Btrfs: detect corrupted filesystem after write I/O errors
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
5dc562c5 21#include <linux/list_sort.h>
e02119d5
CM
22#include "ctree.h"
23#include "transaction.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
e02119d5 28#include "compat.h"
b2950863 29#include "tree-log.h"
f186373f 30#include "hash.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40
12fcfd22
CM
41/*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
e02119d5
CM
84/*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93#define LOG_WALK_PIN_ONLY 0
94#define LOG_WALK_REPLAY_INODES 1
95#define LOG_WALK_REPLAY_ALL 2
96
12fcfd22 97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
e02119d5
CM
108
109/*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
e02119d5
CM
132/*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139{
140 int ret;
4a500fd1 141 int err = 0;
7237f183
YZ
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
ff782e0a
JB
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
2ecb7923 152 atomic_inc(&root->log_batch);
7237f183
YZ
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
ff782e0a
JB
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
e02119d5
CM
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
162 if (ret)
163 err = ret;
e02119d5 164 }
4a500fd1 165 if (err == 0 && !root->log_root) {
e02119d5 166 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
167 if (ret)
168 err = ret;
e02119d5 169 }
e02119d5 170 mutex_unlock(&root->fs_info->tree_log_mutex);
2ecb7923 171 atomic_inc(&root->log_batch);
7237f183
YZ
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
4a500fd1 174 return err;
e02119d5
CM
175}
176
177/*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
182static int join_running_log_trans(struct btrfs_root *root)
183{
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
7237f183 190 mutex_lock(&root->log_mutex);
e02119d5
CM
191 if (root->log_root) {
192 ret = 0;
7237f183 193 atomic_inc(&root->log_writers);
e02119d5 194 }
7237f183 195 mutex_unlock(&root->log_mutex);
e02119d5
CM
196 return ret;
197}
198
12fcfd22
CM
199/*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
204int btrfs_pin_log_trans(struct btrfs_root *root)
205{
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212}
213
e02119d5
CM
214/*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
143bede5 218void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 219{
7237f183
YZ
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
e02119d5
CM
225}
226
227
228/*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271};
272
273/*
274 * process_func used to pin down extents, write them or wait on them
275 */
276static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279{
04018de5 280 if (wc->pin)
e688b725
CM
281 btrfs_pin_extent_for_log_replay(wc->trans,
282 log->fs_info->extent_root,
283 eb->start, eb->len);
e02119d5 284
b9fab919 285 if (btrfs_buffer_uptodate(eb, gen, 0)) {
e02119d5
CM
286 if (wc->write)
287 btrfs_write_tree_block(eb);
288 if (wc->wait)
289 btrfs_wait_tree_block_writeback(eb);
290 }
291 return 0;
292}
293
294/*
295 * Item overwrite used by replay and tree logging. eb, slot and key all refer
296 * to the src data we are copying out.
297 *
298 * root is the tree we are copying into, and path is a scratch
299 * path for use in this function (it should be released on entry and
300 * will be released on exit).
301 *
302 * If the key is already in the destination tree the existing item is
303 * overwritten. If the existing item isn't big enough, it is extended.
304 * If it is too large, it is truncated.
305 *
306 * If the key isn't in the destination yet, a new item is inserted.
307 */
308static noinline int overwrite_item(struct btrfs_trans_handle *trans,
309 struct btrfs_root *root,
310 struct btrfs_path *path,
311 struct extent_buffer *eb, int slot,
312 struct btrfs_key *key)
313{
314 int ret;
315 u32 item_size;
316 u64 saved_i_size = 0;
317 int save_old_i_size = 0;
318 unsigned long src_ptr;
319 unsigned long dst_ptr;
320 int overwrite_root = 0;
321
322 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323 overwrite_root = 1;
324
325 item_size = btrfs_item_size_nr(eb, slot);
326 src_ptr = btrfs_item_ptr_offset(eb, slot);
327
328 /* look for the key in the destination tree */
329 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330 if (ret == 0) {
331 char *src_copy;
332 char *dst_copy;
333 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
334 path->slots[0]);
335 if (dst_size != item_size)
336 goto insert;
337
338 if (item_size == 0) {
b3b4aa74 339 btrfs_release_path(path);
e02119d5
CM
340 return 0;
341 }
342 dst_copy = kmalloc(item_size, GFP_NOFS);
343 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 344 if (!dst_copy || !src_copy) {
b3b4aa74 345 btrfs_release_path(path);
2a29edc6 346 kfree(dst_copy);
347 kfree(src_copy);
348 return -ENOMEM;
349 }
e02119d5
CM
350
351 read_extent_buffer(eb, src_copy, src_ptr, item_size);
352
353 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
354 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
355 item_size);
356 ret = memcmp(dst_copy, src_copy, item_size);
357
358 kfree(dst_copy);
359 kfree(src_copy);
360 /*
361 * they have the same contents, just return, this saves
362 * us from cowing blocks in the destination tree and doing
363 * extra writes that may not have been done by a previous
364 * sync
365 */
366 if (ret == 0) {
b3b4aa74 367 btrfs_release_path(path);
e02119d5
CM
368 return 0;
369 }
370
371 }
372insert:
b3b4aa74 373 btrfs_release_path(path);
e02119d5
CM
374 /* try to insert the key into the destination tree */
375 ret = btrfs_insert_empty_item(trans, root, path,
376 key, item_size);
377
378 /* make sure any existing item is the correct size */
379 if (ret == -EEXIST) {
380 u32 found_size;
381 found_size = btrfs_item_size_nr(path->nodes[0],
382 path->slots[0]);
143bede5 383 if (found_size > item_size)
e02119d5 384 btrfs_truncate_item(trans, root, path, item_size, 1);
143bede5
JM
385 else if (found_size < item_size)
386 btrfs_extend_item(trans, root, path,
387 item_size - found_size);
e02119d5 388 } else if (ret) {
4a500fd1 389 return ret;
e02119d5
CM
390 }
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
392 path->slots[0]);
393
394 /* don't overwrite an existing inode if the generation number
395 * was logged as zero. This is done when the tree logging code
396 * is just logging an inode to make sure it exists after recovery.
397 *
398 * Also, don't overwrite i_size on directories during replay.
399 * log replay inserts and removes directory items based on the
400 * state of the tree found in the subvolume, and i_size is modified
401 * as it goes
402 */
403 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
404 struct btrfs_inode_item *src_item;
405 struct btrfs_inode_item *dst_item;
406
407 src_item = (struct btrfs_inode_item *)src_ptr;
408 dst_item = (struct btrfs_inode_item *)dst_ptr;
409
410 if (btrfs_inode_generation(eb, src_item) == 0)
411 goto no_copy;
412
413 if (overwrite_root &&
414 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
415 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
416 save_old_i_size = 1;
417 saved_i_size = btrfs_inode_size(path->nodes[0],
418 dst_item);
419 }
420 }
421
422 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
423 src_ptr, item_size);
424
425 if (save_old_i_size) {
426 struct btrfs_inode_item *dst_item;
427 dst_item = (struct btrfs_inode_item *)dst_ptr;
428 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
429 }
430
431 /* make sure the generation is filled in */
432 if (key->type == BTRFS_INODE_ITEM_KEY) {
433 struct btrfs_inode_item *dst_item;
434 dst_item = (struct btrfs_inode_item *)dst_ptr;
435 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
436 btrfs_set_inode_generation(path->nodes[0], dst_item,
437 trans->transid);
438 }
439 }
440no_copy:
441 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 442 btrfs_release_path(path);
e02119d5
CM
443 return 0;
444}
445
446/*
447 * simple helper to read an inode off the disk from a given root
448 * This can only be called for subvolume roots and not for the log
449 */
450static noinline struct inode *read_one_inode(struct btrfs_root *root,
451 u64 objectid)
452{
5d4f98a2 453 struct btrfs_key key;
e02119d5 454 struct inode *inode;
e02119d5 455
5d4f98a2
YZ
456 key.objectid = objectid;
457 key.type = BTRFS_INODE_ITEM_KEY;
458 key.offset = 0;
73f73415 459 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
460 if (IS_ERR(inode)) {
461 inode = NULL;
462 } else if (is_bad_inode(inode)) {
e02119d5
CM
463 iput(inode);
464 inode = NULL;
465 }
466 return inode;
467}
468
469/* replays a single extent in 'eb' at 'slot' with 'key' into the
470 * subvolume 'root'. path is released on entry and should be released
471 * on exit.
472 *
473 * extents in the log tree have not been allocated out of the extent
474 * tree yet. So, this completes the allocation, taking a reference
475 * as required if the extent already exists or creating a new extent
476 * if it isn't in the extent allocation tree yet.
477 *
478 * The extent is inserted into the file, dropping any existing extents
479 * from the file that overlap the new one.
480 */
481static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
482 struct btrfs_root *root,
483 struct btrfs_path *path,
484 struct extent_buffer *eb, int slot,
485 struct btrfs_key *key)
486{
487 int found_type;
488 u64 mask = root->sectorsize - 1;
489 u64 extent_end;
e02119d5 490 u64 start = key->offset;
07d400a6 491 u64 saved_nbytes;
e02119d5
CM
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
d899e052
YZ
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 504 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
33345d01 522 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
523 start, 0);
524
d899e052
YZ
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 547 btrfs_release_path(path);
e02119d5
CM
548 goto out;
549 }
550 }
b3b4aa74 551 btrfs_release_path(path);
e02119d5 552
07d400a6 553 saved_nbytes = inode_get_bytes(inode);
e02119d5 554 /* drop any overlapping extents */
2671485d 555 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
e02119d5
CM
556 BUG_ON(ret);
557
07d400a6
YZ
558 if (found_type == BTRFS_FILE_EXTENT_REG ||
559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 560 u64 offset;
07d400a6
YZ
561 unsigned long dest_offset;
562 struct btrfs_key ins;
563
564 ret = btrfs_insert_empty_item(trans, root, path, key,
565 sizeof(*item));
566 BUG_ON(ret);
567 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 path->slots[0]);
569 copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 (unsigned long)item, sizeof(*item));
571
572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 575 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
576
577 if (ins.objectid > 0) {
578 u64 csum_start;
579 u64 csum_end;
580 LIST_HEAD(ordered_sums);
581 /*
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
584 */
585 ret = btrfs_lookup_extent(root, ins.objectid,
586 ins.offset);
587 if (ret == 0) {
588 ret = btrfs_inc_extent_ref(trans, root,
589 ins.objectid, ins.offset,
5d4f98a2 590 0, root->root_key.objectid,
66d7e7f0 591 key->objectid, offset, 0);
37daa4f9 592 BUG_ON(ret);
07d400a6
YZ
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
5d4f98a2
YZ
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
07d400a6
YZ
601 BUG_ON(ret);
602 }
b3b4aa74 603 btrfs_release_path(path);
07d400a6
YZ
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
a2de733c 617 &ordered_sums, 0);
07d400a6
YZ
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
b3b4aa74 632 btrfs_release_path(path);
07d400a6
YZ
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
e02119d5 639
07d400a6 640 inode_set_bytes(inode, saved_nbytes);
b9959295 641 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
642out:
643 if (inode)
644 iput(inode);
645 return ret;
646}
647
648/*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661{
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 674 if (!name)
675 return -ENOMEM;
676
e02119d5 677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 678 btrfs_release_path(path);
e02119d5
CM
679
680 inode = read_one_inode(root, location.objectid);
c00e9493
TI
681 if (!inode) {
682 kfree(name);
683 return -EIO;
684 }
e02119d5 685
ec051c0f
YZ
686 ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 BUG_ON(ret);
12fcfd22 688
e02119d5 689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 690 BUG_ON(ret);
e02119d5
CM
691 kfree(name);
692
693 iput(inode);
b6305567
CM
694
695 btrfs_run_delayed_items(trans, root);
e02119d5
CM
696 return ret;
697}
698
699/*
700 * helper function to see if a given name and sequence number found
701 * in an inode back reference are already in a directory and correctly
702 * point to this inode
703 */
704static noinline int inode_in_dir(struct btrfs_root *root,
705 struct btrfs_path *path,
706 u64 dirid, u64 objectid, u64 index,
707 const char *name, int name_len)
708{
709 struct btrfs_dir_item *di;
710 struct btrfs_key location;
711 int match = 0;
712
713 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
714 index, name, name_len, 0);
715 if (di && !IS_ERR(di)) {
716 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
717 if (location.objectid != objectid)
718 goto out;
719 } else
720 goto out;
b3b4aa74 721 btrfs_release_path(path);
e02119d5
CM
722
723 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
724 if (di && !IS_ERR(di)) {
725 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
726 if (location.objectid != objectid)
727 goto out;
728 } else
729 goto out;
730 match = 1;
731out:
b3b4aa74 732 btrfs_release_path(path);
e02119d5
CM
733 return match;
734}
735
736/*
737 * helper function to check a log tree for a named back reference in
738 * an inode. This is used to decide if a back reference that is
739 * found in the subvolume conflicts with what we find in the log.
740 *
741 * inode backreferences may have multiple refs in a single item,
742 * during replay we process one reference at a time, and we don't
743 * want to delete valid links to a file from the subvolume if that
744 * link is also in the log.
