Btrfs: Tree logging fixes
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
26
27/* magic values for the inode_only field in btrfs_log_inode:
28 *
29 * LOG_INODE_ALL means to log everything
30 * LOG_INODE_EXISTS means to log just enough to recreate the inode
31 * during log replay
32 */
33#define LOG_INODE_ALL 0
34#define LOG_INODE_EXISTS 1
35
36/*
37 * stages for the tree walking. The first
38 * stage (0) is to only pin down the blocks we find
39 * the second stage (1) is to make sure that all the inodes
40 * we find in the log are created in the subvolume.
41 *
42 * The last stage is to deal with directories and links and extents
43 * and all the other fun semantics
44 */
45#define LOG_WALK_PIN_ONLY 0
46#define LOG_WALK_REPLAY_INODES 1
47#define LOG_WALK_REPLAY_ALL 2
48
49static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
50 struct btrfs_root *root, struct inode *inode,
51 int inode_only);
52
53/*
54 * tree logging is a special write ahead log used to make sure that
55 * fsyncs and O_SYNCs can happen without doing full tree commits.
56 *
57 * Full tree commits are expensive because they require commonly
58 * modified blocks to be recowed, creating many dirty pages in the
59 * extent tree an 4x-6x higher write load than ext3.
60 *
61 * Instead of doing a tree commit on every fsync, we use the
62 * key ranges and transaction ids to find items for a given file or directory
63 * that have changed in this transaction. Those items are copied into
64 * a special tree (one per subvolume root), that tree is written to disk
65 * and then the fsync is considered complete.
66 *
67 * After a crash, items are copied out of the log-tree back into the
68 * subvolume tree. Any file data extents found are recorded in the extent
69 * allocation tree, and the log-tree freed.
70 *
71 * The log tree is read three times, once to pin down all the extents it is
72 * using in ram and once, once to create all the inodes logged in the tree
73 * and once to do all the other items.
74 */
75
76/*
77 * btrfs_add_log_tree adds a new per-subvolume log tree into the
78 * tree of log tree roots. This must be called with a tree log transaction
79 * running (see start_log_trans).
80 */
81int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root)
83{
84 struct btrfs_key key;
85 struct btrfs_root_item root_item;
86 struct btrfs_inode_item *inode_item;
87 struct extent_buffer *leaf;
88 struct btrfs_root *new_root = root;
89 int ret;
90 u64 objectid = root->root_key.objectid;
91
92 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
93 BTRFS_TREE_LOG_OBJECTID,
94 0, 0, 0, 0, 0);
95 if (IS_ERR(leaf)) {
96 ret = PTR_ERR(leaf);
97 return ret;
98 }
99
100 btrfs_set_header_nritems(leaf, 0);
101 btrfs_set_header_level(leaf, 0);
102 btrfs_set_header_bytenr(leaf, leaf->start);
103 btrfs_set_header_generation(leaf, trans->transid);
104 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
105
106 write_extent_buffer(leaf, root->fs_info->fsid,
107 (unsigned long)btrfs_header_fsid(leaf),
108 BTRFS_FSID_SIZE);
109 btrfs_mark_buffer_dirty(leaf);
110
111 inode_item = &root_item.inode;
112 memset(inode_item, 0, sizeof(*inode_item));
113 inode_item->generation = cpu_to_le64(1);
114 inode_item->size = cpu_to_le64(3);
115 inode_item->nlink = cpu_to_le32(1);
116 inode_item->nblocks = cpu_to_le64(1);
117 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
118
119 btrfs_set_root_bytenr(&root_item, leaf->start);
120 btrfs_set_root_level(&root_item, 0);
121 btrfs_set_root_refs(&root_item, 0);
122 btrfs_set_root_used(&root_item, 0);
123
124 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
125 root_item.drop_level = 0;
126
127 btrfs_tree_unlock(leaf);
128 free_extent_buffer(leaf);
129 leaf = NULL;
130
131 btrfs_set_root_dirid(&root_item, 0);
132
133 key.objectid = BTRFS_TREE_LOG_OBJECTID;
134 key.offset = objectid;
135 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
136 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
137 &root_item);
138 if (ret)
139 goto fail;
140
141 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
142 &key);
143 BUG_ON(!new_root);
144
145 WARN_ON(root->log_root);
146 root->log_root = new_root;
147
148 /*
149 * log trees do not get reference counted because they go away
150 * before a real commit is actually done. They do store pointers
151 * to file data extents, and those reference counts still get
152 * updated (along with back refs to the log tree).
153 */
154 new_root->ref_cows = 0;
155 new_root->last_trans = trans->transid;
156fail:
157 return ret;
158}
159
160/*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
165static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root)
167{
168 int ret;
169 mutex_lock(&root->fs_info->tree_log_mutex);
170 if (!root->fs_info->log_root_tree) {
171 ret = btrfs_init_log_root_tree(trans, root->fs_info);
172 BUG_ON(ret);
173 }
174 if (!root->log_root) {
175 ret = btrfs_add_log_tree(trans, root);
176 BUG_ON(ret);
177 }
178 atomic_inc(&root->fs_info->tree_log_writers);
179 root->fs_info->tree_log_batch++;
180 mutex_unlock(&root->fs_info->tree_log_mutex);
181 return 0;
182}
183
184/*
185 * returns 0 if there was a log transaction running and we were able
186 * to join, or returns -ENOENT if there were not transactions
187 * in progress
188 */
189static int join_running_log_trans(struct btrfs_root *root)
190{
191 int ret = -ENOENT;
192
193 smp_mb();
194 if (!root->log_root)
195 return -ENOENT;
196
197 mutex_lock(&root->fs_info->tree_log_mutex);
198 if (root->log_root) {
199 ret = 0;
200 atomic_inc(&root->fs_info->tree_log_writers);
201 root->fs_info->tree_log_batch++;
202 }
203 mutex_unlock(&root->fs_info->tree_log_mutex);
204 return ret;
205}
206
207/*
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
210 */
211static int end_log_trans(struct btrfs_root *root)
212{
213 atomic_dec(&root->fs_info->tree_log_writers);
214 smp_mb();
215 if (waitqueue_active(&root->fs_info->tree_log_wait))
216 wake_up(&root->fs_info->tree_log_wait);
217 return 0;
218}
219
220
221/*
222 * the walk control struct is used to pass state down the chain when
223 * processing the log tree. The stage field tells us which part
224 * of the log tree processing we are currently doing. The others
225 * are state fields used for that specific part
226 */
227struct walk_control {
228 /* should we free the extent on disk when done? This is used
229 * at transaction commit time while freeing a log tree
230 */
231 int free;
232
233 /* should we write out the extent buffer? This is used
234 * while flushing the log tree to disk during a sync
235 */
236 int write;
237
238 /* should we wait for the extent buffer io to finish? Also used
239 * while flushing the log tree to disk for a sync
240 */
241 int wait;
242
243 /* pin only walk, we record which extents on disk belong to the
244 * log trees
245 */
246 int pin;
247
248 /* what stage of the replay code we're currently in */
249 int stage;
250
251 /* the root we are currently replaying */
252 struct btrfs_root *replay_dest;
253
254 /* the trans handle for the current replay */
255 struct btrfs_trans_handle *trans;
256
257 /* the function that gets used to process blocks we find in the
258 * tree. Note the extent_buffer might not be up to date when it is
259 * passed in, and it must be checked or read if you need the data
260 * inside it
261 */
262 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen);
264};
265
266/*
267 * process_func used to pin down extents, write them or wait on them
268 */
269static int process_one_buffer(struct btrfs_root *log,
270 struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen)
272{
273 if (wc->pin) {
274 mutex_lock(&log->fs_info->alloc_mutex);
275 btrfs_update_pinned_extents(log->fs_info->extent_root,
276 eb->start, eb->len, 1);
277 mutex_unlock(&log->fs_info->alloc_mutex);
278 }
279
280 if (btrfs_buffer_uptodate(eb, gen)) {
281 if (wc->write)
282 btrfs_write_tree_block(eb);
283 if (wc->wait)
284 btrfs_wait_tree_block_writeback(eb);
285 }
286 return 0;
287}
288
289/*
290 * Item overwrite used by replay and tree logging. eb, slot and key all refer
291 * to the src data we are copying out.
292 *
293 * root is the tree we are copying into, and path is a scratch
294 * path for use in this function (it should be released on entry and
295 * will be released on exit).
296 *
297 * If the key is already in the destination tree the existing item is
298 * overwritten. If the existing item isn't big enough, it is extended.
299 * If it is too large, it is truncated.
300 *
301 * If the key isn't in the destination yet, a new item is inserted.
302 */
303static noinline int overwrite_item(struct btrfs_trans_handle *trans,
304 struct btrfs_root *root,
305 struct btrfs_path *path,
306 struct extent_buffer *eb, int slot,
307 struct btrfs_key *key)
308{
309 int ret;
310 u32 item_size;
311 u64 saved_i_size = 0;
312 int save_old_i_size = 0;
313 unsigned long src_ptr;
314 unsigned long dst_ptr;
315 int overwrite_root = 0;
316
317 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
318 overwrite_root = 1;
319
320 item_size = btrfs_item_size_nr(eb, slot);
321 src_ptr = btrfs_item_ptr_offset(eb, slot);
322
323 /* look for the key in the destination tree */
324 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
325 if (ret == 0) {
326 char *src_copy;
327 char *dst_copy;
328 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
329 path->slots[0]);
330 if (dst_size != item_size)
331 goto insert;
332
333 if (item_size == 0) {
334 btrfs_release_path(root, path);
335 return 0;
336 }
337 dst_copy = kmalloc(item_size, GFP_NOFS);
338 src_copy = kmalloc(item_size, GFP_NOFS);
339
340 read_extent_buffer(eb, src_copy, src_ptr, item_size);
341
342 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
343 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
344 item_size);
345 ret = memcmp(dst_copy, src_copy, item_size);
346
347 kfree(dst_copy);
348 kfree(src_copy);
349 /*
350 * they have the same contents, just return, this saves
351 * us from cowing blocks in the destination tree and doing
352 * extra writes that may not have been done by a previous
353 * sync
354 */
355 if (ret == 0) {
356 btrfs_release_path(root, path);
357 return 0;
358 }
359
360 }
361insert:
362 btrfs_release_path(root, path);
363 /* try to insert the key into the destination tree */
364 ret = btrfs_insert_empty_item(trans, root, path,
365 key, item_size);
366
367 /* make sure any existing item is the correct size */
368 if (ret == -EEXIST) {
369 u32 found_size;
370 found_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (found_size > item_size) {
373 btrfs_truncate_item(trans, root, path, item_size, 1);
374 } else if (found_size < item_size) {
375 ret = btrfs_del_item(trans, root,
376 path);
377 BUG_ON(ret);
378
379 btrfs_release_path(root, path);
380 ret = btrfs_insert_empty_item(trans,
381 root, path, key, item_size);
382 BUG_ON(ret);
383 }
384 } else if (ret) {
385 BUG();
386 }
387 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
388 path->slots[0]);
389
390 /* don't overwrite an existing inode if the generation number
391 * was logged as zero. This is done when the tree logging code
392 * is just logging an inode to make sure it exists after recovery.
