btrfs: clear MISSING device status bit in btrfs_close_one_device
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 97 struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
fa1a0f42 108static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
0b246afa 142 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 143 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 144 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 145 int ret = 0;
fa1a0f42 146 bool created = false;
7237f183 147
47876f7c
FM
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 156 if (!ret) {
47876f7c 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
158 created = true;
159 }
47876f7c
FM
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
7237f183 166 mutex_lock(&root->log_mutex);
34eb2a52 167
fa1a0f42 168again:
7237f183 169 if (root->log_root) {
fa1a0f42
NA
170 int index = (root->log_transid + 1) % 2;
171
4884b8e8 172 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
173 ret = -EAGAIN;
174 goto out;
175 }
34eb2a52 176
fa1a0f42
NA
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
ff782e0a 182 if (!root->log_start_pid) {
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 184 root->log_start_pid = current->pid;
ff782e0a 185 } else if (root->log_start_pid != current->pid) {
27cdeb70 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 187 }
34eb2a52 188 } else {
fa1a0f42
NA
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
e02119d5 200 ret = btrfs_add_log_tree(trans, root);
4a500fd1 201 if (ret)
e87ac136 202 goto out;
34eb2a52 203
e7a79811 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
e02119d5 207 }
34eb2a52 208
7237f183 209 atomic_inc(&root->log_writers);
289cffcb 210 if (!ctx->logging_new_name) {
34eb2a52 211 int index = root->log_transid % 2;
8b050d35 212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 213 ctx->log_transid = root->log_transid;
8b050d35 214 }
34eb2a52 215
e87ac136 216out:
7237f183 217 mutex_unlock(&root->log_mutex);
e87ac136 218 return ret;
e02119d5
CM
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
fa1a0f42 228 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
229 int ret = -ENOENT;
230
e7a79811
FM
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
7237f183 234 mutex_lock(&root->log_mutex);
fa1a0f42 235again:
e02119d5 236 if (root->log_root) {
fa1a0f42
NA
237 int index = (root->log_transid + 1) % 2;
238
e02119d5 239 ret = 0;
fa1a0f42
NA
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
7237f183 244 atomic_inc(&root->log_writers);
e02119d5 245 }
7237f183 246 mutex_unlock(&root->log_mutex);
e02119d5
CM
247 return ret;
248}
249
12fcfd22
CM
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
45128b08 255void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 256{
12fcfd22 257 atomic_inc(&root->log_writers);
12fcfd22
CM
258}
259
e02119d5
CM
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
143bede5 264void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 265{
7237f183 266 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 269 }
e02119d5
CM
270}
271
247462a5
DS
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
e02119d5
CM
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
f2d72f42
FM
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
e02119d5
CM
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 333 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
581c1760 341 struct walk_control *wc, u64 gen, int level)
e02119d5 342{
0b246afa 343 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
344 int ret = 0;
345
8c2a1a30
JB
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
0b246afa 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 351 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
352 if (ret)
353 return ret;
354 }
355
04018de5 356 if (wc->pin)
9fce5704 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 358 eb->len);
e02119d5 359
b50c6e25 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 361 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 362 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
b50c6e25 368 return ret;
e02119d5
CM
369}
370
086dcbfa
FM
371static int do_overwrite_item(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root,
373 struct btrfs_path *path,
374 struct extent_buffer *eb, int slot,
375 struct btrfs_key *key)
e02119d5
CM
376{
377 int ret;
378 u32 item_size;
379 u64 saved_i_size = 0;
380 int save_old_i_size = 0;
381 unsigned long src_ptr;
382 unsigned long dst_ptr;
383 int overwrite_root = 0;
4bc4bee4 384 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
385
386 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
387 overwrite_root = 1;
388
389 item_size = btrfs_item_size_nr(eb, slot);
390 src_ptr = btrfs_item_ptr_offset(eb, slot);
391
086dcbfa
FM
392 /* Our caller must have done a search for the key for us. */
393 ASSERT(path->nodes[0] != NULL);
394
395 /*
396 * And the slot must point to the exact key or the slot where the key
397 * should be at (the first item with a key greater than 'key')
398 */
399 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
400 struct btrfs_key found_key;
401
402 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
403 ret = btrfs_comp_cpu_keys(&found_key, key);
404 ASSERT(ret >= 0);
405 } else {
406 ret = 1;
407 }
4bc4bee4 408
e02119d5
CM
409 if (ret == 0) {
410 char *src_copy;
411 char *dst_copy;
412 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
413 path->slots[0]);
414 if (dst_size != item_size)
415 goto insert;
416
417 if (item_size == 0) {
b3b4aa74 418 btrfs_release_path(path);
e02119d5
CM
419 return 0;
420 }
421 dst_copy = kmalloc(item_size, GFP_NOFS);
422 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 423 if (!dst_copy || !src_copy) {
b3b4aa74 424 btrfs_release_path(path);
2a29edc6 425 kfree(dst_copy);
426 kfree(src_copy);
427 return -ENOMEM;
428 }
e02119d5
CM
429
430 read_extent_buffer(eb, src_copy, src_ptr, item_size);
431
432 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
433 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
434 item_size);
435 ret = memcmp(dst_copy, src_copy, item_size);
436
437 kfree(dst_copy);
438 kfree(src_copy);
439 /*
440 * they have the same contents, just return, this saves
441 * us from cowing blocks in the destination tree and doing
442 * extra writes that may not have been done by a previous
443 * sync
444 */
445 if (ret == 0) {
b3b4aa74 446 btrfs_release_path(path);
e02119d5
CM
447 return 0;
448 }
449
4bc4bee4
JB
450 /*
451 * We need to load the old nbytes into the inode so when we
452 * replay the extents we've logged we get the right nbytes.
453 */
454 if (inode_item) {
455 struct btrfs_inode_item *item;
456 u64 nbytes;
d555438b 457 u32 mode;
4bc4bee4
JB
458
459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
460 struct btrfs_inode_item);
461 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
462 item = btrfs_item_ptr(eb, slot,
463 struct btrfs_inode_item);
464 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
465
466 /*
467 * If this is a directory we need to reset the i_size to
468 * 0 so that we can set it up properly when replaying
469 * the rest of the items in this log.
470 */
471 mode = btrfs_inode_mode(eb, item);
472 if (S_ISDIR(mode))
473 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
474 }
475 } else if (inode_item) {
476 struct btrfs_inode_item *item;
d555438b 477 u32 mode;
4bc4bee4
JB
478
479 /*
480 * New inode, set nbytes to 0 so that the nbytes comes out
481 * properly when we replay the extents.
482 */
483 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
484 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
485
486 /*
487 * If this is a directory we need to reset the i_size to 0 so
488 * that we can set it up properly when replaying the rest of
489 * the items in this log.
490 */
491 mode = btrfs_inode_mode(eb, item);
492 if (S_ISDIR(mode))
493 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
494 }
495insert:
b3b4aa74 496 btrfs_release_path(path);
e02119d5 497 /* try to insert the key into the destination tree */
df8d116f 498 path->skip_release_on_error = 1;
e02119d5
CM
499 ret = btrfs_insert_empty_item(trans, root, path,
500 key, item_size);
df8d116f 501 path->skip_release_on_error = 0;
e02119d5
CM
502
503 /* make sure any existing item is the correct size */
df8d116f 504 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
505 u32 found_size;
506 found_size = btrfs_item_size_nr(path->nodes[0],
507 path->slots[0]);
143bede5 508 if (found_size > item_size)
78ac4f9e 509 btrfs_truncate_item(path, item_size, 1);
143bede5 510 else if (found_size < item_size)
c71dd880 511 btrfs_extend_item(path, item_size - found_size);
e02119d5 512 } else if (ret) {
4a500fd1 513 return ret;
e02119d5
CM
514 }
515 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
516 path->slots[0]);
517
518 /* don't overwrite an existing inode if the generation number
519 * was logged as zero. This is done when the tree logging code
520 * is just logging an inode to make sure it exists after recovery.
521 *
522 * Also, don't overwrite i_size on directories during replay.
523 * log replay inserts and removes directory items based on the
524 * state of the tree found in the subvolume, and i_size is modified
525 * as it goes
526 */
527 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
528 struct btrfs_inode_item *src_item;
529 struct btrfs_inode_item *dst_item;
530
531 src_item = (struct btrfs_inode_item *)src_ptr;
532 dst_item = (struct btrfs_inode_item *)dst_ptr;
533
1a4bcf47
FM
534 if (btrfs_inode_generation(eb, src_item) == 0) {
535 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 536 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 537
2f2ff0ee
FM
538 /*
539 * For regular files an ino_size == 0 is used only when
540 * logging that an inode exists, as part of a directory
541 * fsync, and the inode wasn't fsynced before. In this
542 * case don't set the size of the inode in the fs/subvol
543 * tree, otherwise we would be throwing valid data away.
544 */
1a4bcf47 545 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 546 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
547 ino_size != 0)
548 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 549 goto no_copy;
1a4bcf47 550 }
e02119d5
CM
551
552 if (overwrite_root &&
553 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
554 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
555 save_old_i_size = 1;
556 saved_i_size = btrfs_inode_size(path->nodes[0],
557 dst_item);
558 }
559 }
560
561 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
562 src_ptr, item_size);
563
564 if (save_old_i_size) {
565 struct btrfs_inode_item *dst_item;
566 dst_item = (struct btrfs_inode_item *)dst_ptr;
567 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
568 }
569
570 /* make sure the generation is filled in */
571 if (key->type == BTRFS_INODE_ITEM_KEY) {
572 struct btrfs_inode_item *dst_item;
573 dst_item = (struct btrfs_inode_item *)dst_ptr;
574 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
575 btrfs_set_inode_generation(path->nodes[0], dst_item,
576 trans->transid);
577 }
578 }
579no_copy:
580 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 581 btrfs_release_path(path);
e02119d5
CM
582 return 0;
583}
584
086dcbfa
FM
585/*
586 * Item overwrite used by replay and tree logging. eb, slot and key all refer
587 * to the src data we are copying out.
588 *
589 * root is the tree we are copying into, and path is a scratch
590 * path for use in this function (it should be released on entry and
591 * will be released on exit).
592 *
593 * If the key is already in the destination tree the existing item is
594 * overwritten. If the existing item isn't big enough, it is extended.
595 * If it is too large, it is truncated.
596 *
597 * If the key isn't in the destination yet, a new item is inserted.
598 */
599static int overwrite_item(struct btrfs_trans_handle *trans,
600 struct btrfs_root *root,
601 struct btrfs_path *path,
602 struct extent_buffer *eb, int slot,
603 struct btrfs_key *key)
604{
605 int ret;
606
607 /* Look for the key in the destination tree. */
608 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
609 if (ret < 0)
610 return ret;
611
612 return do_overwrite_item(trans, root, path, eb, slot, key);
613}
614
e02119d5
CM
615/*
616 * simple helper to read an inode off the disk from a given root
617 * This can only be called for subvolume roots and not for the log
618 */
619static noinline struct inode *read_one_inode(struct btrfs_root *root,
620 u64 objectid)
621{
622 struct inode *inode;
e02119d5 623
0202e83f 624 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 625 if (IS_ERR(inode))
5d4f98a2 626 inode = NULL;
e02119d5
CM
627 return inode;
628}
629
630/* replays a single extent in 'eb' at 'slot' with 'key' into the
631 * subvolume 'root'. path is released on entry and should be released
632 * on exit.
633 *
634 * extents in the log tree have not been allocated out of the extent
635 * tree yet. So, this completes the allocation, taking a reference
636 * as required if the extent already exists or creating a new extent
637 * if it isn't in the extent allocation tree yet.
638 *
639 * The extent is inserted into the file, dropping any existing extents
640 * from the file that overlap the new one.
641 */
642static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct extent_buffer *eb, int slot,
646 struct btrfs_key *key)
647{
5893dfb9 648 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 649 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 650 int found_type;
e02119d5 651 u64 extent_end;
e02119d5 652 u64 start = key->offset;
4bc4bee4 653 u64 nbytes = 0;
e02119d5
CM
654 struct btrfs_file_extent_item *item;
655 struct inode *inode = NULL;
656 unsigned long size;
657 int ret = 0;
658
659 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
660 found_type = btrfs_file_extent_type(eb, item);
661
d899e052 662 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
663 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
664 nbytes = btrfs_file_extent_num_bytes(eb, item);
665 extent_end = start + nbytes;
666
667 /*
668 * We don't add to the inodes nbytes if we are prealloc or a
669 * hole.
670 */
671 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
672 nbytes = 0;
673 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 674 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 675 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 676 extent_end = ALIGN(start + size,
0b246afa 677 fs_info->sectorsize);
e02119d5
CM
678 } else {
679 ret = 0;
680 goto out;
681 }
682
683 inode = read_one_inode(root, key->objectid);
684 if (!inode) {
685 ret = -EIO;
686 goto out;
687 }
688
689 /*
690 * first check to see if we already have this extent in the
691 * file. This must be done before the btrfs_drop_extents run
692 * so we don't try to drop this extent.
693 */
f85b7379
DS
694 ret = btrfs_lookup_file_extent(trans, root, path,
695 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 696
d899e052
YZ
697 if (ret == 0 &&
698 (found_type == BTRFS_FILE_EXTENT_REG ||
699 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
700 struct btrfs_file_extent_item cmp1;
701 struct btrfs_file_extent_item cmp2;
702 struct btrfs_file_extent_item *existing;
703 struct extent_buffer *leaf;
704
705 leaf = path->nodes[0];
706 existing = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_file_extent_item);
708
709 read_extent_buffer(eb, &cmp1, (unsigned long)item,
710 sizeof(cmp1));
711 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
712 sizeof(cmp2));
713
714 /*
715 * we already have a pointer to this exact extent,
716 * we don't have to do anything
717 */
718 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 719 btrfs_release_path(path);
e02119d5
CM
720 goto out;
721 }
722 }
b3b4aa74 723 btrfs_release_path(path);
e02119d5
CM
724
725 /* drop any overlapping extents */
5893dfb9
FM
726 drop_args.start = start;
727 drop_args.end = extent_end;
728 drop_args.drop_cache = true;
729 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
730 if (ret)
731 goto out;
e02119d5 732
07d400a6
YZ
733 if (found_type == BTRFS_FILE_EXTENT_REG ||
734 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 735 u64 offset;
07d400a6
YZ
736 unsigned long dest_offset;
737 struct btrfs_key ins;
738
3168021c
FM
739 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
740 btrfs_fs_incompat(fs_info, NO_HOLES))
741 goto update_inode;
742
07d400a6
YZ
743 ret = btrfs_insert_empty_item(trans, root, path, key,
744 sizeof(*item));
3650860b
JB
745 if (ret)
746 goto out;
07d400a6
YZ
747 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
748 path->slots[0]);
749 copy_extent_buffer(path->nodes[0], eb, dest_offset,
750 (unsigned long)item, sizeof(*item));
751
752 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
753 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
754 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 755 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 756
df2c95f3
QW
757 /*
758 * Manually record dirty extent, as here we did a shallow
759 * file extent item copy and skip normal backref update,
760 * but modifying extent tree all by ourselves.
761 * So need to manually record dirty extent for qgroup,
762 * as the owner of the file extent changed from log tree
763 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
764 */
a95f3aaf 765 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
766 btrfs_file_extent_disk_bytenr(eb, item),
767 btrfs_file_extent_disk_num_bytes(eb, item),
768 GFP_NOFS);
769 if (ret < 0)
770 goto out;
771
07d400a6 772 if (ins.objectid > 0) {
82fa113f 773 struct btrfs_ref ref = { 0 };
07d400a6
YZ
774 u64 csum_start;
775 u64 csum_end;
776 LIST_HEAD(ordered_sums);
82fa113f 777
07d400a6
YZ
778 /*
779 * is this extent already allocated in the extent
780 * allocation tree? If so, just add a reference
781 */
2ff7e61e 782 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 783 ins.offset);
3736127a
MPS
784 if (ret < 0) {
785 goto out;
786 } else if (ret == 0) {
82fa113f
QW
787 btrfs_init_generic_ref(&ref,
788 BTRFS_ADD_DELAYED_REF,
789 ins.objectid, ins.offset, 0);
790 btrfs_init_data_ref(&ref,
791 root->root_key.objectid,
f42c5da6 792 key->objectid, offset, 0, false);
82fa113f 793 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
794 if (ret)
795 goto out;
07d400a6
YZ
796 } else {
797 /*
798 * insert the extent pointer in the extent
799 * allocation tree
800 */
5d4f98a2 801 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 802 root->root_key.objectid,
5d4f98a2 803 key->objectid, offset, &ins);
b50c6e25
JB
804 if (ret)
805 goto out;
07d400a6 806 }
b3b4aa74 807 btrfs_release_path(path);
07d400a6
YZ
808
809 if (btrfs_file_extent_compression(eb, item)) {
810 csum_start = ins.objectid;
811 csum_end = csum_start + ins.offset;
812 } else {
813 csum_start = ins.objectid +
814 btrfs_file_extent_offset(eb, item);
815 csum_end = csum_start +
816 btrfs_file_extent_num_bytes(eb, item);
817 }
818
819 ret = btrfs_lookup_csums_range(root->log_root,
820 csum_start, csum_end - 1,
a2de733c 821 &ordered_sums, 0);
3650860b
JB
822 if (ret)
823 goto out;
b84b8390
FM
824 /*
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
836 *
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
840 *
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
844 *
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
848 * of the extent:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 *
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
854 *
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 *
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
862 *
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 *
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
872 */
07d400a6
YZ
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 sums = list_entry(ordered_sums.next,
876 struct btrfs_ordered_sum,
877 list);
b84b8390 878 if (!ret)
40e046ac
FM
879 ret = btrfs_del_csums(trans,
880 fs_info->csum_root,
5b4aacef
JM
881 sums->bytenr,
882 sums->len);
3650860b
JB
883 if (!ret)
884 ret = btrfs_csum_file_blocks(trans,
0b246afa 885 fs_info->csum_root, sums);
07d400a6
YZ
886 list_del(&sums->list);
887 kfree(sums);
888 }
3650860b
JB
889 if (ret)
890 goto out;
07d400a6 891 } else {
b3b4aa74 892 btrfs_release_path(path);
07d400a6
YZ
893 }
894 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
895 /* inline extents are easy, we just overwrite them */
896 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
897 if (ret)
898 goto out;
07d400a6 899 }
e02119d5 900
9ddc959e
JB
901 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
902 extent_end - start);
903 if (ret)
904 goto out;
905
3168021c 906update_inode:
2766ff61 907 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 908 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
909out:
910 if (inode)
911 iput(inode);
912 return ret;
913}
914
915/*
916 * when cleaning up conflicts between the directory names in the
917 * subvolume, directory names in the log and directory names in the
918 * inode back references, we may have to unlink inodes from directories.
919 *
920 * This is a helper function to do the unlink of a specific directory
921 * item
922 */
923static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root,
925 struct btrfs_path *path,
207e7d92 926 struct btrfs_inode *dir,
e02119d5
CM
927 struct btrfs_dir_item *di)
928{
929 struct inode *inode;
930 char *name;
931 int name_len;
932 struct extent_buffer *leaf;
933 struct btrfs_key location;
934 int ret;
935
936 leaf = path->nodes[0];
937
938 btrfs_dir_item_key_to_cpu(leaf, di, &location);
939 name_len = btrfs_dir_name_len(leaf, di);
940 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 941 if (!name)
942 return -ENOMEM;
943
e02119d5 944 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 945 btrfs_release_path(path);
e02119d5
CM
946
947 inode = read_one_inode(root, location.objectid);
c00e9493 948 if (!inode) {
3650860b
JB
949 ret = -EIO;
950 goto out;
c00e9493 951 }
e02119d5 952
ec051c0f 953 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
954 if (ret)
955 goto out;
12fcfd22 956
207e7d92
NB
957 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
958 name_len);
3650860b
JB
959 if (ret)
960 goto out;
ada9af21 961 else
e5c304e6 962 ret = btrfs_run_delayed_items(trans);
3650860b 963out:
e02119d5 964 kfree(name);
e02119d5
CM
965 iput(inode);
966 return ret;
967}
968
969/*
77a5b9e3
FM
970 * See if a given name and sequence number found in an inode back reference are
971 * already in a directory and correctly point to this inode.
972 *
973 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
974 * exists.
e02119d5
CM
975 */
976static noinline int inode_in_dir(struct btrfs_root *root,
977 struct btrfs_path *path,
978 u64 dirid, u64 objectid, u64 index,
979 const char *name, int name_len)
980{
981 struct btrfs_dir_item *di;
982 struct btrfs_key location;
77a5b9e3 983 int ret = 0;
e02119d5
CM
984
985 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
986 index, name, name_len, 0);
77a5b9e3 987 if (IS_ERR(di)) {
8dcbc261 988 ret = PTR_ERR(di);
77a5b9e3
FM
989 goto out;
990 } else if (di) {
e02119d5
CM
991 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
992 if (location.objectid != objectid)
993 goto out;
77a5b9e3 994 } else {
e02119d5 995 goto out;
77a5b9e3 996 }
e02119d5 997
77a5b9e3 998 btrfs_release_path(path);
e02119d5 999 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
77a5b9e3
FM
1000 if (IS_ERR(di)) {
1001 ret = PTR_ERR(di);
e02119d5 1002 goto out;
77a5b9e3
FM
1003 } else if (di) {
1004 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1005 if (location.objectid == objectid)
1006 ret = 1;
1007 }
e02119d5 1008out:
b3b4aa74 1009 btrfs_release_path(path);
77a5b9e3 1010 return ret;
e02119d5
CM
1011}
1012
1013/*
1014 * helper function to check a log tree for a named back reference in
1015 * an inode. This is used to decide if a back reference that is
1016 * found in the subvolume conflicts with what we find in the log.
1017 *
1018 * inode backreferences may have multiple refs in a single item,
1019 * during replay we process one reference at a time, and we don't
1020 * want to delete valid links to a file from the subvolume if that
1021 * link is also in the log.
1022 */
1023static noinline int backref_in_log(struct btrfs_root *log,
1024 struct btrfs_key *key,
f186373f 1025 u64 ref_objectid,
df8d116f 1026 const char *name, int namelen)
e02119d5
CM
1027{
1028 struct btrfs_path *path;
e02119d5 1029 int ret;
e02119d5
CM
1030
1031 path = btrfs_alloc_path();
2a29edc6 1032 if (!path)
1033 return -ENOMEM;
1034
e02119d5 1035 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1036 if (ret < 0) {
1037 goto out;
1038 } else if (ret == 1) {
89cbf5f6 1039 ret = 0;
f186373f
MF
1040 goto out;
1041 }
1042
89cbf5f6
NB
1043 if (key->type == BTRFS_INODE_EXTREF_KEY)
1044 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1045 path->slots[0],
1046 ref_objectid,
1047 name, namelen);
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 path->slots[0],
1051 name, namelen);
e02119d5
CM
1052out:
1053 btrfs_free_path(path);
89cbf5f6 1054 return ret;
e02119d5
CM
1055}
1056
5a1d7843 1057static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1058 struct btrfs_root *root,
e02119d5 1059 struct btrfs_path *path,
5a1d7843 1060 struct btrfs_root *log_root,
94c91a1f
NB
1061 struct btrfs_inode *dir,
1062 struct btrfs_inode *inode,
f186373f
MF
1063 u64 inode_objectid, u64 parent_objectid,
1064 u64 ref_index, char *name, int namelen,
1065 int *search_done)
e02119d5 1066{
34f3e4f2 1067 int ret;
f186373f
MF
1068 char *victim_name;
1069 int victim_name_len;
1070 struct extent_buffer *leaf;
5a1d7843 1071 struct btrfs_dir_item *di;
f186373f
MF
1072 struct btrfs_key search_key;
1073 struct btrfs_inode_extref *extref;
c622ae60 1074
f186373f
MF
1075again:
1076 /* Search old style refs */
1077 search_key.objectid = inode_objectid;
1078 search_key.type = BTRFS_INODE_REF_KEY;
1079 search_key.offset = parent_objectid;
1080 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1081 if (ret == 0) {
e02119d5
CM
1082 struct btrfs_inode_ref *victim_ref;
1083 unsigned long ptr;
1084 unsigned long ptr_end;
f186373f
MF
1085
1086 leaf = path->nodes[0];
e02119d5
CM
1087
1088 /* are we trying to overwrite a back ref for the root directory
1089 * if so, just jump out, we're done
1090 */
f186373f 1091 if (search_key.objectid == search_key.offset)
5a1d7843 1092 return 1;
e02119d5
CM
1093
1094 /* check all the names in this back reference to see
1095 * if they are in the log. if so, we allow them to stay
1096 * otherwise they must be unlinked as a conflict
1097 */
1098 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1100 while (ptr < ptr_end) {
e02119d5
CM
1101 victim_ref = (struct btrfs_inode_ref *)ptr;
1102 victim_name_len = btrfs_inode_ref_name_len(leaf,
1103 victim_ref);
1104 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1105 if (!victim_name)
1106 return -ENOMEM;
e02119d5
CM
1107
1108 read_extent_buffer(leaf, victim_name,
1109 (unsigned long)(victim_ref + 1),
1110 victim_name_len);
1111
d3316c82
NB
1112 ret = backref_in_log(log_root, &search_key,
1113 parent_objectid, victim_name,
1114 victim_name_len);
1115 if (ret < 0) {
1116 kfree(victim_name);
1117 return ret;
1118 } else if (!ret) {
94c91a1f 1119 inc_nlink(&inode->vfs_inode);
b3b4aa74 1120 btrfs_release_path(path);
12fcfd22 1121
94c91a1f 1122 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1123 victim_name, victim_name_len);
f186373f 1124 kfree(victim_name);
3650860b
JB
1125 if (ret)
1126 return ret;
e5c304e6 1127 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1128 if (ret)
1129 return ret;
f186373f
MF
1130 *search_done = 1;
1131 goto again;
e02119d5
CM
1132 }
1133 kfree(victim_name);
f186373f 1134
e02119d5
CM
1135 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1136 }
e02119d5 1137
c622ae60 1138 /*
1139 * NOTE: we have searched root tree and checked the
bb7ab3b9 1140 * corresponding ref, it does not need to check again.