745 */
746static noinline int backref_in_log(struct btrfs_root *log,
747 struct btrfs_key *key,
f186373f 748 u64 ref_objectid,
e02119d5
CM
749 char *name, int namelen)
750{
751 struct btrfs_path *path;
752 struct btrfs_inode_ref *ref;
753 unsigned long ptr;
754 unsigned long ptr_end;
755 unsigned long name_ptr;
756 int found_name_len;
757 int item_size;
758 int ret;
759 int match = 0;
760
761 path = btrfs_alloc_path();
2a29edc6 762 if (!path)
763 return -ENOMEM;
764
e02119d5
CM
765 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
766 if (ret != 0)
767 goto out;
768
e02119d5 769 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
770
771 if (key->type == BTRFS_INODE_EXTREF_KEY) {
772 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
773 name, namelen, NULL))
774 match = 1;
775
776 goto out;
777 }
778
779 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
780 ptr_end = ptr + item_size;
781 while (ptr < ptr_end) {
782 ref = (struct btrfs_inode_ref *)ptr;
783 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
784 if (found_name_len == namelen) {
785 name_ptr = (unsigned long)(ref + 1);
786 ret = memcmp_extent_buffer(path->nodes[0], name,
787 name_ptr, namelen);
788 if (ret == 0) {
789 match = 1;
790 goto out;
791 }
792 }
793 ptr = (unsigned long)(ref + 1) + found_name_len;
794 }
795out:
796 btrfs_free_path(path);
797 return match;
798}
799
5a1d7843 800static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 801 struct btrfs_root *root,
e02119d5 802 struct btrfs_path *path,
5a1d7843
JS
803 struct btrfs_root *log_root,
804 struct inode *dir, struct inode *inode,
5a1d7843 805 struct extent_buffer *eb,
f186373f
MF
806 u64 inode_objectid, u64 parent_objectid,
807 u64 ref_index, char *name, int namelen,
808 int *search_done)
e02119d5 809{
34f3e4f2 810 int ret;
f186373f
MF
811 char *victim_name;
812 int victim_name_len;
813 struct extent_buffer *leaf;
5a1d7843 814 struct btrfs_dir_item *di;
f186373f
MF
815 struct btrfs_key search_key;
816 struct btrfs_inode_extref *extref;
c622ae60 817
f186373f
MF
818again:
819 /* Search old style refs */
820 search_key.objectid = inode_objectid;
821 search_key.type = BTRFS_INODE_REF_KEY;
822 search_key.offset = parent_objectid;
823 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 824 if (ret == 0) {
e02119d5
CM
825 struct btrfs_inode_ref *victim_ref;
826 unsigned long ptr;
827 unsigned long ptr_end;
f186373f
MF
828
829 leaf = path->nodes[0];
e02119d5
CM
830
831 /* are we trying to overwrite a back ref for the root directory
832 * if so, just jump out, we're done
833 */
f186373f 834 if (search_key.objectid == search_key.offset)
5a1d7843 835 return 1;
e02119d5
CM
836
837 /* check all the names in this back reference to see
838 * if they are in the log. if so, we allow them to stay
839 * otherwise they must be unlinked as a conflict
840 */
841 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
842 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 843 while (ptr < ptr_end) {
e02119d5
CM
844 victim_ref = (struct btrfs_inode_ref *)ptr;
845 victim_name_len = btrfs_inode_ref_name_len(leaf,
846 victim_ref);
847 victim_name = kmalloc(victim_name_len, GFP_NOFS);
848 BUG_ON(!victim_name);
849
850 read_extent_buffer(leaf, victim_name,
851 (unsigned long)(victim_ref + 1),
852 victim_name_len);
853
f186373f
MF
854 if (!backref_in_log(log_root, &search_key,
855 parent_objectid,
856 victim_name,
e02119d5
CM
857 victim_name_len)) {
858 btrfs_inc_nlink(inode);
b3b4aa74 859 btrfs_release_path(path);
12fcfd22 860
e02119d5
CM
861 ret = btrfs_unlink_inode(trans, root, dir,
862 inode, victim_name,
863 victim_name_len);
f186373f 864 BUG_ON(ret);
b6305567 865 btrfs_run_delayed_items(trans, root);
f186373f
MF
866 kfree(victim_name);
867 *search_done = 1;
868 goto again;
e02119d5
CM
869 }
870 kfree(victim_name);
f186373f 871
e02119d5
CM
872 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
873 }
874 BUG_ON(ret);
e02119d5 875
c622ae60 876 /*
877 * NOTE: we have searched root tree and checked the
878 * coresponding ref, it does not need to check again.
879 */
5a1d7843 880 *search_done = 1;
e02119d5 881 }
b3b4aa74 882 btrfs_release_path(path);
e02119d5 883
f186373f
MF
884 /* Same search but for extended refs */
885 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
886 inode_objectid, parent_objectid, 0,
887 0);
888 if (!IS_ERR_OR_NULL(extref)) {
889 u32 item_size;
890 u32 cur_offset = 0;
891 unsigned long base;
892 struct inode *victim_parent;
893
894 leaf = path->nodes[0];
895
896 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
897 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
898
899 while (cur_offset < item_size) {
900 extref = (struct btrfs_inode_extref *)base + cur_offset;
901
902 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
903
904 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
905 goto next;
906
907 victim_name = kmalloc(victim_name_len, GFP_NOFS);
908 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
909 victim_name_len);
910
911 search_key.objectid = inode_objectid;
912 search_key.type = BTRFS_INODE_EXTREF_KEY;
913 search_key.offset = btrfs_extref_hash(parent_objectid,
914 victim_name,
915 victim_name_len);
916 ret = 0;
917 if (!backref_in_log(log_root, &search_key,
918 parent_objectid, victim_name,
919 victim_name_len)) {
920 ret = -ENOENT;
921 victim_parent = read_one_inode(root,
922 parent_objectid);
923 if (victim_parent) {
924 btrfs_inc_nlink(inode);
925 btrfs_release_path(path);
926
927 ret = btrfs_unlink_inode(trans, root,
928 victim_parent,
929 inode,
930 victim_name,
931 victim_name_len);
932 btrfs_run_delayed_items(trans, root);
933 }
934 BUG_ON(ret);
935 iput(victim_parent);
936 kfree(victim_name);
937 *search_done = 1;
938 goto again;
939 }
940 kfree(victim_name);
941 BUG_ON(ret);
942next:
943 cur_offset += victim_name_len + sizeof(*extref);
944 }
945 *search_done = 1;
946 }
947 btrfs_release_path(path);
948
34f3e4f2 949 /* look for a conflicting sequence number */
950 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 951 ref_index, name, namelen, 0);
34f3e4f2 952 if (di && !IS_ERR(di)) {
953 ret = drop_one_dir_item(trans, root, path, dir, di);
954 BUG_ON(ret);
955 }
956 btrfs_release_path(path);
957
958 /* look for a conflicing name */
959 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
960 name, namelen, 0);
961 if (di && !IS_ERR(di)) {
962 ret = drop_one_dir_item(trans, root, path, dir, di);
963 BUG_ON(ret);
964 }
965 btrfs_release_path(path);
966
5a1d7843
JS
967 return 0;
968}
e02119d5 969
f186373f
MF
970static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
971 u32 *namelen, char **name, u64 *index,
972 u64 *parent_objectid)
973{
974 struct btrfs_inode_extref *extref;
975
976 extref = (struct btrfs_inode_extref *)ref_ptr;
977
978 *namelen = btrfs_inode_extref_name_len(eb, extref);
979 *name = kmalloc(*namelen, GFP_NOFS);
980 if (*name == NULL)
981 return -ENOMEM;
982
983 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
984 *namelen);
985
986 *index = btrfs_inode_extref_index(eb, extref);
987 if (parent_objectid)
988 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
989
990 return 0;
991}
992
993static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
994 u32 *namelen, char **name, u64 *index)
995{
996 struct btrfs_inode_ref *ref;
997
998 ref = (struct btrfs_inode_ref *)ref_ptr;
999
1000 *namelen = btrfs_inode_ref_name_len(eb, ref);
1001 *name = kmalloc(*namelen, GFP_NOFS);
1002 if (*name == NULL)
1003 return -ENOMEM;
1004
1005 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1006
1007 *index = btrfs_inode_ref_index(eb, ref);
1008
1009 return 0;
1010}
1011
5a1d7843
JS
1012/*
1013 * replay one inode back reference item found in the log tree.
1014 * eb, slot and key refer to the buffer and key found in the log tree.
1015 * root is the destination we are replaying into, and path is for temp
1016 * use by this function. (it should be released on return).
1017 */
1018static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1019 struct btrfs_root *root,
1020 struct btrfs_root *log,
1021 struct btrfs_path *path,
1022 struct extent_buffer *eb, int slot,
1023 struct btrfs_key *key)
1024{
5a1d7843
JS
1025 struct inode *dir;
1026 struct inode *inode;
1027 unsigned long ref_ptr;
1028 unsigned long ref_end;
1029 char *name;
1030 int namelen;
1031 int ret;
1032 int search_done = 0;
f186373f
MF
1033 int log_ref_ver = 0;
1034 u64 parent_objectid;
1035 u64 inode_objectid;
1036 u64 ref_index;
1037 int ref_struct_size;
1038
1039 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1040 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1041
1042 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1043 struct btrfs_inode_extref *r;
1044
1045 ref_struct_size = sizeof(struct btrfs_inode_extref);
1046 log_ref_ver = 1;
1047 r = (struct btrfs_inode_extref *)ref_ptr;
1048 parent_objectid = btrfs_inode_extref_parent(eb, r);
1049 } else {
1050 ref_struct_size = sizeof(struct btrfs_inode_ref);
1051 parent_objectid = key->offset;
1052 }
1053 inode_objectid = key->objectid;
e02119d5 1054
5a1d7843
JS
1055 /*
1056 * it is possible that we didn't log all the parent directories
1057 * for a given inode. If we don't find the dir, just don't
1058 * copy the back ref in. The link count fixup code will take
1059 * care of the rest
1060 */
f186373f 1061 dir = read_one_inode(root, parent_objectid);
5a1d7843
JS
1062 if (!dir)
1063 return -ENOENT;
1064
f186373f 1065 inode = read_one_inode(root, inode_objectid);
5a1d7843
JS
1066 if (!inode) {
1067 iput(dir);
1068 return -EIO;
1069 }
1070
5a1d7843 1071 while (ref_ptr < ref_end) {
f186373f
MF
1072 if (log_ref_ver) {
1073 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1074 &ref_index, &parent_objectid);
1075 /*
1076 * parent object can change from one array
1077 * item to another.
1078 */
1079 if (!dir)
1080 dir = read_one_inode(root, parent_objectid);
1081 if (!dir)
1082 return -ENOENT;
1083 } else {
1084 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1085 &ref_index);
1086 }
1087 if (ret)
1088 return ret;
5a1d7843
JS
1089
1090 /* if we already have a perfect match, we're done */
1091 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1092 ref_index, name, namelen)) {
5a1d7843
JS
1093 /*
1094 * look for a conflicting back reference in the
1095 * metadata. if we find one we have to unlink that name
1096 * of the file before we add our new link. Later on, we
1097 * overwrite any existing back reference, and we don't
1098 * want to create dangling pointers in the directory.
1099 */
1100
1101 if (!search_done) {
1102 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1103 dir, inode, eb,
1104 inode_objectid,
1105 parent_objectid,
1106 ref_index, name, namelen,
5a1d7843
JS
1107 &search_done);
1108 if (ret == 1)
1109 goto out;
1110 BUG_ON(ret);
1111 }
1112
1113 /* insert our name */
1114 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1115 0, ref_index);
5a1d7843
JS
1116 BUG_ON(ret);
1117
1118 btrfs_update_inode(trans, root, inode);
1119 }
1120
f186373f 1121 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1122 kfree(name);
f186373f
MF
1123 if (log_ref_ver) {
1124 iput(dir);
1125 dir = NULL;
1126 }
5a1d7843 1127 }
e02119d5
CM
1128
1129 /* finally write the back reference in the inode */
1130 ret = overwrite_item(trans, root, path, eb, slot, key);
1131 BUG_ON(ret);
1132
5a1d7843 1133out:
b3b4aa74 1134 btrfs_release_path(path);
e02119d5
CM
1135 iput(dir);
1136 iput(inode);
1137 return 0;
1138}
1139
c71bf099
YZ
1140static int insert_orphan_item(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root, u64 offset)
1142{
1143 int ret;
1144 ret = btrfs_find_orphan_item(root, offset);
1145 if (ret > 0)
1146 ret = btrfs_insert_orphan_item(trans, root, offset);
1147 return ret;
1148}
1149
f186373f
MF
1150static int count_inode_extrefs(struct btrfs_root *root,
1151 struct inode *inode, struct btrfs_path *path)
1152{
1153 int ret = 0;
1154 int name_len;
1155 unsigned int nlink = 0;
1156 u32 item_size;
1157 u32 cur_offset = 0;
1158 u64 inode_objectid = btrfs_ino(inode);
1159 u64 offset = 0;
1160 unsigned long ptr;
1161 struct btrfs_inode_extref *extref;
1162 struct extent_buffer *leaf;
1163
1164 while (1) {
1165 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1166 &extref, &offset);
1167 if (ret)
1168 break;
c71bf099 1169
f186373f
MF
1170 leaf = path->nodes[0];
1171 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1172 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173
1174 while (cur_offset < item_size) {
1175 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1176 name_len = btrfs_inode_extref_name_len(leaf, extref);
1177
1178 nlink++;
1179
1180 cur_offset += name_len + sizeof(*extref);
1181 }
1182
1183 offset++;
1184 btrfs_release_path(path);
1185 }
1186 btrfs_release_path(path);
1187
1188 if (ret < 0)
1189 return ret;
1190 return nlink;
1191}
1192
1193static int count_inode_refs(struct btrfs_root *root,
1194 struct inode *inode, struct btrfs_path *path)
e02119d5 1195{
e02119d5
CM
1196 int ret;
1197 struct btrfs_key key;
f186373f 1198 unsigned int nlink = 0;
e02119d5
CM
1199 unsigned long ptr;
1200 unsigned long ptr_end;
1201 int name_len;
33345d01 1202 u64 ino = btrfs_ino(inode);
e02119d5 1203
33345d01 1204 key.objectid = ino;
e02119d5
CM
1205 key.type = BTRFS_INODE_REF_KEY;
1206 key.offset = (u64)-1;
1207
d397712b 1208 while (1) {
e02119d5
CM
1209 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1210 if (ret < 0)
1211 break;
1212 if (ret > 0) {
1213 if (path->slots[0] == 0)
1214 break;
1215 path->slots[0]--;
1216 }
1217 btrfs_item_key_to_cpu(path->nodes[0], &key,
1218 path->slots[0]);
33345d01 1219 if (key.objectid != ino ||
e02119d5
CM
1220 key.type != BTRFS_INODE_REF_KEY)
1221 break;
1222 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1223 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1224 path->slots[0]);
d397712b 1225 while (ptr < ptr_end) {
e02119d5
CM
1226 struct btrfs_inode_ref *ref;
1227
1228 ref = (struct btrfs_inode_ref *)ptr;
1229 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1230 ref);
1231 ptr = (unsigned long)(ref + 1) + name_len;
1232 nlink++;
1233 }
1234
1235 if (key.offset == 0)
1236 break;
1237 key.offset--;
b3b4aa74 1238 btrfs_release_path(path);
e02119d5 1239 }
b3b4aa74 1240 btrfs_release_path(path);
f186373f
MF
1241
1242 return nlink;
1243}
1244
1245/*
1246 * There are a few corners where the link count of the file can't
1247 * be properly maintained during replay. So, instead of adding
1248 * lots of complexity to the log code, we just scan the backrefs
1249 * for any file that has been through replay.
1250 *
1251 * The scan will update the link count on the inode to reflect the
1252 * number of back refs found. If it goes down to zero, the iput
1253 * will free the inode.