393 *
394 * Also, don't overwrite i_size on directories during replay.
395 * log replay inserts and removes directory items based on the
396 * state of the tree found in the subvolume, and i_size is modified
397 * as it goes
398 */
399 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
400 struct btrfs_inode_item *src_item;
401 struct btrfs_inode_item *dst_item;
402
403 src_item = (struct btrfs_inode_item *)src_ptr;
404 dst_item = (struct btrfs_inode_item *)dst_ptr;
405
406 if (btrfs_inode_generation(eb, src_item) == 0)
407 goto no_copy;
408
409 if (overwrite_root &&
410 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
411 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
412 save_old_i_size = 1;
413 saved_i_size = btrfs_inode_size(path->nodes[0],
414 dst_item);
415 }
416 }
417
418 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
419 src_ptr, item_size);
420
421 if (save_old_i_size) {
422 struct btrfs_inode_item *dst_item;
423 dst_item = (struct btrfs_inode_item *)dst_ptr;
424 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
425 }
426
427 /* make sure the generation is filled in */
428 if (key->type == BTRFS_INODE_ITEM_KEY) {
429 struct btrfs_inode_item *dst_item;
430 dst_item = (struct btrfs_inode_item *)dst_ptr;
431 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
432 btrfs_set_inode_generation(path->nodes[0], dst_item,
433 trans->transid);
434 }
435 }
436no_copy:
437 btrfs_mark_buffer_dirty(path->nodes[0]);
438 btrfs_release_path(root, path);
439 return 0;
440}
441
442/*
443 * simple helper to read an inode off the disk from a given root
444 * This can only be called for subvolume roots and not for the log
445 */
446static noinline struct inode *read_one_inode(struct btrfs_root *root,
447 u64 objectid)
448{
449 struct inode *inode;
450 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
451 if (inode->i_state & I_NEW) {
452 BTRFS_I(inode)->root = root;
453 BTRFS_I(inode)->location.objectid = objectid;
454 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
455 BTRFS_I(inode)->location.offset = 0;
456 btrfs_read_locked_inode(inode);
457 unlock_new_inode(inode);
458
459 }
460 if (is_bad_inode(inode)) {
461 iput(inode);
462 inode = NULL;
463 }
464 return inode;
465}
466
467/* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
469 * on exit.
470 *
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
475 *
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
478 */
479static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path,
482 struct extent_buffer *eb, int slot,
483 struct btrfs_key *key)
484{
485 int found_type;
486 u64 mask = root->sectorsize - 1;
487 u64 extent_end;
488 u64 alloc_hint;
489 u64 start = key->offset;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG)
499 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
500 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
501 size = btrfs_file_extent_inline_len(eb,
502 btrfs_item_nr(eb, slot));
503 extent_end = (start + size + mask) & ~mask;
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
521 start, 0);
522
523 if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) {
524 struct btrfs_file_extent_item cmp1;
525 struct btrfs_file_extent_item cmp2;
526 struct btrfs_file_extent_item *existing;
527 struct extent_buffer *leaf;
528
529 leaf = path->nodes[0];
530 existing = btrfs_item_ptr(leaf, path->slots[0],
531 struct btrfs_file_extent_item);
532
533 read_extent_buffer(eb, &cmp1, (unsigned long)item,
534 sizeof(cmp1));
535 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
536 sizeof(cmp2));
537
538 /*
539 * we already have a pointer to this exact extent,
540 * we don't have to do anything
541 */
542 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
543 btrfs_release_path(root, path);
544 goto out;
545 }
546 }
547 btrfs_release_path(root, path);
548
549 /* drop any overlapping extents */
550 ret = btrfs_drop_extents(trans, root, inode,
551 start, extent_end, start, &alloc_hint);
552 BUG_ON(ret);
553
554 BUG_ON(ret);
555 if (found_type == BTRFS_FILE_EXTENT_REG) {
556 struct btrfs_key ins;
557
558 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
559 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
560 ins.type = BTRFS_EXTENT_ITEM_KEY;
561
562 /* insert the extent pointer in the file */
563 ret = overwrite_item(trans, root, path, eb, slot, key);
564 BUG_ON(ret);
565
566 /*
567 * is this extent already allocated in the extent
568 * allocation tree? If so, just add a reference
569 */
570 ret = btrfs_lookup_extent(root, path, ins.objectid, ins.offset);
571 btrfs_release_path(root, path);
572 if (ret == 0) {
573 ret = btrfs_inc_extent_ref(trans, root,
574 ins.objectid, ins.offset,
575 root->root_key.objectid,
576 trans->transid, key->objectid, start);
577 } else {
578 /*
579 * insert the extent pointer in the extent
580 * allocation tree
581 */
582 ret = btrfs_alloc_logged_extent(trans, root,
583 root->root_key.objectid,
584 trans->transid, key->objectid,
585 start, &ins);
586 BUG_ON(ret);
587 }
588 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
589 /* inline extents are easy, we just overwrite them */
590 ret = overwrite_item(trans, root, path, eb, slot, key);
591 BUG_ON(ret);
592 }
593 /* btrfs_drop_extents changes i_blocks, update it here */
594 inode->i_blocks += (extent_end - start) >> 9;
595 btrfs_update_inode(trans, root, inode);
596out:
597 if (inode)
598 iput(inode);
599 return ret;
600}
601
602/*
603 * when cleaning up conflicts between the directory names in the
604 * subvolume, directory names in the log and directory names in the
605 * inode back references, we may have to unlink inodes from directories.
606 *
607 * This is a helper function to do the unlink of a specific directory
608 * item
609 */
610static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
611 struct btrfs_root *root,
612 struct btrfs_path *path,
613 struct inode *dir,
614 struct btrfs_dir_item *di)
615{
616 struct inode *inode;
617 char *name;
618 int name_len;
619 struct extent_buffer *leaf;
620 struct btrfs_key location;
621 int ret;
622
623 leaf = path->nodes[0];
624
625 btrfs_dir_item_key_to_cpu(leaf, di, &location);
626 name_len = btrfs_dir_name_len(leaf, di);
627 name = kmalloc(name_len, GFP_NOFS);
628 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
629 btrfs_release_path(root, path);
630
631 inode = read_one_inode(root, location.objectid);
632 BUG_ON(!inode);
633
634 btrfs_inc_nlink(inode);
635 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
636 kfree(name);
637
638 iput(inode);
639 return ret;
640}
641
642/*
643 * helper function to see if a given name and sequence number found
644 * in an inode back reference are already in a directory and correctly
645 * point to this inode
646 */
647static noinline int inode_in_dir(struct btrfs_root *root,
648 struct btrfs_path *path,
649 u64 dirid, u64 objectid, u64 index,
650 const char *name, int name_len)
651{
652 struct btrfs_dir_item *di;
653 struct btrfs_key location;
654 int match = 0;
655
656 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
657 index, name, name_len, 0);
658 if (di && !IS_ERR(di)) {
659 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
660 if (location.objectid != objectid)
661 goto out;
662 } else
663 goto out;
664 btrfs_release_path(root, path);
665
666 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
667 if (di && !IS_ERR(di)) {
668 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
669 if (location.objectid != objectid)
670 goto out;
671 } else
672 goto out;
673 match = 1;
674out:
675 btrfs_release_path(root, path);
676 return match;
677}
678
679/*
680 * helper function to check a log tree for a named back reference in
681 * an inode. This is used to decide if a back reference that is
682 * found in the subvolume conflicts with what we find in the log.
683 *
684 * inode backreferences may have multiple refs in a single item,
685 * during replay we process one reference at a time, and we don't
686 * want to delete valid links to a file from the subvolume if that
687 * link is also in the log.
688 */
689static noinline int backref_in_log(struct btrfs_root *log,
690 struct btrfs_key *key,
691 char *name, int namelen)
692{
693 struct btrfs_path *path;
694 struct btrfs_inode_ref *ref;
695 unsigned long ptr;
696 unsigned long ptr_end;
697 unsigned long name_ptr;
698 int found_name_len;
699 int item_size;
700 int ret;
701 int match = 0;
702
703 path = btrfs_alloc_path();
704 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
705 if (ret != 0)
706 goto out;
707
708 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
709 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
710 ptr_end = ptr + item_size;
711 while (ptr < ptr_end) {
712 ref = (struct btrfs_inode_ref *)ptr;
713 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
714 if (found_name_len == namelen) {
715 name_ptr = (unsigned long)(ref + 1);
716 ret = memcmp_extent_buffer(path->nodes[0], name,
717 name_ptr, namelen);
718 if (ret == 0) {
719 match = 1;
720 goto out;
721 }
722 }
723 ptr = (unsigned long)(ref + 1) + found_name_len;
724 }
725out:
726 btrfs_free_path(path);
727 return match;
728}
729
730
731/*
732 * replay one inode back reference item found in the log tree.
733 * eb, slot and key refer to the buffer and key found in the log tree.
734 * root is the destination we are replaying into, and path is for temp
735 * use by this function. (it should be released on return).