c622ae60 1141 */
5a1d7843 1142 *search_done = 1;
e02119d5 1143 }
b3b4aa74 1144 btrfs_release_path(path);
e02119d5 1145
f186373f
MF
1146 /* Same search but for extended refs */
1147 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1148 inode_objectid, parent_objectid, 0,
1149 0);
1150 if (!IS_ERR_OR_NULL(extref)) {
1151 u32 item_size;
1152 u32 cur_offset = 0;
1153 unsigned long base;
1154 struct inode *victim_parent;
1155
1156 leaf = path->nodes[0];
1157
1158 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1159 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1160
1161 while (cur_offset < item_size) {
dd9ef135 1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1163
1164 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1165
1166 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1167 goto next;
1168
1169 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1170 if (!victim_name)
1171 return -ENOMEM;
f186373f
MF
1172 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1173 victim_name_len);
1174
1175 search_key.objectid = inode_objectid;
1176 search_key.type = BTRFS_INODE_EXTREF_KEY;
1177 search_key.offset = btrfs_extref_hash(parent_objectid,
1178 victim_name,
1179 victim_name_len);
d3316c82
NB
1180 ret = backref_in_log(log_root, &search_key,
1181 parent_objectid, victim_name,
1182 victim_name_len);
1183 if (ret < 0) {
1184 return ret;
1185 } else if (!ret) {
f186373f
MF
1186 ret = -ENOENT;
1187 victim_parent = read_one_inode(root,
94c91a1f 1188 parent_objectid);
f186373f 1189 if (victim_parent) {
94c91a1f 1190 inc_nlink(&inode->vfs_inode);
f186373f
MF
1191 btrfs_release_path(path);
1192
1193 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1194 BTRFS_I(victim_parent),
94c91a1f 1195 inode,
4ec5934e
NB
1196 victim_name,
1197 victim_name_len);
ada9af21
FDBM
1198 if (!ret)
1199 ret = btrfs_run_delayed_items(
e5c304e6 1200 trans);
f186373f 1201 }
f186373f
MF
1202 iput(victim_parent);
1203 kfree(victim_name);
3650860b
JB
1204 if (ret)
1205 return ret;
f186373f
MF
1206 *search_done = 1;
1207 goto again;
1208 }
1209 kfree(victim_name);
f186373f
MF
1210next:
1211 cur_offset += victim_name_len + sizeof(*extref);
1212 }
1213 *search_done = 1;
1214 }
1215 btrfs_release_path(path);
1216
34f3e4f2 1217 /* look for a conflicting sequence number */
94c91a1f 1218 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1219 ref_index, name, namelen, 0);
52db7779 1220 if (IS_ERR(di)) {
8dcbc261 1221 return PTR_ERR(di);
52db7779 1222 } else if (di) {
94c91a1f 1223 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1224 if (ret)
1225 return ret;
34f3e4f2 1226 }
1227 btrfs_release_path(path);
1228
52042d8e 1229 /* look for a conflicting name */
94c91a1f 1230 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1231 name, namelen, 0);
52db7779
FM
1232 if (IS_ERR(di)) {
1233 return PTR_ERR(di);
1234 } else if (di) {
94c91a1f 1235 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1236 if (ret)
1237 return ret;
34f3e4f2 1238 }
1239 btrfs_release_path(path);
1240
5a1d7843
JS
1241 return 0;
1242}
e02119d5 1243
bae15d95
QW
1244static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1245 u32 *namelen, char **name, u64 *index,
1246 u64 *parent_objectid)
f186373f
MF
1247{
1248 struct btrfs_inode_extref *extref;
1249
1250 extref = (struct btrfs_inode_extref *)ref_ptr;
1251
1252 *namelen = btrfs_inode_extref_name_len(eb, extref);
1253 *name = kmalloc(*namelen, GFP_NOFS);
1254 if (*name == NULL)
1255 return -ENOMEM;
1256
1257 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1258 *namelen);
1259
1f250e92
FM
1260 if (index)
1261 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1262 if (parent_objectid)
1263 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1264
1265 return 0;
1266}
1267
bae15d95
QW
1268static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1269 u32 *namelen, char **name, u64 *index)
f186373f
MF
1270{
1271 struct btrfs_inode_ref *ref;
1272
1273 ref = (struct btrfs_inode_ref *)ref_ptr;
1274
1275 *namelen = btrfs_inode_ref_name_len(eb, ref);
1276 *name = kmalloc(*namelen, GFP_NOFS);
1277 if (*name == NULL)
1278 return -ENOMEM;
1279
1280 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1281
1f250e92
FM
1282 if (index)
1283 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1284
1285 return 0;
1286}
1287
1f250e92
FM
1288/*
1289 * Take an inode reference item from the log tree and iterate all names from the
1290 * inode reference item in the subvolume tree with the same key (if it exists).
1291 * For any name that is not in the inode reference item from the log tree, do a
1292 * proper unlink of that name (that is, remove its entry from the inode
1293 * reference item and both dir index keys).
1294 */
1295static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1296 struct btrfs_root *root,
1297 struct btrfs_path *path,
1298 struct btrfs_inode *inode,
1299 struct extent_buffer *log_eb,
1300 int log_slot,
1301 struct btrfs_key *key)
1302{
1303 int ret;
1304 unsigned long ref_ptr;
1305 unsigned long ref_end;
1306 struct extent_buffer *eb;
1307
1308again:
1309 btrfs_release_path(path);
1310 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1311 if (ret > 0) {
1312 ret = 0;
1313 goto out;
1314 }
1315 if (ret < 0)
1316 goto out;
1317
1318 eb = path->nodes[0];
1319 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1320 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1321 while (ref_ptr < ref_end) {
1322 char *name = NULL;
1323 int namelen;
1324 u64 parent_id;
1325
1326 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1327 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1328 NULL, &parent_id);
1329 } else {
1330 parent_id = key->offset;
1331 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1332 NULL);
1333 }
1334 if (ret)
1335 goto out;
1336
1337 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1338 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1339 parent_id, name,
1340 namelen);
1f250e92 1341 else
9bb8407f
NB
1342 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1343 name, namelen);
1f250e92
FM
1344
1345 if (!ret) {
1346 struct inode *dir;
1347
1348 btrfs_release_path(path);
1349 dir = read_one_inode(root, parent_id);
1350 if (!dir) {
1351 ret = -ENOENT;
1352 kfree(name);
1353 goto out;
1354 }
1355 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1356 inode, name, namelen);
1357 kfree(name);
1358 iput(dir);
1359 if (ret)
1360 goto out;
1361 goto again;
1362 }
1363
1364 kfree(name);
1365 ref_ptr += namelen;
1366 if (key->type == BTRFS_INODE_EXTREF_KEY)
1367 ref_ptr += sizeof(struct btrfs_inode_extref);
1368 else
1369 ref_ptr += sizeof(struct btrfs_inode_ref);
1370 }
1371 ret = 0;
1372 out:
1373 btrfs_release_path(path);
1374 return ret;
1375}
1376
0d836392
FM
1377static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1378 const u8 ref_type, const char *name,
1379 const int namelen)
1380{
1381 struct btrfs_key key;
1382 struct btrfs_path *path;
1383 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1384 int ret;
1385
1386 path = btrfs_alloc_path();
1387 if (!path)
1388 return -ENOMEM;
1389
1390 key.objectid = btrfs_ino(BTRFS_I(inode));
1391 key.type = ref_type;
1392 if (key.type == BTRFS_INODE_REF_KEY)
1393 key.offset = parent_id;
1394 else
1395 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1396
1397 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1398 if (ret < 0)
1399 goto out;
1400 if (ret > 0) {
1401 ret = 0;
1402 goto out;
1403 }
1404 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1405 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1406 path->slots[0], parent_id, name, namelen);
0d836392 1407 else
9bb8407f
NB
1408 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1409 name, namelen);
0d836392
FM
1410
1411out:
1412 btrfs_free_path(path);
1413 return ret;
1414}
1415
6b5fc433
FM
1416static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1417 struct inode *dir, struct inode *inode, const char *name,
1418 int namelen, u64 ref_index)
1419{
1420 struct btrfs_dir_item *dir_item;
1421 struct btrfs_key key;
1422 struct btrfs_path *path;
1423 struct inode *other_inode = NULL;
1424 int ret;
1425
1426 path = btrfs_alloc_path();
1427 if (!path)
1428 return -ENOMEM;
1429
1430 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1431 btrfs_ino(BTRFS_I(dir)),
1432 name, namelen, 0);
1433 if (!dir_item) {
1434 btrfs_release_path(path);
1435 goto add_link;
1436 } else if (IS_ERR(dir_item)) {
1437 ret = PTR_ERR(dir_item);
1438 goto out;
1439 }
1440
1441 /*
1442 * Our inode's dentry collides with the dentry of another inode which is
1443 * in the log but not yet processed since it has a higher inode number.
1444 * So delete that other dentry.
1445 */
1446 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1447 btrfs_release_path(path);
1448 other_inode = read_one_inode(root, key.objectid);
1449 if (!other_inode) {
1450 ret = -ENOENT;
1451 goto out;
1452 }
1453 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1454 name, namelen);
1455 if (ret)
1456 goto out;
1457 /*
1458 * If we dropped the link count to 0, bump it so that later the iput()
1459 * on the inode will not free it. We will fixup the link count later.
1460 */
1461 if (other_inode->i_nlink == 0)
1462 inc_nlink(other_inode);
1463
1464 ret = btrfs_run_delayed_items(trans);
1465 if (ret)
1466 goto out;
1467add_link:
1468 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1469 name, namelen, 0, ref_index);
1470out:
1471 iput(other_inode);
1472 btrfs_free_path(path);
1473
1474 return ret;
1475}
1476
5a1d7843
JS
1477/*
1478 * replay one inode back reference item found in the log tree.
1479 * eb, slot and key refer to the buffer and key found in the log tree.
1480 * root is the destination we are replaying into, and path is for temp
1481 * use by this function. (it should be released on return).
1482 */
1483static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1484 struct btrfs_root *root,
1485 struct btrfs_root *log,
1486 struct btrfs_path *path,
1487 struct extent_buffer *eb, int slot,
1488 struct btrfs_key *key)
1489{
03b2f08b
GB
1490 struct inode *dir = NULL;
1491 struct inode *inode = NULL;
5a1d7843
JS
1492 unsigned long ref_ptr;
1493 unsigned long ref_end;
03b2f08b 1494 char *name = NULL;
5a1d7843
JS
1495 int namelen;
1496 int ret;
1497 int search_done = 0;
f186373f
MF
1498 int log_ref_ver = 0;
1499 u64 parent_objectid;
1500 u64 inode_objectid;
f46dbe3d 1501 u64 ref_index = 0;
f186373f
MF
1502 int ref_struct_size;
1503
1504 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1505 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1506
1507 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1508 struct btrfs_inode_extref *r;
1509
1510 ref_struct_size = sizeof(struct btrfs_inode_extref);
1511 log_ref_ver = 1;
1512 r = (struct btrfs_inode_extref *)ref_ptr;
1513 parent_objectid = btrfs_inode_extref_parent(eb, r);
1514 } else {
1515 ref_struct_size = sizeof(struct btrfs_inode_ref);
1516 parent_objectid = key->offset;
1517 }
1518 inode_objectid = key->objectid;
e02119d5 1519
5a1d7843
JS
1520 /*
1521 * it is possible that we didn't log all the parent directories
1522 * for a given inode. If we don't find the dir, just don't
1523 * copy the back ref in. The link count fixup code will take
1524 * care of the rest
1525 */
f186373f 1526 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1527 if (!dir) {
1528 ret = -ENOENT;
1529 goto out;
1530 }
5a1d7843 1531
f186373f 1532 inode = read_one_inode(root, inode_objectid);
5a1d7843 1533 if (!inode) {
03b2f08b
GB
1534 ret = -EIO;
1535 goto out;
5a1d7843
JS
1536 }
1537
5a1d7843 1538 while (ref_ptr < ref_end) {
f186373f 1539 if (log_ref_ver) {
bae15d95
QW
1540 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1541 &ref_index, &parent_objectid);
f186373f
MF
1542 /*
1543 * parent object can change from one array
1544 * item to another.
1545 */
1546 if (!dir)
1547 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1548 if (!dir) {
1549 ret = -ENOENT;
1550 goto out;
1551 }
f186373f 1552 } else {
bae15d95
QW
1553 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1554 &ref_index);
f186373f
MF
1555 }
1556 if (ret)
03b2f08b 1557 goto out;
5a1d7843 1558
77a5b9e3
FM
1559 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1560 btrfs_ino(BTRFS_I(inode)), ref_index,
1561 name, namelen);
1562 if (ret < 0) {
1563 goto out;
1564 } else if (ret == 0) {
5a1d7843
JS
1565 /*
1566 * look for a conflicting back reference in the
1567 * metadata. if we find one we have to unlink that name
1568 * of the file before we add our new link. Later on, we
1569 * overwrite any existing back reference, and we don't
1570 * want to create dangling pointers in the directory.
1571 */
1572
1573 if (!search_done) {
1574 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1575 BTRFS_I(dir),
d75eefdf 1576 BTRFS_I(inode),
f186373f
MF
1577 inode_objectid,
1578 parent_objectid,
1579 ref_index, name, namelen,
5a1d7843 1580 &search_done);
03b2f08b
GB
1581 if (ret) {
1582 if (ret == 1)
1583 ret = 0;
3650860b
JB
1584 goto out;
1585 }
5a1d7843
JS
1586 }
1587
0d836392
FM
1588 /*
1589 * If a reference item already exists for this inode
1590 * with the same parent and name, but different index,
1591 * drop it and the corresponding directory index entries
1592 * from the parent before adding the new reference item
1593 * and dir index entries, otherwise we would fail with
1594 * -EEXIST returned from btrfs_add_link() below.
1595 */
1596 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1597 name, namelen);
1598 if (ret > 0) {
1599 ret = btrfs_unlink_inode(trans, root,
1600 BTRFS_I(dir),
1601 BTRFS_I(inode),
1602 name, namelen);
1603 /*
1604 * If we dropped the link count to 0, bump it so
1605 * that later the iput() on the inode will not
1606 * free it. We will fixup the link count later.
1607 */
1608 if (!ret && inode->i_nlink == 0)
1609 inc_nlink(inode);
1610 }
1611 if (ret < 0)
1612 goto out;
1613
5a1d7843 1614 /* insert our name */
6b5fc433
FM
1615 ret = add_link(trans, root, dir, inode, name, namelen,
1616 ref_index);
3650860b
JB
1617 if (ret)
1618 goto out;
5a1d7843 1619
f96d4474
JB
1620 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1621 if (ret)
1622 goto out;
5a1d7843 1623 }
77a5b9e3 1624 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1625
f186373f 1626 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1627 kfree(name);
03b2f08b 1628 name = NULL;
f186373f
MF
1629 if (log_ref_ver) {
1630 iput(dir);
1631 dir = NULL;
1632 }
5a1d7843 1633 }
e02119d5 1634
1f250e92
FM
1635 /*
1636 * Before we overwrite the inode reference item in the subvolume tree
1637 * with the item from the log tree, we must unlink all names from the
1638 * parent directory that are in the subvolume's tree inode reference
1639 * item, otherwise we end up with an inconsistent subvolume tree where
1640 * dir index entries exist for a name but there is no inode reference
1641 * item with the same name.
1642 */
1643 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1644 key);
1645 if (ret)
1646 goto out;
1647
e02119d5
CM
1648 /* finally write the back reference in the inode */
1649 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1650out:
b3b4aa74 1651 btrfs_release_path(path);
03b2f08b 1652 kfree(name);
e02119d5
CM
1653 iput(dir);
1654 iput(inode);
3650860b 1655 return ret;
e02119d5
CM
1656}
1657
f186373f 1658static int count_inode_extrefs(struct btrfs_root *root,
36283658 1659 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1660{
1661 int ret = 0;
1662 int name_len;
1663 unsigned int nlink = 0;
1664 u32 item_size;
1665 u32 cur_offset = 0;
36283658 1666 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1667 u64 offset = 0;
1668 unsigned long ptr;
1669 struct btrfs_inode_extref *extref;
1670 struct extent_buffer *leaf;
1671
1672 while (1) {
1673 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1674 &extref, &offset);
1675 if (ret)
1676 break;
c71bf099 1677
f186373f
MF
1678 leaf = path->nodes[0];
1679 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1680 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1681 cur_offset = 0;
f186373f
MF
1682
1683 while (cur_offset < item_size) {
1684 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1685 name_len = btrfs_inode_extref_name_len(leaf, extref);
1686
1687 nlink++;
1688
1689 cur_offset += name_len + sizeof(*extref);
1690 }
1691
1692 offset++;
1693 btrfs_release_path(path);
1694 }
1695 btrfs_release_path(path);
1696
2c2c452b 1697 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1698 return ret;
1699 return nlink;
1700}
1701
1702static int count_inode_refs(struct btrfs_root *root,
f329e319 1703 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1704{
e02119d5
CM
1705 int ret;
1706 struct btrfs_key key;
f186373f 1707 unsigned int nlink = 0;
e02119d5
CM
1708 unsigned long ptr;
1709 unsigned long ptr_end;
1710 int name_len;
f329e319 1711 u64 ino = btrfs_ino(inode);
e02119d5 1712
33345d01 1713 key.objectid = ino;
e02119d5
CM
1714 key.type = BTRFS_INODE_REF_KEY;
1715 key.offset = (u64)-1;
1716
d397712b 1717 while (1) {
e02119d5
CM
1718 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1719 if (ret < 0)
1720 break;
1721 if (ret > 0) {
1722 if (path->slots[0] == 0)
1723 break;
1724 path->slots[0]--;
1725 }
e93ae26f 1726process_slot:
e02119d5
CM
1727 btrfs_item_key_to_cpu(path->nodes[0], &key,
1728 path->slots[0]);
33345d01 1729 if (key.objectid != ino ||
e02119d5
CM
1730 key.type != BTRFS_INODE_REF_KEY)
1731 break;
1732 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1733 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1734 path->slots[0]);
d397712b 1735 while (ptr < ptr_end) {
e02119d5
CM
1736 struct btrfs_inode_ref *ref;
1737
1738 ref = (struct btrfs_inode_ref *)ptr;
1739 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1740 ref);
1741 ptr = (unsigned long)(ref + 1) + name_len;
1742 nlink++;
1743 }
1744
1745 if (key.offset == 0)
1746 break;
e93ae26f
FDBM
1747 if (path->slots[0] > 0) {
1748 path->slots[0]--;
1749 goto process_slot;
1750 }
e02119d5 1751 key.offset--;
b3b4aa74 1752 btrfs_release_path(path);
e02119d5 1753 }
b3b4aa74 1754 btrfs_release_path(path);
f186373f
MF
1755
1756 return nlink;
1757}
1758
1759/*
1760 * There are a few corners where the link count of the file can't
1761 * be properly maintained during replay. So, instead of adding
1762 * lots of complexity to the log code, we just scan the backrefs
1763 * for any file that has been through replay.
1764 *
1765 * The scan will update the link count on the inode to reflect the
1766 * number of back refs found. If it goes down to zero, the iput
1767 * will free the inode.
1768 */
1769static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1770 struct btrfs_root *root,
1771 struct inode *inode)
1772{
1773 struct btrfs_path *path;
1774 int ret;
1775 u64 nlink = 0;
4a0cc7ca 1776 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1777
1778 path = btrfs_alloc_path();
1779 if (!path)
1780 return -ENOMEM;
1781
f329e319 1782 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1783 if (ret < 0)
1784 goto out;
1785
1786 nlink = ret;
1787
36283658 1788 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1789 if (ret < 0)
1790 goto out;
1791
1792 nlink += ret;
1793
1794 ret = 0;
1795
e02119d5 1796 if (nlink != inode->i_nlink) {
bfe86848 1797 set_nlink(inode, nlink);
f96d4474
JB
1798 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1799 if (ret)
1800 goto out;
e02119d5 1801 }
8d5bf1cb 1802 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1803
c71bf099
YZ
1804 if (inode->i_nlink == 0) {
1805 if (S_ISDIR(inode->i_mode)) {
1806 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1807 ino, 1);
3650860b
JB
1808 if (ret)
1809 goto out;
c71bf099 1810 }
ecdcf3c2
NB
1811 ret = btrfs_insert_orphan_item(trans, root, ino);
1812 if (ret == -EEXIST)
1813 ret = 0;
12fcfd22 1814 }
12fcfd22 1815
f186373f
MF
1816out:
1817 btrfs_free_path(path);
1818 return ret;
e02119d5
CM
1819}
1820
1821static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1822 struct btrfs_root *root,
1823 struct btrfs_path *path)
1824{
1825 int ret;
1826 struct btrfs_key key;
1827 struct inode *inode;
1828
1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 key.offset = (u64)-1;
d397712b 1832 while (1) {
e02119d5
CM
1833 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1834 if (ret < 0)
1835 break;
1836
1837 if (ret == 1) {
011b28ac 1838 ret = 0;
e02119d5
CM
1839 if (path->slots[0] == 0)
1840 break;
1841 path->slots[0]--;
1842 }
1843
1844 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1845 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1846 key.type != BTRFS_ORPHAN_ITEM_KEY)
1847 break;
1848
1849 ret = btrfs_del_item(trans, root, path);
65a246c5 1850 if (ret)
011b28ac 1851 break;
e02119d5 1852
b3b4aa74 1853 btrfs_release_path(path);
e02119d5 1854 inode = read_one_inode(root, key.offset);
011b28ac
JB
1855 if (!inode) {
1856 ret = -EIO;
1857 break;
1858 }
e02119d5
CM
1859
1860 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1861 iput(inode);
3650860b 1862 if (ret)
011b28ac 1863 break;
e02119d5 1864
12fcfd22
CM
1865 /*
1866 * fixup on a directory may create new entries,
1867 * make sure we always look for the highset possible
1868 * offset
1869 */
1870 key.offset = (u64)-1;
e02119d5 1871 }
b3b4aa74 1872 btrfs_release_path(path);
65a246c5 1873 return ret;
e02119d5
CM
1874}
1875
1876
1877/*
1878 * record a given inode in the fixup dir so we can check its link
1879 * count when replay is done. The link count is incremented here
1880 * so the inode won't go away until we check it
1881 */
1882static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1883 struct btrfs_root *root,
1884 struct btrfs_path *path,
1885 u64 objectid)
1886{
1887 struct btrfs_key key;
1888 int ret = 0;
1889 struct inode *inode;
1890
1891 inode = read_one_inode(root, objectid);
c00e9493
TI
1892 if (!inode)
1893 return -EIO;
e02119d5
CM
1894
1895 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1896 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1897 key.offset = objectid;
1898
1899 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1900
b3b4aa74 1901 btrfs_release_path(path);
e02119d5 1902 if (ret == 0) {
9bf7a489
JB
1903 if (!inode->i_nlink)
1904 set_nlink(inode, 1);
1905 else
8b558c5f 1906 inc_nlink(inode);
9a56fcd1 1907 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1908 } else if (ret == -EEXIST) {
1909 ret = 0;
e02119d5
CM
1910 }
1911 iput(inode);
1912
1913 return ret;
1914}
1915
1916/*
1917 * when replaying the log for a directory, we only insert names
1918 * for inodes that actually exist. This means an fsync on a directory
1919 * does not implicitly fsync all the new files in it
1920 */
1921static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1922 struct btrfs_root *root,
e02119d5 1923 u64 dirid, u64 index,
60d53eb3 1924 char *name, int name_len,
e02119d5
CM
1925 struct btrfs_key *location)
1926{
1927 struct inode *inode;
1928 struct inode *dir;
1929 int ret;
1930
1931 inode = read_one_inode(root, location->objectid);
1932 if (!inode)
1933 return -ENOENT;
1934
1935 dir = read_one_inode(root, dirid);
1936 if (!dir) {
1937 iput(inode);
1938 return -EIO;
1939 }
d555438b 1940
db0a669f
NB
1941 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1942 name_len, 1, index);
e02119d5
CM
1943
1944 /* FIXME, put inode into FIXUP list */
1945
1946 iput(inode);
1947 iput(dir);
1948 return ret;
1949}
1950
1951/*
1952 * take a single entry in a log directory item and replay it into
1953 * the subvolume.
1954 *
1955 * if a conflicting item exists in the subdirectory already,
1956 * the inode it points to is unlinked and put into the link count
1957 * fix up tree.
