btrfs: drop the lock on error in btrfs_dev_replace_cancel
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
9678c543 11#include "ctree.h"
995946dd 12#include "tree-log.h"
e02119d5
CM
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
900c9981 19#include "inode-map.h"
e02119d5
CM
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
781feef7 29#define LOG_OTHER_INODE 2
a3baaf0d 30#define LOG_OTHER_INODE_ALL 3
e02119d5 31
12fcfd22
CM
32/*
33 * directory trouble cases
34 *
35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36 * log, we must force a full commit before doing an fsync of the directory
37 * where the unlink was done.
38 * ---> record transid of last unlink/rename per directory
39 *
40 * mkdir foo/some_dir
41 * normal commit
42 * rename foo/some_dir foo2/some_dir
43 * mkdir foo/some_dir
44 * fsync foo/some_dir/some_file
45 *
46 * The fsync above will unlink the original some_dir without recording
47 * it in its new location (foo2). After a crash, some_dir will be gone
48 * unless the fsync of some_file forces a full commit
49 *
50 * 2) we must log any new names for any file or dir that is in the fsync
51 * log. ---> check inode while renaming/linking.
52 *
53 * 2a) we must log any new names for any file or dir during rename
54 * when the directory they are being removed from was logged.
55 * ---> check inode and old parent dir during rename
56 *
57 * 2a is actually the more important variant. With the extra logging
58 * a crash might unlink the old name without recreating the new one
59 *
60 * 3) after a crash, we must go through any directories with a link count
61 * of zero and redo the rm -rf
62 *
63 * mkdir f1/foo
64 * normal commit
65 * rm -rf f1/foo
66 * fsync(f1)
67 *
68 * The directory f1 was fully removed from the FS, but fsync was never
69 * called on f1, only its parent dir. After a crash the rm -rf must
70 * be replayed. This must be able to recurse down the entire
71 * directory tree. The inode link count fixup code takes care of the
72 * ugly details.
73 */
74
e02119d5
CM
75/*
76 * stages for the tree walking. The first
77 * stage (0) is to only pin down the blocks we find
78 * the second stage (1) is to make sure that all the inodes
79 * we find in the log are created in the subvolume.
80 *
81 * The last stage is to deal with directories and links and extents
82 * and all the other fun semantics
83 */
84#define LOG_WALK_PIN_ONLY 0
85#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
86#define LOG_WALK_REPLAY_DIR_INDEX 2
87#define LOG_WALK_REPLAY_ALL 3
e02119d5 88
12fcfd22 89static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 90 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
91 int inode_only,
92 const loff_t start,
8407f553
FM
93 const loff_t end,
94 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
95static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
98static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root,
100 struct btrfs_root *log,
101 struct btrfs_path *path,
102 u64 dirid, int del_all);
e02119d5
CM
103
104/*
105 * tree logging is a special write ahead log used to make sure that
106 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 *
108 * Full tree commits are expensive because they require commonly
109 * modified blocks to be recowed, creating many dirty pages in the
110 * extent tree an 4x-6x higher write load than ext3.
111 *
112 * Instead of doing a tree commit on every fsync, we use the
113 * key ranges and transaction ids to find items for a given file or directory
114 * that have changed in this transaction. Those items are copied into
115 * a special tree (one per subvolume root), that tree is written to disk
116 * and then the fsync is considered complete.
117 *
118 * After a crash, items are copied out of the log-tree back into the
119 * subvolume tree. Any file data extents found are recorded in the extent
120 * allocation tree, and the log-tree freed.
121 *
122 * The log tree is read three times, once to pin down all the extents it is
123 * using in ram and once, once to create all the inodes logged in the tree
124 * and once to do all the other items.
125 */
126
e02119d5
CM
127/*
128 * start a sub transaction and setup the log tree
129 * this increments the log tree writer count to make the people
130 * syncing the tree wait for us to finish
131 */
132static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
133 struct btrfs_root *root,
134 struct btrfs_log_ctx *ctx)
e02119d5 135{
0b246afa 136 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 137 int ret = 0;
7237f183
YZ
138
139 mutex_lock(&root->log_mutex);
34eb2a52 140
7237f183 141 if (root->log_root) {
0b246afa 142 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
143 ret = -EAGAIN;
144 goto out;
145 }
34eb2a52 146
ff782e0a 147 if (!root->log_start_pid) {
27cdeb70 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 149 root->log_start_pid = current->pid;
ff782e0a 150 } else if (root->log_start_pid != current->pid) {
27cdeb70 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 152 }
34eb2a52 153 } else {
0b246afa
JM
154 mutex_lock(&fs_info->tree_log_mutex);
155 if (!fs_info->log_root_tree)
156 ret = btrfs_init_log_root_tree(trans, fs_info);
157 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
158 if (ret)
159 goto out;
ff782e0a 160
e02119d5 161 ret = btrfs_add_log_tree(trans, root);
4a500fd1 162 if (ret)
e87ac136 163 goto out;
34eb2a52
Z
164
165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 root->log_start_pid = current->pid;
e02119d5 167 }
34eb2a52 168
2ecb7923 169 atomic_inc(&root->log_batch);
7237f183 170 atomic_inc(&root->log_writers);
8b050d35 171 if (ctx) {
34eb2a52 172 int index = root->log_transid % 2;
8b050d35 173 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 174 ctx->log_transid = root->log_transid;
8b050d35 175 }
34eb2a52 176
e87ac136 177out:
7237f183 178 mutex_unlock(&root->log_mutex);
e87ac136 179 return ret;
e02119d5
CM
180}
181
182/*
183 * returns 0 if there was a log transaction running and we were able
184 * to join, or returns -ENOENT if there were not transactions
185 * in progress
186 */
187static int join_running_log_trans(struct btrfs_root *root)
188{
189 int ret = -ENOENT;
190
191 smp_mb();
192 if (!root->log_root)
193 return -ENOENT;
194
7237f183 195 mutex_lock(&root->log_mutex);
e02119d5
CM
196 if (root->log_root) {
197 ret = 0;
7237f183 198 atomic_inc(&root->log_writers);
e02119d5 199 }
7237f183 200 mutex_unlock(&root->log_mutex);
e02119d5
CM
201 return ret;
202}
203
12fcfd22
CM
204/*
205 * This either makes the current running log transaction wait
206 * until you call btrfs_end_log_trans() or it makes any future
207 * log transactions wait until you call btrfs_end_log_trans()
208 */
45128b08 209void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 210{
12fcfd22
CM
211 mutex_lock(&root->log_mutex);
212 atomic_inc(&root->log_writers);
213 mutex_unlock(&root->log_mutex);
12fcfd22
CM
214}
215
e02119d5
CM
216/*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
143bede5 220void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 221{
7237f183 222 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
223 /* atomic_dec_and_test implies a barrier */
224 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 225 }
e02119d5
CM
226}
227
228
229/*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
f2d72f42
FM
259 /*
260 * Ignore any items from the inode currently being processed. Needs
261 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
262 * the LOG_WALK_REPLAY_INODES stage.
263 */
264 bool ignore_cur_inode;
265
e02119d5
CM
266 /* the root we are currently replaying */
267 struct btrfs_root *replay_dest;
268
269 /* the trans handle for the current replay */
270 struct btrfs_trans_handle *trans;
271
272 /* the function that gets used to process blocks we find in the
273 * tree. Note the extent_buffer might not be up to date when it is
274 * passed in, and it must be checked or read if you need the data
275 * inside it
276 */
277 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 278 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
279};
280
281/*
282 * process_func used to pin down extents, write them or wait on them
283 */
284static int process_one_buffer(struct btrfs_root *log,
285 struct extent_buffer *eb,
581c1760 286 struct walk_control *wc, u64 gen, int level)
e02119d5 287{
0b246afa 288 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
289 int ret = 0;
290
8c2a1a30
JB
291 /*
292 * If this fs is mixed then we need to be able to process the leaves to
293 * pin down any logged extents, so we have to read the block.
294 */
0b246afa 295 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 296 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
297 if (ret)
298 return ret;
299 }
300
04018de5 301 if (wc->pin)
2ff7e61e
JM
302 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
303 eb->len);
e02119d5 304
b50c6e25 305 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 306 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 307 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
308 if (wc->write)
309 btrfs_write_tree_block(eb);
310 if (wc->wait)
311 btrfs_wait_tree_block_writeback(eb);
312 }
b50c6e25 313 return ret;
e02119d5
CM
314}
315
316/*
317 * Item overwrite used by replay and tree logging. eb, slot and key all refer
318 * to the src data we are copying out.
319 *
320 * root is the tree we are copying into, and path is a scratch
321 * path for use in this function (it should be released on entry and
322 * will be released on exit).
323 *
324 * If the key is already in the destination tree the existing item is
325 * overwritten. If the existing item isn't big enough, it is extended.
326 * If it is too large, it is truncated.
327 *
328 * If the key isn't in the destination yet, a new item is inserted.
329 */
330static noinline int overwrite_item(struct btrfs_trans_handle *trans,
331 struct btrfs_root *root,
332 struct btrfs_path *path,
333 struct extent_buffer *eb, int slot,
334 struct btrfs_key *key)
335{
2ff7e61e 336 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
337 int ret;
338 u32 item_size;
339 u64 saved_i_size = 0;
340 int save_old_i_size = 0;
341 unsigned long src_ptr;
342 unsigned long dst_ptr;
343 int overwrite_root = 0;
4bc4bee4 344 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
345
346 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
347 overwrite_root = 1;
348
349 item_size = btrfs_item_size_nr(eb, slot);
350 src_ptr = btrfs_item_ptr_offset(eb, slot);
351
352 /* look for the key in the destination tree */
353 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
354 if (ret < 0)
355 return ret;
356
e02119d5
CM
357 if (ret == 0) {
358 char *src_copy;
359 char *dst_copy;
360 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
361 path->slots[0]);
362 if (dst_size != item_size)
363 goto insert;
364
365 if (item_size == 0) {
b3b4aa74 366 btrfs_release_path(path);
e02119d5
CM
367 return 0;
368 }
369 dst_copy = kmalloc(item_size, GFP_NOFS);
370 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 371 if (!dst_copy || !src_copy) {
b3b4aa74 372 btrfs_release_path(path);
2a29edc6 373 kfree(dst_copy);
374 kfree(src_copy);
375 return -ENOMEM;
376 }
e02119d5
CM
377
378 read_extent_buffer(eb, src_copy, src_ptr, item_size);
379
380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
381 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
382 item_size);
383 ret = memcmp(dst_copy, src_copy, item_size);
384
385 kfree(dst_copy);
386 kfree(src_copy);
387 /*
388 * they have the same contents, just return, this saves
389 * us from cowing blocks in the destination tree and doing
390 * extra writes that may not have been done by a previous
391 * sync
392 */
393 if (ret == 0) {
b3b4aa74 394 btrfs_release_path(path);
e02119d5
CM
395 return 0;
396 }
397
4bc4bee4
JB
398 /*
399 * We need to load the old nbytes into the inode so when we
400 * replay the extents we've logged we get the right nbytes.
401 */
402 if (inode_item) {
403 struct btrfs_inode_item *item;
404 u64 nbytes;
d555438b 405 u32 mode;
4bc4bee4
JB
406
407 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
408 struct btrfs_inode_item);
409 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
410 item = btrfs_item_ptr(eb, slot,
411 struct btrfs_inode_item);
412 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
413
414 /*
415 * If this is a directory we need to reset the i_size to
416 * 0 so that we can set it up properly when replaying
417 * the rest of the items in this log.
418 */
419 mode = btrfs_inode_mode(eb, item);
420 if (S_ISDIR(mode))
421 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
422 }
423 } else if (inode_item) {
424 struct btrfs_inode_item *item;
d555438b 425 u32 mode;
4bc4bee4
JB
426
427 /*
428 * New inode, set nbytes to 0 so that the nbytes comes out
429 * properly when we replay the extents.
430 */
431 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
432 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
433
434 /*
435 * If this is a directory we need to reset the i_size to 0 so
436 * that we can set it up properly when replaying the rest of
437 * the items in this log.
438 */
439 mode = btrfs_inode_mode(eb, item);
440 if (S_ISDIR(mode))
441 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
442 }
443insert:
b3b4aa74 444 btrfs_release_path(path);
e02119d5 445 /* try to insert the key into the destination tree */
df8d116f 446 path->skip_release_on_error = 1;
e02119d5
CM
447 ret = btrfs_insert_empty_item(trans, root, path,
448 key, item_size);
df8d116f 449 path->skip_release_on_error = 0;
e02119d5
CM
450
451 /* make sure any existing item is the correct size */
df8d116f 452 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
453 u32 found_size;
454 found_size = btrfs_item_size_nr(path->nodes[0],
455 path->slots[0]);
143bede5 456 if (found_size > item_size)
2ff7e61e 457 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 458 else if (found_size < item_size)
2ff7e61e 459 btrfs_extend_item(fs_info, path,
143bede5 460 item_size - found_size);
e02119d5 461 } else if (ret) {
4a500fd1 462 return ret;
e02119d5
CM
463 }
464 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
465 path->slots[0]);
466
467 /* don't overwrite an existing inode if the generation number
468 * was logged as zero. This is done when the tree logging code
469 * is just logging an inode to make sure it exists after recovery.
470 *
471 * Also, don't overwrite i_size on directories during replay.
472 * log replay inserts and removes directory items based on the
473 * state of the tree found in the subvolume, and i_size is modified
474 * as it goes
475 */
476 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
477 struct btrfs_inode_item *src_item;
478 struct btrfs_inode_item *dst_item;
479
480 src_item = (struct btrfs_inode_item *)src_ptr;
481 dst_item = (struct btrfs_inode_item *)dst_ptr;
482
1a4bcf47
FM
483 if (btrfs_inode_generation(eb, src_item) == 0) {
484 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 485 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 486
2f2ff0ee
FM
487 /*
488 * For regular files an ino_size == 0 is used only when
489 * logging that an inode exists, as part of a directory
490 * fsync, and the inode wasn't fsynced before. In this
491 * case don't set the size of the inode in the fs/subvol
492 * tree, otherwise we would be throwing valid data away.
493 */
1a4bcf47 494 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
495 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
496 ino_size != 0) {
1a4bcf47 497 struct btrfs_map_token token;
1a4bcf47
FM
498
499 btrfs_init_map_token(&token);
500 btrfs_set_token_inode_size(dst_eb, dst_item,
501 ino_size, &token);
502 }
e02119d5 503 goto no_copy;
1a4bcf47 504 }
e02119d5
CM
505
506 if (overwrite_root &&
507 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
508 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
509 save_old_i_size = 1;
510 saved_i_size = btrfs_inode_size(path->nodes[0],
511 dst_item);
512 }
513 }
514
515 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
516 src_ptr, item_size);
517
518 if (save_old_i_size) {
519 struct btrfs_inode_item *dst_item;
520 dst_item = (struct btrfs_inode_item *)dst_ptr;
521 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
522 }
523
524 /* make sure the generation is filled in */
525 if (key->type == BTRFS_INODE_ITEM_KEY) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
529 btrfs_set_inode_generation(path->nodes[0], dst_item,
530 trans->transid);
531 }
532 }
533no_copy:
534 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 535 btrfs_release_path(path);
e02119d5
CM
536 return 0;
537}
538
539/*
540 * simple helper to read an inode off the disk from a given root
541 * This can only be called for subvolume roots and not for the log
542 */
543static noinline struct inode *read_one_inode(struct btrfs_root *root,
544 u64 objectid)
545{
5d4f98a2 546 struct btrfs_key key;
e02119d5 547 struct inode *inode;
e02119d5 548
5d4f98a2
YZ
549 key.objectid = objectid;
550 key.type = BTRFS_INODE_ITEM_KEY;
551 key.offset = 0;
73f73415 552 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
2e19f1f9 553 if (IS_ERR(inode))
5d4f98a2 554 inode = NULL;
e02119d5
CM
555 return inode;
556}
557
558/* replays a single extent in 'eb' at 'slot' with 'key' into the
559 * subvolume 'root'. path is released on entry and should be released
560 * on exit.
561 *
562 * extents in the log tree have not been allocated out of the extent
563 * tree yet. So, this completes the allocation, taking a reference
564 * as required if the extent already exists or creating a new extent
565 * if it isn't in the extent allocation tree yet.
566 *
567 * The extent is inserted into the file, dropping any existing extents
568 * from the file that overlap the new one.
569 */
570static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_path *path,
573 struct extent_buffer *eb, int slot,
574 struct btrfs_key *key)
575{
0b246afa 576 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 577 int found_type;
e02119d5 578 u64 extent_end;
e02119d5 579 u64 start = key->offset;
4bc4bee4 580 u64 nbytes = 0;
e02119d5
CM
581 struct btrfs_file_extent_item *item;
582 struct inode *inode = NULL;
583 unsigned long size;
584 int ret = 0;
585
586 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
587 found_type = btrfs_file_extent_type(eb, item);
588
d899e052 589 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
590 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
591 nbytes = btrfs_file_extent_num_bytes(eb, item);
592 extent_end = start + nbytes;
593
594 /*
595 * We don't add to the inodes nbytes if we are prealloc or a
596 * hole.
597 */
598 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
599 nbytes = 0;
600 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 601 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 602 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 603 extent_end = ALIGN(start + size,
0b246afa 604 fs_info->sectorsize);
e02119d5
CM
605 } else {
606 ret = 0;
607 goto out;
608 }
609
610 inode = read_one_inode(root, key->objectid);
611 if (!inode) {
612 ret = -EIO;
613 goto out;
614 }
615
616 /*
617 * first check to see if we already have this extent in the
618 * file. This must be done before the btrfs_drop_extents run
619 * so we don't try to drop this extent.
620 */
f85b7379
DS
621 ret = btrfs_lookup_file_extent(trans, root, path,
622 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 623
d899e052
YZ
624 if (ret == 0 &&
625 (found_type == BTRFS_FILE_EXTENT_REG ||
626 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
627 struct btrfs_file_extent_item cmp1;
628 struct btrfs_file_extent_item cmp2;
629 struct btrfs_file_extent_item *existing;
630 struct extent_buffer *leaf;
631
632 leaf = path->nodes[0];
633 existing = btrfs_item_ptr(leaf, path->slots[0],
634 struct btrfs_file_extent_item);
635
636 read_extent_buffer(eb, &cmp1, (unsigned long)item,
637 sizeof(cmp1));
638 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
639 sizeof(cmp2));
640
641 /*
642 * we already have a pointer to this exact extent,
643 * we don't have to do anything
644 */
645 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 646 btrfs_release_path(path);
e02119d5
CM
647 goto out;
648 }
649 }
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651
652 /* drop any overlapping extents */
2671485d 653 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
654 if (ret)
655 goto out;
e02119d5 656
07d400a6
YZ
657 if (found_type == BTRFS_FILE_EXTENT_REG ||
658 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 659 u64 offset;
07d400a6
YZ
660 unsigned long dest_offset;
661 struct btrfs_key ins;
662
3168021c
FM
663 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
664 btrfs_fs_incompat(fs_info, NO_HOLES))
665 goto update_inode;
666
07d400a6
YZ
667 ret = btrfs_insert_empty_item(trans, root, path, key,
668 sizeof(*item));
3650860b
JB
669 if (ret)
670 goto out;
07d400a6
YZ
671 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 path->slots[0]);
673 copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 (unsigned long)item, sizeof(*item));
675
676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 679 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 680
df2c95f3
QW
681 /*
682 * Manually record dirty extent, as here we did a shallow
683 * file extent item copy and skip normal backref update,
684 * but modifying extent tree all by ourselves.
685 * So need to manually record dirty extent for qgroup,
686 * as the owner of the file extent changed from log tree
687 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 */
a95f3aaf 689 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
690 btrfs_file_extent_disk_bytenr(eb, item),
691 btrfs_file_extent_disk_num_bytes(eb, item),
692 GFP_NOFS);
693 if (ret < 0)
694 goto out;
695
07d400a6
YZ
696 if (ins.objectid > 0) {
697 u64 csum_start;
698 u64 csum_end;
699 LIST_HEAD(ordered_sums);
700 /*
701 * is this extent already allocated in the extent
702 * allocation tree? If so, just add a reference
703 */
2ff7e61e 704 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
705 ins.offset);
706 if (ret == 0) {
84f7d8e6 707 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 708 ins.objectid, ins.offset,
5d4f98a2 709 0, root->root_key.objectid,
b06c4bf5 710 key->objectid, offset);
b50c6e25
JB
711 if (ret)
712 goto out;
07d400a6
YZ
713 } else {
714 /*
715 * insert the extent pointer in the extent
716 * allocation tree
717 */
5d4f98a2 718 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 719 root->root_key.objectid,
5d4f98a2 720 key->objectid, offset, &ins);
b50c6e25
JB
721 if (ret)
722 goto out;
07d400a6 723 }
b3b4aa74 724 btrfs_release_path(path);
07d400a6
YZ
725
726 if (btrfs_file_extent_compression(eb, item)) {
727 csum_start = ins.objectid;
728 csum_end = csum_start + ins.offset;
729 } else {
730 csum_start = ins.objectid +
731 btrfs_file_extent_offset(eb, item);
732 csum_end = csum_start +
733 btrfs_file_extent_num_bytes(eb, item);
734 }
735
736 ret = btrfs_lookup_csums_range(root->log_root,
737 csum_start, csum_end - 1,
a2de733c 738 &ordered_sums, 0);
3650860b
JB
739 if (ret)
740 goto out;
b84b8390
FM
741 /*
742 * Now delete all existing cums in the csum root that
743 * cover our range. We do this because we can have an
744 * extent that is completely referenced by one file
745 * extent item and partially referenced by another
746 * file extent item (like after using the clone or
747 * extent_same ioctls). In this case if we end up doing
748 * the replay of the one that partially references the
749 * extent first, and we do not do the csum deletion
750 * below, we can get 2 csum items in the csum tree that
751 * overlap each other. For example, imagine our log has
752 * the two following file extent items:
753 *
754 * key (257 EXTENT_DATA 409600)
755 * extent data disk byte 12845056 nr 102400
756 * extent data offset 20480 nr 20480 ram 102400
757 *
758 * key (257 EXTENT_DATA 819200)
759 * extent data disk byte 12845056 nr 102400
760 * extent data offset 0 nr 102400 ram 102400
761 *
762 * Where the second one fully references the 100K extent
763 * that starts at disk byte 12845056, and the log tree
764 * has a single csum item that covers the entire range
765 * of the extent:
766 *
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 *
769 * After the first file extent item is replayed, the
770 * csum tree gets the following csum item:
771 *
772 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
773 *
774 * Which covers the 20K sub-range starting at offset 20K
775 * of our extent. Now when we replay the second file
776 * extent item, if we do not delete existing csum items
777 * that cover any of its blocks, we end up getting two
778 * csum items in our csum tree that overlap each other:
779 *
780 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
782 *
783 * Which is a problem, because after this anyone trying
784 * to lookup up for the checksum of any block of our
785 * extent starting at an offset of 40K or higher, will
786 * end up looking at the second csum item only, which
787 * does not contain the checksum for any block starting
788 * at offset 40K or higher of our extent.