736 */
737static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root,
739 struct btrfs_root *log,
740 struct btrfs_path *path,
741 struct extent_buffer *eb, int slot,
742 struct btrfs_key *key)
743{
744 struct inode *dir;
745 int ret;
746 struct btrfs_key location;
747 struct btrfs_inode_ref *ref;
748 struct btrfs_dir_item *di;
749 struct inode *inode;
750 char *name;
751 int namelen;
752 unsigned long ref_ptr;
753 unsigned long ref_end;
754
755 location.objectid = key->objectid;
756 location.type = BTRFS_INODE_ITEM_KEY;
757 location.offset = 0;
758
759 /*
760 * it is possible that we didn't log all the parent directories
761 * for a given inode. If we don't find the dir, just don't
762 * copy the back ref in. The link count fixup code will take
763 * care of the rest
764 */
765 dir = read_one_inode(root, key->offset);
766 if (!dir)
767 return -ENOENT;
768
769 inode = read_one_inode(root, key->objectid);
770 BUG_ON(!dir);
771
772 ref_ptr = btrfs_item_ptr_offset(eb, slot);
773 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
774
775again:
776 ref = (struct btrfs_inode_ref *)ref_ptr;
777
778 namelen = btrfs_inode_ref_name_len(eb, ref);
779 name = kmalloc(namelen, GFP_NOFS);
780 BUG_ON(!name);
781
782 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
783
784 /* if we already have a perfect match, we're done */
785 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
786 btrfs_inode_ref_index(eb, ref),
787 name, namelen)) {
788 goto out;
789 }
790
791 /*
792 * look for a conflicting back reference in the metadata.
793 * if we find one we have to unlink that name of the file
794 * before we add our new link. Later on, we overwrite any
795 * existing back reference, and we don't want to create
796 * dangling pointers in the directory.
797 */
798conflict_again:
799 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
800 if (ret == 0) {
801 char *victim_name;
802 int victim_name_len;
803 struct btrfs_inode_ref *victim_ref;
804 unsigned long ptr;
805 unsigned long ptr_end;
806 struct extent_buffer *leaf = path->nodes[0];
807
808 /* are we trying to overwrite a back ref for the root directory
809 * if so, just jump out, we're done
810 */
811 if (key->objectid == key->offset)
812 goto out_nowrite;
813
814 /* check all the names in this back reference to see
815 * if they are in the log. if so, we allow them to stay
816 * otherwise they must be unlinked as a conflict
817 */
818 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
819 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
820 while(ptr < ptr_end) {
821 victim_ref = (struct btrfs_inode_ref *)ptr;
822 victim_name_len = btrfs_inode_ref_name_len(leaf,
823 victim_ref);
824 victim_name = kmalloc(victim_name_len, GFP_NOFS);
825 BUG_ON(!victim_name);
826
827 read_extent_buffer(leaf, victim_name,
828 (unsigned long)(victim_ref + 1),
829 victim_name_len);
830
831 if (!backref_in_log(log, key, victim_name,
832 victim_name_len)) {
833 btrfs_inc_nlink(inode);
834 btrfs_release_path(root, path);
835 ret = btrfs_unlink_inode(trans, root, dir,
836 inode, victim_name,
837 victim_name_len);
838 kfree(victim_name);
839 btrfs_release_path(root, path);
840 goto conflict_again;
841 }
842 kfree(victim_name);
843 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
844 }
845 BUG_ON(ret);
846 }
847 btrfs_release_path(root, path);
848
849 /* look for a conflicting sequence number */
850 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
851 btrfs_inode_ref_index(eb, ref),
852 name, namelen, 0);
853 if (di && !IS_ERR(di)) {
854 ret = drop_one_dir_item(trans, root, path, dir, di);
855 BUG_ON(ret);
856 }
857 btrfs_release_path(root, path);
858
859
860 /* look for a conflicting name */
861 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
862 name, namelen, 0);
863 if (di && !IS_ERR(di)) {
864 ret = drop_one_dir_item(trans, root, path, dir, di);
865 BUG_ON(ret);
866 }
867 btrfs_release_path(root, path);
868
869 /* insert our name */
870 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
871 btrfs_inode_ref_index(eb, ref));
872 BUG_ON(ret);
873
874 btrfs_update_inode(trans, root, inode);
875
876out:
877 ref_ptr = (unsigned long)(ref + 1) + namelen;
878 kfree(name);
879 if (ref_ptr < ref_end)
880 goto again;
881
882 /* finally write the back reference in the inode */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
884 BUG_ON(ret);
885
886out_nowrite:
887 btrfs_release_path(root, path);
888 iput(dir);
889 iput(inode);
890 return 0;
891}
892
893/*
894 * replay one csum item from the log tree into the subvolume 'root'
895 * eb, slot and key all refer to the log tree
896 * path is for temp use by this function and should be released on return
897 *
898 * This copies the checksums out of the log tree and inserts them into
899 * the subvolume. Any existing checksums for this range in the file
900 * are overwritten, and new items are added where required.
901 *
902 * We keep this simple by reusing the btrfs_ordered_sum code from
903 * the data=ordered mode. This basically means making a copy
904 * of all the checksums in ram, which we have to do anyway for kmap
905 * rules.
906 *
907 * The copy is then sent down to btrfs_csum_file_blocks, which
908 * does all the hard work of finding existing items in the file
909 * or adding new ones.
910 */
911static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
912 struct btrfs_root *root,
913 struct btrfs_path *path,
914 struct extent_buffer *eb, int slot,
915 struct btrfs_key *key)
916{
917 int ret;
918 u32 item_size = btrfs_item_size_nr(eb, slot);
919 u64 cur_offset;
920 unsigned long file_bytes;
921 struct btrfs_ordered_sum *sums;
922 struct btrfs_sector_sum *sector_sum;
923 struct inode *inode;
924 unsigned long ptr;
925
926 file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
927 inode = read_one_inode(root, key->objectid);
928 if (!inode) {
929 return -EIO;
930 }
931
932 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
933 if (!sums) {
934 iput(inode);
935 return -ENOMEM;
936 }
937
938 INIT_LIST_HEAD(&sums->list);
939 sums->len = file_bytes;
940 sums->file_offset = key->offset;
941
942 /*
943 * copy all the sums into the ordered sum struct
944 */
945 sector_sum = sums->sums;
946 cur_offset = key->offset;
947 ptr = btrfs_item_ptr_offset(eb, slot);
948 while(item_size > 0) {
949 sector_sum->offset = cur_offset;
950 read_extent_buffer(eb, &sector_sum->sum, ptr, BTRFS_CRC32_SIZE);
951 sector_sum++;
952 item_size -= BTRFS_CRC32_SIZE;
953 ptr += BTRFS_CRC32_SIZE;
954 cur_offset += root->sectorsize;
955 }
956
957 /* let btrfs_csum_file_blocks add them into the file */
958 ret = btrfs_csum_file_blocks(trans, root, inode, sums);
959 BUG_ON(ret);
960 kfree(sums);
961 iput(inode);
962
963 return 0;
964}
965/*
966 * There are a few corners where the link count of the file can't
967 * be properly maintained during replay. So, instead of adding
968 * lots of complexity to the log code, we just scan the backrefs
969 * for any file that has been through replay.
970 *
971 * The scan will update the link count on the inode to reflect the
972 * number of back refs found. If it goes down to zero, the iput
973 * will free the inode.
974 */
975static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
976 struct btrfs_root *root,
977 struct inode *inode)
978{
979 struct btrfs_path *path;
980 int ret;
981 struct btrfs_key key;
982 u64 nlink = 0;
983 unsigned long ptr;
984 unsigned long ptr_end;
985 int name_len;
986
987 key.objectid = inode->i_ino;
988 key.type = BTRFS_INODE_REF_KEY;
989 key.offset = (u64)-1;
990
991 path = btrfs_alloc_path();
992
993 while(1) {
994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
995 if (ret < 0)
996 break;
997 if (ret > 0) {
998 if (path->slots[0] == 0)
999 break;
1000 path->slots[0]--;
1001 }
1002 btrfs_item_key_to_cpu(path->nodes[0], &key,
1003 path->slots[0]);
1004 if (key.objectid != inode->i_ino ||
1005 key.type != BTRFS_INODE_REF_KEY)
1006 break;
1007 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1008 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1009 path->slots[0]);
1010 while(ptr < ptr_end) {
1011 struct btrfs_inode_ref *ref;
1012
1013 ref = (struct btrfs_inode_ref *)ptr;
1014 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1015 ref);
1016 ptr = (unsigned long)(ref + 1) + name_len;
1017 nlink++;
1018 }
1019
1020 if (key.offset == 0)
1021 break;
1022 key.offset--;
1023 btrfs_release_path(root, path);
1024 }
1025 btrfs_free_path(path);
1026 if (nlink != inode->i_nlink) {
1027 inode->i_nlink = nlink;
1028 btrfs_update_inode(trans, root, inode);
1029 }
1030
1031 return 0;
1032}
1033
1034static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1035 struct btrfs_root *root,
1036 struct btrfs_path *path)
1037{
1038 int ret;
1039 struct btrfs_key key;
1040 struct inode *inode;
1041
1042 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1043 key.type = BTRFS_ORPHAN_ITEM_KEY;
1044 key.offset = (u64)-1;
1045 while(1) {
1046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047 if (ret < 0)
1048 break;
1049
1050 if (ret == 1) {
1051 if (path->slots[0] == 0)
1052 break;
1053 path->slots[0]--;
1054 }
1055
1056 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1057 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1058 key.type != BTRFS_ORPHAN_ITEM_KEY)
1059 break;
1060
1061 ret = btrfs_del_item(trans, root, path);
1062 BUG_ON(ret);
1063
1064 btrfs_release_path(root, path);
1065 inode = read_one_inode(root, key.offset);
1066 BUG_ON(!inode);
1067
1068 ret = fixup_inode_link_count(trans, root, inode);
1069 BUG_ON(ret);
1070
1071 iput(inode);
1072
1073 if (key.offset == 0)
1074 break;
1075 key.offset--;
1076 }
1077 btrfs_release_path(root, path);
1078 return 0;
1079}
1080
1081
1082/*
1083 * record a given inode in the fixup dir so we can check its link
1084 * count when replay is done. The link count is incremented here
1085 * so the inode won't go away until we check it
1086 */
1087static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root,
1089 struct btrfs_path *path,
1090 u64 objectid)
1091{
1092 struct btrfs_key key;
1093 int ret = 0;
1094 struct inode *inode;
1095
1096 inode = read_one_inode(root, objectid);
1097 BUG_ON(!inode);
1098
1099 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1100 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1101 key.offset = objectid;
1102
1103 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1104
1105 btrfs_release_path(root, path);
1106 if (ret == 0) {
1107 btrfs_inc_nlink(inode);
1108 btrfs_update_inode(trans, root, inode);
1109 } else if (ret == -EEXIST) {
1110 ret = 0;
1111 } else {
1112 BUG();
1113 }
1114 iput(inode);
1115
1116 return ret;
1117}
1118
1119/*
1120 * when replaying the log for a directory, we only insert names
1121 * for inodes that actually exist. This means an fsync on a directory
1122 * does not implicitly fsync all the new files in it
1123 */
1124static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1125 struct btrfs_root *root,
1126 struct btrfs_path *path,
1127 u64 dirid, u64 index,
1128 char *name, int name_len, u8 type,
1129 struct btrfs_key *location)
1130{
1131 struct inode *inode;
1132 struct inode *dir;
1133 int ret;
1134
1135 inode = read_one_inode(root, location->objectid);
1136 if (!inode)
1137 return -ENOENT;
1138
1139 dir = read_one_inode(root, dirid);
1140 if (!dir) {
1141 iput(inode);
1142 return -EIO;
1143 }
1144 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1145
1146 /* FIXME, put inode into FIXUP list */
1147
1148 iput(inode);
1149 iput(dir);
1150 return ret;
1151}
1152
1153/*
1154 * take a single entry in a log directory item and replay it into
1155 * the subvolume.
