Btrfs: fix loss of prealloc extents past i_size after fsync log replay
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
c7f88c4e 23#include <linux/iversion.h>
9678c543 24#include "ctree.h"
995946dd 25#include "tree-log.h"
e02119d5
CM
26#include "disk-io.h"
27#include "locking.h"
28#include "print-tree.h"
f186373f 29#include "backref.h"
ebb8765b 30#include "compression.h"
df2c95f3 31#include "qgroup.h"
900c9981 32#include "inode-map.h"
e02119d5
CM
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40#define LOG_INODE_ALL 0
41#define LOG_INODE_EXISTS 1
781feef7 42#define LOG_OTHER_INODE 2
e02119d5 43
12fcfd22
CM
44/*
45 * directory trouble cases
46 *
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
51 *
52 * mkdir foo/some_dir
53 * normal commit
54 * rename foo/some_dir foo2/some_dir
55 * mkdir foo/some_dir
56 * fsync foo/some_dir/some_file
57 *
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
61 *
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
64 *
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
68 *
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
71 *
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
74 *
75 * mkdir f1/foo
76 * normal commit
77 * rm -rf f1/foo
78 * fsync(f1)
79 *
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
84 * ugly details.
85 */
86
e02119d5
CM
87/*
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
92 *
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
95 */
96#define LOG_WALK_PIN_ONLY 0
97#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
98#define LOG_WALK_REPLAY_DIR_INDEX 2
99#define LOG_WALK_REPLAY_ALL 3
e02119d5 100
12fcfd22 101static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 102 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
103 int inode_only,
104 const loff_t start,
8407f553
FM
105 const loff_t end,
106 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
107static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
110static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_root *log,
113 struct btrfs_path *path,
114 u64 dirid, int del_all);
e02119d5
CM
115
116/*
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
119 *
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
123 *
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
129 *
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
133 *
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
137 */
138
e02119d5
CM
139/*
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
143 */
144static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
145 struct btrfs_root *root,
146 struct btrfs_log_ctx *ctx)
e02119d5 147{
0b246afa 148 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 149 int ret = 0;
7237f183
YZ
150
151 mutex_lock(&root->log_mutex);
34eb2a52 152
7237f183 153 if (root->log_root) {
0b246afa 154 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
155 ret = -EAGAIN;
156 goto out;
157 }
34eb2a52 158
ff782e0a 159 if (!root->log_start_pid) {
27cdeb70 160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 161 root->log_start_pid = current->pid;
ff782e0a 162 } else if (root->log_start_pid != current->pid) {
27cdeb70 163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 164 }
34eb2a52 165 } else {
0b246afa
JM
166 mutex_lock(&fs_info->tree_log_mutex);
167 if (!fs_info->log_root_tree)
168 ret = btrfs_init_log_root_tree(trans, fs_info);
169 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
170 if (ret)
171 goto out;
ff782e0a 172
e02119d5 173 ret = btrfs_add_log_tree(trans, root);
4a500fd1 174 if (ret)
e87ac136 175 goto out;
34eb2a52
Z
176
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 root->log_start_pid = current->pid;
e02119d5 179 }
34eb2a52 180
2ecb7923 181 atomic_inc(&root->log_batch);
7237f183 182 atomic_inc(&root->log_writers);
8b050d35 183 if (ctx) {
34eb2a52 184 int index = root->log_transid % 2;
8b050d35 185 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 186 ctx->log_transid = root->log_transid;
8b050d35 187 }
34eb2a52 188
e87ac136 189out:
7237f183 190 mutex_unlock(&root->log_mutex);
e87ac136 191 return ret;
e02119d5
CM
192}
193
194/*
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
197 * in progress
198 */
199static int join_running_log_trans(struct btrfs_root *root)
200{
201 int ret = -ENOENT;
202
203 smp_mb();
204 if (!root->log_root)
205 return -ENOENT;
206
7237f183 207 mutex_lock(&root->log_mutex);
e02119d5
CM
208 if (root->log_root) {
209 ret = 0;
7237f183 210 atomic_inc(&root->log_writers);
e02119d5 211 }
7237f183 212 mutex_unlock(&root->log_mutex);
e02119d5
CM
213 return ret;
214}
215
12fcfd22
CM
216/*
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
220 */