1958 *
1959 * If a name from the log points to a file or directory that does
1960 * not exist in the FS, it is skipped. fsyncs on directories
1961 * do not force down inodes inside that directory, just changes to the
1962 * names or unlinks in a directory.
bb53eda9
FM
1963 *
1964 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1965 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1966 */
1967static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 struct btrfs_path *path,
1970 struct extent_buffer *eb,
1971 struct btrfs_dir_item *di,
1972 struct btrfs_key *key)
1973{
1974 char *name;
1975 int name_len;
1976 struct btrfs_dir_item *dst_di;
1977 struct btrfs_key found_key;
1978 struct btrfs_key log_key;
1979 struct inode *dir;
e02119d5 1980 u8 log_type;
cfd31269
FM
1981 bool exists;
1982 int ret;
d555438b 1983 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1984 bool name_added = false;
e02119d5
CM
1985
1986 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1987 if (!dir)
1988 return -EIO;
e02119d5
CM
1989
1990 name_len = btrfs_dir_name_len(eb, di);
1991 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1992 if (!name) {
1993 ret = -ENOMEM;
1994 goto out;
1995 }
2a29edc6 1996
e02119d5
CM
1997 log_type = btrfs_dir_type(eb, di);
1998 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1999 name_len);
2000
2001 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 2002 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 2003 btrfs_release_path(path);
cfd31269
FM
2004 if (ret < 0)
2005 goto out;
2006 exists = (ret == 0);
2007 ret = 0;
4bef0848 2008
e02119d5
CM
2009 if (key->type == BTRFS_DIR_ITEM_KEY) {
2010 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2011 name, name_len, 1);
d397712b 2012 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2013 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2014 key->objectid,
2015 key->offset, name,
2016 name_len, 1);
2017 } else {
3650860b
JB
2018 /* Corruption */
2019 ret = -EINVAL;
2020 goto out;
e02119d5 2021 }
e15ac641 2022
e15ac641
FM
2023 if (IS_ERR(dst_di)) {
2024 ret = PTR_ERR(dst_di);
2025 goto out;
2026 } else if (!dst_di) {
e02119d5
CM
2027 /* we need a sequence number to insert, so we only
2028 * do inserts for the BTRFS_DIR_INDEX_KEY types
2029 */
2030 if (key->type != BTRFS_DIR_INDEX_KEY)
2031 goto out;
2032 goto insert;
2033 }
2034
2035 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2036 /* the existing item matches the logged item */
2037 if (found_key.objectid == log_key.objectid &&
2038 found_key.type == log_key.type &&
2039 found_key.offset == log_key.offset &&
2040 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 2041 update_size = false;
e02119d5
CM
2042 goto out;
2043 }
2044
2045 /*
2046 * don't drop the conflicting directory entry if the inode
2047 * for the new entry doesn't exist
2048 */
4bef0848 2049 if (!exists)
e02119d5
CM
2050 goto out;
2051
207e7d92 2052 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2053 if (ret)
2054 goto out;
e02119d5
CM
2055
2056 if (key->type == BTRFS_DIR_INDEX_KEY)
2057 goto insert;
2058out:
b3b4aa74 2059 btrfs_release_path(path);
d555438b 2060 if (!ret && update_size) {
6ef06d27 2061 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 2062 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 2063 }
e02119d5
CM
2064 kfree(name);
2065 iput(dir);
bb53eda9
FM
2066 if (!ret && name_added)
2067 ret = 1;
3650860b 2068 return ret;
e02119d5
CM
2069
2070insert:
725af92a
NB
2071 /*
2072 * Check if the inode reference exists in the log for the given name,
2073 * inode and parent inode
2074 */
2075 found_key.objectid = log_key.objectid;
2076 found_key.type = BTRFS_INODE_REF_KEY;
2077 found_key.offset = key->objectid;
2078 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2079 if (ret < 0) {
2080 goto out;
2081 } else if (ret) {
2082 /* The dentry will be added later. */
2083 ret = 0;
2084 update_size = false;
2085 goto out;
2086 }
2087
2088 found_key.objectid = log_key.objectid;
2089 found_key.type = BTRFS_INODE_EXTREF_KEY;
2090 found_key.offset = key->objectid;
2091 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2092 name_len);
2093 if (ret < 0) {
2094 goto out;
2095 } else if (ret) {
df8d116f
FM
2096 /* The dentry will be added later. */
2097 ret = 0;
2098 update_size = false;
2099 goto out;
2100 }
b3b4aa74 2101 btrfs_release_path(path);
60d53eb3
Z
2102 ret = insert_one_name(trans, root, key->objectid, key->offset,
2103 name, name_len, &log_key);
df8d116f 2104 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2105 goto out;
bb53eda9
FM
2106 if (!ret)
2107 name_added = true;
d555438b 2108 update_size = false;
3650860b 2109 ret = 0;
e02119d5
CM
2110 goto out;
2111}
2112
2113/*
2114 * find all the names in a directory item and reconcile them into
2115 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2116 * one name in a directory item, but the same code gets used for
2117 * both directory index types
2118 */
2119static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_path *path,
2122 struct extent_buffer *eb, int slot,
2123 struct btrfs_key *key)
2124{
bb53eda9 2125 int ret = 0;
e02119d5
CM
2126 u32 item_size = btrfs_item_size_nr(eb, slot);
2127 struct btrfs_dir_item *di;
2128 int name_len;
2129 unsigned long ptr;
2130 unsigned long ptr_end;
bb53eda9 2131 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2132
2133 ptr = btrfs_item_ptr_offset(eb, slot);
2134 ptr_end = ptr + item_size;
d397712b 2135 while (ptr < ptr_end) {
e02119d5
CM
2136 di = (struct btrfs_dir_item *)ptr;
2137 name_len = btrfs_dir_name_len(eb, di);
2138 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2139 if (ret < 0)
2140 break;
e02119d5
CM
2141 ptr = (unsigned long)(di + 1);
2142 ptr += name_len;
bb53eda9
FM
2143
2144 /*
2145 * If this entry refers to a non-directory (directories can not
2146 * have a link count > 1) and it was added in the transaction
2147 * that was not committed, make sure we fixup the link count of
2148 * the inode it the entry points to. Otherwise something like
2149 * the following would result in a directory pointing to an
2150 * inode with a wrong link that does not account for this dir
2151 * entry:
2152 *
2153 * mkdir testdir
2154 * touch testdir/foo
2155 * touch testdir/bar
2156 * sync
2157 *
2158 * ln testdir/bar testdir/bar_link
2159 * ln testdir/foo testdir/foo_link
2160 * xfs_io -c "fsync" testdir/bar
2161 *
2162 * <power failure>
2163 *
2164 * mount fs, log replay happens
2165 *
2166 * File foo would remain with a link count of 1 when it has two
2167 * entries pointing to it in the directory testdir. This would
2168 * make it impossible to ever delete the parent directory has
2169 * it would result in stale dentries that can never be deleted.
2170 */
2171 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2172 struct btrfs_key di_key;
2173
2174 if (!fixup_path) {
2175 fixup_path = btrfs_alloc_path();
2176 if (!fixup_path) {
2177 ret = -ENOMEM;
2178 break;
2179 }
2180 }
2181
2182 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2183 ret = link_to_fixup_dir(trans, root, fixup_path,
2184 di_key.objectid);
2185 if (ret)
2186 break;
2187 }
2188 ret = 0;
e02119d5 2189 }
bb53eda9
FM
2190 btrfs_free_path(fixup_path);
2191 return ret;
e02119d5
CM
2192}
2193
2194/*
2195 * directory replay has two parts. There are the standard directory
2196 * items in the log copied from the subvolume, and range items
2197 * created in the log while the subvolume was logged.
2198 *
2199 * The range items tell us which parts of the key space the log
2200 * is authoritative for. During replay, if a key in the subvolume
2201 * directory is in a logged range item, but not actually in the log
2202 * that means it was deleted from the directory before the fsync
2203 * and should be removed.
2204 */
2205static noinline int find_dir_range(struct btrfs_root *root,
2206 struct btrfs_path *path,
2207 u64 dirid, int key_type,
2208 u64 *start_ret, u64 *end_ret)
2209{
2210 struct btrfs_key key;
2211 u64 found_end;
2212 struct btrfs_dir_log_item *item;
2213 int ret;
2214 int nritems;
2215
2216 if (*start_ret == (u64)-1)
2217 return 1;
2218
2219 key.objectid = dirid;
2220 key.type = key_type;
2221 key.offset = *start_ret;
2222
2223 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2224 if (ret < 0)
2225 goto out;
2226 if (ret > 0) {
2227 if (path->slots[0] == 0)
2228 goto out;
2229 path->slots[0]--;
2230 }
2231 if (ret != 0)
2232 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2233
2234 if (key.type != key_type || key.objectid != dirid) {
2235 ret = 1;
2236 goto next;
2237 }
2238 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2239 struct btrfs_dir_log_item);
2240 found_end = btrfs_dir_log_end(path->nodes[0], item);
2241
2242 if (*start_ret >= key.offset && *start_ret <= found_end) {
2243 ret = 0;
2244 *start_ret = key.offset;
2245 *end_ret = found_end;
2246 goto out;
2247 }
2248 ret = 1;
2249next:
2250 /* check the next slot in the tree to see if it is a valid item */
2251 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2252 path->slots[0]++;
e02119d5
CM
2253 if (path->slots[0] >= nritems) {
2254 ret = btrfs_next_leaf(root, path);
2255 if (ret)
2256 goto out;
e02119d5
CM
2257 }
2258
2259 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2260
2261 if (key.type != key_type || key.objectid != dirid) {
2262 ret = 1;
2263 goto out;
2264 }
2265 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2266 struct btrfs_dir_log_item);
2267 found_end = btrfs_dir_log_end(path->nodes[0], item);
2268 *start_ret = key.offset;
2269 *end_ret = found_end;
2270 ret = 0;
2271out:
b3b4aa74 2272 btrfs_release_path(path);
e02119d5
CM
2273 return ret;
2274}
2275
2276/*
2277 * this looks for a given directory item in the log. If the directory
2278 * item is not in the log, the item is removed and the inode it points
2279 * to is unlinked
2280 */
2281static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2282 struct btrfs_root *root,
2283 struct btrfs_root *log,
2284 struct btrfs_path *path,
2285 struct btrfs_path *log_path,
2286 struct inode *dir,
2287 struct btrfs_key *dir_key)
2288{
2289 int ret;
2290 struct extent_buffer *eb;
2291 int slot;
2292 u32 item_size;
2293 struct btrfs_dir_item *di;
2294 struct btrfs_dir_item *log_di;
2295 int name_len;
2296 unsigned long ptr;
2297 unsigned long ptr_end;
2298 char *name;
2299 struct inode *inode;
2300 struct btrfs_key location;
2301
2302again:
2303 eb = path->nodes[0];
2304 slot = path->slots[0];
2305 item_size = btrfs_item_size_nr(eb, slot);
2306 ptr = btrfs_item_ptr_offset(eb, slot);
2307 ptr_end = ptr + item_size;
d397712b 2308 while (ptr < ptr_end) {
e02119d5
CM
2309 di = (struct btrfs_dir_item *)ptr;
2310 name_len = btrfs_dir_name_len(eb, di);
2311 name = kmalloc(name_len, GFP_NOFS);
2312 if (!name) {
2313 ret = -ENOMEM;
2314 goto out;
2315 }
2316 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2317 name_len);
2318 log_di = NULL;
12fcfd22 2319 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2320 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2321 dir_key->objectid,
2322 name, name_len, 0);
12fcfd22 2323 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2324 log_di = btrfs_lookup_dir_index_item(trans, log,
2325 log_path,
2326 dir_key->objectid,
2327 dir_key->offset,
2328 name, name_len, 0);
2329 }
8dcbc261 2330 if (!log_di) {
e02119d5 2331 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2332 btrfs_release_path(path);
2333 btrfs_release_path(log_path);
e02119d5 2334 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2335 if (!inode) {
2336 kfree(name);
2337 return -EIO;
2338 }
e02119d5
CM
2339
2340 ret = link_to_fixup_dir(trans, root,
2341 path, location.objectid);
3650860b
JB
2342 if (ret) {
2343 kfree(name);
2344 iput(inode);
2345 goto out;
2346 }
2347
8b558c5f 2348 inc_nlink(inode);
4ec5934e
NB
2349 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2350 BTRFS_I(inode), name, name_len);
3650860b 2351 if (!ret)
e5c304e6 2352 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2353 kfree(name);
2354 iput(inode);
3650860b
JB
2355 if (ret)
2356 goto out;
e02119d5
CM
2357
2358 /* there might still be more names under this key
2359 * check and repeat if required
2360 */
2361 ret = btrfs_search_slot(NULL, root, dir_key, path,
2362 0, 0);
2363 if (ret == 0)
2364 goto again;
2365 ret = 0;
2366 goto out;
269d040f
FDBM
2367 } else if (IS_ERR(log_di)) {
2368 kfree(name);
2369 return PTR_ERR(log_di);
e02119d5 2370 }
b3b4aa74 2371 btrfs_release_path(log_path);
e02119d5
CM
2372 kfree(name);
2373
2374 ptr = (unsigned long)(di + 1);
2375 ptr += name_len;
2376 }
2377 ret = 0;
2378out:
b3b4aa74
DS
2379 btrfs_release_path(path);
2380 btrfs_release_path(log_path);
e02119d5
CM
2381 return ret;
2382}
2383
4f764e51
FM
2384static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2385 struct btrfs_root *root,
2386 struct btrfs_root *log,
2387 struct btrfs_path *path,
2388 const u64 ino)
2389{
2390 struct btrfs_key search_key;
2391 struct btrfs_path *log_path;
2392 int i;
2393 int nritems;
2394 int ret;
2395
2396 log_path = btrfs_alloc_path();
2397 if (!log_path)
2398 return -ENOMEM;
2399
2400 search_key.objectid = ino;
2401 search_key.type = BTRFS_XATTR_ITEM_KEY;
2402 search_key.offset = 0;
2403again:
2404 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2405 if (ret < 0)
2406 goto out;
2407process_leaf:
2408 nritems = btrfs_header_nritems(path->nodes[0]);
2409 for (i = path->slots[0]; i < nritems; i++) {
2410 struct btrfs_key key;
2411 struct btrfs_dir_item *di;
2412 struct btrfs_dir_item *log_di;
2413 u32 total_size;
2414 u32 cur;
2415
2416 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2417 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2418 ret = 0;
2419 goto out;
2420 }
2421
2422 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2423 total_size = btrfs_item_size_nr(path->nodes[0], i);
2424 cur = 0;
2425 while (cur < total_size) {
2426 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2427 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2428 u32 this_len = sizeof(*di) + name_len + data_len;
2429 char *name;
2430
2431 name = kmalloc(name_len, GFP_NOFS);
2432 if (!name) {
2433 ret = -ENOMEM;
2434 goto out;
2435 }
2436 read_extent_buffer(path->nodes[0], name,
2437 (unsigned long)(di + 1), name_len);
2438
2439 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2440 name, name_len, 0);
2441 btrfs_release_path(log_path);
2442 if (!log_di) {
2443 /* Doesn't exist in log tree, so delete it. */
2444 btrfs_release_path(path);
2445 di = btrfs_lookup_xattr(trans, root, path, ino,
2446 name, name_len, -1);
2447 kfree(name);
2448 if (IS_ERR(di)) {
2449 ret = PTR_ERR(di);
2450 goto out;
2451 }
2452 ASSERT(di);
2453 ret = btrfs_delete_one_dir_name(trans, root,
2454 path, di);
2455 if (ret)
2456 goto out;
2457 btrfs_release_path(path);
2458 search_key = key;
2459 goto again;
2460 }
2461 kfree(name);
2462 if (IS_ERR(log_di)) {
2463 ret = PTR_ERR(log_di);
2464 goto out;
2465 }
2466 cur += this_len;
2467 di = (struct btrfs_dir_item *)((char *)di + this_len);
2468 }
2469 }
2470 ret = btrfs_next_leaf(root, path);
2471 if (ret > 0)
2472 ret = 0;
2473 else if (ret == 0)
2474 goto process_leaf;
2475out:
2476 btrfs_free_path(log_path);
2477 btrfs_release_path(path);
2478 return ret;
2479}
2480
2481
e02119d5
CM
2482/*
2483 * deletion replay happens before we copy any new directory items
2484 * out of the log or out of backreferences from inodes. It
2485 * scans the log to find ranges of keys that log is authoritative for,
2486 * and then scans the directory to find items in those ranges that are
2487 * not present in the log.
2488 *
2489 * Anything we don't find in the log is unlinked and removed from the
2490 * directory.
2491 */
2492static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2493 struct btrfs_root *root,
2494 struct btrfs_root *log,
2495 struct btrfs_path *path,
12fcfd22 2496 u64 dirid, int del_all)
e02119d5
CM
2497{
2498 u64 range_start;
2499 u64 range_end;
2500 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2501 int ret = 0;
2502 struct btrfs_key dir_key;
2503 struct btrfs_key found_key;
2504 struct btrfs_path *log_path;
2505 struct inode *dir;
2506
2507 dir_key.objectid = dirid;
2508 dir_key.type = BTRFS_DIR_ITEM_KEY;
2509 log_path = btrfs_alloc_path();
2510 if (!log_path)
2511 return -ENOMEM;
2512
2513 dir = read_one_inode(root, dirid);
2514 /* it isn't an error if the inode isn't there, that can happen
2515 * because we replay the deletes before we copy in the inode item
2516 * from the log
2517 */
2518 if (!dir) {
2519 btrfs_free_path(log_path);
2520 return 0;
2521 }
2522again:
2523 range_start = 0;
2524 range_end = 0;
d397712b 2525 while (1) {
12fcfd22
CM
2526 if (del_all)
2527 range_end = (u64)-1;
2528 else {
2529 ret = find_dir_range(log, path, dirid, key_type,
2530 &range_start, &range_end);
10adb115
FM
2531 if (ret < 0)
2532 goto out;
2533 else if (ret > 0)
12fcfd22
CM
2534 break;
2535 }
e02119d5
CM
2536
2537 dir_key.offset = range_start;
d397712b 2538 while (1) {
e02119d5
CM
2539 int nritems;
2540 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2541 0, 0);
2542 if (ret < 0)
2543 goto out;
2544
2545 nritems = btrfs_header_nritems(path->nodes[0]);
2546 if (path->slots[0] >= nritems) {
2547 ret = btrfs_next_leaf(root, path);
b98def7c 2548 if (ret == 1)
e02119d5 2549 break;
b98def7c
LB
2550 else if (ret < 0)
2551 goto out;
e02119d5
CM
2552 }
2553 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2554 path->slots[0]);
2555 if (found_key.objectid != dirid ||
2556 found_key.type != dir_key.type)
2557 goto next_type;
2558
2559 if (found_key.offset > range_end)
2560 break;
2561
2562 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2563 log_path, dir,
2564 &found_key);
3650860b
JB
2565 if (ret)
2566 goto out;
e02119d5
CM
2567 if (found_key.offset == (u64)-1)
2568 break;
2569 dir_key.offset = found_key.offset + 1;
2570 }
b3b4aa74 2571 btrfs_release_path(path);
e02119d5
CM
2572 if (range_end == (u64)-1)
2573 break;
2574 range_start = range_end + 1;
2575 }
2576
2577next_type:
2578 ret = 0;
2579 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2580 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2581 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2582 btrfs_release_path(path);
e02119d5
CM
2583 goto again;
2584 }
2585out:
b3b4aa74 2586 btrfs_release_path(path);
e02119d5
CM
2587 btrfs_free_path(log_path);
2588 iput(dir);
2589 return ret;
2590}
2591
2592/*
2593 * the process_func used to replay items from the log tree. This
2594 * gets called in two different stages. The first stage just looks
2595 * for inodes and makes sure they are all copied into the subvolume.
2596 *
2597 * The second stage copies all the other item types from the log into
2598 * the subvolume. The two stage approach is slower, but gets rid of
2599 * lots of complexity around inodes referencing other inodes that exist
2600 * only in the log (references come from either directory items or inode
2601 * back refs).
2602 */
2603static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2604 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2605{
2606 int nritems;
2607 struct btrfs_path *path;
2608 struct btrfs_root *root = wc->replay_dest;
2609 struct btrfs_key key;
e02119d5
CM
2610 int i;
2611 int ret;
2612
581c1760 2613 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2614 if (ret)
2615 return ret;
e02119d5
CM
2616
2617 level = btrfs_header_level(eb);
2618
2619 if (level != 0)
2620 return 0;
2621
2622 path = btrfs_alloc_path();
1e5063d0
MF
2623 if (!path)
2624 return -ENOMEM;
e02119d5
CM
2625
2626 nritems = btrfs_header_nritems(eb);
2627 for (i = 0; i < nritems; i++) {
2628 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2629
2630 /* inode keys are done during the first stage */
2631 if (key.type == BTRFS_INODE_ITEM_KEY &&
2632 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2633 struct btrfs_inode_item *inode_item;
2634 u32 mode;
2635
2636 inode_item = btrfs_item_ptr(eb, i,
2637 struct btrfs_inode_item);
f2d72f42
FM
2638 /*
2639 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2640 * and never got linked before the fsync, skip it, as
2641 * replaying it is pointless since it would be deleted
2642 * later. We skip logging tmpfiles, but it's always
2643 * possible we are replaying a log created with a kernel
2644 * that used to log tmpfiles.
2645 */
2646 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2647 wc->ignore_cur_inode = true;
2648 continue;
2649 } else {
2650 wc->ignore_cur_inode = false;
2651 }
4f764e51
FM
2652 ret = replay_xattr_deletes(wc->trans, root, log,
2653 path, key.objectid);
2654 if (ret)
2655 break;
e02119d5
CM
2656 mode = btrfs_inode_mode(eb, inode_item);
2657 if (S_ISDIR(mode)) {
2658 ret = replay_dir_deletes(wc->trans,
12fcfd22 2659 root, log, path, key.objectid, 0);
b50c6e25
JB
2660 if (ret)
2661 break;
e02119d5
CM
2662 }
2663 ret = overwrite_item(wc->trans, root, path,
2664 eb, i, &key);
b50c6e25
JB
2665 if (ret)
2666 break;
e02119d5 2667
471d557a
FM
2668 /*
2669 * Before replaying extents, truncate the inode to its
2670 * size. We need to do it now and not after log replay
2671 * because before an fsync we can have prealloc extents
2672 * added beyond the inode's i_size. If we did it after,
2673 * through orphan cleanup for example, we would drop
2674 * those prealloc extents just after replaying them.
e02119d5
CM
2675 */
2676 if (S_ISREG(mode)) {
5893dfb9 2677 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2678 struct inode *inode;
2679 u64 from;
2680
2681 inode = read_one_inode(root, key.objectid);
2682 if (!inode) {
2683 ret = -EIO;
2684 break;
2685 }
2686 from = ALIGN(i_size_read(inode),
2687 root->fs_info->sectorsize);
5893dfb9
FM
2688 drop_args.start = from;
2689 drop_args.end = (u64)-1;
2690 drop_args.drop_cache = true;
2691 ret = btrfs_drop_extents(wc->trans, root,
2692 BTRFS_I(inode),
2693 &drop_args);
471d557a 2694 if (!ret) {
2766ff61
FM
2695 inode_sub_bytes(inode,
2696 drop_args.bytes_found);
f2d72f42 2697 /* Update the inode's nbytes. */
471d557a 2698 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2699 root, BTRFS_I(inode));
471d557a
FM
2700 }
2701 iput(inode);
b50c6e25
JB
2702 if (ret)
2703 break;
e02119d5 2704 }
c71bf099 2705
e02119d5
CM
2706 ret = link_to_fixup_dir(wc->trans, root,
2707 path, key.objectid);
b50c6e25
JB
2708 if (ret)
2709 break;
e02119d5 2710 }
dd8e7217 2711
f2d72f42
FM
2712 if (wc->ignore_cur_inode)
2713 continue;
2714
dd8e7217
JB
2715 if (key.type == BTRFS_DIR_INDEX_KEY &&
2716 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2717 ret = replay_one_dir_item(wc->trans, root, path,
2718 eb, i, &key);
2719 if (ret)
2720 break;
2721 }
2722
e02119d5
CM
2723 if (wc->stage < LOG_WALK_REPLAY_ALL)
2724 continue;
2725
2726 /* these keys are simply copied */
2727 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2728 ret = overwrite_item(wc->trans, root, path,
2729 eb, i, &key);
b50c6e25
JB
2730 if (ret)
2731 break;
2da1c669
LB
2732 } else if (key.type == BTRFS_INODE_REF_KEY ||
2733 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2734 ret = add_inode_ref(wc->trans, root, log, path,
2735 eb, i, &key);
b50c6e25
JB
2736 if (ret && ret != -ENOENT)
2737 break;
2738 ret = 0;
e02119d5
CM
2739 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2740 ret = replay_one_extent(wc->trans, root, path,
2741 eb, i, &key);
b50c6e25
JB
2742 if (ret)
2743 break;
dd8e7217 2744 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2745 ret = replay_one_dir_item(wc->trans, root, path,
2746 eb, i, &key);
b50c6e25
JB
2747 if (ret)
2748 break;
e02119d5
CM
2749 }
2750 }
2751 btrfs_free_path(path);
b50c6e25 2752 return ret;
e02119d5
CM
2753}
2754
6787bb9f
NB
2755/*
2756 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2757 */
2758static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2759{
2760 struct btrfs_block_group *cache;
2761
2762 cache = btrfs_lookup_block_group(fs_info, start);
2763 if (!cache) {
2764 btrfs_err(fs_info, "unable to find block group for %llu", start);
2765 return;
2766 }
2767
2768 spin_lock(&cache->space_info->lock);
2769 spin_lock(&cache->lock);
2770 cache->reserved -= fs_info->nodesize;
2771 cache->space_info->bytes_reserved -= fs_info->nodesize;
2772 spin_unlock(&cache->lock);
2773 spin_unlock(&cache->space_info->lock);
2774
2775 btrfs_put_block_group(cache);
2776}
2777
d397712b 2778static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2779 struct btrfs_root *root,
2780 struct btrfs_path *path, int *level,
2781 struct walk_control *wc)
2782{
0b246afa 2783 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2784 u64 bytenr;
2785 u64 ptr_gen;
2786 struct extent_buffer *next;
2787 struct extent_buffer *cur;
e02119d5
CM
2788 u32 blocksize;
2789 int ret = 0;
2790
d397712b 2791 while (*level > 0) {
581c1760
QW
2792 struct btrfs_key first_key;
2793
e02119d5
CM
2794 cur = path->nodes[*level];
2795
fae7f21c 2796 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2797
2798 if (path->slots[*level] >=
2799 btrfs_header_nritems(cur))
2800 break;
2801
2802 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2803 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2804 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2805 blocksize = fs_info->nodesize;
e02119d5 2806
3fbaf258
JB
2807 next = btrfs_find_create_tree_block(fs_info, bytenr,
2808 btrfs_header_owner(cur),
2809 *level - 1);
c871b0f2
LB
2810 if (IS_ERR(next))
2811 return PTR_ERR(next);
e02119d5 2812
e02119d5 2813 if (*level == 1) {
581c1760
QW
2814 ret = wc->process_func(root, next, wc, ptr_gen,
2815 *level - 1);
b50c6e25
JB
2816 if (ret) {
2817 free_extent_buffer(next);
1e5063d0 2818 return ret;
b50c6e25 2819 }
4a500fd1 2820
e02119d5
CM
2821 path->slots[*level]++;
2822 if (wc->free) {
581c1760
QW
2823 ret = btrfs_read_buffer(next, ptr_gen,
2824 *level - 1, &first_key);
018642a1
TI
2825 if (ret) {
2826 free_extent_buffer(next);
2827 return ret;
2828 }
e02119d5 2829
681ae509
JB
2830 if (trans) {
2831 btrfs_tree_lock(next);
6a884d7d 2832 btrfs_clean_tree_block(next);
681ae509
JB
2833 btrfs_wait_tree_block_writeback(next);
2834 btrfs_tree_unlock(next);
7bfc1007 2835 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2836 bytenr, blocksize);
2837 if (ret) {
2838 free_extent_buffer(next);
2839 return ret;
2840 }
d3575156
NA
2841 btrfs_redirty_list_add(
2842 trans->transaction, next);
1846430c
LB
2843 } else {
2844 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2845 clear_extent_buffer_dirty(next);
10e958d5 2846 unaccount_log_buffer(fs_info, bytenr);
3650860b 2847 }
e02119d5
CM
2848 }
2849 free_extent_buffer(next);
2850 continue;
2851 }
581c1760 2852 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2853 if (ret) {
2854 free_extent_buffer(next);
2855 return ret;
2856 }
e02119d5 2857
e02119d5
CM
2858 if (path->nodes[*level-1])
2859 free_extent_buffer(path->nodes[*level-1]);
2860 path->nodes[*level-1] = next;
2861 *level = btrfs_header_level(next);
2862 path->slots[*level] = 0;
2863 cond_resched();
2864 }
4a500fd1 2865 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2866
2867 cond_resched();
2868 return 0;
2869}
2870
d397712b 2871static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2872 struct btrfs_root *root,
2873 struct btrfs_path *path, int *level,
2874 struct walk_control *wc)
2875{
0b246afa 2876 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2877 int i;
2878 int slot;
2879 int ret;
2880
d397712b 2881 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2882 slot = path->slots[i];
4a500fd1 2883 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2884 path->slots[i]++;
2885 *level = i;
2886 WARN_ON(*level == 0);
2887 return 0;
2888 } else {
1e5063d0 2889 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2890 btrfs_header_generation(path->nodes[*level]),
2891 *level);
1e5063d0
MF
2892 if (ret)
2893 return ret;
2894
e02119d5
CM
2895 if (wc->free) {
2896 struct extent_buffer *next;
2897
2898 next = path->nodes[*level];
2899
681ae509
JB
2900 if (trans) {
2901 btrfs_tree_lock(next);
6a884d7d 2902 btrfs_clean_tree_block(next);
681ae509
JB
2903 btrfs_wait_tree_block_writeback(next);
2904 btrfs_tree_unlock(next);
7bfc1007 2905 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2906 path->nodes[*level]->start,
2907 path->nodes[*level]->len);
2908 if (ret)
2909 return ret;
1846430c
LB
2910 } else {
2911 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2912 clear_extent_buffer_dirty(next);
e02119d5 2913
10e958d5
NB
2914 unaccount_log_buffer(fs_info,
2915 path->nodes[*level]->start);
2916 }
e02119d5
CM
2917 }
2918 free_extent_buffer(path->nodes[*level]);
2919 path->nodes[*level] = NULL;
2920 *level = i + 1;
2921 }
2922 }
2923 return 1;
2924}
2925
2926/*
2927 * drop the reference count on the tree rooted at 'snap'. This traverses
2928 * the tree freeing any blocks that have a ref count of zero after being
2929 * decremented.