1156 *
1157 * if a conflicting item exists in the subdirectory already,
1158 * the inode it points to is unlinked and put into the link count
1159 * fix up tree.
1160 *
1161 * If a name from the log points to a file or directory that does
1162 * not exist in the FS, it is skipped. fsyncs on directories
1163 * do not force down inodes inside that directory, just changes to the
1164 * names or unlinks in a directory.
1165 */
1166static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1167 struct btrfs_root *root,
1168 struct btrfs_path *path,
1169 struct extent_buffer *eb,
1170 struct btrfs_dir_item *di,
1171 struct btrfs_key *key)
1172{
1173 char *name;
1174 int name_len;
1175 struct btrfs_dir_item *dst_di;
1176 struct btrfs_key found_key;
1177 struct btrfs_key log_key;
1178 struct inode *dir;
e02119d5 1179 u8 log_type;
4bef0848 1180 int exists;
e02119d5
CM
1181 int ret;
1182
1183 dir = read_one_inode(root, key->objectid);
1184 BUG_ON(!dir);
1185
1186 name_len = btrfs_dir_name_len(eb, di);
1187 name = kmalloc(name_len, GFP_NOFS);
1188 log_type = btrfs_dir_type(eb, di);
1189 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1190 name_len);
1191
1192 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1193 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1194 if (exists == 0)
1195 exists = 1;
1196 else
1197 exists = 0;
1198 btrfs_release_path(root, path);
1199
e02119d5
CM
1200 if (key->type == BTRFS_DIR_ITEM_KEY) {
1201 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1202 name, name_len, 1);
1203 }
1204 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1205 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1206 key->objectid,
1207 key->offset, name,
1208 name_len, 1);
1209 } else {
1210 BUG();
1211 }
1212 if (!dst_di || IS_ERR(dst_di)) {
1213 /* we need a sequence number to insert, so we only
1214 * do inserts for the BTRFS_DIR_INDEX_KEY types
1215 */
1216 if (key->type != BTRFS_DIR_INDEX_KEY)
1217 goto out;
1218 goto insert;
1219 }
1220
1221 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1222 /* the existing item matches the logged item */
1223 if (found_key.objectid == log_key.objectid &&
1224 found_key.type == log_key.type &&
1225 found_key.offset == log_key.offset &&
1226 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1227 goto out;
1228 }
1229
1230 /*
1231 * don't drop the conflicting directory entry if the inode
1232 * for the new entry doesn't exist
1233 */
4bef0848 1234 if (!exists)
e02119d5
CM
1235 goto out;
1236
e02119d5
CM
1237 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1238 BUG_ON(ret);
1239
1240 if (key->type == BTRFS_DIR_INDEX_KEY)
1241 goto insert;
1242out:
1243 btrfs_release_path(root, path);
1244 kfree(name);
1245 iput(dir);
1246 return 0;
1247
1248insert:
1249 btrfs_release_path(root, path);
1250 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1251 name, name_len, log_type, &log_key);
1252
1253 if (ret && ret != -ENOENT)
1254 BUG();
1255 goto out;
1256}
1257
1258/*
1259 * find all the names in a directory item and reconcile them into
1260 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1261 * one name in a directory item, but the same code gets used for
1262 * both directory index types
1263 */
1264static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1265 struct btrfs_root *root,
1266 struct btrfs_path *path,
1267 struct extent_buffer *eb, int slot,
1268 struct btrfs_key *key)
1269{
1270 int ret;
1271 u32 item_size = btrfs_item_size_nr(eb, slot);
1272 struct btrfs_dir_item *di;
1273 int name_len;
1274 unsigned long ptr;
1275 unsigned long ptr_end;
1276
1277 ptr = btrfs_item_ptr_offset(eb, slot);
1278 ptr_end = ptr + item_size;
1279 while(ptr < ptr_end) {
1280 di = (struct btrfs_dir_item *)ptr;
1281 name_len = btrfs_dir_name_len(eb, di);
1282 ret = replay_one_name(trans, root, path, eb, di, key);
1283 BUG_ON(ret);
1284 ptr = (unsigned long)(di + 1);
1285 ptr += name_len;
1286 }
1287 return 0;
1288}
1289
1290/*
1291 * directory replay has two parts. There are the standard directory
1292 * items in the log copied from the subvolume, and range items
1293 * created in the log while the subvolume was logged.
1294 *
1295 * The range items tell us which parts of the key space the log
1296 * is authoritative for. During replay, if a key in the subvolume
1297 * directory is in a logged range item, but not actually in the log
1298 * that means it was deleted from the directory before the fsync
1299 * and should be removed.
1300 */
1301static noinline int find_dir_range(struct btrfs_root *root,
1302 struct btrfs_path *path,
1303 u64 dirid, int key_type,
1304 u64 *start_ret, u64 *end_ret)
1305{
1306 struct btrfs_key key;
1307 u64 found_end;
1308 struct btrfs_dir_log_item *item;
1309 int ret;
1310 int nritems;
1311
1312 if (*start_ret == (u64)-1)
1313 return 1;
1314
1315 key.objectid = dirid;
1316 key.type = key_type;
1317 key.offset = *start_ret;
1318
1319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1320 if (ret < 0)
1321 goto out;
1322 if (ret > 0) {
1323 if (path->slots[0] == 0)
1324 goto out;
1325 path->slots[0]--;
1326 }
1327 if (ret != 0)
1328 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1329
1330 if (key.type != key_type || key.objectid != dirid) {
1331 ret = 1;
1332 goto next;
1333 }
1334 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1335 struct btrfs_dir_log_item);
1336 found_end = btrfs_dir_log_end(path->nodes[0], item);
1337
1338 if (*start_ret >= key.offset && *start_ret <= found_end) {
1339 ret = 0;
1340 *start_ret = key.offset;
1341 *end_ret = found_end;
1342 goto out;
1343 }
1344 ret = 1;
1345next:
1346 /* check the next slot in the tree to see if it is a valid item */
1347 nritems = btrfs_header_nritems(path->nodes[0]);
1348 if (path->slots[0] >= nritems) {
1349 ret = btrfs_next_leaf(root, path);
1350 if (ret)
1351 goto out;
1352 } else {
1353 path->slots[0]++;
1354 }
1355
1356 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1357
1358 if (key.type != key_type || key.objectid != dirid) {
1359 ret = 1;
1360 goto out;
1361 }
1362 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1363 struct btrfs_dir_log_item);
1364 found_end = btrfs_dir_log_end(path->nodes[0], item);
1365 *start_ret = key.offset;
1366 *end_ret = found_end;
1367 ret = 0;
1368out:
1369 btrfs_release_path(root, path);
1370 return ret;
1371}
1372
1373/*
1374 * this looks for a given directory item in the log. If the directory
1375 * item is not in the log, the item is removed and the inode it points
1376 * to is unlinked
1377 */
1378static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root,
1380 struct btrfs_root *log,
1381 struct btrfs_path *path,
1382 struct btrfs_path *log_path,
1383 struct inode *dir,
1384 struct btrfs_key *dir_key)
1385{
1386 int ret;
1387 struct extent_buffer *eb;
1388 int slot;
1389 u32 item_size;
1390 struct btrfs_dir_item *di;
1391 struct btrfs_dir_item *log_di;
1392 int name_len;
1393 unsigned long ptr;
1394 unsigned long ptr_end;
1395 char *name;
1396 struct inode *inode;
1397 struct btrfs_key location;
1398
1399again:
1400 eb = path->nodes[0];
1401 slot = path->slots[0];
1402 item_size = btrfs_item_size_nr(eb, slot);
1403 ptr = btrfs_item_ptr_offset(eb, slot);
1404 ptr_end = ptr + item_size;
1405 while(ptr < ptr_end) {
1406 di = (struct btrfs_dir_item *)ptr;
1407 name_len = btrfs_dir_name_len(eb, di);
1408 name = kmalloc(name_len, GFP_NOFS);
1409 if (!name) {
1410 ret = -ENOMEM;
1411 goto out;
1412 }
1413 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1414 name_len);
1415 log_di = NULL;
1416 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1417 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1418 dir_key->objectid,
1419 name, name_len, 0);
1420 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1421 log_di = btrfs_lookup_dir_index_item(trans, log,
1422 log_path,
1423 dir_key->objectid,
1424 dir_key->offset,
1425 name, name_len, 0);
1426 }
1427 if (!log_di || IS_ERR(log_di)) {
1428 btrfs_dir_item_key_to_cpu(eb, di, &location);
1429 btrfs_release_path(root, path);
1430 btrfs_release_path(log, log_path);
1431 inode = read_one_inode(root, location.objectid);
1432 BUG_ON(!inode);
1433
1434 ret = link_to_fixup_dir(trans, root,
1435 path, location.objectid);
1436 BUG_ON(ret);
1437 btrfs_inc_nlink(inode);
1438 ret = btrfs_unlink_inode(trans, root, dir, inode,
1439 name, name_len);
1440 BUG_ON(ret);
1441 kfree(name);
1442 iput(inode);
1443
1444 /* there might still be more names under this key
1445 * check and repeat if required
1446 */
1447 ret = btrfs_search_slot(NULL, root, dir_key, path,
1448 0, 0);
1449 if (ret == 0)
1450 goto again;
1451 ret = 0;
1452 goto out;
1453 }
1454 btrfs_release_path(log, log_path);
1455 kfree(name);
1456
1457 ptr = (unsigned long)(di + 1);
1458 ptr += name_len;
1459 }
1460 ret = 0;
1461out:
1462 btrfs_release_path(root, path);
1463 btrfs_release_path(log, log_path);
1464 return ret;
1465}
1466
1467/*
1468 * deletion replay happens before we copy any new directory items
1469 * out of the log or out of backreferences from inodes. It
1470 * scans the log to find ranges of keys that log is authoritative for,
1471 * and then scans the directory to find items in those ranges that are
1472 * not present in the log.