221int btrfs_pin_log_trans(struct btrfs_root *root)
222{
223 int ret = -ENOENT;
224
225 mutex_lock(&root->log_mutex);
226 atomic_inc(&root->log_writers);
227 mutex_unlock(&root->log_mutex);
228 return ret;
229}
230
e02119d5
CM
231/*
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
234 */
143bede5 235void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 236{
7237f183 237 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
238 /*
239 * Implicit memory barrier after atomic_dec_and_test
240 */
7237f183
YZ
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
243 }
e02119d5
CM
244}
245
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
279
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
282
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
287 */
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 289 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
290};
291
292/*
293 * process_func used to pin down extents, write them or wait on them
294 */
295static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
581c1760 297 struct walk_control *wc, u64 gen, int level)
e02119d5 298{
0b246afa 299 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
0b246afa 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 307 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
2ff7e61e
JM
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 317 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 318 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
2ff7e61e 347 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
4bc4bee4 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
365 if (ret < 0)
366 return ret;
367
e02119d5
CM
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
b3b4aa74 377 btrfs_release_path(path);
e02119d5
CM
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 382 if (!dst_copy || !src_copy) {
b3b4aa74 383 btrfs_release_path(path);
2a29edc6 384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
e02119d5
CM
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
b3b4aa74 405 btrfs_release_path(path);
e02119d5
CM
406 return 0;
407 }
408
4bc4bee4
JB
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
d555438b 436 u32 mode;
4bc4bee4
JB
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
453 }
454insert:
b3b4aa74 455 btrfs_release_path(path);
e02119d5 456 /* try to insert the key into the destination tree */
df8d116f 457 path->skip_release_on_error = 1;
e02119d5
CM
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
df8d116f 460 path->skip_release_on_error = 0;
e02119d5
CM
461
462 /* make sure any existing item is the correct size */
df8d116f 463 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
143bede5 467 if (found_size > item_size)
2ff7e61e 468 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 469 else if (found_size < item_size)
2ff7e61e 470 btrfs_extend_item(fs_info, path,
143bede5 471 item_size - found_size);
e02119d5 472 } else if (ret) {
4a500fd1 473 return ret;
e02119d5
CM
474 }
475 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 path->slots[0]);
477
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
481 *
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
485 * as it goes
486 */
487 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 struct btrfs_inode_item *src_item;
489 struct btrfs_inode_item *dst_item;
490
491 src_item = (struct btrfs_inode_item *)src_ptr;
492 dst_item = (struct btrfs_inode_item *)dst_ptr;
493
1a4bcf47
FM
494 if (btrfs_inode_generation(eb, src_item) == 0) {
495 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 496 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 497
2f2ff0ee
FM
498 /*
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
504 */
1a4bcf47 505 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
506 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 ino_size != 0) {
1a4bcf47 508 struct btrfs_map_token token;
1a4bcf47
FM
509
510 btrfs_init_map_token(&token);
511 btrfs_set_token_inode_size(dst_eb, dst_item,
512 ino_size, &token);
513 }
e02119d5 514 goto no_copy;
1a4bcf47 515 }
e02119d5
CM
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 546 btrfs_release_path(path);
e02119d5
CM
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
5d4f98a2 557 struct btrfs_key key;
e02119d5 558 struct inode *inode;
e02119d5 559
5d4f98a2
YZ
560 key.objectid = objectid;
561 key.type = BTRFS_INODE_ITEM_KEY;
562 key.offset = 0;
73f73415 563 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
564 if (IS_ERR(inode)) {
565 inode = NULL;
566 } else if (is_bad_inode(inode)) {
e02119d5
CM
567 iput(inode);
568 inode = NULL;
569 }
570 return inode;
571}
572
573/* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
575 * on exit.