1254 */
1255static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1256 struct btrfs_root *root,
1257 struct inode *inode)
1258{
1259 struct btrfs_path *path;
1260 int ret;
1261 u64 nlink = 0;
1262 u64 ino = btrfs_ino(inode);
1263
1264 path = btrfs_alloc_path();
1265 if (!path)
1266 return -ENOMEM;
1267
1268 ret = count_inode_refs(root, inode, path);
1269 if (ret < 0)
1270 goto out;
1271
1272 nlink = ret;
1273
1274 ret = count_inode_extrefs(root, inode, path);
1275 if (ret == -ENOENT)
1276 ret = 0;
1277
1278 if (ret < 0)
1279 goto out;
1280
1281 nlink += ret;
1282
1283 ret = 0;
1284
e02119d5 1285 if (nlink != inode->i_nlink) {
bfe86848 1286 set_nlink(inode, nlink);
e02119d5
CM
1287 btrfs_update_inode(trans, root, inode);
1288 }
8d5bf1cb 1289 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1290
c71bf099
YZ
1291 if (inode->i_nlink == 0) {
1292 if (S_ISDIR(inode->i_mode)) {
1293 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1294 ino, 1);
c71bf099
YZ
1295 BUG_ON(ret);
1296 }
33345d01 1297 ret = insert_orphan_item(trans, root, ino);
12fcfd22
CM
1298 BUG_ON(ret);
1299 }
12fcfd22 1300
f186373f
MF
1301out:
1302 btrfs_free_path(path);
1303 return ret;
e02119d5
CM
1304}
1305
1306static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1307 struct btrfs_root *root,
1308 struct btrfs_path *path)
1309{
1310 int ret;
1311 struct btrfs_key key;
1312 struct inode *inode;
1313
1314 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1315 key.type = BTRFS_ORPHAN_ITEM_KEY;
1316 key.offset = (u64)-1;
d397712b 1317 while (1) {
e02119d5
CM
1318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1319 if (ret < 0)
1320 break;
1321
1322 if (ret == 1) {
1323 if (path->slots[0] == 0)
1324 break;
1325 path->slots[0]--;
1326 }
1327
1328 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1329 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1330 key.type != BTRFS_ORPHAN_ITEM_KEY)
1331 break;
1332
1333 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1334 if (ret)
1335 goto out;
e02119d5 1336
b3b4aa74 1337 btrfs_release_path(path);
e02119d5 1338 inode = read_one_inode(root, key.offset);
c00e9493
TI
1339 if (!inode)
1340 return -EIO;
e02119d5
CM
1341
1342 ret = fixup_inode_link_count(trans, root, inode);
1343 BUG_ON(ret);
1344
1345 iput(inode);
1346
12fcfd22
CM
1347 /*
1348 * fixup on a directory may create new entries,
1349 * make sure we always look for the highset possible
1350 * offset
1351 */
1352 key.offset = (u64)-1;
e02119d5 1353 }
65a246c5
TI
1354 ret = 0;
1355out:
b3b4aa74 1356 btrfs_release_path(path);
65a246c5 1357 return ret;
e02119d5
CM
1358}
1359
1360
1361/*
1362 * record a given inode in the fixup dir so we can check its link
1363 * count when replay is done. The link count is incremented here
1364 * so the inode won't go away until we check it
1365 */
1366static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_path *path,
1369 u64 objectid)
1370{
1371 struct btrfs_key key;
1372 int ret = 0;
1373 struct inode *inode;
1374
1375 inode = read_one_inode(root, objectid);
c00e9493
TI
1376 if (!inode)
1377 return -EIO;
e02119d5
CM
1378
1379 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1380 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1381 key.offset = objectid;
1382
1383 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1384
b3b4aa74 1385 btrfs_release_path(path);
e02119d5
CM
1386 if (ret == 0) {
1387 btrfs_inc_nlink(inode);
b9959295 1388 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1389 } else if (ret == -EEXIST) {
1390 ret = 0;
1391 } else {
1392 BUG();
1393 }
1394 iput(inode);
1395
1396 return ret;
1397}
1398
1399/*
1400 * when replaying the log for a directory, we only insert names
1401 * for inodes that actually exist. This means an fsync on a directory
1402 * does not implicitly fsync all the new files in it
1403 */
1404static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root,
1406 struct btrfs_path *path,
1407 u64 dirid, u64 index,
1408 char *name, int name_len, u8 type,
1409 struct btrfs_key *location)
1410{
1411 struct inode *inode;
1412 struct inode *dir;
1413 int ret;
1414
1415 inode = read_one_inode(root, location->objectid);
1416 if (!inode)
1417 return -ENOENT;
1418
1419 dir = read_one_inode(root, dirid);
1420 if (!dir) {
1421 iput(inode);
1422 return -EIO;
1423 }
1424 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1425
1426 /* FIXME, put inode into FIXUP list */
1427
1428 iput(inode);
1429 iput(dir);
1430 return ret;
1431}
1432
1433/*
1434 * take a single entry in a log directory item and replay it into
1435 * the subvolume.
1436 *
1437 * if a conflicting item exists in the subdirectory already,
1438 * the inode it points to is unlinked and put into the link count
1439 * fix up tree.
1440 *
1441 * If a name from the log points to a file or directory that does
1442 * not exist in the FS, it is skipped. fsyncs on directories
1443 * do not force down inodes inside that directory, just changes to the
1444 * names or unlinks in a directory.
1445 */
1446static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1447 struct btrfs_root *root,
1448 struct btrfs_path *path,
1449 struct extent_buffer *eb,
1450 struct btrfs_dir_item *di,
1451 struct btrfs_key *key)
1452{
1453 char *name;
1454 int name_len;
1455 struct btrfs_dir_item *dst_di;
1456 struct btrfs_key found_key;
1457 struct btrfs_key log_key;
1458 struct inode *dir;
e02119d5 1459 u8 log_type;
4bef0848 1460 int exists;
e02119d5
CM
1461 int ret;
1462
1463 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1464 if (!dir)
1465 return -EIO;
e02119d5
CM
1466
1467 name_len = btrfs_dir_name_len(eb, di);
1468 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 1469 if (!name)
1470 return -ENOMEM;
1471
e02119d5
CM
1472 log_type = btrfs_dir_type(eb, di);
1473 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1474 name_len);
1475
1476 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1477 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1478 if (exists == 0)
1479 exists = 1;
1480 else
1481 exists = 0;
b3b4aa74 1482 btrfs_release_path(path);
4bef0848 1483
e02119d5
CM
1484 if (key->type == BTRFS_DIR_ITEM_KEY) {
1485 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1486 name, name_len, 1);
d397712b 1487 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1488 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1489 key->objectid,
1490 key->offset, name,
1491 name_len, 1);
1492 } else {
1493 BUG();
1494 }
c704005d 1495 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1496 /* we need a sequence number to insert, so we only
1497 * do inserts for the BTRFS_DIR_INDEX_KEY types
1498 */
1499 if (key->type != BTRFS_DIR_INDEX_KEY)
1500 goto out;
1501 goto insert;
1502 }
1503
1504 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1505 /* the existing item matches the logged item */
1506 if (found_key.objectid == log_key.objectid &&
1507 found_key.type == log_key.type &&
1508 found_key.offset == log_key.offset &&
1509 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1510 goto out;
1511 }
1512
1513 /*
1514 * don't drop the conflicting directory entry if the inode
1515 * for the new entry doesn't exist
1516 */
4bef0848 1517 if (!exists)
e02119d5
CM
1518 goto out;
1519
e02119d5
CM
1520 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1521 BUG_ON(ret);
1522
1523 if (key->type == BTRFS_DIR_INDEX_KEY)
1524 goto insert;
1525out:
b3b4aa74 1526 btrfs_release_path(path);
e02119d5
CM
1527 kfree(name);
1528 iput(dir);
1529 return 0;
1530
1531insert:
b3b4aa74 1532 btrfs_release_path(path);
e02119d5
CM
1533 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1534 name, name_len, log_type, &log_key);
1535
c293498b 1536 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1537 goto out;
1538}
1539
1540/*
1541 * find all the names in a directory item and reconcile them into
1542 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1543 * one name in a directory item, but the same code gets used for
1544 * both directory index types
1545 */
1546static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1547 struct btrfs_root *root,
1548 struct btrfs_path *path,
1549 struct extent_buffer *eb, int slot,
1550 struct btrfs_key *key)
1551{
1552 int ret;
1553 u32 item_size = btrfs_item_size_nr(eb, slot);
1554 struct btrfs_dir_item *di;
1555 int name_len;
1556 unsigned long ptr;
1557 unsigned long ptr_end;
1558
1559 ptr = btrfs_item_ptr_offset(eb, slot);
1560 ptr_end = ptr + item_size;
d397712b 1561 while (ptr < ptr_end) {
e02119d5 1562 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1563 if (verify_dir_item(root, eb, di))
1564 return -EIO;
e02119d5
CM
1565 name_len = btrfs_dir_name_len(eb, di);
1566 ret = replay_one_name(trans, root, path, eb, di, key);
1567 BUG_ON(ret);
1568 ptr = (unsigned long)(di + 1);
1569 ptr += name_len;
1570 }
1571 return 0;
1572}
1573
1574/*
1575 * directory replay has two parts. There are the standard directory
1576 * items in the log copied from the subvolume, and range items
1577 * created in the log while the subvolume was logged.
1578 *
1579 * The range items tell us which parts of the key space the log
1580 * is authoritative for. During replay, if a key in the subvolume
1581 * directory is in a logged range item, but not actually in the log
1582 * that means it was deleted from the directory before the fsync
1583 * and should be removed.
1584 */
1585static noinline int find_dir_range(struct btrfs_root *root,
1586 struct btrfs_path *path,
1587 u64 dirid, int key_type,
1588 u64 *start_ret, u64 *end_ret)
1589{
1590 struct btrfs_key key;
1591 u64 found_end;
1592 struct btrfs_dir_log_item *item;
1593 int ret;
1594 int nritems;
1595
1596 if (*start_ret == (u64)-1)
1597 return 1;
1598
1599 key.objectid = dirid;
1600 key.type = key_type;
1601 key.offset = *start_ret;
1602
1603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1604 if (ret < 0)
1605 goto out;
1606 if (ret > 0) {
1607 if (path->slots[0] == 0)
1608 goto out;
1609 path->slots[0]--;
1610 }
1611 if (ret != 0)
1612 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1613
1614 if (key.type != key_type || key.objectid != dirid) {
1615 ret = 1;
1616 goto next;
1617 }
1618 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1619 struct btrfs_dir_log_item);
1620 found_end = btrfs_dir_log_end(path->nodes[0], item);
1621
1622 if (*start_ret >= key.offset && *start_ret <= found_end) {
1623 ret = 0;
1624 *start_ret = key.offset;
1625 *end_ret = found_end;
1626 goto out;
1627 }
1628 ret = 1;
1629next:
1630 /* check the next slot in the tree to see if it is a valid item */
1631 nritems = btrfs_header_nritems(path->nodes[0]);
1632 if (path->slots[0] >= nritems) {
1633 ret = btrfs_next_leaf(root, path);
1634 if (ret)
1635 goto out;
1636 } else {
1637 path->slots[0]++;
1638 }
1639
1640 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1641
1642 if (key.type != key_type || key.objectid != dirid) {
1643 ret = 1;
1644 goto out;
1645 }
1646 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 struct btrfs_dir_log_item);
1648 found_end = btrfs_dir_log_end(path->nodes[0], item);
1649 *start_ret = key.offset;
1650 *end_ret = found_end;
1651 ret = 0;
1652out:
b3b4aa74 1653 btrfs_release_path(path);
e02119d5
CM
1654 return ret;
1655}
1656
1657/*
1658 * this looks for a given directory item in the log. If the directory
1659 * item is not in the log, the item is removed and the inode it points
1660 * to is unlinked
1661 */
1662static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1663 struct btrfs_root *root,
1664 struct btrfs_root *log,
1665 struct btrfs_path *path,
1666 struct btrfs_path *log_path,
1667 struct inode *dir,
1668 struct btrfs_key *dir_key)
1669{
1670 int ret;
1671 struct extent_buffer *eb;
1672 int slot;
1673 u32 item_size;
1674 struct btrfs_dir_item *di;
1675 struct btrfs_dir_item *log_di;
1676 int name_len;
1677 unsigned long ptr;
1678 unsigned long ptr_end;
1679 char *name;
1680 struct inode *inode;
1681 struct btrfs_key location;
1682
1683again:
1684 eb = path->nodes[0];
1685 slot = path->slots[0];
1686 item_size = btrfs_item_size_nr(eb, slot);
1687 ptr = btrfs_item_ptr_offset(eb, slot);
1688 ptr_end = ptr + item_size;
d397712b 1689 while (ptr < ptr_end) {
e02119d5 1690 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1691 if (verify_dir_item(root, eb, di)) {
1692 ret = -EIO;
1693 goto out;
1694 }
1695
e02119d5
CM
1696 name_len = btrfs_dir_name_len(eb, di);
1697 name = kmalloc(name_len, GFP_NOFS);
1698 if (!name) {
1699 ret = -ENOMEM;
1700 goto out;
1701 }
1702 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1703 name_len);
1704 log_di = NULL;
12fcfd22 1705 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1706 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1707 dir_key->objectid,
1708 name, name_len, 0);
12fcfd22 1709 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1710 log_di = btrfs_lookup_dir_index_item(trans, log,
1711 log_path,
1712 dir_key->objectid,
1713 dir_key->offset,
1714 name, name_len, 0);
1715 }
c704005d 1716 if (IS_ERR_OR_NULL(log_di)) {
e02119d5 1717 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1718 btrfs_release_path(path);
1719 btrfs_release_path(log_path);
e02119d5 1720 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1721 if (!inode) {
1722 kfree(name);
1723 return -EIO;
1724 }
e02119d5
CM
1725
1726 ret = link_to_fixup_dir(trans, root,
1727 path, location.objectid);
1728 BUG_ON(ret);
1729 btrfs_inc_nlink(inode);
1730 ret = btrfs_unlink_inode(trans, root, dir, inode,
1731 name, name_len);
1732 BUG_ON(ret);
b6305567
CM
1733
1734 btrfs_run_delayed_items(trans, root);
1735
e02119d5
CM
1736 kfree(name);
1737 iput(inode);
1738
1739 /* there might still be more names under this key
1740 * check and repeat if required
1741 */
1742 ret = btrfs_search_slot(NULL, root, dir_key, path,
1743 0, 0);
1744 if (ret == 0)
1745 goto again;
1746 ret = 0;
1747 goto out;
1748 }
b3b4aa74 1749 btrfs_release_path(log_path);
e02119d5
CM
1750 kfree(name);
1751
1752 ptr = (unsigned long)(di + 1);
1753 ptr += name_len;
1754 }
1755 ret = 0;
1756out:
b3b4aa74
DS
1757 btrfs_release_path(path);
1758 btrfs_release_path(log_path);
e02119d5
CM
1759 return ret;
1760}
1761
1762/*
1763 * deletion replay happens before we copy any new directory items
1764 * out of the log or out of backreferences from inodes. It
1765 * scans the log to find ranges of keys that log is authoritative for,
1766 * and then scans the directory to find items in those ranges that are
1767 * not present in the log.
