (ret == 1)
3697 last_offset = (u64)-1;
3698 else
3699 err = ret;
e02119d5
CM
3700 goto done;
3701 }
3702 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3703 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3704 last_offset = (u64)-1;
3705 goto done;
3706 }
3707 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3708 ret = overwrite_item(trans, log, dst_path,
3709 path->nodes[0], path->slots[0],
3710 &tmp);
4a500fd1
YZ
3711 if (ret)
3712 err = ret;
3713 else
3714 last_offset = tmp.offset;
e02119d5
CM
3715 goto done;
3716 }
3717 }
3718done:
b3b4aa74
DS
3719 btrfs_release_path(path);
3720 btrfs_release_path(dst_path);
e02119d5 3721
4a500fd1
YZ
3722 if (err == 0) {
3723 *last_offset_ret = last_offset;
3724 /*
3725 * insert the log range keys to indicate where the log
3726 * is valid
3727 */
3728 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3729 ino, first_offset, last_offset);
4a500fd1
YZ
3730 if (ret)
3731 err = ret;
3732 }
3733 return err;
e02119d5
CM
3734}
3735
3736/*
3737 * logging directories is very similar to logging inodes, We find all the items
3738 * from the current transaction and write them to the log.
3739 *
3740 * The recovery code scans the directory in the subvolume, and if it finds a
3741 * key in the range logged that is not present in the log tree, then it means
3742 * that dir entry was unlinked during the transaction.
3743 *
3744 * In order for that scan to work, we must include one key smaller than
3745 * the smallest logged by this transaction and one key larger than the largest
3746 * key logged by this transaction.
3747 */
3748static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3749 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3750 struct btrfs_path *path,
2f2ff0ee
FM
3751 struct btrfs_path *dst_path,
3752 struct btrfs_log_ctx *ctx)
e02119d5
CM
3753{
3754 u64 min_key;
3755 u64 max_key;
3756 int ret;
3757 int key_type = BTRFS_DIR_ITEM_KEY;
3758
3759again:
3760 min_key = 0;
3761 max_key = 0;
d397712b 3762 while (1) {
dbf39ea4
NB
3763 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3764 ctx, min_key, &max_key);
4a500fd1
YZ
3765 if (ret)
3766 return ret;
e02119d5
CM
3767 if (max_key == (u64)-1)
3768 break;
3769 min_key = max_key + 1;
3770 }
3771
3772 if (key_type == BTRFS_DIR_ITEM_KEY) {
3773 key_type = BTRFS_DIR_INDEX_KEY;
3774 goto again;
3775 }
3776 return 0;
3777}
3778
3779/*
3780 * a helper function to drop items from the log before we relog an
3781 * inode. max_key_type indicates the highest item type to remove.
3782 * This cannot be run for file data extents because it does not
3783 * free the extents they point to.
3784 */
3785static int drop_objectid_items(struct btrfs_trans_handle *trans,
3786 struct btrfs_root *log,
3787 struct btrfs_path *path,
3788 u64 objectid, int max_key_type)
3789{
3790 int ret;
3791 struct btrfs_key key;
3792 struct btrfs_key found_key;
18ec90d6 3793 int start_slot;
e02119d5
CM
3794
3795 key.objectid = objectid;
3796 key.type = max_key_type;
3797 key.offset = (u64)-1;
3798
d397712b 3799 while (1) {
e02119d5 3800 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3801 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3802 if (ret < 0)
e02119d5
CM
3803 break;
3804
3805 if (path->slots[0] == 0)
3806 break;
3807
3808 path->slots[0]--;
3809 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3810 path->slots[0]);
3811
3812 if (found_key.objectid != objectid)
3813 break;
3814
18ec90d6
JB
3815 found_key.offset = 0;
3816 found_key.type = 0;
3817 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3818 &start_slot);
cbca7d59
FM
3819 if (ret < 0)
3820 break;
18ec90d6
JB
3821
3822 ret = btrfs_del_items(trans, log, path, start_slot,
3823 path->slots[0] - start_slot + 1);
3824 /*
3825 * If start slot isn't 0 then we don't need to re-search, we've
3826 * found the last guy with the objectid in this tree.
3827 */
3828 if (ret || start_slot != 0)
65a246c5 3829 break;
b3b4aa74 3830 btrfs_release_path(path);
e02119d5 3831 }
b3b4aa74 3832 btrfs_release_path(path);
5bdbeb21
JB
3833 if (ret > 0)
3834 ret = 0;
4a500fd1 3835 return ret;
e02119d5
CM
3836}
3837
94edf4ae
JB
3838static void fill_inode_item(struct btrfs_trans_handle *trans,
3839 struct extent_buffer *leaf,
3840 struct btrfs_inode_item *item,
1a4bcf47
FM
3841 struct inode *inode, int log_inode_only,
3842 u64 logged_isize)
94edf4ae 3843{
0b1c6cca
JB
3844 struct btrfs_map_token token;
3845
c82f823c 3846 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3847
3848 if (log_inode_only) {
3849 /* set the generation to zero so the recover code
3850 * can tell the difference between an logging
3851 * just to say 'this inode exists' and a logging
3852 * to say 'update this inode with these values'
3853 */
0b1c6cca 3854 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3855 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3856 } else {
0b1c6cca
JB
3857 btrfs_set_token_inode_generation(leaf, item,
3858 BTRFS_I(inode)->generation,
3859 &token);
3860 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3861 }
3862
3863 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3864 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3865 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3866 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3867
a937b979 3868 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3869 inode->i_atime.tv_sec, &token);
a937b979 3870 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3871 inode->i_atime.tv_nsec, &token);
3872
a937b979 3873 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3874 inode->i_mtime.tv_sec, &token);
a937b979 3875 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3876 inode->i_mtime.tv_nsec, &token);
3877
a937b979 3878 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3879 inode->i_ctime.tv_sec, &token);
a937b979 3880 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3881 inode->i_ctime.tv_nsec, &token);
3882
3883 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3884 &token);
3885
c7f88c4e
JL
3886 btrfs_set_token_inode_sequence(leaf, item,
3887 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3888 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3889 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3890 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3891 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3892}
3893
a95249b3
JB
3894static int log_inode_item(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3896 struct btrfs_inode *inode)
a95249b3
JB
3897{
3898 struct btrfs_inode_item *inode_item;
a95249b3
JB
3899 int ret;
3900
efd0c405 3901 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3902 &inode->location, sizeof(*inode_item));
a95249b3
JB
3903 if (ret && ret != -EEXIST)
3904 return ret;
3905 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3906 struct btrfs_inode_item);
6d889a3b
NB
3907 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3908 0, 0);
a95249b3
JB
3909 btrfs_release_path(path);
3910 return 0;
3911}
3912
40e046ac
FM
3913static int log_csums(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *log_root,
3915 struct btrfs_ordered_sum *sums)
3916{
3917 int ret;
3918
3919 /*
3920 * Due to extent cloning, we might have logged a csum item that covers a
3921 * subrange of a cloned extent, and later we can end up logging a csum
3922 * item for a larger subrange of the same extent or the entire range.
3923 * This would leave csum items in the log tree that cover the same range
3924 * and break the searches for checksums in the log tree, resulting in
3925 * some checksums missing in the fs/subvolume tree. So just delete (or
3926 * trim and adjust) any existing csum items in the log for this range.
3927 */
3928 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3929 if (ret)
3930 return ret;
3931
3932 return btrfs_csum_file_blocks(trans, log_root, sums);
3933}
3934
31ff1cd2 3935static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3936 struct btrfs_inode *inode,
31ff1cd2 3937 struct btrfs_path *dst_path,
16e7549f 3938 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3939 int start_slot, int nr, int inode_only,
3940 u64 logged_isize)
31ff1cd2 3941{
3ffbd68c 3942 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3943 unsigned long src_offset;
3944 unsigned long dst_offset;
44d70e19 3945 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3946 struct btrfs_file_extent_item *extent;
3947 struct btrfs_inode_item *inode_item;
16e7549f
JB
3948 struct extent_buffer *src = src_path->nodes[0];
3949 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3950 int ret;
3951 struct btrfs_key *ins_keys;
3952 u32 *ins_sizes;
3953 char *ins_data;
3954 int i;
d20f7043 3955 struct list_head ordered_sums;
44d70e19 3956 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3957 bool has_extents = false;
74121f7c 3958 bool need_find_last_extent = true;
16e7549f 3959 bool done = false;
d20f7043
CM
3960
3961 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3962
3963 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3964 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3965 if (!ins_data)
3966 return -ENOMEM;
3967
16e7549f
JB
3968 first_key.objectid = (u64)-1;
3969
31ff1cd2
CM
3970 ins_sizes = (u32 *)ins_data;
3971 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3972
3973 for (i = 0; i < nr; i++) {
3974 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3975 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3976 }
3977 ret = btrfs_insert_empty_items(trans, log, dst_path,
3978 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3979 if (ret) {
3980 kfree(ins_data);
3981 return ret;
3982 }
31ff1cd2 3983
5d4f98a2 3984 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3985 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3986 dst_path->slots[0]);
3987
3988 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3989
0dde10be 3990 if (i == nr - 1)
16e7549f
JB
3991 last_key = ins_keys[i];
3992
94edf4ae 3993 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3994 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3995 dst_path->slots[0],
3996 struct btrfs_inode_item);
94edf4ae 3997 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3998 &inode->vfs_inode,
3999 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4000 logged_isize);
94edf4ae
JB
4001 } else {
4002 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4003 src_offset, ins_sizes[i]);
31ff1cd2 4004 }
94edf4ae 4005
16e7549f
JB
4006 /*
4007 * We set need_find_last_extent here in case we know we were
4008 * processing other items and then walk into the first extent in
4009 * the inode. If we don't hit an extent then nothing changes,
4010 * we'll do the last search the next time around.
4011 */
4012 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4013 has_extents = true;
74121f7c 4014 if (first_key.objectid == (u64)-1)
16e7549f
JB
4015 first_key = ins_keys[i];
4016 } else {
4017 need_find_last_extent = false;
4018 }
4019
31ff1cd2
CM
4020 /* take a reference on file data extents so that truncates
4021 * or deletes of this inode don't have to relog the inode
4022 * again
4023 */
962a298f 4024 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4025 !skip_csum) {
31ff1cd2
CM
4026 int found_type;
4027 extent = btrfs_item_ptr(src, start_slot + i,
4028 struct btrfs_file_extent_item);
4029
8e531cdf 4030 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4031 continue;
4032
31ff1cd2 4033 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4034 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4035 u64 ds, dl, cs, cl;
4036 ds = btrfs_file_extent_disk_bytenr(src,
4037 extent);
4038 /* ds == 0 is a hole */
4039 if (ds == 0)
4040 continue;
4041
4042 dl = btrfs_file_extent_disk_num_bytes(src,
4043 extent);
4044 cs = btrfs_file_extent_offset(src, extent);
4045 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4046 extent);
580afd76
CM
4047 if (btrfs_file_extent_compression(src,
4048 extent)) {
4049 cs = 0;
4050 cl = dl;
4051 }
5d4f98a2
YZ
4052
4053 ret = btrfs_lookup_csums_range(
0b246afa 4054 fs_info->csum_root,
5d4f98a2 4055 ds + cs, ds + cs + cl - 1,
a2de733c 4056 &ordered_sums, 0);
3650860b
JB
4057 if (ret) {
4058 btrfs_release_path(dst_path);
4059 kfree(ins_data);
4060 return ret;
4061 }
31ff1cd2
CM
4062 }
4063 }
31ff1cd2
CM
4064 }
4065
4066 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4067 btrfs_release_path(dst_path);
31ff1cd2 4068 kfree(ins_data);
d20f7043
CM
4069
4070 /*
4071 * we have to do this after the loop above to avoid changing the
4072 * log tree while trying to change the log tree.