576 *
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
581 *
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
584 */
585static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 struct extent_buffer *eb, int slot,
589 struct btrfs_key *key)
590{
0b246afa 591 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 592 int found_type;
e02119d5 593 u64 extent_end;
e02119d5 594 u64 start = key->offset;
4bc4bee4 595 u64 nbytes = 0;
e02119d5
CM
596 struct btrfs_file_extent_item *item;
597 struct inode *inode = NULL;
598 unsigned long size;
599 int ret = 0;
600
601 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 found_type = btrfs_file_extent_type(eb, item);
603
d899e052 604 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
605 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 nbytes = btrfs_file_extent_num_bytes(eb, item);
607 extent_end = start + nbytes;
608
609 /*
610 * We don't add to the inodes nbytes if we are prealloc or a
611 * hole.
612 */
613 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 nbytes = 0;
615 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 616 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 617 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 618 extent_end = ALIGN(start + size,
0b246afa 619 fs_info->sectorsize);
e02119d5
CM
620 } else {
621 ret = 0;
622 goto out;
623 }
624
625 inode = read_one_inode(root, key->objectid);
626 if (!inode) {
627 ret = -EIO;
628 goto out;
629 }
630
631 /*
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
635 */
f85b7379
DS
636 ret = btrfs_lookup_file_extent(trans, root, path,
637 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 638
d899e052
YZ
639 if (ret == 0 &&
640 (found_type == BTRFS_FILE_EXTENT_REG ||
641 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
642 struct btrfs_file_extent_item cmp1;
643 struct btrfs_file_extent_item cmp2;
644 struct btrfs_file_extent_item *existing;
645 struct extent_buffer *leaf;
646
647 leaf = path->nodes[0];
648 existing = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
650
651 read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 sizeof(cmp1));
653 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 sizeof(cmp2));
655
656 /*
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
659 */
660 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 661 btrfs_release_path(path);
e02119d5
CM
662 goto out;
663 }
664 }
b3b4aa74 665 btrfs_release_path(path);
e02119d5
CM
666
667 /* drop any overlapping extents */
2671485d 668 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
669 if (ret)
670 goto out;
e02119d5 671
07d400a6
YZ
672 if (found_type == BTRFS_FILE_EXTENT_REG ||
673 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 674 u64 offset;
07d400a6
YZ
675 unsigned long dest_offset;
676 struct btrfs_key ins;
677
3168021c
FM
678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 btrfs_fs_incompat(fs_info, NO_HOLES))
680 goto update_inode;
681
07d400a6
YZ
682 ret = btrfs_insert_empty_item(trans, root, path, key,
683 sizeof(*item));
3650860b
JB
684 if (ret)
685 goto out;
07d400a6
YZ
686 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 path->slots[0]);
688 copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 (unsigned long)item, sizeof(*item));
690
691 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 694 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 695
df2c95f3
QW
696 /*
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 */
0b246afa 704 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
705 btrfs_file_extent_disk_bytenr(eb, item),
706 btrfs_file_extent_disk_num_bytes(eb, item),
707 GFP_NOFS);
708 if (ret < 0)
709 goto out;
710
07d400a6
YZ
711 if (ins.objectid > 0) {
712 u64 csum_start;
713 u64 csum_end;
714 LIST_HEAD(ordered_sums);
715 /*
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
718 */
2ff7e61e 719 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
720 ins.offset);
721 if (ret == 0) {
84f7d8e6 722 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 723 ins.objectid, ins.offset,
5d4f98a2 724 0, root->root_key.objectid,
b06c4bf5 725 key->objectid, offset);
b50c6e25
JB
726 if (ret)
727 goto out;
07d400a6
YZ
728 } else {
729 /*
730 * insert the extent pointer in the extent
731 * allocation tree
732 */
5d4f98a2 733 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
734 fs_info,
735 root->root_key.objectid,
5d4f98a2 736 key->objectid, offset, &ins);
b50c6e25
JB
737 if (ret)
738 goto out;
07d400a6 739 }
b3b4aa74 740 btrfs_release_path(path);
07d400a6
YZ
741
742 if (btrfs_file_extent_compression(eb, item)) {
743 csum_start = ins.objectid;
744 csum_end = csum_start + ins.offset;
745 } else {
746 csum_start = ins.objectid +
747 btrfs_file_extent_offset(eb, item);
748 csum_end = csum_start +
749 btrfs_file_extent_num_bytes(eb, item);
750 }
751
752 ret = btrfs_lookup_csums_range(root->log_root,