2930 */
2931static int walk_log_tree(struct btrfs_trans_handle *trans,
2932 struct btrfs_root *log, struct walk_control *wc)
2933{
2ff7e61e 2934 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2935 int ret = 0;
2936 int wret;
2937 int level;
2938 struct btrfs_path *path;
e02119d5
CM
2939 int orig_level;
2940
2941 path = btrfs_alloc_path();
db5b493a
TI
2942 if (!path)
2943 return -ENOMEM;
e02119d5
CM
2944
2945 level = btrfs_header_level(log->node);
2946 orig_level = level;
2947 path->nodes[level] = log->node;
67439dad 2948 atomic_inc(&log->node->refs);
e02119d5
CM
2949 path->slots[level] = 0;
2950
d397712b 2951 while (1) {
e02119d5
CM
2952 wret = walk_down_log_tree(trans, log, path, &level, wc);
2953 if (wret > 0)
2954 break;
79787eaa 2955 if (wret < 0) {
e02119d5 2956 ret = wret;
79787eaa
JM
2957 goto out;
2958 }
e02119d5
CM
2959
2960 wret = walk_up_log_tree(trans, log, path, &level, wc);
2961 if (wret > 0)
2962 break;
79787eaa 2963 if (wret < 0) {
e02119d5 2964 ret = wret;
79787eaa
JM
2965 goto out;
2966 }
e02119d5
CM
2967 }
2968
2969 /* was the root node processed? if not, catch it here */
2970 if (path->nodes[orig_level]) {
79787eaa 2971 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2972 btrfs_header_generation(path->nodes[orig_level]),
2973 orig_level);
79787eaa
JM
2974 if (ret)
2975 goto out;
e02119d5
CM
2976 if (wc->free) {
2977 struct extent_buffer *next;
2978
2979 next = path->nodes[orig_level];
2980
681ae509
JB
2981 if (trans) {
2982 btrfs_tree_lock(next);
6a884d7d 2983 btrfs_clean_tree_block(next);
681ae509
JB
2984 btrfs_wait_tree_block_writeback(next);
2985 btrfs_tree_unlock(next);
7bfc1007 2986 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2987 next->start, next->len);
2988 if (ret)
2989 goto out;
1846430c
LB
2990 } else {
2991 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2992 clear_extent_buffer_dirty(next);
10e958d5 2993 unaccount_log_buffer(fs_info, next->start);
681ae509 2994 }
e02119d5
CM
2995 }
2996 }
2997
79787eaa 2998out:
e02119d5 2999 btrfs_free_path(path);
e02119d5
CM
3000 return ret;
3001}
3002
7237f183
YZ
3003/*
3004 * helper function to update the item for a given subvolumes log root
3005 * in the tree of log roots
3006 */
3007static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
3008 struct btrfs_root *log,
3009 struct btrfs_root_item *root_item)
7237f183 3010{
0b246afa 3011 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
3012 int ret;
3013
3014 if (log->log_transid == 1) {
3015 /* insert root item on the first sync */
0b246afa 3016 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 3017 &log->root_key, root_item);
7237f183 3018 } else {
0b246afa 3019 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 3020 &log->root_key, root_item);
7237f183
YZ
3021 }
3022 return ret;
3023}
3024
60d53eb3 3025static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
3026{
3027 DEFINE_WAIT(wait);
7237f183 3028 int index = transid % 2;
e02119d5 3029
7237f183
YZ
3030 /*
3031 * we only allow two pending log transactions at a time,
3032 * so we know that if ours is more than 2 older than the
3033 * current transaction, we're done
3034 */
49e83f57 3035 for (;;) {
7237f183
YZ
3036 prepare_to_wait(&root->log_commit_wait[index],
3037 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 3038
49e83f57
LB
3039 if (!(root->log_transid_committed < transid &&
3040 atomic_read(&root->log_commit[index])))
3041 break;
12fcfd22 3042
49e83f57
LB
3043 mutex_unlock(&root->log_mutex);
3044 schedule();
7237f183 3045 mutex_lock(&root->log_mutex);
49e83f57
LB
3046 }
3047 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
3048}
3049
60d53eb3 3050static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3051{
3052 DEFINE_WAIT(wait);
8b050d35 3053
49e83f57
LB
3054 for (;;) {
3055 prepare_to_wait(&root->log_writer_wait, &wait,
3056 TASK_UNINTERRUPTIBLE);
3057 if (!atomic_read(&root->log_writers))
3058 break;
3059
7237f183 3060 mutex_unlock(&root->log_mutex);
49e83f57 3061 schedule();
575849ec 3062 mutex_lock(&root->log_mutex);
7237f183 3063 }
49e83f57 3064 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3065}
3066
8b050d35
MX
3067static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3068 struct btrfs_log_ctx *ctx)
3069{
8b050d35
MX
3070 mutex_lock(&root->log_mutex);
3071 list_del_init(&ctx->list);
3072 mutex_unlock(&root->log_mutex);
3073}
3074
3075/*
3076 * Invoked in log mutex context, or be sure there is no other task which
3077 * can access the list.
3078 */
3079static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3080 int index, int error)
3081{
3082 struct btrfs_log_ctx *ctx;
570dd450 3083 struct btrfs_log_ctx *safe;
8b050d35 3084
570dd450
CM
3085 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3086 list_del_init(&ctx->list);
8b050d35 3087 ctx->log_ret = error;
570dd450 3088 }
8b050d35
MX
3089}
3090
e02119d5
CM
3091/*
3092 * btrfs_sync_log does sends a given tree log down to the disk and
3093 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3094 * you know that any inodes previously logged are safely on disk only
3095 * if it returns 0.
3096 *
3097 * Any other return value means you need to call btrfs_commit_transaction.
3098 * Some of the edge cases for fsyncing directories that have had unlinks
3099 * or renames done in the past mean that sometimes the only safe
3100 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3101 * that has happened.
e02119d5
CM
3102 */
3103int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3104 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3105{
7237f183
YZ
3106 int index1;
3107 int index2;
8cef4e16 3108 int mark;
e02119d5 3109 int ret;
0b246afa 3110 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3111 struct btrfs_root *log = root->log_root;
0b246afa 3112 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3113 struct btrfs_root_item new_root_item;
bb14a59b 3114 int log_transid = 0;
8b050d35 3115 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3116 struct blk_plug plug;
47876f7c
FM
3117 u64 log_root_start;
3118 u64 log_root_level;
e02119d5 3119
7237f183 3120 mutex_lock(&root->log_mutex);
d1433deb
MX
3121 log_transid = ctx->log_transid;
3122 if (root->log_transid_committed >= log_transid) {
3123 mutex_unlock(&root->log_mutex);
3124 return ctx->log_ret;
3125 }
3126
3127 index1 = log_transid % 2;
7237f183 3128 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3129 wait_log_commit(root, log_transid);
7237f183 3130 mutex_unlock(&root->log_mutex);
8b050d35 3131 return ctx->log_ret;
e02119d5 3132 }
d1433deb 3133 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3134 atomic_set(&root->log_commit[index1], 1);
3135
3136 /* wait for previous tree log sync to complete */
3137 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3138 wait_log_commit(root, log_transid - 1);
48cab2e0 3139
86df7eb9 3140 while (1) {
2ecb7923 3141 int batch = atomic_read(&root->log_batch);
cd354ad6 3142 /* when we're on an ssd, just kick the log commit out */
0b246afa 3143 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3144 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3145 mutex_unlock(&root->log_mutex);
3146 schedule_timeout_uninterruptible(1);
3147 mutex_lock(&root->log_mutex);
3148 }
60d53eb3 3149 wait_for_writer(root);
2ecb7923 3150 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3151 break;
3152 }
e02119d5 3153
12fcfd22 3154 /* bail out if we need to do a full commit */
4884b8e8 3155 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3156 ret = -EAGAIN;
3157 mutex_unlock(&root->log_mutex);
3158 goto out;
3159 }
3160
8cef4e16
YZ
3161 if (log_transid % 2 == 0)
3162 mark = EXTENT_DIRTY;
3163 else
3164 mark = EXTENT_NEW;
3165
690587d1
CM
3166 /* we start IO on all the marked extents here, but we don't actually
3167 * wait for them until later.
3168 */
c6adc9cc 3169 blk_start_plug(&plug);
2ff7e61e 3170 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3171 /*
3172 * -EAGAIN happens when someone, e.g., a concurrent transaction
3173 * commit, writes a dirty extent in this tree-log commit. This
3174 * concurrent write will create a hole writing out the extents,
3175 * and we cannot proceed on a zoned filesystem, requiring
3176 * sequential writing. While we can bail out to a full commit
3177 * here, but we can continue hoping the concurrent writing fills
3178 * the hole.
3179 */
3180 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3181 ret = 0;
79787eaa 3182 if (ret) {
c6adc9cc 3183 blk_finish_plug(&plug);
66642832 3184 btrfs_abort_transaction(trans, ret);
90787766 3185 btrfs_set_log_full_commit(trans);
79787eaa
JM
3186 mutex_unlock(&root->log_mutex);
3187 goto out;
3188 }
7237f183 3189
4203e968
JB
3190 /*
3191 * We _must_ update under the root->log_mutex in order to make sure we
3192 * have a consistent view of the log root we are trying to commit at
3193 * this moment.
3194 *
3195 * We _must_ copy this into a local copy, because we are not holding the
3196 * log_root_tree->log_mutex yet. This is important because when we
3197 * commit the log_root_tree we must have a consistent view of the
3198 * log_root_tree when we update the super block to point at the
3199 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3200 * with the commit and possibly point at the new block which we may not
3201 * have written out.
3202 */
5d4f98a2 3203 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3204 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3205
7237f183
YZ
3206 root->log_transid++;
3207 log->log_transid = root->log_transid;
ff782e0a 3208 root->log_start_pid = 0;
7237f183 3209 /*
8cef4e16
YZ
3210 * IO has been started, blocks of the log tree have WRITTEN flag set
3211 * in their headers. new modifications of the log will be written to
3212 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3213 */
3214 mutex_unlock(&root->log_mutex);
3215
3ddebf27 3216 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3217 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3218 if (!log_root_tree->node) {
3219 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3220 if (ret) {
ea32af47 3221 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3222 goto out;
3223 }
3224 }
e75f9fd1 3225 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3226 }
3227
e75f9fd1
NA
3228 btrfs_init_log_ctx(&root_log_ctx, NULL);
3229
3230 mutex_lock(&log_root_tree->log_mutex);
3231
e3d3b415
FM
3232 index2 = log_root_tree->log_transid % 2;
3233 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3234 root_log_ctx.log_transid = log_root_tree->log_transid;
3235
4203e968
JB
3236 /*
3237 * Now we are safe to update the log_root_tree because we're under the
3238 * log_mutex, and we're a current writer so we're holding the commit
3239 * open until we drop the log_mutex.
3240 */
3241 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3242 if (ret) {
d1433deb
MX
3243 if (!list_empty(&root_log_ctx.list))
3244 list_del_init(&root_log_ctx.list);
3245
c6adc9cc 3246 blk_finish_plug(&plug);
90787766 3247 btrfs_set_log_full_commit(trans);
995946dd 3248
79787eaa 3249 if (ret != -ENOSPC) {
66642832 3250 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3251 mutex_unlock(&log_root_tree->log_mutex);
3252 goto out;
3253 }
bf89d38f 3254 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3255 mutex_unlock(&log_root_tree->log_mutex);
3256 ret = -EAGAIN;
3257 goto out;
3258 }
3259
d1433deb 3260 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3261 blk_finish_plug(&plug);
cbd60aa7 3262 list_del_init(&root_log_ctx.list);
d1433deb
MX
3263 mutex_unlock(&log_root_tree->log_mutex);
3264 ret = root_log_ctx.log_ret;
3265 goto out;
3266 }
8b050d35 3267
d1433deb 3268 index2 = root_log_ctx.log_transid % 2;
7237f183 3269 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3270 blk_finish_plug(&plug);
bf89d38f 3271 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3272 wait_log_commit(log_root_tree,
d1433deb 3273 root_log_ctx.log_transid);
7237f183 3274 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3275 if (!ret)
3276 ret = root_log_ctx.log_ret;
7237f183
YZ
3277 goto out;
3278 }
d1433deb 3279 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3280 atomic_set(&log_root_tree->log_commit[index2], 1);
3281
12fcfd22 3282 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3283 wait_log_commit(log_root_tree,
d1433deb 3284 root_log_ctx.log_transid - 1);
12fcfd22
CM
3285 }
3286
12fcfd22
CM
3287 /*
3288 * now that we've moved on to the tree of log tree roots,
3289 * check the full commit flag again
3290 */
4884b8e8 3291 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3292 blk_finish_plug(&plug);
bf89d38f 3293 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3294 mutex_unlock(&log_root_tree->log_mutex);
3295 ret = -EAGAIN;
3296 goto out_wake_log_root;
3297 }
7237f183 3298
2ff7e61e 3299 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3300 &log_root_tree->dirty_log_pages,
3301 EXTENT_DIRTY | EXTENT_NEW);
3302 blk_finish_plug(&plug);
b528f467
NA
3303 /*
3304 * As described above, -EAGAIN indicates a hole in the extents. We
3305 * cannot wait for these write outs since the waiting cause a
3306 * deadlock. Bail out to the full commit instead.
3307 */
3308 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3309 btrfs_set_log_full_commit(trans);
3310 btrfs_wait_tree_log_extents(log, mark);
3311 mutex_unlock(&log_root_tree->log_mutex);
3312 goto out_wake_log_root;
3313 } else if (ret) {
90787766 3314 btrfs_set_log_full_commit(trans);
66642832 3315 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3316 mutex_unlock(&log_root_tree->log_mutex);
3317 goto out_wake_log_root;
3318 }
bf89d38f 3319 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3320 if (!ret)
bf89d38f
JM
3321 ret = btrfs_wait_tree_log_extents(log_root_tree,
3322 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3323 if (ret) {
90787766 3324 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3325 mutex_unlock(&log_root_tree->log_mutex);
3326 goto out_wake_log_root;
3327 }
e02119d5 3328
47876f7c
FM
3329 log_root_start = log_root_tree->node->start;
3330 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3331 log_root_tree->log_transid++;
7237f183
YZ
3332 mutex_unlock(&log_root_tree->log_mutex);
3333
3334 /*
47876f7c
FM
3335 * Here we are guaranteed that nobody is going to write the superblock
3336 * for the current transaction before us and that neither we do write
3337 * our superblock before the previous transaction finishes its commit
3338 * and writes its superblock, because:
3339 *
3340 * 1) We are holding a handle on the current transaction, so no body
3341 * can commit it until we release the handle;
3342 *
3343 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3344 * if the previous transaction is still committing, and hasn't yet
3345 * written its superblock, we wait for it to do it, because a
3346 * transaction commit acquires the tree_log_mutex when the commit
3347 * begins and releases it only after writing its superblock.
7237f183 3348 */
47876f7c 3349 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3350
3351 /*
3352 * The previous transaction writeout phase could have failed, and thus
3353 * marked the fs in an error state. We must not commit here, as we
3354 * could have updated our generation in the super_for_commit and
3355 * writing the super here would result in transid mismatches. If there
3356 * is an error here just bail.
3357 */
84961539 3358 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3359 ret = -EIO;
3360 btrfs_set_log_full_commit(trans);
3361 btrfs_abort_transaction(trans, ret);
3362 mutex_unlock(&fs_info->tree_log_mutex);
3363 goto out_wake_log_root;
3364 }
3365
47876f7c
FM
3366 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3367 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3368 ret = write_all_supers(fs_info, 1);
47876f7c 3369 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3370 if (ret) {
90787766 3371 btrfs_set_log_full_commit(trans);
66642832 3372 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3373 goto out_wake_log_root;
3374 }
7237f183 3375
e1a6d264
FM
3376 /*
3377 * We know there can only be one task here, since we have not yet set
3378 * root->log_commit[index1] to 0 and any task attempting to sync the
3379 * log must wait for the previous log transaction to commit if it's
3380 * still in progress or wait for the current log transaction commit if
3381 * someone else already started it. We use <= and not < because the
3382 * first log transaction has an ID of 0.
3383 */
3384 ASSERT(root->last_log_commit <= log_transid);
3385 root->last_log_commit = log_transid;
257c62e1 3386
12fcfd22 3387out_wake_log_root:
570dd450 3388 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3389 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3390
d1433deb 3391 log_root_tree->log_transid_committed++;
7237f183 3392 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3393 mutex_unlock(&log_root_tree->log_mutex);
3394
33a9eca7 3395 /*
093258e6
DS
3396 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3397 * all the updates above are seen by the woken threads. It might not be
3398 * necessary, but proving that seems to be hard.
33a9eca7 3399 */
093258e6 3400 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3401out:
d1433deb 3402 mutex_lock(&root->log_mutex);
570dd450 3403 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3404 root->log_transid_committed++;
7237f183 3405 atomic_set(&root->log_commit[index1], 0);
d1433deb 3406 mutex_unlock(&root->log_mutex);
8b050d35 3407
33a9eca7 3408 /*
093258e6
DS
3409 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3410 * all the updates above are seen by the woken threads. It might not be
3411 * necessary, but proving that seems to be hard.
33a9eca7 3412 */
093258e6 3413 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3414 return ret;
e02119d5
CM
3415}
3416
4a500fd1
YZ
3417static void free_log_tree(struct btrfs_trans_handle *trans,
3418 struct btrfs_root *log)
e02119d5
CM
3419{
3420 int ret;
e02119d5
CM
3421 struct walk_control wc = {
3422 .free = 1,
3423 .process_func = process_one_buffer
3424 };
3425
3ddebf27
NA
3426 if (log->node) {
3427 ret = walk_log_tree(trans, log, &wc);
3428 if (ret) {
3429 if (trans)
3430 btrfs_abort_transaction(trans, ret);
3431 else
3432 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3433 }
374b0e2d 3434 }
e02119d5 3435
59b0713a
FM
3436 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3437 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3438 extent_io_tree_release(&log->log_csum_range);
d3575156
NA
3439
3440 if (trans && log->node)
3441 btrfs_redirty_list_add(trans->transaction, log->node);
00246528 3442 btrfs_put_root(log);
4a500fd1
YZ
3443}
3444
3445/*
3446 * free all the extents used by the tree log. This should be called
3447 * at commit time of the full transaction
3448 */
3449int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3450{
3451 if (root->log_root) {
3452 free_log_tree(trans, root->log_root);
3453 root->log_root = NULL;
e7a79811 3454 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3455 }
3456 return 0;
3457}
3458
3459int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3460 struct btrfs_fs_info *fs_info)
3461{
3462 if (fs_info->log_root_tree) {
3463 free_log_tree(trans, fs_info->log_root_tree);
3464 fs_info->log_root_tree = NULL;
47876f7c 3465 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3466 }
e02119d5
CM
3467 return 0;
3468}
3469
803f0f64 3470/*
6e8e777d
FM
3471 * Check if an inode was logged in the current transaction. This may often
3472 * return some false positives, because logged_trans is an in memory only field,
3473 * not persisted anywhere. This is meant to be used in contexts where a false
3474 * positive has no functional consequences.
803f0f64
FM
3475 */
3476static bool inode_logged(struct btrfs_trans_handle *trans,
3477 struct btrfs_inode *inode)
3478{
3479 if (inode->logged_trans == trans->transid)
3480 return true;
3481
1e0860f3
FM
3482 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3483 return false;
3484
6e8e777d
FM
3485 /*
3486 * The inode's logged_trans is always 0 when we load it (because it is
3487 * not persisted in the inode item or elsewhere). So if it is 0, the
d135a533
FM
3488 * inode was last modified in the current transaction then the inode may
3489 * have been logged before in the current transaction, then evicted and
3490 * loaded again in the current transaction - or may have never been logged
3491 * in the current transaction, but since we can not be sure, we have to
3492 * assume it was, otherwise our callers can leave an inconsistent log.
6e8e777d
FM
3493 */
3494 if (inode->logged_trans == 0 &&
3495 inode->last_trans == trans->transid &&
803f0f64
FM
3496 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3497 return true;
3498
3499 return false;
3500}
3501
e02119d5
CM
3502/*
3503 * If both a file and directory are logged, and unlinks or renames are
3504 * mixed in, we have a few interesting corners:
3505 *
3506 * create file X in dir Y
3507 * link file X to X.link in dir Y
3508 * fsync file X
3509 * unlink file X but leave X.link
3510 * fsync dir Y
3511 *
3512 * After a crash we would expect only X.link to exist. But file X
3513 * didn't get fsync'd again so the log has back refs for X and X.link.
3514 *
3515 * We solve this by removing directory entries and inode backrefs from the
3516 * log when a file that was logged in the current transaction is
3517 * unlinked. Any later fsync will include the updated log entries, and
3518 * we'll be able to reconstruct the proper directory items from backrefs.
3519 *
3520 * This optimizations allows us to avoid relogging the entire inode
3521 * or the entire directory.
3522 */
9a35fc95
JB
3523void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3524 struct btrfs_root *root,
3525 const char *name, int name_len,
3526 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3527{
3528 struct btrfs_root *log;
3529 struct btrfs_dir_item *di;
3530 struct btrfs_path *path;
3531 int ret;
4a500fd1 3532 int err = 0;
49f34d1f 3533 u64 dir_ino = btrfs_ino(dir);
e02119d5 3534
803f0f64 3535 if (!inode_logged(trans, dir))
9a35fc95 3536 return;
3a5f1d45 3537
e02119d5
CM
3538 ret = join_running_log_trans(root);
3539 if (ret)
9a35fc95 3540 return;
e02119d5 3541
49f34d1f 3542 mutex_lock(&dir->log_mutex);
e02119d5
CM
3543
3544 log = root->log_root;
3545 path = btrfs_alloc_path();
a62f44a5
TI
3546 if (!path) {
3547 err = -ENOMEM;
3548 goto out_unlock;
3549 }
2a29edc6 3550
33345d01 3551 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3552 name, name_len, -1);
4a500fd1
YZ
3553 if (IS_ERR(di)) {
3554 err = PTR_ERR(di);
3555 goto fail;
3556 }
3557 if (di) {
e02119d5 3558 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3559 if (ret) {
3560 err = ret;
3561 goto fail;
3562 }
e02119d5 3563 }
b3b4aa74 3564 btrfs_release_path(path);
33345d01 3565 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3566 index, name, name_len, -1);
4a500fd1
YZ
3567 if (IS_ERR(di)) {
3568 err = PTR_ERR(di);
3569 goto fail;
3570 }
3571 if (di) {
e02119d5 3572 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3573 if (ret) {
3574 err = ret;
3575 goto fail;
3576 }
e02119d5
CM
3577 }
3578
ddffcf6f
FM
3579 /*
3580 * We do not need to update the size field of the directory's inode item
3581 * because on log replay we update the field to reflect all existing
3582 * entries in the directory (see overwrite_item()).
e02119d5 3583 */
4a500fd1 3584fail:
e02119d5 3585 btrfs_free_path(path);
a62f44a5 3586out_unlock:
49f34d1f 3587 mutex_unlock(&dir->log_mutex);
9a35fc95 3588 if (err < 0)
90787766 3589 btrfs_set_log_full_commit(trans);
12fcfd22 3590 btrfs_end_log_trans(root);
e02119d5
CM
3591}
3592
3593/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3594void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3595 struct btrfs_root *root,
3596 const char *name, int name_len,
3597 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3598{
3599 struct btrfs_root *log;
3600 u64 index;
3601 int ret;
3602
803f0f64 3603 if (!inode_logged(trans, inode))
9a35fc95 3604 return;
3a5f1d45 3605
e02119d5
CM
3606 ret = join_running_log_trans(root);
3607 if (ret)
9a35fc95 3608 return;
e02119d5 3609 log = root->log_root;
a491abb2 3610 mutex_lock(&inode->log_mutex);
e02119d5 3611
a491abb2 3612 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3613 dirid, &index);
a491abb2 3614 mutex_unlock(&inode->log_mutex);
9a35fc95 3615 if (ret < 0 && ret != -ENOENT)
90787766 3616 btrfs_set_log_full_commit(trans);
12fcfd22 3617 btrfs_end_log_trans(root);
e02119d5
CM
3618}
3619
3620/*
3621 * creates a range item in the log for 'dirid'. first_offset and
3622 * last_offset tell us which parts of the key space the log should
3623 * be considered authoritative for.