4073 */
4a500fd1 4074 ret = 0;
d397712b 4075 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4076 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4077 struct btrfs_ordered_sum,
4078 list);
4a500fd1 4079 if (!ret)
40e046ac 4080 ret = log_csums(trans, log, sums);
d20f7043
CM
4081 list_del(&sums->list);
4082 kfree(sums);
4083 }
16e7549f
JB
4084
4085 if (!has_extents)
4086 return ret;
4087
74121f7c
FM
4088 if (need_find_last_extent && *last_extent == first_key.offset) {
4089 /*
4090 * We don't have any leafs between our current one and the one
4091 * we processed before that can have file extent items for our
4092 * inode (and have a generation number smaller than our current
4093 * transaction id).
4094 */
4095 need_find_last_extent = false;
4096 }
4097
16e7549f
JB
4098 /*
4099 * Because we use btrfs_search_forward we could skip leaves that were
4100 * not modified and then assume *last_extent is valid when it really
4101 * isn't. So back up to the previous leaf and read the end of the last
4102 * extent before we go and fill in holes.
4103 */
4104 if (need_find_last_extent) {
4105 u64 len;
4106
44d70e19 4107 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
4108 if (ret < 0)
4109 return ret;
4110 if (ret)
4111 goto fill_holes;
4112 if (src_path->slots[0])
4113 src_path->slots[0]--;
4114 src = src_path->nodes[0];
4115 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 4116 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4117 key.type != BTRFS_EXTENT_DATA_KEY)
4118 goto fill_holes;
4119 extent = btrfs_item_ptr(src, src_path->slots[0],
4120 struct btrfs_file_extent_item);
4121 if (btrfs_file_extent_type(src, extent) ==
4122 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4123 len = btrfs_file_extent_ram_bytes(src, extent);
16e7549f 4124 *last_extent = ALIGN(key.offset + len,
0b246afa 4125 fs_info->sectorsize);
16e7549f
JB
4126 } else {
4127 len = btrfs_file_extent_num_bytes(src, extent);
4128 *last_extent = key.offset + len;
4129 }
4130 }
4131fill_holes:
4132 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4133 * things could have happened
4134 *
4135 * 1) A merge could have happened, so we could currently be on a leaf
4136 * that holds what we were copying in the first place.
4137 * 2) A split could have happened, and now not all of the items we want
4138 * are on the same leaf.
4139 *
4140 * So we need to adjust how we search for holes, we need to drop the
4141 * path and re-search for the first extent key we found, and then walk
4142 * forward until we hit the last one we copied.
4143 */
4144 if (need_find_last_extent) {
4145 /* btrfs_prev_leaf could return 1 without releasing the path */
4146 btrfs_release_path(src_path);
f85b7379
DS
4147 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4148 src_path, 0, 0);
16e7549f
JB
4149 if (ret < 0)
4150 return ret;
4151 ASSERT(ret == 0);
4152 src = src_path->nodes[0];
4153 i = src_path->slots[0];
4154 } else {
4155 i = start_slot;
4156 }
4157
4158 /*
4159 * Ok so here we need to go through and fill in any holes we may have
4160 * to make sure that holes are punched for those areas in case they had
4161 * extents previously.
4162 */
4163 while (!done) {
4164 u64 offset, len;
4165 u64 extent_end;
4166
4167 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4168 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4169 if (ret < 0)
4170 return ret;
4171 ASSERT(ret == 0);
4172 src = src_path->nodes[0];
4173 i = 0;
8434ec46 4174 need_find_last_extent = true;
16e7549f
JB
4175 }
4176
4177 btrfs_item_key_to_cpu(src, &key, i);
4178 if (!btrfs_comp_cpu_keys(&key, &last_key))
4179 done = true;
44d70e19 4180 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4181 key.type != BTRFS_EXTENT_DATA_KEY) {
4182 i++;
4183 continue;
4184 }
4185 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4186 if (btrfs_file_extent_type(src, extent) ==
4187 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4188 len = btrfs_file_extent_ram_bytes(src, extent);
da17066c 4189 extent_end = ALIGN(key.offset + len,
0b246afa 4190 fs_info->sectorsize);
16e7549f
JB
4191 } else {
4192 len = btrfs_file_extent_num_bytes(src, extent);
4193 extent_end = key.offset + len;
4194 }
4195 i++;
4196
4197 if (*last_extent == key.offset) {
4198 *last_extent = extent_end;
4199 continue;
4200 }
4201 offset = *last_extent;
4202 len = key.offset - *last_extent;
44d70e19 4203 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4204 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4205 if (ret)
4206 break;
74121f7c 4207 *last_extent = extent_end;
16e7549f 4208 }
4ee3fad3
FM
4209
4210 /*
4211 * Check if there is a hole between the last extent found in our leaf
4212 * and the first extent in the next leaf. If there is one, we need to
4213 * log an explicit hole so that at replay time we can punch the hole.
4214 */
4215 if (ret == 0 &&
4216 key.objectid == btrfs_ino(inode) &&
4217 key.type == BTRFS_EXTENT_DATA_KEY &&
4218 i == btrfs_header_nritems(src_path->nodes[0])) {
4219 ret = btrfs_next_leaf(inode->root, src_path);
4220 need_find_last_extent = true;
4221 if (ret > 0) {
4222 ret = 0;
4223 } else if (ret == 0) {
4224 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4225 src_path->slots[0]);
4226 if (key.objectid == btrfs_ino(inode) &&
4227 key.type == BTRFS_EXTENT_DATA_KEY &&
4228 *last_extent < key.offset) {
4229 const u64 len = key.offset - *last_extent;
4230
4231 ret = btrfs_insert_file_extent(trans, log,
4232 btrfs_ino(inode),
4233 *last_extent, 0,
4234 0, len, 0, len,
4235 0, 0, 0);
ebb92906 4236 *last_extent += len;
4ee3fad3
FM
4237 }
4238 }
4239 }
16e7549f
JB
4240 /*
4241 * Need to let the callers know we dropped the path so they should
4242 * re-search.
4243 */
4244 if (!ret && need_find_last_extent)
4245 ret = 1;
4a500fd1 4246 return ret;
31ff1cd2
CM
4247}
4248
5dc562c5
JB
4249static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4250{
4251 struct extent_map *em1, *em2;
4252
4253 em1 = list_entry(a, struct extent_map, list);
4254 em2 = list_entry(b, struct extent_map, list);
4255
4256 if (em1->start < em2->start)
4257 return -1;
4258 else if (em1->start > em2->start)
4259 return 1;
4260 return 0;
4261}
4262
e7175a69
JB
4263static int log_extent_csums(struct btrfs_trans_handle *trans,
4264 struct btrfs_inode *inode,
a9ecb653 4265 struct btrfs_root *log_root,
e7175a69 4266 const struct extent_map *em)
5dc562c5 4267{
2ab28f32
JB
4268 u64 csum_offset;
4269 u64 csum_len;
8407f553
FM
4270 LIST_HEAD(ordered_sums);
4271 int ret = 0;
0aa4a17d 4272
e7175a69
JB
4273 if (inode->flags & BTRFS_INODE_NODATASUM ||
4274 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4275 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4276 return 0;
5dc562c5 4277
e7175a69 4278 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4279 if (em->compress_type) {
4280 csum_offset = 0;
8407f553 4281 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4282 } else {
e7175a69
JB
4283 csum_offset = em->mod_start - em->start;
4284 csum_len = em->mod_len;
488111aa 4285 }
2ab28f32 4286
70c8a91c 4287 /* block start is already adjusted for the file extent offset. */
a9ecb653 4288 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4289 em->block_start + csum_offset,
4290 em->block_start + csum_offset +
4291 csum_len - 1, &ordered_sums, 0);
4292 if (ret)
4293 return ret;
5dc562c5 4294
70c8a91c
JB
4295 while (!list_empty(&ordered_sums)) {
4296 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4297 struct btrfs_ordered_sum,
4298 list);
4299 if (!ret)
40e046ac 4300 ret = log_csums(trans, log_root, sums);
70c8a91c
JB
4301 list_del(&sums->list);
4302 kfree(sums);
5dc562c5
JB
4303 }
4304
70c8a91c 4305 return ret;
5dc562c5
JB
4306}
4307
8407f553 4308static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4309 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4310 const struct extent_map *em,
4311 struct btrfs_path *path,
8407f553
FM
4312 struct btrfs_log_ctx *ctx)
4313{
4314 struct btrfs_root *log = root->log_root;
4315 struct btrfs_file_extent_item *fi;
4316 struct extent_buffer *leaf;
4317 struct btrfs_map_token token;
4318 struct btrfs_key key;
4319 u64 extent_offset = em->start - em->orig_start;
4320 u64 block_len;
4321 int ret;
4322 int extent_inserted = 0;
8407f553 4323
a9ecb653 4324 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4325 if (ret)
4326 return ret;
4327
9d122629 4328 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4329 em->start + em->len, NULL, 0, 1,
4330 sizeof(*fi), &extent_inserted);
4331 if (ret)
4332 return ret;
4333
4334 if (!extent_inserted) {
9d122629 4335 key.objectid = btrfs_ino(inode);
8407f553
FM
4336 key.type = BTRFS_EXTENT_DATA_KEY;
4337 key.offset = em->start;
4338
4339 ret = btrfs_insert_empty_item(trans, log, path, &key,
4340 sizeof(*fi));
4341 if (ret)
4342 return ret;
4343 }
4344 leaf = path->nodes[0];
c82f823c 4345 btrfs_init_map_token(&token, leaf);
8407f553
FM
4346 fi = btrfs_item_ptr(leaf, path->slots[0],
4347 struct btrfs_file_extent_item);
4348
50d9aa99 4349 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4350 &token);
4351 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4352 btrfs_set_token_file_extent_type(leaf, fi,
4353 BTRFS_FILE_EXTENT_PREALLOC,
4354 &token);
4355 else
4356 btrfs_set_token_file_extent_type(leaf, fi,
4357 BTRFS_FILE_EXTENT_REG,
4358 &token);
4359
4360 block_len = max(em->block_len, em->orig_block_len);
4361 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4362 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4363 em->block_start,
4364 &token);
4365 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4366 &token);
4367 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4368 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4369 em->block_start -
4370 extent_offset, &token);
4371 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4372 &token);
4373 } else {
4374 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4375 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4376 &token);
4377 }
4378
4379 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4380 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4381 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4382 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4383 &token);
4384 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4385 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4386 btrfs_mark_buffer_dirty(leaf);
4387
4388 btrfs_release_path(path);
4389
4390 return ret;
4391}
4392
31d11b83
FM
4393/*
4394 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4395 * lose them after doing a fast fsync and replaying the log. We scan the
4396 * subvolume's root instead of iterating the inode's extent map tree because
4397 * otherwise we can log incorrect extent items based on extent map conversion.
4398 * That can happen due to the fact that extent maps are merged when they
4399 * are not in the extent map tree's list of modified extents.