789 */
07d400a6
YZ
790 while (!list_empty(&ordered_sums)) {
791 struct btrfs_ordered_sum *sums;
792 sums = list_entry(ordered_sums.next,
793 struct btrfs_ordered_sum,
794 list);
b84b8390 795 if (!ret)
0b246afa 796 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
797 sums->bytenr,
798 sums->len);
3650860b
JB
799 if (!ret)
800 ret = btrfs_csum_file_blocks(trans,
0b246afa 801 fs_info->csum_root, sums);
07d400a6
YZ
802 list_del(&sums->list);
803 kfree(sums);
804 }
3650860b
JB
805 if (ret)
806 goto out;
07d400a6 807 } else {
b3b4aa74 808 btrfs_release_path(path);
07d400a6
YZ
809 }
810 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 /* inline extents are easy, we just overwrite them */
812 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
813 if (ret)
814 goto out;
07d400a6 815 }
e02119d5 816
4bc4bee4 817 inode_add_bytes(inode, nbytes);
3168021c 818update_inode:
b9959295 819 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
820out:
821 if (inode)
822 iput(inode);
823 return ret;
824}
825
826/*
827 * when cleaning up conflicts between the directory names in the
828 * subvolume, directory names in the log and directory names in the
829 * inode back references, we may have to unlink inodes from directories.
830 *
831 * This is a helper function to do the unlink of a specific directory
832 * item
833 */
834static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root,
836 struct btrfs_path *path,
207e7d92 837 struct btrfs_inode *dir,
e02119d5
CM
838 struct btrfs_dir_item *di)
839{
840 struct inode *inode;
841 char *name;
842 int name_len;
843 struct extent_buffer *leaf;
844 struct btrfs_key location;
845 int ret;
846
847 leaf = path->nodes[0];
848
849 btrfs_dir_item_key_to_cpu(leaf, di, &location);
850 name_len = btrfs_dir_name_len(leaf, di);
851 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 852 if (!name)
853 return -ENOMEM;
854
e02119d5 855 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 856 btrfs_release_path(path);
e02119d5
CM
857
858 inode = read_one_inode(root, location.objectid);
c00e9493 859 if (!inode) {
3650860b
JB
860 ret = -EIO;
861 goto out;
c00e9493 862 }
e02119d5 863
ec051c0f 864 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
865 if (ret)
866 goto out;
12fcfd22 867
207e7d92
NB
868 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
869 name_len);
3650860b
JB
870 if (ret)
871 goto out;
ada9af21 872 else
e5c304e6 873 ret = btrfs_run_delayed_items(trans);
3650860b 874out:
e02119d5 875 kfree(name);
e02119d5
CM
876 iput(inode);
877 return ret;
878}
879
880/*
881 * helper function to see if a given name and sequence number found
882 * in an inode back reference are already in a directory and correctly
883 * point to this inode
884 */
885static noinline int inode_in_dir(struct btrfs_root *root,
886 struct btrfs_path *path,
887 u64 dirid, u64 objectid, u64 index,
888 const char *name, int name_len)
889{
890 struct btrfs_dir_item *di;
891 struct btrfs_key location;
892 int match = 0;
893
894 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
895 index, name, name_len, 0);
896 if (di && !IS_ERR(di)) {
897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898 if (location.objectid != objectid)
899 goto out;
900 } else
901 goto out;
b3b4aa74 902 btrfs_release_path(path);
e02119d5
CM
903
904 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
908 goto out;
909 } else
910 goto out;
911 match = 1;
912out:
b3b4aa74 913 btrfs_release_path(path);
e02119d5
CM
914 return match;
915}
916
917/*
918 * helper function to check a log tree for a named back reference in
919 * an inode. This is used to decide if a back reference that is
920 * found in the subvolume conflicts with what we find in the log.
921 *
922 * inode backreferences may have multiple refs in a single item,
923 * during replay we process one reference at a time, and we don't
924 * want to delete valid links to a file from the subvolume if that
925 * link is also in the log.
926 */
927static noinline int backref_in_log(struct btrfs_root *log,
928 struct btrfs_key *key,
f186373f 929 u64 ref_objectid,
df8d116f 930 const char *name, int namelen)
e02119d5
CM
931{
932 struct btrfs_path *path;
933 struct btrfs_inode_ref *ref;
934 unsigned long ptr;
935 unsigned long ptr_end;
936 unsigned long name_ptr;
937 int found_name_len;
938 int item_size;
939 int ret;
940 int match = 0;
941
942 path = btrfs_alloc_path();
2a29edc6 943 if (!path)
944 return -ENOMEM;
945
e02119d5
CM
946 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
947 if (ret != 0)
948 goto out;
949
e02119d5 950 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
951
952 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
953 if (btrfs_find_name_in_ext_backref(path->nodes[0],
954 path->slots[0],
955 ref_objectid,
f186373f
MF
956 name, namelen, NULL))
957 match = 1;
958
959 goto out;
960 }
961
962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
963 ptr_end = ptr + item_size;
964 while (ptr < ptr_end) {
965 ref = (struct btrfs_inode_ref *)ptr;
966 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
967 if (found_name_len == namelen) {
968 name_ptr = (unsigned long)(ref + 1);
969 ret = memcmp_extent_buffer(path->nodes[0], name,
970 name_ptr, namelen);
971 if (ret == 0) {
972 match = 1;
973 goto out;
974 }
975 }
976 ptr = (unsigned long)(ref + 1) + found_name_len;
977 }
978out:
979 btrfs_free_path(path);
980 return match;
981}
982
5a1d7843 983static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 984 struct btrfs_root *root,
e02119d5 985 struct btrfs_path *path,
5a1d7843 986 struct btrfs_root *log_root,
94c91a1f
NB
987 struct btrfs_inode *dir,
988 struct btrfs_inode *inode,
f186373f
MF
989 u64 inode_objectid, u64 parent_objectid,
990 u64 ref_index, char *name, int namelen,
991 int *search_done)
e02119d5 992{
34f3e4f2 993 int ret;
f186373f
MF
994 char *victim_name;
995 int victim_name_len;
996 struct extent_buffer *leaf;
5a1d7843 997 struct btrfs_dir_item *di;
f186373f
MF
998 struct btrfs_key search_key;
999 struct btrfs_inode_extref *extref;
c622ae60 1000
f186373f
MF
1001again:
1002 /* Search old style refs */
1003 search_key.objectid = inode_objectid;
1004 search_key.type = BTRFS_INODE_REF_KEY;
1005 search_key.offset = parent_objectid;
1006 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1007 if (ret == 0) {
e02119d5
CM
1008 struct btrfs_inode_ref *victim_ref;
1009 unsigned long ptr;
1010 unsigned long ptr_end;
f186373f
MF
1011
1012 leaf = path->nodes[0];
e02119d5
CM
1013
1014 /* are we trying to overwrite a back ref for the root directory
1015 * if so, just jump out, we're done
1016 */
f186373f 1017 if (search_key.objectid == search_key.offset)
5a1d7843 1018 return 1;
e02119d5
CM
1019
1020 /* check all the names in this back reference to see
1021 * if they are in the log. if so, we allow them to stay
1022 * otherwise they must be unlinked as a conflict
1023 */
1024 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1025 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1026 while (ptr < ptr_end) {
e02119d5
CM
1027 victim_ref = (struct btrfs_inode_ref *)ptr;
1028 victim_name_len = btrfs_inode_ref_name_len(leaf,
1029 victim_ref);
1030 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1031 if (!victim_name)
1032 return -ENOMEM;
e02119d5
CM
1033
1034 read_extent_buffer(leaf, victim_name,
1035 (unsigned long)(victim_ref + 1),
1036 victim_name_len);
1037
f186373f
MF
1038 if (!backref_in_log(log_root, &search_key,
1039 parent_objectid,
1040 victim_name,
e02119d5 1041 victim_name_len)) {
94c91a1f 1042 inc_nlink(&inode->vfs_inode);
b3b4aa74 1043 btrfs_release_path(path);
12fcfd22 1044
94c91a1f 1045 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1046 victim_name, victim_name_len);
f186373f 1047 kfree(victim_name);
3650860b
JB
1048 if (ret)
1049 return ret;
e5c304e6 1050 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1051 if (ret)
1052 return ret;
f186373f
MF
1053 *search_done = 1;
1054 goto again;
e02119d5
CM
1055 }
1056 kfree(victim_name);
f186373f 1057
e02119d5
CM
1058 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1059 }
e02119d5 1060
c622ae60 1061 /*
1062 * NOTE: we have searched root tree and checked the
bb7ab3b9 1063 * corresponding ref, it does not need to check again.
c622ae60 1064 */
5a1d7843 1065 *search_done = 1;
e02119d5 1066 }
b3b4aa74 1067 btrfs_release_path(path);
e02119d5 1068
f186373f
MF
1069 /* Same search but for extended refs */
1070 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1071 inode_objectid, parent_objectid, 0,
1072 0);
1073 if (!IS_ERR_OR_NULL(extref)) {
1074 u32 item_size;
1075 u32 cur_offset = 0;
1076 unsigned long base;
1077 struct inode *victim_parent;
1078
1079 leaf = path->nodes[0];
1080
1081 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1082 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083
1084 while (cur_offset < item_size) {
dd9ef135 1085 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1086
1087 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088
1089 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1090 goto next;
1091
1092 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1093 if (!victim_name)
1094 return -ENOMEM;
f186373f
MF
1095 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1096 victim_name_len);
1097
1098 search_key.objectid = inode_objectid;
1099 search_key.type = BTRFS_INODE_EXTREF_KEY;
1100 search_key.offset = btrfs_extref_hash(parent_objectid,
1101 victim_name,
1102 victim_name_len);
1103 ret = 0;
1104 if (!backref_in_log(log_root, &search_key,
1105 parent_objectid, victim_name,
1106 victim_name_len)) {
1107 ret = -ENOENT;
1108 victim_parent = read_one_inode(root,
94c91a1f 1109 parent_objectid);
f186373f 1110 if (victim_parent) {
94c91a1f 1111 inc_nlink(&inode->vfs_inode);
f186373f
MF
1112 btrfs_release_path(path);
1113
1114 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1115 BTRFS_I(victim_parent),
94c91a1f 1116 inode,
4ec5934e
NB
1117 victim_name,
1118 victim_name_len);
ada9af21
FDBM
1119 if (!ret)
1120 ret = btrfs_run_delayed_items(
e5c304e6 1121 trans);
f186373f 1122 }
f186373f
MF
1123 iput(victim_parent);
1124 kfree(victim_name);
3650860b
JB
1125 if (ret)
1126 return ret;
f186373f
MF
1127 *search_done = 1;
1128 goto again;
1129 }
1130 kfree(victim_name);
f186373f
MF
1131next:
1132 cur_offset += victim_name_len + sizeof(*extref);
1133 }
1134 *search_done = 1;
1135 }
1136 btrfs_release_path(path);
1137
34f3e4f2 1138 /* look for a conflicting sequence number */
94c91a1f 1139 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1140 ref_index, name, namelen, 0);
34f3e4f2 1141 if (di && !IS_ERR(di)) {
94c91a1f 1142 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1143 if (ret)
1144 return ret;
34f3e4f2 1145 }
1146 btrfs_release_path(path);
1147
52042d8e 1148 /* look for a conflicting name */
94c91a1f 1149 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1150 name, namelen, 0);
1151 if (di && !IS_ERR(di)) {
94c91a1f 1152 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1153 if (ret)
1154 return ret;
34f3e4f2 1155 }
1156 btrfs_release_path(path);
1157
5a1d7843
JS
1158 return 0;
1159}
e02119d5 1160
bae15d95
QW
1161static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1162 u32 *namelen, char **name, u64 *index,
1163 u64 *parent_objectid)
f186373f
MF
1164{
1165 struct btrfs_inode_extref *extref;
1166
1167 extref = (struct btrfs_inode_extref *)ref_ptr;
1168
1169 *namelen = btrfs_inode_extref_name_len(eb, extref);
1170 *name = kmalloc(*namelen, GFP_NOFS);
1171 if (*name == NULL)
1172 return -ENOMEM;
1173
1174 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1175 *namelen);
1176
1f250e92
FM
1177 if (index)
1178 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1179 if (parent_objectid)
1180 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181
1182 return 0;
1183}
1184
bae15d95
QW
1185static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1186 u32 *namelen, char **name, u64 *index)
f186373f
MF
1187{
1188 struct btrfs_inode_ref *ref;
1189
1190 ref = (struct btrfs_inode_ref *)ref_ptr;
1191
1192 *namelen = btrfs_inode_ref_name_len(eb, ref);
1193 *name = kmalloc(*namelen, GFP_NOFS);
1194 if (*name == NULL)
1195 return -ENOMEM;
1196
1197 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198
1f250e92
FM
1199 if (index)
1200 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1201
1202 return 0;
1203}
1204
1f250e92
FM
1205/*
1206 * Take an inode reference item from the log tree and iterate all names from the
1207 * inode reference item in the subvolume tree with the same key (if it exists).
1208 * For any name that is not in the inode reference item from the log tree, do a
1209 * proper unlink of that name (that is, remove its entry from the inode
1210 * reference item and both dir index keys).
1211 */
1212static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1213 struct btrfs_root *root,
1214 struct btrfs_path *path,
1215 struct btrfs_inode *inode,
1216 struct extent_buffer *log_eb,
1217 int log_slot,
1218 struct btrfs_key *key)
1219{
1220 int ret;
1221 unsigned long ref_ptr;
1222 unsigned long ref_end;
1223 struct extent_buffer *eb;
1224
1225again:
1226 btrfs_release_path(path);
1227 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1228 if (ret > 0) {
1229 ret = 0;
1230 goto out;
1231 }
1232 if (ret < 0)
1233 goto out;
1234
1235 eb = path->nodes[0];
1236 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1237 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1238 while (ref_ptr < ref_end) {
1239 char *name = NULL;
1240 int namelen;
1241 u64 parent_id;
1242
1243 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1244 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1245 NULL, &parent_id);
1246 } else {
1247 parent_id = key->offset;
1248 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1249 NULL);
1250 }
1251 if (ret)
1252 goto out;
1253
1254 if (key->type == BTRFS_INODE_EXTREF_KEY)
1255 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1256 parent_id, name,
1257 namelen, NULL);
1258 else
1259 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1260 namelen, NULL);
1261
1262 if (!ret) {
1263 struct inode *dir;
1264
1265 btrfs_release_path(path);
1266 dir = read_one_inode(root, parent_id);
1267 if (!dir) {
1268 ret = -ENOENT;
1269 kfree(name);
1270 goto out;
1271 }
1272 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1273 inode, name, namelen);
1274 kfree(name);
1275 iput(dir);
1276 if (ret)
1277 goto out;
1278 goto again;
1279 }
1280
1281 kfree(name);
1282 ref_ptr += namelen;
1283 if (key->type == BTRFS_INODE_EXTREF_KEY)
1284 ref_ptr += sizeof(struct btrfs_inode_extref);
1285 else
1286 ref_ptr += sizeof(struct btrfs_inode_ref);
1287 }
1288 ret = 0;
1289 out:
1290 btrfs_release_path(path);
1291 return ret;
1292}
1293
0d836392
FM
1294static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1295 const u8 ref_type, const char *name,
1296 const int namelen)
1297{
1298 struct btrfs_key key;
1299 struct btrfs_path *path;
1300 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1301 int ret;
1302
1303 path = btrfs_alloc_path();
1304 if (!path)
1305 return -ENOMEM;
1306
1307 key.objectid = btrfs_ino(BTRFS_I(inode));
1308 key.type = ref_type;
1309 if (key.type == BTRFS_INODE_REF_KEY)
1310 key.offset = parent_id;
1311 else
1312 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1313
1314 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1315 if (ret < 0)
1316 goto out;
1317 if (ret > 0) {
1318 ret = 0;
1319 goto out;
1320 }
1321 if (key.type == BTRFS_INODE_EXTREF_KEY)
1322 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1323 path->slots[0], parent_id,
1324 name, namelen, NULL);
1325 else
1326 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen, NULL);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
6b5fc433
FM
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
5a1d7843
JS
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
03b2f08b
GB
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
5a1d7843
JS
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
03b2f08b 1412 char *name = NULL;
5a1d7843
JS
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
f186373f
MF
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
f46dbe3d 1419 u64 ref_index = 0;
f186373f
MF
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
e02119d5 1437
5a1d7843
JS
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
f186373f 1444 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
5a1d7843 1449
f186373f 1450 inode = read_one_inode(root, inode_objectid);
5a1d7843 1451 if (!inode) {
03b2f08b
GB
1452 ret = -EIO;
1453 goto out;
5a1d7843
JS
1454 }
1455
5a1d7843 1456 while (ref_ptr < ref_end) {
f186373f 1457 if (log_ref_ver) {
bae15d95
QW
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
f186373f
MF
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
f186373f 1470 } else {
bae15d95
QW
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
f186373f
MF
1473 }
1474 if (ret)
03b2f08b 1475 goto out;
5a1d7843
JS
1476
1477 /* if we already have a perfect match, we're done */
f85b7379
DS
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
5a1d7843
JS
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1491 BTRFS_I(dir),
d75eefdf 1492 BTRFS_I(inode),
f186373f
MF
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
5a1d7843 1496 &search_done);
03b2f08b
GB
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
3650860b
JB
1500 goto out;
1501 }
5a1d7843
JS
1502 }
1503
0d836392
FM
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
5a1d7843 1530 /* insert our name */
6b5fc433
FM
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
3650860b
JB
1533 if (ret)
1534 goto out;
5a1d7843
JS
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
f186373f 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1540 kfree(name);
03b2f08b 1541 name = NULL;
f186373f
MF
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
5a1d7843 1546 }
e02119d5 1547
1f250e92
FM
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
e02119d5
CM
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1563out:
b3b4aa74 1564 btrfs_release_path(path);
03b2f08b 1565 kfree(name);
e02119d5
CM
1566 iput(dir);
1567 iput(inode);
3650860b 1568 return ret;
e02119d5
CM
1569}
1570
c71bf099 1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1572 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1573{
1574 int ret;
381cf658 1575
9c4f61f0
DS
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
381cf658 1579
c71bf099
YZ
1580 return ret;
1581}
1582
f186373f 1583static int count_inode_extrefs(struct btrfs_root *root,
36283658 1584 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
36283658 1591 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
c71bf099 1602
f186373f
MF
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1606 cur_offset = 0;
f186373f
MF
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
2c2c452b 1622 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
f329e319 1628 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1629{
e02119d5
CM
1630 int ret;
1631 struct btrfs_key key;
f186373f 1632 unsigned int nlink = 0;
e02119d5
CM
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
f329e319 1636 u64 ino = btrfs_ino(inode);
e02119d5 1637
33345d01 1638 key.objectid = ino;
e02119d5
CM
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
d397712b 1642 while (1) {
e02119d5
CM
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
e93ae26f 1651process_slot:
e02119d5
CM
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
33345d01 1654 if (key.objectid != ino ||
e02119d5
CM
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
d397712b 1660 while (ptr < ptr_end) {
e02119d5
CM
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
e93ae26f
FDBM
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
e02119d5 1676 key.offset--;
b3b4aa74 1677 btrfs_release_path(path);
e02119d5 1678 }
b3b4aa74 1679 btrfs_release_path(path);
f186373f
MF
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
4a0cc7ca 1701 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
f329e319 1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
36283658 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
e02119d5 1721 if (nlink != inode->i_nlink) {
bfe86848 1722 set_nlink(inode, nlink);
e02119d5
CM
1723 btrfs_update_inode(trans, root, inode);
1724 }
8d5bf1cb 1725 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1726
c71bf099
YZ
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1730 ino, 1);
3650860b
JB
1731 if (ret)
1732 goto out;
c71bf099 1733 }
33345d01 1734 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1735 }
12fcfd22 1736
f186373f
MF
1737out:
1738 btrfs_free_path(path);
1739 return ret;
e02119d5
CM
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
d397712b 1753 while (1) {
e02119d5
CM
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1770 if (ret)
1771 goto out;
e02119d5 1772
b3b4aa74 1773 btrfs_release_path(path);
e02119d5 1774 inode = read_one_inode(root, key.offset);
c00e9493
TI
1775 if (!inode)
1776 return -EIO;
e02119d5
CM
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1779 iput(inode);
3650860b
JB
1780 if (ret)
1781 goto out;
e02119d5 1782
12fcfd22
CM
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
e02119d5 1789 }
65a246c5
TI
1790 ret = 0;
1791out:
b3b4aa74 1792 btrfs_release_path(path);
65a246c5 1793 return ret;
e02119d5
CM
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
c00e9493
TI
1812 if (!inode)
1813 return -EIO;
e02119d5
CM
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
b3b4aa74 1821 btrfs_release_path(path);
e02119d5 1822 if (ret == 0) {
9bf7a489
JB
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
8b558c5f 1826 inc_nlink(inode);
b9959295 1827 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
3650860b 1831 BUG(); /* Logic Error */
e02119d5
CM
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
e02119d5 1845 u64 dirid, u64 index,
60d53eb3 1846 char *name, int name_len,
e02119d5
CM
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
d555438b 1862
db0a669f
NB
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
e02119d5
CM
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
df8d116f
FM
1873/*
1874 * Return true if an inode reference exists in the log for the given name,
1875 * inode and parent inode.
1876 */
1877static bool name_in_log_ref(struct btrfs_root *log_root,
1878 const char *name, const int name_len,
1879 const u64 dirid, const u64 ino)
1880{
1881 struct btrfs_key search_key;
1882
1883 search_key.objectid = ino;
1884 search_key.type = BTRFS_INODE_REF_KEY;
1885 search_key.offset = dirid;
1886 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1887 return true;
1888
1889 search_key.type = BTRFS_INODE_EXTREF_KEY;
1890 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1891 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1892 return true;
1893
1894 return false;
1895}
1896
e02119d5
CM
1897/*
1898 * take a single entry in a log directory item and replay it into
1899 * the subvolume.
1900 *
1901 * if a conflicting item exists in the subdirectory already,
1902 * the inode it points to is unlinked and put into the link count
1903 * fix up tree.