3624 */
3625static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3626 struct btrfs_root *log,
3627 struct btrfs_path *path,
3628 int key_type, u64 dirid,
3629 u64 first_offset, u64 last_offset)
3630{
3631 int ret;
3632 struct btrfs_key key;
3633 struct btrfs_dir_log_item *item;
3634
3635 key.objectid = dirid;
3636 key.offset = first_offset;
3637 if (key_type == BTRFS_DIR_ITEM_KEY)
3638 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3639 else
3640 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3641 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3642 if (ret)
3643 return ret;
e02119d5
CM
3644
3645 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3646 struct btrfs_dir_log_item);
3647 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3648 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3649 btrfs_release_path(path);
e02119d5
CM
3650 return 0;
3651}
3652
086dcbfa
FM
3653static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3654 struct btrfs_root *log,
3655 struct extent_buffer *src,
3656 struct btrfs_path *dst_path,
3657 int start_slot,
3658 int count)
3659{
3660 char *ins_data = NULL;
b7ef5f3a 3661 struct btrfs_item_batch batch;
086dcbfa 3662 struct extent_buffer *dst;
da1b811f
FM
3663 unsigned long src_offset;
3664 unsigned long dst_offset;
086dcbfa
FM
3665 struct btrfs_key key;
3666 u32 item_size;
3667 int ret;
3668 int i;
3669
3670 ASSERT(count > 0);
b7ef5f3a 3671 batch.nr = count;
086dcbfa
FM
3672
3673 if (count == 1) {
3674 btrfs_item_key_to_cpu(src, &key, start_slot);
3675 item_size = btrfs_item_size_nr(src, start_slot);
b7ef5f3a
FM
3676 batch.keys = &key;
3677 batch.data_sizes = &item_size;
3678 batch.total_data_size = item_size;
086dcbfa 3679 } else {
b7ef5f3a
FM
3680 struct btrfs_key *ins_keys;
3681 u32 *ins_sizes;
3682
086dcbfa
FM
3683 ins_data = kmalloc(count * sizeof(u32) +
3684 count * sizeof(struct btrfs_key), GFP_NOFS);
3685 if (!ins_data)
3686 return -ENOMEM;
3687
3688 ins_sizes = (u32 *)ins_data;
3689 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3690 batch.keys = ins_keys;
3691 batch.data_sizes = ins_sizes;
3692 batch.total_data_size = 0;
086dcbfa
FM
3693
3694 for (i = 0; i < count; i++) {
3695 const int slot = start_slot + i;
3696
3697 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3698 ins_sizes[i] = btrfs_item_size_nr(src, slot);
b7ef5f3a 3699 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3700 }
3701 }
3702
b7ef5f3a 3703 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3704 if (ret)
3705 goto out;
3706
3707 dst = dst_path->nodes[0];
da1b811f
FM
3708 /*
3709 * Copy all the items in bulk, in a single copy operation. Item data is
3710 * organized such that it's placed at the end of a leaf and from right
3711 * to left. For example, the data for the second item ends at an offset
3712 * that matches the offset where the data for the first item starts, the
3713 * data for the third item ends at an offset that matches the offset
3714 * where the data of the second items starts, and so on.
3715 * Therefore our source and destination start offsets for copy match the
3716 * offsets of the last items (highest slots).
3717 */
3718 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3719 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3720 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3721 btrfs_release_path(dst_path);
3722out:
3723 kfree(ins_data);
3724
3725 return ret;
3726}
3727
eb10d85e
FM
3728static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3729 struct btrfs_inode *inode,
3730 struct btrfs_path *path,
3731 struct btrfs_path *dst_path,
3732 int key_type,
3733 struct btrfs_log_ctx *ctx)
3734{
3735 struct btrfs_root *log = inode->root->log_root;
3736 struct extent_buffer *src = path->nodes[0];
3737 const int nritems = btrfs_header_nritems(src);
3738 const u64 ino = btrfs_ino(inode);
086dcbfa 3739 const bool inode_logged_before = inode_logged(trans, inode);
dc287224 3740 u64 last_logged_key_offset;
086dcbfa
FM
3741 bool last_found = false;
3742 int batch_start = 0;
3743 int batch_size = 0;
eb10d85e
FM
3744 int i;
3745
dc287224
FM
3746 if (key_type == BTRFS_DIR_ITEM_KEY)
3747 last_logged_key_offset = inode->last_dir_item_offset;
3748 else
3749 last_logged_key_offset = inode->last_dir_index_offset;
3750
eb10d85e
FM
3751 for (i = path->slots[0]; i < nritems; i++) {
3752 struct btrfs_key key;
eb10d85e
FM
3753 int ret;
3754
3755 btrfs_item_key_to_cpu(src, &key, i);
3756
086dcbfa
FM
3757 if (key.objectid != ino || key.type != key_type) {
3758 last_found = true;
3759 break;
3760 }
eb10d85e 3761
dc287224 3762 ctx->last_dir_item_offset = key.offset;
eb10d85e
FM
3763 /*
3764 * We must make sure that when we log a directory entry, the
3765 * corresponding inode, after log replay, has a matching link
3766 * count. For example:
3767 *
3768 * touch foo
3769 * mkdir mydir
3770 * sync
3771 * ln foo mydir/bar
3772 * xfs_io -c "fsync" mydir
3773 * <crash>
3774 * <mount fs and log replay>
3775 *
3776 * Would result in a fsync log that when replayed, our file inode
3777 * would have a link count of 1, but we get two directory entries
3778 * pointing to the same inode. After removing one of the names,
3779 * it would not be possible to remove the other name, which
3780 * resulted always in stale file handle errors, and would not be
3781 * possible to rmdir the parent directory, since its i_size could
3782 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3783 * resulting in -ENOTEMPTY errors.
3784 */
086dcbfa
FM
3785 if (!ctx->log_new_dentries) {
3786 struct btrfs_dir_item *di;
3787 struct btrfs_key di_key;
3788
3789 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3790 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3791 if ((btrfs_dir_transid(src, di) == trans->transid ||
3792 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3793 di_key.type != BTRFS_ROOT_ITEM_KEY)
3794 ctx->log_new_dentries = true;
3795 }
3796
3797 if (!inode_logged_before)
3798 goto add_to_batch;
dc287224
FM
3799
3800 /*
3801 * If we were logged before and have logged dir items, we can skip
3802 * checking if any item with a key offset larger than the last one
3803 * we logged is in the log tree, saving time and avoiding adding
3804 * contention on the log tree.
3805 */
3806 if (key.offset > last_logged_key_offset)
3807 goto add_to_batch;
086dcbfa
FM
3808 /*
3809 * Check if the key was already logged before. If not we can add
3810 * it to a batch for bulk insertion.
3811 */
3812 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3813 if (ret < 0) {
3814 return ret;
3815 } else if (ret > 0) {
3816 btrfs_release_path(dst_path);
3817 goto add_to_batch;
3818 }
3819
3820 /*
3821 * Item exists in the log. Overwrite the item in the log if it
3822 * has different content or do nothing if it has exactly the same
3823 * content. And then flush the current batch if any - do it after
3824 * overwriting the current item, or we would deadlock otherwise,
3825 * since we are holding a path for the existing item.
3826 */
3827 ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3828 if (ret < 0)
3829 return ret;
3830
3831 if (batch_size > 0) {
3832 ret = flush_dir_items_batch(trans, log, src, dst_path,
3833 batch_start, batch_size);
3834 if (ret < 0)
3835 return ret;
3836 batch_size = 0;
3837 }
3838 continue;
3839add_to_batch:
3840 if (batch_size == 0)
3841 batch_start = i;
3842 batch_size++;
eb10d85e
FM
3843 }
3844
086dcbfa
FM
3845 if (batch_size > 0) {
3846 int ret;
3847
3848 ret = flush_dir_items_batch(trans, log, src, dst_path,
3849 batch_start, batch_size);
3850 if (ret < 0)
3851 return ret;
3852 }
3853
3854 return last_found ? 1 : 0;
eb10d85e
FM
3855}
3856
e02119d5
CM
3857/*
3858 * log all the items included in the current transaction for a given
3859 * directory. This also creates the range items in the log tree required
3860 * to replay anything deleted before the fsync
3861 */
3862static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3863 struct btrfs_inode *inode,
e02119d5
CM
3864 struct btrfs_path *path,
3865 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3866 struct btrfs_log_ctx *ctx,
e02119d5
CM
3867 u64 min_offset, u64 *last_offset_ret)
3868{
3869 struct btrfs_key min_key;
90d04510 3870 struct btrfs_root *root = inode->root;
e02119d5 3871 struct btrfs_root *log = root->log_root;
4a500fd1 3872 int err = 0;
e02119d5 3873 int ret;
e02119d5
CM
3874 u64 first_offset = min_offset;
3875 u64 last_offset = (u64)-1;
684a5773 3876 u64 ino = btrfs_ino(inode);
e02119d5 3877
33345d01 3878 min_key.objectid = ino;
e02119d5
CM
3879 min_key.type = key_type;
3880 min_key.offset = min_offset;
3881
6174d3cb 3882 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3883
3884 /*
3885 * we didn't find anything from this transaction, see if there
3886 * is anything at all
3887 */
33345d01
LZ
3888 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3889 min_key.objectid = ino;
e02119d5
CM
3890 min_key.type = key_type;
3891 min_key.offset = (u64)-1;
b3b4aa74 3892 btrfs_release_path(path);
e02119d5
CM
3893 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3894 if (ret < 0) {
b3b4aa74 3895 btrfs_release_path(path);
e02119d5
CM
3896 return ret;
3897 }
33345d01 3898 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3899
3900 /* if ret == 0 there are items for this type,
3901 * create a range to tell us the last key of this type.
3902 * otherwise, there are no items in this directory after
3903 * *min_offset, and we create a range to indicate that.
3904 */
3905 if (ret == 0) {
3906 struct btrfs_key tmp;
3907 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3908 path->slots[0]);
d397712b 3909 if (key_type == tmp.type)
e02119d5 3910 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3911 }
3912 goto done;
3913 }
3914
3915 /* go backward to find any previous key */
33345d01 3916 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3917 if (ret == 0) {
3918 struct btrfs_key tmp;
3919 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3920 if (key_type == tmp.type) {
3921 first_offset = tmp.offset;
3922 ret = overwrite_item(trans, log, dst_path,
3923 path->nodes[0], path->slots[0],
3924 &tmp);
4a500fd1
YZ
3925 if (ret) {
3926 err = ret;
3927 goto done;
3928 }
e02119d5
CM
3929 }
3930 }
b3b4aa74 3931 btrfs_release_path(path);
e02119d5 3932
2cc83342
JB
3933 /*
3934 * Find the first key from this transaction again. See the note for
3935 * log_new_dir_dentries, if we're logging a directory recursively we
3936 * won't be holding its i_mutex, which means we can modify the directory
3937 * while we're logging it. If we remove an entry between our first
3938 * search and this search we'll not find the key again and can just
3939 * bail.
3940 */
bb56f02f 3941search:
e02119d5 3942 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3943 if (ret != 0)
e02119d5 3944 goto done;
e02119d5
CM
3945
3946 /*
3947 * we have a block from this transaction, log every item in it
3948 * from our directory
3949 */
d397712b 3950 while (1) {
eb10d85e
FM
3951 ret = process_dir_items_leaf(trans, inode, path, dst_path,
3952 key_type, ctx);
3953 if (ret != 0) {
3954 if (ret < 0)
4a500fd1 3955 err = ret;
eb10d85e 3956 goto done;
e02119d5 3957 }
eb10d85e 3958 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3959
3960 /*
3961 * look ahead to the next item and see if it is also
3962 * from this directory and from this transaction
3963 */
3964 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3965 if (ret) {
3966 if (ret == 1)
3967 last_offset = (u64)-1;
3968 else
3969 err = ret;
e02119d5
CM
3970 goto done;
3971 }
eb10d85e
FM
3972 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3973 if (min_key.objectid != ino || min_key.type != key_type) {
e02119d5
CM
3974 last_offset = (u64)-1;
3975 goto done;
3976 }
3977 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3978 ret = overwrite_item(trans, log, dst_path,
3979 path->nodes[0], path->slots[0],
eb10d85e 3980 &min_key);
4a500fd1
YZ
3981 if (ret)
3982 err = ret;
3983 else
eb10d85e 3984 last_offset = min_key.offset;
e02119d5
CM
3985 goto done;
3986 }
eb10d85e
FM
3987 if (need_resched()) {
3988 btrfs_release_path(path);
3989 cond_resched();
3990 goto search;
3991 }
e02119d5
CM
3992 }
3993done:
b3b4aa74
DS
3994 btrfs_release_path(path);
3995 btrfs_release_path(dst_path);
e02119d5 3996
4a500fd1
YZ
3997 if (err == 0) {
3998 *last_offset_ret = last_offset;
3999 /*
4000 * insert the log range keys to indicate where the log
4001 * is valid
4002 */
4003 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 4004 ino, first_offset, last_offset);
4a500fd1
YZ
4005 if (ret)
4006 err = ret;
4007 }
4008 return err;
e02119d5
CM
4009}
4010
4011/*
4012 * logging directories is very similar to logging inodes, We find all the items
4013 * from the current transaction and write them to the log.
4014 *
4015 * The recovery code scans the directory in the subvolume, and if it finds a
4016 * key in the range logged that is not present in the log tree, then it means
4017 * that dir entry was unlinked during the transaction.
4018 *
4019 * In order for that scan to work, we must include one key smaller than
4020 * the smallest logged by this transaction and one key larger than the largest
4021 * key logged by this transaction.
4022 */
4023static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4024 struct btrfs_inode *inode,
e02119d5 4025 struct btrfs_path *path,
2f2ff0ee
FM
4026 struct btrfs_path *dst_path,
4027 struct btrfs_log_ctx *ctx)
e02119d5
CM
4028{
4029 u64 min_key;
4030 u64 max_key;
4031 int ret;
4032 int key_type = BTRFS_DIR_ITEM_KEY;
4033
dc287224
FM
4034 /*
4035 * If this is the first time we are being logged in the current
4036 * transaction, or we were logged before but the inode was evicted and
4037 * reloaded later, in which case its logged_trans is 0, reset the values
4038 * of the last logged key offsets. Note that we don't use the helper
4039 * function inode_logged() here - that is because the function returns
4040 * true after an inode eviction, assuming the worst case as it can not
4041 * know for sure if the inode was logged before. So we can not skip key
4042 * searches in the case the inode was evicted, because it may not have
4043 * been logged in this transaction and may have been logged in a past
4044 * transaction, so we need to reset the last dir item and index offsets
4045 * to (u64)-1.
4046 */
4047 if (inode->logged_trans != trans->transid) {
4048 inode->last_dir_item_offset = (u64)-1;
4049 inode->last_dir_index_offset = (u64)-1;
4050 }
e02119d5
CM
4051again:
4052 min_key = 0;
4053 max_key = 0;
dc287224
FM
4054 if (key_type == BTRFS_DIR_ITEM_KEY)
4055 ctx->last_dir_item_offset = inode->last_dir_item_offset;
4056 else
4057 ctx->last_dir_item_offset = inode->last_dir_index_offset;
4058
d397712b 4059 while (1) {
90d04510 4060 ret = log_dir_items(trans, inode, path, dst_path, key_type,
dbf39ea4 4061 ctx, min_key, &max_key);
4a500fd1
YZ
4062 if (ret)
4063 return ret;
e02119d5
CM
4064 if (max_key == (u64)-1)
4065 break;
4066 min_key = max_key + 1;
4067 }
4068
4069 if (key_type == BTRFS_DIR_ITEM_KEY) {
dc287224 4070 inode->last_dir_item_offset = ctx->last_dir_item_offset;
e02119d5
CM
4071 key_type = BTRFS_DIR_INDEX_KEY;
4072 goto again;
dc287224
FM
4073 } else {
4074 inode->last_dir_index_offset = ctx->last_dir_item_offset;
e02119d5
CM
4075 }
4076 return 0;
4077}
4078
4079/*
4080 * a helper function to drop items from the log before we relog an
4081 * inode. max_key_type indicates the highest item type to remove.
4082 * This cannot be run for file data extents because it does not
4083 * free the extents they point to.
4084 */
88e221cd 4085static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4086 struct btrfs_root *log,
4087 struct btrfs_path *path,
88e221cd
FM
4088 struct btrfs_inode *inode,
4089 int max_key_type)
e02119d5
CM
4090{
4091 int ret;
4092 struct btrfs_key key;
4093 struct btrfs_key found_key;
18ec90d6 4094 int start_slot;
e02119d5 4095
88e221cd
FM
4096 if (!inode_logged(trans, inode))
4097 return 0;
4098
4099 key.objectid = btrfs_ino(inode);
e02119d5
CM
4100 key.type = max_key_type;
4101 key.offset = (u64)-1;
4102
d397712b 4103 while (1) {
e02119d5 4104 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4105 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4106 if (ret < 0)
e02119d5
CM
4107 break;
4108
4109 if (path->slots[0] == 0)
4110 break;
4111
4112 path->slots[0]--;
4113 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4114 path->slots[0]);
4115
88e221cd 4116 if (found_key.objectid != key.objectid)
e02119d5
CM
4117 break;
4118
18ec90d6
JB
4119 found_key.offset = 0;
4120 found_key.type = 0;
e3b83361 4121 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4122 if (ret < 0)
4123 break;
18ec90d6
JB
4124
4125 ret = btrfs_del_items(trans, log, path, start_slot,
4126 path->slots[0] - start_slot + 1);
4127 /*
4128 * If start slot isn't 0 then we don't need to re-search, we've
4129 * found the last guy with the objectid in this tree.
4130 */
4131 if (ret || start_slot != 0)
65a246c5 4132 break;
b3b4aa74 4133 btrfs_release_path(path);
e02119d5 4134 }
b3b4aa74 4135 btrfs_release_path(path);
5bdbeb21
JB
4136 if (ret > 0)
4137 ret = 0;
4a500fd1 4138 return ret;
e02119d5
CM
4139}
4140
8a2b3da1
FM
4141static int truncate_inode_items(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *log_root,
4143 struct btrfs_inode *inode,
4144 u64 new_size, u32 min_type)
4145{
4146 int ret;
4147
4148 do {
4149 ret = btrfs_truncate_inode_items(trans, log_root, inode,
4150 new_size, min_type, NULL);
4151 } while (ret == -EAGAIN);
4152
4153 return ret;
4154}
4155
94edf4ae
JB
4156static void fill_inode_item(struct btrfs_trans_handle *trans,
4157 struct extent_buffer *leaf,
4158 struct btrfs_inode_item *item,
1a4bcf47
FM
4159 struct inode *inode, int log_inode_only,
4160 u64 logged_isize)
94edf4ae 4161{
0b1c6cca 4162 struct btrfs_map_token token;
77eea05e 4163 u64 flags;
0b1c6cca 4164
c82f823c 4165 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4166
4167 if (log_inode_only) {
4168 /* set the generation to zero so the recover code
4169 * can tell the difference between an logging
4170 * just to say 'this inode exists' and a logging
4171 * to say 'update this inode with these values'
4172 */
cc4c13d5
DS
4173 btrfs_set_token_inode_generation(&token, item, 0);
4174 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4175 } else {
cc4c13d5
DS
4176 btrfs_set_token_inode_generation(&token, item,
4177 BTRFS_I(inode)->generation);
4178 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4179 }
4180
cc4c13d5
DS
4181 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4182 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4183 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4184 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4185
4186 btrfs_set_token_timespec_sec(&token, &item->atime,
4187 inode->i_atime.tv_sec);
4188 btrfs_set_token_timespec_nsec(&token, &item->atime,
4189 inode->i_atime.tv_nsec);
4190
4191 btrfs_set_token_timespec_sec(&token, &item->mtime,
4192 inode->i_mtime.tv_sec);
4193 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4194 inode->i_mtime.tv_nsec);
4195
4196 btrfs_set_token_timespec_sec(&token, &item->ctime,
4197 inode->i_ctime.tv_sec);
4198 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4199 inode->i_ctime.tv_nsec);
4200
e593e54e
FM
4201 /*
4202 * We do not need to set the nbytes field, in fact during a fast fsync
4203 * its value may not even be correct, since a fast fsync does not wait
4204 * for ordered extent completion, which is where we update nbytes, it
4205 * only waits for writeback to complete. During log replay as we find
4206 * file extent items and replay them, we adjust the nbytes field of the
4207 * inode item in subvolume tree as needed (see overwrite_item()).
4208 */
cc4c13d5
DS
4209
4210 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4211 btrfs_set_token_inode_transid(&token, item, trans->transid);
4212 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4213 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4214 BTRFS_I(inode)->ro_flags);
4215 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4216 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4217}
4218
a95249b3
JB
4219static int log_inode_item(struct btrfs_trans_handle *trans,
4220 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4221 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4222{
4223 struct btrfs_inode_item *inode_item;
a95249b3
JB
4224 int ret;
4225
2ac691d8
FM
4226 /*
4227 * If we are doing a fast fsync and the inode was logged before in the
4228 * current transaction, then we know the inode was previously logged and
4229 * it exists in the log tree. For performance reasons, in this case use
4230 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4231 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4232 * contention in case there are concurrent fsyncs for other inodes of the
4233 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4234 * already exists can also result in unnecessarily splitting a leaf.
4235 */
4236 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4237 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4238 ASSERT(ret <= 0);
4239 if (ret > 0)
4240 ret = -ENOENT;
4241 } else {
4242 /*
4243 * This means it is the first fsync in the current transaction,
4244 * so the inode item is not in the log and we need to insert it.
4245 * We can never get -EEXIST because we are only called for a fast
4246 * fsync and in case an inode eviction happens after the inode was
4247 * logged before in the current transaction, when we load again
4248 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4249 * flags and set ->logged_trans to 0.
4250 */
4251 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4252 sizeof(*inode_item));
4253 ASSERT(ret != -EEXIST);
4254 }
4255 if (ret)
a95249b3
JB
4256 return ret;
4257 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4258 struct btrfs_inode_item);
6d889a3b
NB
4259 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4260 0, 0);
a95249b3
JB
4261 btrfs_release_path(path);
4262 return 0;
4263}
4264
40e046ac 4265static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4266 struct btrfs_inode *inode,
40e046ac
FM
4267 struct btrfs_root *log_root,
4268 struct btrfs_ordered_sum *sums)
4269{
e289f03e
FM
4270 const u64 lock_end = sums->bytenr + sums->len - 1;
4271 struct extent_state *cached_state = NULL;
40e046ac
FM
4272 int ret;
4273
3ebac17c
FM
4274 /*
4275 * If this inode was not used for reflink operations in the current
4276 * transaction with new extents, then do the fast path, no need to
4277 * worry about logging checksum items with overlapping ranges.
4278 */
4279 if (inode->last_reflink_trans < trans->transid)
4280 return btrfs_csum_file_blocks(trans, log_root, sums);
4281
e289f03e
FM
4282 /*
4283 * Serialize logging for checksums. This is to avoid racing with the
4284 * same checksum being logged by another task that is logging another
4285 * file which happens to refer to the same extent as well. Such races
4286 * can leave checksum items in the log with overlapping ranges.
4287 */
4288 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4289 lock_end, &cached_state);
4290 if (ret)
4291 return ret;
40e046ac
FM
4292 /*
4293 * Due to extent cloning, we might have logged a csum item that covers a
4294 * subrange of a cloned extent, and later we can end up logging a csum
4295 * item for a larger subrange of the same extent or the entire range.
4296 * This would leave csum items in the log tree that cover the same range
4297 * and break the searches for checksums in the log tree, resulting in
4298 * some checksums missing in the fs/subvolume tree. So just delete (or
4299 * trim and adjust) any existing csum items in the log for this range.
4300 */
4301 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4302 if (!ret)
4303 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4304
e289f03e
FM
4305 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4306 &cached_state);
4307
4308 return ret;
40e046ac
FM
4309}
4310
31ff1cd2 4311static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4312 struct btrfs_inode *inode,
31ff1cd2 4313 struct btrfs_path *dst_path,
0e56315c 4314 struct btrfs_path *src_path,
1a4bcf47
FM
4315 int start_slot, int nr, int inode_only,
4316 u64 logged_isize)
31ff1cd2 4317{
3ffbd68c 4318 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4319 unsigned long src_offset;
4320 unsigned long dst_offset;
44d70e19 4321 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4322 struct btrfs_file_extent_item *extent;
4323 struct btrfs_inode_item *inode_item;
16e7549f 4324 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4325 int ret;
4326 struct btrfs_key *ins_keys;
4327 u32 *ins_sizes;
b7ef5f3a 4328 struct btrfs_item_batch batch;
31ff1cd2
CM
4329 char *ins_data;
4330 int i;
d20f7043 4331 struct list_head ordered_sums;
44d70e19 4332 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4333
4334 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4335
4336 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4337 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4338 if (!ins_data)
4339 return -ENOMEM;
4340
31ff1cd2
CM
4341 ins_sizes = (u32 *)ins_data;
4342 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4343 batch.keys = ins_keys;
4344 batch.data_sizes = ins_sizes;
4345 batch.total_data_size = 0;
4346 batch.nr = nr;
31ff1cd2
CM
4347
4348 for (i = 0; i < nr; i++) {
4349 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
b7ef5f3a 4350 batch.total_data_size += ins_sizes[i];
31ff1cd2
CM
4351 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4352 }
b7ef5f3a 4353 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4a500fd1
YZ
4354 if (ret) {
4355 kfree(ins_data);
4356 return ret;
4357 }
31ff1cd2 4358
5d4f98a2 4359 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4360 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4361 dst_path->slots[0]);
4362
4363 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4364
94edf4ae 4365 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4366 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4367 dst_path->slots[0],
4368 struct btrfs_inode_item);
94edf4ae 4369 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4370 &inode->vfs_inode,
4371 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4372 logged_isize);
94edf4ae
JB
4373 } else {
4374 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4375 src_offset, ins_sizes[i]);
31ff1cd2 4376 }
94edf4ae 4377
31ff1cd2
CM
4378 /* take a reference on file data extents so that truncates
4379 * or deletes of this inode don't have to relog the inode
4380 * again
4381 */
962a298f 4382 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4383 !skip_csum) {
31ff1cd2
CM
4384 int found_type;
4385 extent = btrfs_item_ptr(src, start_slot + i,
4386 struct btrfs_file_extent_item);
4387
8e531cdf 4388 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4389 continue;
4390
31ff1cd2 4391 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4392 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4393 u64 ds, dl, cs, cl;
4394 ds = btrfs_file_extent_disk_bytenr(src,
4395 extent);
4396 /* ds == 0 is a hole */
4397 if (ds == 0)
4398 continue;
4399
4400 dl = btrfs_file_extent_disk_num_bytes(src,
4401 extent);
4402 cs = btrfs_file_extent_offset(src, extent);
4403 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4404 extent);
580afd76
CM
4405 if (btrfs_file_extent_compression(src,
4406 extent)) {
4407 cs = 0;
4408 cl = dl;
4409 }
5d4f98a2
YZ
4410
4411 ret = btrfs_lookup_csums_range(
0b246afa 4412 fs_info->csum_root,
5d4f98a2 4413 ds + cs, ds + cs + cl - 1,
a2de733c 4414 &ordered_sums, 0);
4f26433e
FM
4415 if (ret)
4416 break;
31ff1cd2
CM
4417 }
4418 }
31ff1cd2
CM
4419 }
4420
4421 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4422 btrfs_release_path(dst_path);
31ff1cd2 4423 kfree(ins_data);
d20f7043
CM
4424
4425 /*
4426 * we have to do this after the loop above to avoid changing the
4427 * log tree while trying to change the log tree.