4400 */
4401static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4402 struct btrfs_inode *inode,
4403 struct btrfs_path *path)
4404{
4405 struct btrfs_root *root = inode->root;
4406 struct btrfs_key key;
4407 const u64 i_size = i_size_read(&inode->vfs_inode);
4408 const u64 ino = btrfs_ino(inode);
4409 struct btrfs_path *dst_path = NULL;
4410 u64 last_extent = (u64)-1;
4411 int ins_nr = 0;
4412 int start_slot;
4413 int ret;
4414
4415 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4416 return 0;
4417
4418 key.objectid = ino;
4419 key.type = BTRFS_EXTENT_DATA_KEY;
4420 key.offset = i_size;
4421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4422 if (ret < 0)
4423 goto out;
4424
4425 while (true) {
4426 struct extent_buffer *leaf = path->nodes[0];
4427 int slot = path->slots[0];
4428
4429 if (slot >= btrfs_header_nritems(leaf)) {
4430 if (ins_nr > 0) {
4431 ret = copy_items(trans, inode, dst_path, path,
4432 &last_extent, start_slot,
4433 ins_nr, 1, 0);
4434 if (ret < 0)
4435 goto out;
4436 ins_nr = 0;
4437 }
4438 ret = btrfs_next_leaf(root, path);
4439 if (ret < 0)
4440 goto out;
4441 if (ret > 0) {
4442 ret = 0;
4443 break;
4444 }
4445 continue;
4446 }
4447
4448 btrfs_item_key_to_cpu(leaf, &key, slot);
4449 if (key.objectid > ino)
4450 break;
4451 if (WARN_ON_ONCE(key.objectid < ino) ||
4452 key.type < BTRFS_EXTENT_DATA_KEY ||
4453 key.offset < i_size) {
4454 path->slots[0]++;
4455 continue;
4456 }
4457 if (last_extent == (u64)-1) {
4458 last_extent = key.offset;
4459 /*
4460 * Avoid logging extent items logged in past fsync calls
4461 * and leading to duplicate keys in the log tree.
4462 */
4463 do {
4464 ret = btrfs_truncate_inode_items(trans,
4465 root->log_root,
4466 &inode->vfs_inode,
4467 i_size,
4468 BTRFS_EXTENT_DATA_KEY);
4469 } while (ret == -EAGAIN);
4470 if (ret)
4471 goto out;
4472 }
4473 if (ins_nr == 0)
4474 start_slot = slot;
4475 ins_nr++;
4476 path->slots[0]++;
4477 if (!dst_path) {
4478 dst_path = btrfs_alloc_path();
4479 if (!dst_path) {
4480 ret = -ENOMEM;
4481 goto out;
4482 }
4483 }
4484 }
4485 if (ins_nr > 0) {
4486 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4487 start_slot, ins_nr, 1, 0);
4488 if (ret > 0)
4489 ret = 0;
4490 }
4491out:
4492 btrfs_release_path(path);
4493 btrfs_free_path(dst_path);
4494 return ret;
4495}
4496
5dc562c5
JB
4497static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4498 struct btrfs_root *root,
9d122629 4499 struct btrfs_inode *inode,
827463c4 4500 struct btrfs_path *path,
de0ee0ed
FM
4501 struct btrfs_log_ctx *ctx,
4502 const u64 start,
4503 const u64 end)
5dc562c5 4504{
5dc562c5
JB
4505 struct extent_map *em, *n;
4506 struct list_head extents;
9d122629 4507 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4508 u64 test_gen;
4509 int ret = 0;
2ab28f32 4510 int num = 0;
5dc562c5
JB
4511
4512 INIT_LIST_HEAD(&extents);
4513
5dc562c5
JB
4514 write_lock(&tree->lock);
4515 test_gen = root->fs_info->last_trans_committed;
4516
4517 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4518 /*
4519 * Skip extents outside our logging range. It's important to do
4520 * it for correctness because if we don't ignore them, we may
4521 * log them before their ordered extent completes, and therefore
4522 * we could log them without logging their respective checksums
4523 * (the checksum items are added to the csum tree at the very
4524 * end of btrfs_finish_ordered_io()). Also leave such extents
4525 * outside of our range in the list, since we may have another
4526 * ranged fsync in the near future that needs them. If an extent
4527 * outside our range corresponds to a hole, log it to avoid
4528 * leaving gaps between extents (fsck will complain when we are
4529 * not using the NO_HOLES feature).
4530 */
4531 if ((em->start > end || em->start + em->len <= start) &&
4532 em->block_start != EXTENT_MAP_HOLE)
4533 continue;
4534
5dc562c5 4535 list_del_init(&em->list);
2ab28f32
JB
4536 /*
4537 * Just an arbitrary number, this can be really CPU intensive
4538 * once we start getting a lot of extents, and really once we
4539 * have a bunch of extents we just want to commit since it will
4540 * be faster.
4541 */
4542 if (++num > 32768) {
4543 list_del_init(&tree->modified_extents);
4544 ret = -EFBIG;
4545 goto process;
4546 }
4547
5dc562c5
JB
4548 if (em->generation <= test_gen)
4549 continue;
8c6c5928 4550
31d11b83
FM
4551 /* We log prealloc extents beyond eof later. */
4552 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4553 em->start >= i_size_read(&inode->vfs_inode))
4554 continue;
4555
ff44c6e3 4556 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4557 refcount_inc(&em->refs);
ff44c6e3 4558 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4559 list_add_tail(&em->list, &extents);
2ab28f32 4560 num++;
5dc562c5
JB
4561 }
4562
4563 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4564process:
5dc562c5
JB
4565 while (!list_empty(&extents)) {
4566 em = list_entry(extents.next, struct extent_map, list);
4567
4568 list_del_init(&em->list);
4569
4570 /*
4571 * If we had an error we just need to delete everybody from our
4572 * private list.
4573 */
ff44c6e3 4574 if (ret) {
201a9038 4575 clear_em_logging(tree, em);
ff44c6e3 4576 free_extent_map(em);
5dc562c5 4577 continue;
ff44c6e3
JB
4578 }
4579
4580 write_unlock(&tree->lock);
5dc562c5 4581
a2120a47 4582 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4583 write_lock(&tree->lock);
201a9038
JB
4584 clear_em_logging(tree, em);
4585 free_extent_map(em);
5dc562c5 4586 }
ff44c6e3
JB
4587 WARN_ON(!list_empty(&extents));
4588 write_unlock(&tree->lock);
5dc562c5 4589
5dc562c5 4590 btrfs_release_path(path);
31d11b83
FM
4591 if (!ret)
4592 ret = btrfs_log_prealloc_extents(trans, inode, path);
4593
5dc562c5
JB
4594 return ret;
4595}
4596
481b01c0 4597static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4598 struct btrfs_path *path, u64 *size_ret)
4599{
4600 struct btrfs_key key;
4601 int ret;
4602
481b01c0 4603 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4604 key.type = BTRFS_INODE_ITEM_KEY;
4605 key.offset = 0;
4606
4607 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4608 if (ret < 0) {
4609 return ret;
4610 } else if (ret > 0) {
2f2ff0ee 4611 *size_ret = 0;
1a4bcf47
FM
4612 } else {
4613 struct btrfs_inode_item *item;
4614
4615 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4616 struct btrfs_inode_item);
4617 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4618 /*
4619 * If the in-memory inode's i_size is smaller then the inode
4620 * size stored in the btree, return the inode's i_size, so
4621 * that we get a correct inode size after replaying the log
4622 * when before a power failure we had a shrinking truncate
4623 * followed by addition of a new name (rename / new hard link).
4624 * Otherwise return the inode size from the btree, to avoid
4625 * data loss when replaying a log due to previously doing a
4626 * write that expands the inode's size and logging a new name
4627 * immediately after.
4628 */
4629 if (*size_ret > inode->vfs_inode.i_size)
4630 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4631 }
4632
4633 btrfs_release_path(path);
4634 return 0;
4635}
4636
36283bf7
FM
4637/*
4638 * At the moment we always log all xattrs. This is to figure out at log replay
4639 * time which xattrs must have their deletion replayed. If a xattr is missing
4640 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4641 * because if a xattr is deleted, the inode is fsynced and a power failure
4642 * happens, causing the log to be replayed the next time the fs is mounted,
4643 * we want the xattr to not exist anymore (same behaviour as other filesystems
4644 * with a journal, ext3/4, xfs, f2fs, etc).
4645 */
4646static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4647 struct btrfs_root *root,
1a93c36a 4648 struct btrfs_inode *inode,
36283bf7
FM
4649 struct btrfs_path *path,
4650 struct btrfs_path *dst_path)
4651{
4652 int ret;
4653 struct btrfs_key key;
1a93c36a 4654 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4655 int ins_nr = 0;
4656 int start_slot = 0;
4657
4658 key.objectid = ino;
4659 key.type = BTRFS_XATTR_ITEM_KEY;
4660 key.offset = 0;
4661
4662 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4663 if (ret < 0)
4664 return ret;
4665
4666 while (true) {
4667 int slot = path->slots[0];
4668 struct extent_buffer *leaf = path->nodes[0];
4669 int nritems = btrfs_header_nritems(leaf);
4670
4671 if (slot >= nritems) {
4672 if (ins_nr > 0) {
4673 u64 last_extent = 0;
4674
1a93c36a 4675 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4676 &last_extent, start_slot,
4677 ins_nr, 1, 0);
4678 /* can't be 1, extent items aren't processed */
4679 ASSERT(ret <= 0);
4680 if (ret < 0)
4681 return ret;
4682 ins_nr = 0;
4683 }
4684 ret = btrfs_next_leaf(root, path);
4685 if (ret < 0)
4686 return ret;
4687 else if (ret > 0)
4688 break;
4689 continue;
4690 }
4691
4692 btrfs_item_key_to_cpu(leaf, &key, slot);
4693 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4694 break;
4695
4696 if (ins_nr == 0)
4697 start_slot = slot;
4698 ins_nr++;
4699 path->slots[0]++;
4700 cond_resched();
4701 }
4702 if (ins_nr > 0) {
4703 u64 last_extent = 0;
4704
1a93c36a 4705 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4706 &last_extent, start_slot,
4707 ins_nr, 1, 0);
4708 /* can't be 1, extent items aren't processed */
4709 ASSERT(ret <= 0);
4710 if (ret < 0)
4711 return ret;
4712 }
4713
4714 return 0;
4715}
4716
a89ca6f2
FM
4717/*
4718 * If the no holes feature is enabled we need to make sure any hole between the
4719 * last extent and the i_size of our inode is explicitly marked in the log. This
4720 * is to make sure that doing something like:
4721 *
4722 * 1) create file with 128Kb of data
4723 * 2) truncate file to 64Kb
4724 * 3) truncate file to 256Kb
4725 * 4) fsync file
4726 * 5) <crash/power failure>
4727 * 6) mount fs and trigger log replay
4728 *
4729 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4730 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4731 * file correspond to a hole. The presence of explicit holes in a log tree is
4732 * what guarantees that log replay will remove/adjust file extent items in the
4733 * fs/subvol tree.
4734 *
4735 * Here we do not need to care about holes between extents, that is already done
4736 * by copy_items(). We also only need to do this in the full sync path, where we
4737 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4738 * lookup the list of modified extent maps and if any represents a hole, we
4739 * insert a corresponding extent representing a hole in the log tree.
4740 */
4741static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4742 struct btrfs_root *root,
a0308dd7 4743 struct btrfs_inode *inode,
a89ca6f2
FM
4744 struct btrfs_path *path)
4745{
0b246afa 4746 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4747 int ret;
4748 struct btrfs_key key;
4749 u64 hole_start;
4750 u64 hole_size;
4751 struct extent_buffer *leaf;
4752 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4753 const u64 ino = btrfs_ino(inode);
4754 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4755
0b246afa 4756 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4757 return 0;
4758
4759 key.objectid = ino;
4760 key.type = BTRFS_EXTENT_DATA_KEY;
4761 key.offset = (u64)-1;
4762
4763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4764 ASSERT(ret != 0);
4765 if (ret < 0)
4766 return ret;
4767
4768 ASSERT(path->slots[0] > 0);
4769 path->slots[0]--;
4770 leaf = path->nodes[0];
4771 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4772
4773 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4774 /* inode does not have any extents */
4775 hole_start = 0;
4776 hole_size = i_size;
4777 } else {
4778 struct btrfs_file_extent_item *extent;
4779 u64 len;
4780
4781 /*
4782 * If there's an extent beyond i_size, an explicit hole was
4783 * already inserted by copy_items().