1904 *
1905 * If a name from the log points to a file or directory that does
1906 * not exist in the FS, it is skipped. fsyncs on directories
1907 * do not force down inodes inside that directory, just changes to the
1908 * names or unlinks in a directory.
bb53eda9
FM
1909 *
1910 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1911 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1912 */
1913static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root,
1915 struct btrfs_path *path,
1916 struct extent_buffer *eb,
1917 struct btrfs_dir_item *di,
1918 struct btrfs_key *key)
1919{
1920 char *name;
1921 int name_len;
1922 struct btrfs_dir_item *dst_di;
1923 struct btrfs_key found_key;
1924 struct btrfs_key log_key;
1925 struct inode *dir;
e02119d5 1926 u8 log_type;
4bef0848 1927 int exists;
3650860b 1928 int ret = 0;
d555438b 1929 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1930 bool name_added = false;
e02119d5
CM
1931
1932 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1933 if (!dir)
1934 return -EIO;
e02119d5
CM
1935
1936 name_len = btrfs_dir_name_len(eb, di);
1937 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1938 if (!name) {
1939 ret = -ENOMEM;
1940 goto out;
1941 }
2a29edc6 1942
e02119d5
CM
1943 log_type = btrfs_dir_type(eb, di);
1944 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1945 name_len);
1946
1947 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1948 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1949 if (exists == 0)
1950 exists = 1;
1951 else
1952 exists = 0;
b3b4aa74 1953 btrfs_release_path(path);
4bef0848 1954
e02119d5
CM
1955 if (key->type == BTRFS_DIR_ITEM_KEY) {
1956 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1957 name, name_len, 1);
d397712b 1958 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1959 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1960 key->objectid,
1961 key->offset, name,
1962 name_len, 1);
1963 } else {
3650860b
JB
1964 /* Corruption */
1965 ret = -EINVAL;
1966 goto out;
e02119d5 1967 }
c704005d 1968 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1969 /* we need a sequence number to insert, so we only
1970 * do inserts for the BTRFS_DIR_INDEX_KEY types
1971 */
1972 if (key->type != BTRFS_DIR_INDEX_KEY)
1973 goto out;
1974 goto insert;
1975 }
1976
1977 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1978 /* the existing item matches the logged item */
1979 if (found_key.objectid == log_key.objectid &&
1980 found_key.type == log_key.type &&
1981 found_key.offset == log_key.offset &&
1982 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1983 update_size = false;
e02119d5
CM
1984 goto out;
1985 }
1986
1987 /*
1988 * don't drop the conflicting directory entry if the inode
1989 * for the new entry doesn't exist
1990 */
4bef0848 1991 if (!exists)
e02119d5
CM
1992 goto out;
1993
207e7d92 1994 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1995 if (ret)
1996 goto out;
e02119d5
CM
1997
1998 if (key->type == BTRFS_DIR_INDEX_KEY)
1999 goto insert;
2000out:
b3b4aa74 2001 btrfs_release_path(path);
d555438b 2002 if (!ret && update_size) {
6ef06d27 2003 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
2004 ret = btrfs_update_inode(trans, root, dir);
2005 }
e02119d5
CM
2006 kfree(name);
2007 iput(dir);
bb53eda9
FM
2008 if (!ret && name_added)
2009 ret = 1;
3650860b 2010 return ret;
e02119d5
CM
2011
2012insert:
df8d116f
FM
2013 if (name_in_log_ref(root->log_root, name, name_len,
2014 key->objectid, log_key.objectid)) {
2015 /* The dentry will be added later. */
2016 ret = 0;
2017 update_size = false;
2018 goto out;
2019 }
b3b4aa74 2020 btrfs_release_path(path);
60d53eb3
Z
2021 ret = insert_one_name(trans, root, key->objectid, key->offset,
2022 name, name_len, &log_key);
df8d116f 2023 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2024 goto out;
bb53eda9
FM
2025 if (!ret)
2026 name_added = true;
d555438b 2027 update_size = false;
3650860b 2028 ret = 0;
e02119d5
CM
2029 goto out;
2030}
2031
2032/*
2033 * find all the names in a directory item and reconcile them into
2034 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2035 * one name in a directory item, but the same code gets used for
2036 * both directory index types
2037 */
2038static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2039 struct btrfs_root *root,
2040 struct btrfs_path *path,
2041 struct extent_buffer *eb, int slot,
2042 struct btrfs_key *key)
2043{
bb53eda9 2044 int ret = 0;
e02119d5
CM
2045 u32 item_size = btrfs_item_size_nr(eb, slot);
2046 struct btrfs_dir_item *di;
2047 int name_len;
2048 unsigned long ptr;
2049 unsigned long ptr_end;
bb53eda9 2050 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2051
2052 ptr = btrfs_item_ptr_offset(eb, slot);
2053 ptr_end = ptr + item_size;
d397712b 2054 while (ptr < ptr_end) {
e02119d5
CM
2055 di = (struct btrfs_dir_item *)ptr;
2056 name_len = btrfs_dir_name_len(eb, di);
2057 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2058 if (ret < 0)
2059 break;
e02119d5
CM
2060 ptr = (unsigned long)(di + 1);
2061 ptr += name_len;
bb53eda9
FM
2062
2063 /*
2064 * If this entry refers to a non-directory (directories can not
2065 * have a link count > 1) and it was added in the transaction
2066 * that was not committed, make sure we fixup the link count of
2067 * the inode it the entry points to. Otherwise something like
2068 * the following would result in a directory pointing to an
2069 * inode with a wrong link that does not account for this dir
2070 * entry:
2071 *
2072 * mkdir testdir
2073 * touch testdir/foo
2074 * touch testdir/bar
2075 * sync
2076 *
2077 * ln testdir/bar testdir/bar_link
2078 * ln testdir/foo testdir/foo_link
2079 * xfs_io -c "fsync" testdir/bar
2080 *
2081 * <power failure>
2082 *
2083 * mount fs, log replay happens
2084 *
2085 * File foo would remain with a link count of 1 when it has two
2086 * entries pointing to it in the directory testdir. This would
2087 * make it impossible to ever delete the parent directory has
2088 * it would result in stale dentries that can never be deleted.
2089 */
2090 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2091 struct btrfs_key di_key;
2092
2093 if (!fixup_path) {
2094 fixup_path = btrfs_alloc_path();
2095 if (!fixup_path) {
2096 ret = -ENOMEM;
2097 break;
2098 }
2099 }
2100
2101 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2102 ret = link_to_fixup_dir(trans, root, fixup_path,
2103 di_key.objectid);
2104 if (ret)
2105 break;
2106 }
2107 ret = 0;
e02119d5 2108 }
bb53eda9
FM
2109 btrfs_free_path(fixup_path);
2110 return ret;
e02119d5
CM
2111}
2112
2113/*
2114 * directory replay has two parts. There are the standard directory
2115 * items in the log copied from the subvolume, and range items
2116 * created in the log while the subvolume was logged.
2117 *
2118 * The range items tell us which parts of the key space the log
2119 * is authoritative for. During replay, if a key in the subvolume
2120 * directory is in a logged range item, but not actually in the log
2121 * that means it was deleted from the directory before the fsync
2122 * and should be removed.
2123 */
2124static noinline int find_dir_range(struct btrfs_root *root,
2125 struct btrfs_path *path,
2126 u64 dirid, int key_type,
2127 u64 *start_ret, u64 *end_ret)
2128{
2129 struct btrfs_key key;
2130 u64 found_end;
2131 struct btrfs_dir_log_item *item;
2132 int ret;
2133 int nritems;
2134
2135 if (*start_ret == (u64)-1)
2136 return 1;
2137
2138 key.objectid = dirid;
2139 key.type = key_type;
2140 key.offset = *start_ret;
2141
2142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2143 if (ret < 0)
2144 goto out;
2145 if (ret > 0) {
2146 if (path->slots[0] == 0)
2147 goto out;
2148 path->slots[0]--;
2149 }
2150 if (ret != 0)
2151 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2152
2153 if (key.type != key_type || key.objectid != dirid) {
2154 ret = 1;
2155 goto next;
2156 }
2157 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2158 struct btrfs_dir_log_item);
2159 found_end = btrfs_dir_log_end(path->nodes[0], item);
2160
2161 if (*start_ret >= key.offset && *start_ret <= found_end) {
2162 ret = 0;
2163 *start_ret = key.offset;
2164 *end_ret = found_end;
2165 goto out;
2166 }
2167 ret = 1;
2168next:
2169 /* check the next slot in the tree to see if it is a valid item */
2170 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2171 path->slots[0]++;
e02119d5
CM
2172 if (path->slots[0] >= nritems) {
2173 ret = btrfs_next_leaf(root, path);
2174 if (ret)
2175 goto out;
e02119d5
CM
2176 }
2177
2178 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2179
2180 if (key.type != key_type || key.objectid != dirid) {
2181 ret = 1;
2182 goto out;
2183 }
2184 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2185 struct btrfs_dir_log_item);
2186 found_end = btrfs_dir_log_end(path->nodes[0], item);
2187 *start_ret = key.offset;
2188 *end_ret = found_end;
2189 ret = 0;
2190out:
b3b4aa74 2191 btrfs_release_path(path);
e02119d5
CM
2192 return ret;
2193}
2194
2195/*
2196 * this looks for a given directory item in the log. If the directory
2197 * item is not in the log, the item is removed and the inode it points
2198 * to is unlinked
2199 */
2200static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct btrfs_root *log,
2203 struct btrfs_path *path,
2204 struct btrfs_path *log_path,
2205 struct inode *dir,
2206 struct btrfs_key *dir_key)
2207{
2208 int ret;
2209 struct extent_buffer *eb;
2210 int slot;
2211 u32 item_size;
2212 struct btrfs_dir_item *di;
2213 struct btrfs_dir_item *log_di;
2214 int name_len;
2215 unsigned long ptr;
2216 unsigned long ptr_end;
2217 char *name;
2218 struct inode *inode;
2219 struct btrfs_key location;
2220
2221again:
2222 eb = path->nodes[0];
2223 slot = path->slots[0];
2224 item_size = btrfs_item_size_nr(eb, slot);
2225 ptr = btrfs_item_ptr_offset(eb, slot);
2226 ptr_end = ptr + item_size;
d397712b 2227 while (ptr < ptr_end) {
e02119d5
CM
2228 di = (struct btrfs_dir_item *)ptr;
2229 name_len = btrfs_dir_name_len(eb, di);
2230 name = kmalloc(name_len, GFP_NOFS);
2231 if (!name) {
2232 ret = -ENOMEM;
2233 goto out;
2234 }
2235 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2236 name_len);
2237 log_di = NULL;
12fcfd22 2238 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2239 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2240 dir_key->objectid,
2241 name, name_len, 0);
12fcfd22 2242 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2243 log_di = btrfs_lookup_dir_index_item(trans, log,
2244 log_path,
2245 dir_key->objectid,
2246 dir_key->offset,
2247 name, name_len, 0);
2248 }
8d9e220c 2249 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2250 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2251 btrfs_release_path(path);
2252 btrfs_release_path(log_path);
e02119d5 2253 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2254 if (!inode) {
2255 kfree(name);
2256 return -EIO;
2257 }
e02119d5
CM
2258
2259 ret = link_to_fixup_dir(trans, root,
2260 path, location.objectid);
3650860b
JB
2261 if (ret) {
2262 kfree(name);
2263 iput(inode);
2264 goto out;
2265 }
2266
8b558c5f 2267 inc_nlink(inode);
4ec5934e
NB
2268 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2269 BTRFS_I(inode), name, name_len);
3650860b 2270 if (!ret)
e5c304e6 2271 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2272 kfree(name);
2273 iput(inode);
3650860b
JB
2274 if (ret)
2275 goto out;
e02119d5
CM
2276
2277 /* there might still be more names under this key
2278 * check and repeat if required
2279 */
2280 ret = btrfs_search_slot(NULL, root, dir_key, path,
2281 0, 0);
2282 if (ret == 0)
2283 goto again;
2284 ret = 0;
2285 goto out;
269d040f
FDBM
2286 } else if (IS_ERR(log_di)) {
2287 kfree(name);
2288 return PTR_ERR(log_di);
e02119d5 2289 }
b3b4aa74 2290 btrfs_release_path(log_path);
e02119d5
CM
2291 kfree(name);
2292
2293 ptr = (unsigned long)(di + 1);
2294 ptr += name_len;
2295 }
2296 ret = 0;
2297out:
b3b4aa74
DS
2298 btrfs_release_path(path);
2299 btrfs_release_path(log_path);
e02119d5
CM
2300 return ret;
2301}
2302
4f764e51
FM
2303static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2304 struct btrfs_root *root,
2305 struct btrfs_root *log,
2306 struct btrfs_path *path,
2307 const u64 ino)
2308{
2309 struct btrfs_key search_key;
2310 struct btrfs_path *log_path;
2311 int i;
2312 int nritems;
2313 int ret;
2314
2315 log_path = btrfs_alloc_path();
2316 if (!log_path)
2317 return -ENOMEM;
2318
2319 search_key.objectid = ino;
2320 search_key.type = BTRFS_XATTR_ITEM_KEY;
2321 search_key.offset = 0;
2322again:
2323 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2324 if (ret < 0)
2325 goto out;
2326process_leaf:
2327 nritems = btrfs_header_nritems(path->nodes[0]);
2328 for (i = path->slots[0]; i < nritems; i++) {
2329 struct btrfs_key key;
2330 struct btrfs_dir_item *di;
2331 struct btrfs_dir_item *log_di;
2332 u32 total_size;
2333 u32 cur;
2334
2335 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2336 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2337 ret = 0;
2338 goto out;
2339 }
2340
2341 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2342 total_size = btrfs_item_size_nr(path->nodes[0], i);
2343 cur = 0;
2344 while (cur < total_size) {
2345 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2346 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2347 u32 this_len = sizeof(*di) + name_len + data_len;
2348 char *name;
2349
2350 name = kmalloc(name_len, GFP_NOFS);
2351 if (!name) {
2352 ret = -ENOMEM;
2353 goto out;
2354 }
2355 read_extent_buffer(path->nodes[0], name,
2356 (unsigned long)(di + 1), name_len);
2357
2358 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2359 name, name_len, 0);
2360 btrfs_release_path(log_path);
2361 if (!log_di) {
2362 /* Doesn't exist in log tree, so delete it. */
2363 btrfs_release_path(path);
2364 di = btrfs_lookup_xattr(trans, root, path, ino,
2365 name, name_len, -1);
2366 kfree(name);
2367 if (IS_ERR(di)) {
2368 ret = PTR_ERR(di);
2369 goto out;
2370 }
2371 ASSERT(di);
2372 ret = btrfs_delete_one_dir_name(trans, root,
2373 path, di);
2374 if (ret)
2375 goto out;
2376 btrfs_release_path(path);
2377 search_key = key;
2378 goto again;
2379 }
2380 kfree(name);
2381 if (IS_ERR(log_di)) {
2382 ret = PTR_ERR(log_di);
2383 goto out;
2384 }
2385 cur += this_len;
2386 di = (struct btrfs_dir_item *)((char *)di + this_len);
2387 }
2388 }
2389 ret = btrfs_next_leaf(root, path);
2390 if (ret > 0)
2391 ret = 0;
2392 else if (ret == 0)
2393 goto process_leaf;
2394out:
2395 btrfs_free_path(log_path);
2396 btrfs_release_path(path);
2397 return ret;
2398}
2399
2400
e02119d5
CM
2401/*
2402 * deletion replay happens before we copy any new directory items
2403 * out of the log or out of backreferences from inodes. It
2404 * scans the log to find ranges of keys that log is authoritative for,
2405 * and then scans the directory to find items in those ranges that are
2406 * not present in the log.
2407 *
2408 * Anything we don't find in the log is unlinked and removed from the
2409 * directory.
2410 */
2411static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2412 struct btrfs_root *root,
2413 struct btrfs_root *log,
2414 struct btrfs_path *path,
12fcfd22 2415 u64 dirid, int del_all)
e02119d5
CM
2416{
2417 u64 range_start;
2418 u64 range_end;
2419 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2420 int ret = 0;
2421 struct btrfs_key dir_key;
2422 struct btrfs_key found_key;
2423 struct btrfs_path *log_path;
2424 struct inode *dir;
2425
2426 dir_key.objectid = dirid;
2427 dir_key.type = BTRFS_DIR_ITEM_KEY;
2428 log_path = btrfs_alloc_path();
2429 if (!log_path)
2430 return -ENOMEM;
2431
2432 dir = read_one_inode(root, dirid);
2433 /* it isn't an error if the inode isn't there, that can happen
2434 * because we replay the deletes before we copy in the inode item
2435 * from the log
2436 */
2437 if (!dir) {
2438 btrfs_free_path(log_path);
2439 return 0;
2440 }
2441again:
2442 range_start = 0;
2443 range_end = 0;
d397712b 2444 while (1) {
12fcfd22
CM
2445 if (del_all)
2446 range_end = (u64)-1;
2447 else {
2448 ret = find_dir_range(log, path, dirid, key_type,
2449 &range_start, &range_end);
2450 if (ret != 0)
2451 break;
2452 }
e02119d5
CM
2453
2454 dir_key.offset = range_start;
d397712b 2455 while (1) {
e02119d5
CM
2456 int nritems;
2457 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2458 0, 0);
2459 if (ret < 0)
2460 goto out;
2461
2462 nritems = btrfs_header_nritems(path->nodes[0]);
2463 if (path->slots[0] >= nritems) {
2464 ret = btrfs_next_leaf(root, path);
b98def7c 2465 if (ret == 1)
e02119d5 2466 break;
b98def7c
LB
2467 else if (ret < 0)
2468 goto out;
e02119d5
CM
2469 }
2470 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2471 path->slots[0]);
2472 if (found_key.objectid != dirid ||
2473 found_key.type != dir_key.type)
2474 goto next_type;
2475
2476 if (found_key.offset > range_end)
2477 break;
2478
2479 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2480 log_path, dir,
2481 &found_key);
3650860b
JB
2482 if (ret)
2483 goto out;
e02119d5
CM
2484 if (found_key.offset == (u64)-1)
2485 break;
2486 dir_key.offset = found_key.offset + 1;
2487 }
b3b4aa74 2488 btrfs_release_path(path);
e02119d5
CM
2489 if (range_end == (u64)-1)
2490 break;
2491 range_start = range_end + 1;
2492 }
2493
2494next_type:
2495 ret = 0;
2496 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2497 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2498 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2499 btrfs_release_path(path);
e02119d5
CM
2500 goto again;
2501 }
2502out:
b3b4aa74 2503 btrfs_release_path(path);
e02119d5
CM
2504 btrfs_free_path(log_path);
2505 iput(dir);
2506 return ret;
2507}
2508
2509/*
2510 * the process_func used to replay items from the log tree. This
2511 * gets called in two different stages. The first stage just looks
2512 * for inodes and makes sure they are all copied into the subvolume.
2513 *
2514 * The second stage copies all the other item types from the log into
2515 * the subvolume. The two stage approach is slower, but gets rid of
2516 * lots of complexity around inodes referencing other inodes that exist
2517 * only in the log (references come from either directory items or inode
2518 * back refs).
2519 */
2520static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2521 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2522{
2523 int nritems;
2524 struct btrfs_path *path;
2525 struct btrfs_root *root = wc->replay_dest;
2526 struct btrfs_key key;
e02119d5
CM
2527 int i;
2528 int ret;
2529
581c1760 2530 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2531 if (ret)
2532 return ret;
e02119d5
CM
2533
2534 level = btrfs_header_level(eb);
2535
2536 if (level != 0)
2537 return 0;
2538
2539 path = btrfs_alloc_path();
1e5063d0
MF
2540 if (!path)
2541 return -ENOMEM;
e02119d5
CM
2542
2543 nritems = btrfs_header_nritems(eb);
2544 for (i = 0; i < nritems; i++) {
2545 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2546
2547 /* inode keys are done during the first stage */
2548 if (key.type == BTRFS_INODE_ITEM_KEY &&
2549 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2550 struct btrfs_inode_item *inode_item;
2551 u32 mode;
2552
2553 inode_item = btrfs_item_ptr(eb, i,
2554 struct btrfs_inode_item);
f2d72f42
FM
2555 /*
2556 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2557 * and never got linked before the fsync, skip it, as
2558 * replaying it is pointless since it would be deleted
2559 * later. We skip logging tmpfiles, but it's always
2560 * possible we are replaying a log created with a kernel
2561 * that used to log tmpfiles.
2562 */
2563 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2564 wc->ignore_cur_inode = true;
2565 continue;
2566 } else {
2567 wc->ignore_cur_inode = false;
2568 }
4f764e51
FM
2569 ret = replay_xattr_deletes(wc->trans, root, log,
2570 path, key.objectid);
2571 if (ret)
2572 break;
e02119d5
CM
2573 mode = btrfs_inode_mode(eb, inode_item);
2574 if (S_ISDIR(mode)) {
2575 ret = replay_dir_deletes(wc->trans,
12fcfd22 2576 root, log, path, key.objectid, 0);
b50c6e25
JB
2577 if (ret)
2578 break;
e02119d5
CM
2579 }
2580 ret = overwrite_item(wc->trans, root, path,
2581 eb, i, &key);
b50c6e25
JB
2582 if (ret)
2583 break;
e02119d5 2584
471d557a
FM
2585 /*
2586 * Before replaying extents, truncate the inode to its
2587 * size. We need to do it now and not after log replay
2588 * because before an fsync we can have prealloc extents
2589 * added beyond the inode's i_size. If we did it after,
2590 * through orphan cleanup for example, we would drop
2591 * those prealloc extents just after replaying them.