4428 */
d397712b 4429 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4430 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4431 struct btrfs_ordered_sum,
4432 list);
4a500fd1 4433 if (!ret)
3ebac17c 4434 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4435 list_del(&sums->list);
4436 kfree(sums);
4437 }
16e7549f 4438
4a500fd1 4439 return ret;
31ff1cd2
CM
4440}
4441
4f0f586b
ST
4442static int extent_cmp(void *priv, const struct list_head *a,
4443 const struct list_head *b)
5dc562c5 4444{
214cc184 4445 const struct extent_map *em1, *em2;
5dc562c5
JB
4446
4447 em1 = list_entry(a, struct extent_map, list);
4448 em2 = list_entry(b, struct extent_map, list);
4449
4450 if (em1->start < em2->start)
4451 return -1;
4452 else if (em1->start > em2->start)
4453 return 1;
4454 return 0;
4455}
4456
e7175a69
JB
4457static int log_extent_csums(struct btrfs_trans_handle *trans,
4458 struct btrfs_inode *inode,
a9ecb653 4459 struct btrfs_root *log_root,
48778179
FM
4460 const struct extent_map *em,
4461 struct btrfs_log_ctx *ctx)
5dc562c5 4462{
48778179 4463 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4464 u64 csum_offset;
4465 u64 csum_len;
48778179
FM
4466 u64 mod_start = em->mod_start;
4467 u64 mod_len = em->mod_len;
8407f553
FM
4468 LIST_HEAD(ordered_sums);
4469 int ret = 0;
0aa4a17d 4470
e7175a69
JB
4471 if (inode->flags & BTRFS_INODE_NODATASUM ||
4472 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4473 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4474 return 0;
5dc562c5 4475
48778179
FM
4476 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4477 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4478 const u64 mod_end = mod_start + mod_len;
4479 struct btrfs_ordered_sum *sums;
4480
4481 if (mod_len == 0)
4482 break;
4483
4484 if (ordered_end <= mod_start)
4485 continue;
4486 if (mod_end <= ordered->file_offset)
4487 break;
4488
4489 /*
4490 * We are going to copy all the csums on this ordered extent, so
4491 * go ahead and adjust mod_start and mod_len in case this ordered
4492 * extent has already been logged.
4493 */
4494 if (ordered->file_offset > mod_start) {
4495 if (ordered_end >= mod_end)
4496 mod_len = ordered->file_offset - mod_start;
4497 /*
4498 * If we have this case
4499 *
4500 * |--------- logged extent ---------|
4501 * |----- ordered extent ----|
4502 *
4503 * Just don't mess with mod_start and mod_len, we'll
4504 * just end up logging more csums than we need and it
4505 * will be ok.
4506 */
4507 } else {
4508 if (ordered_end < mod_end) {
4509 mod_len = mod_end - ordered_end;
4510 mod_start = ordered_end;
4511 } else {
4512 mod_len = 0;
4513 }
4514 }
4515
4516 /*
4517 * To keep us from looping for the above case of an ordered
4518 * extent that falls inside of the logged extent.
4519 */
4520 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4521 continue;
4522
4523 list_for_each_entry(sums, &ordered->list, list) {
4524 ret = log_csums(trans, inode, log_root, sums);
4525 if (ret)
4526 return ret;
4527 }
4528 }
4529
4530 /* We're done, found all csums in the ordered extents. */
4531 if (mod_len == 0)
4532 return 0;
4533
e7175a69 4534 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4535 if (em->compress_type) {
4536 csum_offset = 0;
8407f553 4537 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4538 } else {
48778179
FM
4539 csum_offset = mod_start - em->start;
4540 csum_len = mod_len;
488111aa 4541 }
2ab28f32 4542
70c8a91c 4543 /* block start is already adjusted for the file extent offset. */
a9ecb653 4544 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4545 em->block_start + csum_offset,
4546 em->block_start + csum_offset +
4547 csum_len - 1, &ordered_sums, 0);
4548 if (ret)
4549 return ret;
5dc562c5 4550
70c8a91c
JB
4551 while (!list_empty(&ordered_sums)) {
4552 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4553 struct btrfs_ordered_sum,
4554 list);
4555 if (!ret)
3ebac17c 4556 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4557 list_del(&sums->list);
4558 kfree(sums);
5dc562c5
JB
4559 }
4560
70c8a91c 4561 return ret;
5dc562c5
JB
4562}
4563
8407f553 4564static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4565 struct btrfs_inode *inode,
8407f553
FM
4566 const struct extent_map *em,
4567 struct btrfs_path *path,
8407f553
FM
4568 struct btrfs_log_ctx *ctx)
4569{
5893dfb9 4570 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4571 struct btrfs_root *log = inode->root->log_root;
8407f553
FM
4572 struct btrfs_file_extent_item *fi;
4573 struct extent_buffer *leaf;
4574 struct btrfs_map_token token;
4575 struct btrfs_key key;
4576 u64 extent_offset = em->start - em->orig_start;
4577 u64 block_len;
4578 int ret;
8407f553 4579
48778179 4580 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4581 if (ret)
4582 return ret;
4583
5328b2a7
FM
4584 /*
4585 * If this is the first time we are logging the inode in the current
4586 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4587 * because it does a deletion search, which always acquires write locks
4588 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4589 * but also adds significant contention in a log tree, since log trees
4590 * are small, with a root at level 2 or 3 at most, due to their short
4591 * life span.
4592 */
4593 if (inode_logged(trans, inode)) {
4594 drop_args.path = path;
4595 drop_args.start = em->start;
4596 drop_args.end = em->start + em->len;
4597 drop_args.replace_extent = true;
4598 drop_args.extent_item_size = sizeof(*fi);
4599 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4600 if (ret)
4601 return ret;
4602 }
8407f553 4603
5893dfb9 4604 if (!drop_args.extent_inserted) {
9d122629 4605 key.objectid = btrfs_ino(inode);
8407f553
FM
4606 key.type = BTRFS_EXTENT_DATA_KEY;
4607 key.offset = em->start;
4608
4609 ret = btrfs_insert_empty_item(trans, log, path, &key,
4610 sizeof(*fi));
4611 if (ret)
4612 return ret;
4613 }
4614 leaf = path->nodes[0];
c82f823c 4615 btrfs_init_map_token(&token, leaf);
8407f553
FM
4616 fi = btrfs_item_ptr(leaf, path->slots[0],
4617 struct btrfs_file_extent_item);
4618
cc4c13d5 4619 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4620 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4621 btrfs_set_token_file_extent_type(&token, fi,
4622 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4623 else
cc4c13d5
DS
4624 btrfs_set_token_file_extent_type(&token, fi,
4625 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4626
4627 block_len = max(em->block_len, em->orig_block_len);
4628 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4629 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4630 em->block_start);
4631 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4632 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4633 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4634 em->block_start -
cc4c13d5
DS
4635 extent_offset);
4636 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4637 } else {
cc4c13d5
DS
4638 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4639 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4640 }
4641
cc4c13d5
DS
4642 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4643 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4644 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4645 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4646 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4647 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4648 btrfs_mark_buffer_dirty(leaf);
4649
4650 btrfs_release_path(path);
4651
4652 return ret;
4653}
4654
31d11b83
FM
4655/*
4656 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4657 * lose them after doing a fast fsync and replaying the log. We scan the
4658 * subvolume's root instead of iterating the inode's extent map tree because
4659 * otherwise we can log incorrect extent items based on extent map conversion.
4660 * That can happen due to the fact that extent maps are merged when they
4661 * are not in the extent map tree's list of modified extents.
4662 */
4663static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4664 struct btrfs_inode *inode,
4665 struct btrfs_path *path)
4666{
4667 struct btrfs_root *root = inode->root;
4668 struct btrfs_key key;
4669 const u64 i_size = i_size_read(&inode->vfs_inode);
4670 const u64 ino = btrfs_ino(inode);
4671 struct btrfs_path *dst_path = NULL;
0e56315c 4672 bool dropped_extents = false;
f135cea3
FM
4673 u64 truncate_offset = i_size;
4674 struct extent_buffer *leaf;
4675 int slot;
31d11b83
FM
4676 int ins_nr = 0;
4677 int start_slot;
4678 int ret;
4679
4680 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4681 return 0;
4682
4683 key.objectid = ino;
4684 key.type = BTRFS_EXTENT_DATA_KEY;
4685 key.offset = i_size;
4686 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4687 if (ret < 0)
4688 goto out;
4689
f135cea3
FM
4690 /*
4691 * We must check if there is a prealloc extent that starts before the
4692 * i_size and crosses the i_size boundary. This is to ensure later we
4693 * truncate down to the end of that extent and not to the i_size, as
4694 * otherwise we end up losing part of the prealloc extent after a log
4695 * replay and with an implicit hole if there is another prealloc extent
4696 * that starts at an offset beyond i_size.
4697 */
4698 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4699 if (ret < 0)
4700 goto out;
4701
4702 if (ret == 0) {
4703 struct btrfs_file_extent_item *ei;
4704
4705 leaf = path->nodes[0];
4706 slot = path->slots[0];
4707 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4708
4709 if (btrfs_file_extent_type(leaf, ei) ==
4710 BTRFS_FILE_EXTENT_PREALLOC) {
4711 u64 extent_end;
4712
4713 btrfs_item_key_to_cpu(leaf, &key, slot);
4714 extent_end = key.offset +
4715 btrfs_file_extent_num_bytes(leaf, ei);
4716
4717 if (extent_end > i_size)
4718 truncate_offset = extent_end;
4719 }
4720 } else {
4721 ret = 0;
4722 }
4723
31d11b83 4724 while (true) {
f135cea3
FM
4725 leaf = path->nodes[0];
4726 slot = path->slots[0];
31d11b83
FM
4727
4728 if (slot >= btrfs_header_nritems(leaf)) {
4729 if (ins_nr > 0) {
4730 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4731 start_slot, ins_nr, 1, 0);
31d11b83
FM
4732 if (ret < 0)
4733 goto out;
4734 ins_nr = 0;
4735 }
4736 ret = btrfs_next_leaf(root, path);
4737 if (ret < 0)
4738 goto out;
4739 if (ret > 0) {
4740 ret = 0;
4741 break;
4742 }
4743 continue;
4744 }
4745
4746 btrfs_item_key_to_cpu(leaf, &key, slot);
4747 if (key.objectid > ino)
4748 break;
4749 if (WARN_ON_ONCE(key.objectid < ino) ||
4750 key.type < BTRFS_EXTENT_DATA_KEY ||
4751 key.offset < i_size) {
4752 path->slots[0]++;
4753 continue;
4754 }
0e56315c 4755 if (!dropped_extents) {
31d11b83
FM
4756 /*
4757 * Avoid logging extent items logged in past fsync calls
4758 * and leading to duplicate keys in the log tree.
4759 */
8a2b3da1
FM
4760 ret = truncate_inode_items(trans, root->log_root, inode,
4761 truncate_offset,
4762 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4763 if (ret)
4764 goto out;
0e56315c 4765 dropped_extents = true;
31d11b83
FM
4766 }
4767 if (ins_nr == 0)
4768 start_slot = slot;
4769 ins_nr++;
4770 path->slots[0]++;
4771 if (!dst_path) {
4772 dst_path = btrfs_alloc_path();
4773 if (!dst_path) {
4774 ret = -ENOMEM;
4775 goto out;
4776 }
4777 }
4778 }
0bc2d3c0 4779 if (ins_nr > 0)
0e56315c 4780 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4781 start_slot, ins_nr, 1, 0);
31d11b83
FM
4782out:
4783 btrfs_release_path(path);
4784 btrfs_free_path(dst_path);
4785 return ret;
4786}
4787
5dc562c5 4788static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4789 struct btrfs_inode *inode,
827463c4 4790 struct btrfs_path *path,
48778179 4791 struct btrfs_log_ctx *ctx)
5dc562c5 4792{
48778179
FM
4793 struct btrfs_ordered_extent *ordered;
4794 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4795 struct extent_map *em, *n;
4796 struct list_head extents;
9d122629 4797 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4798 int ret = 0;
2ab28f32 4799 int num = 0;
5dc562c5
JB
4800
4801 INIT_LIST_HEAD(&extents);
4802
5dc562c5 4803 write_lock(&tree->lock);
5dc562c5
JB
4804
4805 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4806 list_del_init(&em->list);
2ab28f32
JB
4807 /*
4808 * Just an arbitrary number, this can be really CPU intensive
4809 * once we start getting a lot of extents, and really once we
4810 * have a bunch of extents we just want to commit since it will
4811 * be faster.
4812 */
4813 if (++num > 32768) {
4814 list_del_init(&tree->modified_extents);
4815 ret = -EFBIG;
4816 goto process;
4817 }
4818
5f96bfb7 4819 if (em->generation < trans->transid)
5dc562c5 4820 continue;
8c6c5928 4821
31d11b83
FM
4822 /* We log prealloc extents beyond eof later. */
4823 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4824 em->start >= i_size_read(&inode->vfs_inode))
4825 continue;
4826
ff44c6e3 4827 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4828 refcount_inc(&em->refs);
ff44c6e3 4829 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4830 list_add_tail(&em->list, &extents);
2ab28f32 4831 num++;
5dc562c5
JB
4832 }
4833
4834 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4835process:
5dc562c5
JB
4836 while (!list_empty(&extents)) {
4837 em = list_entry(extents.next, struct extent_map, list);
4838
4839 list_del_init(&em->list);
4840
4841 /*
4842 * If we had an error we just need to delete everybody from our
4843 * private list.
4844 */
ff44c6e3 4845 if (ret) {
201a9038 4846 clear_em_logging(tree, em);
ff44c6e3 4847 free_extent_map(em);
5dc562c5 4848 continue;
ff44c6e3
JB
4849 }
4850
4851 write_unlock(&tree->lock);
5dc562c5 4852
90d04510 4853 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4854 write_lock(&tree->lock);
201a9038
JB
4855 clear_em_logging(tree, em);
4856 free_extent_map(em);
5dc562c5 4857 }
ff44c6e3
JB
4858 WARN_ON(!list_empty(&extents));
4859 write_unlock(&tree->lock);
5dc562c5 4860
5dc562c5 4861 btrfs_release_path(path);
31d11b83
FM
4862 if (!ret)
4863 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4864 if (ret)
4865 return ret;
31d11b83 4866
48778179
FM
4867 /*
4868 * We have logged all extents successfully, now make sure the commit of
4869 * the current transaction waits for the ordered extents to complete
4870 * before it commits and wipes out the log trees, otherwise we would
4871 * lose data if an ordered extents completes after the transaction
4872 * commits and a power failure happens after the transaction commit.
4873 */
4874 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4875 list_del_init(&ordered->log_list);
4876 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4877
4878 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4879 spin_lock_irq(&inode->ordered_tree.lock);
4880 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4881 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4882 atomic_inc(&trans->transaction->pending_ordered);
4883 }
4884 spin_unlock_irq(&inode->ordered_tree.lock);
4885 }
4886 btrfs_put_ordered_extent(ordered);
4887 }
4888
4889 return 0;
5dc562c5
JB
4890}
4891
481b01c0 4892static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4893 struct btrfs_path *path, u64 *size_ret)
4894{
4895 struct btrfs_key key;
4896 int ret;
4897
481b01c0 4898 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4899 key.type = BTRFS_INODE_ITEM_KEY;
4900 key.offset = 0;
4901
4902 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4903 if (ret < 0) {
4904 return ret;
4905 } else if (ret > 0) {
2f2ff0ee 4906 *size_ret = 0;
1a4bcf47
FM
4907 } else {
4908 struct btrfs_inode_item *item;
4909
4910 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4911 struct btrfs_inode_item);
4912 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4913 /*
4914 * If the in-memory inode's i_size is smaller then the inode
4915 * size stored in the btree, return the inode's i_size, so
4916 * that we get a correct inode size after replaying the log
4917 * when before a power failure we had a shrinking truncate
4918 * followed by addition of a new name (rename / new hard link).
4919 * Otherwise return the inode size from the btree, to avoid
4920 * data loss when replaying a log due to previously doing a
4921 * write that expands the inode's size and logging a new name
4922 * immediately after.
4923 */
4924 if (*size_ret > inode->vfs_inode.i_size)
4925 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4926 }
4927
4928 btrfs_release_path(path);
4929 return 0;
4930}
4931
36283bf7
FM
4932/*
4933 * At the moment we always log all xattrs. This is to figure out at log replay
4934 * time which xattrs must have their deletion replayed. If a xattr is missing
4935 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4936 * because if a xattr is deleted, the inode is fsynced and a power failure
4937 * happens, causing the log to be replayed the next time the fs is mounted,
4938 * we want the xattr to not exist anymore (same behaviour as other filesystems
4939 * with a journal, ext3/4, xfs, f2fs, etc).
4940 */
4941static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 4942 struct btrfs_inode *inode,
36283bf7
FM
4943 struct btrfs_path *path,
4944 struct btrfs_path *dst_path)
4945{
90d04510 4946 struct btrfs_root *root = inode->root;
36283bf7
FM
4947 int ret;
4948 struct btrfs_key key;
1a93c36a 4949 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4950 int ins_nr = 0;
4951 int start_slot = 0;
f2f121ab
FM
4952 bool found_xattrs = false;
4953
4954 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4955 return 0;
36283bf7
FM
4956
4957 key.objectid = ino;
4958 key.type = BTRFS_XATTR_ITEM_KEY;
4959 key.offset = 0;
4960
4961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4962 if (ret < 0)
4963 return ret;
4964
4965 while (true) {
4966 int slot = path->slots[0];
4967 struct extent_buffer *leaf = path->nodes[0];
4968 int nritems = btrfs_header_nritems(leaf);
4969
4970 if (slot >= nritems) {
4971 if (ins_nr > 0) {
1a93c36a 4972 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4973 start_slot, ins_nr, 1, 0);
36283bf7
FM
4974 if (ret < 0)
4975 return ret;
4976 ins_nr = 0;
4977 }
4978 ret = btrfs_next_leaf(root, path);
4979 if (ret < 0)
4980 return ret;
4981 else if (ret > 0)
4982 break;
4983 continue;
4984 }
4985
4986 btrfs_item_key_to_cpu(leaf, &key, slot);
4987 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4988 break;
4989
4990 if (ins_nr == 0)
4991 start_slot = slot;
4992 ins_nr++;
4993 path->slots[0]++;
f2f121ab 4994 found_xattrs = true;
36283bf7
FM
4995 cond_resched();
4996 }
4997 if (ins_nr > 0) {
1a93c36a 4998 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4999 start_slot, ins_nr, 1, 0);
36283bf7
FM
5000 if (ret < 0)
5001 return ret;
5002 }
5003
f2f121ab
FM
5004 if (!found_xattrs)
5005 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5006
36283bf7
FM
5007 return 0;
5008}
5009
a89ca6f2 5010/*
0e56315c
FM
5011 * When using the NO_HOLES feature if we punched a hole that causes the
5012 * deletion of entire leafs or all the extent items of the first leaf (the one
5013 * that contains the inode item and references) we may end up not processing
5014 * any extents, because there are no leafs with a generation matching the
5015 * current transaction that have extent items for our inode. So we need to find
5016 * if any holes exist and then log them. We also need to log holes after any
5017 * truncate operation that changes the inode's size.
a89ca6f2 5018 */
0e56315c 5019static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5020 struct btrfs_inode *inode,
7af59743 5021 struct btrfs_path *path)
a89ca6f2 5022{
90d04510 5023 struct btrfs_root *root = inode->root;
0b246afa 5024 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5025 struct btrfs_key key;
a0308dd7
NB
5026 const u64 ino = btrfs_ino(inode);
5027 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5028 u64 prev_extent_end = 0;
0e56315c 5029 int ret;
a89ca6f2 5030
0e56315c 5031 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5032 return 0;
5033
5034 key.objectid = ino;
5035 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5036 key.offset = 0;
a89ca6f2
FM
5037
5038 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5039 if (ret < 0)
5040 return ret;
5041
0e56315c 5042 while (true) {
0e56315c 5043 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5044
0e56315c
FM
5045 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5046 ret = btrfs_next_leaf(root, path);
5047 if (ret < 0)
5048 return ret;
5049 if (ret > 0) {
5050 ret = 0;
5051 break;
5052 }
5053 leaf = path->nodes[0];
5054 }
5055
5056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5057 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5058 break;
5059
5060 /* We have a hole, log it. */
5061 if (prev_extent_end < key.offset) {
7af59743 5062 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5063
5064 /*
5065 * Release the path to avoid deadlocks with other code
5066 * paths that search the root while holding locks on
5067 * leafs from the log root.
5068 */
5069 btrfs_release_path(path);
5070 ret = btrfs_insert_file_extent(trans, root->log_root,
5071 ino, prev_extent_end, 0,
5072 0, hole_len, 0, hole_len,
5073 0, 0, 0);
5074 if (ret < 0)
5075 return ret;
5076
5077 /*
5078 * Search for the same key again in the root. Since it's
5079 * an extent item and we are holding the inode lock, the
5080 * key must still exist. If it doesn't just emit warning
5081 * and return an error to fall back to a transaction
5082 * commit.
5083 */
5084 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5085 if (ret < 0)
5086 return ret;
5087 if (WARN_ON(ret > 0))
5088 return -ENOENT;
5089 leaf = path->nodes[0];
5090 }
a89ca6f2 5091
7af59743 5092 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5093 path->slots[0]++;
5094 cond_resched();
a89ca6f2 5095 }
a89ca6f2 5096
7af59743 5097 if (prev_extent_end < i_size) {
0e56315c 5098 u64 hole_len;
a89ca6f2 5099
0e56315c 5100 btrfs_release_path(path);
7af59743 5101 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
5102 ret = btrfs_insert_file_extent(trans, root->log_root,
5103 ino, prev_extent_end, 0, 0,
5104 hole_len, 0, hole_len,
5105 0, 0, 0);
5106 if (ret < 0)
5107 return ret;
5108 }
5109
5110 return 0;
a89ca6f2
FM
5111}
5112
56f23fdb
FM
5113/*
5114 * When we are logging a new inode X, check if it doesn't have a reference that
5115 * matches the reference from some other inode Y created in a past transaction
5116 * and that was renamed in the current transaction. If we don't do this, then at
5117 * log replay time we can lose inode Y (and all its files if it's a directory):
5118 *
5119 * mkdir /mnt/x
5120 * echo "hello world" > /mnt/x/foobar
5121 * sync
5122 * mv /mnt/x /mnt/y
5123 * mkdir /mnt/x # or touch /mnt/x
5124 * xfs_io -c fsync /mnt/x
5125 * <power fail>
5126 * mount fs, trigger log replay
5127 *
5128 * After the log replay procedure, we would lose the first directory and all its
5129 * files (file foobar).
5130 * For the case where inode Y is not a directory we simply end up losing it:
5131 *
5132 * echo "123" > /mnt/foo
5133 * sync
5134 * mv /mnt/foo /mnt/bar
5135 * echo "abc" > /mnt/foo
5136 * xfs_io -c fsync /mnt/foo
5137 * <power fail>
5138 *
5139 * We also need this for cases where a snapshot entry is replaced by some other
5140 * entry (file or directory) otherwise we end up with an unreplayable log due to
5141 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5142 * if it were a regular entry:
5143 *
5144 * mkdir /mnt/x
5145 * btrfs subvolume snapshot /mnt /mnt/x/snap
5146 * btrfs subvolume delete /mnt/x/snap
5147 * rmdir /mnt/x
5148 * mkdir /mnt/x
5149 * fsync /mnt/x or fsync some new file inside it
5150 * <power fail>
5151 *
5152 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5153 * the same transaction.