1473 *
1474 * Anything we don't find in the log is unlinked and removed from the
1475 * directory.
1476 */
1477static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_root *log,
1480 struct btrfs_path *path,
1481 u64 dirid)
1482{
1483 u64 range_start;
1484 u64 range_end;
1485 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1486 int ret = 0;
1487 struct btrfs_key dir_key;
1488 struct btrfs_key found_key;
1489 struct btrfs_path *log_path;
1490 struct inode *dir;
1491
1492 dir_key.objectid = dirid;
1493 dir_key.type = BTRFS_DIR_ITEM_KEY;
1494 log_path = btrfs_alloc_path();
1495 if (!log_path)
1496 return -ENOMEM;
1497
1498 dir = read_one_inode(root, dirid);
1499 /* it isn't an error if the inode isn't there, that can happen
1500 * because we replay the deletes before we copy in the inode item
1501 * from the log
1502 */
1503 if (!dir) {
1504 btrfs_free_path(log_path);
1505 return 0;
1506 }
1507again:
1508 range_start = 0;
1509 range_end = 0;
1510 while(1) {
1511 ret = find_dir_range(log, path, dirid, key_type,
1512 &range_start, &range_end);
1513 if (ret != 0)
1514 break;
1515
1516 dir_key.offset = range_start;
1517 while(1) {
1518 int nritems;
1519 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1520 0, 0);
1521 if (ret < 0)
1522 goto out;
1523
1524 nritems = btrfs_header_nritems(path->nodes[0]);
1525 if (path->slots[0] >= nritems) {
1526 ret = btrfs_next_leaf(root, path);
1527 if (ret)
1528 break;
1529 }
1530 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1531 path->slots[0]);
1532 if (found_key.objectid != dirid ||
1533 found_key.type != dir_key.type)
1534 goto next_type;
1535
1536 if (found_key.offset > range_end)
1537 break;
1538
1539 ret = check_item_in_log(trans, root, log, path,
1540 log_path, dir, &found_key);
1541 BUG_ON(ret);
1542 if (found_key.offset == (u64)-1)
1543 break;
1544 dir_key.offset = found_key.offset + 1;
1545 }
1546 btrfs_release_path(root, path);
1547 if (range_end == (u64)-1)
1548 break;
1549 range_start = range_end + 1;
1550 }
1551
1552next_type:
1553 ret = 0;
1554 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1555 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1556 dir_key.type = BTRFS_DIR_INDEX_KEY;
1557 btrfs_release_path(root, path);
1558 goto again;
1559 }
1560out:
1561 btrfs_release_path(root, path);
1562 btrfs_free_path(log_path);
1563 iput(dir);
1564 return ret;
1565}
1566
1567/*
1568 * the process_func used to replay items from the log tree. This
1569 * gets called in two different stages. The first stage just looks
1570 * for inodes and makes sure they are all copied into the subvolume.
1571 *
1572 * The second stage copies all the other item types from the log into
1573 * the subvolume. The two stage approach is slower, but gets rid of
1574 * lots of complexity around inodes referencing other inodes that exist
1575 * only in the log (references come from either directory items or inode
1576 * back refs).
1577 */
1578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1579 struct walk_control *wc, u64 gen)
1580{
1581 int nritems;
1582 struct btrfs_path *path;
1583 struct btrfs_root *root = wc->replay_dest;
1584 struct btrfs_key key;
1585 u32 item_size;
1586 int level;
1587 int i;
1588 int ret;
1589
1590 btrfs_read_buffer(eb, gen);
1591
1592 level = btrfs_header_level(eb);
1593
1594 if (level != 0)
1595 return 0;
1596
1597 path = btrfs_alloc_path();
1598 BUG_ON(!path);
1599
1600 nritems = btrfs_header_nritems(eb);
1601 for (i = 0; i < nritems; i++) {
1602 btrfs_item_key_to_cpu(eb, &key, i);
1603 item_size = btrfs_item_size_nr(eb, i);
1604
1605 /* inode keys are done during the first stage */
1606 if (key.type == BTRFS_INODE_ITEM_KEY &&
1607 wc->stage == LOG_WALK_REPLAY_INODES) {
1608 struct inode *inode;
1609 struct btrfs_inode_item *inode_item;
1610 u32 mode;
1611
1612 inode_item = btrfs_item_ptr(eb, i,
1613 struct btrfs_inode_item);
1614 mode = btrfs_inode_mode(eb, inode_item);
1615 if (S_ISDIR(mode)) {
1616 ret = replay_dir_deletes(wc->trans,
1617 root, log, path, key.objectid);
1618 BUG_ON(ret);
1619 }
1620 ret = overwrite_item(wc->trans, root, path,
1621 eb, i, &key);
1622 BUG_ON(ret);
1623
1624 /* for regular files, truncate away
1625 * extents past the new EOF
1626 */
1627 if (S_ISREG(mode)) {
1628 inode = read_one_inode(root,
1629 key.objectid);
1630 BUG_ON(!inode);
1631
1632 ret = btrfs_truncate_inode_items(wc->trans,
1633 root, inode, inode->i_size,
1634 BTRFS_EXTENT_DATA_KEY);
1635 BUG_ON(ret);
1636 iput(inode);
1637 }
1638 ret = link_to_fixup_dir(wc->trans, root,
1639 path, key.objectid);
1640 BUG_ON(ret);
1641 }
1642 if (wc->stage < LOG_WALK_REPLAY_ALL)
1643 continue;
1644
1645 /* these keys are simply copied */
1646 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1647 ret = overwrite_item(wc->trans, root, path,
1648 eb, i, &key);
1649 BUG_ON(ret);
1650 } else if (key.type == BTRFS_INODE_REF_KEY) {
1651 ret = add_inode_ref(wc->trans, root, log, path,
1652 eb, i, &key);
1653 BUG_ON(ret && ret != -ENOENT);
1654 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1655 ret = replay_one_extent(wc->trans, root, path,
1656 eb, i, &key);
1657 BUG_ON(ret);
1658 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1659 ret = replay_one_csum(wc->trans, root, path,
1660 eb, i, &key);
1661 BUG_ON(ret);
1662 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1663 key.type == BTRFS_DIR_INDEX_KEY) {
1664 ret = replay_one_dir_item(wc->trans, root, path,
1665 eb, i, &key);
1666 BUG_ON(ret);
1667 }
1668 }
1669 btrfs_free_path(path);
1670 return 0;
1671}
1672
1673static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1674 struct btrfs_root *root,
1675 struct btrfs_path *path, int *level,
1676 struct walk_control *wc)
1677{
1678 u64 root_owner;
1679 u64 root_gen;
1680 u64 bytenr;
1681 u64 ptr_gen;
1682 struct extent_buffer *next;
1683 struct extent_buffer *cur;
1684 struct extent_buffer *parent;
1685 u32 blocksize;
1686 int ret = 0;
1687
1688 WARN_ON(*level < 0);
1689 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1690
1691 while(*level > 0) {
1692 WARN_ON(*level < 0);
1693 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1694 cur = path->nodes[*level];
1695
1696 if (btrfs_header_level(cur) != *level)
1697 WARN_ON(1);
1698
1699 if (path->slots[*level] >=
1700 btrfs_header_nritems(cur))
1701 break;
1702
1703 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1704 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1705 blocksize = btrfs_level_size(root, *level - 1);
1706
1707 parent = path->nodes[*level];
1708 root_owner = btrfs_header_owner(parent);
1709 root_gen = btrfs_header_generation(parent);
1710
1711 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1712
1713 wc->process_func(root, next, wc, ptr_gen);
1714
1715 if (*level == 1) {
1716 path->slots[*level]++;
1717 if (wc->free) {
1718 btrfs_read_buffer(next, ptr_gen);
1719
1720 btrfs_tree_lock(next);
1721 clean_tree_block(trans, root, next);
1722 btrfs_wait_tree_block_writeback(next);
1723 btrfs_tree_unlock(next);
1724
1725 ret = btrfs_drop_leaf_ref(trans, root, next);
1726 BUG_ON(ret);
1727
1728 WARN_ON(root_owner !=
1729 BTRFS_TREE_LOG_OBJECTID);
1730 ret = btrfs_free_extent(trans, root, bytenr,
1731 blocksize, root_owner,
1732 root_gen, 0, 0, 1);
1733 BUG_ON(ret);
1734 }
1735 free_extent_buffer(next);
1736 continue;
1737 }
1738 btrfs_read_buffer(next, ptr_gen);
1739
1740 WARN_ON(*level <= 0);
1741 if (path->nodes[*level-1])
1742 free_extent_buffer(path->nodes[*level-1]);
1743 path->nodes[*level-1] = next;
1744 *level = btrfs_header_level(next);
1745 path->slots[*level] = 0;
1746 cond_resched();
1747 }
1748 WARN_ON(*level < 0);
1749 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1750
1751 if (path->nodes[*level] == root->node) {
1752 parent = path->nodes[*level];
1753 } else {
1754 parent = path->nodes[*level + 1];
1755 }
1756 bytenr = path->nodes[*level]->start;
1757
1758 blocksize = btrfs_level_size(root, *level);
1759 root_owner = btrfs_header_owner(parent);
1760 root_gen = btrfs_header_generation(parent);
1761
1762 wc->process_func(root, path->nodes[*level], wc,
1763 btrfs_header_generation(path->nodes[*level]));
1764
1765 if (wc->free) {
1766 next = path->nodes[*level];
1767 btrfs_tree_lock(next);
1768 clean_tree_block(trans, root, next);
1769 btrfs_wait_tree_block_writeback(next);
1770 btrfs_tree_unlock(next);
1771
1772 if (*level == 0) {
1773 ret = btrfs_drop_leaf_ref(trans, root, next);
1774 BUG_ON(ret);
1775 }
1776 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1777 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
1778 root_owner, root_gen, 0, 0, 1);
1779 BUG_ON(ret);
1780 }
1781 free_extent_buffer(path->nodes[*level]);
1782 path->nodes[*level] = NULL;
1783 *level += 1;
1784
1785 cond_resched();
1786 return 0;
1787}
1788
1789static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1790 struct btrfs_root *root,
1791 struct btrfs_path *path, int *level,
1792 struct walk_control *wc)
1793{
1794 u64 root_owner;
1795 u64 root_gen;
1796 int i;
1797 int slot;
1798 int ret;
1799
1800 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1801 slot = path->slots[i];
1802 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1803 struct extent_buffer *node;
1804 node = path->nodes[i];
1805 path->slots[i]++;
1806 *level = i;
1807 WARN_ON(*level == 0);
1808 return 0;
1809 } else {
1810 if (path->nodes[*level] == root->node) {
1811 root_owner = root->root_key.objectid;
1812 root_gen =
1813 btrfs_header_generation(path->nodes[*level]);
1814 } else {
1815 struct extent_buffer *node;
1816 node = path->nodes[*level + 1];
1817 root_owner = btrfs_header_owner(node);
1818 root_gen = btrfs_header_generation(node);
1819 }
1820 wc->process_func(root, path->nodes[*level], wc,
1821 btrfs_header_generation(path->nodes[*level]));
1822 if (wc->free) {
1823 struct extent_buffer *next;
1824
1825 next = path->nodes[*level];
1826
1827 btrfs_tree_lock(next);
1828 clean_tree_block(trans, root, next);
1829 btrfs_wait_tree_block_writeback(next);
1830 btrfs_tree_unlock(next);
1831
1832 if (*level == 0) {
1833 ret = btrfs_drop_leaf_ref(trans, root,
1834 next);
1835 BUG_ON(ret);
1836 }
1837
1838 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1839 ret = btrfs_free_extent(trans, root,
1840 path->nodes[*level]->start,
1841 path->nodes[*level]->len,
1842 root_owner, root_gen, 0, 0, 1);
1843 BUG_ON(ret);
1844 }
1845 free_extent_buffer(path->nodes[*level]);
1846 path->nodes[*level] = NULL;
1847 *level = i + 1;
1848 }
1849 }
1850 return 1;
1851}
1852
1853/*
1854 * drop the reference count on the tree rooted at 'snap'. This traverses
1855 * the tree freeing any blocks that have a ref count of zero after being
1856 * decremented.