4784 */
4785 if (key.offset >= i_size)
4786 return 0;
4787
4788 extent = btrfs_item_ptr(leaf, path->slots[0],
4789 struct btrfs_file_extent_item);
4790
4791 if (btrfs_file_extent_type(leaf, extent) ==
0ccc3876 4792 BTRFS_FILE_EXTENT_INLINE)
a89ca6f2 4793 return 0;
a89ca6f2
FM
4794
4795 len = btrfs_file_extent_num_bytes(leaf, extent);
4796 /* Last extent goes beyond i_size, no need to log a hole. */
4797 if (key.offset + len > i_size)
4798 return 0;
4799 hole_start = key.offset + len;
4800 hole_size = i_size - hole_start;
4801 }
4802 btrfs_release_path(path);
4803
4804 /* Last extent ends at i_size. */
4805 if (hole_size == 0)
4806 return 0;
4807
0b246afa 4808 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4809 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4810 hole_size, 0, hole_size, 0, 0, 0);
4811 return ret;
4812}
4813
56f23fdb
FM
4814/*
4815 * When we are logging a new inode X, check if it doesn't have a reference that
4816 * matches the reference from some other inode Y created in a past transaction
4817 * and that was renamed in the current transaction. If we don't do this, then at
4818 * log replay time we can lose inode Y (and all its files if it's a directory):
4819 *
4820 * mkdir /mnt/x
4821 * echo "hello world" > /mnt/x/foobar
4822 * sync
4823 * mv /mnt/x /mnt/y
4824 * mkdir /mnt/x # or touch /mnt/x
4825 * xfs_io -c fsync /mnt/x
4826 * <power fail>
4827 * mount fs, trigger log replay
4828 *
4829 * After the log replay procedure, we would lose the first directory and all its
4830 * files (file foobar).
4831 * For the case where inode Y is not a directory we simply end up losing it:
4832 *
4833 * echo "123" > /mnt/foo
4834 * sync
4835 * mv /mnt/foo /mnt/bar
4836 * echo "abc" > /mnt/foo
4837 * xfs_io -c fsync /mnt/foo
4838 * <power fail>
4839 *
4840 * We also need this for cases where a snapshot entry is replaced by some other
4841 * entry (file or directory) otherwise we end up with an unreplayable log due to
4842 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4843 * if it were a regular entry:
4844 *
4845 * mkdir /mnt/x
4846 * btrfs subvolume snapshot /mnt /mnt/x/snap
4847 * btrfs subvolume delete /mnt/x/snap
4848 * rmdir /mnt/x
4849 * mkdir /mnt/x
4850 * fsync /mnt/x or fsync some new file inside it
4851 * <power fail>
4852 *
4853 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4854 * the same transaction.
4855 */
4856static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4857 const int slot,
4858 const struct btrfs_key *key,
4791c8f1 4859 struct btrfs_inode *inode,
a3baaf0d 4860 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4861{
4862 int ret;
4863 struct btrfs_path *search_path;
4864 char *name = NULL;
4865 u32 name_len = 0;
4866 u32 item_size = btrfs_item_size_nr(eb, slot);
4867 u32 cur_offset = 0;
4868 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4869
4870 search_path = btrfs_alloc_path();
4871 if (!search_path)
4872 return -ENOMEM;
4873 search_path->search_commit_root = 1;
4874 search_path->skip_locking = 1;
4875
4876 while (cur_offset < item_size) {
4877 u64 parent;
4878 u32 this_name_len;
4879 u32 this_len;
4880 unsigned long name_ptr;
4881 struct btrfs_dir_item *di;
4882
4883 if (key->type == BTRFS_INODE_REF_KEY) {
4884 struct btrfs_inode_ref *iref;
4885
4886 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4887 parent = key->offset;
4888 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4889 name_ptr = (unsigned long)(iref + 1);
4890 this_len = sizeof(*iref) + this_name_len;
4891 } else {
4892 struct btrfs_inode_extref *extref;
4893
4894 extref = (struct btrfs_inode_extref *)(ptr +
4895 cur_offset);
4896 parent = btrfs_inode_extref_parent(eb, extref);
4897 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4898 name_ptr = (unsigned long)&extref->name;
4899 this_len = sizeof(*extref) + this_name_len;
4900 }
4901
4902 if (this_name_len > name_len) {
4903 char *new_name;
4904
4905 new_name = krealloc(name, this_name_len, GFP_NOFS);
4906 if (!new_name) {
4907 ret = -ENOMEM;
4908 goto out;
4909 }
4910 name_len = this_name_len;
4911 name = new_name;
4912 }
4913
4914 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4915 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4916 parent, name, this_name_len, 0);
56f23fdb 4917 if (di && !IS_ERR(di)) {
44f714da
FM
4918 struct btrfs_key di_key;
4919
4920 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4921 di, &di_key);
4922 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4923 if (di_key.objectid != key->objectid) {
4924 ret = 1;
4925 *other_ino = di_key.objectid;
a3baaf0d 4926 *other_parent = parent;
6b5fc433
FM
4927 } else {
4928 ret = 0;
4929 }
44f714da
FM
4930 } else {
4931 ret = -EAGAIN;
4932 }
56f23fdb
FM
4933 goto out;
4934 } else if (IS_ERR(di)) {
4935 ret = PTR_ERR(di);
4936 goto out;
4937 }
4938 btrfs_release_path(search_path);
4939
4940 cur_offset += this_len;
4941 }
4942 ret = 0;
4943out:
4944 btrfs_free_path(search_path);
4945 kfree(name);
4946 return ret;
4947}
4948
6b5fc433
FM
4949struct btrfs_ino_list {
4950 u64 ino;
a3baaf0d 4951 u64 parent;
6b5fc433
FM
4952 struct list_head list;
4953};
4954
4955static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4956 struct btrfs_root *root,
4957 struct btrfs_path *path,
4958 struct btrfs_log_ctx *ctx,
a3baaf0d 4959 u64 ino, u64 parent)
6b5fc433
FM
4960{
4961 struct btrfs_ino_list *ino_elem;
4962 LIST_HEAD(inode_list);
4963 int ret = 0;
4964
4965 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4966 if (!ino_elem)
4967 return -ENOMEM;
4968 ino_elem->ino = ino;
a3baaf0d 4969 ino_elem->parent = parent;
6b5fc433
FM
4970 list_add_tail(&ino_elem->list, &inode_list);
4971
4972 while (!list_empty(&inode_list)) {
4973 struct btrfs_fs_info *fs_info = root->fs_info;
4974 struct btrfs_key key;
4975 struct inode *inode;
4976
4977 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4978 list);
4979 ino = ino_elem->ino;
a3baaf0d 4980 parent = ino_elem->parent;
6b5fc433
FM
4981 list_del(&ino_elem->list);
4982 kfree(ino_elem);
4983 if (ret)
4984 continue;
4985
4986 btrfs_release_path(path);
4987
4988 key.objectid = ino;
4989 key.type = BTRFS_INODE_ITEM_KEY;
4990 key.offset = 0;
4c66e0d4 4991 inode = btrfs_iget(fs_info->sb, &key, root);
6b5fc433
FM
4992 /*
4993 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4994 * deleted in the current transaction, we need to log its parent
4995 * directory.
6b5fc433
FM
4996 */
4997 if (IS_ERR(inode)) {
4998 ret = PTR_ERR(inode);
a3baaf0d
FM
4999 if (ret == -ENOENT) {
5000 key.objectid = parent;
4c66e0d4 5001 inode = btrfs_iget(fs_info->sb, &key, root);
a3baaf0d
FM
5002 if (IS_ERR(inode)) {
5003 ret = PTR_ERR(inode);
5004 } else {
5005 ret = btrfs_log_inode(trans, root,
5006 BTRFS_I(inode),
5007 LOG_OTHER_INODE_ALL,
5008 0, LLONG_MAX, ctx);
410f954c 5009 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5010 }
5011 }
6b5fc433
FM
5012 continue;
5013 }
5014 /*
5015 * We are safe logging the other inode without acquiring its
5016 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5017 * are safe against concurrent renames of the other inode as
5018 * well because during a rename we pin the log and update the
5019 * log with the new name before we unpin it.
5020 */
5021 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5022 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5023 if (ret) {
410f954c 5024 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5025 continue;
5026 }
5027
5028 key.objectid = ino;
5029 key.type = BTRFS_INODE_REF_KEY;
5030 key.offset = 0;
5031 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5032 if (ret < 0) {
410f954c 5033 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5034 continue;
5035 }
5036
5037 while (true) {
5038 struct extent_buffer *leaf = path->nodes[0];
5039 int slot = path->slots[0];
5040 u64 other_ino = 0;
a3baaf0d 5041 u64 other_parent = 0;
6b5fc433
FM
5042
5043 if (slot >= btrfs_header_nritems(leaf)) {
5044 ret = btrfs_next_leaf(root, path);
5045 if (ret < 0) {
5046 break;
5047 } else if (ret > 0) {
5048 ret = 0;
5049 break;
5050 }
5051 continue;
5052 }
5053
5054 btrfs_item_key_to_cpu(leaf, &key, slot);
5055 if (key.objectid != ino ||
5056 (key.type != BTRFS_INODE_REF_KEY &&
5057 key.type != BTRFS_INODE_EXTREF_KEY)) {
5058 ret = 0;
5059 break;
5060 }
5061
5062 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5063 BTRFS_I(inode), &other_ino,
5064 &other_parent);
6b5fc433
FM
5065 if (ret < 0)
5066 break;
5067 if (ret > 0) {
5068 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5069 if (!ino_elem) {
5070 ret = -ENOMEM;
5071 break;
5072 }
5073 ino_elem->ino = other_ino;
a3baaf0d 5074 ino_elem->parent = other_parent;
6b5fc433
FM
5075 list_add_tail(&ino_elem->list, &inode_list);
5076 ret = 0;
5077 }
5078 path->slots[0]++;
5079 }
410f954c 5080 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5081 }
5082
5083 return ret;
5084}
5085
e02119d5
CM
5086/* log a single inode in the tree log.
5087 * At least one parent directory for this inode must exist in the tree
5088 * or be logged already.
5089 *
5090 * Any items from this inode changed by the current transaction are copied
5091 * to the log tree. An extra reference is taken on any extents in this
5092 * file, allowing us to avoid a whole pile of corner cases around logging
5093 * blocks that have been removed from the tree.
5094 *
5095 * See LOG_INODE_ALL and related defines for a description of what inode_only
5096 * does.
5097 *
5098 * This handles both files and directories.