e02119d5
CM
2592 */
2593 if (S_ISREG(mode)) {
471d557a
FM
2594 struct inode *inode;
2595 u64 from;
2596
2597 inode = read_one_inode(root, key.objectid);
2598 if (!inode) {
2599 ret = -EIO;
2600 break;
2601 }
2602 from = ALIGN(i_size_read(inode),
2603 root->fs_info->sectorsize);
2604 ret = btrfs_drop_extents(wc->trans, root, inode,
2605 from, (u64)-1, 1);
471d557a 2606 if (!ret) {
f2d72f42 2607 /* Update the inode's nbytes. */
471d557a
FM
2608 ret = btrfs_update_inode(wc->trans,
2609 root, inode);
2610 }
2611 iput(inode);
b50c6e25
JB
2612 if (ret)
2613 break;
e02119d5 2614 }
c71bf099 2615
e02119d5
CM
2616 ret = link_to_fixup_dir(wc->trans, root,
2617 path, key.objectid);
b50c6e25
JB
2618 if (ret)
2619 break;
e02119d5 2620 }
dd8e7217 2621
f2d72f42
FM
2622 if (wc->ignore_cur_inode)
2623 continue;
2624
dd8e7217
JB
2625 if (key.type == BTRFS_DIR_INDEX_KEY &&
2626 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2627 ret = replay_one_dir_item(wc->trans, root, path,
2628 eb, i, &key);
2629 if (ret)
2630 break;
2631 }
2632
e02119d5
CM
2633 if (wc->stage < LOG_WALK_REPLAY_ALL)
2634 continue;
2635
2636 /* these keys are simply copied */
2637 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2638 ret = overwrite_item(wc->trans, root, path,
2639 eb, i, &key);
b50c6e25
JB
2640 if (ret)
2641 break;
2da1c669
LB
2642 } else if (key.type == BTRFS_INODE_REF_KEY ||
2643 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2644 ret = add_inode_ref(wc->trans, root, log, path,
2645 eb, i, &key);
b50c6e25
JB
2646 if (ret && ret != -ENOENT)
2647 break;
2648 ret = 0;
e02119d5
CM
2649 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2650 ret = replay_one_extent(wc->trans, root, path,
2651 eb, i, &key);
b50c6e25
JB
2652 if (ret)
2653 break;
dd8e7217 2654 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2655 ret = replay_one_dir_item(wc->trans, root, path,
2656 eb, i, &key);
b50c6e25
JB
2657 if (ret)
2658 break;
e02119d5
CM
2659 }
2660 }
2661 btrfs_free_path(path);
b50c6e25 2662 return ret;
e02119d5
CM
2663}
2664
d397712b 2665static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2666 struct btrfs_root *root,
2667 struct btrfs_path *path, int *level,
2668 struct walk_control *wc)
2669{
0b246afa 2670 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2671 u64 root_owner;
e02119d5
CM
2672 u64 bytenr;
2673 u64 ptr_gen;
2674 struct extent_buffer *next;
2675 struct extent_buffer *cur;
2676 struct extent_buffer *parent;
2677 u32 blocksize;
2678 int ret = 0;
2679
2680 WARN_ON(*level < 0);
2681 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2682
d397712b 2683 while (*level > 0) {
581c1760
QW
2684 struct btrfs_key first_key;
2685
e02119d5
CM
2686 WARN_ON(*level < 0);
2687 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2688 cur = path->nodes[*level];
2689
fae7f21c 2690 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2691
2692 if (path->slots[*level] >=
2693 btrfs_header_nritems(cur))
2694 break;
2695
2696 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2697 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2698 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2699 blocksize = fs_info->nodesize;
e02119d5
CM
2700
2701 parent = path->nodes[*level];
2702 root_owner = btrfs_header_owner(parent);
e02119d5 2703
2ff7e61e 2704 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2705 if (IS_ERR(next))
2706 return PTR_ERR(next);
e02119d5 2707
e02119d5 2708 if (*level == 1) {
581c1760
QW
2709 ret = wc->process_func(root, next, wc, ptr_gen,
2710 *level - 1);
b50c6e25
JB
2711 if (ret) {
2712 free_extent_buffer(next);
1e5063d0 2713 return ret;
b50c6e25 2714 }
4a500fd1 2715
e02119d5
CM
2716 path->slots[*level]++;
2717 if (wc->free) {
581c1760
QW
2718 ret = btrfs_read_buffer(next, ptr_gen,
2719 *level - 1, &first_key);
018642a1
TI
2720 if (ret) {
2721 free_extent_buffer(next);
2722 return ret;
2723 }
e02119d5 2724
681ae509
JB
2725 if (trans) {
2726 btrfs_tree_lock(next);
8bead258 2727 btrfs_set_lock_blocking_write(next);
7c302b49 2728 clean_tree_block(fs_info, next);
681ae509
JB
2729 btrfs_wait_tree_block_writeback(next);
2730 btrfs_tree_unlock(next);
1846430c
LB
2731 } else {
2732 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2733 clear_extent_buffer_dirty(next);
681ae509 2734 }
e02119d5 2735
e02119d5
CM
2736 WARN_ON(root_owner !=
2737 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2738 ret = btrfs_free_and_pin_reserved_extent(
2739 fs_info, bytenr,
2740 blocksize);
3650860b
JB
2741 if (ret) {
2742 free_extent_buffer(next);
2743 return ret;
2744 }
e02119d5
CM
2745 }
2746 free_extent_buffer(next);
2747 continue;
2748 }
581c1760 2749 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2750 if (ret) {
2751 free_extent_buffer(next);
2752 return ret;
2753 }
e02119d5
CM
2754
2755 WARN_ON(*level <= 0);
2756 if (path->nodes[*level-1])
2757 free_extent_buffer(path->nodes[*level-1]);
2758 path->nodes[*level-1] = next;
2759 *level = btrfs_header_level(next);
2760 path->slots[*level] = 0;
2761 cond_resched();
2762 }
2763 WARN_ON(*level < 0);
2764 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2765
4a500fd1 2766 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2767
2768 cond_resched();
2769 return 0;
2770}
2771
d397712b 2772static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2773 struct btrfs_root *root,
2774 struct btrfs_path *path, int *level,
2775 struct walk_control *wc)
2776{
0b246afa 2777 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2778 u64 root_owner;
e02119d5
CM
2779 int i;
2780 int slot;
2781 int ret;
2782
d397712b 2783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2784 slot = path->slots[i];
4a500fd1 2785 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2786 path->slots[i]++;
2787 *level = i;
2788 WARN_ON(*level == 0);
2789 return 0;
2790 } else {
31840ae1
ZY
2791 struct extent_buffer *parent;
2792 if (path->nodes[*level] == root->node)
2793 parent = path->nodes[*level];
2794 else
2795 parent = path->nodes[*level + 1];
2796
2797 root_owner = btrfs_header_owner(parent);
1e5063d0 2798 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2799 btrfs_header_generation(path->nodes[*level]),
2800 *level);
1e5063d0
MF
2801 if (ret)
2802 return ret;
2803
e02119d5
CM
2804 if (wc->free) {
2805 struct extent_buffer *next;
2806
2807 next = path->nodes[*level];
2808
681ae509
JB
2809 if (trans) {
2810 btrfs_tree_lock(next);
8bead258 2811 btrfs_set_lock_blocking_write(next);
7c302b49 2812 clean_tree_block(fs_info, next);
681ae509
JB
2813 btrfs_wait_tree_block_writeback(next);
2814 btrfs_tree_unlock(next);
1846430c
LB
2815 } else {
2816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2817 clear_extent_buffer_dirty(next);
681ae509 2818 }
e02119d5 2819
e02119d5 2820 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2821 ret = btrfs_free_and_pin_reserved_extent(
2822 fs_info,
e02119d5 2823 path->nodes[*level]->start,
d00aff00 2824 path->nodes[*level]->len);
3650860b
JB
2825 if (ret)
2826 return ret;
e02119d5
CM
2827 }
2828 free_extent_buffer(path->nodes[*level]);
2829 path->nodes[*level] = NULL;
2830 *level = i + 1;
2831 }
2832 }
2833 return 1;
2834}
2835
2836/*
2837 * drop the reference count on the tree rooted at 'snap'. This traverses
2838 * the tree freeing any blocks that have a ref count of zero after being
2839 * decremented.
2840 */
2841static int walk_log_tree(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *log, struct walk_control *wc)
2843{
2ff7e61e 2844 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2845 int ret = 0;
2846 int wret;
2847 int level;
2848 struct btrfs_path *path;
e02119d5
CM
2849 int orig_level;
2850
2851 path = btrfs_alloc_path();
db5b493a
TI
2852 if (!path)
2853 return -ENOMEM;
e02119d5
CM
2854
2855 level = btrfs_header_level(log->node);
2856 orig_level = level;
2857 path->nodes[level] = log->node;
2858 extent_buffer_get(log->node);
2859 path->slots[level] = 0;
2860
d397712b 2861 while (1) {
e02119d5
CM
2862 wret = walk_down_log_tree(trans, log, path, &level, wc);
2863 if (wret > 0)
2864 break;
79787eaa 2865 if (wret < 0) {
e02119d5 2866 ret = wret;
79787eaa
JM
2867 goto out;
2868 }
e02119d5
CM
2869
2870 wret = walk_up_log_tree(trans, log, path, &level, wc);
2871 if (wret > 0)
2872 break;
79787eaa 2873 if (wret < 0) {
e02119d5 2874 ret = wret;
79787eaa
JM
2875 goto out;
2876 }
e02119d5
CM
2877 }
2878
2879 /* was the root node processed? if not, catch it here */
2880 if (path->nodes[orig_level]) {
79787eaa 2881 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2882 btrfs_header_generation(path->nodes[orig_level]),
2883 orig_level);
79787eaa
JM
2884 if (ret)
2885 goto out;
e02119d5
CM
2886 if (wc->free) {
2887 struct extent_buffer *next;
2888
2889 next = path->nodes[orig_level];
2890
681ae509
JB
2891 if (trans) {
2892 btrfs_tree_lock(next);
8bead258 2893 btrfs_set_lock_blocking_write(next);
7c302b49 2894 clean_tree_block(fs_info, next);
681ae509
JB
2895 btrfs_wait_tree_block_writeback(next);
2896 btrfs_tree_unlock(next);
1846430c
LB
2897 } else {
2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 clear_extent_buffer_dirty(next);
681ae509 2900 }
e02119d5 2901
e02119d5
CM
2902 WARN_ON(log->root_key.objectid !=
2903 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2904 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2905 next->start, next->len);
3650860b
JB
2906 if (ret)
2907 goto out;
e02119d5
CM
2908 }
2909 }
2910
79787eaa 2911out:
e02119d5 2912 btrfs_free_path(path);
e02119d5
CM
2913 return ret;
2914}
2915
7237f183
YZ
2916/*
2917 * helper function to update the item for a given subvolumes log root
2918 * in the tree of log roots
2919 */
2920static int update_log_root(struct btrfs_trans_handle *trans,
2921 struct btrfs_root *log)
2922{
0b246afa 2923 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2924 int ret;
2925
2926 if (log->log_transid == 1) {
2927 /* insert root item on the first sync */
0b246afa 2928 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2929 &log->root_key, &log->root_item);
2930 } else {
0b246afa 2931 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2932 &log->root_key, &log->root_item);
2933 }
2934 return ret;
2935}
2936
60d53eb3 2937static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2938{
2939 DEFINE_WAIT(wait);
7237f183 2940 int index = transid % 2;
e02119d5 2941
7237f183
YZ
2942 /*
2943 * we only allow two pending log transactions at a time,
2944 * so we know that if ours is more than 2 older than the
2945 * current transaction, we're done
2946 */
49e83f57 2947 for (;;) {
7237f183
YZ
2948 prepare_to_wait(&root->log_commit_wait[index],
2949 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2950
49e83f57
LB
2951 if (!(root->log_transid_committed < transid &&
2952 atomic_read(&root->log_commit[index])))
2953 break;
12fcfd22 2954
49e83f57
LB
2955 mutex_unlock(&root->log_mutex);
2956 schedule();
7237f183 2957 mutex_lock(&root->log_mutex);
49e83f57
LB
2958 }
2959 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2960}
2961
60d53eb3 2962static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2963{
2964 DEFINE_WAIT(wait);
8b050d35 2965
49e83f57
LB
2966 for (;;) {
2967 prepare_to_wait(&root->log_writer_wait, &wait,
2968 TASK_UNINTERRUPTIBLE);
2969 if (!atomic_read(&root->log_writers))
2970 break;
2971
7237f183 2972 mutex_unlock(&root->log_mutex);
49e83f57 2973 schedule();
575849ec 2974 mutex_lock(&root->log_mutex);
7237f183 2975 }
49e83f57 2976 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2977}
2978
8b050d35
MX
2979static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2980 struct btrfs_log_ctx *ctx)
2981{
2982 if (!ctx)
2983 return;
2984
2985 mutex_lock(&root->log_mutex);
2986 list_del_init(&ctx->list);
2987 mutex_unlock(&root->log_mutex);
2988}
2989
2990/*
2991 * Invoked in log mutex context, or be sure there is no other task which
2992 * can access the list.
2993 */
2994static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2995 int index, int error)
2996{
2997 struct btrfs_log_ctx *ctx;
570dd450 2998 struct btrfs_log_ctx *safe;
8b050d35 2999
570dd450
CM
3000 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3001 list_del_init(&ctx->list);
8b050d35 3002 ctx->log_ret = error;
570dd450 3003 }
8b050d35
MX
3004
3005 INIT_LIST_HEAD(&root->log_ctxs[index]);
3006}
3007
e02119d5
CM
3008/*
3009 * btrfs_sync_log does sends a given tree log down to the disk and
3010 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3011 * you know that any inodes previously logged are safely on disk only
3012 * if it returns 0.
3013 *
3014 * Any other return value means you need to call btrfs_commit_transaction.
3015 * Some of the edge cases for fsyncing directories that have had unlinks
3016 * or renames done in the past mean that sometimes the only safe
3017 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3018 * that has happened.
e02119d5
CM
3019 */
3020int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3021 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3022{
7237f183
YZ
3023 int index1;
3024 int index2;
8cef4e16 3025 int mark;
e02119d5 3026 int ret;
0b246afa 3027 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3028 struct btrfs_root *log = root->log_root;
0b246afa 3029 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 3030 int log_transid = 0;
8b050d35 3031 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3032 struct blk_plug plug;
e02119d5 3033
7237f183 3034 mutex_lock(&root->log_mutex);
d1433deb
MX
3035 log_transid = ctx->log_transid;
3036 if (root->log_transid_committed >= log_transid) {
3037 mutex_unlock(&root->log_mutex);
3038 return ctx->log_ret;
3039 }
3040
3041 index1 = log_transid % 2;
7237f183 3042 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3043 wait_log_commit(root, log_transid);
7237f183 3044 mutex_unlock(&root->log_mutex);
8b050d35 3045 return ctx->log_ret;
e02119d5 3046 }
d1433deb 3047 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3048 atomic_set(&root->log_commit[index1], 1);
3049
3050 /* wait for previous tree log sync to complete */
3051 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3052 wait_log_commit(root, log_transid - 1);
48cab2e0 3053
86df7eb9 3054 while (1) {
2ecb7923 3055 int batch = atomic_read(&root->log_batch);
cd354ad6 3056 /* when we're on an ssd, just kick the log commit out */
0b246afa 3057 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3058 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3059 mutex_unlock(&root->log_mutex);
3060 schedule_timeout_uninterruptible(1);
3061 mutex_lock(&root->log_mutex);
3062 }
60d53eb3 3063 wait_for_writer(root);
2ecb7923 3064 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3065 break;
3066 }
e02119d5 3067
12fcfd22 3068 /* bail out if we need to do a full commit */
0b246afa 3069 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22
CM
3070 ret = -EAGAIN;
3071 mutex_unlock(&root->log_mutex);
3072 goto out;
3073 }
3074
8cef4e16
YZ
3075 if (log_transid % 2 == 0)
3076 mark = EXTENT_DIRTY;
3077 else
3078 mark = EXTENT_NEW;
3079
690587d1
CM
3080 /* we start IO on all the marked extents here, but we don't actually
3081 * wait for them until later.
3082 */
c6adc9cc 3083 blk_start_plug(&plug);
2ff7e61e 3084 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3085 if (ret) {
c6adc9cc 3086 blk_finish_plug(&plug);
66642832 3087 btrfs_abort_transaction(trans, ret);
0b246afa 3088 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
3089 mutex_unlock(&root->log_mutex);
3090 goto out;
3091 }
7237f183 3092
5d4f98a2 3093 btrfs_set_root_node(&log->root_item, log->node);
7237f183 3094
7237f183
YZ
3095 root->log_transid++;
3096 log->log_transid = root->log_transid;
ff782e0a 3097 root->log_start_pid = 0;
7237f183 3098 /*
8cef4e16
YZ
3099 * IO has been started, blocks of the log tree have WRITTEN flag set
3100 * in their headers. new modifications of the log will be written to
3101 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3102 */
3103 mutex_unlock(&root->log_mutex);
3104
28a23593 3105 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3106
7237f183 3107 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3108 atomic_inc(&log_root_tree->log_batch);
7237f183 3109 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3110
3111 index2 = log_root_tree->log_transid % 2;
3112 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3113 root_log_ctx.log_transid = log_root_tree->log_transid;
3114
7237f183
YZ
3115 mutex_unlock(&log_root_tree->log_mutex);
3116
3117 ret = update_log_root(trans, log);
7237f183
YZ
3118
3119 mutex_lock(&log_root_tree->log_mutex);
3120 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3121 /* atomic_dec_and_test implies a barrier */
3122 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3123 }
3124
4a500fd1 3125 if (ret) {
d1433deb
MX
3126 if (!list_empty(&root_log_ctx.list))
3127 list_del_init(&root_log_ctx.list);
3128
c6adc9cc 3129 blk_finish_plug(&plug);
0b246afa 3130 btrfs_set_log_full_commit(fs_info, trans);
995946dd 3131
79787eaa 3132 if (ret != -ENOSPC) {
66642832 3133 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3134 mutex_unlock(&log_root_tree->log_mutex);
3135 goto out;
3136 }
bf89d38f 3137 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3138 mutex_unlock(&log_root_tree->log_mutex);
3139 ret = -EAGAIN;
3140 goto out;
3141 }
3142
d1433deb 3143 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3144 blk_finish_plug(&plug);
cbd60aa7 3145 list_del_init(&root_log_ctx.list);
d1433deb
MX
3146 mutex_unlock(&log_root_tree->log_mutex);
3147 ret = root_log_ctx.log_ret;
3148 goto out;
3149 }
8b050d35 3150
d1433deb 3151 index2 = root_log_ctx.log_transid % 2;
7237f183 3152 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3153 blk_finish_plug(&plug);
bf89d38f 3154 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3155 wait_log_commit(log_root_tree,
d1433deb 3156 root_log_ctx.log_transid);
7237f183 3157 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3158 if (!ret)
3159 ret = root_log_ctx.log_ret;
7237f183
YZ
3160 goto out;
3161 }
d1433deb 3162 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3163 atomic_set(&log_root_tree->log_commit[index2], 1);
3164
12fcfd22 3165 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3166 wait_log_commit(log_root_tree,
d1433deb 3167 root_log_ctx.log_transid - 1);
12fcfd22
CM
3168 }
3169
60d53eb3 3170 wait_for_writer(log_root_tree);
7237f183 3171
12fcfd22
CM
3172 /*
3173 * now that we've moved on to the tree of log tree roots,
3174 * check the full commit flag again
3175 */
0b246afa 3176 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 3177 blk_finish_plug(&plug);
bf89d38f 3178 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3179 mutex_unlock(&log_root_tree->log_mutex);
3180 ret = -EAGAIN;
3181 goto out_wake_log_root;
3182 }
7237f183 3183
2ff7e61e 3184 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3185 &log_root_tree->dirty_log_pages,
3186 EXTENT_DIRTY | EXTENT_NEW);
3187 blk_finish_plug(&plug);
79787eaa 3188 if (ret) {
0b246afa 3189 btrfs_set_log_full_commit(fs_info, trans);
66642832 3190 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3191 mutex_unlock(&log_root_tree->log_mutex);
3192 goto out_wake_log_root;
3193 }
bf89d38f 3194 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3195 if (!ret)
bf89d38f
JM
3196 ret = btrfs_wait_tree_log_extents(log_root_tree,
3197 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3198 if (ret) {
0b246afa 3199 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
3200 mutex_unlock(&log_root_tree->log_mutex);
3201 goto out_wake_log_root;
3202 }
e02119d5 3203
0b246afa
JM
3204 btrfs_set_super_log_root(fs_info->super_for_commit,
3205 log_root_tree->node->start);
3206 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3207 btrfs_header_level(log_root_tree->node));
e02119d5 3208
7237f183 3209 log_root_tree->log_transid++;
7237f183
YZ
3210 mutex_unlock(&log_root_tree->log_mutex);
3211
3212 /*
52042d8e 3213 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3214 * super here because the log_commit atomic below is protecting
3215 * us. We must be called with a transaction handle pinning
3216 * the running transaction open, so a full commit can't hop
3217 * in and cause problems either.
3218 */
eece6a9c 3219 ret = write_all_supers(fs_info, 1);
5af3e8cc 3220 if (ret) {
0b246afa 3221 btrfs_set_log_full_commit(fs_info, trans);
66642832 3222 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3223 goto out_wake_log_root;
3224 }
7237f183 3225
257c62e1
CM
3226 mutex_lock(&root->log_mutex);
3227 if (root->last_log_commit < log_transid)
3228 root->last_log_commit = log_transid;
3229 mutex_unlock(&root->log_mutex);
3230
12fcfd22 3231out_wake_log_root:
570dd450 3232 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3233 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3234
d1433deb 3235 log_root_tree->log_transid_committed++;
7237f183 3236 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3237 mutex_unlock(&log_root_tree->log_mutex);
3238
33a9eca7 3239 /*
093258e6
DS
3240 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 * all the updates above are seen by the woken threads. It might not be
3242 * necessary, but proving that seems to be hard.
33a9eca7 3243 */
093258e6 3244 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3245out:
d1433deb 3246 mutex_lock(&root->log_mutex);
570dd450 3247 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3248 root->log_transid_committed++;
7237f183 3249 atomic_set(&root->log_commit[index1], 0);
d1433deb 3250 mutex_unlock(&root->log_mutex);
8b050d35 3251
33a9eca7 3252 /*
093258e6
DS
3253 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3254 * all the updates above are seen by the woken threads. It might not be
3255 * necessary, but proving that seems to be hard.
33a9eca7 3256 */
093258e6 3257 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3258 return ret;
e02119d5
CM
3259}
3260
4a500fd1
YZ
3261static void free_log_tree(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *log)
e02119d5
CM
3263{
3264 int ret;
e02119d5
CM
3265 struct walk_control wc = {
3266 .free = 1,
3267 .process_func = process_one_buffer
3268 };
3269
681ae509 3270 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3271 if (ret) {
3272 if (trans)
3273 btrfs_abort_transaction(trans, ret);
3274 else
3275 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3276 }
e02119d5 3277
59b0713a
FM
3278 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3279 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
7237f183
YZ
3280 free_extent_buffer(log->node);
3281 kfree(log);
4a500fd1
YZ
3282}
3283
3284/*
3285 * free all the extents used by the tree log. This should be called
3286 * at commit time of the full transaction
3287 */
3288int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3289{
3290 if (root->log_root) {
3291 free_log_tree(trans, root->log_root);
3292 root->log_root = NULL;
3293 }
3294 return 0;
3295}
3296
3297int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_fs_info *fs_info)
3299{
3300 if (fs_info->log_root_tree) {
3301 free_log_tree(trans, fs_info->log_root_tree);
3302 fs_info->log_root_tree = NULL;
3303 }
e02119d5
CM
3304 return 0;
3305}
3306
e02119d5
CM
3307/*
3308 * If both a file and directory are logged, and unlinks or renames are
3309 * mixed in, we have a few interesting corners:
3310 *
3311 * create file X in dir Y
3312 * link file X to X.link in dir Y
3313 * fsync file X
3314 * unlink file X but leave X.link
3315 * fsync dir Y
3316 *
3317 * After a crash we would expect only X.link to exist. But file X
3318 * didn't get fsync'd again so the log has back refs for X and X.link.
3319 *
3320 * We solve this by removing directory entries and inode backrefs from the
3321 * log when a file that was logged in the current transaction is
3322 * unlinked. Any later fsync will include the updated log entries, and
3323 * we'll be able to reconstruct the proper directory items from backrefs.
3324 *
3325 * This optimizations allows us to avoid relogging the entire inode
3326 * or the entire directory.
3327 */
3328int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root,
3330 const char *name, int name_len,
49f34d1f 3331 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3332{
3333 struct btrfs_root *log;
3334 struct btrfs_dir_item *di;
3335 struct btrfs_path *path;
3336 int ret;
4a500fd1 3337 int err = 0;
e02119d5 3338 int bytes_del = 0;
49f34d1f 3339 u64 dir_ino = btrfs_ino(dir);
e02119d5 3340
49f34d1f 3341 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3342 return 0;
3343
e02119d5
CM
3344 ret = join_running_log_trans(root);
3345 if (ret)
3346 return 0;
3347
49f34d1f 3348 mutex_lock(&dir->log_mutex);
e02119d5
CM
3349
3350 log = root->log_root;
3351 path = btrfs_alloc_path();
a62f44a5
TI
3352 if (!path) {
3353 err = -ENOMEM;
3354 goto out_unlock;
3355 }
2a29edc6 3356
33345d01 3357 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3358 name, name_len, -1);
4a500fd1
YZ
3359 if (IS_ERR(di)) {
3360 err = PTR_ERR(di);
3361 goto fail;
3362 }
3363 if (di) {
e02119d5
CM
3364 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3365 bytes_del += name_len;
3650860b
JB
3366 if (ret) {
3367 err = ret;
3368 goto fail;
3369 }
e02119d5 3370 }
b3b4aa74 3371 btrfs_release_path(path);
33345d01 3372 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3373 index, name, name_len, -1);
4a500fd1
YZ
3374 if (IS_ERR(di)) {
3375 err = PTR_ERR(di);
3376 goto fail;
3377 }
3378 if (di) {
e02119d5
CM
3379 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3380 bytes_del += name_len;
3650860b
JB
3381 if (ret) {
3382 err = ret;
3383 goto fail;
3384 }
e02119d5
CM
3385 }
3386
3387 /* update the directory size in the log to reflect the names
3388 * we have removed
3389 */
3390 if (bytes_del) {
3391 struct btrfs_key key;
3392
33345d01 3393 key.objectid = dir_ino;
e02119d5
CM
3394 key.offset = 0;
3395 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3396 btrfs_release_path(path);
e02119d5
CM
3397
3398 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3399 if (ret < 0) {
3400 err = ret;
3401 goto fail;
3402 }
e02119d5
CM
3403 if (ret == 0) {
3404 struct btrfs_inode_item *item;
3405 u64 i_size;
3406
3407 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3408 struct btrfs_inode_item);
3409 i_size = btrfs_inode_size(path->nodes[0], item);
3410 if (i_size > bytes_del)
3411 i_size -= bytes_del;
3412 else
3413 i_size = 0;
3414 btrfs_set_inode_size(path->nodes[0], item, i_size);
3415 btrfs_mark_buffer_dirty(path->nodes[0]);
3416 } else
3417 ret = 0;
b3b4aa74 3418 btrfs_release_path(path);
e02119d5 3419 }
4a500fd1 3420fail:
e02119d5 3421 btrfs_free_path(path);
a62f44a5 3422out_unlock:
49f34d1f 3423 mutex_unlock(&dir->log_mutex);
4a500fd1 3424 if (ret == -ENOSPC) {
995946dd 3425 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3426 ret = 0;
79787eaa 3427 } else if (ret < 0)
66642832 3428 btrfs_abort_transaction(trans, ret);
79787eaa 3429
12fcfd22 3430 btrfs_end_log_trans(root);
e02119d5 3431
411fc6bc 3432 return err;
e02119d5
CM
3433}
3434
3435/* see comments for btrfs_del_dir_entries_in_log */
3436int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3437 struct btrfs_root *root,
3438 const char *name, int name_len,
a491abb2 3439 struct btrfs_inode *inode, u64 dirid)
e02119d5 3440{
0b246afa 3441 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3442 struct btrfs_root *log;
3443 u64 index;
3444 int ret;
3445
a491abb2 3446 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3447 return 0;
3448
e02119d5
CM
3449 ret = join_running_log_trans(root);
3450 if (ret)
3451 return 0;
3452 log = root->log_root;
a491abb2 3453 mutex_lock(&inode->log_mutex);
e02119d5 3454
a491abb2 3455 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3456 dirid, &index);
a491abb2 3457 mutex_unlock(&inode->log_mutex);
4a500fd1 3458 if (ret == -ENOSPC) {
0b246afa 3459 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3460 ret = 0;
79787eaa 3461 } else if (ret < 0 && ret != -ENOENT)
66642832 3462 btrfs_abort_transaction(trans, ret);
12fcfd22 3463 btrfs_end_log_trans(root);
e02119d5 3464
e02119d5
CM
3465 return ret;
3466}
3467
3468/*
3469 * creates a range item in the log for 'dirid'. first_offset and
3470 * last_offset tell us which parts of the key space the log should
3471 * be considered authoritative for.