1857 */
1858static int walk_log_tree(struct btrfs_trans_handle *trans,
1859 struct btrfs_root *log, struct walk_control *wc)
1860{
1861 int ret = 0;
1862 int wret;
1863 int level;
1864 struct btrfs_path *path;
1865 int i;
1866 int orig_level;
1867
1868 path = btrfs_alloc_path();
1869 BUG_ON(!path);
1870
1871 level = btrfs_header_level(log->node);
1872 orig_level = level;
1873 path->nodes[level] = log->node;
1874 extent_buffer_get(log->node);
1875 path->slots[level] = 0;
1876
1877 while(1) {
1878 wret = walk_down_log_tree(trans, log, path, &level, wc);
1879 if (wret > 0)
1880 break;
1881 if (wret < 0)
1882 ret = wret;
1883
1884 wret = walk_up_log_tree(trans, log, path, &level, wc);
1885 if (wret > 0)
1886 break;
1887 if (wret < 0)
1888 ret = wret;
1889 }
1890
1891 /* was the root node processed? if not, catch it here */
1892 if (path->nodes[orig_level]) {
1893 wc->process_func(log, path->nodes[orig_level], wc,
1894 btrfs_header_generation(path->nodes[orig_level]));
1895 if (wc->free) {
1896 struct extent_buffer *next;
1897
1898 next = path->nodes[orig_level];
1899
1900 btrfs_tree_lock(next);
1901 clean_tree_block(trans, log, next);
1902 btrfs_wait_tree_block_writeback(next);
1903 btrfs_tree_unlock(next);
1904
1905 if (orig_level == 0) {
1906 ret = btrfs_drop_leaf_ref(trans, log,
1907 next);
1908 BUG_ON(ret);
1909 }
1910 WARN_ON(log->root_key.objectid !=
1911 BTRFS_TREE_LOG_OBJECTID);
1912 ret = btrfs_free_extent(trans, log,
1913 next->start, next->len,
1914 log->root_key.objectid,
1915 btrfs_header_generation(next),
1916 0, 0, 1);
1917 BUG_ON(ret);
1918 }
1919 }
1920
1921 for (i = 0; i <= orig_level; i++) {
1922 if (path->nodes[i]) {
1923 free_extent_buffer(path->nodes[i]);
1924 path->nodes[i] = NULL;
1925 }
1926 }
1927 btrfs_free_path(path);
1928 if (wc->free)
1929 free_extent_buffer(log->node);
1930 return ret;
1931}
1932
1933int wait_log_commit(struct btrfs_root *log)
1934{
1935 DEFINE_WAIT(wait);
1936 u64 transid = log->fs_info->tree_log_transid;
1937
1938 do {
1939 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1940 TASK_UNINTERRUPTIBLE);
1941 mutex_unlock(&log->fs_info->tree_log_mutex);
1942 if (atomic_read(&log->fs_info->tree_log_commit))
1943 schedule();
1944 finish_wait(&log->fs_info->tree_log_wait, &wait);
1945 mutex_lock(&log->fs_info->tree_log_mutex);
1946 } while(transid == log->fs_info->tree_log_transid &&
1947 atomic_read(&log->fs_info->tree_log_commit));
1948 return 0;
1949}
1950
1951/*
1952 * btrfs_sync_log does sends a given tree log down to the disk and
1953 * updates the super blocks to record it. When this call is done,
1954 * you know that any inodes previously logged are safely on disk
1955 */
1956int btrfs_sync_log(struct btrfs_trans_handle *trans,
1957 struct btrfs_root *root)
1958{
1959 int ret;
1960 unsigned long batch;
1961 struct btrfs_root *log = root->log_root;
1962 struct walk_control wc = {
1963 .write = 1,
1964 .process_func = process_one_buffer
1965 };
1966
1967 mutex_lock(&log->fs_info->tree_log_mutex);
1968 if (atomic_read(&log->fs_info->tree_log_commit)) {
1969 wait_log_commit(log);
1970 goto out;
1971 }
1972 atomic_set(&log->fs_info->tree_log_commit, 1);
1973
1974 while(1) {
1975 mutex_unlock(&log->fs_info->tree_log_mutex);
1976 schedule_timeout_uninterruptible(1);
1977 mutex_lock(&log->fs_info->tree_log_mutex);
1978 batch = log->fs_info->tree_log_batch;
1979
1980 while(atomic_read(&log->fs_info->tree_log_writers)) {
1981 DEFINE_WAIT(wait);
1982 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1983 TASK_UNINTERRUPTIBLE);
1984 batch = log->fs_info->tree_log_batch;
1985 mutex_unlock(&log->fs_info->tree_log_mutex);
1986 if (atomic_read(&log->fs_info->tree_log_writers))
1987 schedule();
1988 mutex_lock(&log->fs_info->tree_log_mutex);
1989 finish_wait(&log->fs_info->tree_log_wait, &wait);
1990 }
1991 if (batch == log->fs_info->tree_log_batch)
1992 break;
1993 }
1994 ret = walk_log_tree(trans, log, &wc);
1995 BUG_ON(ret);
1996
1997 ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
1998 BUG_ON(ret);
1999
2000 wc.wait = 1;
2001
2002 ret = walk_log_tree(trans, log, &wc);
2003 BUG_ON(ret);
2004
2005 ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
2006 BUG_ON(ret);
2007
2008 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2009 log->fs_info->log_root_tree->node->start);
2010 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2011 btrfs_header_level(log->fs_info->log_root_tree->node));
2012
2013 write_ctree_super(trans, log->fs_info->tree_root);
2014 log->fs_info->tree_log_transid++;
2015 log->fs_info->tree_log_batch = 0;
2016 atomic_set(&log->fs_info->tree_log_commit, 0);
2017 smp_mb();
2018 if (waitqueue_active(&log->fs_info->tree_log_wait))
2019 wake_up(&log->fs_info->tree_log_wait);
2020out:
2021 mutex_unlock(&log->fs_info->tree_log_mutex);
2022 return 0;
2023
2024}
2025
2026/*
2027 * free all the extents used by the tree log. This should be called
2028 * at commit time of the full transaction
2029 */
2030int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2031{
2032 int ret;
2033 struct btrfs_root *log;
2034 struct key;
2035 struct walk_control wc = {
2036 .free = 1,
2037 .process_func = process_one_buffer
2038 };
2039
2040 if (!root->log_root)
2041 return 0;
2042
2043 log = root->log_root;
2044 ret = walk_log_tree(trans, log, &wc);
2045 BUG_ON(ret);
2046
2047 log = root->log_root;
2048 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2049 &log->root_key);
2050 BUG_ON(ret);
2051 root->log_root = NULL;
2052 kfree(root->log_root);
2053 return 0;
2054}
2055
2056/*
2057 * helper function to update the item for a given subvolumes log root
2058 * in the tree of log roots
2059 */
2060static int update_log_root(struct btrfs_trans_handle *trans,
2061 struct btrfs_root *log)
2062{
2063 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2064 int ret;
2065
2066 if (log->node->start == bytenr)
2067 return 0;
2068
2069 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2070 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2071 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2072 &log->root_key, &log->root_item);
2073 BUG_ON(ret);
2074 return ret;
2075}
2076
2077/*
2078 * If both a file and directory are logged, and unlinks or renames are
2079 * mixed in, we have a few interesting corners:
2080 *
2081 * create file X in dir Y
2082 * link file X to X.link in dir Y
2083 * fsync file X
2084 * unlink file X but leave X.link
2085 * fsync dir Y
2086 *
2087 * After a crash we would expect only X.link to exist. But file X
2088 * didn't get fsync'd again so the log has back refs for X and X.link.
2089 *
2090 * We solve this by removing directory entries and inode backrefs from the
2091 * log when a file that was logged in the current transaction is
2092 * unlinked. Any later fsync will include the updated log entries, and
2093 * we'll be able to reconstruct the proper directory items from backrefs.
2094 *
2095 * This optimizations allows us to avoid relogging the entire inode
2096 * or the entire directory.