5099 */
12fcfd22 5100static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5101 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
5102 int inode_only,
5103 const loff_t start,
8407f553
FM
5104 const loff_t end,
5105 struct btrfs_log_ctx *ctx)
e02119d5 5106{
0b246afa 5107 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5108 struct btrfs_path *path;
5109 struct btrfs_path *dst_path;
5110 struct btrfs_key min_key;
5111 struct btrfs_key max_key;
5112 struct btrfs_root *log = root->log_root;
16e7549f 5113 u64 last_extent = 0;
4a500fd1 5114 int err = 0;
e02119d5 5115 int ret;
3a5f1d45 5116 int nritems;
31ff1cd2
CM
5117 int ins_start_slot = 0;
5118 int ins_nr;
5dc562c5 5119 bool fast_search = false;
a59108a7
NB
5120 u64 ino = btrfs_ino(inode);
5121 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5122 u64 logged_isize = 0;
e4545de5 5123 bool need_log_inode_item = true;
9a8fca62 5124 bool xattrs_logged = false;
a3baaf0d 5125 bool recursive_logging = false;
e02119d5 5126
e02119d5 5127 path = btrfs_alloc_path();
5df67083
TI
5128 if (!path)
5129 return -ENOMEM;
e02119d5 5130 dst_path = btrfs_alloc_path();
5df67083
TI
5131 if (!dst_path) {
5132 btrfs_free_path(path);
5133 return -ENOMEM;
5134 }
e02119d5 5135
33345d01 5136 min_key.objectid = ino;
e02119d5
CM
5137 min_key.type = BTRFS_INODE_ITEM_KEY;
5138 min_key.offset = 0;
5139
33345d01 5140 max_key.objectid = ino;
12fcfd22 5141
12fcfd22 5142
5dc562c5 5143 /* today the code can only do partial logging of directories */
a59108a7 5144 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5145 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5146 &inode->runtime_flags) &&
781feef7 5147 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5148 max_key.type = BTRFS_XATTR_ITEM_KEY;
5149 else
5150 max_key.type = (u8)-1;
5151 max_key.offset = (u64)-1;
5152
2c2c452b
FM
5153 /*
5154 * Only run delayed items if we are a dir or a new file.
5155 * Otherwise commit the delayed inode only, which is needed in
5156 * order for the log replay code to mark inodes for link count
5157 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5158 */
a59108a7
NB
5159 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5160 inode->generation > fs_info->last_trans_committed)
5161 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5162 else
a59108a7 5163 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5164
5165 if (ret) {
5166 btrfs_free_path(path);
5167 btrfs_free_path(dst_path);
5168 return ret;
16cdcec7
MX
5169 }
5170
a3baaf0d
FM
5171 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5172 recursive_logging = true;
5173 if (inode_only == LOG_OTHER_INODE)
5174 inode_only = LOG_INODE_EXISTS;
5175 else
5176 inode_only = LOG_INODE_ALL;
a59108a7 5177 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5178 } else {
a59108a7 5179 mutex_lock(&inode->log_mutex);
781feef7 5180 }
e02119d5
CM
5181
5182 /*
5183 * a brute force approach to making sure we get the most uptodate
5184 * copies of everything.
5185 */
a59108a7 5186 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5187 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5188
4f764e51
FM
5189 if (inode_only == LOG_INODE_EXISTS)
5190 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5191 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5192 } else {
1a4bcf47
FM
5193 if (inode_only == LOG_INODE_EXISTS) {
5194 /*
5195 * Make sure the new inode item we write to the log has
5196 * the same isize as the current one (if it exists).
5197 * This is necessary to prevent data loss after log
5198 * replay, and also to prevent doing a wrong expanding
5199 * truncate - for e.g. create file, write 4K into offset
5200 * 0, fsync, write 4K into offset 4096, add hard link,
5201 * fsync some other file (to sync log), power fail - if
5202 * we use the inode's current i_size, after log replay
5203 * we get a 8Kb file, with the last 4Kb extent as a hole
5204 * (zeroes), as if an expanding truncate happened,
5205 * instead of getting a file of 4Kb only.
5206 */
a59108a7 5207 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5208 if (err)
5209 goto out_unlock;
5210 }
a742994a 5211 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5212 &inode->runtime_flags)) {
a742994a 5213 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5214 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5215 ret = drop_objectid_items(trans, log, path, ino,
5216 max_key.type);
5217 } else {
5218 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5219 &inode->runtime_flags);
a742994a 5220 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5221 &inode->runtime_flags);
28ed1345
CM
5222 while(1) {
5223 ret = btrfs_truncate_inode_items(trans,
a59108a7 5224 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5225 if (ret != -EAGAIN)
5226 break;
5227 }
a742994a 5228 }
4f764e51 5229 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5230 &inode->runtime_flags) ||
6cfab851 5231 inode_only == LOG_INODE_EXISTS) {
4f764e51 5232 if (inode_only == LOG_INODE_ALL)
183f37fa 5233 fast_search = true;
4f764e51 5234 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5235 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5236 max_key.type);
a95249b3
JB
5237 } else {
5238 if (inode_only == LOG_INODE_ALL)
5239 fast_search = true;
a95249b3 5240 goto log_extents;
5dc562c5 5241 }
a95249b3 5242
e02119d5 5243 }
4a500fd1
YZ
5244 if (ret) {
5245 err = ret;
5246 goto out_unlock;
5247 }
e02119d5 5248
d397712b 5249 while (1) {
31ff1cd2 5250 ins_nr = 0;
6174d3cb 5251 ret = btrfs_search_forward(root, &min_key,
de78b51a 5252 path, trans->transid);
fb770ae4
LB
5253 if (ret < 0) {
5254 err = ret;
5255 goto out_unlock;
5256 }
e02119d5
CM
5257 if (ret != 0)
5258 break;
3a5f1d45 5259again:
31ff1cd2 5260 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 5261 if (min_key.objectid != ino)
e02119d5
CM
5262 break;
5263 if (min_key.type > max_key.type)
5264 break;
31ff1cd2 5265
e4545de5
FM
5266 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5267 need_log_inode_item = false;
5268
56f23fdb
FM
5269 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5270 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
6b5fc433
FM
5271 inode->generation == trans->transid &&
5272 !recursive_logging) {
44f714da 5273 u64 other_ino = 0;
a3baaf0d 5274 u64 other_parent = 0;
44f714da 5275
56f23fdb 5276 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7 5277 path->slots[0], &min_key, inode,
a3baaf0d 5278 &other_ino, &other_parent);
56f23fdb
FM
5279 if (ret < 0) {
5280 err = ret;
5281 goto out_unlock;
28a23593 5282 } else if (ret > 0 && ctx &&
4a0cc7ca 5283 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
5284 if (ins_nr > 0) {
5285 ins_nr++;
5286 } else {
5287 ins_nr = 1;
5288 ins_start_slot = path->slots[0];
5289 }
a59108a7 5290 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5291 &last_extent, ins_start_slot,
5292 ins_nr, inode_only,
5293 logged_isize);
5294 if (ret < 0) {
5295 err = ret;
5296 goto out_unlock;
5297 }
5298 ins_nr = 0;
6b5fc433
FM
5299
5300 err = log_conflicting_inodes(trans, root, path,
a3baaf0d 5301 ctx, other_ino, other_parent);
44f714da
FM
5302 if (err)
5303 goto out_unlock;
6b5fc433
FM
5304 btrfs_release_path(path);
5305 goto next_key;
56f23fdb
FM
5306 }
5307 }
5308
36283bf7
FM
5309 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5310 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5311 if (ins_nr == 0)
5312 goto next_slot;
a59108a7 5313 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5314 &last_extent, ins_start_slot,
5315 ins_nr, inode_only, logged_isize);
5316 if (ret < 0) {
5317 err = ret;
5318 goto out_unlock;
5319 }
5320 ins_nr = 0;
5321 if (ret) {
5322 btrfs_release_path(path);
5323 continue;
5324 }
5325 goto next_slot;
5326 }
5327
31ff1cd2
CM
5328 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5329 ins_nr++;
5330 goto next_slot;
5331 } else if (!ins_nr) {
5332 ins_start_slot = path->slots[0];
5333 ins_nr = 1;
5334 goto next_slot;
e02119d5
CM
5335 }
5336
a59108a7 5337 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5338 ins_start_slot, ins_nr, inode_only,
5339 logged_isize);
16e7549f 5340 if (ret < 0) {
4a500fd1
YZ
5341 err = ret;
5342 goto out_unlock;
a71db86e
RV
5343 }
5344 if (ret) {
16e7549f
JB
5345 ins_nr = 0;
5346 btrfs_release_path(path);
5347 continue;
4a500fd1 5348 }
31ff1cd2
CM
5349 ins_nr = 1;
5350 ins_start_slot = path->slots[0];
5351next_slot:
e02119d5 5352
3a5f1d45
CM
5353 nritems = btrfs_header_nritems(path->nodes[0]);
5354 path->slots[0]++;
5355 if (path->slots[0] < nritems) {
5356 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5357 path->slots[0]);
5358 goto again;
5359 }
31ff1cd2 5360 if (ins_nr) {
a59108a7 5361 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5362 &last_extent, ins_start_slot,
1a4bcf47 5363 ins_nr, inode_only, logged_isize);
16e7549f 5364 if (ret < 0) {
4a500fd1
YZ
5365 err = ret;
5366 goto out_unlock;
5367 }
16e7549f 5368 ret = 0;
31ff1cd2
CM
5369 ins_nr = 0;
5370 }
b3b4aa74 5371 btrfs_release_path(path);
44f714da 5372next_key:
3d41d702 5373 if (min_key.offset < (u64)-1) {
e02119d5 5374 min_key.offset++;
3d41d702 5375 } else if (min_key.type < max_key.type) {
e02119d5 5376 min_key.type++;
3d41d702
FDBM
5377 min_key.offset = 0;
5378 } else {
e02119d5 5379 break;
3d41d702 5380 }
e02119d5 5381 }
31ff1cd2 5382 if (ins_nr) {
a59108a7 5383 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5384 ins_start_slot, ins_nr, inode_only,
5385 logged_isize);
16e7549f 5386 if (ret < 0) {
4a500fd1
YZ
5387 err = ret;
5388 goto out_unlock;
5389 }
16e7549f 5390 ret = 0;
31ff1cd2
CM
5391 ins_nr = 0;
5392 }
5dc562c5 5393
36283bf7
FM
5394 btrfs_release_path(path);
5395 btrfs_release_path(dst_path);
a59108a7 5396 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5397 if (err)
5398 goto out_unlock;
9a8fca62 5399 xattrs_logged = true;
a89ca6f2
FM
5400 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5401 btrfs_release_path(path);
5402 btrfs_release_path(dst_path);
a59108a7 5403 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5404 if (err)
5405 goto out_unlock;
5406 }
a95249b3 5407log_extents:
f3b15ccd
JB
5408 btrfs_release_path(path);
5409 btrfs_release_path(dst_path);
e4545de5 5410 if (need_log_inode_item) {
a59108a7 5411 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5412 if (!err && !xattrs_logged) {
5413 err = btrfs_log_all_xattrs(trans, root, inode, path,
5414 dst_path);
5415 btrfs_release_path(path);
5416 }
e4545de5
FM
5417 if (err)
5418 goto out_unlock;
5419 }
5dc562c5 5420 if (fast_search) {
a59108a7 5421 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5422 ctx, start, end);
5dc562c5
JB
5423 if (ret) {
5424 err = ret;
5425 goto out_unlock;
5426 }
d006a048 5427 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5428 struct extent_map *em, *n;
5429
49dae1bc
FM
5430 write_lock(&em_tree->lock);
5431 /*
5432 * We can't just remove every em if we're called for a ranged
5433 * fsync - that is, one that doesn't cover the whole possible
5434 * file range (0 to LLONG_MAX). This is because we can have
5435 * em's that fall outside the range we're logging and therefore
5436 * their ordered operations haven't completed yet
5437 * (btrfs_finish_ordered_io() not invoked yet). This means we
5438 * didn't get their respective file extent item in the fs/subvol
5439 * tree yet, and need to let the next fast fsync (one which
5440 * consults the list of modified extent maps) find the em so
5441 * that it logs a matching file extent item and waits for the
5442 * respective ordered operation to complete (if it's still
5443 * running).
5444 *
5445 * Removing every em outside the range we're logging would make
5446 * the next fast fsync not log their matching file extent items,
5447 * therefore making us lose data after a log replay.