3472 */
3473static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *log,
3475 struct btrfs_path *path,
3476 int key_type, u64 dirid,
3477 u64 first_offset, u64 last_offset)
3478{
3479 int ret;
3480 struct btrfs_key key;
3481 struct btrfs_dir_log_item *item;
3482
3483 key.objectid = dirid;
3484 key.offset = first_offset;
3485 if (key_type == BTRFS_DIR_ITEM_KEY)
3486 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3487 else
3488 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3489 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3490 if (ret)
3491 return ret;
e02119d5
CM
3492
3493 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3494 struct btrfs_dir_log_item);
3495 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3496 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3497 btrfs_release_path(path);
e02119d5
CM
3498 return 0;
3499}
3500
3501/*
3502 * log all the items included in the current transaction for a given
3503 * directory. This also creates the range items in the log tree required
3504 * to replay anything deleted before the fsync
3505 */
3506static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3507 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3508 struct btrfs_path *path,
3509 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3510 struct btrfs_log_ctx *ctx,
e02119d5
CM
3511 u64 min_offset, u64 *last_offset_ret)
3512{
3513 struct btrfs_key min_key;
e02119d5
CM
3514 struct btrfs_root *log = root->log_root;
3515 struct extent_buffer *src;
4a500fd1 3516 int err = 0;
e02119d5
CM
3517 int ret;
3518 int i;
3519 int nritems;
3520 u64 first_offset = min_offset;
3521 u64 last_offset = (u64)-1;
684a5773 3522 u64 ino = btrfs_ino(inode);
e02119d5
CM
3523
3524 log = root->log_root;
e02119d5 3525
33345d01 3526 min_key.objectid = ino;
e02119d5
CM
3527 min_key.type = key_type;
3528 min_key.offset = min_offset;
3529
6174d3cb 3530 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3531
3532 /*
3533 * we didn't find anything from this transaction, see if there
3534 * is anything at all
3535 */
33345d01
LZ
3536 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3537 min_key.objectid = ino;
e02119d5
CM
3538 min_key.type = key_type;
3539 min_key.offset = (u64)-1;
b3b4aa74 3540 btrfs_release_path(path);
e02119d5
CM
3541 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3542 if (ret < 0) {
b3b4aa74 3543 btrfs_release_path(path);
e02119d5
CM
3544 return ret;
3545 }
33345d01 3546 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3547
3548 /* if ret == 0 there are items for this type,
3549 * create a range to tell us the last key of this type.
3550 * otherwise, there are no items in this directory after
3551 * *min_offset, and we create a range to indicate that.
3552 */
3553 if (ret == 0) {
3554 struct btrfs_key tmp;
3555 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3556 path->slots[0]);
d397712b 3557 if (key_type == tmp.type)
e02119d5 3558 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3559 }
3560 goto done;
3561 }
3562
3563 /* go backward to find any previous key */
33345d01 3564 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3565 if (ret == 0) {
3566 struct btrfs_key tmp;
3567 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3568 if (key_type == tmp.type) {
3569 first_offset = tmp.offset;
3570 ret = overwrite_item(trans, log, dst_path,
3571 path->nodes[0], path->slots[0],
3572 &tmp);
4a500fd1
YZ
3573 if (ret) {
3574 err = ret;
3575 goto done;
3576 }
e02119d5
CM
3577 }
3578 }
b3b4aa74 3579 btrfs_release_path(path);
e02119d5
CM
3580
3581 /* find the first key from this transaction again */
3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3583 if (WARN_ON(ret != 0))
e02119d5 3584 goto done;
e02119d5
CM
3585
3586 /*
3587 * we have a block from this transaction, log every item in it
3588 * from our directory
3589 */
d397712b 3590 while (1) {
e02119d5
CM
3591 struct btrfs_key tmp;
3592 src = path->nodes[0];
3593 nritems = btrfs_header_nritems(src);
3594 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3595 struct btrfs_dir_item *di;
3596
e02119d5
CM
3597 btrfs_item_key_to_cpu(src, &min_key, i);
3598
33345d01 3599 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3600 goto done;
3601 ret = overwrite_item(trans, log, dst_path, src, i,
3602 &min_key);
4a500fd1
YZ
3603 if (ret) {
3604 err = ret;
3605 goto done;
3606 }
2f2ff0ee
FM
3607
3608 /*
3609 * We must make sure that when we log a directory entry,
3610 * the corresponding inode, after log replay, has a
3611 * matching link count. For example:
3612 *
3613 * touch foo
3614 * mkdir mydir
3615 * sync
3616 * ln foo mydir/bar
3617 * xfs_io -c "fsync" mydir
3618 * <crash>
3619 * <mount fs and log replay>
3620 *
3621 * Would result in a fsync log that when replayed, our
3622 * file inode would have a link count of 1, but we get
3623 * two directory entries pointing to the same inode.
3624 * After removing one of the names, it would not be
3625 * possible to remove the other name, which resulted
3626 * always in stale file handle errors, and would not
3627 * be possible to rmdir the parent directory, since
3628 * its i_size could never decrement to the value
3629 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3630 */
3631 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3632 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3633 if (ctx &&
3634 (btrfs_dir_transid(src, di) == trans->transid ||
3635 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3636 tmp.type != BTRFS_ROOT_ITEM_KEY)
3637 ctx->log_new_dentries = true;
e02119d5
CM
3638 }
3639 path->slots[0] = nritems;
3640
3641 /*
3642 * look ahead to the next item and see if it is also
3643 * from this directory and from this transaction
3644 */
3645 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3646 if (ret) {
3647 if (ret == 1)
3648 last_offset = (u64)-1;
3649 else
3650 err = ret;
e02119d5
CM
3651 goto done;
3652 }
3653 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3654 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3655 last_offset = (u64)-1;
3656 goto done;
3657 }
3658 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3659 ret = overwrite_item(trans, log, dst_path,
3660 path->nodes[0], path->slots[0],
3661 &tmp);
4a500fd1
YZ
3662 if (ret)
3663 err = ret;
3664 else
3665 last_offset = tmp.offset;
e02119d5
CM
3666 goto done;
3667 }
3668 }
3669done:
b3b4aa74
DS
3670 btrfs_release_path(path);
3671 btrfs_release_path(dst_path);
e02119d5 3672
4a500fd1
YZ
3673 if (err == 0) {
3674 *last_offset_ret = last_offset;
3675 /*
3676 * insert the log range keys to indicate where the log
3677 * is valid
3678 */
3679 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3680 ino, first_offset, last_offset);
4a500fd1
YZ
3681 if (ret)
3682 err = ret;
3683 }
3684 return err;
e02119d5
CM
3685}
3686
3687/*
3688 * logging directories is very similar to logging inodes, We find all the items
3689 * from the current transaction and write them to the log.
3690 *
3691 * The recovery code scans the directory in the subvolume, and if it finds a
3692 * key in the range logged that is not present in the log tree, then it means
3693 * that dir entry was unlinked during the transaction.
3694 *
3695 * In order for that scan to work, we must include one key smaller than
3696 * the smallest logged by this transaction and one key larger than the largest
3697 * key logged by this transaction.
3698 */
3699static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3700 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3701 struct btrfs_path *path,
2f2ff0ee
FM
3702 struct btrfs_path *dst_path,
3703 struct btrfs_log_ctx *ctx)
e02119d5
CM
3704{
3705 u64 min_key;
3706 u64 max_key;
3707 int ret;
3708 int key_type = BTRFS_DIR_ITEM_KEY;
3709
3710again:
3711 min_key = 0;
3712 max_key = 0;
d397712b 3713 while (1) {
dbf39ea4
NB
3714 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3715 ctx, min_key, &max_key);
4a500fd1
YZ
3716 if (ret)
3717 return ret;
e02119d5
CM
3718 if (max_key == (u64)-1)
3719 break;
3720 min_key = max_key + 1;
3721 }
3722
3723 if (key_type == BTRFS_DIR_ITEM_KEY) {
3724 key_type = BTRFS_DIR_INDEX_KEY;
3725 goto again;
3726 }
3727 return 0;
3728}
3729
3730/*
3731 * a helper function to drop items from the log before we relog an
3732 * inode. max_key_type indicates the highest item type to remove.
3733 * This cannot be run for file data extents because it does not
3734 * free the extents they point to.
3735 */
3736static int drop_objectid_items(struct btrfs_trans_handle *trans,
3737 struct btrfs_root *log,
3738 struct btrfs_path *path,
3739 u64 objectid, int max_key_type)
3740{
3741 int ret;
3742 struct btrfs_key key;
3743 struct btrfs_key found_key;
18ec90d6 3744 int start_slot;
e02119d5
CM
3745
3746 key.objectid = objectid;
3747 key.type = max_key_type;
3748 key.offset = (u64)-1;
3749
d397712b 3750 while (1) {
e02119d5 3751 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3752 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3753 if (ret < 0)
e02119d5
CM
3754 break;
3755
3756 if (path->slots[0] == 0)
3757 break;
3758
3759 path->slots[0]--;
3760 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3761 path->slots[0]);
3762
3763 if (found_key.objectid != objectid)
3764 break;
3765
18ec90d6
JB
3766 found_key.offset = 0;
3767 found_key.type = 0;
3768 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3769 &start_slot);
3770
3771 ret = btrfs_del_items(trans, log, path, start_slot,
3772 path->slots[0] - start_slot + 1);
3773 /*
3774 * If start slot isn't 0 then we don't need to re-search, we've
3775 * found the last guy with the objectid in this tree.
3776 */
3777 if (ret || start_slot != 0)
65a246c5 3778 break;
b3b4aa74 3779 btrfs_release_path(path);
e02119d5 3780 }
b3b4aa74 3781 btrfs_release_path(path);
5bdbeb21
JB
3782 if (ret > 0)
3783 ret = 0;
4a500fd1 3784 return ret;
e02119d5
CM
3785}
3786
94edf4ae
JB
3787static void fill_inode_item(struct btrfs_trans_handle *trans,
3788 struct extent_buffer *leaf,
3789 struct btrfs_inode_item *item,
1a4bcf47
FM
3790 struct inode *inode, int log_inode_only,
3791 u64 logged_isize)
94edf4ae 3792{
0b1c6cca
JB
3793 struct btrfs_map_token token;
3794
3795 btrfs_init_map_token(&token);
94edf4ae
JB
3796
3797 if (log_inode_only) {
3798 /* set the generation to zero so the recover code
3799 * can tell the difference between an logging
3800 * just to say 'this inode exists' and a logging
3801 * to say 'update this inode with these values'
3802 */
0b1c6cca 3803 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3804 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3805 } else {
0b1c6cca
JB
3806 btrfs_set_token_inode_generation(leaf, item,
3807 BTRFS_I(inode)->generation,
3808 &token);
3809 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3810 }
3811
3812 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3813 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3814 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3815 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3816
a937b979 3817 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3818 inode->i_atime.tv_sec, &token);
a937b979 3819 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3820 inode->i_atime.tv_nsec, &token);
3821
a937b979 3822 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3823 inode->i_mtime.tv_sec, &token);
a937b979 3824 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3825 inode->i_mtime.tv_nsec, &token);
3826
a937b979 3827 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3828 inode->i_ctime.tv_sec, &token);
a937b979 3829 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3830 inode->i_ctime.tv_nsec, &token);
3831
3832 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3833 &token);
3834
c7f88c4e
JL
3835 btrfs_set_token_inode_sequence(leaf, item,
3836 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3837 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3838 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3839 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3840 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3841}
3842
a95249b3
JB
3843static int log_inode_item(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3845 struct btrfs_inode *inode)
a95249b3
JB
3846{
3847 struct btrfs_inode_item *inode_item;
a95249b3
JB
3848 int ret;
3849
efd0c405 3850 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3851 &inode->location, sizeof(*inode_item));
a95249b3
JB
3852 if (ret && ret != -EEXIST)
3853 return ret;
3854 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3855 struct btrfs_inode_item);
6d889a3b
NB
3856 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3857 0, 0);
a95249b3
JB
3858 btrfs_release_path(path);
3859 return 0;
3860}
3861
31ff1cd2 3862static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3863 struct btrfs_inode *inode,
31ff1cd2 3864 struct btrfs_path *dst_path,
16e7549f 3865 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3866 int start_slot, int nr, int inode_only,
3867 u64 logged_isize)
31ff1cd2 3868{
3ffbd68c 3869 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3870 unsigned long src_offset;
3871 unsigned long dst_offset;
44d70e19 3872 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3873 struct btrfs_file_extent_item *extent;
3874 struct btrfs_inode_item *inode_item;
16e7549f
JB
3875 struct extent_buffer *src = src_path->nodes[0];
3876 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3877 int ret;
3878 struct btrfs_key *ins_keys;
3879 u32 *ins_sizes;
3880 char *ins_data;
3881 int i;
d20f7043 3882 struct list_head ordered_sums;
44d70e19 3883 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3884 bool has_extents = false;
74121f7c 3885 bool need_find_last_extent = true;
16e7549f 3886 bool done = false;
d20f7043
CM
3887
3888 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3889
3890 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3891 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3892 if (!ins_data)
3893 return -ENOMEM;
3894
16e7549f
JB
3895 first_key.objectid = (u64)-1;
3896
31ff1cd2
CM
3897 ins_sizes = (u32 *)ins_data;
3898 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3899
3900 for (i = 0; i < nr; i++) {
3901 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3902 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3903 }
3904 ret = btrfs_insert_empty_items(trans, log, dst_path,
3905 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3906 if (ret) {
3907 kfree(ins_data);
3908 return ret;
3909 }
31ff1cd2 3910
5d4f98a2 3911 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3912 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3913 dst_path->slots[0]);
3914
3915 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3916
0dde10be 3917 if (i == nr - 1)
16e7549f
JB
3918 last_key = ins_keys[i];
3919
94edf4ae 3920 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3921 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3922 dst_path->slots[0],
3923 struct btrfs_inode_item);
94edf4ae 3924 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3925 &inode->vfs_inode,
3926 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3927 logged_isize);
94edf4ae
JB
3928 } else {
3929 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3930 src_offset, ins_sizes[i]);
31ff1cd2 3931 }
94edf4ae 3932
16e7549f
JB
3933 /*
3934 * We set need_find_last_extent here in case we know we were
3935 * processing other items and then walk into the first extent in
3936 * the inode. If we don't hit an extent then nothing changes,
3937 * we'll do the last search the next time around.
3938 */
3939 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3940 has_extents = true;
74121f7c 3941 if (first_key.objectid == (u64)-1)
16e7549f
JB
3942 first_key = ins_keys[i];
3943 } else {
3944 need_find_last_extent = false;
3945 }
3946
31ff1cd2
CM
3947 /* take a reference on file data extents so that truncates
3948 * or deletes of this inode don't have to relog the inode
3949 * again
3950 */
962a298f 3951 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3952 !skip_csum) {
31ff1cd2
CM
3953 int found_type;
3954 extent = btrfs_item_ptr(src, start_slot + i,
3955 struct btrfs_file_extent_item);
3956
8e531cdf 3957 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3958 continue;
3959
31ff1cd2 3960 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3961 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3962 u64 ds, dl, cs, cl;
3963 ds = btrfs_file_extent_disk_bytenr(src,
3964 extent);
3965 /* ds == 0 is a hole */
3966 if (ds == 0)
3967 continue;
3968
3969 dl = btrfs_file_extent_disk_num_bytes(src,
3970 extent);
3971 cs = btrfs_file_extent_offset(src, extent);
3972 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3973 extent);
580afd76
CM
3974 if (btrfs_file_extent_compression(src,
3975 extent)) {
3976 cs = 0;
3977 cl = dl;
3978 }
5d4f98a2
YZ
3979
3980 ret = btrfs_lookup_csums_range(
0b246afa 3981 fs_info->csum_root,
5d4f98a2 3982 ds + cs, ds + cs + cl - 1,
a2de733c 3983 &ordered_sums, 0);
3650860b
JB
3984 if (ret) {
3985 btrfs_release_path(dst_path);
3986 kfree(ins_data);
3987 return ret;
3988 }
31ff1cd2
CM
3989 }
3990 }
31ff1cd2
CM
3991 }
3992
3993 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3994 btrfs_release_path(dst_path);
31ff1cd2 3995 kfree(ins_data);
d20f7043
CM
3996
3997 /*
3998 * we have to do this after the loop above to avoid changing the
3999 * log tree while trying to change the log tree.
4000 */
4a500fd1 4001 ret = 0;
d397712b 4002 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4003 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4004 struct btrfs_ordered_sum,
4005 list);
4a500fd1
YZ
4006 if (!ret)
4007 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
4008 list_del(&sums->list);
4009 kfree(sums);
4010 }
16e7549f
JB
4011
4012 if (!has_extents)
4013 return ret;
4014
74121f7c
FM
4015 if (need_find_last_extent && *last_extent == first_key.offset) {
4016 /*
4017 * We don't have any leafs between our current one and the one
4018 * we processed before that can have file extent items for our
4019 * inode (and have a generation number smaller than our current
4020 * transaction id).
4021 */
4022 need_find_last_extent = false;
4023 }
4024
16e7549f
JB
4025 /*
4026 * Because we use btrfs_search_forward we could skip leaves that were
4027 * not modified and then assume *last_extent is valid when it really
4028 * isn't. So back up to the previous leaf and read the end of the last
4029 * extent before we go and fill in holes.
4030 */
4031 if (need_find_last_extent) {
4032 u64 len;
4033
44d70e19 4034 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
4035 if (ret < 0)
4036 return ret;
4037 if (ret)
4038 goto fill_holes;
4039 if (src_path->slots[0])
4040 src_path->slots[0]--;
4041 src = src_path->nodes[0];
4042 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 4043 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4044 key.type != BTRFS_EXTENT_DATA_KEY)
4045 goto fill_holes;
4046 extent = btrfs_item_ptr(src, src_path->slots[0],
4047 struct btrfs_file_extent_item);
4048 if (btrfs_file_extent_type(src, extent) ==
4049 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4050 len = btrfs_file_extent_ram_bytes(src, extent);
16e7549f 4051 *last_extent = ALIGN(key.offset + len,
0b246afa 4052 fs_info->sectorsize);
16e7549f
JB
4053 } else {
4054 len = btrfs_file_extent_num_bytes(src, extent);
4055 *last_extent = key.offset + len;
4056 }
4057 }
4058fill_holes:
4059 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4060 * things could have happened
4061 *
4062 * 1) A merge could have happened, so we could currently be on a leaf
4063 * that holds what we were copying in the first place.
4064 * 2) A split could have happened, and now not all of the items we want
4065 * are on the same leaf.
4066 *
4067 * So we need to adjust how we search for holes, we need to drop the
4068 * path and re-search for the first extent key we found, and then walk
4069 * forward until we hit the last one we copied.
4070 */
4071 if (need_find_last_extent) {
4072 /* btrfs_prev_leaf could return 1 without releasing the path */
4073 btrfs_release_path(src_path);
f85b7379
DS
4074 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4075 src_path, 0, 0);
16e7549f
JB
4076 if (ret < 0)
4077 return ret;
4078 ASSERT(ret == 0);
4079 src = src_path->nodes[0];
4080 i = src_path->slots[0];
4081 } else {
4082 i = start_slot;
4083 }
4084
4085 /*
4086 * Ok so here we need to go through and fill in any holes we may have
4087 * to make sure that holes are punched for those areas in case they had
4088 * extents previously.
4089 */
4090 while (!done) {
4091 u64 offset, len;
4092 u64 extent_end;
4093
4094 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4095 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4096 if (ret < 0)
4097 return ret;
4098 ASSERT(ret == 0);
4099 src = src_path->nodes[0];
4100 i = 0;
8434ec46 4101 need_find_last_extent = true;
16e7549f
JB
4102 }
4103
4104 btrfs_item_key_to_cpu(src, &key, i);
4105 if (!btrfs_comp_cpu_keys(&key, &last_key))
4106 done = true;
44d70e19 4107 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4108 key.type != BTRFS_EXTENT_DATA_KEY) {
4109 i++;
4110 continue;
4111 }
4112 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4113 if (btrfs_file_extent_type(src, extent) ==
4114 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4115 len = btrfs_file_extent_ram_bytes(src, extent);
da17066c 4116 extent_end = ALIGN(key.offset + len,
0b246afa 4117 fs_info->sectorsize);
16e7549f
JB
4118 } else {
4119 len = btrfs_file_extent_num_bytes(src, extent);
4120 extent_end = key.offset + len;
4121 }
4122 i++;
4123
4124 if (*last_extent == key.offset) {
4125 *last_extent = extent_end;
4126 continue;
4127 }
4128 offset = *last_extent;
4129 len = key.offset - *last_extent;
44d70e19 4130 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4131 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4132 if (ret)
4133 break;
74121f7c 4134 *last_extent = extent_end;
16e7549f 4135 }
4ee3fad3
FM
4136
4137 /*
4138 * Check if there is a hole between the last extent found in our leaf
4139 * and the first extent in the next leaf. If there is one, we need to
4140 * log an explicit hole so that at replay time we can punch the hole.
4141 */
4142 if (ret == 0 &&
4143 key.objectid == btrfs_ino(inode) &&
4144 key.type == BTRFS_EXTENT_DATA_KEY &&
4145 i == btrfs_header_nritems(src_path->nodes[0])) {
4146 ret = btrfs_next_leaf(inode->root, src_path);
4147 need_find_last_extent = true;
4148 if (ret > 0) {
4149 ret = 0;
4150 } else if (ret == 0) {
4151 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4152 src_path->slots[0]);
4153 if (key.objectid == btrfs_ino(inode) &&
4154 key.type == BTRFS_EXTENT_DATA_KEY &&
4155 *last_extent < key.offset) {
4156 const u64 len = key.offset - *last_extent;
4157
4158 ret = btrfs_insert_file_extent(trans, log,
4159 btrfs_ino(inode),
4160 *last_extent, 0,
4161 0, len, 0, len,
4162 0, 0, 0);
4163 }
4164 }
4165 }
16e7549f
JB
4166 /*
4167 * Need to let the callers know we dropped the path so they should
4168 * re-search.