2097 */
2098int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root,
2100 const char *name, int name_len,
2101 struct inode *dir, u64 index)
2102{
2103 struct btrfs_root *log;
2104 struct btrfs_dir_item *di;
2105 struct btrfs_path *path;
2106 int ret;
2107 int bytes_del = 0;
2108
2109 ret = join_running_log_trans(root);
2110 if (ret)
2111 return 0;
2112
2113 mutex_lock(&BTRFS_I(dir)->log_mutex);
2114
2115 log = root->log_root;
2116 path = btrfs_alloc_path();
2117 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2118 name, name_len, -1);
2119 if (di && !IS_ERR(di)) {
2120 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2121 bytes_del += name_len;
2122 BUG_ON(ret);
2123 }
2124 btrfs_release_path(log, path);
2125 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2126 index, name, name_len, -1);
2127 if (di && !IS_ERR(di)) {
2128 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2129 bytes_del += name_len;
2130 BUG_ON(ret);
2131 }
2132
2133 /* update the directory size in the log to reflect the names
2134 * we have removed
2135 */
2136 if (bytes_del) {
2137 struct btrfs_key key;
2138
2139 key.objectid = dir->i_ino;
2140 key.offset = 0;
2141 key.type = BTRFS_INODE_ITEM_KEY;
2142 btrfs_release_path(log, path);
2143
2144 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2145 if (ret == 0) {
2146 struct btrfs_inode_item *item;
2147 u64 i_size;
2148
2149 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2150 struct btrfs_inode_item);
2151 i_size = btrfs_inode_size(path->nodes[0], item);
2152 if (i_size > bytes_del)
2153 i_size -= bytes_del;
2154 else
2155 i_size = 0;
2156 btrfs_set_inode_size(path->nodes[0], item, i_size);
2157 btrfs_mark_buffer_dirty(path->nodes[0]);
2158 } else
2159 ret = 0;
2160 btrfs_release_path(log, path);
2161 }
2162
2163 btrfs_free_path(path);
2164 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2165 end_log_trans(root);
2166
2167 return 0;
2168}
2169
2170/* see comments for btrfs_del_dir_entries_in_log */
2171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2172 struct btrfs_root *root,
2173 const char *name, int name_len,
2174 struct inode *inode, u64 dirid)
2175{
2176 struct btrfs_root *log;
2177 u64 index;
2178 int ret;
2179
2180 ret = join_running_log_trans(root);
2181 if (ret)
2182 return 0;
2183 log = root->log_root;
2184 mutex_lock(&BTRFS_I(inode)->log_mutex);
2185
2186 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2187 dirid, &index);
2188 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2189 end_log_trans(root);
2190
2191 if (ret == 0 || ret == -ENOENT)
2192 return 0;
2193 return ret;
2194}
2195
2196/*
2197 * creates a range item in the log for 'dirid'. first_offset and
2198 * last_offset tell us which parts of the key space the log should
2199 * be considered authoritative for.
2200 */
2201static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2202 struct btrfs_root *log,
2203 struct btrfs_path *path,
2204 int key_type, u64 dirid,
2205 u64 first_offset, u64 last_offset)
2206{
2207 int ret;
2208 struct btrfs_key key;
2209 struct btrfs_dir_log_item *item;
2210
2211 key.objectid = dirid;
2212 key.offset = first_offset;
2213 if (key_type == BTRFS_DIR_ITEM_KEY)
2214 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2215 else
2216 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2217 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2218 BUG_ON(ret);
2219
2220 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2221 struct btrfs_dir_log_item);
2222 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2223 btrfs_mark_buffer_dirty(path->nodes[0]);
2224 btrfs_release_path(log, path);
2225 return 0;
2226}
2227
2228/*
2229 * log all the items included in the current transaction for a given
2230 * directory. This also creates the range items in the log tree required
2231 * to replay anything deleted before the fsync
2232 */
2233static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2234 struct btrfs_root *root, struct inode *inode,
2235 struct btrfs_path *path,
2236 struct btrfs_path *dst_path, int key_type,
2237 u64 min_offset, u64 *last_offset_ret)
2238{
2239 struct btrfs_key min_key;
2240 struct btrfs_key max_key;
2241 struct btrfs_root *log = root->log_root;
2242 struct extent_buffer *src;
2243 int ret;
2244 int i;
2245 int nritems;
2246 u64 first_offset = min_offset;
2247 u64 last_offset = (u64)-1;
2248
2249 log = root->log_root;
2250 max_key.objectid = inode->i_ino;
2251 max_key.offset = (u64)-1;
2252 max_key.type = key_type;
2253
2254 min_key.objectid = inode->i_ino;
2255 min_key.type = key_type;
2256 min_key.offset = min_offset;
2257
2258 path->keep_locks = 1;
2259
2260 ret = btrfs_search_forward(root, &min_key, &max_key,
2261 path, 0, trans->transid);
2262
2263 /*
2264 * we didn't find anything from this transaction, see if there
2265 * is anything at all
2266 */
2267 if (ret != 0 || min_key.objectid != inode->i_ino ||
2268 min_key.type != key_type) {
2269 min_key.objectid = inode->i_ino;
2270 min_key.type = key_type;
2271 min_key.offset = (u64)-1;
2272 btrfs_release_path(root, path);
2273 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2274 if (ret < 0) {
2275 btrfs_release_path(root, path);
2276 return ret;
2277 }
2278 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2279
2280 /* if ret == 0 there are items for this type,
2281 * create a range to tell us the last key of this type.
2282 * otherwise, there are no items in this directory after
2283 * *min_offset, and we create a range to indicate that.
2284 */
2285 if (ret == 0) {
2286 struct btrfs_key tmp;
2287 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2288 path->slots[0]);
2289 if (key_type == tmp.type) {
2290 first_offset = max(min_offset, tmp.offset) + 1;
2291 }
2292 }
2293 goto done;
2294 }
2295
2296 /* go backward to find any previous key */
2297 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2298 if (ret == 0) {
2299 struct btrfs_key tmp;
2300 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2301 if (key_type == tmp.type) {
2302 first_offset = tmp.offset;
2303 ret = overwrite_item(trans, log, dst_path,
2304 path->nodes[0], path->slots[0],
2305 &tmp);
2306 }
2307 }
2308 btrfs_release_path(root, path);
2309
2310 /* find the first key from this transaction again */
2311 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2312 if (ret != 0) {
2313 WARN_ON(1);
2314 goto done;
2315 }
2316
2317 /*
2318 * we have a block from this transaction, log every item in it
2319 * from our directory
2320 */
2321 while(1) {
2322 struct btrfs_key tmp;
2323 src = path->nodes[0];
2324 nritems = btrfs_header_nritems(src);
2325 for (i = path->slots[0]; i < nritems; i++) {
2326 btrfs_item_key_to_cpu(src, &min_key, i);
2327
2328 if (min_key.objectid != inode->i_ino ||
2329 min_key.type != key_type)
2330 goto done;
2331 ret = overwrite_item(trans, log, dst_path, src, i,
2332 &min_key);
2333 BUG_ON(ret);
2334 }
2335 path->slots[0] = nritems;
2336
2337 /*
2338 * look ahead to the next item and see if it is also
2339 * from this directory and from this transaction
2340 */
2341 ret = btrfs_next_leaf(root, path);
2342 if (ret == 1) {
2343 last_offset = (u64)-1;
2344 goto done;
2345 }
2346 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2347 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2348 last_offset = (u64)-1;
2349 goto done;
2350 }
2351 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2352 ret = overwrite_item(trans, log, dst_path,
2353 path->nodes[0], path->slots[0],
2354 &tmp);
2355
2356 BUG_ON(ret);
2357 last_offset = tmp.offset;
2358 goto done;
2359 }
2360 }
2361done:
2362 *last_offset_ret = last_offset;
2363 btrfs_release_path(root, path);
2364 btrfs_release_path(log, dst_path);
2365
2366 /* insert the log range keys to indicate where the log is valid */
2367 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2368 first_offset, last_offset);
2369 BUG_ON(ret);
2370 return 0;
2371}
2372
2373/*
2374 * logging directories is very similar to logging inodes, We find all the items
2375 * from the current transaction and write them to the log.
2376 *
2377 * The recovery code scans the directory in the subvolume, and if it finds a
2378 * key in the range logged that is not present in the log tree, then it means
2379 * that dir entry was unlinked during the transaction.
2380 *
2381 * In order for that scan to work, we must include one key smaller than
2382 * the smallest logged by this transaction and one key larger than the largest
2383 * key logged by this transaction.
2384 */
2385static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root, struct inode *inode,
2387 struct btrfs_path *path,
2388 struct btrfs_path *dst_path)
2389{
2390 u64 min_key;
2391 u64 max_key;
2392 int ret;
2393 int key_type = BTRFS_DIR_ITEM_KEY;
2394
2395again:
2396 min_key = 0;
2397 max_key = 0;
2398 while(1) {
2399 ret = log_dir_items(trans, root, inode, path,
2400 dst_path, key_type, min_key,
2401 &max_key);
2402 BUG_ON(ret);
2403 if (max_key == (u64)-1)
2404 break;
2405 min_key = max_key + 1;
2406 }
2407
2408 if (key_type == BTRFS_DIR_ITEM_KEY) {
2409 key_type = BTRFS_DIR_INDEX_KEY;
2410 goto again;
2411 }
2412 return 0;
2413}
2414
2415/*
2416 * a helper function to drop items from the log before we relog an
2417 * inode. max_key_type indicates the highest item type to remove.
2418 * This cannot be run for file data extents because it does not
2419 * free the extents they point to.
2420 */
2421static int drop_objectid_items(struct btrfs_trans_handle *trans,
2422 struct btrfs_root *log,
2423 struct btrfs_path *path,
2424 u64 objectid, int max_key_type)
2425{
2426 int ret;
2427 struct btrfs_key key;
2428 struct btrfs_key found_key;
2429
2430 key.objectid = objectid;
2431 key.type = max_key_type;
2432 key.offset = (u64)-1;
2433
2434 while(1) {
2435 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2436
2437 if (ret != 1)
2438 break;
2439
2440 if (path->slots[0] == 0)
2441 break;
2442
2443 path->slots[0]--;
2444 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2445 path->slots[0]);
2446
2447 if (found_key.objectid != objectid)
2448 break;
2449
2450 ret = btrfs_del_item(trans, log, path);
2451 BUG_ON(ret);
2452 btrfs_release_path(log, path);
2453 }
2454 btrfs_release_path(log, path);
2455 return 0;
2456}
2457
2458/* log a single inode in the tree log.
2459 * At least one parent directory for this inode must exist in the tree
2460 * or be logged already.