5448 */
5449 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5450 list) {
5451 const u64 mod_end = em->mod_start + em->mod_len - 1;
5452
5453 if (em->mod_start >= start && mod_end <= end)
5454 list_del_init(&em->list);
5455 }
5456 write_unlock(&em_tree->lock);
5dc562c5
JB
5457 }
5458
a59108a7
NB
5459 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5460 ret = log_directory_changes(trans, root, inode, path, dst_path,
5461 ctx);
4a500fd1
YZ
5462 if (ret) {
5463 err = ret;
5464 goto out_unlock;
5465 }
e02119d5 5466 }
49dae1bc 5467
d1d832a0
FM
5468 /*
5469 * Don't update last_log_commit if we logged that an inode exists after
5470 * it was loaded to memory (full_sync bit set).
5471 * This is to prevent data loss when we do a write to the inode, then
5472 * the inode gets evicted after all delalloc was flushed, then we log
5473 * it exists (due to a rename for example) and then fsync it. This last
5474 * fsync would do nothing (not logging the extents previously written).
5475 */
a59108a7
NB
5476 spin_lock(&inode->lock);
5477 inode->logged_trans = trans->transid;
d1d832a0
FM
5478 if (inode_only != LOG_INODE_EXISTS ||
5479 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5480 inode->last_log_commit = inode->last_sub_trans;
a59108a7 5481 spin_unlock(&inode->lock);
4a500fd1 5482out_unlock:
a59108a7 5483 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5484
5485 btrfs_free_path(path);
5486 btrfs_free_path(dst_path);
4a500fd1 5487 return err;
e02119d5
CM
5488}
5489
2be63d5c
FM
5490/*
5491 * Check if we must fallback to a transaction commit when logging an inode.
5492 * This must be called after logging the inode and is used only in the context
5493 * when fsyncing an inode requires the need to log some other inode - in which
5494 * case we can't lock the i_mutex of each other inode we need to log as that
5495 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5496 * log inodes up or down in the hierarchy) or rename operations for example. So
5497 * we take the log_mutex of the inode after we have logged it and then check for
5498 * its last_unlink_trans value - this is safe because any task setting
5499 * last_unlink_trans must take the log_mutex and it must do this before it does
5500 * the actual unlink operation, so if we do this check before a concurrent task
5501 * sets last_unlink_trans it means we've logged a consistent version/state of
5502 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5503 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5504 * we logged the inode or it might have also done the unlink).
5505 */
5506static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5507 struct btrfs_inode *inode)
2be63d5c 5508{
ab1717b2 5509 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5510 bool ret = false;
5511
ab1717b2
NB
5512 mutex_lock(&inode->log_mutex);
5513 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5514 /*
5515 * Make sure any commits to the log are forced to be full
5516 * commits.
5517 */
90787766 5518 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5519 ret = true;
5520 }
ab1717b2 5521 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5522
5523 return ret;
5524}
5525
12fcfd22
CM
5526/*
5527 * follow the dentry parent pointers up the chain and see if any
5528 * of the directories in it require a full commit before they can
5529 * be logged. Returns zero if nothing special needs to be done or 1 if
5530 * a full commit is required.
5531 */
5532static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5533 struct btrfs_inode *inode,
12fcfd22
CM
5534 struct dentry *parent,
5535 struct super_block *sb,
5536 u64 last_committed)
e02119d5 5537{
12fcfd22 5538 int ret = 0;
6a912213 5539 struct dentry *old_parent = NULL;
e02119d5 5540
af4176b4
CM
5541 /*
5542 * for regular files, if its inode is already on disk, we don't
5543 * have to worry about the parents at all. This is because
5544 * we can use the last_unlink_trans field to record renames
5545 * and other fun in this file.
5546 */
aefa6115
NB
5547 if (S_ISREG(inode->vfs_inode.i_mode) &&
5548 inode->generation <= last_committed &&
5549 inode->last_unlink_trans <= last_committed)
5550 goto out;
af4176b4 5551
aefa6115 5552 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5553 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5554 goto out;
aefa6115 5555 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5556 }
5557
5558 while (1) {
aefa6115 5559 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5560 ret = 1;
5561 break;
5562 }
5563
fc64005c 5564 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5565 break;
5566
44f714da 5567 if (IS_ROOT(parent)) {
aefa6115
NB
5568 inode = BTRFS_I(d_inode(parent));
5569 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5570 ret = 1;
12fcfd22 5571 break;
44f714da 5572 }
12fcfd22 5573
6a912213
JB
5574 parent = dget_parent(parent);
5575 dput(old_parent);
5576 old_parent = parent;
aefa6115 5577 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5578
5579 }
6a912213 5580 dput(old_parent);
12fcfd22 5581out:
e02119d5
CM
5582 return ret;
5583}
5584
2f2ff0ee
FM
5585struct btrfs_dir_list {
5586 u64 ino;
5587 struct list_head list;
5588};
5589
5590/*
5591 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5592 * details about the why it is needed.
5593 * This is a recursive operation - if an existing dentry corresponds to a
5594 * directory, that directory's new entries are logged too (same behaviour as
5595 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5596 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5597 * complains about the following circular lock dependency / possible deadlock:
5598 *
5599 * CPU0 CPU1
5600 * ---- ----
5601 * lock(&type->i_mutex_dir_key#3/2);
5602 * lock(sb_internal#2);
5603 * lock(&type->i_mutex_dir_key#3/2);
5604 * lock(&sb->s_type->i_mutex_key#14);
5605 *
5606 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5607 * sb_start_intwrite() in btrfs_start_transaction().
5608 * Not locking i_mutex of the inodes is still safe because:
5609 *
5610 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5611 * that while logging the inode new references (names) are added or removed
5612 * from the inode, leaving the logged inode item with a link count that does
5613 * not match the number of logged inode reference items. This is fine because
5614 * at log replay time we compute the real number of links and correct the
5615 * link count in the inode item (see replay_one_buffer() and
5616 * link_to_fixup_dir());
5617 *
5618 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5619 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5620 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5621 * has a size that doesn't match the sum of the lengths of all the logged
5622 * names. This does not result in a problem because if a dir_item key is
5623 * logged but its matching dir_index key is not logged, at log replay time we
5624 * don't use it to replay the respective name (see replay_one_name()). On the
5625 * other hand if only the dir_index key ends up being logged, the respective
5626 * name is added to the fs/subvol tree with both the dir_item and dir_index
5627 * keys created (see replay_one_name()).
5628 * The directory's inode item with a wrong i_size is not a problem as well,
5629 * since we don't use it at log replay time to set the i_size in the inode
5630 * item of the fs/subvol tree (see overwrite_item()).
5631 */
5632static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5633 struct btrfs_root *root,
51cc0d32 5634 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5635 struct btrfs_log_ctx *ctx)
5636{
0b246afa 5637 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5638 struct btrfs_root *log = root->log_root;
5639 struct btrfs_path *path;
5640 LIST_HEAD(dir_list);
5641 struct btrfs_dir_list *dir_elem;
5642 int ret = 0;
5643
5644 path = btrfs_alloc_path();
5645 if (!path)
5646 return -ENOMEM;
5647
5648 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5649 if (!dir_elem) {
5650 btrfs_free_path(path);
5651 return -ENOMEM;
5652 }
51cc0d32 5653 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5654 list_add_tail(&dir_elem->list, &dir_list);
5655
5656 while (!list_empty(&dir_list)) {
5657 struct extent_buffer *leaf;
5658 struct btrfs_key min_key;
5659 int nritems;
5660 int i;
5661
5662 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5663 list);
5664 if (ret)
5665 goto next_dir_inode;
5666
5667 min_key.objectid = dir_elem->ino;
5668 min_key.type = BTRFS_DIR_ITEM_KEY;
5669 min_key.offset = 0;
5670again:
5671 btrfs_release_path(path);
5672 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5673 if (ret < 0) {
5674 goto next_dir_inode;
5675 } else if (ret > 0) {
5676 ret = 0;
5677 goto next_dir_inode;
5678 }
5679
5680process_leaf:
5681 leaf = path->nodes[0];
5682 nritems = btrfs_header_nritems(leaf);
5683 for (i = path->slots[0]; i < nritems; i++) {
5684 struct btrfs_dir_item *di;
5685 struct btrfs_key di_key;
5686 struct inode *di_inode;
5687 struct btrfs_dir_list *new_dir_elem;
5688 int log_mode = LOG_INODE_EXISTS;
5689 int type;
5690
5691 btrfs_item_key_to_cpu(leaf, &min_key, i);
5692 if (min_key.objectid != dir_elem->ino ||
5693 min_key.type != BTRFS_DIR_ITEM_KEY)
5694 goto next_dir_inode;
5695
5696 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5697 type = btrfs_dir_type(leaf, di);
5698 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5699 type != BTRFS_FT_DIR)
5700 continue;
5701 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5702 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5703 continue;
5704
ec125cfb 5705 btrfs_release_path(path);
4c66e0d4 5706 di_inode = btrfs_iget(fs_info->sb, &di_key, root);
2f2ff0ee
FM
5707 if (IS_ERR(di_inode)) {
5708 ret = PTR_ERR(di_inode);
5709 goto next_dir_inode;
5710 }
5711
0f8939b8 5712 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
410f954c 5713 btrfs_add_delayed_iput(di_inode);
ec125cfb 5714 break;
2f2ff0ee
FM
5715 }
5716
5717 ctx->log_new_dentries = false;
3f9749f6 5718 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5719 log_mode = LOG_INODE_ALL;
a59108a7 5720 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5721 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5722 if (!ret &&
ab1717b2 5723 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5724 ret = 1;
410f954c 5725 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5726 if (ret)
5727 goto next_dir_inode;
5728 if (ctx->log_new_dentries) {
5729 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5730 GFP_NOFS);
5731 if (!new_dir_elem) {
5732 ret = -ENOMEM;
5733 goto next_dir_inode;
5734 }
5735 new_dir_elem->ino = di_key.objectid;
5736 list_add_tail(&new_dir_elem->list, &dir_list);
5737 }
5738 break;
5739 }
5740 if (i == nritems) {
5741 ret = btrfs_next_leaf(log, path);
5742 if (ret < 0) {
5743 goto next_dir_inode;
5744 } else if (ret > 0) {
5745 ret = 0;
5746 goto next_dir_inode;
5747 }
5748 goto process_leaf;
5749 }
5750 if (min_key.offset < (u64)-1) {
5751 min_key.offset++;
5752 goto again;
5753 }
5754next_dir_inode:
5755 list_del(&dir_elem->list);
5756 kfree(dir_elem);
5757 }
5758
5759 btrfs_free_path(path);
5760 return ret;
5761}
5762
18aa0922 5763static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5764 struct btrfs_inode *inode,
18aa0922
FM
5765 struct btrfs_log_ctx *ctx)
5766{
3ffbd68c 5767 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5768 int ret;
5769 struct btrfs_path *path;
5770 struct btrfs_key key;
d0a0b78d
NB
5771 struct btrfs_root *root = inode->root;
5772 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5773
5774 path = btrfs_alloc_path();
5775 if (!path)
5776 return -ENOMEM;
5777 path->skip_locking = 1;
5778 path->search_commit_root = 1;
5779
5780 key.objectid = ino;
5781 key.type = BTRFS_INODE_REF_KEY;
5782 key.offset = 0;
5783 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5784 if (ret < 0)
5785 goto out;
5786
5787 while (true) {
5788 struct extent_buffer *leaf = path->nodes[0];
5789 int slot = path->slots[0];
5790 u32 cur_offset = 0;
5791 u32 item_size;
5792 unsigned long ptr;
5793
5794 if (slot >= btrfs_header_nritems(leaf)) {
5795 ret = btrfs_next_leaf(root, path);
5796 if (ret < 0)
5797 goto out;
5798 else if (ret > 0)
5799 break;
5800 continue;
5801 }
5802
5803 btrfs_item_key_to_cpu(leaf, &key, slot);
5804 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5805 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5806 break;
5807
5808 item_size = btrfs_item_size_nr(leaf, slot);
5809 ptr = btrfs_item_ptr_offset(leaf, slot);
5810 while (cur_offset < item_size) {
5811 struct btrfs_key inode_key;
5812 struct inode *dir_inode;
5813
5814 inode_key.type = BTRFS_INODE_ITEM_KEY;
5815 inode_key.offset = 0;
5816
5817 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5818 struct btrfs_inode_extref *extref;
5819
5820 extref = (struct btrfs_inode_extref *)
5821 (ptr + cur_offset);
5822 inode_key.objectid = btrfs_inode_extref_parent(
5823 leaf, extref);
5824 cur_offset += sizeof(*extref);
5825 cur_offset += btrfs_inode_extref_name_len(leaf,
5826 extref);
5827 } else {
5828 inode_key.objectid = key.offset;
5829 cur_offset = item_size;
5830 }
5831
4c66e0d4 5832 dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
0f375eed
FM
5833 /*
5834 * If the parent inode was deleted, return an error to
5835 * fallback to a transaction commit. This is to prevent
5836 * getting an inode that was moved from one parent A to
5837 * a parent B, got its former parent A deleted and then
5838 * it got fsync'ed, from existing at both parents after
5839 * a log replay (and the old parent still existing).