1768 *
1769 * Anything we don't find in the log is unlinked and removed from the
1770 * directory.
1771 */
1772static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_root *log,
1775 struct btrfs_path *path,
12fcfd22 1776 u64 dirid, int del_all)
e02119d5
CM
1777{
1778 u64 range_start;
1779 u64 range_end;
1780 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1781 int ret = 0;
1782 struct btrfs_key dir_key;
1783 struct btrfs_key found_key;
1784 struct btrfs_path *log_path;
1785 struct inode *dir;
1786
1787 dir_key.objectid = dirid;
1788 dir_key.type = BTRFS_DIR_ITEM_KEY;
1789 log_path = btrfs_alloc_path();
1790 if (!log_path)
1791 return -ENOMEM;
1792
1793 dir = read_one_inode(root, dirid);
1794 /* it isn't an error if the inode isn't there, that can happen
1795 * because we replay the deletes before we copy in the inode item
1796 * from the log
1797 */
1798 if (!dir) {
1799 btrfs_free_path(log_path);
1800 return 0;
1801 }
1802again:
1803 range_start = 0;
1804 range_end = 0;
d397712b 1805 while (1) {
12fcfd22
CM
1806 if (del_all)
1807 range_end = (u64)-1;
1808 else {
1809 ret = find_dir_range(log, path, dirid, key_type,
1810 &range_start, &range_end);
1811 if (ret != 0)
1812 break;
1813 }
e02119d5
CM
1814
1815 dir_key.offset = range_start;
d397712b 1816 while (1) {
e02119d5
CM
1817 int nritems;
1818 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1819 0, 0);
1820 if (ret < 0)
1821 goto out;
1822
1823 nritems = btrfs_header_nritems(path->nodes[0]);
1824 if (path->slots[0] >= nritems) {
1825 ret = btrfs_next_leaf(root, path);
1826 if (ret)
1827 break;
1828 }
1829 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1830 path->slots[0]);
1831 if (found_key.objectid != dirid ||
1832 found_key.type != dir_key.type)
1833 goto next_type;
1834
1835 if (found_key.offset > range_end)
1836 break;
1837
1838 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1839 log_path, dir,
1840 &found_key);
e02119d5
CM
1841 BUG_ON(ret);
1842 if (found_key.offset == (u64)-1)
1843 break;
1844 dir_key.offset = found_key.offset + 1;
1845 }
b3b4aa74 1846 btrfs_release_path(path);
e02119d5
CM
1847 if (range_end == (u64)-1)
1848 break;
1849 range_start = range_end + 1;
1850 }
1851
1852next_type:
1853 ret = 0;
1854 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1855 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1856 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 1857 btrfs_release_path(path);
e02119d5
CM
1858 goto again;
1859 }
1860out:
b3b4aa74 1861 btrfs_release_path(path);
e02119d5
CM
1862 btrfs_free_path(log_path);
1863 iput(dir);
1864 return ret;
1865}
1866
1867/*
1868 * the process_func used to replay items from the log tree. This
1869 * gets called in two different stages. The first stage just looks
1870 * for inodes and makes sure they are all copied into the subvolume.
1871 *
1872 * The second stage copies all the other item types from the log into
1873 * the subvolume. The two stage approach is slower, but gets rid of
1874 * lots of complexity around inodes referencing other inodes that exist
1875 * only in the log (references come from either directory items or inode
1876 * back refs).
1877 */
1878static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1879 struct walk_control *wc, u64 gen)
1880{
1881 int nritems;
1882 struct btrfs_path *path;
1883 struct btrfs_root *root = wc->replay_dest;
1884 struct btrfs_key key;
e02119d5
CM
1885 int level;
1886 int i;
1887 int ret;
1888
018642a1
TI
1889 ret = btrfs_read_buffer(eb, gen);
1890 if (ret)
1891 return ret;
e02119d5
CM
1892
1893 level = btrfs_header_level(eb);
1894
1895 if (level != 0)
1896 return 0;
1897
1898 path = btrfs_alloc_path();
1e5063d0
MF
1899 if (!path)
1900 return -ENOMEM;
e02119d5
CM
1901
1902 nritems = btrfs_header_nritems(eb);
1903 for (i = 0; i < nritems; i++) {
1904 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1905
1906 /* inode keys are done during the first stage */
1907 if (key.type == BTRFS_INODE_ITEM_KEY &&
1908 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1909 struct btrfs_inode_item *inode_item;
1910 u32 mode;
1911
1912 inode_item = btrfs_item_ptr(eb, i,
1913 struct btrfs_inode_item);
1914 mode = btrfs_inode_mode(eb, inode_item);
1915 if (S_ISDIR(mode)) {
1916 ret = replay_dir_deletes(wc->trans,
12fcfd22 1917 root, log, path, key.objectid, 0);
e02119d5
CM
1918 BUG_ON(ret);
1919 }
1920 ret = overwrite_item(wc->trans, root, path,
1921 eb, i, &key);
1922 BUG_ON(ret);
1923
c71bf099
YZ
1924 /* for regular files, make sure corresponding
1925 * orhpan item exist. extents past the new EOF
1926 * will be truncated later by orphan cleanup.
e02119d5
CM
1927 */
1928 if (S_ISREG(mode)) {
c71bf099
YZ
1929 ret = insert_orphan_item(wc->trans, root,
1930 key.objectid);
e02119d5 1931 BUG_ON(ret);
e02119d5 1932 }
c71bf099 1933
e02119d5
CM
1934 ret = link_to_fixup_dir(wc->trans, root,
1935 path, key.objectid);
1936 BUG_ON(ret);
1937 }
1938 if (wc->stage < LOG_WALK_REPLAY_ALL)
1939 continue;
1940
1941 /* these keys are simply copied */
1942 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1943 ret = overwrite_item(wc->trans, root, path,
1944 eb, i, &key);
1945 BUG_ON(ret);
1946 } else if (key.type == BTRFS_INODE_REF_KEY) {
1947 ret = add_inode_ref(wc->trans, root, log, path,
1948 eb, i, &key);
1949 BUG_ON(ret && ret != -ENOENT);
f186373f
MF
1950 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1951 ret = add_inode_ref(wc->trans, root, log, path,
1952 eb, i, &key);
1953 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1954 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1955 ret = replay_one_extent(wc->trans, root, path,
1956 eb, i, &key);
1957 BUG_ON(ret);
e02119d5
CM
1958 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1959 key.type == BTRFS_DIR_INDEX_KEY) {
1960 ret = replay_one_dir_item(wc->trans, root, path,
1961 eb, i, &key);
1962 BUG_ON(ret);
1963 }
1964 }
1965 btrfs_free_path(path);
1966 return 0;
1967}
1968
d397712b 1969static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1970 struct btrfs_root *root,
1971 struct btrfs_path *path, int *level,
1972 struct walk_control *wc)
1973{
1974 u64 root_owner;
e02119d5
CM
1975 u64 bytenr;
1976 u64 ptr_gen;
1977 struct extent_buffer *next;
1978 struct extent_buffer *cur;
1979 struct extent_buffer *parent;
1980 u32 blocksize;
1981 int ret = 0;
1982
1983 WARN_ON(*level < 0);
1984 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1985
d397712b 1986 while (*level > 0) {
e02119d5
CM
1987 WARN_ON(*level < 0);
1988 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1989 cur = path->nodes[*level];
1990
1991 if (btrfs_header_level(cur) != *level)
1992 WARN_ON(1);
1993
1994 if (path->slots[*level] >=
1995 btrfs_header_nritems(cur))
1996 break;
1997
1998 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1999 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2000 blocksize = btrfs_level_size(root, *level - 1);
2001
2002 parent = path->nodes[*level];
2003 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2004
2005 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2006 if (!next)
2007 return -ENOMEM;
e02119d5 2008
e02119d5 2009 if (*level == 1) {
1e5063d0
MF
2010 ret = wc->process_func(root, next, wc, ptr_gen);
2011 if (ret)
2012 return ret;
4a500fd1 2013
e02119d5
CM
2014 path->slots[*level]++;
2015 if (wc->free) {
018642a1
TI
2016 ret = btrfs_read_buffer(next, ptr_gen);
2017 if (ret) {
2018 free_extent_buffer(next);
2019 return ret;
2020 }
e02119d5
CM
2021
2022 btrfs_tree_lock(next);
b4ce94de 2023 btrfs_set_lock_blocking(next);
bd681513 2024 clean_tree_block(trans, root, next);
e02119d5
CM
2025 btrfs_wait_tree_block_writeback(next);
2026 btrfs_tree_unlock(next);
2027
e02119d5
CM
2028 WARN_ON(root_owner !=
2029 BTRFS_TREE_LOG_OBJECTID);
e688b725 2030 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2031 bytenr, blocksize);
79787eaa 2032 BUG_ON(ret); /* -ENOMEM or logic errors */
e02119d5
CM
2033 }
2034 free_extent_buffer(next);
2035 continue;
2036 }
018642a1
TI
2037 ret = btrfs_read_buffer(next, ptr_gen);
2038 if (ret) {
2039 free_extent_buffer(next);
2040 return ret;
2041 }
e02119d5
CM
2042
2043 WARN_ON(*level <= 0);
2044 if (path->nodes[*level-1])
2045 free_extent_buffer(path->nodes[*level-1]);
2046 path->nodes[*level-1] = next;
2047 *level = btrfs_header_level(next);
2048 path->slots[*level] = 0;
2049 cond_resched();
2050 }
2051 WARN_ON(*level < 0);
2052 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2053
4a500fd1 2054 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2055
2056 cond_resched();
2057 return 0;
2058}
2059
d397712b 2060static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2061 struct btrfs_root *root,
2062 struct btrfs_path *path, int *level,
2063 struct walk_control *wc)
2064{
2065 u64 root_owner;
e02119d5
CM
2066 int i;
2067 int slot;
2068 int ret;
2069
d397712b 2070 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2071 slot = path->slots[i];
4a500fd1 2072 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2073 path->slots[i]++;
2074 *level = i;
2075 WARN_ON(*level == 0);
2076 return 0;
2077 } else {
31840ae1
ZY
2078 struct extent_buffer *parent;
2079 if (path->nodes[*level] == root->node)
2080 parent = path->nodes[*level];
2081 else
2082 parent = path->nodes[*level + 1];
2083
2084 root_owner = btrfs_header_owner(parent);
1e5063d0 2085 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2086 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2087 if (ret)
2088 return ret;
2089
e02119d5
CM
2090 if (wc->free) {
2091 struct extent_buffer *next;
2092
2093 next = path->nodes[*level];
2094
2095 btrfs_tree_lock(next);
b4ce94de 2096 btrfs_set_lock_blocking(next);
bd681513 2097 clean_tree_block(trans, root, next);
e02119d5
CM
2098 btrfs_wait_tree_block_writeback(next);
2099 btrfs_tree_unlock(next);
2100
e02119d5 2101 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2102 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2103 path->nodes[*level]->start,
d00aff00 2104 path->nodes[*level]->len);
e02119d5
CM
2105 BUG_ON(ret);
2106 }
2107 free_extent_buffer(path->nodes[*level]);
2108 path->nodes[*level] = NULL;
2109 *level = i + 1;
2110 }
2111 }
2112 return 1;
2113}
2114
2115/*
2116 * drop the reference count on the tree rooted at 'snap'. This traverses
2117 * the tree freeing any blocks that have a ref count of zero after being
2118 * decremented.
2119 */
2120static int walk_log_tree(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *log, struct walk_control *wc)
2122{
2123 int ret = 0;
2124 int wret;
2125 int level;
2126 struct btrfs_path *path;
2127 int i;
2128 int orig_level;
2129
2130 path = btrfs_alloc_path();
db5b493a
TI
2131 if (!path)
2132 return -ENOMEM;
e02119d5
CM
2133
2134 level = btrfs_header_level(log->node);
2135 orig_level = level;
2136 path->nodes[level] = log->node;
2137 extent_buffer_get(log->node);
2138 path->slots[level] = 0;
2139
d397712b 2140 while (1) {
e02119d5
CM
2141 wret = walk_down_log_tree(trans, log, path, &level, wc);
2142 if (wret > 0)
2143 break;
79787eaa 2144 if (wret < 0) {
e02119d5 2145 ret = wret;
79787eaa
JM
2146 goto out;
2147 }
e02119d5
CM
2148
2149 wret = walk_up_log_tree(trans, log, path, &level, wc);
2150 if (wret > 0)
2151 break;
79787eaa 2152 if (wret < 0) {
e02119d5 2153 ret = wret;
79787eaa
JM
2154 goto out;
2155 }
e02119d5
CM
2156 }
2157
2158 /* was the root node processed? if not, catch it here */
2159 if (path->nodes[orig_level]) {
79787eaa 2160 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2161 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2162 if (ret)
2163 goto out;
e02119d5
CM
2164 if (wc->free) {
2165 struct extent_buffer *next;
2166
2167 next = path->nodes[orig_level];
2168
2169 btrfs_tree_lock(next);
b4ce94de 2170 btrfs_set_lock_blocking(next);
bd681513 2171 clean_tree_block(trans, log, next);
e02119d5
CM
2172 btrfs_wait_tree_block_writeback(next);
2173 btrfs_tree_unlock(next);
2174
e02119d5
CM
2175 WARN_ON(log->root_key.objectid !=
2176 BTRFS_TREE_LOG_OBJECTID);
e688b725 2177 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2178 next->len);
79787eaa 2179 BUG_ON(ret); /* -ENOMEM or logic errors */
e02119d5
CM
2180 }
2181 }
2182
79787eaa 2183out:
e02119d5
CM
2184 for (i = 0; i <= orig_level; i++) {
2185 if (path->nodes[i]) {
2186 free_extent_buffer(path->nodes[i]);
2187 path->nodes[i] = NULL;
2188 }
2189 }
2190 btrfs_free_path(path);
e02119d5
CM
2191 return ret;
2192}
2193
7237f183
YZ
2194/*
2195 * helper function to update the item for a given subvolumes log root
2196 * in the tree of log roots
2197 */
2198static int update_log_root(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *log)
2200{
2201 int ret;
2202
2203 if (log->log_transid == 1) {
2204 /* insert root item on the first sync */
2205 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2206 &log->root_key, &log->root_item);
2207 } else {
2208 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2209 &log->root_key, &log->root_item);
2210 }
2211 return ret;
2212}
2213
12fcfd22
CM
2214static int wait_log_commit(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
2216{
2217 DEFINE_WAIT(wait);
7237f183 2218 int index = transid % 2;
e02119d5 2219
7237f183
YZ
2220 /*
2221 * we only allow two pending log transactions at a time,
2222 * so we know that if ours is more than 2 older than the
2223 * current transaction, we're done
2224 */
e02119d5 2225 do {
7237f183
YZ
2226 prepare_to_wait(&root->log_commit_wait[index],
2227 &wait, TASK_UNINTERRUPTIBLE);
2228 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2229
2230 if (root->fs_info->last_trans_log_full_commit !=
2231 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2232 atomic_read(&root->log_commit[index]))
2233 schedule();
12fcfd22 2234
7237f183
YZ
2235 finish_wait(&root->log_commit_wait[index], &wait);
2236 mutex_lock(&root->log_mutex);
6dd70ce4
JK
2237 } while (root->fs_info->last_trans_log_full_commit !=
2238 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2239 atomic_read(&root->log_commit[index]));
2240 return 0;
2241}
2242
143bede5
JM
2243static void wait_for_writer(struct btrfs_trans_handle *trans,
2244 struct btrfs_root *root)
7237f183
YZ
2245{
2246 DEFINE_WAIT(wait);
6dd70ce4
JK
2247 while (root->fs_info->last_trans_log_full_commit !=
2248 trans->transid && atomic_read(&root->log_writers)) {
7237f183
YZ
2249 prepare_to_wait(&root->log_writer_wait,
2250 &wait, TASK_UNINTERRUPTIBLE);
2251 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2252 if (root->fs_info->last_trans_log_full_commit !=
2253 trans->transid && atomic_read(&root->log_writers))
e02119d5 2254 schedule();
7237f183
YZ
2255 mutex_lock(&root->log_mutex);
2256 finish_wait(&root->log_writer_wait, &wait);
2257 }
e02119d5
CM
2258}
2259
2260/*
2261 * btrfs_sync_log does sends a given tree log down to the disk and
2262 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2263 * you know that any inodes previously logged are safely on disk only
2264 * if it returns 0.