4169 */
4170 if (!ret && need_find_last_extent)
4171 ret = 1;
4a500fd1 4172 return ret;
31ff1cd2
CM
4173}
4174
5dc562c5
JB
4175static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4176{
4177 struct extent_map *em1, *em2;
4178
4179 em1 = list_entry(a, struct extent_map, list);
4180 em2 = list_entry(b, struct extent_map, list);
4181
4182 if (em1->start < em2->start)
4183 return -1;
4184 else if (em1->start > em2->start)
4185 return 1;
4186 return 0;
4187}
4188
e7175a69
JB
4189static int log_extent_csums(struct btrfs_trans_handle *trans,
4190 struct btrfs_inode *inode,
a9ecb653 4191 struct btrfs_root *log_root,
e7175a69 4192 const struct extent_map *em)
5dc562c5 4193{
2ab28f32
JB
4194 u64 csum_offset;
4195 u64 csum_len;
8407f553
FM
4196 LIST_HEAD(ordered_sums);
4197 int ret = 0;
0aa4a17d 4198
e7175a69
JB
4199 if (inode->flags & BTRFS_INODE_NODATASUM ||
4200 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4201 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4202 return 0;
5dc562c5 4203
e7175a69 4204 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4205 if (em->compress_type) {
4206 csum_offset = 0;
8407f553 4207 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4208 } else {
e7175a69
JB
4209 csum_offset = em->mod_start - em->start;
4210 csum_len = em->mod_len;
488111aa 4211 }
2ab28f32 4212
70c8a91c 4213 /* block start is already adjusted for the file extent offset. */
a9ecb653 4214 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4215 em->block_start + csum_offset,
4216 em->block_start + csum_offset +
4217 csum_len - 1, &ordered_sums, 0);
4218 if (ret)
4219 return ret;
5dc562c5 4220
70c8a91c
JB
4221 while (!list_empty(&ordered_sums)) {
4222 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4223 struct btrfs_ordered_sum,
4224 list);
4225 if (!ret)
a9ecb653 4226 ret = btrfs_csum_file_blocks(trans, log_root, sums);
70c8a91c
JB
4227 list_del(&sums->list);
4228 kfree(sums);
5dc562c5
JB
4229 }
4230
70c8a91c 4231 return ret;
5dc562c5
JB
4232}
4233
8407f553 4234static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4235 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4236 const struct extent_map *em,
4237 struct btrfs_path *path,
8407f553
FM
4238 struct btrfs_log_ctx *ctx)
4239{
4240 struct btrfs_root *log = root->log_root;
4241 struct btrfs_file_extent_item *fi;
4242 struct extent_buffer *leaf;
4243 struct btrfs_map_token token;
4244 struct btrfs_key key;
4245 u64 extent_offset = em->start - em->orig_start;
4246 u64 block_len;
4247 int ret;
4248 int extent_inserted = 0;
8407f553 4249
a9ecb653 4250 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4251 if (ret)
4252 return ret;
4253
8407f553
FM
4254 btrfs_init_map_token(&token);
4255
9d122629 4256 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4257 em->start + em->len, NULL, 0, 1,
4258 sizeof(*fi), &extent_inserted);
4259 if (ret)
4260 return ret;
4261
4262 if (!extent_inserted) {
9d122629 4263 key.objectid = btrfs_ino(inode);
8407f553
FM
4264 key.type = BTRFS_EXTENT_DATA_KEY;
4265 key.offset = em->start;
4266
4267 ret = btrfs_insert_empty_item(trans, log, path, &key,
4268 sizeof(*fi));
4269 if (ret)
4270 return ret;
4271 }
4272 leaf = path->nodes[0];
4273 fi = btrfs_item_ptr(leaf, path->slots[0],
4274 struct btrfs_file_extent_item);
4275
50d9aa99 4276 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4277 &token);
4278 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4279 btrfs_set_token_file_extent_type(leaf, fi,
4280 BTRFS_FILE_EXTENT_PREALLOC,
4281 &token);
4282 else
4283 btrfs_set_token_file_extent_type(leaf, fi,
4284 BTRFS_FILE_EXTENT_REG,
4285 &token);
4286
4287 block_len = max(em->block_len, em->orig_block_len);
4288 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4289 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4290 em->block_start,
4291 &token);
4292 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4293 &token);
4294 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4295 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4296 em->block_start -
4297 extent_offset, &token);
4298 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4299 &token);
4300 } else {
4301 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4302 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4303 &token);
4304 }
4305
4306 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4307 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4308 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4309 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4310 &token);
4311 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4312 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4313 btrfs_mark_buffer_dirty(leaf);
4314
4315 btrfs_release_path(path);
4316
4317 return ret;
4318}
4319
31d11b83
FM
4320/*
4321 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4322 * lose them after doing a fast fsync and replaying the log. We scan the
4323 * subvolume's root instead of iterating the inode's extent map tree because
4324 * otherwise we can log incorrect extent items based on extent map conversion.
4325 * That can happen due to the fact that extent maps are merged when they
4326 * are not in the extent map tree's list of modified extents.
4327 */
4328static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4329 struct btrfs_inode *inode,
4330 struct btrfs_path *path)
4331{
4332 struct btrfs_root *root = inode->root;
4333 struct btrfs_key key;
4334 const u64 i_size = i_size_read(&inode->vfs_inode);
4335 const u64 ino = btrfs_ino(inode);
4336 struct btrfs_path *dst_path = NULL;
4337 u64 last_extent = (u64)-1;
4338 int ins_nr = 0;
4339 int start_slot;
4340 int ret;
4341
4342 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4343 return 0;
4344
4345 key.objectid = ino;
4346 key.type = BTRFS_EXTENT_DATA_KEY;
4347 key.offset = i_size;
4348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4349 if (ret < 0)
4350 goto out;
4351
4352 while (true) {
4353 struct extent_buffer *leaf = path->nodes[0];
4354 int slot = path->slots[0];
4355
4356 if (slot >= btrfs_header_nritems(leaf)) {
4357 if (ins_nr > 0) {
4358 ret = copy_items(trans, inode, dst_path, path,
4359 &last_extent, start_slot,
4360 ins_nr, 1, 0);
4361 if (ret < 0)
4362 goto out;
4363 ins_nr = 0;
4364 }
4365 ret = btrfs_next_leaf(root, path);
4366 if (ret < 0)
4367 goto out;
4368 if (ret > 0) {
4369 ret = 0;
4370 break;
4371 }
4372 continue;
4373 }
4374
4375 btrfs_item_key_to_cpu(leaf, &key, slot);
4376 if (key.objectid > ino)
4377 break;
4378 if (WARN_ON_ONCE(key.objectid < ino) ||
4379 key.type < BTRFS_EXTENT_DATA_KEY ||
4380 key.offset < i_size) {
4381 path->slots[0]++;
4382 continue;
4383 }
4384 if (last_extent == (u64)-1) {
4385 last_extent = key.offset;
4386 /*
4387 * Avoid logging extent items logged in past fsync calls
4388 * and leading to duplicate keys in the log tree.
4389 */
4390 do {
4391 ret = btrfs_truncate_inode_items(trans,
4392 root->log_root,
4393 &inode->vfs_inode,
4394 i_size,
4395 BTRFS_EXTENT_DATA_KEY);
4396 } while (ret == -EAGAIN);
4397 if (ret)
4398 goto out;
4399 }
4400 if (ins_nr == 0)
4401 start_slot = slot;
4402 ins_nr++;
4403 path->slots[0]++;
4404 if (!dst_path) {
4405 dst_path = btrfs_alloc_path();
4406 if (!dst_path) {
4407 ret = -ENOMEM;
4408 goto out;
4409 }
4410 }
4411 }
4412 if (ins_nr > 0) {
4413 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4414 start_slot, ins_nr, 1, 0);
4415 if (ret > 0)
4416 ret = 0;
4417 }
4418out:
4419 btrfs_release_path(path);
4420 btrfs_free_path(dst_path);
4421 return ret;
4422}
4423
5dc562c5
JB
4424static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4425 struct btrfs_root *root,
9d122629 4426 struct btrfs_inode *inode,
827463c4 4427 struct btrfs_path *path,
de0ee0ed
FM
4428 struct btrfs_log_ctx *ctx,
4429 const u64 start,
4430 const u64 end)
5dc562c5 4431{
5dc562c5
JB
4432 struct extent_map *em, *n;
4433 struct list_head extents;
9d122629 4434 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4435 u64 test_gen;
4436 int ret = 0;
2ab28f32 4437 int num = 0;
5dc562c5
JB
4438
4439 INIT_LIST_HEAD(&extents);
4440
5dc562c5
JB
4441 write_lock(&tree->lock);
4442 test_gen = root->fs_info->last_trans_committed;
4443
4444 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4445 /*
4446 * Skip extents outside our logging range. It's important to do
4447 * it for correctness because if we don't ignore them, we may
4448 * log them before their ordered extent completes, and therefore
4449 * we could log them without logging their respective checksums
4450 * (the checksum items are added to the csum tree at the very
4451 * end of btrfs_finish_ordered_io()). Also leave such extents
4452 * outside of our range in the list, since we may have another
4453 * ranged fsync in the near future that needs them. If an extent
4454 * outside our range corresponds to a hole, log it to avoid
4455 * leaving gaps between extents (fsck will complain when we are
4456 * not using the NO_HOLES feature).
4457 */
4458 if ((em->start > end || em->start + em->len <= start) &&
4459 em->block_start != EXTENT_MAP_HOLE)
4460 continue;
4461
5dc562c5 4462 list_del_init(&em->list);
2ab28f32
JB
4463 /*
4464 * Just an arbitrary number, this can be really CPU intensive
4465 * once we start getting a lot of extents, and really once we
4466 * have a bunch of extents we just want to commit since it will
4467 * be faster.
4468 */
4469 if (++num > 32768) {
4470 list_del_init(&tree->modified_extents);
4471 ret = -EFBIG;
4472 goto process;
4473 }
4474
5dc562c5
JB
4475 if (em->generation <= test_gen)
4476 continue;
8c6c5928 4477
31d11b83
FM
4478 /* We log prealloc extents beyond eof later. */
4479 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4480 em->start >= i_size_read(&inode->vfs_inode))
4481 continue;
4482
ff44c6e3 4483 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4484 refcount_inc(&em->refs);
ff44c6e3 4485 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4486 list_add_tail(&em->list, &extents);
2ab28f32 4487 num++;
5dc562c5
JB
4488 }
4489
4490 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4491process:
5dc562c5
JB
4492 while (!list_empty(&extents)) {
4493 em = list_entry(extents.next, struct extent_map, list);
4494
4495 list_del_init(&em->list);
4496
4497 /*
4498 * If we had an error we just need to delete everybody from our
4499 * private list.
4500 */
ff44c6e3 4501 if (ret) {
201a9038 4502 clear_em_logging(tree, em);
ff44c6e3 4503 free_extent_map(em);
5dc562c5 4504 continue;
ff44c6e3
JB
4505 }
4506
4507 write_unlock(&tree->lock);
5dc562c5 4508
a2120a47 4509 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4510 write_lock(&tree->lock);
201a9038
JB
4511 clear_em_logging(tree, em);
4512 free_extent_map(em);
5dc562c5 4513 }
ff44c6e3
JB
4514 WARN_ON(!list_empty(&extents));
4515 write_unlock(&tree->lock);
5dc562c5 4516
5dc562c5 4517 btrfs_release_path(path);
31d11b83
FM
4518 if (!ret)
4519 ret = btrfs_log_prealloc_extents(trans, inode, path);
4520
5dc562c5
JB
4521 return ret;
4522}
4523
481b01c0 4524static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4525 struct btrfs_path *path, u64 *size_ret)
4526{
4527 struct btrfs_key key;
4528 int ret;
4529
481b01c0 4530 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4531 key.type = BTRFS_INODE_ITEM_KEY;
4532 key.offset = 0;
4533
4534 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4535 if (ret < 0) {
4536 return ret;
4537 } else if (ret > 0) {
2f2ff0ee 4538 *size_ret = 0;
1a4bcf47
FM
4539 } else {
4540 struct btrfs_inode_item *item;
4541
4542 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4543 struct btrfs_inode_item);
4544 *size_ret = btrfs_inode_size(path->nodes[0], item);
4545 }
4546
4547 btrfs_release_path(path);
4548 return 0;
4549}
4550
36283bf7
FM
4551/*
4552 * At the moment we always log all xattrs. This is to figure out at log replay
4553 * time which xattrs must have their deletion replayed. If a xattr is missing
4554 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4555 * because if a xattr is deleted, the inode is fsynced and a power failure
4556 * happens, causing the log to be replayed the next time the fs is mounted,
4557 * we want the xattr to not exist anymore (same behaviour as other filesystems
4558 * with a journal, ext3/4, xfs, f2fs, etc).
4559 */
4560static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
1a93c36a 4562 struct btrfs_inode *inode,
36283bf7
FM
4563 struct btrfs_path *path,
4564 struct btrfs_path *dst_path)
4565{
4566 int ret;
4567 struct btrfs_key key;
1a93c36a 4568 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4569 int ins_nr = 0;
4570 int start_slot = 0;
4571
4572 key.objectid = ino;
4573 key.type = BTRFS_XATTR_ITEM_KEY;
4574 key.offset = 0;
4575
4576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4577 if (ret < 0)
4578 return ret;
4579
4580 while (true) {
4581 int slot = path->slots[0];
4582 struct extent_buffer *leaf = path->nodes[0];
4583 int nritems = btrfs_header_nritems(leaf);
4584
4585 if (slot >= nritems) {
4586 if (ins_nr > 0) {
4587 u64 last_extent = 0;
4588
1a93c36a 4589 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4590 &last_extent, start_slot,
4591 ins_nr, 1, 0);
4592 /* can't be 1, extent items aren't processed */
4593 ASSERT(ret <= 0);
4594 if (ret < 0)
4595 return ret;
4596 ins_nr = 0;
4597 }
4598 ret = btrfs_next_leaf(root, path);
4599 if (ret < 0)
4600 return ret;
4601 else if (ret > 0)
4602 break;
4603 continue;
4604 }
4605
4606 btrfs_item_key_to_cpu(leaf, &key, slot);
4607 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4608 break;
4609
4610 if (ins_nr == 0)
4611 start_slot = slot;
4612 ins_nr++;
4613 path->slots[0]++;
4614 cond_resched();
4615 }
4616 if (ins_nr > 0) {
4617 u64 last_extent = 0;
4618
1a93c36a 4619 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4620 &last_extent, start_slot,
4621 ins_nr, 1, 0);
4622 /* can't be 1, extent items aren't processed */
4623 ASSERT(ret <= 0);
4624 if (ret < 0)
4625 return ret;
4626 }
4627
4628 return 0;
4629}
4630
a89ca6f2
FM
4631/*
4632 * If the no holes feature is enabled we need to make sure any hole between the
4633 * last extent and the i_size of our inode is explicitly marked in the log. This
4634 * is to make sure that doing something like:
4635 *
4636 * 1) create file with 128Kb of data
4637 * 2) truncate file to 64Kb
4638 * 3) truncate file to 256Kb
4639 * 4) fsync file
4640 * 5) <crash/power failure>
4641 * 6) mount fs and trigger log replay
4642 *
4643 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4644 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4645 * file correspond to a hole. The presence of explicit holes in a log tree is
4646 * what guarantees that log replay will remove/adjust file extent items in the
4647 * fs/subvol tree.
4648 *
4649 * Here we do not need to care about holes between extents, that is already done
4650 * by copy_items(). We also only need to do this in the full sync path, where we
4651 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4652 * lookup the list of modified extent maps and if any represents a hole, we
4653 * insert a corresponding extent representing a hole in the log tree.
4654 */
4655static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4656 struct btrfs_root *root,
a0308dd7 4657 struct btrfs_inode *inode,
a89ca6f2
FM
4658 struct btrfs_path *path)
4659{
0b246afa 4660 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4661 int ret;
4662 struct btrfs_key key;
4663 u64 hole_start;
4664 u64 hole_size;
4665 struct extent_buffer *leaf;
4666 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4667 const u64 ino = btrfs_ino(inode);
4668 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4669
0b246afa 4670 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4671 return 0;
4672
4673 key.objectid = ino;
4674 key.type = BTRFS_EXTENT_DATA_KEY;
4675 key.offset = (u64)-1;
4676
4677 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4678 ASSERT(ret != 0);
4679 if (ret < 0)
4680 return ret;
4681
4682 ASSERT(path->slots[0] > 0);
4683 path->slots[0]--;
4684 leaf = path->nodes[0];
4685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4686
4687 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4688 /* inode does not have any extents */
4689 hole_start = 0;
4690 hole_size = i_size;
4691 } else {
4692 struct btrfs_file_extent_item *extent;
4693 u64 len;
4694
4695 /*
4696 * If there's an extent beyond i_size, an explicit hole was
4697 * already inserted by copy_items().
4698 */
4699 if (key.offset >= i_size)
4700 return 0;
4701
4702 extent = btrfs_item_ptr(leaf, path->slots[0],
4703 struct btrfs_file_extent_item);
4704
4705 if (btrfs_file_extent_type(leaf, extent) ==
4706 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4707 len = btrfs_file_extent_ram_bytes(leaf, extent);
6399fb5a
FM
4708 ASSERT(len == i_size ||
4709 (len == fs_info->sectorsize &&
4710 btrfs_file_extent_compression(leaf, extent) !=
7ed586d0
FM
4711 BTRFS_COMPRESS_NONE) ||
4712 (len < i_size && i_size < fs_info->sectorsize));
a89ca6f2
FM
4713 return 0;
4714 }
4715
4716 len = btrfs_file_extent_num_bytes(leaf, extent);
4717 /* Last extent goes beyond i_size, no need to log a hole. */
4718 if (key.offset + len > i_size)
4719 return 0;
4720 hole_start = key.offset + len;
4721 hole_size = i_size - hole_start;
4722 }
4723 btrfs_release_path(path);
4724
4725 /* Last extent ends at i_size. */
4726 if (hole_size == 0)
4727 return 0;
4728
0b246afa 4729 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4730 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4731 hole_size, 0, hole_size, 0, 0, 0);
4732 return ret;
4733}
4734
56f23fdb
FM
4735/*
4736 * When we are logging a new inode X, check if it doesn't have a reference that
4737 * matches the reference from some other inode Y created in a past transaction
4738 * and that was renamed in the current transaction. If we don't do this, then at
4739 * log replay time we can lose inode Y (and all its files if it's a directory):
4740 *
4741 * mkdir /mnt/x
4742 * echo "hello world" > /mnt/x/foobar
4743 * sync
4744 * mv /mnt/x /mnt/y
4745 * mkdir /mnt/x # or touch /mnt/x
4746 * xfs_io -c fsync /mnt/x
4747 * <power fail>
4748 * mount fs, trigger log replay
4749 *
4750 * After the log replay procedure, we would lose the first directory and all its
4751 * files (file foobar).
4752 * For the case where inode Y is not a directory we simply end up losing it:
4753 *
4754 * echo "123" > /mnt/foo
4755 * sync
4756 * mv /mnt/foo /mnt/bar
4757 * echo "abc" > /mnt/foo
4758 * xfs_io -c fsync /mnt/foo
4759 * <power fail>
4760 *
4761 * We also need this for cases where a snapshot entry is replaced by some other
4762 * entry (file or directory) otherwise we end up with an unreplayable log due to
4763 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4764 * if it were a regular entry:
4765 *
4766 * mkdir /mnt/x
4767 * btrfs subvolume snapshot /mnt /mnt/x/snap
4768 * btrfs subvolume delete /mnt/x/snap
4769 * rmdir /mnt/x
4770 * mkdir /mnt/x
4771 * fsync /mnt/x or fsync some new file inside it
4772 * <power fail>
4773 *
4774 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4775 * the same transaction.
4776 */
4777static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4778 const int slot,
4779 const struct btrfs_key *key,
4791c8f1 4780 struct btrfs_inode *inode,
a3baaf0d 4781 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4782{
4783 int ret;
4784 struct btrfs_path *search_path;
4785 char *name = NULL;
4786 u32 name_len = 0;
4787 u32 item_size = btrfs_item_size_nr(eb, slot);
4788 u32 cur_offset = 0;
4789 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4790
4791 search_path = btrfs_alloc_path();
4792 if (!search_path)
4793 return -ENOMEM;
4794 search_path->search_commit_root = 1;
4795 search_path->skip_locking = 1;
4796
4797 while (cur_offset < item_size) {
4798 u64 parent;
4799 u32 this_name_len;
4800 u32 this_len;
4801 unsigned long name_ptr;
4802 struct btrfs_dir_item *di;
4803
4804 if (key->type == BTRFS_INODE_REF_KEY) {
4805 struct btrfs_inode_ref *iref;
4806
4807 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4808 parent = key->offset;
4809 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4810 name_ptr = (unsigned long)(iref + 1);
4811 this_len = sizeof(*iref) + this_name_len;
4812 } else {
4813 struct btrfs_inode_extref *extref;
4814
4815 extref = (struct btrfs_inode_extref *)(ptr +
4816 cur_offset);
4817 parent = btrfs_inode_extref_parent(eb, extref);
4818 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4819 name_ptr = (unsigned long)&extref->name;
4820 this_len = sizeof(*extref) + this_name_len;
4821 }
4822
4823 if (this_name_len > name_len) {
4824 char *new_name;
4825
4826 new_name = krealloc(name, this_name_len, GFP_NOFS);
4827 if (!new_name) {
4828 ret = -ENOMEM;
4829 goto out;
4830 }
4831 name_len = this_name_len;
4832 name = new_name;
4833 }
4834
4835 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4836 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4837 parent, name, this_name_len, 0);
56f23fdb 4838 if (di && !IS_ERR(di)) {
44f714da
FM
4839 struct btrfs_key di_key;
4840
4841 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4842 di, &di_key);
4843 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4844 if (di_key.objectid != key->objectid) {
4845 ret = 1;
4846 *other_ino = di_key.objectid;
a3baaf0d 4847 *other_parent = parent;
6b5fc433
FM
4848 } else {
4849 ret = 0;
4850 }
44f714da
FM
4851 } else {
4852 ret = -EAGAIN;
4853 }
56f23fdb
FM
4854 goto out;
4855 } else if (IS_ERR(di)) {
4856 ret = PTR_ERR(di);
4857 goto out;
4858 }
4859 btrfs_release_path(search_path);
4860
4861 cur_offset += this_len;
4862 }
4863 ret = 0;
4864out:
4865 btrfs_free_path(search_path);
4866 kfree(name);
4867 return ret;
4868}
4869
6b5fc433
FM
4870struct btrfs_ino_list {
4871 u64 ino;
a3baaf0d 4872 u64 parent;
6b5fc433
FM
4873 struct list_head list;
4874};
4875
4876static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4877 struct btrfs_root *root,
4878 struct btrfs_path *path,
4879 struct btrfs_log_ctx *ctx,
a3baaf0d 4880 u64 ino, u64 parent)
6b5fc433
FM
4881{
4882 struct btrfs_ino_list *ino_elem;
4883 LIST_HEAD(inode_list);
4884 int ret = 0;
4885
4886 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4887 if (!ino_elem)
4888 return -ENOMEM;
4889 ino_elem->ino = ino;
a3baaf0d 4890 ino_elem->parent = parent;
6b5fc433
FM
4891 list_add_tail(&ino_elem->list, &inode_list);
4892
4893 while (!list_empty(&inode_list)) {
4894 struct btrfs_fs_info *fs_info = root->fs_info;
4895 struct btrfs_key key;
4896 struct inode *inode;
4897
4898 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4899 list);
4900 ino = ino_elem->ino;
a3baaf0d 4901 parent = ino_elem->parent;
6b5fc433
FM
4902 list_del(&ino_elem->list);
4903 kfree(ino_elem);
4904 if (ret)
4905 continue;
4906
4907 btrfs_release_path(path);
4908
4909 key.objectid = ino;
4910 key.type = BTRFS_INODE_ITEM_KEY;
4911 key.offset = 0;
4912 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4913 /*
4914 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4915 * deleted in the current transaction, we need to log its parent
4916 * directory.