5840 * Example:
5841 *
5842 * mkdir /mnt/A
5843 * mkdir /mnt/B
5844 * touch /mnt/B/bar
5845 * sync
5846 * mv /mnt/B/bar /mnt/A/bar
5847 * mv -T /mnt/A /mnt/B
5848 * fsync /mnt/B/bar
5849 * <power fail>
5850 *
5851 * If we ignore the old parent B which got deleted,
5852 * after a log replay we would have file bar linked
5853 * at both parents and the old parent B would still
5854 * exist.
5855 */
5856 if (IS_ERR(dir_inode)) {
5857 ret = PTR_ERR(dir_inode);
5858 goto out;
5859 }
18aa0922 5860
657ed1aa
FM
5861 if (ctx)
5862 ctx->log_new_dentries = false;
a59108a7 5863 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5864 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5865 if (!ret &&
ab1717b2 5866 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5867 ret = 1;
657ed1aa
FM
5868 if (!ret && ctx && ctx->log_new_dentries)
5869 ret = log_new_dir_dentries(trans, root,
f85b7379 5870 BTRFS_I(dir_inode), ctx);
410f954c 5871 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5872 if (ret)
5873 goto out;
5874 }
5875 path->slots[0]++;
5876 }
5877 ret = 0;
5878out:
5879 btrfs_free_path(path);
5880 return ret;
5881}
5882
b8aa330d
FM
5883static int log_new_ancestors(struct btrfs_trans_handle *trans,
5884 struct btrfs_root *root,
5885 struct btrfs_path *path,
5886 struct btrfs_log_ctx *ctx)
5887{
5888 struct btrfs_key found_key;
5889
5890 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5891
5892 while (true) {
5893 struct btrfs_fs_info *fs_info = root->fs_info;
5894 const u64 last_committed = fs_info->last_trans_committed;
5895 struct extent_buffer *leaf = path->nodes[0];
5896 int slot = path->slots[0];
5897 struct btrfs_key search_key;
5898 struct inode *inode;
5899 int ret = 0;
5900
5901 btrfs_release_path(path);
5902
5903 search_key.objectid = found_key.offset;
5904 search_key.type = BTRFS_INODE_ITEM_KEY;
5905 search_key.offset = 0;
4c66e0d4 5906 inode = btrfs_iget(fs_info->sb, &search_key, root);
b8aa330d
FM
5907 if (IS_ERR(inode))
5908 return PTR_ERR(inode);
5909
5910 if (BTRFS_I(inode)->generation > last_committed)
5911 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5912 LOG_INODE_EXISTS,
5913 0, LLONG_MAX, ctx);
410f954c 5914 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5915 if (ret)
5916 return ret;
5917
5918 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5919 break;
5920
5921 search_key.type = BTRFS_INODE_REF_KEY;
5922 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5923 if (ret < 0)
5924 return ret;
5925
5926 leaf = path->nodes[0];
5927 slot = path->slots[0];
5928 if (slot >= btrfs_header_nritems(leaf)) {
5929 ret = btrfs_next_leaf(root, path);
5930 if (ret < 0)
5931 return ret;
5932 else if (ret > 0)
5933 return -ENOENT;
5934 leaf = path->nodes[0];
5935 slot = path->slots[0];
5936 }
5937
5938 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5939 if (found_key.objectid != search_key.objectid ||
5940 found_key.type != BTRFS_INODE_REF_KEY)
5941 return -ENOENT;
5942 }
5943 return 0;
5944}
5945
5946static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5947 struct btrfs_inode *inode,
5948 struct dentry *parent,
5949 struct btrfs_log_ctx *ctx)
5950{
5951 struct btrfs_root *root = inode->root;
5952 struct btrfs_fs_info *fs_info = root->fs_info;
5953 struct dentry *old_parent = NULL;
5954 struct super_block *sb = inode->vfs_inode.i_sb;
5955 int ret = 0;
5956
5957 while (true) {
5958 if (!parent || d_really_is_negative(parent) ||
5959 sb != parent->d_sb)
5960 break;
5961
5962 inode = BTRFS_I(d_inode(parent));
5963 if (root != inode->root)
5964 break;
5965
5966 if (inode->generation > fs_info->last_trans_committed) {
5967 ret = btrfs_log_inode(trans, root, inode,
5968 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5969 if (ret)
5970 break;
5971 }
5972 if (IS_ROOT(parent))
5973 break;
5974
5975 parent = dget_parent(parent);
5976 dput(old_parent);
5977 old_parent = parent;
5978 }
5979 dput(old_parent);
5980
5981 return ret;
5982}
5983
5984static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5985 struct btrfs_inode *inode,
5986 struct dentry *parent,
5987 struct btrfs_log_ctx *ctx)
5988{
5989 struct btrfs_root *root = inode->root;
5990 const u64 ino = btrfs_ino(inode);
5991 struct btrfs_path *path;
5992 struct btrfs_key search_key;
5993 int ret;
5994
5995 /*
5996 * For a single hard link case, go through a fast path that does not
5997 * need to iterate the fs/subvolume tree.
5998 */
5999 if (inode->vfs_inode.i_nlink < 2)
6000 return log_new_ancestors_fast(trans, inode, parent, ctx);
6001
6002 path = btrfs_alloc_path();
6003 if (!path)
6004 return -ENOMEM;
6005
6006 search_key.objectid = ino;
6007 search_key.type = BTRFS_INODE_REF_KEY;
6008 search_key.offset = 0;
6009again:
6010 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6011 if (ret < 0)
6012 goto out;
6013 if (ret == 0)
6014 path->slots[0]++;
6015
6016 while (true) {
6017 struct extent_buffer *leaf = path->nodes[0];
6018 int slot = path->slots[0];
6019 struct btrfs_key found_key;
6020
6021 if (slot >= btrfs_header_nritems(leaf)) {
6022 ret = btrfs_next_leaf(root, path);
6023 if (ret < 0)
6024 goto out;
6025 else if (ret > 0)
6026 break;
6027 continue;
6028 }
6029
6030 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6031 if (found_key.objectid != ino ||
6032 found_key.type > BTRFS_INODE_EXTREF_KEY)
6033 break;
6034
6035 /*
6036 * Don't deal with extended references because they are rare
6037 * cases and too complex to deal with (we would need to keep
6038 * track of which subitem we are processing for each item in
6039 * this loop, etc). So just return some error to fallback to
6040 * a transaction commit.
6041 */
6042 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6043 ret = -EMLINK;
6044 goto out;
6045 }
6046
6047 /*
6048 * Logging ancestors needs to do more searches on the fs/subvol
6049 * tree, so it releases the path as needed to avoid deadlocks.
6050 * Keep track of the last inode ref key and resume from that key
6051 * after logging all new ancestors for the current hard link.
6052 */
6053 memcpy(&search_key, &found_key, sizeof(search_key));
6054
6055 ret = log_new_ancestors(trans, root, path, ctx);
6056 if (ret)
6057 goto out;
6058 btrfs_release_path(path);
6059 goto again;
6060 }
6061 ret = 0;
6062out:
6063 btrfs_free_path(path);
6064 return ret;
6065}
6066
e02119d5
CM
6067/*
6068 * helper function around btrfs_log_inode to make sure newly created
6069 * parent directories also end up in the log. A minimal inode and backref
6070 * only logging is done of any parent directories that are older than
6071 * the last committed transaction
6072 */
48a3b636 6073static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6074 struct btrfs_inode *inode,
49dae1bc
FM
6075 struct dentry *parent,
6076 const loff_t start,
6077 const loff_t end,
41a1eada 6078 int inode_only,
8b050d35 6079 struct btrfs_log_ctx *ctx)
e02119d5 6080{
f882274b 6081 struct btrfs_root *root = inode->root;
0b246afa 6082 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 6083 struct super_block *sb;
12fcfd22 6084 int ret = 0;
0b246afa 6085 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 6086 bool log_dentries = false;
12fcfd22 6087
19df27a9 6088 sb = inode->vfs_inode.i_sb;
12fcfd22 6089
0b246afa 6090 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6091 ret = 1;
6092 goto end_no_trans;
6093 }
6094
995946dd
MX
6095 /*
6096 * The prev transaction commit doesn't complete, we need do
6097 * full commit by ourselves.
6098 */
0b246afa
JM
6099 if (fs_info->last_trans_log_full_commit >
6100 fs_info->last_trans_committed) {
12fcfd22
CM
6101 ret = 1;
6102 goto end_no_trans;
6103 }
6104
f882274b 6105 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6106 ret = 1;
6107 goto end_no_trans;
6108 }
6109
19df27a9
NB
6110 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6111 last_committed);
12fcfd22
CM
6112 if (ret)
6113 goto end_no_trans;
e02119d5 6114
f2d72f42
FM
6115 /*
6116 * Skip already logged inodes or inodes corresponding to tmpfiles
6117 * (since logging them is pointless, a link count of 0 means they
6118 * will never be accessible).
6119 */
6120 if (btrfs_inode_in_log(inode, trans->transid) ||
6121 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6122 ret = BTRFS_NO_LOG_SYNC;
6123 goto end_no_trans;
6124 }
6125
8b050d35 6126 ret = start_log_trans(trans, root, ctx);
4a500fd1 6127 if (ret)
e87ac136 6128 goto end_no_trans;
e02119d5 6129
19df27a9 6130 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
6131 if (ret)
6132 goto end_trans;
12fcfd22 6133
af4176b4
CM
6134 /*
6135 * for regular files, if its inode is already on disk, we don't
6136 * have to worry about the parents at all. This is because
6137 * we can use the last_unlink_trans field to record renames
6138 * and other fun in this file.
6139 */
19df27a9
NB
6140 if (S_ISREG(inode->vfs_inode.i_mode) &&
6141 inode->generation <= last_committed &&
6142 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
6143 ret = 0;
6144 goto end_trans;
6145 }
af4176b4 6146
19df27a9 6147 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6148 log_dentries = true;
6149
18aa0922 6150 /*
01327610 6151 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6152 * inodes are fully logged. This is to prevent leaving dangling
6153 * directory index entries in directories that were our parents but are
6154 * not anymore. Not doing this results in old parent directory being
6155 * impossible to delete after log replay (rmdir will always fail with
6156 * error -ENOTEMPTY).