2461 *
2462 * Any items from this inode changed by the current transaction are copied
2463 * to the log tree. An extra reference is taken on any extents in this
2464 * file, allowing us to avoid a whole pile of corner cases around logging
2465 * blocks that have been removed from the tree.
2466 *
2467 * See LOG_INODE_ALL and related defines for a description of what inode_only
2468 * does.
2469 *
2470 * This handles both files and directories.
2471 */
2472static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root, struct inode *inode,
2474 int inode_only)
2475{
2476 struct btrfs_path *path;
2477 struct btrfs_path *dst_path;
2478 struct btrfs_key min_key;
2479 struct btrfs_key max_key;
2480 struct btrfs_root *log = root->log_root;
2481 unsigned long src_offset;
2482 unsigned long dst_offset;
2483 struct extent_buffer *src;
2484 struct btrfs_file_extent_item *extent;
2485 struct btrfs_inode_item *inode_item;
2486 u32 size;
2487 int ret;
2488
2489 log = root->log_root;
2490
2491 path = btrfs_alloc_path();
2492 dst_path = btrfs_alloc_path();
2493
2494 min_key.objectid = inode->i_ino;
2495 min_key.type = BTRFS_INODE_ITEM_KEY;
2496 min_key.offset = 0;
2497
2498 max_key.objectid = inode->i_ino;
2499 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2500 max_key.type = BTRFS_XATTR_ITEM_KEY;
2501 else
2502 max_key.type = (u8)-1;
2503 max_key.offset = (u64)-1;
2504
2505 /*
2506 * if this inode has already been logged and we're in inode_only
2507 * mode, we don't want to delete the things that have already
2508 * been written to the log.
2509 *
2510 * But, if the inode has been through an inode_only log,
2511 * the logged_trans field is not set. This allows us to catch
2512 * any new names for this inode in the backrefs by logging it
2513 * again
2514 */
2515 if (inode_only == LOG_INODE_EXISTS &&
2516 BTRFS_I(inode)->logged_trans == trans->transid) {
2517 btrfs_free_path(path);
2518 btrfs_free_path(dst_path);
2519 goto out;
2520 }
2521 mutex_lock(&BTRFS_I(inode)->log_mutex);
2522
2523 /*
2524 * a brute force approach to making sure we get the most uptodate
2525 * copies of everything.
2526 */
2527 if (S_ISDIR(inode->i_mode)) {
2528 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2529
2530 if (inode_only == LOG_INODE_EXISTS)
2531 max_key_type = BTRFS_XATTR_ITEM_KEY;
2532 ret = drop_objectid_items(trans, log, path,
2533 inode->i_ino, max_key_type);
2534 } else {
2535 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2536 }
2537 BUG_ON(ret);
2538 path->keep_locks = 1;
2539
2540 while(1) {
2541 ret = btrfs_search_forward(root, &min_key, &max_key,
2542 path, 0, trans->transid);
2543 if (ret != 0)
2544 break;
2545
2546 if (min_key.objectid != inode->i_ino)
2547 break;
2548 if (min_key.type > max_key.type)
2549 break;
2550
2551 src = path->nodes[0];
2552 size = btrfs_item_size_nr(src, path->slots[0]);
2553 ret = btrfs_insert_empty_item(trans, log, dst_path, &min_key,
2554 size);
2555 if (ret)
2556 BUG();
2557
2558 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2559 dst_path->slots[0]);
2560
2561 src_offset = btrfs_item_ptr_offset(src, path->slots[0]);
2562
2563 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2564 src_offset, size);
2565
2566 if (inode_only == LOG_INODE_EXISTS &&
2567 min_key.type == BTRFS_INODE_ITEM_KEY) {
2568 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2569 dst_path->slots[0],
2570 struct btrfs_inode_item);
2571 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2572
2573 /* set the generation to zero so the recover code
2574 * can tell the difference between an logging
2575 * just to say 'this inode exists' and a logging
2576 * to say 'update this inode with these values'
2577 */
2578 btrfs_set_inode_generation(dst_path->nodes[0],
2579 inode_item, 0);
2580 }
2581 /* take a reference on file data extents so that truncates
2582 * or deletes of this inode don't have to relog the inode
2583 * again
2584 */
2585 if (btrfs_key_type(&min_key) == BTRFS_EXTENT_DATA_KEY) {
2586 int found_type;
2587 extent = btrfs_item_ptr(src, path->slots[0],
2588 struct btrfs_file_extent_item);
2589
2590 found_type = btrfs_file_extent_type(src, extent);
2591 if (found_type == BTRFS_FILE_EXTENT_REG) {
2592 u64 ds = btrfs_file_extent_disk_bytenr(src,
2593 extent);
2594 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2595 extent);
2596 /* ds == 0 is a hole */
2597 if (ds != 0) {
2598 ret = btrfs_inc_extent_ref(trans, log,
2599 ds, dl,
2600 log->root_key.objectid,
2601 0,
2602 inode->i_ino,
2603 min_key.offset);
2604 BUG_ON(ret);
2605 }
2606 }
2607 }
2608
2609 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2610 btrfs_release_path(root, path);
2611 btrfs_release_path(log, dst_path);
2612
2613 if (min_key.offset < (u64)-1)
2614 min_key.offset++;
2615 else if (min_key.type < (u8)-1)
2616 min_key.type++;
2617 else if (min_key.objectid < (u64)-1)
2618 min_key.objectid++;
2619 else
2620 break;
2621 }
2622 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2623 btrfs_release_path(root, path);
2624 btrfs_release_path(log, dst_path);
2625 ret = log_directory_changes(trans, root, inode, path, dst_path);
2626 BUG_ON(ret);
2627 }
2628 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2629
2630 btrfs_free_path(path);
2631 btrfs_free_path(dst_path);
2632
2633 mutex_lock(&root->fs_info->tree_log_mutex);
2634 ret = update_log_root(trans, log);
2635 BUG_ON(ret);
2636 mutex_unlock(&root->fs_info->tree_log_mutex);
2637out:
2638 return 0;
2639}
2640
2641int btrfs_log_inode(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root, struct inode *inode,
2643 int inode_only)
2644{
2645 int ret;
2646
2647 start_log_trans(trans, root);
2648 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2649 end_log_trans(root);
2650 return ret;
2651}
2652
2653/*
2654 * helper function around btrfs_log_inode to make sure newly created
2655 * parent directories also end up in the log. A minimal inode and backref
2656 * only logging is done of any parent directories that are older than
2657 * the last committed transaction
2658 */
2659int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root, struct dentry *dentry)
2661{
2662 int inode_only = LOG_INODE_ALL;
2663 struct super_block *sb;
2664 int ret;
2665
2666 start_log_trans(trans, root);
2667 sb = dentry->d_inode->i_sb;
2668 while(1) {
2669 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2670 inode_only);
2671 BUG_ON(ret);
2672 inode_only = LOG_INODE_EXISTS;
2673
2674 dentry = dentry->d_parent;
2675 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2676 break;
2677
2678 if (BTRFS_I(dentry->d_inode)->generation <=
2679 root->fs_info->last_trans_committed)
2680 break;
2681 }
2682 end_log_trans(root);
2683 return 0;
2684}
2685
2686/*
2687 * it is not safe to log dentry if the chunk root has added new
2688 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2689 * If this returns 1, you must commit the transaction to safely get your
2690 * data on disk.
2691 */
2692int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2693 struct btrfs_root *root, struct dentry *dentry)
2694{
2695 u64 gen;
2696 gen = root->fs_info->last_trans_new_blockgroup;
2697 if (gen > root->fs_info->last_trans_committed)
2698 return 1;
2699 else
2700 return btrfs_log_dentry(trans, root, dentry);
2701}
2702
2703/*
2704 * should be called during mount to recover any replay any log trees
2705 * from the FS
2706 */
2707int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2708{
2709 int ret;
2710 struct btrfs_path *path;
2711 struct btrfs_trans_handle *trans;
2712 struct btrfs_key key;
2713 struct btrfs_key found_key;
2714 struct btrfs_key tmp_key;
2715 struct btrfs_root *log;
2716 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2717 struct walk_control wc = {
2718 .process_func = process_one_buffer,
2719 .stage = 0,
2720 };
2721
2722 fs_info->log_root_recovering = 1;
2723 path = btrfs_alloc_path();
2724 BUG_ON(!path);
2725
2726 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2727
2728 wc.trans = trans;
2729 wc.pin = 1;
2730
2731 walk_log_tree(trans, log_root_tree, &wc);
2732
2733again:
2734 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2735 key.offset = (u64)-1;
2736 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2737
2738 while(1) {
2739 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2740 if (ret < 0)
2741 break;
2742 if (ret > 0) {
2743 if (path->slots[0] == 0)
2744 break;
2745 path->slots[0]--;
2746 }
2747 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2748 path->slots[0]);
2749 btrfs_release_path(log_root_tree, path);
2750 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2751 break;
2752
2753 log = btrfs_read_fs_root_no_radix(log_root_tree,
2754 &found_key);
2755 BUG_ON(!log);
2756
2757
2758 tmp_key.objectid = found_key.offset;
2759 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2760 tmp_key.offset = (u64)-1;
2761
2762 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2763
2764 BUG_ON(!wc.replay_dest);
2765
2766 btrfs_record_root_in_trans(wc.replay_dest);
2767 ret = walk_log_tree(trans, log, &wc);
2768 BUG_ON(ret);
2769
2770 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2771 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2772 path);
2773 BUG_ON(ret);
2774 }
2775
2776 key.offset = found_key.offset - 1;
2777 free_extent_buffer(log->node);
2778 kfree(log);
2779
2780 if (found_key.offset == 0)
2781 break;
2782 }
2783 btrfs_release_path(log_root_tree, path);
2784
2785 /* step one is to pin it all, step two is to replay just inodes */
2786 if (wc.pin) {
2787 wc.pin = 0;
2788 wc.process_func = replay_one_buffer;
2789 wc.stage = LOG_WALK_REPLAY_INODES;
2790 goto again;
2791 }
2792 /* step three is to replay everything */
2793 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2794 wc.stage++;
2795 goto again;
2796 }
2797
2798 btrfs_free_path(path);
2799
2800 free_extent_buffer(log_root_tree->node);
2801 log_root_tree->log_root = NULL;
2802 fs_info->log_root_recovering = 0;
2803
2804 /* step 4: commit the transaction, which also unpins the blocks */
2805 btrfs_commit_transaction(trans, fs_info->tree_root);
2806
2807 kfree(log_root_tree);
2808 return 0;
2809}