6b5fc433
FM
4917 */
4918 if (IS_ERR(inode)) {
4919 ret = PTR_ERR(inode);
a3baaf0d
FM
4920 if (ret == -ENOENT) {
4921 key.objectid = parent;
4922 inode = btrfs_iget(fs_info->sb, &key, root,
4923 NULL);
4924 if (IS_ERR(inode)) {
4925 ret = PTR_ERR(inode);
4926 } else {
4927 ret = btrfs_log_inode(trans, root,
4928 BTRFS_I(inode),
4929 LOG_OTHER_INODE_ALL,
4930 0, LLONG_MAX, ctx);
4931 iput(inode);
4932 }
4933 }
6b5fc433
FM
4934 continue;
4935 }
4936 /*
4937 * We are safe logging the other inode without acquiring its
4938 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4939 * are safe against concurrent renames of the other inode as
4940 * well because during a rename we pin the log and update the
4941 * log with the new name before we unpin it.
4942 */
4943 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4944 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4945 if (ret) {
4946 iput(inode);
4947 continue;
4948 }
4949
4950 key.objectid = ino;
4951 key.type = BTRFS_INODE_REF_KEY;
4952 key.offset = 0;
4953 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4954 if (ret < 0) {
4955 iput(inode);
4956 continue;
4957 }
4958
4959 while (true) {
4960 struct extent_buffer *leaf = path->nodes[0];
4961 int slot = path->slots[0];
4962 u64 other_ino = 0;
a3baaf0d 4963 u64 other_parent = 0;
6b5fc433
FM
4964
4965 if (slot >= btrfs_header_nritems(leaf)) {
4966 ret = btrfs_next_leaf(root, path);
4967 if (ret < 0) {
4968 break;
4969 } else if (ret > 0) {
4970 ret = 0;
4971 break;
4972 }
4973 continue;
4974 }
4975
4976 btrfs_item_key_to_cpu(leaf, &key, slot);
4977 if (key.objectid != ino ||
4978 (key.type != BTRFS_INODE_REF_KEY &&
4979 key.type != BTRFS_INODE_EXTREF_KEY)) {
4980 ret = 0;
4981 break;
4982 }
4983
4984 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
4985 BTRFS_I(inode), &other_ino,
4986 &other_parent);
6b5fc433
FM
4987 if (ret < 0)
4988 break;
4989 if (ret > 0) {
4990 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4991 if (!ino_elem) {
4992 ret = -ENOMEM;
4993 break;
4994 }
4995 ino_elem->ino = other_ino;
a3baaf0d 4996 ino_elem->parent = other_parent;
6b5fc433
FM
4997 list_add_tail(&ino_elem->list, &inode_list);
4998 ret = 0;
4999 }
5000 path->slots[0]++;
5001 }
5002 iput(inode);
5003 }
5004
5005 return ret;
5006}
5007
e02119d5
CM
5008/* log a single inode in the tree log.
5009 * At least one parent directory for this inode must exist in the tree
5010 * or be logged already.
5011 *
5012 * Any items from this inode changed by the current transaction are copied
5013 * to the log tree. An extra reference is taken on any extents in this
5014 * file, allowing us to avoid a whole pile of corner cases around logging
5015 * blocks that have been removed from the tree.
5016 *
5017 * See LOG_INODE_ALL and related defines for a description of what inode_only
5018 * does.
5019 *
5020 * This handles both files and directories.
5021 */
12fcfd22 5022static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5023 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
5024 int inode_only,
5025 const loff_t start,
8407f553
FM
5026 const loff_t end,
5027 struct btrfs_log_ctx *ctx)
e02119d5 5028{
0b246afa 5029 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5030 struct btrfs_path *path;
5031 struct btrfs_path *dst_path;
5032 struct btrfs_key min_key;
5033 struct btrfs_key max_key;
5034 struct btrfs_root *log = root->log_root;
16e7549f 5035 u64 last_extent = 0;
4a500fd1 5036 int err = 0;
e02119d5 5037 int ret;
3a5f1d45 5038 int nritems;
31ff1cd2
CM
5039 int ins_start_slot = 0;
5040 int ins_nr;
5dc562c5 5041 bool fast_search = false;
a59108a7
NB
5042 u64 ino = btrfs_ino(inode);
5043 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5044 u64 logged_isize = 0;
e4545de5 5045 bool need_log_inode_item = true;
9a8fca62 5046 bool xattrs_logged = false;
a3baaf0d 5047 bool recursive_logging = false;
e02119d5 5048
e02119d5 5049 path = btrfs_alloc_path();
5df67083
TI
5050 if (!path)
5051 return -ENOMEM;
e02119d5 5052 dst_path = btrfs_alloc_path();
5df67083
TI
5053 if (!dst_path) {
5054 btrfs_free_path(path);
5055 return -ENOMEM;
5056 }
e02119d5 5057
33345d01 5058 min_key.objectid = ino;
e02119d5
CM
5059 min_key.type = BTRFS_INODE_ITEM_KEY;
5060 min_key.offset = 0;
5061
33345d01 5062 max_key.objectid = ino;
12fcfd22 5063
12fcfd22 5064
5dc562c5 5065 /* today the code can only do partial logging of directories */
a59108a7 5066 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5067 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5068 &inode->runtime_flags) &&
781feef7 5069 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5070 max_key.type = BTRFS_XATTR_ITEM_KEY;
5071 else
5072 max_key.type = (u8)-1;
5073 max_key.offset = (u64)-1;
5074
2c2c452b
FM
5075 /*
5076 * Only run delayed items if we are a dir or a new file.
5077 * Otherwise commit the delayed inode only, which is needed in
5078 * order for the log replay code to mark inodes for link count
5079 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5080 */
a59108a7
NB
5081 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5082 inode->generation > fs_info->last_trans_committed)
5083 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5084 else
a59108a7 5085 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5086
5087 if (ret) {
5088 btrfs_free_path(path);
5089 btrfs_free_path(dst_path);
5090 return ret;
16cdcec7
MX
5091 }
5092
a3baaf0d
FM
5093 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5094 recursive_logging = true;
5095 if (inode_only == LOG_OTHER_INODE)
5096 inode_only = LOG_INODE_EXISTS;
5097 else
5098 inode_only = LOG_INODE_ALL;
a59108a7 5099 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5100 } else {
a59108a7 5101 mutex_lock(&inode->log_mutex);
781feef7 5102 }
e02119d5
CM
5103
5104 /*
5105 * a brute force approach to making sure we get the most uptodate
5106 * copies of everything.
5107 */
a59108a7 5108 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5109 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5110
4f764e51
FM
5111 if (inode_only == LOG_INODE_EXISTS)
5112 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5113 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5114 } else {
1a4bcf47
FM
5115 if (inode_only == LOG_INODE_EXISTS) {
5116 /*
5117 * Make sure the new inode item we write to the log has
5118 * the same isize as the current one (if it exists).
5119 * This is necessary to prevent data loss after log
5120 * replay, and also to prevent doing a wrong expanding
5121 * truncate - for e.g. create file, write 4K into offset
5122 * 0, fsync, write 4K into offset 4096, add hard link,
5123 * fsync some other file (to sync log), power fail - if
5124 * we use the inode's current i_size, after log replay
5125 * we get a 8Kb file, with the last 4Kb extent as a hole
5126 * (zeroes), as if an expanding truncate happened,
5127 * instead of getting a file of 4Kb only.
5128 */
a59108a7 5129 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5130 if (err)
5131 goto out_unlock;
5132 }
a742994a 5133 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5134 &inode->runtime_flags)) {
a742994a 5135 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5136 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5137 ret = drop_objectid_items(trans, log, path, ino,
5138 max_key.type);
5139 } else {
5140 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5141 &inode->runtime_flags);
a742994a 5142 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5143 &inode->runtime_flags);
28ed1345
CM
5144 while(1) {
5145 ret = btrfs_truncate_inode_items(trans,
a59108a7 5146 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5147 if (ret != -EAGAIN)
5148 break;
5149 }
a742994a 5150 }
4f764e51 5151 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5152 &inode->runtime_flags) ||
6cfab851 5153 inode_only == LOG_INODE_EXISTS) {
4f764e51 5154 if (inode_only == LOG_INODE_ALL)
183f37fa 5155 fast_search = true;
4f764e51 5156 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5157 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5158 max_key.type);
a95249b3
JB
5159 } else {
5160 if (inode_only == LOG_INODE_ALL)
5161 fast_search = true;
a95249b3 5162 goto log_extents;
5dc562c5 5163 }
a95249b3 5164
e02119d5 5165 }
4a500fd1
YZ
5166 if (ret) {
5167 err = ret;
5168 goto out_unlock;
5169 }
e02119d5 5170
d397712b 5171 while (1) {
31ff1cd2 5172 ins_nr = 0;
6174d3cb 5173 ret = btrfs_search_forward(root, &min_key,
de78b51a 5174 path, trans->transid);
fb770ae4
LB
5175 if (ret < 0) {
5176 err = ret;
5177 goto out_unlock;
5178 }
e02119d5
CM
5179 if (ret != 0)
5180 break;
3a5f1d45 5181again:
31ff1cd2 5182 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 5183 if (min_key.objectid != ino)
e02119d5
CM
5184 break;
5185 if (min_key.type > max_key.type)
5186 break;
31ff1cd2 5187
e4545de5
FM
5188 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5189 need_log_inode_item = false;
5190
56f23fdb
FM
5191 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5192 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
6b5fc433
FM
5193 inode->generation == trans->transid &&
5194 !recursive_logging) {
44f714da 5195 u64 other_ino = 0;
a3baaf0d 5196 u64 other_parent = 0;
44f714da 5197
56f23fdb 5198 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7 5199 path->slots[0], &min_key, inode,
a3baaf0d 5200 &other_ino, &other_parent);
56f23fdb
FM
5201 if (ret < 0) {
5202 err = ret;
5203 goto out_unlock;
28a23593 5204 } else if (ret > 0 && ctx &&
4a0cc7ca 5205 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
5206 if (ins_nr > 0) {
5207 ins_nr++;
5208 } else {
5209 ins_nr = 1;
5210 ins_start_slot = path->slots[0];
5211 }
a59108a7 5212 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5213 &last_extent, ins_start_slot,
5214 ins_nr, inode_only,
5215 logged_isize);
5216 if (ret < 0) {
5217 err = ret;
5218 goto out_unlock;
5219 }
5220 ins_nr = 0;
6b5fc433
FM
5221
5222 err = log_conflicting_inodes(trans, root, path,
a3baaf0d 5223 ctx, other_ino, other_parent);
44f714da
FM
5224 if (err)
5225 goto out_unlock;
6b5fc433
FM
5226 btrfs_release_path(path);
5227 goto next_key;
56f23fdb
FM
5228 }
5229 }
5230
36283bf7
FM
5231 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5232 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5233 if (ins_nr == 0)
5234 goto next_slot;
a59108a7 5235 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5236 &last_extent, ins_start_slot,
5237 ins_nr, inode_only, logged_isize);
5238 if (ret < 0) {
5239 err = ret;
5240 goto out_unlock;
5241 }
5242 ins_nr = 0;
5243 if (ret) {
5244 btrfs_release_path(path);
5245 continue;
5246 }
5247 goto next_slot;
5248 }
5249
31ff1cd2
CM
5250 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5251 ins_nr++;
5252 goto next_slot;
5253 } else if (!ins_nr) {
5254 ins_start_slot = path->slots[0];
5255 ins_nr = 1;
5256 goto next_slot;
e02119d5
CM
5257 }
5258
a59108a7 5259 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5260 ins_start_slot, ins_nr, inode_only,
5261 logged_isize);
16e7549f 5262 if (ret < 0) {
4a500fd1
YZ
5263 err = ret;
5264 goto out_unlock;
a71db86e
RV
5265 }
5266 if (ret) {
16e7549f
JB
5267 ins_nr = 0;
5268 btrfs_release_path(path);
5269 continue;
4a500fd1 5270 }
31ff1cd2
CM
5271 ins_nr = 1;
5272 ins_start_slot = path->slots[0];
5273next_slot:
e02119d5 5274
3a5f1d45
CM
5275 nritems = btrfs_header_nritems(path->nodes[0]);
5276 path->slots[0]++;
5277 if (path->slots[0] < nritems) {
5278 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5279 path->slots[0]);
5280 goto again;
5281 }
31ff1cd2 5282 if (ins_nr) {
a59108a7 5283 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5284 &last_extent, ins_start_slot,
1a4bcf47 5285 ins_nr, inode_only, logged_isize);
16e7549f 5286 if (ret < 0) {
4a500fd1
YZ
5287 err = ret;
5288 goto out_unlock;
5289 }
16e7549f 5290 ret = 0;
31ff1cd2
CM
5291 ins_nr = 0;
5292 }
b3b4aa74 5293 btrfs_release_path(path);
44f714da 5294next_key:
3d41d702 5295 if (min_key.offset < (u64)-1) {
e02119d5 5296 min_key.offset++;
3d41d702 5297 } else if (min_key.type < max_key.type) {
e02119d5 5298 min_key.type++;
3d41d702
FDBM
5299 min_key.offset = 0;
5300 } else {
e02119d5 5301 break;
3d41d702 5302 }
e02119d5 5303 }
31ff1cd2 5304 if (ins_nr) {
a59108a7 5305 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5306 ins_start_slot, ins_nr, inode_only,
5307 logged_isize);
16e7549f 5308 if (ret < 0) {
4a500fd1
YZ
5309 err = ret;
5310 goto out_unlock;
5311 }
16e7549f 5312 ret = 0;
31ff1cd2
CM
5313 ins_nr = 0;
5314 }
5dc562c5 5315
36283bf7
FM
5316 btrfs_release_path(path);
5317 btrfs_release_path(dst_path);
a59108a7 5318 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5319 if (err)
5320 goto out_unlock;
9a8fca62 5321 xattrs_logged = true;
a89ca6f2
FM
5322 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5323 btrfs_release_path(path);
5324 btrfs_release_path(dst_path);
a59108a7 5325 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5326 if (err)
5327 goto out_unlock;
5328 }
a95249b3 5329log_extents:
f3b15ccd
JB
5330 btrfs_release_path(path);
5331 btrfs_release_path(dst_path);
e4545de5 5332 if (need_log_inode_item) {
a59108a7 5333 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5334 if (!err && !xattrs_logged) {
5335 err = btrfs_log_all_xattrs(trans, root, inode, path,
5336 dst_path);
5337 btrfs_release_path(path);
5338 }
e4545de5
FM
5339 if (err)
5340 goto out_unlock;
5341 }
5dc562c5 5342 if (fast_search) {
a59108a7 5343 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5344 ctx, start, end);
5dc562c5
JB
5345 if (ret) {
5346 err = ret;
5347 goto out_unlock;
5348 }
d006a048 5349 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5350 struct extent_map *em, *n;
5351
49dae1bc
FM
5352 write_lock(&em_tree->lock);
5353 /*
5354 * We can't just remove every em if we're called for a ranged
5355 * fsync - that is, one that doesn't cover the whole possible
5356 * file range (0 to LLONG_MAX). This is because we can have
5357 * em's that fall outside the range we're logging and therefore
5358 * their ordered operations haven't completed yet
5359 * (btrfs_finish_ordered_io() not invoked yet). This means we
5360 * didn't get their respective file extent item in the fs/subvol
5361 * tree yet, and need to let the next fast fsync (one which
5362 * consults the list of modified extent maps) find the em so
5363 * that it logs a matching file extent item and waits for the
5364 * respective ordered operation to complete (if it's still
5365 * running).
5366 *
5367 * Removing every em outside the range we're logging would make
5368 * the next fast fsync not log their matching file extent items,
5369 * therefore making us lose data after a log replay.
5370 */
5371 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5372 list) {
5373 const u64 mod_end = em->mod_start + em->mod_len - 1;
5374
5375 if (em->mod_start >= start && mod_end <= end)
5376 list_del_init(&em->list);
5377 }
5378 write_unlock(&em_tree->lock);
5dc562c5
JB
5379 }
5380
a59108a7
NB
5381 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5382 ret = log_directory_changes(trans, root, inode, path, dst_path,
5383 ctx);
4a500fd1
YZ
5384 if (ret) {
5385 err = ret;
5386 goto out_unlock;
5387 }
e02119d5 5388 }
49dae1bc 5389
a59108a7
NB
5390 spin_lock(&inode->lock);
5391 inode->logged_trans = trans->transid;
5392 inode->last_log_commit = inode->last_sub_trans;
5393 spin_unlock(&inode->lock);
4a500fd1 5394out_unlock:
a59108a7 5395 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5396
5397 btrfs_free_path(path);
5398 btrfs_free_path(dst_path);
4a500fd1 5399 return err;
e02119d5
CM
5400}
5401
2be63d5c
FM
5402/*
5403 * Check if we must fallback to a transaction commit when logging an inode.
5404 * This must be called after logging the inode and is used only in the context
5405 * when fsyncing an inode requires the need to log some other inode - in which
5406 * case we can't lock the i_mutex of each other inode we need to log as that
5407 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5408 * log inodes up or down in the hierarchy) or rename operations for example. So
5409 * we take the log_mutex of the inode after we have logged it and then check for
5410 * its last_unlink_trans value - this is safe because any task setting
5411 * last_unlink_trans must take the log_mutex and it must do this before it does
5412 * the actual unlink operation, so if we do this check before a concurrent task
5413 * sets last_unlink_trans it means we've logged a consistent version/state of
5414 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5415 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5416 * we logged the inode or it might have also done the unlink).
5417 */
5418static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5419 struct btrfs_inode *inode)
2be63d5c 5420{
ab1717b2 5421 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5422 bool ret = false;
5423
ab1717b2
NB
5424 mutex_lock(&inode->log_mutex);
5425 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5426 /*
5427 * Make sure any commits to the log are forced to be full
5428 * commits.
5429 */
5430 btrfs_set_log_full_commit(fs_info, trans);
5431 ret = true;
5432 }
ab1717b2 5433 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5434
5435 return ret;
5436}
5437
12fcfd22
CM
5438/*
5439 * follow the dentry parent pointers up the chain and see if any
5440 * of the directories in it require a full commit before they can
5441 * be logged. Returns zero if nothing special needs to be done or 1 if
5442 * a full commit is required.
5443 */
5444static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5445 struct btrfs_inode *inode,
12fcfd22
CM
5446 struct dentry *parent,
5447 struct super_block *sb,
5448 u64 last_committed)
e02119d5 5449{
12fcfd22 5450 int ret = 0;
6a912213 5451 struct dentry *old_parent = NULL;
aefa6115 5452 struct btrfs_inode *orig_inode = inode;
e02119d5 5453
af4176b4
CM
5454 /*
5455 * for regular files, if its inode is already on disk, we don't
5456 * have to worry about the parents at all. This is because
5457 * we can use the last_unlink_trans field to record renames
5458 * and other fun in this file.
5459 */
aefa6115
NB
5460 if (S_ISREG(inode->vfs_inode.i_mode) &&
5461 inode->generation <= last_committed &&
5462 inode->last_unlink_trans <= last_committed)
5463 goto out;
af4176b4 5464
aefa6115 5465 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5466 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5467 goto out;
aefa6115 5468 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5469 }
5470
5471 while (1) {
de2b530b
JB
5472 /*
5473 * If we are logging a directory then we start with our inode,
01327610 5474 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5475 * logged_trans so that further down in the log code we don't
5476 * think this inode has already been logged.
5477 */
5478 if (inode != orig_inode)
aefa6115 5479 inode->logged_trans = trans->transid;
12fcfd22
CM
5480 smp_mb();
5481
aefa6115 5482 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5483 ret = 1;
5484 break;
5485 }
5486
fc64005c 5487 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5488 break;
5489
44f714da 5490 if (IS_ROOT(parent)) {
aefa6115
NB
5491 inode = BTRFS_I(d_inode(parent));
5492 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5493 ret = 1;
12fcfd22 5494 break;
44f714da 5495 }
12fcfd22 5496
6a912213
JB
5497 parent = dget_parent(parent);
5498 dput(old_parent);
5499 old_parent = parent;
aefa6115 5500 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5501
5502 }
6a912213 5503 dput(old_parent);
12fcfd22 5504out:
e02119d5
CM
5505 return ret;
5506}
5507
2f2ff0ee
FM
5508struct btrfs_dir_list {
5509 u64 ino;
5510 struct list_head list;
5511};
5512
5513/*
5514 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5515 * details about the why it is needed.
5516 * This is a recursive operation - if an existing dentry corresponds to a
5517 * directory, that directory's new entries are logged too (same behaviour as
5518 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5519 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5520 * complains about the following circular lock dependency / possible deadlock:
5521 *
5522 * CPU0 CPU1
5523 * ---- ----
5524 * lock(&type->i_mutex_dir_key#3/2);
5525 * lock(sb_internal#2);
5526 * lock(&type->i_mutex_dir_key#3/2);
5527 * lock(&sb->s_type->i_mutex_key#14);
5528 *
5529 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5530 * sb_start_intwrite() in btrfs_start_transaction().
5531 * Not locking i_mutex of the inodes is still safe because:
5532 *
5533 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5534 * that while logging the inode new references (names) are added or removed
5535 * from the inode, leaving the logged inode item with a link count that does
5536 * not match the number of logged inode reference items. This is fine because
5537 * at log replay time we compute the real number of links and correct the
5538 * link count in the inode item (see replay_one_buffer() and
5539 * link_to_fixup_dir());
5540 *
5541 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5542 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5543 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5544 * has a size that doesn't match the sum of the lengths of all the logged
5545 * names. This does not result in a problem because if a dir_item key is
5546 * logged but its matching dir_index key is not logged, at log replay time we
5547 * don't use it to replay the respective name (see replay_one_name()). On the
5548 * other hand if only the dir_index key ends up being logged, the respective
5549 * name is added to the fs/subvol tree with both the dir_item and dir_index
5550 * keys created (see replay_one_name()).
5551 * The directory's inode item with a wrong i_size is not a problem as well,
5552 * since we don't use it at log replay time to set the i_size in the inode
5553 * item of the fs/subvol tree (see overwrite_item()).