2265 *
2266 * Any other return value means you need to call btrfs_commit_transaction.
2267 * Some of the edge cases for fsyncing directories that have had unlinks
2268 * or renames done in the past mean that sometimes the only safe
2269 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2270 * that has happened.
e02119d5
CM
2271 */
2272int btrfs_sync_log(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root)
2274{
7237f183
YZ
2275 int index1;
2276 int index2;
8cef4e16 2277 int mark;
e02119d5 2278 int ret;
e02119d5 2279 struct btrfs_root *log = root->log_root;
7237f183 2280 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 2281 unsigned long log_transid = 0;
e02119d5 2282
7237f183
YZ
2283 mutex_lock(&root->log_mutex);
2284 index1 = root->log_transid % 2;
2285 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2286 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2287 mutex_unlock(&root->log_mutex);
2288 return 0;
e02119d5 2289 }
7237f183
YZ
2290 atomic_set(&root->log_commit[index1], 1);
2291
2292 /* wait for previous tree log sync to complete */
2293 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2294 wait_log_commit(trans, root, root->log_transid - 1);
86df7eb9 2295 while (1) {
2ecb7923 2296 int batch = atomic_read(&root->log_batch);
cd354ad6
CM
2297 /* when we're on an ssd, just kick the log commit out */
2298 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
86df7eb9
YZ
2299 mutex_unlock(&root->log_mutex);
2300 schedule_timeout_uninterruptible(1);
2301 mutex_lock(&root->log_mutex);
2302 }
12fcfd22 2303 wait_for_writer(trans, root);
2ecb7923 2304 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2305 break;
2306 }
e02119d5 2307
12fcfd22
CM
2308 /* bail out if we need to do a full commit */
2309 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2310 ret = -EAGAIN;
2311 mutex_unlock(&root->log_mutex);
2312 goto out;
2313 }
2314
8cef4e16
YZ
2315 log_transid = root->log_transid;
2316 if (log_transid % 2 == 0)
2317 mark = EXTENT_DIRTY;
2318 else
2319 mark = EXTENT_NEW;
2320
690587d1
CM
2321 /* we start IO on all the marked extents here, but we don't actually
2322 * wait for them until later.
2323 */
8cef4e16 2324 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa
JM
2325 if (ret) {
2326 btrfs_abort_transaction(trans, root, ret);
2327 mutex_unlock(&root->log_mutex);
2328 goto out;
2329 }
7237f183 2330
5d4f98a2 2331 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2332
7237f183
YZ
2333 root->log_transid++;
2334 log->log_transid = root->log_transid;
ff782e0a 2335 root->log_start_pid = 0;
7237f183
YZ
2336 smp_mb();
2337 /*
8cef4e16
YZ
2338 * IO has been started, blocks of the log tree have WRITTEN flag set
2339 * in their headers. new modifications of the log will be written to
2340 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2341 */
2342 mutex_unlock(&root->log_mutex);
2343
2344 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2345 atomic_inc(&log_root_tree->log_batch);
7237f183
YZ
2346 atomic_inc(&log_root_tree->log_writers);
2347 mutex_unlock(&log_root_tree->log_mutex);
2348
2349 ret = update_log_root(trans, log);
7237f183
YZ
2350
2351 mutex_lock(&log_root_tree->log_mutex);
2352 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2353 smp_mb();
2354 if (waitqueue_active(&log_root_tree->log_writer_wait))
2355 wake_up(&log_root_tree->log_writer_wait);
2356 }
2357
4a500fd1 2358 if (ret) {
79787eaa
JM
2359 if (ret != -ENOSPC) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 mutex_unlock(&log_root_tree->log_mutex);
2362 goto out;
2363 }
4a500fd1
YZ
2364 root->fs_info->last_trans_log_full_commit = trans->transid;
2365 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2366 mutex_unlock(&log_root_tree->log_mutex);
2367 ret = -EAGAIN;
2368 goto out;
2369 }
2370
7237f183
YZ
2371 index2 = log_root_tree->log_transid % 2;
2372 if (atomic_read(&log_root_tree->log_commit[index2])) {
8cef4e16 2373 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2374 wait_log_commit(trans, log_root_tree,
2375 log_root_tree->log_transid);
7237f183 2376 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2377 ret = 0;
7237f183
YZ
2378 goto out;
2379 }
2380 atomic_set(&log_root_tree->log_commit[index2], 1);
2381
12fcfd22
CM
2382 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2383 wait_log_commit(trans, log_root_tree,
2384 log_root_tree->log_transid - 1);
2385 }
2386
2387 wait_for_writer(trans, log_root_tree);
7237f183 2388
12fcfd22
CM
2389 /*
2390 * now that we've moved on to the tree of log tree roots,
2391 * check the full commit flag again
2392 */
2393 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
8cef4e16 2394 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2395 mutex_unlock(&log_root_tree->log_mutex);
2396 ret = -EAGAIN;
2397 goto out_wake_log_root;
2398 }
7237f183
YZ
2399
2400 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
8cef4e16
YZ
2401 &log_root_tree->dirty_log_pages,
2402 EXTENT_DIRTY | EXTENT_NEW);
79787eaa
JM
2403 if (ret) {
2404 btrfs_abort_transaction(trans, root, ret);
2405 mutex_unlock(&log_root_tree->log_mutex);
2406 goto out_wake_log_root;
2407 }
8cef4e16 2408 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5 2409
6c41761f 2410 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2411 log_root_tree->node->start);
6c41761f 2412 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2413 btrfs_header_level(log_root_tree->node));
e02119d5 2414
7237f183 2415 log_root_tree->log_transid++;
e02119d5 2416 smp_mb();
7237f183
YZ
2417
2418 mutex_unlock(&log_root_tree->log_mutex);
2419
2420 /*
2421 * nobody else is going to jump in and write the the ctree
2422 * super here because the log_commit atomic below is protecting
2423 * us. We must be called with a transaction handle pinning
2424 * the running transaction open, so a full commit can't hop
2425 * in and cause problems either.
2426 */
a2de733c 2427 btrfs_scrub_pause_super(root);
4722607d 2428 write_ctree_super(trans, root->fs_info->tree_root, 1);
a2de733c 2429 btrfs_scrub_continue_super(root);
12fcfd22 2430 ret = 0;
7237f183 2431
257c62e1
CM
2432 mutex_lock(&root->log_mutex);
2433 if (root->last_log_commit < log_transid)
2434 root->last_log_commit = log_transid;
2435 mutex_unlock(&root->log_mutex);
2436
12fcfd22 2437out_wake_log_root:
7237f183
YZ
2438 atomic_set(&log_root_tree->log_commit[index2], 0);
2439 smp_mb();
2440 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2441 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2442out:
7237f183
YZ
2443 atomic_set(&root->log_commit[index1], 0);
2444 smp_mb();
2445 if (waitqueue_active(&root->log_commit_wait[index1]))
2446 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2447 return ret;
e02119d5
CM
2448}
2449
4a500fd1
YZ
2450static void free_log_tree(struct btrfs_trans_handle *trans,
2451 struct btrfs_root *log)
e02119d5
CM
2452{
2453 int ret;
d0c803c4
CM
2454 u64 start;
2455 u64 end;
e02119d5
CM
2456 struct walk_control wc = {
2457 .free = 1,
2458 .process_func = process_one_buffer
2459 };
2460
e02119d5
CM
2461 ret = walk_log_tree(trans, log, &wc);
2462 BUG_ON(ret);
2463
d397712b 2464 while (1) {
d0c803c4 2465 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2466 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2467 NULL);
d0c803c4
CM
2468 if (ret)
2469 break;
2470
8cef4e16
YZ
2471 clear_extent_bits(&log->dirty_log_pages, start, end,
2472 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2473 }
2474
7237f183
YZ
2475 free_extent_buffer(log->node);
2476 kfree(log);
4a500fd1
YZ
2477}
2478
2479/*
2480 * free all the extents used by the tree log. This should be called
2481 * at commit time of the full transaction
2482 */
2483int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2484{
2485 if (root->log_root) {
2486 free_log_tree(trans, root->log_root);
2487 root->log_root = NULL;
2488 }
2489 return 0;
2490}
2491
2492int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2493 struct btrfs_fs_info *fs_info)
2494{
2495 if (fs_info->log_root_tree) {
2496 free_log_tree(trans, fs_info->log_root_tree);
2497 fs_info->log_root_tree = NULL;
2498 }
e02119d5
CM
2499 return 0;
2500}
2501
e02119d5
CM
2502/*
2503 * If both a file and directory are logged, and unlinks or renames are
2504 * mixed in, we have a few interesting corners:
2505 *
2506 * create file X in dir Y
2507 * link file X to X.link in dir Y
2508 * fsync file X
2509 * unlink file X but leave X.link
2510 * fsync dir Y
2511 *
2512 * After a crash we would expect only X.link to exist. But file X
2513 * didn't get fsync'd again so the log has back refs for X and X.link.
2514 *
2515 * We solve this by removing directory entries and inode backrefs from the
2516 * log when a file that was logged in the current transaction is
2517 * unlinked. Any later fsync will include the updated log entries, and
2518 * we'll be able to reconstruct the proper directory items from backrefs.
2519 *
2520 * This optimizations allows us to avoid relogging the entire inode
2521 * or the entire directory.
2522 */
2523int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2524 struct btrfs_root *root,
2525 const char *name, int name_len,
2526 struct inode *dir, u64 index)
2527{
2528 struct btrfs_root *log;
2529 struct btrfs_dir_item *di;
2530 struct btrfs_path *path;
2531 int ret;
4a500fd1 2532 int err = 0;
e02119d5 2533 int bytes_del = 0;
33345d01 2534 u64 dir_ino = btrfs_ino(dir);
e02119d5 2535
3a5f1d45
CM
2536 if (BTRFS_I(dir)->logged_trans < trans->transid)
2537 return 0;
2538
e02119d5
CM
2539 ret = join_running_log_trans(root);
2540 if (ret)
2541 return 0;
2542
2543 mutex_lock(&BTRFS_I(dir)->log_mutex);
2544
2545 log = root->log_root;
2546 path = btrfs_alloc_path();
a62f44a5
TI
2547 if (!path) {
2548 err = -ENOMEM;
2549 goto out_unlock;
2550 }
2a29edc6 2551
33345d01 2552 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2553 name, name_len, -1);
4a500fd1
YZ
2554 if (IS_ERR(di)) {
2555 err = PTR_ERR(di);
2556 goto fail;
2557 }
2558 if (di) {
e02119d5
CM
2559 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2560 bytes_del += name_len;
2561 BUG_ON(ret);
2562 }
b3b4aa74 2563 btrfs_release_path(path);
33345d01 2564 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2565 index, name, name_len, -1);
4a500fd1
YZ
2566 if (IS_ERR(di)) {
2567 err = PTR_ERR(di);
2568 goto fail;
2569 }
2570 if (di) {
e02119d5
CM
2571 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2572 bytes_del += name_len;
2573 BUG_ON(ret);
2574 }
2575
2576 /* update the directory size in the log to reflect the names
2577 * we have removed
2578 */
2579 if (bytes_del) {
2580 struct btrfs_key key;
2581
33345d01 2582 key.objectid = dir_ino;
e02119d5
CM
2583 key.offset = 0;
2584 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2585 btrfs_release_path(path);
e02119d5
CM
2586
2587 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2588 if (ret < 0) {
2589 err = ret;
2590 goto fail;
2591 }
e02119d5
CM
2592 if (ret == 0) {
2593 struct btrfs_inode_item *item;
2594 u64 i_size;
2595
2596 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2597 struct btrfs_inode_item);
2598 i_size = btrfs_inode_size(path->nodes[0], item);
2599 if (i_size > bytes_del)
2600 i_size -= bytes_del;
2601 else
2602 i_size = 0;
2603 btrfs_set_inode_size(path->nodes[0], item, i_size);
2604 btrfs_mark_buffer_dirty(path->nodes[0]);
2605 } else
2606 ret = 0;
b3b4aa74 2607 btrfs_release_path(path);
e02119d5 2608 }
4a500fd1 2609fail:
e02119d5 2610 btrfs_free_path(path);
a62f44a5 2611out_unlock:
e02119d5 2612 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2613 if (ret == -ENOSPC) {
2614 root->fs_info->last_trans_log_full_commit = trans->transid;
2615 ret = 0;
79787eaa
JM
2616 } else if (ret < 0)
2617 btrfs_abort_transaction(trans, root, ret);
2618
12fcfd22 2619 btrfs_end_log_trans(root);
e02119d5 2620
411fc6bc 2621 return err;
e02119d5
CM
2622}
2623
2624/* see comments for btrfs_del_dir_entries_in_log */
2625int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *root,
2627 const char *name, int name_len,
2628 struct inode *inode, u64 dirid)
2629{
2630 struct btrfs_root *log;
2631 u64 index;
2632 int ret;
2633
3a5f1d45
CM
2634 if (BTRFS_I(inode)->logged_trans < trans->transid)
2635 return 0;
2636
e02119d5
CM
2637 ret = join_running_log_trans(root);
2638 if (ret)
2639 return 0;
2640 log = root->log_root;
2641 mutex_lock(&BTRFS_I(inode)->log_mutex);
2642
33345d01 2643 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2644 dirid, &index);
2645 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2646 if (ret == -ENOSPC) {
2647 root->fs_info->last_trans_log_full_commit = trans->transid;
2648 ret = 0;
79787eaa
JM
2649 } else if (ret < 0 && ret != -ENOENT)
2650 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2651 btrfs_end_log_trans(root);
e02119d5 2652
e02119d5
CM
2653 return ret;
2654}
2655
2656/*
2657 * creates a range item in the log for 'dirid'. first_offset and
2658 * last_offset tell us which parts of the key space the log should
2659 * be considered authoritative for.