5154 */
5155static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5156 const int slot,
5157 const struct btrfs_key *key,
4791c8f1 5158 struct btrfs_inode *inode,
a3baaf0d 5159 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5160{
5161 int ret;
5162 struct btrfs_path *search_path;
5163 char *name = NULL;
5164 u32 name_len = 0;
5165 u32 item_size = btrfs_item_size_nr(eb, slot);
5166 u32 cur_offset = 0;
5167 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5168
5169 search_path = btrfs_alloc_path();
5170 if (!search_path)
5171 return -ENOMEM;
5172 search_path->search_commit_root = 1;
5173 search_path->skip_locking = 1;
5174
5175 while (cur_offset < item_size) {
5176 u64 parent;
5177 u32 this_name_len;
5178 u32 this_len;
5179 unsigned long name_ptr;
5180 struct btrfs_dir_item *di;
5181
5182 if (key->type == BTRFS_INODE_REF_KEY) {
5183 struct btrfs_inode_ref *iref;
5184
5185 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5186 parent = key->offset;
5187 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5188 name_ptr = (unsigned long)(iref + 1);
5189 this_len = sizeof(*iref) + this_name_len;
5190 } else {
5191 struct btrfs_inode_extref *extref;
5192
5193 extref = (struct btrfs_inode_extref *)(ptr +
5194 cur_offset);
5195 parent = btrfs_inode_extref_parent(eb, extref);
5196 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5197 name_ptr = (unsigned long)&extref->name;
5198 this_len = sizeof(*extref) + this_name_len;
5199 }
5200
5201 if (this_name_len > name_len) {
5202 char *new_name;
5203
5204 new_name = krealloc(name, this_name_len, GFP_NOFS);
5205 if (!new_name) {
5206 ret = -ENOMEM;
5207 goto out;
5208 }
5209 name_len = this_name_len;
5210 name = new_name;
5211 }
5212
5213 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
5214 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5215 parent, name, this_name_len, 0);
56f23fdb 5216 if (di && !IS_ERR(di)) {
44f714da
FM
5217 struct btrfs_key di_key;
5218
5219 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5220 di, &di_key);
5221 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5222 if (di_key.objectid != key->objectid) {
5223 ret = 1;
5224 *other_ino = di_key.objectid;
a3baaf0d 5225 *other_parent = parent;
6b5fc433
FM
5226 } else {
5227 ret = 0;
5228 }
44f714da
FM
5229 } else {
5230 ret = -EAGAIN;
5231 }
56f23fdb
FM
5232 goto out;
5233 } else if (IS_ERR(di)) {
5234 ret = PTR_ERR(di);
5235 goto out;
5236 }
5237 btrfs_release_path(search_path);
5238
5239 cur_offset += this_len;
5240 }
5241 ret = 0;
5242out:
5243 btrfs_free_path(search_path);
5244 kfree(name);
5245 return ret;
5246}
5247
6b5fc433
FM
5248struct btrfs_ino_list {
5249 u64 ino;
a3baaf0d 5250 u64 parent;
6b5fc433
FM
5251 struct list_head list;
5252};
5253
5254static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5255 struct btrfs_root *root,
5256 struct btrfs_path *path,
5257 struct btrfs_log_ctx *ctx,
a3baaf0d 5258 u64 ino, u64 parent)
6b5fc433
FM
5259{
5260 struct btrfs_ino_list *ino_elem;
5261 LIST_HEAD(inode_list);
5262 int ret = 0;
5263
5264 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5265 if (!ino_elem)
5266 return -ENOMEM;
5267 ino_elem->ino = ino;
a3baaf0d 5268 ino_elem->parent = parent;
6b5fc433
FM
5269 list_add_tail(&ino_elem->list, &inode_list);
5270
5271 while (!list_empty(&inode_list)) {
5272 struct btrfs_fs_info *fs_info = root->fs_info;
5273 struct btrfs_key key;
5274 struct inode *inode;
5275
5276 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5277 list);
5278 ino = ino_elem->ino;
a3baaf0d 5279 parent = ino_elem->parent;
6b5fc433
FM
5280 list_del(&ino_elem->list);
5281 kfree(ino_elem);
5282 if (ret)
5283 continue;
5284
5285 btrfs_release_path(path);
5286
0202e83f 5287 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5288 /*
5289 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5290 * deleted in the current transaction, we need to log its parent
5291 * directory.
6b5fc433
FM
5292 */
5293 if (IS_ERR(inode)) {
5294 ret = PTR_ERR(inode);
a3baaf0d 5295 if (ret == -ENOENT) {
0202e83f 5296 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5297 if (IS_ERR(inode)) {
5298 ret = PTR_ERR(inode);
5299 } else {
90d04510 5300 ret = btrfs_log_inode(trans,
a3baaf0d
FM
5301 BTRFS_I(inode),
5302 LOG_OTHER_INODE_ALL,
48778179 5303 ctx);
410f954c 5304 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5305 }
5306 }
6b5fc433
FM
5307 continue;
5308 }
b5e4ff9d
FM
5309 /*
5310 * If the inode was already logged skip it - otherwise we can
5311 * hit an infinite loop. Example:
5312 *
5313 * From the commit root (previous transaction) we have the
5314 * following inodes:
5315 *
5316 * inode 257 a directory
5317 * inode 258 with references "zz" and "zz_link" on inode 257
5318 * inode 259 with reference "a" on inode 257
5319 *
5320 * And in the current (uncommitted) transaction we have:
5321 *
5322 * inode 257 a directory, unchanged
5323 * inode 258 with references "a" and "a2" on inode 257
5324 * inode 259 with reference "zz_link" on inode 257
5325 * inode 261 with reference "zz" on inode 257
5326 *
5327 * When logging inode 261 the following infinite loop could
5328 * happen if we don't skip already logged inodes:
5329 *
5330 * - we detect inode 258 as a conflicting inode, with inode 261
5331 * on reference "zz", and log it;
5332 *
5333 * - we detect inode 259 as a conflicting inode, with inode 258
5334 * on reference "a", and log it;
5335 *
5336 * - we detect inode 258 as a conflicting inode, with inode 259
5337 * on reference "zz_link", and log it - again! After this we
5338 * repeat the above steps forever.
5339 */
5340 spin_lock(&BTRFS_I(inode)->lock);
5341 /*
5342 * Check the inode's logged_trans only instead of
5343 * btrfs_inode_in_log(). This is because the last_log_commit of
1f295373
FM
5344 * the inode is not updated when we only log that it exists (see
5345 * btrfs_log_inode()).
b5e4ff9d
FM
5346 */
5347 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5348 spin_unlock(&BTRFS_I(inode)->lock);
5349 btrfs_add_delayed_iput(inode);
5350 continue;
5351 }
5352 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5353 /*
5354 * We are safe logging the other inode without acquiring its
5355 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5356 * are safe against concurrent renames of the other inode as
5357 * well because during a rename we pin the log and update the
5358 * log with the new name before we unpin it.
5359 */
90d04510 5360 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
6b5fc433 5361 if (ret) {
410f954c 5362 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5363 continue;
5364 }
5365
5366 key.objectid = ino;
5367 key.type = BTRFS_INODE_REF_KEY;
5368 key.offset = 0;
5369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5370 if (ret < 0) {
410f954c 5371 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5372 continue;
5373 }
5374
5375 while (true) {
5376 struct extent_buffer *leaf = path->nodes[0];
5377 int slot = path->slots[0];
5378 u64 other_ino = 0;
a3baaf0d 5379 u64 other_parent = 0;
6b5fc433
FM
5380
5381 if (slot >= btrfs_header_nritems(leaf)) {
5382 ret = btrfs_next_leaf(root, path);
5383 if (ret < 0) {
5384 break;
5385 } else if (ret > 0) {
5386 ret = 0;
5387 break;
5388 }
5389 continue;
5390 }
5391
5392 btrfs_item_key_to_cpu(leaf, &key, slot);
5393 if (key.objectid != ino ||
5394 (key.type != BTRFS_INODE_REF_KEY &&
5395 key.type != BTRFS_INODE_EXTREF_KEY)) {
5396 ret = 0;
5397 break;
5398 }
5399
5400 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5401 BTRFS_I(inode), &other_ino,
5402 &other_parent);
6b5fc433
FM
5403 if (ret < 0)
5404 break;
5405 if (ret > 0) {
5406 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5407 if (!ino_elem) {
5408 ret = -ENOMEM;
5409 break;
5410 }
5411 ino_elem->ino = other_ino;
a3baaf0d 5412 ino_elem->parent = other_parent;
6b5fc433
FM
5413 list_add_tail(&ino_elem->list, &inode_list);
5414 ret = 0;
5415 }
5416 path->slots[0]++;
5417 }
410f954c 5418 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5419 }
5420
5421 return ret;
5422}
5423
da447009
FM
5424static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5425 struct btrfs_inode *inode,
5426 struct btrfs_key *min_key,
5427 const struct btrfs_key *max_key,
5428 struct btrfs_path *path,
5429 struct btrfs_path *dst_path,
5430 const u64 logged_isize,
5431 const bool recursive_logging,
5432 const int inode_only,
5433 struct btrfs_log_ctx *ctx,
5434 bool *need_log_inode_item)
5435{
5436 struct btrfs_root *root = inode->root;
5437 int ins_start_slot = 0;
5438 int ins_nr = 0;
5439 int ret;
5440
5441 while (1) {
5442 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5443 if (ret < 0)
5444 return ret;
5445 if (ret > 0) {
5446 ret = 0;
5447 break;
5448 }
5449again:
5450 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5451 if (min_key->objectid != max_key->objectid)
5452 break;
5453 if (min_key->type > max_key->type)
5454 break;
5455
5456 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5457 *need_log_inode_item = false;
5458
5459 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5460 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5461 inode->generation == trans->transid &&
5462 !recursive_logging) {
5463 u64 other_ino = 0;
5464 u64 other_parent = 0;
5465
5466 ret = btrfs_check_ref_name_override(path->nodes[0],
5467 path->slots[0], min_key, inode,
5468 &other_ino, &other_parent);
5469 if (ret < 0) {
5470 return ret;
289cffcb 5471 } else if (ret > 0 &&
da447009
FM
5472 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5473 if (ins_nr > 0) {
5474 ins_nr++;
5475 } else {
5476 ins_nr = 1;
5477 ins_start_slot = path->slots[0];
5478 }
5479 ret = copy_items(trans, inode, dst_path, path,
5480 ins_start_slot, ins_nr,
5481 inode_only, logged_isize);
5482 if (ret < 0)
5483 return ret;
5484 ins_nr = 0;
5485
5486 ret = log_conflicting_inodes(trans, root, path,
5487 ctx, other_ino, other_parent);
5488 if (ret)
5489 return ret;
5490 btrfs_release_path(path);
5491 goto next_key;
5492 }
5493 }
5494
5495 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5496 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5497 if (ins_nr == 0)
5498 goto next_slot;
5499 ret = copy_items(trans, inode, dst_path, path,
5500 ins_start_slot,
5501 ins_nr, inode_only, logged_isize);
5502 if (ret < 0)
5503 return ret;
5504 ins_nr = 0;
5505 goto next_slot;
5506 }
5507
5508 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5509 ins_nr++;
5510 goto next_slot;
5511 } else if (!ins_nr) {
5512 ins_start_slot = path->slots[0];
5513 ins_nr = 1;
5514 goto next_slot;
5515 }
5516
5517 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5518 ins_nr, inode_only, logged_isize);
5519 if (ret < 0)
5520 return ret;
5521 ins_nr = 1;
5522 ins_start_slot = path->slots[0];
5523next_slot:
5524 path->slots[0]++;
5525 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5526 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5527 path->slots[0]);
5528 goto again;
5529 }
5530 if (ins_nr) {
5531 ret = copy_items(trans, inode, dst_path, path,
5532 ins_start_slot, ins_nr, inode_only,
5533 logged_isize);
5534 if (ret < 0)
5535 return ret;
5536 ins_nr = 0;
5537 }
5538 btrfs_release_path(path);
5539next_key:
5540 if (min_key->offset < (u64)-1) {
5541 min_key->offset++;
5542 } else if (min_key->type < max_key->type) {
5543 min_key->type++;
5544 min_key->offset = 0;
5545 } else {
5546 break;
5547 }
5548 }
5549 if (ins_nr)
5550 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5551 ins_nr, inode_only, logged_isize);
5552
5553 return ret;
5554}
5555
e02119d5
CM
5556/* log a single inode in the tree log.
5557 * At least one parent directory for this inode must exist in the tree
5558 * or be logged already.
5559 *
5560 * Any items from this inode changed by the current transaction are copied
5561 * to the log tree. An extra reference is taken on any extents in this
5562 * file, allowing us to avoid a whole pile of corner cases around logging
5563 * blocks that have been removed from the tree.
5564 *
5565 * See LOG_INODE_ALL and related defines for a description of what inode_only
5566 * does.
5567 *
5568 * This handles both files and directories.
5569 */
12fcfd22 5570static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 5571 struct btrfs_inode *inode,
49dae1bc 5572 int inode_only,
8407f553 5573 struct btrfs_log_ctx *ctx)
e02119d5
CM
5574{
5575 struct btrfs_path *path;
5576 struct btrfs_path *dst_path;
5577 struct btrfs_key min_key;
5578 struct btrfs_key max_key;
90d04510 5579 struct btrfs_root *log = inode->root->log_root;
4a500fd1 5580 int err = 0;
8c8648dd 5581 int ret = 0;
5dc562c5 5582 bool fast_search = false;
a59108a7
NB
5583 u64 ino = btrfs_ino(inode);
5584 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5585 u64 logged_isize = 0;
e4545de5 5586 bool need_log_inode_item = true;
9a8fca62 5587 bool xattrs_logged = false;
a3baaf0d 5588 bool recursive_logging = false;
2ac691d8 5589 bool inode_item_dropped = true;
e02119d5 5590
e02119d5 5591 path = btrfs_alloc_path();
5df67083
TI
5592 if (!path)
5593 return -ENOMEM;
e02119d5 5594 dst_path = btrfs_alloc_path();
5df67083
TI
5595 if (!dst_path) {
5596 btrfs_free_path(path);
5597 return -ENOMEM;
5598 }
e02119d5 5599
33345d01 5600 min_key.objectid = ino;
e02119d5
CM
5601 min_key.type = BTRFS_INODE_ITEM_KEY;
5602 min_key.offset = 0;
5603
33345d01 5604 max_key.objectid = ino;
12fcfd22 5605
12fcfd22 5606
5dc562c5 5607 /* today the code can only do partial logging of directories */
a59108a7 5608 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5609 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5610 &inode->runtime_flags) &&
781feef7 5611 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5612 max_key.type = BTRFS_XATTR_ITEM_KEY;
5613 else
5614 max_key.type = (u8)-1;
5615 max_key.offset = (u64)-1;
5616
2c2c452b 5617 /*
5aa7d1a7
FM
5618 * Only run delayed items if we are a directory. We want to make sure
5619 * all directory indexes hit the fs/subvolume tree so we can find them
5620 * and figure out which index ranges have to be logged.
2c2c452b 5621 */
f6df27dd
FM
5622 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5623 err = btrfs_commit_inode_delayed_items(trans, inode);
5624 if (err)
5625 goto out;
16cdcec7
MX
5626 }
5627
a3baaf0d
FM
5628 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5629 recursive_logging = true;
5630 if (inode_only == LOG_OTHER_INODE)
5631 inode_only = LOG_INODE_EXISTS;
5632 else
5633 inode_only = LOG_INODE_ALL;
a59108a7 5634 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5635 } else {
a59108a7 5636 mutex_lock(&inode->log_mutex);
781feef7 5637 }
e02119d5 5638
64d6b281
FM
5639 /*
5640 * This is for cases where logging a directory could result in losing a
5641 * a file after replaying the log. For example, if we move a file from a
5642 * directory A to a directory B, then fsync directory A, we have no way
5643 * to known the file was moved from A to B, so logging just A would
5644 * result in losing the file after a log replay.
5645 */
5646 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5647 inode_only == LOG_INODE_ALL &&
5648 inode->last_unlink_trans >= trans->transid) {
5649 btrfs_set_log_full_commit(trans);
5650 err = 1;
5651 goto out_unlock;
5652 }
5653
e02119d5
CM
5654 /*
5655 * a brute force approach to making sure we get the most uptodate
5656 * copies of everything.
5657 */
a59108a7 5658 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5659 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5660
ab12313a 5661 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5662 if (inode_only == LOG_INODE_EXISTS)
5663 max_key_type = BTRFS_XATTR_ITEM_KEY;
88e221cd 5664 ret = drop_inode_items(trans, log, path, inode, max_key_type);
e02119d5 5665 } else {
a5c733a4 5666 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
1a4bcf47
FM
5667 /*
5668 * Make sure the new inode item we write to the log has
5669 * the same isize as the current one (if it exists).
5670 * This is necessary to prevent data loss after log
5671 * replay, and also to prevent doing a wrong expanding
5672 * truncate - for e.g. create file, write 4K into offset
5673 * 0, fsync, write 4K into offset 4096, add hard link,
5674 * fsync some other file (to sync log), power fail - if
5675 * we use the inode's current i_size, after log replay
5676 * we get a 8Kb file, with the last 4Kb extent as a hole
5677 * (zeroes), as if an expanding truncate happened,
5678 * instead of getting a file of 4Kb only.
5679 */
a59108a7 5680 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5681 if (err)
5682 goto out_unlock;
5683 }
a742994a 5684 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5685 &inode->runtime_flags)) {
a742994a 5686 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5687 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5688 ret = drop_inode_items(trans, log, path, inode,
5689 max_key.type);
a742994a
FM
5690 } else {
5691 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5692 &inode->runtime_flags);
a742994a 5693 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5694 &inode->runtime_flags);
4934a815
FM
5695 if (inode_logged(trans, inode))
5696 ret = truncate_inode_items(trans, log,
5697 inode, 0, 0);
a742994a 5698 }
4f764e51 5699 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5700 &inode->runtime_flags) ||
6cfab851 5701 inode_only == LOG_INODE_EXISTS) {
4f764e51 5702 if (inode_only == LOG_INODE_ALL)
183f37fa 5703 fast_search = true;
4f764e51 5704 max_key.type = BTRFS_XATTR_ITEM_KEY;
88e221cd
FM
5705 ret = drop_inode_items(trans, log, path, inode,
5706 max_key.type);
a95249b3
JB
5707 } else {
5708 if (inode_only == LOG_INODE_ALL)
5709 fast_search = true;
2ac691d8 5710 inode_item_dropped = false;
a95249b3 5711 goto log_extents;
5dc562c5 5712 }
a95249b3 5713
e02119d5 5714 }
4a500fd1
YZ
5715 if (ret) {
5716 err = ret;
5717 goto out_unlock;
5718 }
e02119d5 5719
da447009
FM
5720 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5721 path, dst_path, logged_isize,
7af59743
FM
5722 recursive_logging, inode_only, ctx,
5723 &need_log_inode_item);
da447009
FM
5724 if (err)
5725 goto out_unlock;
5dc562c5 5726
36283bf7
FM
5727 btrfs_release_path(path);
5728 btrfs_release_path(dst_path);
90d04510 5729 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
36283bf7
FM
5730 if (err)
5731 goto out_unlock;
9a8fca62 5732 xattrs_logged = true;
a89ca6f2
FM
5733 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5734 btrfs_release_path(path);
5735 btrfs_release_path(dst_path);
90d04510 5736 err = btrfs_log_holes(trans, inode, path);
a89ca6f2
FM
5737 if (err)
5738 goto out_unlock;
5739 }
a95249b3 5740log_extents:
f3b15ccd
JB
5741 btrfs_release_path(path);
5742 btrfs_release_path(dst_path);
e4545de5 5743 if (need_log_inode_item) {
2ac691d8 5744 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
b590b839
FM
5745 if (err)
5746 goto out_unlock;
5747 /*
5748 * If we are doing a fast fsync and the inode was logged before
5749 * in this transaction, we don't need to log the xattrs because
5750 * they were logged before. If xattrs were added, changed or
5751 * deleted since the last time we logged the inode, then we have
5752 * already logged them because the inode had the runtime flag
5753 * BTRFS_INODE_COPY_EVERYTHING set.
5754 */
5755 if (!xattrs_logged && inode->logged_trans < trans->transid) {
90d04510 5756 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
b590b839
FM
5757 if (err)
5758 goto out_unlock;
9a8fca62
FM
5759 btrfs_release_path(path);
5760 }
e4545de5 5761 }
5dc562c5 5762 if (fast_search) {
90d04510 5763 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5dc562c5
JB
5764 if (ret) {
5765 err = ret;
5766 goto out_unlock;
5767 }
d006a048 5768 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5769 struct extent_map *em, *n;
5770
49dae1bc 5771 write_lock(&em_tree->lock);
48778179
FM
5772 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5773 list_del_init(&em->list);
49dae1bc 5774 write_unlock(&em_tree->lock);
5dc562c5
JB
5775 }
5776
a59108a7 5777 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
90d04510 5778 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
4a500fd1
YZ
5779 if (ret) {
5780 err = ret;
5781 goto out_unlock;
5782 }
e02119d5 5783 }
49dae1bc 5784
130341be
FM
5785 spin_lock(&inode->lock);
5786 inode->logged_trans = trans->transid;
d1d832a0 5787 /*
130341be
FM
5788 * Don't update last_log_commit if we logged that an inode exists.
5789 * We do this for three reasons:
5790 *
5791 * 1) We might have had buffered writes to this inode that were
5792 * flushed and had their ordered extents completed in this
5793 * transaction, but we did not previously log the inode with
5794 * LOG_INODE_ALL. Later the inode was evicted and after that
5795 * it was loaded again and this LOG_INODE_EXISTS log operation
5796 * happened. We must make sure that if an explicit fsync against
5797 * the inode is performed later, it logs the new extents, an
5798 * updated inode item, etc, and syncs the log. The same logic
5799 * applies to direct IO writes instead of buffered writes.
5800 *
5801 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5802 * is logged with an i_size of 0 or whatever value was logged
5803 * before. If later the i_size of the inode is increased by a
5804 * truncate operation, the log is synced through an fsync of
5805 * some other inode and then finally an explicit fsync against
5806 * this inode is made, we must make sure this fsync logs the
5807 * inode with the new i_size, the hole between old i_size and
5808 * the new i_size, and syncs the log.
5809 *
5810 * 3) If we are logging that an ancestor inode exists as part of
5811 * logging a new name from a link or rename operation, don't update
5812 * its last_log_commit - otherwise if an explicit fsync is made
5813 * against an ancestor, the fsync considers the inode in the log
5814 * and doesn't sync the log, resulting in the ancestor missing after
5815 * a power failure unless the log was synced as part of an fsync
5816 * against any other unrelated inode.
d1d832a0 5817 */
130341be
FM
5818 if (inode_only != LOG_INODE_EXISTS)
5819 inode->last_log_commit = inode->last_sub_trans;
5820 spin_unlock(&inode->lock);
4a500fd1 5821out_unlock:
a59108a7 5822 mutex_unlock(&inode->log_mutex);
f6df27dd 5823out:
e02119d5
CM
5824 btrfs_free_path(path);
5825 btrfs_free_path(dst_path);
4a500fd1 5826 return err;
e02119d5
CM
5827}
5828
ab12313a
FM
5829/*
5830 * Check if we need to log an inode. This is used in contexts where while
5831 * logging an inode we need to log another inode (either that it exists or in
5832 * full mode). This is used instead of btrfs_inode_in_log() because the later
5833 * requires the inode to be in the log and have the log transaction committed,
5834 * while here we do not care if the log transaction was already committed - our
5835 * caller will commit the log later - and we want to avoid logging an inode
5836 * multiple times when multiple tasks have joined the same log transaction.
5837 */
5838static bool need_log_inode(struct btrfs_trans_handle *trans,
5839 struct btrfs_inode *inode)
5840{
8be2ba2e
FM
5841 /*
5842 * If a directory was not modified, no dentries added or removed, we can
5843 * and should avoid logging it.
5844 */
5845 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5846 return false;
5847
ab12313a
FM
5848 /*
5849 * If this inode does not have new/updated/deleted xattrs since the last
5850 * time it was logged and is flagged as logged in the current transaction,
5851 * we can skip logging it. As for new/deleted names, those are updated in
5852 * the log by link/unlink/rename operations.
5853 * In case the inode was logged and then evicted and reloaded, its
5854 * logged_trans will be 0, in which case we have to fully log it since
5855 * logged_trans is a transient field, not persisted.
5856 */
5857 if (inode->logged_trans == trans->transid &&
5858 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5859 return false;
5860
5861 return true;
5862}
5863
2f2ff0ee
FM
5864struct btrfs_dir_list {
5865 u64 ino;
5866 struct list_head list;
5867};
5868
5869/*
5870 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5871 * details about the why it is needed.
5872 * This is a recursive operation - if an existing dentry corresponds to a
5873 * directory, that directory's new entries are logged too (same behaviour as
5874 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5875 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5876 * complains about the following circular lock dependency / possible deadlock:
5877 *
5878 * CPU0 CPU1
5879 * ---- ----
5880 * lock(&type->i_mutex_dir_key#3/2);
5881 * lock(sb_internal#2);
5882 * lock(&type->i_mutex_dir_key#3/2);
5883 * lock(&sb->s_type->i_mutex_key#14);
5884 *
5885 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5886 * sb_start_intwrite() in btrfs_start_transaction().
5887 * Not locking i_mutex of the inodes is still safe because:
5888 *
5889 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5890 * that while logging the inode new references (names) are added or removed
5891 * from the inode, leaving the logged inode item with a link count that does
5892 * not match the number of logged inode reference items. This is fine because
5893 * at log replay time we compute the real number of links and correct the
5894 * link count in the inode item (see replay_one_buffer() and
5895 * link_to_fixup_dir());
5896 *
5897 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5898 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5899 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5900 * has a size that doesn't match the sum of the lengths of all the logged
5901 * names. This does not result in a problem because if a dir_item key is
5902 * logged but its matching dir_index key is not logged, at log replay time we
5903 * don't use it to replay the respective name (see replay_one_name()). On the
5904 * other hand if only the dir_index key ends up being logged, the respective
5905 * name is added to the fs/subvol tree with both the dir_item and dir_index
5906 * keys created (see replay_one_name()).
5907 * The directory's inode item with a wrong i_size is not a problem as well,
5908 * since we don't use it at log replay time to set the i_size in the inode
5909 * item of the fs/subvol tree (see overwrite_item()).
5910 */
5911static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5912 struct btrfs_root *root,
51cc0d32 5913 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5914 struct btrfs_log_ctx *ctx)
5915{
0b246afa 5916 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5917 struct btrfs_root *log = root->log_root;
5918 struct btrfs_path *path;
5919 LIST_HEAD(dir_list);
5920 struct btrfs_dir_list *dir_elem;
5921 int ret = 0;
5922
c48792c6
FM
5923 /*
5924 * If we are logging a new name, as part of a link or rename operation,
5925 * don't bother logging new dentries, as we just want to log the names
5926 * of an inode and that any new parents exist.