6157 *
6158 * Example 1:
6159 *
6160 * mkdir testdir
6161 * touch testdir/foo
6162 * ln testdir/foo testdir/bar
6163 * sync
6164 * unlink testdir/bar
6165 * xfs_io -c fsync testdir/foo
6166 * <power failure>
6167 * mount fs, triggers log replay
6168 *
6169 * If we don't log the parent directory (testdir), after log replay the
6170 * directory still has an entry pointing to the file inode using the bar
6171 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6172 * the file inode has a link count of 1.
6173 *
6174 * Example 2:
6175 *
6176 * mkdir testdir
6177 * touch foo
6178 * ln foo testdir/foo2
6179 * ln foo testdir/foo3
6180 * sync
6181 * unlink testdir/foo3
6182 * xfs_io -c fsync foo
6183 * <power failure>
6184 * mount fs, triggers log replay
6185 *
6186 * Similar as the first example, after log replay the parent directory
6187 * testdir still has an entry pointing to the inode file with name foo3
6188 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6189 * and has a link count of 2.
6190 */
19df27a9 6191 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6192 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6193 if (ret)
6194 goto end_trans;
6195 }
6196
b8aa330d
FM
6197 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6198 if (ret)
41bd6067 6199 goto end_trans;
76dda93c 6200
2f2ff0ee 6201 if (log_dentries)
b8aa330d 6202 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6203 else
6204 ret = 0;
4a500fd1
YZ
6205end_trans:
6206 if (ret < 0) {
90787766 6207 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6208 ret = 1;
6209 }
8b050d35
MX
6210
6211 if (ret)
6212 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6213 btrfs_end_log_trans(root);
6214end_no_trans:
6215 return ret;
e02119d5
CM
6216}
6217
6218/*
6219 * it is not safe to log dentry if the chunk root has added new
6220 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6221 * If this returns 1, you must commit the transaction to safely get your
6222 * data on disk.
6223 */
6224int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6225 struct dentry *dentry,
49dae1bc
FM
6226 const loff_t start,
6227 const loff_t end,
8b050d35 6228 struct btrfs_log_ctx *ctx)
e02119d5 6229{
6a912213
JB
6230 struct dentry *parent = dget_parent(dentry);
6231 int ret;
6232
f882274b
NB
6233 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6234 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6235 dput(parent);
6236
6237 return ret;
e02119d5
CM
6238}
6239
6240/*
6241 * should be called during mount to recover any replay any log trees
6242 * from the FS
6243 */
6244int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6245{
6246 int ret;
6247 struct btrfs_path *path;
6248 struct btrfs_trans_handle *trans;
6249 struct btrfs_key key;
6250 struct btrfs_key found_key;
6251 struct btrfs_key tmp_key;
6252 struct btrfs_root *log;
6253 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6254 struct walk_control wc = {
6255 .process_func = process_one_buffer,
430a6626 6256 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6257 };
6258
e02119d5 6259 path = btrfs_alloc_path();
db5b493a
TI
6260 if (!path)
6261 return -ENOMEM;
6262
afcdd129 6263 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6264
4a500fd1 6265 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6266 if (IS_ERR(trans)) {
6267 ret = PTR_ERR(trans);
6268 goto error;
6269 }
e02119d5
CM
6270
6271 wc.trans = trans;
6272 wc.pin = 1;
6273
db5b493a 6274 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6275 if (ret) {
5d163e0e
JM
6276 btrfs_handle_fs_error(fs_info, ret,
6277 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6278 goto error;
6279 }
e02119d5
CM
6280
6281again:
6282 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6283 key.offset = (u64)-1;
962a298f 6284 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6285
d397712b 6286 while (1) {
e02119d5 6287 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6288
6289 if (ret < 0) {
34d97007 6290 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6291 "Couldn't find tree log root.");
6292 goto error;
6293 }
e02119d5
CM
6294 if (ret > 0) {
6295 if (path->slots[0] == 0)
6296 break;
6297 path->slots[0]--;
6298 }
6299 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6300 path->slots[0]);
b3b4aa74 6301 btrfs_release_path(path);
e02119d5
CM
6302 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6303 break;
6304
cb517eab 6305 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
6306 if (IS_ERR(log)) {
6307 ret = PTR_ERR(log);
34d97007 6308 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6309 "Couldn't read tree log root.");
6310 goto error;
6311 }
e02119d5
CM
6312
6313 tmp_key.objectid = found_key.offset;
6314 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6315 tmp_key.offset = (u64)-1;
6316
6317 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
6318 if (IS_ERR(wc.replay_dest)) {
6319 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
6320 free_extent_buffer(log->node);
6321 free_extent_buffer(log->commit_root);
6322 kfree(log);
5d163e0e
JM
6323 btrfs_handle_fs_error(fs_info, ret,
6324 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6325 goto error;
6326 }
e02119d5 6327
07d400a6 6328 wc.replay_dest->log_root = log;
5d4f98a2 6329 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6330 ret = walk_log_tree(trans, log, &wc);
e02119d5 6331
b50c6e25 6332 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6333 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6334 path);
e02119d5
CM
6335 }
6336
900c9981
LB
6337 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6338 struct btrfs_root *root = wc.replay_dest;
6339
6340 btrfs_release_path(path);
6341
6342 /*
6343 * We have just replayed everything, and the highest
6344 * objectid of fs roots probably has changed in case
6345 * some inode_item's got replayed.
6346 *
6347 * root->objectid_mutex is not acquired as log replay
6348 * could only happen during mount.
6349 */
6350 ret = btrfs_find_highest_objectid(root,
6351 &root->highest_objectid);
6352 }
6353
e02119d5 6354 key.offset = found_key.offset - 1;
07d400a6 6355 wc.replay_dest->log_root = NULL;
e02119d5 6356 free_extent_buffer(log->node);
b263c2c8 6357 free_extent_buffer(log->commit_root);
e02119d5
CM
6358 kfree(log);
6359
b50c6e25
JB
6360 if (ret)
6361 goto error;
6362
e02119d5
CM
6363 if (found_key.offset == 0)
6364 break;
6365 }
b3b4aa74 6366 btrfs_release_path(path);
e02119d5
CM
6367
6368 /* step one is to pin it all, step two is to replay just inodes */
6369 if (wc.pin) {
6370 wc.pin = 0;
6371 wc.process_func = replay_one_buffer;
6372 wc.stage = LOG_WALK_REPLAY_INODES;
6373 goto again;
6374 }
6375 /* step three is to replay everything */
6376 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6377 wc.stage++;
6378 goto again;
6379 }
6380
6381 btrfs_free_path(path);
6382
abefa55a 6383 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6384 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6385 if (ret)
6386 return ret;
6387
e02119d5
CM
6388 free_extent_buffer(log_root_tree->node);
6389 log_root_tree->log_root = NULL;
afcdd129 6390 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6391 kfree(log_root_tree);
79787eaa 6392
abefa55a 6393 return 0;
79787eaa 6394error:
b50c6e25 6395 if (wc.trans)
3a45bb20 6396 btrfs_end_transaction(wc.trans);
79787eaa
JM
6397 btrfs_free_path(path);
6398 return ret;
e02119d5 6399}
12fcfd22
CM
6400
6401/*
6402 * there are some corner cases where we want to force a full
6403 * commit instead of allowing a directory to be logged.
6404 *
6405 * They revolve around files there were unlinked from the directory, and
6406 * this function updates the parent directory so that a full commit is
6407 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6408 *
6409 * Must be called before the unlink operations (updates to the subvolume tree,
6410 * inodes, etc) are done.
12fcfd22
CM
6411 */
6412void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6413 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6414 int for_rename)
6415{
af4176b4
CM
6416 /*
6417 * when we're logging a file, if it hasn't been renamed
6418 * or unlinked, and its inode is fully committed on disk,
6419 * we don't have to worry about walking up the directory chain
6420 * to log its parents.
6421 *
6422 * So, we use the last_unlink_trans field to put this transid
6423 * into the file. When the file is logged we check it and
6424 * don't log the parents if the file is fully on disk.
6425 */
4176bdbf
NB
6426 mutex_lock(&inode->log_mutex);
6427 inode->last_unlink_trans = trans->transid;
6428 mutex_unlock(&inode->log_mutex);
af4176b4 6429
12fcfd22
CM
6430 /*
6431 * if this directory was already logged any new
6432 * names for this file/dir will get recorded
6433 */
4176bdbf 6434 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6435 return;
6436
6437 /*
6438 * if the inode we're about to unlink was logged,
6439 * the log will be properly updated for any new names
6440 */
4176bdbf 6441 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6442 return;
6443
6444 /*
6445 * when renaming files across directories, if the directory
6446 * there we're unlinking from gets fsync'd later on, there's
6447 * no way to find the destination directory later and fsync it
6448 * properly. So, we have to be conservative and force commits
6449 * so the new name gets discovered.
6450 */
6451 if (for_rename)
6452 goto record;
6453
6454 /* we can safely do the unlink without any special recording */
6455 return;
6456
6457record:
4176bdbf
NB
6458 mutex_lock(&dir->log_mutex);
6459 dir->last_unlink_trans = trans->transid;
6460 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6461}
6462
6463/*
6464 * Make sure that if someone attempts to fsync the parent directory of a deleted
6465 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6466 * that after replaying the log tree of the parent directory's root we will not
6467 * see the snapshot anymore and at log replay time we will not see any log tree
6468 * corresponding to the deleted snapshot's root, which could lead to replaying
6469 * it after replaying the log tree of the parent directory (which would replay
6470 * the snapshot delete operation).
2be63d5c
FM
6471 *
6472 * Must be called before the actual snapshot destroy operation (updates to the
6473 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6474 */
6475void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6476 struct btrfs_inode *dir)
1ec9a1ae 6477{
43663557
NB
6478 mutex_lock(&dir->log_mutex);
6479 dir->last_unlink_trans = trans->transid;
6480 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6481}
6482
6483/*
6484 * Call this after adding a new name for a file and it will properly
6485 * update the log to reflect the new name.
6486 *
d4682ba0
FM
6487 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6488 * true (because it's not used).
6489 *
6490 * Return value depends on whether @sync_log is true or false.
6491 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6492 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6493 * otherwise.
6494 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6495 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6496 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6497 * committed (without attempting to sync the log).
12fcfd22
CM
6498 */
6499int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6500 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6501 struct dentry *parent,
6502 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6503{
3ffbd68c 6504 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6505 int ret;
12fcfd22 6506
af4176b4
CM
6507 /*
6508 * this will force the logging code to walk the dentry chain
6509 * up for the file
6510 */
9a6509c4 6511 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6512 inode->last_unlink_trans = trans->transid;
af4176b4 6513
12fcfd22
CM
6514 /*
6515 * if this inode hasn't been logged and directory we're renaming it
6516 * from hasn't been logged, we don't need to log it
6517 */
9ca5fbfb
NB
6518 if (inode->logged_trans <= fs_info->last_trans_committed &&
6519 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6520 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6521 BTRFS_DONT_NEED_LOG_SYNC;
6522
6523 if (sync_log) {
6524 struct btrfs_log_ctx ctx2;
6525
6526 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6527 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6528 LOG_INODE_EXISTS, &ctx2);
6529 if (ret == BTRFS_NO_LOG_SYNC)
6530 return BTRFS_DONT_NEED_TRANS_COMMIT;
6531 else if (ret)
6532 return BTRFS_NEED_TRANS_COMMIT;
6533
6534 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6535 if (ret)
6536 return BTRFS_NEED_TRANS_COMMIT;
6537 return BTRFS_DONT_NEED_TRANS_COMMIT;
6538 }
6539
6540 ASSERT(ctx);
6541 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6542 LOG_INODE_EXISTS, ctx);
6543 if (ret == BTRFS_NO_LOG_SYNC)
6544 return BTRFS_DONT_NEED_LOG_SYNC;
6545 else if (ret)
6546 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6547
d4682ba0 6548 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6549}
6550