5554 */
5555static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5556 struct btrfs_root *root,
51cc0d32 5557 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5558 struct btrfs_log_ctx *ctx)
5559{
0b246afa 5560 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5561 struct btrfs_root *log = root->log_root;
5562 struct btrfs_path *path;
5563 LIST_HEAD(dir_list);
5564 struct btrfs_dir_list *dir_elem;
5565 int ret = 0;
5566
5567 path = btrfs_alloc_path();
5568 if (!path)
5569 return -ENOMEM;
5570
5571 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5572 if (!dir_elem) {
5573 btrfs_free_path(path);
5574 return -ENOMEM;
5575 }
51cc0d32 5576 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5577 list_add_tail(&dir_elem->list, &dir_list);
5578
5579 while (!list_empty(&dir_list)) {
5580 struct extent_buffer *leaf;
5581 struct btrfs_key min_key;
5582 int nritems;
5583 int i;
5584
5585 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5586 list);
5587 if (ret)
5588 goto next_dir_inode;
5589
5590 min_key.objectid = dir_elem->ino;
5591 min_key.type = BTRFS_DIR_ITEM_KEY;
5592 min_key.offset = 0;
5593again:
5594 btrfs_release_path(path);
5595 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5596 if (ret < 0) {
5597 goto next_dir_inode;
5598 } else if (ret > 0) {
5599 ret = 0;
5600 goto next_dir_inode;
5601 }
5602
5603process_leaf:
5604 leaf = path->nodes[0];
5605 nritems = btrfs_header_nritems(leaf);
5606 for (i = path->slots[0]; i < nritems; i++) {
5607 struct btrfs_dir_item *di;
5608 struct btrfs_key di_key;
5609 struct inode *di_inode;
5610 struct btrfs_dir_list *new_dir_elem;
5611 int log_mode = LOG_INODE_EXISTS;
5612 int type;
5613
5614 btrfs_item_key_to_cpu(leaf, &min_key, i);
5615 if (min_key.objectid != dir_elem->ino ||
5616 min_key.type != BTRFS_DIR_ITEM_KEY)
5617 goto next_dir_inode;
5618
5619 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5620 type = btrfs_dir_type(leaf, di);
5621 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5622 type != BTRFS_FT_DIR)
5623 continue;
5624 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5625 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5626 continue;
5627
ec125cfb 5628 btrfs_release_path(path);
0b246afa 5629 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5630 if (IS_ERR(di_inode)) {
5631 ret = PTR_ERR(di_inode);
5632 goto next_dir_inode;
5633 }
5634
0f8939b8 5635 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5636 iput(di_inode);
ec125cfb 5637 break;
2f2ff0ee
FM
5638 }
5639
5640 ctx->log_new_dentries = false;
3f9749f6 5641 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5642 log_mode = LOG_INODE_ALL;
a59108a7 5643 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5644 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5645 if (!ret &&
ab1717b2 5646 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5647 ret = 1;
2f2ff0ee
FM
5648 iput(di_inode);
5649 if (ret)
5650 goto next_dir_inode;
5651 if (ctx->log_new_dentries) {
5652 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5653 GFP_NOFS);
5654 if (!new_dir_elem) {
5655 ret = -ENOMEM;
5656 goto next_dir_inode;
5657 }
5658 new_dir_elem->ino = di_key.objectid;
5659 list_add_tail(&new_dir_elem->list, &dir_list);
5660 }
5661 break;
5662 }
5663 if (i == nritems) {
5664 ret = btrfs_next_leaf(log, path);
5665 if (ret < 0) {
5666 goto next_dir_inode;
5667 } else if (ret > 0) {
5668 ret = 0;
5669 goto next_dir_inode;
5670 }
5671 goto process_leaf;
5672 }
5673 if (min_key.offset < (u64)-1) {
5674 min_key.offset++;
5675 goto again;
5676 }
5677next_dir_inode:
5678 list_del(&dir_elem->list);
5679 kfree(dir_elem);
5680 }
5681
5682 btrfs_free_path(path);
5683 return ret;
5684}
5685
18aa0922 5686static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5687 struct btrfs_inode *inode,
18aa0922
FM
5688 struct btrfs_log_ctx *ctx)
5689{
3ffbd68c 5690 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5691 int ret;
5692 struct btrfs_path *path;
5693 struct btrfs_key key;
d0a0b78d
NB
5694 struct btrfs_root *root = inode->root;
5695 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5696
5697 path = btrfs_alloc_path();
5698 if (!path)
5699 return -ENOMEM;
5700 path->skip_locking = 1;
5701 path->search_commit_root = 1;
5702
5703 key.objectid = ino;
5704 key.type = BTRFS_INODE_REF_KEY;
5705 key.offset = 0;
5706 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5707 if (ret < 0)
5708 goto out;
5709
5710 while (true) {
5711 struct extent_buffer *leaf = path->nodes[0];
5712 int slot = path->slots[0];
5713 u32 cur_offset = 0;
5714 u32 item_size;
5715 unsigned long ptr;
5716
5717 if (slot >= btrfs_header_nritems(leaf)) {
5718 ret = btrfs_next_leaf(root, path);
5719 if (ret < 0)
5720 goto out;
5721 else if (ret > 0)
5722 break;
5723 continue;
5724 }
5725
5726 btrfs_item_key_to_cpu(leaf, &key, slot);
5727 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5728 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5729 break;
5730
5731 item_size = btrfs_item_size_nr(leaf, slot);
5732 ptr = btrfs_item_ptr_offset(leaf, slot);
5733 while (cur_offset < item_size) {
5734 struct btrfs_key inode_key;
5735 struct inode *dir_inode;
5736
5737 inode_key.type = BTRFS_INODE_ITEM_KEY;
5738 inode_key.offset = 0;
5739
5740 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5741 struct btrfs_inode_extref *extref;
5742
5743 extref = (struct btrfs_inode_extref *)
5744 (ptr + cur_offset);
5745 inode_key.objectid = btrfs_inode_extref_parent(
5746 leaf, extref);
5747 cur_offset += sizeof(*extref);
5748 cur_offset += btrfs_inode_extref_name_len(leaf,
5749 extref);
5750 } else {
5751 inode_key.objectid = key.offset;
5752 cur_offset = item_size;
5753 }
5754
0b246afa 5755 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922 5756 root, NULL);
0f375eed
FM
5757 /*
5758 * If the parent inode was deleted, return an error to
5759 * fallback to a transaction commit. This is to prevent
5760 * getting an inode that was moved from one parent A to
5761 * a parent B, got its former parent A deleted and then
5762 * it got fsync'ed, from existing at both parents after
5763 * a log replay (and the old parent still existing).
5764 * Example:
5765 *
5766 * mkdir /mnt/A
5767 * mkdir /mnt/B
5768 * touch /mnt/B/bar
5769 * sync
5770 * mv /mnt/B/bar /mnt/A/bar
5771 * mv -T /mnt/A /mnt/B
5772 * fsync /mnt/B/bar
5773 * <power fail>
5774 *
5775 * If we ignore the old parent B which got deleted,
5776 * after a log replay we would have file bar linked
5777 * at both parents and the old parent B would still
5778 * exist.
5779 */
5780 if (IS_ERR(dir_inode)) {
5781 ret = PTR_ERR(dir_inode);
5782 goto out;
5783 }
18aa0922 5784
657ed1aa
FM
5785 if (ctx)
5786 ctx->log_new_dentries = false;
a59108a7 5787 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5788 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5789 if (!ret &&
ab1717b2 5790 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5791 ret = 1;
657ed1aa
FM
5792 if (!ret && ctx && ctx->log_new_dentries)
5793 ret = log_new_dir_dentries(trans, root,
f85b7379 5794 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5795 iput(dir_inode);
5796 if (ret)
5797 goto out;
5798 }
5799 path->slots[0]++;
5800 }
5801 ret = 0;
5802out:
5803 btrfs_free_path(path);
5804 return ret;
5805}
5806
e02119d5
CM
5807/*
5808 * helper function around btrfs_log_inode to make sure newly created
5809 * parent directories also end up in the log. A minimal inode and backref
5810 * only logging is done of any parent directories that are older than
5811 * the last committed transaction
5812 */
48a3b636 5813static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5814 struct btrfs_inode *inode,
49dae1bc
FM
5815 struct dentry *parent,
5816 const loff_t start,
5817 const loff_t end,
41a1eada 5818 int inode_only,
8b050d35 5819 struct btrfs_log_ctx *ctx)
e02119d5 5820{
f882274b 5821 struct btrfs_root *root = inode->root;
0b246afa 5822 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5823 struct super_block *sb;
6a912213 5824 struct dentry *old_parent = NULL;
12fcfd22 5825 int ret = 0;
0b246afa 5826 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5827 bool log_dentries = false;
19df27a9 5828 struct btrfs_inode *orig_inode = inode;
12fcfd22 5829
19df27a9 5830 sb = inode->vfs_inode.i_sb;
12fcfd22 5831
0b246afa 5832 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5833 ret = 1;
5834 goto end_no_trans;
5835 }
5836
995946dd
MX
5837 /*
5838 * The prev transaction commit doesn't complete, we need do
5839 * full commit by ourselves.
5840 */
0b246afa
JM
5841 if (fs_info->last_trans_log_full_commit >
5842 fs_info->last_trans_committed) {
12fcfd22
CM
5843 ret = 1;
5844 goto end_no_trans;
5845 }
5846
f882274b 5847 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5848 ret = 1;
5849 goto end_no_trans;
5850 }
5851
19df27a9
NB
5852 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5853 last_committed);
12fcfd22
CM
5854 if (ret)
5855 goto end_no_trans;
e02119d5 5856
f2d72f42
FM
5857 /*
5858 * Skip already logged inodes or inodes corresponding to tmpfiles
5859 * (since logging them is pointless, a link count of 0 means they
5860 * will never be accessible).
5861 */
5862 if (btrfs_inode_in_log(inode, trans->transid) ||
5863 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
5864 ret = BTRFS_NO_LOG_SYNC;
5865 goto end_no_trans;
5866 }
5867
8b050d35 5868 ret = start_log_trans(trans, root, ctx);
4a500fd1 5869 if (ret)
e87ac136 5870 goto end_no_trans;
e02119d5 5871
19df27a9 5872 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5873 if (ret)
5874 goto end_trans;
12fcfd22 5875
af4176b4
CM
5876 /*
5877 * for regular files, if its inode is already on disk, we don't
5878 * have to worry about the parents at all. This is because
5879 * we can use the last_unlink_trans field to record renames
5880 * and other fun in this file.
5881 */
19df27a9
NB
5882 if (S_ISREG(inode->vfs_inode.i_mode) &&
5883 inode->generation <= last_committed &&
5884 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5885 ret = 0;
5886 goto end_trans;
5887 }
af4176b4 5888
19df27a9 5889 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5890 log_dentries = true;
5891
18aa0922 5892 /*
01327610 5893 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5894 * inodes are fully logged. This is to prevent leaving dangling
5895 * directory index entries in directories that were our parents but are
5896 * not anymore. Not doing this results in old parent directory being
5897 * impossible to delete after log replay (rmdir will always fail with
5898 * error -ENOTEMPTY).
5899 *
5900 * Example 1:
5901 *
5902 * mkdir testdir
5903 * touch testdir/foo
5904 * ln testdir/foo testdir/bar
5905 * sync
5906 * unlink testdir/bar
5907 * xfs_io -c fsync testdir/foo
5908 * <power failure>
5909 * mount fs, triggers log replay
5910 *
5911 * If we don't log the parent directory (testdir), after log replay the
5912 * directory still has an entry pointing to the file inode using the bar
5913 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5914 * the file inode has a link count of 1.
5915 *
5916 * Example 2:
5917 *
5918 * mkdir testdir
5919 * touch foo
5920 * ln foo testdir/foo2
5921 * ln foo testdir/foo3
5922 * sync
5923 * unlink testdir/foo3
5924 * xfs_io -c fsync foo
5925 * <power failure>
5926 * mount fs, triggers log replay
5927 *
5928 * Similar as the first example, after log replay the parent directory
5929 * testdir still has an entry pointing to the inode file with name foo3
5930 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5931 * and has a link count of 2.
5932 */
19df27a9 5933 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5934 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5935 if (ret)
5936 goto end_trans;
5937 }
5938
41bd6067
FM
5939 /*
5940 * If a new hard link was added to the inode in the current transaction
5941 * and its link count is now greater than 1, we need to fallback to a
5942 * transaction commit, otherwise we can end up not logging all its new
5943 * parents for all the hard links. Here just from the dentry used to
5944 * fsync, we can not visit the ancestor inodes for all the other hard
5945 * links to figure out if any is new, so we fallback to a transaction
5946 * commit (instead of adding a lot of complexity of scanning a btree,
5947 * since this scenario is not a common use case).
5948 */
5949 if (inode->vfs_inode.i_nlink > 1 &&
5950 inode->last_link_trans > last_committed) {
5951 ret = -EMLINK;
5952 goto end_trans;
5953 }
5954
12fcfd22 5955 while (1) {
fc64005c 5956 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5957 break;
5958
19df27a9
NB
5959 inode = BTRFS_I(d_inode(parent));
5960 if (root != inode->root)
76dda93c
YZ
5961 break;
5962
19df27a9
NB
5963 if (inode->generation > last_committed) {
5964 ret = btrfs_log_inode(trans, root, inode,
5965 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5966 if (ret)
5967 goto end_trans;
12fcfd22 5968 }
76dda93c 5969 if (IS_ROOT(parent))
e02119d5 5970 break;
12fcfd22 5971
6a912213
JB
5972 parent = dget_parent(parent);
5973 dput(old_parent);
5974 old_parent = parent;
e02119d5 5975 }
2f2ff0ee 5976 if (log_dentries)
19df27a9 5977 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5978 else
5979 ret = 0;
4a500fd1 5980end_trans:
6a912213 5981 dput(old_parent);
4a500fd1 5982 if (ret < 0) {
0b246afa 5983 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5984 ret = 1;
5985 }
8b050d35
MX
5986
5987 if (ret)
5988 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5989 btrfs_end_log_trans(root);
5990end_no_trans:
5991 return ret;
e02119d5
CM
5992}
5993
5994/*
5995 * it is not safe to log dentry if the chunk root has added new
5996 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5997 * If this returns 1, you must commit the transaction to safely get your
5998 * data on disk.
5999 */
6000int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6001 struct dentry *dentry,
49dae1bc
FM
6002 const loff_t start,
6003 const loff_t end,
8b050d35 6004 struct btrfs_log_ctx *ctx)
e02119d5 6005{
6a912213
JB
6006 struct dentry *parent = dget_parent(dentry);
6007 int ret;
6008
f882274b
NB
6009 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6010 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6011 dput(parent);
6012
6013 return ret;
e02119d5
CM
6014}
6015
6016/*
6017 * should be called during mount to recover any replay any log trees
6018 * from the FS
6019 */
6020int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6021{
6022 int ret;
6023 struct btrfs_path *path;
6024 struct btrfs_trans_handle *trans;
6025 struct btrfs_key key;
6026 struct btrfs_key found_key;
6027 struct btrfs_key tmp_key;
6028 struct btrfs_root *log;
6029 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6030 struct walk_control wc = {
6031 .process_func = process_one_buffer,
6032 .stage = 0,
6033 };
6034
e02119d5 6035 path = btrfs_alloc_path();
db5b493a
TI
6036 if (!path)
6037 return -ENOMEM;
6038
afcdd129 6039 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6040
4a500fd1 6041 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6042 if (IS_ERR(trans)) {
6043 ret = PTR_ERR(trans);
6044 goto error;
6045 }
e02119d5
CM
6046
6047 wc.trans = trans;
6048 wc.pin = 1;
6049
db5b493a 6050 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6051 if (ret) {
5d163e0e
JM
6052 btrfs_handle_fs_error(fs_info, ret,
6053 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6054 goto error;
6055 }
e02119d5
CM
6056
6057again:
6058 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6059 key.offset = (u64)-1;
962a298f 6060 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6061
d397712b 6062 while (1) {
e02119d5 6063 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6064
6065 if (ret < 0) {
34d97007 6066 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6067 "Couldn't find tree log root.");
6068 goto error;
6069 }
e02119d5
CM
6070 if (ret > 0) {
6071 if (path->slots[0] == 0)
6072 break;
6073 path->slots[0]--;
6074 }
6075 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6076 path->slots[0]);
b3b4aa74 6077 btrfs_release_path(path);
e02119d5
CM
6078 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6079 break;
6080
cb517eab 6081 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
6082 if (IS_ERR(log)) {
6083 ret = PTR_ERR(log);
34d97007 6084 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6085 "Couldn't read tree log root.");
6086 goto error;
6087 }
e02119d5
CM
6088
6089 tmp_key.objectid = found_key.offset;
6090 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6091 tmp_key.offset = (u64)-1;
6092
6093 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
6094 if (IS_ERR(wc.replay_dest)) {
6095 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
6096 free_extent_buffer(log->node);
6097 free_extent_buffer(log->commit_root);
6098 kfree(log);
5d163e0e
JM
6099 btrfs_handle_fs_error(fs_info, ret,
6100 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6101 goto error;
6102 }
e02119d5 6103
07d400a6 6104 wc.replay_dest->log_root = log;
5d4f98a2 6105 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6106 ret = walk_log_tree(trans, log, &wc);
e02119d5 6107
b50c6e25 6108 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6109 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6110 path);
e02119d5
CM
6111 }
6112
900c9981
LB
6113 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6114 struct btrfs_root *root = wc.replay_dest;
6115
6116 btrfs_release_path(path);
6117
6118 /*
6119 * We have just replayed everything, and the highest
6120 * objectid of fs roots probably has changed in case
6121 * some inode_item's got replayed.
6122 *
6123 * root->objectid_mutex is not acquired as log replay
6124 * could only happen during mount.
6125 */
6126 ret = btrfs_find_highest_objectid(root,
6127 &root->highest_objectid);
6128 }
6129
e02119d5 6130 key.offset = found_key.offset - 1;
07d400a6 6131 wc.replay_dest->log_root = NULL;
e02119d5 6132 free_extent_buffer(log->node);
b263c2c8 6133 free_extent_buffer(log->commit_root);
e02119d5
CM
6134 kfree(log);
6135
b50c6e25
JB
6136 if (ret)
6137 goto error;
6138
e02119d5
CM
6139 if (found_key.offset == 0)
6140 break;
6141 }
b3b4aa74 6142 btrfs_release_path(path);
e02119d5
CM
6143
6144 /* step one is to pin it all, step two is to replay just inodes */
6145 if (wc.pin) {
6146 wc.pin = 0;
6147 wc.process_func = replay_one_buffer;
6148 wc.stage = LOG_WALK_REPLAY_INODES;
6149 goto again;
6150 }
6151 /* step three is to replay everything */
6152 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6153 wc.stage++;
6154 goto again;
6155 }
6156
6157 btrfs_free_path(path);
6158
abefa55a 6159 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6160 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6161 if (ret)
6162 return ret;
6163
e02119d5
CM
6164 free_extent_buffer(log_root_tree->node);
6165 log_root_tree->log_root = NULL;
afcdd129 6166 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6167 kfree(log_root_tree);
79787eaa 6168
abefa55a 6169 return 0;
79787eaa 6170error:
b50c6e25 6171 if (wc.trans)
3a45bb20 6172 btrfs_end_transaction(wc.trans);
79787eaa
JM
6173 btrfs_free_path(path);
6174 return ret;
e02119d5 6175}
12fcfd22
CM
6176
6177/*
6178 * there are some corner cases where we want to force a full
6179 * commit instead of allowing a directory to be logged.
6180 *
6181 * They revolve around files there were unlinked from the directory, and
6182 * this function updates the parent directory so that a full commit is
6183 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6184 *
6185 * Must be called before the unlink operations (updates to the subvolume tree,
6186 * inodes, etc) are done.
12fcfd22
CM
6187 */
6188void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6189 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6190 int for_rename)
6191{
af4176b4
CM
6192 /*
6193 * when we're logging a file, if it hasn't been renamed
6194 * or unlinked, and its inode is fully committed on disk,
6195 * we don't have to worry about walking up the directory chain
6196 * to log its parents.
6197 *
6198 * So, we use the last_unlink_trans field to put this transid
6199 * into the file. When the file is logged we check it and
6200 * don't log the parents if the file is fully on disk.
6201 */
4176bdbf
NB
6202 mutex_lock(&inode->log_mutex);
6203 inode->last_unlink_trans = trans->transid;
6204 mutex_unlock(&inode->log_mutex);
af4176b4 6205
12fcfd22
CM
6206 /*
6207 * if this directory was already logged any new
6208 * names for this file/dir will get recorded
6209 */
6210 smp_mb();
4176bdbf 6211 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6212 return;
6213
6214 /*
6215 * if the inode we're about to unlink was logged,
6216 * the log will be properly updated for any new names
6217 */
4176bdbf 6218 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6219 return;
6220
6221 /*
6222 * when renaming files across directories, if the directory
6223 * there we're unlinking from gets fsync'd later on, there's
6224 * no way to find the destination directory later and fsync it
6225 * properly. So, we have to be conservative and force commits
6226 * so the new name gets discovered.
6227 */
6228 if (for_rename)
6229 goto record;
6230
6231 /* we can safely do the unlink without any special recording */
6232 return;
6233
6234record:
4176bdbf
NB
6235 mutex_lock(&dir->log_mutex);
6236 dir->last_unlink_trans = trans->transid;
6237 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6238}
6239
6240/*
6241 * Make sure that if someone attempts to fsync the parent directory of a deleted
6242 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6243 * that after replaying the log tree of the parent directory's root we will not
6244 * see the snapshot anymore and at log replay time we will not see any log tree
6245 * corresponding to the deleted snapshot's root, which could lead to replaying
6246 * it after replaying the log tree of the parent directory (which would replay
6247 * the snapshot delete operation).
2be63d5c
FM
6248 *
6249 * Must be called before the actual snapshot destroy operation (updates to the
6250 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6251 */
6252void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6253 struct btrfs_inode *dir)
1ec9a1ae 6254{
43663557
NB
6255 mutex_lock(&dir->log_mutex);
6256 dir->last_unlink_trans = trans->transid;
6257 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6258}
6259
6260/*
6261 * Call this after adding a new name for a file and it will properly
6262 * update the log to reflect the new name.
6263 *
d4682ba0
FM
6264 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6265 * true (because it's not used).
6266 *
6267 * Return value depends on whether @sync_log is true or false.
6268 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6269 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6270 * otherwise.
6271 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6272 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6273 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6274 * committed (without attempting to sync the log).
12fcfd22
CM
6275 */
6276int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6277 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6278 struct dentry *parent,
6279 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6280{
3ffbd68c 6281 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6282 int ret;
12fcfd22 6283
af4176b4
CM
6284 /*
6285 * this will force the logging code to walk the dentry chain
6286 * up for the file
6287 */
9a6509c4 6288 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6289 inode->last_unlink_trans = trans->transid;
af4176b4 6290
12fcfd22
CM
6291 /*
6292 * if this inode hasn't been logged and directory we're renaming it
6293 * from hasn't been logged, we don't need to log it
6294 */
9ca5fbfb
NB
6295 if (inode->logged_trans <= fs_info->last_trans_committed &&
6296 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6297 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6298 BTRFS_DONT_NEED_LOG_SYNC;
6299
6300 if (sync_log) {
6301 struct btrfs_log_ctx ctx2;
6302
6303 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6304 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6305 LOG_INODE_EXISTS, &ctx2);
6306 if (ret == BTRFS_NO_LOG_SYNC)
6307 return BTRFS_DONT_NEED_TRANS_COMMIT;
6308 else if (ret)
6309 return BTRFS_NEED_TRANS_COMMIT;
6310
6311 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6312 if (ret)
6313 return BTRFS_NEED_TRANS_COMMIT;
6314 return BTRFS_DONT_NEED_TRANS_COMMIT;
6315 }
6316
6317 ASSERT(ctx);
6318 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6319 LOG_INODE_EXISTS, ctx);
6320 if (ret == BTRFS_NO_LOG_SYNC)
6321 return BTRFS_DONT_NEED_LOG_SYNC;
6322 else if (ret)
6323 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6324
d4682ba0 6325 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6326}
6327