2660 */
2661static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2662 struct btrfs_root *log,
2663 struct btrfs_path *path,
2664 int key_type, u64 dirid,
2665 u64 first_offset, u64 last_offset)
2666{
2667 int ret;
2668 struct btrfs_key key;
2669 struct btrfs_dir_log_item *item;
2670
2671 key.objectid = dirid;
2672 key.offset = first_offset;
2673 if (key_type == BTRFS_DIR_ITEM_KEY)
2674 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2675 else
2676 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2677 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2678 if (ret)
2679 return ret;
e02119d5
CM
2680
2681 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2682 struct btrfs_dir_log_item);
2683 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2684 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2685 btrfs_release_path(path);
e02119d5
CM
2686 return 0;
2687}
2688
2689/*
2690 * log all the items included in the current transaction for a given
2691 * directory. This also creates the range items in the log tree required
2692 * to replay anything deleted before the fsync
2693 */
2694static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2695 struct btrfs_root *root, struct inode *inode,
2696 struct btrfs_path *path,
2697 struct btrfs_path *dst_path, int key_type,
2698 u64 min_offset, u64 *last_offset_ret)
2699{
2700 struct btrfs_key min_key;
2701 struct btrfs_key max_key;
2702 struct btrfs_root *log = root->log_root;
2703 struct extent_buffer *src;
4a500fd1 2704 int err = 0;
e02119d5
CM
2705 int ret;
2706 int i;
2707 int nritems;
2708 u64 first_offset = min_offset;
2709 u64 last_offset = (u64)-1;
33345d01 2710 u64 ino = btrfs_ino(inode);
e02119d5
CM
2711
2712 log = root->log_root;
33345d01 2713 max_key.objectid = ino;
e02119d5
CM
2714 max_key.offset = (u64)-1;
2715 max_key.type = key_type;
2716
33345d01 2717 min_key.objectid = ino;
e02119d5
CM
2718 min_key.type = key_type;
2719 min_key.offset = min_offset;
2720
2721 path->keep_locks = 1;
2722
2723 ret = btrfs_search_forward(root, &min_key, &max_key,
2724 path, 0, trans->transid);
2725
2726 /*
2727 * we didn't find anything from this transaction, see if there
2728 * is anything at all
2729 */
33345d01
LZ
2730 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2731 min_key.objectid = ino;
e02119d5
CM
2732 min_key.type = key_type;
2733 min_key.offset = (u64)-1;
b3b4aa74 2734 btrfs_release_path(path);
e02119d5
CM
2735 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2736 if (ret < 0) {
b3b4aa74 2737 btrfs_release_path(path);
e02119d5
CM
2738 return ret;
2739 }
33345d01 2740 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2741
2742 /* if ret == 0 there are items for this type,
2743 * create a range to tell us the last key of this type.
2744 * otherwise, there are no items in this directory after
2745 * *min_offset, and we create a range to indicate that.
2746 */
2747 if (ret == 0) {
2748 struct btrfs_key tmp;
2749 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2750 path->slots[0]);
d397712b 2751 if (key_type == tmp.type)
e02119d5 2752 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2753 }
2754 goto done;
2755 }
2756
2757 /* go backward to find any previous key */
33345d01 2758 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2759 if (ret == 0) {
2760 struct btrfs_key tmp;
2761 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2762 if (key_type == tmp.type) {
2763 first_offset = tmp.offset;
2764 ret = overwrite_item(trans, log, dst_path,
2765 path->nodes[0], path->slots[0],
2766 &tmp);
4a500fd1
YZ
2767 if (ret) {
2768 err = ret;
2769 goto done;
2770 }
e02119d5
CM
2771 }
2772 }
b3b4aa74 2773 btrfs_release_path(path);
e02119d5
CM
2774
2775 /* find the first key from this transaction again */
2776 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2777 if (ret != 0) {
2778 WARN_ON(1);
2779 goto done;
2780 }
2781
2782 /*
2783 * we have a block from this transaction, log every item in it
2784 * from our directory
2785 */
d397712b 2786 while (1) {
e02119d5
CM
2787 struct btrfs_key tmp;
2788 src = path->nodes[0];
2789 nritems = btrfs_header_nritems(src);
2790 for (i = path->slots[0]; i < nritems; i++) {
2791 btrfs_item_key_to_cpu(src, &min_key, i);
2792
33345d01 2793 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2794 goto done;
2795 ret = overwrite_item(trans, log, dst_path, src, i,
2796 &min_key);
4a500fd1
YZ
2797 if (ret) {
2798 err = ret;
2799 goto done;
2800 }
e02119d5
CM
2801 }
2802 path->slots[0] = nritems;
2803
2804 /*
2805 * look ahead to the next item and see if it is also
2806 * from this directory and from this transaction
2807 */
2808 ret = btrfs_next_leaf(root, path);
2809 if (ret == 1) {
2810 last_offset = (u64)-1;
2811 goto done;
2812 }
2813 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2814 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2815 last_offset = (u64)-1;
2816 goto done;
2817 }
2818 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2819 ret = overwrite_item(trans, log, dst_path,
2820 path->nodes[0], path->slots[0],
2821 &tmp);
4a500fd1
YZ
2822 if (ret)
2823 err = ret;
2824 else
2825 last_offset = tmp.offset;
e02119d5
CM
2826 goto done;
2827 }
2828 }
2829done:
b3b4aa74
DS
2830 btrfs_release_path(path);
2831 btrfs_release_path(dst_path);
e02119d5 2832
4a500fd1
YZ
2833 if (err == 0) {
2834 *last_offset_ret = last_offset;
2835 /*
2836 * insert the log range keys to indicate where the log
2837 * is valid
2838 */
2839 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 2840 ino, first_offset, last_offset);
4a500fd1
YZ
2841 if (ret)
2842 err = ret;
2843 }
2844 return err;
e02119d5
CM
2845}
2846
2847/*
2848 * logging directories is very similar to logging inodes, We find all the items
2849 * from the current transaction and write them to the log.
2850 *
2851 * The recovery code scans the directory in the subvolume, and if it finds a
2852 * key in the range logged that is not present in the log tree, then it means
2853 * that dir entry was unlinked during the transaction.
2854 *
2855 * In order for that scan to work, we must include one key smaller than
2856 * the smallest logged by this transaction and one key larger than the largest
2857 * key logged by this transaction.
2858 */
2859static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *root, struct inode *inode,
2861 struct btrfs_path *path,
2862 struct btrfs_path *dst_path)
2863{
2864 u64 min_key;
2865 u64 max_key;
2866 int ret;
2867 int key_type = BTRFS_DIR_ITEM_KEY;
2868
2869again:
2870 min_key = 0;
2871 max_key = 0;
d397712b 2872 while (1) {
e02119d5
CM
2873 ret = log_dir_items(trans, root, inode, path,
2874 dst_path, key_type, min_key,
2875 &max_key);
4a500fd1
YZ
2876 if (ret)
2877 return ret;
e02119d5
CM
2878 if (max_key == (u64)-1)
2879 break;
2880 min_key = max_key + 1;
2881 }
2882
2883 if (key_type == BTRFS_DIR_ITEM_KEY) {
2884 key_type = BTRFS_DIR_INDEX_KEY;
2885 goto again;
2886 }
2887 return 0;
2888}
2889
2890/*
2891 * a helper function to drop items from the log before we relog an
2892 * inode. max_key_type indicates the highest item type to remove.
2893 * This cannot be run for file data extents because it does not
2894 * free the extents they point to.
2895 */
2896static int drop_objectid_items(struct btrfs_trans_handle *trans,
2897 struct btrfs_root *log,
2898 struct btrfs_path *path,
2899 u64 objectid, int max_key_type)
2900{
2901 int ret;
2902 struct btrfs_key key;
2903 struct btrfs_key found_key;
18ec90d6 2904 int start_slot;
e02119d5
CM
2905
2906 key.objectid = objectid;
2907 key.type = max_key_type;
2908 key.offset = (u64)-1;
2909
d397712b 2910 while (1) {
e02119d5 2911 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4a500fd1
YZ
2912 BUG_ON(ret == 0);
2913 if (ret < 0)
e02119d5
CM
2914 break;
2915
2916 if (path->slots[0] == 0)
2917 break;
2918
2919 path->slots[0]--;
2920 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2921 path->slots[0]);
2922
2923 if (found_key.objectid != objectid)
2924 break;
2925
18ec90d6
JB
2926 found_key.offset = 0;
2927 found_key.type = 0;
2928 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2929 &start_slot);
2930
2931 ret = btrfs_del_items(trans, log, path, start_slot,
2932 path->slots[0] - start_slot + 1);
2933 /*
2934 * If start slot isn't 0 then we don't need to re-search, we've
2935 * found the last guy with the objectid in this tree.
2936 */
2937 if (ret || start_slot != 0)
65a246c5 2938 break;
b3b4aa74 2939 btrfs_release_path(path);
e02119d5 2940 }
b3b4aa74 2941 btrfs_release_path(path);
5bdbeb21
JB
2942 if (ret > 0)
2943 ret = 0;
4a500fd1 2944 return ret;
e02119d5
CM
2945}
2946
94edf4ae
JB
2947static void fill_inode_item(struct btrfs_trans_handle *trans,
2948 struct extent_buffer *leaf,
2949 struct btrfs_inode_item *item,
2950 struct inode *inode, int log_inode_only)
2951{
2952 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2953 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2954 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2955 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2956
2957 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2958 inode->i_atime.tv_sec);
2959 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2960 inode->i_atime.tv_nsec);
2961
2962 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2963 inode->i_mtime.tv_sec);
2964 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2965 inode->i_mtime.tv_nsec);
2966
2967 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2968 inode->i_ctime.tv_sec);
2969 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2970 inode->i_ctime.tv_nsec);
2971
2972 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2973
2974 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2975 btrfs_set_inode_transid(leaf, item, trans->transid);
2976 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2977 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2978 btrfs_set_inode_block_group(leaf, item, 0);
2979
2980 if (log_inode_only) {
2981 /* set the generation to zero so the recover code
2982 * can tell the difference between an logging
2983 * just to say 'this inode exists' and a logging
2984 * to say 'update this inode with these values'
2985 */
2986 btrfs_set_inode_generation(leaf, item, 0);
2987 btrfs_set_inode_size(leaf, item, 0);
2988 } else {
2989 btrfs_set_inode_generation(leaf, item,
2990 BTRFS_I(inode)->generation);
2991 btrfs_set_inode_size(leaf, item, inode->i_size);
2992 }
2993
2994}
2995
31ff1cd2 2996static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 2997 struct inode *inode,
31ff1cd2
CM
2998 struct btrfs_path *dst_path,
2999 struct extent_buffer *src,
3000 int start_slot, int nr, int inode_only)
3001{
3002 unsigned long src_offset;
3003 unsigned long dst_offset;
d2794405 3004 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3005 struct btrfs_file_extent_item *extent;
3006 struct btrfs_inode_item *inode_item;
3007 int ret;
3008 struct btrfs_key *ins_keys;
3009 u32 *ins_sizes;
3010 char *ins_data;
3011 int i;
d20f7043 3012 struct list_head ordered_sums;
d2794405 3013 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3014
3015 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3016
3017 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3018 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3019 if (!ins_data)
3020 return -ENOMEM;
3021
31ff1cd2
CM
3022 ins_sizes = (u32 *)ins_data;
3023 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3024
3025 for (i = 0; i < nr; i++) {
3026 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3027 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3028 }
3029 ret = btrfs_insert_empty_items(trans, log, dst_path,
3030 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3031 if (ret) {
3032 kfree(ins_data);
3033 return ret;
3034 }
31ff1cd2 3035
5d4f98a2 3036 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3037 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3038 dst_path->slots[0]);
3039
3040 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3041
94edf4ae 3042 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3043 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3044 dst_path->slots[0],
3045 struct btrfs_inode_item);
94edf4ae
JB
3046 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3047 inode, inode_only == LOG_INODE_EXISTS);
3048 } else {
3049 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3050 src_offset, ins_sizes[i]);
31ff1cd2 3051 }
94edf4ae 3052
31ff1cd2
CM
3053 /* take a reference on file data extents so that truncates
3054 * or deletes of this inode don't have to relog the inode
3055 * again
3056 */
d2794405
LB
3057 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3058 !skip_csum) {
31ff1cd2
CM
3059 int found_type;
3060 extent = btrfs_item_ptr(src, start_slot + i,
3061 struct btrfs_file_extent_item);
3062
8e531cdf 3063 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3064 continue;
3065
31ff1cd2 3066 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3067 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3068 u64 ds, dl, cs, cl;
3069 ds = btrfs_file_extent_disk_bytenr(src,
3070 extent);
3071 /* ds == 0 is a hole */
3072 if (ds == 0)
3073 continue;
3074
3075 dl = btrfs_file_extent_disk_num_bytes(src,
3076 extent);
3077 cs = btrfs_file_extent_offset(src, extent);
3078 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3079 extent);
580afd76
CM
3080 if (btrfs_file_extent_compression(src,
3081 extent)) {
3082 cs = 0;
3083 cl = dl;
3084 }
5d4f98a2
YZ
3085
3086 ret = btrfs_lookup_csums_range(
3087 log->fs_info->csum_root,
3088 ds + cs, ds + cs + cl - 1,
a2de733c 3089 &ordered_sums, 0);
5d4f98a2 3090 BUG_ON(ret);
31ff1cd2
CM
3091 }
3092 }
31ff1cd2
CM
3093 }
3094
3095 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3096 btrfs_release_path(dst_path);
31ff1cd2 3097 kfree(ins_data);
d20f7043
CM
3098
3099 /*
3100 * we have to do this after the loop above to avoid changing the
3101 * log tree while trying to change the log tree.