5927 */
5928 if (ctx->logging_new_name)
5929 return 0;
5930
2f2ff0ee
FM
5931 path = btrfs_alloc_path();
5932 if (!path)
5933 return -ENOMEM;
5934
5935 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5936 if (!dir_elem) {
5937 btrfs_free_path(path);
5938 return -ENOMEM;
5939 }
51cc0d32 5940 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5941 list_add_tail(&dir_elem->list, &dir_list);
5942
5943 while (!list_empty(&dir_list)) {
5944 struct extent_buffer *leaf;
5945 struct btrfs_key min_key;
5946 int nritems;
5947 int i;
5948
5949 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5950 list);
5951 if (ret)
5952 goto next_dir_inode;
5953
5954 min_key.objectid = dir_elem->ino;
5955 min_key.type = BTRFS_DIR_ITEM_KEY;
5956 min_key.offset = 0;
5957again:
5958 btrfs_release_path(path);
5959 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5960 if (ret < 0) {
5961 goto next_dir_inode;
5962 } else if (ret > 0) {
5963 ret = 0;
5964 goto next_dir_inode;
5965 }
5966
5967process_leaf:
5968 leaf = path->nodes[0];
5969 nritems = btrfs_header_nritems(leaf);
5970 for (i = path->slots[0]; i < nritems; i++) {
5971 struct btrfs_dir_item *di;
5972 struct btrfs_key di_key;
5973 struct inode *di_inode;
5974 struct btrfs_dir_list *new_dir_elem;
5975 int log_mode = LOG_INODE_EXISTS;
5976 int type;
5977
5978 btrfs_item_key_to_cpu(leaf, &min_key, i);
5979 if (min_key.objectid != dir_elem->ino ||
5980 min_key.type != BTRFS_DIR_ITEM_KEY)
5981 goto next_dir_inode;
5982
5983 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5984 type = btrfs_dir_type(leaf, di);
5985 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5986 type != BTRFS_FT_DIR)
5987 continue;
5988 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5989 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5990 continue;
5991
ec125cfb 5992 btrfs_release_path(path);
0202e83f 5993 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5994 if (IS_ERR(di_inode)) {
5995 ret = PTR_ERR(di_inode);
5996 goto next_dir_inode;
5997 }
5998
0e44cb3f 5999 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 6000 btrfs_add_delayed_iput(di_inode);
ec125cfb 6001 break;
2f2ff0ee
FM
6002 }
6003
6004 ctx->log_new_dentries = false;
3f9749f6 6005 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 6006 log_mode = LOG_INODE_ALL;
90d04510 6007 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
48778179 6008 log_mode, ctx);
410f954c 6009 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
6010 if (ret)
6011 goto next_dir_inode;
6012 if (ctx->log_new_dentries) {
6013 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6014 GFP_NOFS);
6015 if (!new_dir_elem) {
6016 ret = -ENOMEM;
6017 goto next_dir_inode;
6018 }
6019 new_dir_elem->ino = di_key.objectid;
6020 list_add_tail(&new_dir_elem->list, &dir_list);
6021 }
6022 break;
6023 }
6024 if (i == nritems) {
6025 ret = btrfs_next_leaf(log, path);
6026 if (ret < 0) {
6027 goto next_dir_inode;
6028 } else if (ret > 0) {
6029 ret = 0;
6030 goto next_dir_inode;
6031 }
6032 goto process_leaf;
6033 }
6034 if (min_key.offset < (u64)-1) {
6035 min_key.offset++;
6036 goto again;
6037 }
6038next_dir_inode:
6039 list_del(&dir_elem->list);
6040 kfree(dir_elem);
6041 }
6042
6043 btrfs_free_path(path);
6044 return ret;
6045}
6046
18aa0922 6047static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6048 struct btrfs_inode *inode,
18aa0922
FM
6049 struct btrfs_log_ctx *ctx)
6050{
3ffbd68c 6051 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6052 int ret;
6053 struct btrfs_path *path;
6054 struct btrfs_key key;
d0a0b78d
NB
6055 struct btrfs_root *root = inode->root;
6056 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6057
6058 path = btrfs_alloc_path();
6059 if (!path)
6060 return -ENOMEM;
6061 path->skip_locking = 1;
6062 path->search_commit_root = 1;
6063
6064 key.objectid = ino;
6065 key.type = BTRFS_INODE_REF_KEY;
6066 key.offset = 0;
6067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6068 if (ret < 0)
6069 goto out;
6070
6071 while (true) {
6072 struct extent_buffer *leaf = path->nodes[0];
6073 int slot = path->slots[0];
6074 u32 cur_offset = 0;
6075 u32 item_size;
6076 unsigned long ptr;
6077
6078 if (slot >= btrfs_header_nritems(leaf)) {
6079 ret = btrfs_next_leaf(root, path);
6080 if (ret < 0)
6081 goto out;
6082 else if (ret > 0)
6083 break;
6084 continue;
6085 }
6086
6087 btrfs_item_key_to_cpu(leaf, &key, slot);
6088 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6089 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6090 break;
6091
6092 item_size = btrfs_item_size_nr(leaf, slot);
6093 ptr = btrfs_item_ptr_offset(leaf, slot);
6094 while (cur_offset < item_size) {
6095 struct btrfs_key inode_key;
6096 struct inode *dir_inode;
6097
6098 inode_key.type = BTRFS_INODE_ITEM_KEY;
6099 inode_key.offset = 0;
6100
6101 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6102 struct btrfs_inode_extref *extref;
6103
6104 extref = (struct btrfs_inode_extref *)
6105 (ptr + cur_offset);
6106 inode_key.objectid = btrfs_inode_extref_parent(
6107 leaf, extref);
6108 cur_offset += sizeof(*extref);
6109 cur_offset += btrfs_inode_extref_name_len(leaf,
6110 extref);
6111 } else {
6112 inode_key.objectid = key.offset;
6113 cur_offset = item_size;
6114 }
6115
0202e83f
DS
6116 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6117 root);
0f375eed
FM
6118 /*
6119 * If the parent inode was deleted, return an error to
6120 * fallback to a transaction commit. This is to prevent
6121 * getting an inode that was moved from one parent A to
6122 * a parent B, got its former parent A deleted and then
6123 * it got fsync'ed, from existing at both parents after
6124 * a log replay (and the old parent still existing).
6125 * Example:
6126 *
6127 * mkdir /mnt/A
6128 * mkdir /mnt/B
6129 * touch /mnt/B/bar
6130 * sync
6131 * mv /mnt/B/bar /mnt/A/bar
6132 * mv -T /mnt/A /mnt/B
6133 * fsync /mnt/B/bar
6134 * <power fail>
6135 *
6136 * If we ignore the old parent B which got deleted,
6137 * after a log replay we would have file bar linked
6138 * at both parents and the old parent B would still
6139 * exist.
6140 */
6141 if (IS_ERR(dir_inode)) {
6142 ret = PTR_ERR(dir_inode);
6143 goto out;
6144 }
18aa0922 6145
3e6a86a1
FM
6146 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6147 btrfs_add_delayed_iput(dir_inode);
6148 continue;
6149 }
6150
289cffcb 6151 ctx->log_new_dentries = false;
90d04510 6152 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6153 LOG_INODE_ALL, ctx);
289cffcb 6154 if (!ret && ctx->log_new_dentries)
657ed1aa 6155 ret = log_new_dir_dentries(trans, root,
f85b7379 6156 BTRFS_I(dir_inode), ctx);
410f954c 6157 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
6158 if (ret)
6159 goto out;
6160 }
6161 path->slots[0]++;
6162 }
6163 ret = 0;
6164out:
6165 btrfs_free_path(path);
6166 return ret;
6167}
6168
b8aa330d
FM
6169static int log_new_ancestors(struct btrfs_trans_handle *trans,
6170 struct btrfs_root *root,
6171 struct btrfs_path *path,
6172 struct btrfs_log_ctx *ctx)
6173{
6174 struct btrfs_key found_key;
6175
6176 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6177
6178 while (true) {
6179 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6180 struct extent_buffer *leaf = path->nodes[0];
6181 int slot = path->slots[0];
6182 struct btrfs_key search_key;
6183 struct inode *inode;
0202e83f 6184 u64 ino;
b8aa330d
FM
6185 int ret = 0;
6186
6187 btrfs_release_path(path);
6188
0202e83f
DS
6189 ino = found_key.offset;
6190
b8aa330d
FM
6191 search_key.objectid = found_key.offset;
6192 search_key.type = BTRFS_INODE_ITEM_KEY;
6193 search_key.offset = 0;
0202e83f 6194 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6195 if (IS_ERR(inode))
6196 return PTR_ERR(inode);
6197
ab12313a
FM
6198 if (BTRFS_I(inode)->generation >= trans->transid &&
6199 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6200 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6201 LOG_INODE_EXISTS, ctx);
410f954c 6202 btrfs_add_delayed_iput(inode);
b8aa330d
FM
6203 if (ret)
6204 return ret;
6205
6206 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6207 break;
6208
6209 search_key.type = BTRFS_INODE_REF_KEY;
6210 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6211 if (ret < 0)
6212 return ret;
6213
6214 leaf = path->nodes[0];
6215 slot = path->slots[0];
6216 if (slot >= btrfs_header_nritems(leaf)) {
6217 ret = btrfs_next_leaf(root, path);
6218 if (ret < 0)
6219 return ret;
6220 else if (ret > 0)
6221 return -ENOENT;
6222 leaf = path->nodes[0];
6223 slot = path->slots[0];
6224 }
6225
6226 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6227 if (found_key.objectid != search_key.objectid ||
6228 found_key.type != BTRFS_INODE_REF_KEY)
6229 return -ENOENT;
6230 }
6231 return 0;
6232}
6233
6234static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6235 struct btrfs_inode *inode,
6236 struct dentry *parent,
6237 struct btrfs_log_ctx *ctx)
6238{
6239 struct btrfs_root *root = inode->root;
b8aa330d
FM
6240 struct dentry *old_parent = NULL;
6241 struct super_block *sb = inode->vfs_inode.i_sb;
6242 int ret = 0;
6243
6244 while (true) {
6245 if (!parent || d_really_is_negative(parent) ||
6246 sb != parent->d_sb)
6247 break;
6248
6249 inode = BTRFS_I(d_inode(parent));
6250 if (root != inode->root)
6251 break;
6252
ab12313a
FM
6253 if (inode->generation >= trans->transid &&
6254 need_log_inode(trans, inode)) {
90d04510 6255 ret = btrfs_log_inode(trans, inode,
48778179 6256 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6257 if (ret)
6258 break;
6259 }
6260 if (IS_ROOT(parent))
6261 break;
6262
6263 parent = dget_parent(parent);
6264 dput(old_parent);
6265 old_parent = parent;
6266 }
6267 dput(old_parent);
6268
6269 return ret;
6270}
6271
6272static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6273 struct btrfs_inode *inode,
6274 struct dentry *parent,
6275 struct btrfs_log_ctx *ctx)
6276{
6277 struct btrfs_root *root = inode->root;
6278 const u64 ino = btrfs_ino(inode);
6279 struct btrfs_path *path;
6280 struct btrfs_key search_key;
6281 int ret;
6282
6283 /*
6284 * For a single hard link case, go through a fast path that does not
6285 * need to iterate the fs/subvolume tree.
6286 */
6287 if (inode->vfs_inode.i_nlink < 2)
6288 return log_new_ancestors_fast(trans, inode, parent, ctx);
6289
6290 path = btrfs_alloc_path();
6291 if (!path)
6292 return -ENOMEM;
6293
6294 search_key.objectid = ino;
6295 search_key.type = BTRFS_INODE_REF_KEY;
6296 search_key.offset = 0;
6297again:
6298 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6299 if (ret < 0)
6300 goto out;
6301 if (ret == 0)
6302 path->slots[0]++;
6303
6304 while (true) {
6305 struct extent_buffer *leaf = path->nodes[0];
6306 int slot = path->slots[0];
6307 struct btrfs_key found_key;
6308
6309 if (slot >= btrfs_header_nritems(leaf)) {
6310 ret = btrfs_next_leaf(root, path);
6311 if (ret < 0)
6312 goto out;
6313 else if (ret > 0)
6314 break;
6315 continue;
6316 }
6317
6318 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6319 if (found_key.objectid != ino ||
6320 found_key.type > BTRFS_INODE_EXTREF_KEY)
6321 break;
6322
6323 /*
6324 * Don't deal with extended references because they are rare
6325 * cases and too complex to deal with (we would need to keep
6326 * track of which subitem we are processing for each item in
6327 * this loop, etc). So just return some error to fallback to
6328 * a transaction commit.
6329 */
6330 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6331 ret = -EMLINK;
6332 goto out;
6333 }
6334
6335 /*
6336 * Logging ancestors needs to do more searches on the fs/subvol
6337 * tree, so it releases the path as needed to avoid deadlocks.
6338 * Keep track of the last inode ref key and resume from that key
6339 * after logging all new ancestors for the current hard link.
6340 */
6341 memcpy(&search_key, &found_key, sizeof(search_key));
6342
6343 ret = log_new_ancestors(trans, root, path, ctx);
6344 if (ret)
6345 goto out;
6346 btrfs_release_path(path);
6347 goto again;
6348 }
6349 ret = 0;
6350out:
6351 btrfs_free_path(path);
6352 return ret;
6353}
6354
e02119d5
CM
6355/*
6356 * helper function around btrfs_log_inode to make sure newly created
6357 * parent directories also end up in the log. A minimal inode and backref
6358 * only logging is done of any parent directories that are older than
6359 * the last committed transaction
6360 */
48a3b636 6361static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6362 struct btrfs_inode *inode,
49dae1bc 6363 struct dentry *parent,
41a1eada 6364 int inode_only,
8b050d35 6365 struct btrfs_log_ctx *ctx)
e02119d5 6366{
f882274b 6367 struct btrfs_root *root = inode->root;
0b246afa 6368 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6369 int ret = 0;
2f2ff0ee 6370 bool log_dentries = false;
12fcfd22 6371
0b246afa 6372 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6373 ret = 1;
6374 goto end_no_trans;
6375 }
6376
f882274b 6377 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6378 ret = 1;
6379 goto end_no_trans;
6380 }
6381
f2d72f42
FM
6382 /*
6383 * Skip already logged inodes or inodes corresponding to tmpfiles
6384 * (since logging them is pointless, a link count of 0 means they
6385 * will never be accessible).
6386 */
626e9f41
FM
6387 if ((btrfs_inode_in_log(inode, trans->transid) &&
6388 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6389 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6390 ret = BTRFS_NO_LOG_SYNC;
6391 goto end_no_trans;
6392 }
6393
8b050d35 6394 ret = start_log_trans(trans, root, ctx);
4a500fd1 6395 if (ret)
e87ac136 6396 goto end_no_trans;
e02119d5 6397
90d04510 6398 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
6399 if (ret)
6400 goto end_trans;
12fcfd22 6401
af4176b4
CM
6402 /*
6403 * for regular files, if its inode is already on disk, we don't
6404 * have to worry about the parents at all. This is because
6405 * we can use the last_unlink_trans field to record renames
6406 * and other fun in this file.
6407 */
19df27a9 6408 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6409 inode->generation < trans->transid &&
6410 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6411 ret = 0;
6412 goto end_trans;
6413 }
af4176b4 6414
289cffcb 6415 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
6416 log_dentries = true;
6417
18aa0922 6418 /*
01327610 6419 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6420 * inodes are fully logged. This is to prevent leaving dangling
6421 * directory index entries in directories that were our parents but are
6422 * not anymore. Not doing this results in old parent directory being
6423 * impossible to delete after log replay (rmdir will always fail with
6424 * error -ENOTEMPTY).
6425 *
6426 * Example 1:
6427 *
6428 * mkdir testdir
6429 * touch testdir/foo
6430 * ln testdir/foo testdir/bar
6431 * sync
6432 * unlink testdir/bar
6433 * xfs_io -c fsync testdir/foo
6434 * <power failure>
6435 * mount fs, triggers log replay
6436 *
6437 * If we don't log the parent directory (testdir), after log replay the
6438 * directory still has an entry pointing to the file inode using the bar
6439 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6440 * the file inode has a link count of 1.
6441 *
6442 * Example 2:
6443 *
6444 * mkdir testdir
6445 * touch foo
6446 * ln foo testdir/foo2
6447 * ln foo testdir/foo3
6448 * sync
6449 * unlink testdir/foo3
6450 * xfs_io -c fsync foo
6451 * <power failure>
6452 * mount fs, triggers log replay
6453 *
6454 * Similar as the first example, after log replay the parent directory
6455 * testdir still has an entry pointing to the inode file with name foo3
6456 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6457 * and has a link count of 2.
6458 */
47d3db41 6459 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6460 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6461 if (ret)
6462 goto end_trans;
6463 }
6464
b8aa330d
FM
6465 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6466 if (ret)
41bd6067 6467 goto end_trans;
76dda93c 6468
2f2ff0ee 6469 if (log_dentries)
b8aa330d 6470 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6471 else
6472 ret = 0;
4a500fd1
YZ
6473end_trans:
6474 if (ret < 0) {
90787766 6475 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6476 ret = 1;
6477 }
8b050d35
MX
6478
6479 if (ret)
6480 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6481 btrfs_end_log_trans(root);
6482end_no_trans:
6483 return ret;
e02119d5
CM
6484}
6485
6486/*
6487 * it is not safe to log dentry if the chunk root has added new
6488 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6489 * If this returns 1, you must commit the transaction to safely get your
6490 * data on disk.
6491 */
6492int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6493 struct dentry *dentry,
8b050d35 6494 struct btrfs_log_ctx *ctx)
e02119d5 6495{
6a912213
JB
6496 struct dentry *parent = dget_parent(dentry);
6497 int ret;
6498
f882274b 6499 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6500 LOG_INODE_ALL, ctx);
6a912213
JB
6501 dput(parent);
6502
6503 return ret;
e02119d5
CM
6504}
6505
6506/*
6507 * should be called during mount to recover any replay any log trees
6508 * from the FS
6509 */
6510int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6511{
6512 int ret;
6513 struct btrfs_path *path;
6514 struct btrfs_trans_handle *trans;
6515 struct btrfs_key key;
6516 struct btrfs_key found_key;
e02119d5
CM
6517 struct btrfs_root *log;
6518 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6519 struct walk_control wc = {
6520 .process_func = process_one_buffer,
430a6626 6521 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6522 };
6523
e02119d5 6524 path = btrfs_alloc_path();
db5b493a
TI
6525 if (!path)
6526 return -ENOMEM;
6527
afcdd129 6528 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6529
4a500fd1 6530 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6531 if (IS_ERR(trans)) {
6532 ret = PTR_ERR(trans);
6533 goto error;
6534 }
e02119d5
CM
6535
6536 wc.trans = trans;
6537 wc.pin = 1;
6538
db5b493a 6539 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6540 if (ret) {
ba51e2a1 6541 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6542 goto error;
6543 }
e02119d5
CM
6544
6545again:
6546 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6547 key.offset = (u64)-1;
962a298f 6548 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6549
d397712b 6550 while (1) {
e02119d5 6551 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6552
6553 if (ret < 0) {
ba51e2a1 6554 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6555 goto error;
6556 }
e02119d5
CM
6557 if (ret > 0) {
6558 if (path->slots[0] == 0)
6559 break;
6560 path->slots[0]--;
6561 }
6562 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6563 path->slots[0]);
b3b4aa74 6564 btrfs_release_path(path);
e02119d5
CM
6565 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6566 break;
6567
62a2c73e 6568 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6569 if (IS_ERR(log)) {
6570 ret = PTR_ERR(log);
ba51e2a1 6571 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6572 goto error;
6573 }
e02119d5 6574
56e9357a
DS
6575 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6576 true);
79787eaa
JM
6577 if (IS_ERR(wc.replay_dest)) {
6578 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6579
6580 /*
6581 * We didn't find the subvol, likely because it was
6582 * deleted. This is ok, simply skip this log and go to
6583 * the next one.
6584 *
6585 * We need to exclude the root because we can't have
6586 * other log replays overwriting this log as we'll read
6587 * it back in a few more times. This will keep our
6588 * block from being modified, and we'll just bail for
6589 * each subsequent pass.
6590 */
6591 if (ret == -ENOENT)
9fce5704 6592 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6593 log->node->start,
6594 log->node->len);
00246528 6595 btrfs_put_root(log);
9bc574de
JB
6596
6597 if (!ret)
6598 goto next;
ba51e2a1 6599 btrfs_abort_transaction(trans, ret);
79787eaa
JM
6600 goto error;
6601 }
e02119d5 6602
07d400a6 6603 wc.replay_dest->log_root = log;
2002ae11
JB
6604 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6605 if (ret)
6606 /* The loop needs to continue due to the root refs */
ba51e2a1 6607 btrfs_abort_transaction(trans, ret);
2002ae11
JB
6608 else
6609 ret = walk_log_tree(trans, log, &wc);
e02119d5 6610
b50c6e25 6611 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6612 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6613 path);
ba51e2a1
JB
6614 if (ret)
6615 btrfs_abort_transaction(trans, ret);
e02119d5
CM
6616 }
6617
900c9981
LB
6618 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6619 struct btrfs_root *root = wc.replay_dest;
6620
6621 btrfs_release_path(path);
6622
6623 /*
6624 * We have just replayed everything, and the highest
6625 * objectid of fs roots probably has changed in case
6626 * some inode_item's got replayed.
6627 *
6628 * root->objectid_mutex is not acquired as log replay
6629 * could only happen during mount.
6630 */
453e4873 6631 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
6632 if (ret)
6633 btrfs_abort_transaction(trans, ret);
900c9981
LB
6634 }
6635
07d400a6 6636 wc.replay_dest->log_root = NULL;
00246528 6637 btrfs_put_root(wc.replay_dest);
00246528 6638 btrfs_put_root(log);
e02119d5 6639
b50c6e25
JB
6640 if (ret)
6641 goto error;
9bc574de 6642next:
e02119d5
CM
6643 if (found_key.offset == 0)
6644 break;
9bc574de 6645 key.offset = found_key.offset - 1;
e02119d5 6646 }
b3b4aa74 6647 btrfs_release_path(path);
e02119d5
CM
6648
6649 /* step one is to pin it all, step two is to replay just inodes */
6650 if (wc.pin) {
6651 wc.pin = 0;
6652 wc.process_func = replay_one_buffer;
6653 wc.stage = LOG_WALK_REPLAY_INODES;
6654 goto again;
6655 }
6656 /* step three is to replay everything */
6657 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6658 wc.stage++;
6659 goto again;
6660 }
6661
6662 btrfs_free_path(path);
6663
abefa55a 6664 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6665 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6666 if (ret)
6667 return ret;
6668
e02119d5 6669 log_root_tree->log_root = NULL;
afcdd129 6670 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6671 btrfs_put_root(log_root_tree);
79787eaa 6672
abefa55a 6673 return 0;
79787eaa 6674error:
b50c6e25 6675 if (wc.trans)
3a45bb20 6676 btrfs_end_transaction(wc.trans);
1aeb6b56 6677 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6678 btrfs_free_path(path);
6679 return ret;
e02119d5 6680}
12fcfd22
CM
6681
6682/*
6683 * there are some corner cases where we want to force a full
6684 * commit instead of allowing a directory to be logged.
6685 *
6686 * They revolve around files there were unlinked from the directory, and
6687 * this function updates the parent directory so that a full commit is
6688 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6689 *
6690 * Must be called before the unlink operations (updates to the subvolume tree,
6691 * inodes, etc) are done.
12fcfd22
CM
6692 */
6693void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6694 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6695 int for_rename)
6696{
af4176b4
CM
6697 /*
6698 * when we're logging a file, if it hasn't been renamed
6699 * or unlinked, and its inode is fully committed on disk,
6700 * we don't have to worry about walking up the directory chain
6701 * to log its parents.
6702 *
6703 * So, we use the last_unlink_trans field to put this transid
6704 * into the file. When the file is logged we check it and
6705 * don't log the parents if the file is fully on disk.
6706 */
4176bdbf
NB
6707 mutex_lock(&inode->log_mutex);
6708 inode->last_unlink_trans = trans->transid;
6709 mutex_unlock(&inode->log_mutex);
af4176b4 6710
12fcfd22
CM
6711 /*
6712 * if this directory was already logged any new
6713 * names for this file/dir will get recorded
6714 */
4176bdbf 6715 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6716 return;
6717
6718 /*
6719 * if the inode we're about to unlink was logged,
6720 * the log will be properly updated for any new names
6721 */
4176bdbf 6722 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6723 return;
6724
6725 /*
6726 * when renaming files across directories, if the directory
6727 * there we're unlinking from gets fsync'd later on, there's
6728 * no way to find the destination directory later and fsync it
6729 * properly. So, we have to be conservative and force commits
6730 * so the new name gets discovered.
6731 */
6732 if (for_rename)
6733 goto record;
6734
6735 /* we can safely do the unlink without any special recording */
6736 return;
6737
6738record:
4176bdbf
NB
6739 mutex_lock(&dir->log_mutex);
6740 dir->last_unlink_trans = trans->transid;
6741 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6742}
6743
6744/*
6745 * Make sure that if someone attempts to fsync the parent directory of a deleted
6746 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6747 * that after replaying the log tree of the parent directory's root we will not
6748 * see the snapshot anymore and at log replay time we will not see any log tree
6749 * corresponding to the deleted snapshot's root, which could lead to replaying
6750 * it after replaying the log tree of the parent directory (which would replay
6751 * the snapshot delete operation).
2be63d5c
FM
6752 *
6753 * Must be called before the actual snapshot destroy operation (updates to the
6754 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6755 */
6756void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6757 struct btrfs_inode *dir)
1ec9a1ae 6758{
43663557
NB
6759 mutex_lock(&dir->log_mutex);
6760 dir->last_unlink_trans = trans->transid;
6761 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6762}
6763
6764/*
6765 * Call this after adding a new name for a file and it will properly
6766 * update the log to reflect the new name.
12fcfd22 6767 */
75b463d2 6768void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6769 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6770 struct dentry *parent)
12fcfd22 6771{
75b463d2 6772 struct btrfs_log_ctx ctx;
12fcfd22 6773
af4176b4
CM
6774 /*
6775 * this will force the logging code to walk the dentry chain
6776 * up for the file
6777 */
9a6509c4 6778 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6779 inode->last_unlink_trans = trans->transid;
af4176b4 6780
12fcfd22
CM
6781 /*
6782 * if this inode hasn't been logged and directory we're renaming it
6783 * from hasn't been logged, we don't need to log it
6784 */
ecc64fab
FM
6785 if (!inode_logged(trans, inode) &&
6786 (!old_dir || !inode_logged(trans, old_dir)))
75b463d2 6787 return;
12fcfd22 6788
54a40fc3
FM
6789 /*
6790 * If we are doing a rename (old_dir is not NULL) from a directory that
6791 * was previously logged, make sure the next log attempt on the directory
6792 * is not skipped and logs the inode again. This is because the log may
6793 * not currently be authoritative for a range including the old
6794 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6795 * sure after a log replay we do not end up with both the new and old
6796 * dentries around (in case the inode is a directory we would have a
6797 * directory with two hard links and 2 inode references for different
6798 * parents). The next log attempt of old_dir will happen at
6799 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6800 * below, because we have previously set inode->last_unlink_trans to the
6801 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6802 * case inode is a directory.
6803 */
6804 if (old_dir)
6805 old_dir->logged_trans = 0;
6806
75b463d2
FM
6807 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6808 ctx.logging_new_name = true;
6809 /*
6810 * We don't care about the return value. If we fail to log the new name
6811 * then we know the next attempt to sync the log will fallback to a full
6812 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6813 * we don't need to worry about getting a log committed that has an
6814 * inconsistent state after a rename operation.
6815 */
48778179 6816 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6817}
6818