3102 */
4a500fd1 3103 ret = 0;
d397712b 3104 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3105 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3106 struct btrfs_ordered_sum,
3107 list);
4a500fd1
YZ
3108 if (!ret)
3109 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3110 list_del(&sums->list);
3111 kfree(sums);
3112 }
4a500fd1 3113 return ret;
31ff1cd2
CM
3114}
3115
5dc562c5
JB
3116static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3117{
3118 struct extent_map *em1, *em2;
3119
3120 em1 = list_entry(a, struct extent_map, list);
3121 em2 = list_entry(b, struct extent_map, list);
3122
3123 if (em1->start < em2->start)
3124 return -1;
3125 else if (em1->start > em2->start)
3126 return 1;
3127 return 0;
3128}
3129
3130struct log_args {
3131 struct extent_buffer *src;
3132 u64 next_offset;
3133 int start_slot;
3134 int nr;
3135};
3136
3137static int log_one_extent(struct btrfs_trans_handle *trans,
3138 struct inode *inode, struct btrfs_root *root,
3139 struct extent_map *em, struct btrfs_path *path,
3140 struct btrfs_path *dst_path, struct log_args *args)
3141{
3142 struct btrfs_root *log = root->log_root;
3143 struct btrfs_file_extent_item *fi;
3144 struct btrfs_key key;
4e2f84e6 3145 u64 start = em->mod_start;
0aa4a17d 3146 u64 search_start = start;
4e2f84e6 3147 u64 len = em->mod_len;
5dc562c5
JB
3148 u64 num_bytes;
3149 int nritems;
3150 int ret;
3151
3152 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5dc562c5 3153 ret = __btrfs_drop_extents(trans, log, inode, dst_path, start,
2aaa6655 3154 start + len, NULL, 0);
5dc562c5
JB
3155 if (ret)
3156 return ret;
3157 }
3158
3159 while (len) {
3160 if (args->nr)
3161 goto next_slot;
0aa4a17d 3162again:
5dc562c5
JB
3163 key.objectid = btrfs_ino(inode);
3164 key.type = BTRFS_EXTENT_DATA_KEY;
0aa4a17d 3165 key.offset = search_start;
5dc562c5
JB
3166
3167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3168 if (ret < 0)
3169 return ret;
0aa4a17d 3170
5dc562c5
JB
3171 if (ret) {
3172 /*
0aa4a17d
JB
3173 * A rare case were we can have an em for a section of a
3174 * larger extent so we need to make sure that this em
3175 * falls within the extent we've found. If not we just
3176 * bail and go back to ye-olde way of doing things but
3177 * it happens often enough in testing that we need to do
3178 * this dance to make sure.
5dc562c5 3179 */
0aa4a17d
JB
3180 do {
3181 if (path->slots[0] == 0) {
3182 btrfs_release_path(path);
3183 if (search_start == 0)
3184 return -ENOENT;
3185 search_start--;
3186 goto again;
3187 }
3188
3189 path->slots[0]--;
3190 btrfs_item_key_to_cpu(path->nodes[0], &key,
3191 path->slots[0]);
3192 if (key.objectid != btrfs_ino(inode) ||
3193 key.type != BTRFS_EXTENT_DATA_KEY) {
3194 btrfs_release_path(path);
3195 return -ENOENT;
3196 }
3197 } while (key.offset > start);
3198
3199 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3200 struct btrfs_file_extent_item);
3201 num_bytes = btrfs_file_extent_num_bytes(path->nodes[0],
3202 fi);
3203 if (key.offset + num_bytes <= start) {
3204 btrfs_release_path(path);
3205 return -ENOENT;
3206 }
5dc562c5
JB
3207 }
3208 args->src = path->nodes[0];
3209next_slot:
0aa4a17d 3210 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5dc562c5
JB
3211 fi = btrfs_item_ptr(args->src, path->slots[0],
3212 struct btrfs_file_extent_item);
3213 if (args->nr &&
3214 args->start_slot + args->nr == path->slots[0]) {
3215 args->nr++;
3216 } else if (args->nr) {
d2794405 3217 ret = copy_items(trans, inode, dst_path, args->src,
5dc562c5
JB
3218 args->start_slot, args->nr,
3219 LOG_INODE_ALL);
3220 if (ret)
3221 return ret;
3222 args->nr = 1;
3223 args->start_slot = path->slots[0];
3224 } else if (!args->nr) {
3225 args->nr = 1;
3226 args->start_slot = path->slots[0];
3227 }
3228 nritems = btrfs_header_nritems(path->nodes[0]);
3229 path->slots[0]++;
3230 num_bytes = btrfs_file_extent_num_bytes(args->src, fi);
3231 if (len < num_bytes) {
3232 /* I _think_ this is ok, envision we write to a
3233 * preallocated space that is adjacent to a previously
3234 * written preallocated space that gets merged when we
3235 * mark this preallocated space written. If we do not
3236 * have the adjacent extent in cache then when we copy
3237 * this extent it could end up being larger than our EM
3238 * thinks it is, which is a-ok, so just set len to 0.
3239 */
3240 len = 0;
3241 } else {
3242 len -= num_bytes;
3243 }
0aa4a17d 3244 start = key.offset + num_bytes;
5dc562c5 3245 args->next_offset = start;
0aa4a17d 3246 search_start = start;
5dc562c5
JB
3247
3248 if (path->slots[0] < nritems) {
3249 if (len)
3250 goto next_slot;
3251 break;
3252 }
3253
3254 if (args->nr) {
d2794405 3255 ret = copy_items(trans, inode, dst_path, args->src,
5dc562c5
JB
3256 args->start_slot, args->nr,
3257 LOG_INODE_ALL);
3258 if (ret)
3259 return ret;
3260 args->nr = 0;
3261 btrfs_release_path(path);
3262 }
3263 }
3264
3265 return 0;
3266}
3267
3268static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3269 struct btrfs_root *root,
3270 struct inode *inode,
3271 struct btrfs_path *path,
3272 struct btrfs_path *dst_path)
3273{
3274 struct log_args args;
5dc562c5
JB
3275 struct extent_map *em, *n;
3276 struct list_head extents;
3277 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3278 u64 test_gen;
3279 int ret = 0;
3280
3281 INIT_LIST_HEAD(&extents);
3282
3283 memset(&args, 0, sizeof(args));
3284
3285 write_lock(&tree->lock);
3286 test_gen = root->fs_info->last_trans_committed;
3287
3288 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3289 list_del_init(&em->list);
3290 if (em->generation <= test_gen)
3291 continue;
ff44c6e3
JB
3292 /* Need a ref to keep it from getting evicted from cache */
3293 atomic_inc(&em->refs);
3294 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5
JB
3295 list_add_tail(&em->list, &extents);
3296 }
3297
3298 list_sort(NULL, &extents, extent_cmp);
3299
3300 while (!list_empty(&extents)) {
3301 em = list_entry(extents.next, struct extent_map, list);
3302
3303 list_del_init(&em->list);
ff44c6e3 3304 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5
JB
3305
3306 /*
3307 * If we had an error we just need to delete everybody from our
3308 * private list.
3309 */
ff44c6e3
JB
3310 if (ret) {
3311 free_extent_map(em);
5dc562c5 3312 continue;
ff44c6e3
JB
3313 }
3314
3315 write_unlock(&tree->lock);
5dc562c5
JB
3316
3317 /*
3318 * If the previous EM and the last extent we left off on aren't
3319 * sequential then we need to copy the items we have and redo
3320 * our search
3321 */
4e2f84e6 3322 if (args.nr && em->mod_start != args.next_offset) {
d2794405 3323 ret = copy_items(trans, inode, dst_path, args.src,
5dc562c5
JB
3324 args.start_slot, args.nr,
3325 LOG_INODE_ALL);
ff44c6e3
JB
3326 if (ret) {
3327 free_extent_map(em);
3328 write_lock(&tree->lock);
5dc562c5 3329 continue;
ff44c6e3 3330 }
5dc562c5
JB
3331 btrfs_release_path(path);
3332 args.nr = 0;
3333 }
3334
3335 ret = log_one_extent(trans, inode, root, em, path, dst_path, &args);
ff44c6e3
JB
3336 free_extent_map(em);
3337 write_lock(&tree->lock);
5dc562c5 3338 }
ff44c6e3
JB
3339 WARN_ON(!list_empty(&extents));
3340 write_unlock(&tree->lock);
5dc562c5
JB
3341
3342 if (!ret && args.nr)
d2794405 3343 ret = copy_items(trans, inode, dst_path, args.src,
5dc562c5
JB
3344 args.start_slot, args.nr, LOG_INODE_ALL);
3345 btrfs_release_path(path);
5dc562c5
JB
3346 return ret;
3347}
3348
e02119d5
CM
3349/* log a single inode in the tree log.
3350 * At least one parent directory for this inode must exist in the tree
3351 * or be logged already.
3352 *
3353 * Any items from this inode changed by the current transaction are copied
3354 * to the log tree. An extra reference is taken on any extents in this
3355 * file, allowing us to avoid a whole pile of corner cases around logging
3356 * blocks that have been removed from the tree.
3357 *
3358 * See LOG_INODE_ALL and related defines for a description of what inode_only
3359 * does.
3360 *
3361 * This handles both files and directories.
3362 */
12fcfd22 3363static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3364 struct btrfs_root *root, struct inode *inode,
3365 int inode_only)
3366{
3367 struct btrfs_path *path;
3368 struct btrfs_path *dst_path;
3369 struct btrfs_key min_key;
3370 struct btrfs_key max_key;
3371 struct btrfs_root *log = root->log_root;
31ff1cd2 3372 struct extent_buffer *src = NULL;
4a500fd1 3373 int err = 0;
e02119d5 3374 int ret;
3a5f1d45 3375 int nritems;
31ff1cd2
CM
3376 int ins_start_slot = 0;
3377 int ins_nr;
5dc562c5 3378 bool fast_search = false;
33345d01 3379 u64 ino = btrfs_ino(inode);
e02119d5
CM
3380
3381 log = root->log_root;
3382
3383 path = btrfs_alloc_path();
5df67083
TI
3384 if (!path)
3385 return -ENOMEM;
e02119d5 3386 dst_path = btrfs_alloc_path();
5df67083
TI
3387 if (!dst_path) {
3388 btrfs_free_path(path);
3389 return -ENOMEM;
3390 }
e02119d5 3391
33345d01 3392 min_key.objectid = ino;
e02119d5
CM
3393 min_key.type = BTRFS_INODE_ITEM_KEY;
3394 min_key.offset = 0;
3395
33345d01 3396 max_key.objectid = ino;
12fcfd22 3397
12fcfd22 3398
5dc562c5 3399 /* today the code can only do partial logging of directories */
e02119d5
CM
3400 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
3401 max_key.type = BTRFS_XATTR_ITEM_KEY;
3402 else
3403 max_key.type = (u8)-1;
3404 max_key.offset = (u64)-1;
3405
94edf4ae
JB
3406 /* Only run delayed items if we are a dir or a new file */
3407 if (S_ISDIR(inode->i_mode) ||
3408 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3409 ret = btrfs_commit_inode_delayed_items(trans, inode);
3410 if (ret) {
3411 btrfs_free_path(path);
3412 btrfs_free_path(dst_path);
3413 return ret;
3414 }
16cdcec7
MX
3415 }
3416
e02119d5
CM
3417 mutex_lock(&BTRFS_I(inode)->log_mutex);
3418
3419 /*
3420 * a brute force approach to making sure we get the most uptodate
3421 * copies of everything.
3422 */
3423 if (S_ISDIR(inode->i_mode)) {
3424 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3425
3426 if (inode_only == LOG_INODE_EXISTS)
3427 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3428 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3429 } else {
5dc562c5
JB
3430 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3431 &BTRFS_I(inode)->runtime_flags)) {
3432 ret = btrfs_truncate_inode_items(trans, log,
3433 inode, 0, 0);
3434 } else {
3435 fast_search = true;
3436 max_key.type = BTRFS_XATTR_ITEM_KEY;
3437 ret = drop_objectid_items(trans, log, path, ino,
3438 BTRFS_XATTR_ITEM_KEY);
3439 }
e02119d5 3440 }
4a500fd1
YZ
3441 if (ret) {
3442 err = ret;
3443 goto out_unlock;
3444 }
e02119d5
CM
3445 path->keep_locks = 1;
3446
d397712b 3447 while (1) {
31ff1cd2 3448 ins_nr = 0;
e02119d5
CM
3449 ret = btrfs_search_forward(root, &min_key, &max_key,
3450 path, 0, trans->transid);
3451 if (ret != 0)
3452 break;
3a5f1d45 3453again:
31ff1cd2 3454 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3455 if (min_key.objectid != ino)
e02119d5
CM
3456 break;
3457 if (min_key.type > max_key.type)
3458 break;
31ff1cd2 3459
e02119d5 3460 src = path->nodes[0];
31ff1cd2
CM
3461 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3462 ins_nr++;
3463 goto next_slot;
3464 } else if (!ins_nr) {
3465 ins_start_slot = path->slots[0];
3466 ins_nr = 1;
3467 goto next_slot;
e02119d5
CM
3468 }
3469
d2794405 3470 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3471 ins_nr, inode_only);
4a500fd1
YZ
3472 if (ret) {
3473 err = ret;
3474 goto out_unlock;
3475 }
31ff1cd2
CM
3476 ins_nr = 1;
3477 ins_start_slot = path->slots[0];
3478next_slot:
e02119d5 3479
3a5f1d45
CM
3480 nritems = btrfs_header_nritems(path->nodes[0]);
3481 path->slots[0]++;
3482 if (path->slots[0] < nritems) {
3483 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3484 path->slots[0]);
3485 goto again;
3486 }
31ff1cd2 3487 if (ins_nr) {
d2794405 3488 ret = copy_items(trans, inode, dst_path, src,
31ff1cd2
CM
3489 ins_start_slot,
3490 ins_nr, inode_only);
4a500fd1
YZ
3491 if (ret) {
3492 err = ret;
3493 goto out_unlock;
3494 }
31ff1cd2
CM
3495 ins_nr = 0;
3496 }
b3b4aa74 3497 btrfs_release_path(path);
3a5f1d45 3498
e02119d5
CM
3499 if (min_key.offset < (u64)-1)
3500 min_key.offset++;
3501 else if (min_key.type < (u8)-1)
3502 min_key.type++;
3503 else if (min_key.objectid < (u64)-1)
3504 min_key.objectid++;
3505 else
3506 break;
3507 }
31ff1cd2 3508 if (ins_nr) {
d2794405 3509 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3510 ins_nr, inode_only);
4a500fd1
YZ
3511 if (ret) {
3512 err = ret;
3513 goto out_unlock;
3514 }
31ff1cd2
CM
3515 ins_nr = 0;
3516 }
5dc562c5
JB
3517
3518 if (fast_search) {
3519 btrfs_release_path(path);
3520 btrfs_release_path(dst_path);
3521 ret = btrfs_log_changed_extents(trans, root, inode, path,
3522 dst_path);
3523 if (ret) {
3524 err = ret;
3525 goto out_unlock;
3526 }
06d3d22b
LB
3527 } else {
3528 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3529 struct extent_map *em, *n;
3530
3531 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3532 list_del_init(&em->list);
5dc562c5
JB
3533 }
3534
9623f9a3 3535 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
b3b4aa74
DS
3536 btrfs_release_path(path);
3537 btrfs_release_path(dst_path);
e02119d5 3538 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
3539 if (ret) {
3540 err = ret;
3541 goto out_unlock;
3542 }
e02119d5 3543 }
3a5f1d45 3544 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 3545 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 3546out_unlock:
e02119d5
CM
3547 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3548
3549 btrfs_free_path(path);
3550 btrfs_free_path(dst_path);
4a500fd1 3551 return err;
e02119d5
CM
3552}
3553
12fcfd22
CM
3554/*
3555 * follow the dentry parent pointers up the chain and see if any
3556 * of the directories in it require a full commit before they can
3557 * be logged. Returns zero if nothing special needs to be done or 1 if
3558 * a full commit is required.
3559 */
3560static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3561 struct inode *inode,
3562 struct dentry *parent,
3563 struct super_block *sb,
3564 u64 last_committed)
e02119d5 3565{
12fcfd22
CM
3566 int ret = 0;
3567 struct btrfs_root *root;
6a912213 3568 struct dentry *old_parent = NULL;
e02119d5 3569
af4176b4
CM
3570 /*
3571 * for regular files, if its inode is already on disk, we don't
3572 * have to worry about the parents at all. This is because
3573 * we can use the last_unlink_trans field to record renames
3574 * and other fun in this file.
3575 */
3576 if (S_ISREG(inode->i_mode) &&
3577 BTRFS_I(inode)->generation <= last_committed &&
3578 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3579 goto out;
3580
12fcfd22
CM
3581 if (!S_ISDIR(inode->i_mode)) {
3582 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3583 goto out;
3584 inode = parent->d_inode;
3585 }
3586
3587 while (1) {
3588 BTRFS_I(inode)->logged_trans = trans->transid;
3589 smp_mb();
3590
3591 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3592 root = BTRFS_I(inode)->root;
3593
3594 /*
3595 * make sure any commits to the log are forced
3596 * to be full commits
3597 */
3598 root->fs_info->last_trans_log_full_commit =
3599 trans->transid;
3600 ret = 1;
3601 break;
3602 }
3603
3604 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3605 break;
3606
76dda93c 3607 if (IS_ROOT(parent))
12fcfd22
CM
3608 break;
3609
6a912213
JB
3610 parent = dget_parent(parent);
3611 dput(old_parent);
3612 old_parent = parent;
12fcfd22
CM
3613 inode = parent->d_inode;
3614
3615 }
6a912213 3616 dput(old_parent);
12fcfd22 3617out:
e02119d5
CM
3618 return ret;
3619}
3620
3621/*
3622 * helper function around btrfs_log_inode to make sure newly created
3623 * parent directories also end up in the log. A minimal inode and backref
3624 * only logging is done of any parent directories that are older than
3625 * the last committed transaction
3626 */
12fcfd22
CM
3627int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3628 struct btrfs_root *root, struct inode *inode,
3629 struct dentry *parent, int exists_only)
e02119d5 3630{
12fcfd22 3631 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 3632 struct super_block *sb;
6a912213 3633 struct dentry *old_parent = NULL;
12fcfd22
CM
3634 int ret = 0;
3635 u64 last_committed = root->fs_info->last_trans_committed;
3636
3637 sb = inode->i_sb;
3638
3a5e1404
SW
3639 if (btrfs_test_opt(root, NOTREELOG)) {
3640 ret = 1;
3641 goto end_no_trans;
3642 }
3643
12fcfd22
CM
3644 if (root->fs_info->last_trans_log_full_commit >
3645 root->fs_info->last_trans_committed) {
3646 ret = 1;
3647 goto end_no_trans;
3648 }
3649
76dda93c
YZ
3650 if (root != BTRFS_I(inode)->root ||
3651 btrfs_root_refs(&root->root_item) == 0) {
3652 ret = 1;
3653 goto end_no_trans;
3654 }
3655
12fcfd22
CM
3656 ret = check_parent_dirs_for_sync(trans, inode, parent,
3657 sb, last_committed);
3658 if (ret)
3659 goto end_no_trans;
e02119d5 3660
22ee6985 3661 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
3662 ret = BTRFS_NO_LOG_SYNC;
3663 goto end_no_trans;
3664 }
3665
4a500fd1
YZ
3666 ret = start_log_trans(trans, root);
3667 if (ret)
3668 goto end_trans;
e02119d5 3669
12fcfd22 3670 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3671 if (ret)
3672 goto end_trans;
12fcfd22 3673
af4176b4
CM
3674 /*
3675 * for regular files, if its inode is already on disk, we don't
3676 * have to worry about the parents at all. This is because
3677 * we can use the last_unlink_trans field to record renames
3678 * and other fun in this file.
3679 */
3680 if (S_ISREG(inode->i_mode) &&
3681 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3682 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3683 ret = 0;
3684 goto end_trans;
3685 }
af4176b4
CM
3686
3687 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3688 while (1) {
3689 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3690 break;
3691
12fcfd22 3692 inode = parent->d_inode;
76dda93c
YZ
3693 if (root != BTRFS_I(inode)->root)
3694 break;
3695
12fcfd22
CM
3696 if (BTRFS_I(inode)->generation >
3697 root->fs_info->last_trans_committed) {
3698 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3699 if (ret)
3700 goto end_trans;
12fcfd22 3701 }
76dda93c 3702 if (IS_ROOT(parent))
e02119d5 3703 break;
12fcfd22 3704
6a912213
JB
3705 parent = dget_parent(parent);
3706 dput(old_parent);
3707 old_parent = parent;
e02119d5 3708 }
12fcfd22 3709 ret = 0;
4a500fd1 3710end_trans:
6a912213 3711 dput(old_parent);
4a500fd1 3712 if (ret < 0) {
0fa83cdb 3713 WARN_ON(ret != -ENOSPC);
4a500fd1
YZ
3714 root->fs_info->last_trans_log_full_commit = trans->transid;
3715 ret = 1;
3716 }
12fcfd22
CM
3717 btrfs_end_log_trans(root);
3718end_no_trans:
3719 return ret;
e02119d5
CM
3720}
3721
3722/*
3723 * it is not safe to log dentry if the chunk root has added new
3724 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3725 * If this returns 1, you must commit the transaction to safely get your
3726 * data on disk.
3727 */
3728int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root, struct dentry *dentry)
3730{
6a912213
JB
3731 struct dentry *parent = dget_parent(dentry);
3732 int ret;
3733
3734 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3735 dput(parent);
3736
3737 return ret;
e02119d5
CM
3738}
3739
3740/*
3741 * should be called during mount to recover any replay any log trees
3742 * from the FS
3743 */
3744int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3745{
3746 int ret;
3747 struct btrfs_path *path;
3748 struct btrfs_trans_handle *trans;
3749 struct btrfs_key key;
3750 struct btrfs_key found_key;
3751 struct btrfs_key tmp_key;
3752 struct btrfs_root *log;
3753 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3754 struct walk_control wc = {
3755 .process_func = process_one_buffer,
3756 .stage = 0,
3757 };
3758
e02119d5 3759 path = btrfs_alloc_path();
db5b493a
TI
3760 if (!path)
3761 return -ENOMEM;
3762
3763 fs_info->log_root_recovering = 1;
e02119d5 3764
4a500fd1 3765 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
3766 if (IS_ERR(trans)) {
3767 ret = PTR_ERR(trans);
3768 goto error;
3769 }
e02119d5
CM
3770
3771 wc.trans = trans;
3772 wc.pin = 1;
3773
db5b493a 3774 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
3775 if (ret) {
3776 btrfs_error(fs_info, ret, "Failed to pin buffers while "
3777 "recovering log root tree.");
3778 goto error;
3779 }
e02119d5
CM
3780
3781again:
3782 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3783 key.offset = (u64)-1;
3784 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3785
d397712b 3786 while (1) {
e02119d5 3787 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
3788
3789 if (ret < 0) {
3790 btrfs_error(fs_info, ret,
3791 "Couldn't find tree log root.");
3792 goto error;
3793 }
e02119d5
CM
3794 if (ret > 0) {
3795 if (path->slots[0] == 0)
3796 break;
3797 path->slots[0]--;
3798 }
3799 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3800 path->slots[0]);
b3b4aa74 3801 btrfs_release_path(path);
e02119d5
CM
3802 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3803 break;
3804
3805 log = btrfs_read_fs_root_no_radix(log_root_tree,
3806 &found_key);
79787eaa
JM
3807 if (IS_ERR(log)) {
3808 ret = PTR_ERR(log);
3809 btrfs_error(fs_info, ret,
3810 "Couldn't read tree log root.");
3811 goto error;
3812 }
e02119d5
CM
3813
3814 tmp_key.objectid = found_key.offset;
3815 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3816 tmp_key.offset = (u64)-1;
3817
3818 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
3819 if (IS_ERR(wc.replay_dest)) {
3820 ret = PTR_ERR(wc.replay_dest);
3821 btrfs_error(fs_info, ret, "Couldn't read target root "
3822 "for tree log recovery.");
3823 goto error;
3824 }
e02119d5 3825
07d400a6 3826 wc.replay_dest->log_root = log;
5d4f98a2 3827 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3828 ret = walk_log_tree(trans, log, &wc);
3829 BUG_ON(ret);
3830
3831 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3832 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3833 path);
3834 BUG_ON(ret);
3835 }
3836
3837 key.offset = found_key.offset - 1;
07d400a6 3838 wc.replay_dest->log_root = NULL;
e02119d5 3839 free_extent_buffer(log->node);
b263c2c8 3840 free_extent_buffer(log->commit_root);
e02119d5
CM
3841 kfree(log);
3842
3843 if (found_key.offset == 0)
3844 break;
3845 }
b3b4aa74 3846 btrfs_release_path(path);
e02119d5
CM
3847
3848 /* step one is to pin it all, step two is to replay just inodes */
3849 if (wc.pin) {
3850 wc.pin = 0;
3851 wc.process_func = replay_one_buffer;
3852 wc.stage = LOG_WALK_REPLAY_INODES;
3853 goto again;
3854 }
3855 /* step three is to replay everything */
3856 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3857 wc.stage++;
3858 goto again;
3859 }
3860
3861 btrfs_free_path(path);
3862
3863 free_extent_buffer(log_root_tree->node);
3864 log_root_tree->log_root = NULL;
3865 fs_info->log_root_recovering = 0;
3866
3867 /* step 4: commit the transaction, which also unpins the blocks */
3868 btrfs_commit_transaction(trans, fs_info->tree_root);
3869
3870 kfree(log_root_tree);
3871 return 0;
79787eaa
JM
3872
3873error:
3874 btrfs_free_path(path);
3875 return ret;
e02119d5 3876}
12fcfd22
CM
3877
3878/*
3879 * there are some corner cases where we want to force a full
3880 * commit instead of allowing a directory to be logged.
3881 *
3882 * They revolve around files there were unlinked from the directory, and
3883 * this function updates the parent directory so that a full commit is
3884 * properly done if it is fsync'd later after the unlinks are done.
3885 */
3886void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3887 struct inode *dir, struct inode *inode,
3888 int for_rename)
3889{
af4176b4
CM
3890 /*
3891 * when we're logging a file, if it hasn't been renamed
3892 * or unlinked, and its inode is fully committed on disk,
3893 * we don't have to worry about walking up the directory chain
3894 * to log its parents.
3895 *
3896 * So, we use the last_unlink_trans field to put this transid
3897 * into the file. When the file is logged we check it and
3898 * don't log the parents if the file is fully on disk.
3899 */
3900 if (S_ISREG(inode->i_mode))
3901 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3902
12fcfd22
CM
3903 /*
3904 * if this directory was already logged any new
3905 * names for this file/dir will get recorded
3906 */
3907 smp_mb();
3908 if (BTRFS_I(dir)->logged_trans == trans->transid)
3909 return;
3910
3911 /*
3912 * if the inode we're about to unlink was logged,
3913 * the log will be properly updated for any new names
3914 */
3915 if (BTRFS_I(inode)->logged_trans == trans->transid)
3916 return;
3917
3918 /*
3919 * when renaming files across directories, if the directory
3920 * there we're unlinking from gets fsync'd later on, there's
3921 * no way to find the destination directory later and fsync it
3922 * properly. So, we have to be conservative and force commits
3923 * so the new name gets discovered.
3924 */
3925 if (for_rename)
3926 goto record;
3927
3928 /* we can safely do the unlink without any special recording */
3929 return;
3930
3931record:
3932 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3933}
3934
3935/*
3936 * Call this after adding a new name for a file and it will properly
3937 * update the log to reflect the new name.
3938 *
3939 * It will return zero if all goes well, and it will return 1 if a
3940 * full transaction commit is required.
3941 */
3942int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3943 struct inode *inode, struct inode *old_dir,
3944 struct dentry *parent)
3945{
3946 struct btrfs_root * root = BTRFS_I(inode)->root;
3947
af4176b4
CM
3948 /*
3949 * this will force the logging code to walk the dentry chain
3950 * up for the file
3951 */
3952 if (S_ISREG(inode->i_mode))
3953 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3954
12fcfd22
CM
3955 /*
3956 * if this inode hasn't been logged and directory we're renaming it
3957 * from hasn't been logged, we don't need to log it
3958 */
3959 if (BTRFS_I(inode)->logged_trans <=
3960 root->fs_info->last_trans_committed &&
3961 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3962 root->fs_info->last_trans_committed))
3963 return 0;
3964
3965 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3966}
3967