753 csum_start, csum_end - 1,
a2de733c 754 &ordered_sums, 0);
3650860b
JB
755 if (ret)
756 goto out;
b84b8390
FM
757 /*
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
769 *
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
773 *
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
777 *
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
781 * of the extent:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 *
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
787 *
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 *
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
795 *
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 *
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
805 */
07d400a6
YZ
806 while (!list_empty(&ordered_sums)) {
807 struct btrfs_ordered_sum *sums;
808 sums = list_entry(ordered_sums.next,
809 struct btrfs_ordered_sum,
810 list);
b84b8390 811 if (!ret)
0b246afa 812 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
813 sums->bytenr,
814 sums->len);
3650860b
JB
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
0b246afa 817 fs_info->csum_root, sums);
07d400a6
YZ
818 list_del(&sums->list);
819 kfree(sums);
820 }
3650860b
JB
821 if (ret)
822 goto out;
07d400a6 823 } else {
b3b4aa74 824 btrfs_release_path(path);
07d400a6
YZ
825 }
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
829 if (ret)
830 goto out;
07d400a6 831 }
e02119d5 832
4bc4bee4 833 inode_add_bytes(inode, nbytes);
3168021c 834update_inode:
b9959295 835 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
836out:
837 if (inode)
838 iput(inode);
839 return ret;
840}
841
842/*
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
846 *
847 * This is a helper function to do the unlink of a specific directory
848 * item
849 */
850static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
207e7d92 853 struct btrfs_inode *dir,
e02119d5
CM
854 struct btrfs_dir_item *di)
855{
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
862
863 leaf = path->nodes[0];
864
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 868 if (!name)
869 return -ENOMEM;
870
e02119d5 871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 872 btrfs_release_path(path);
e02119d5
CM
873
874 inode = read_one_inode(root, location.objectid);
c00e9493 875 if (!inode) {
3650860b
JB
876 ret = -EIO;
877 goto out;
c00e9493 878 }
e02119d5 879
ec051c0f 880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
881 if (ret)
882 goto out;
12fcfd22 883
207e7d92
NB
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
3650860b
JB
886 if (ret)
887 goto out;
ada9af21 888 else
e5c304e6 889 ret = btrfs_run_delayed_items(trans);
3650860b 890out:
e02119d5 891 kfree(name);
e02119d5
CM
892 iput(inode);
893 return ret;
894}
895
896/*
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
900 */
901static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
905{
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
909
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
b3b4aa74 918 btrfs_release_path(path);
e02119d5
CM
919
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928out:
b3b4aa74 929 btrfs_release_path(path);
e02119d5
CM
930 return match;
931}
932
933/*
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
937 *
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
942 */
943static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
f186373f 945 u64 ref_objectid,
df8d116f 946 const char *name, int namelen)
e02119d5
CM
947{
948 struct btrfs_path *path;
949 struct btrfs_inode_ref *ref;
950 unsigned long ptr;
951 unsigned long ptr_end;
952 unsigned long name_ptr;
953 int found_name_len;
954 int item_size;
955 int ret;
956 int match = 0;
957
958 path = btrfs_alloc_path();
2a29edc6 959 if (!path)
960 return -ENOMEM;
961
e02119d5
CM
962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 if (ret != 0)
964 goto out;
965
e02119d5 966 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
967
968 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
969 if (btrfs_find_name_in_ext_backref(path->nodes[0],
970 path->slots[0],
971 ref_objectid,
f186373f
MF
972 name, namelen, NULL))
973 match = 1;
974
975 goto out;
976 }
977
978 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
979 ptr_end = ptr + item_size;
980 while (ptr < ptr_end) {
981 ref = (struct btrfs_inode_ref *)ptr;
982 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
983 if (found_name_len == namelen) {
984 name_ptr = (unsigned long)(ref + 1);
985 ret = memcmp_extent_buffer(path->nodes[0], name,
986 name_ptr, namelen);
987 if (ret == 0) {
988 match = 1;
989 goto out;
990 }
991 }
992 ptr = (unsigned long)(ref + 1) + found_name_len;
993 }
994out:
995 btrfs_free_path(path);
996 return match;
997}
998
5a1d7843 999static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1000 struct btrfs_root *root,
e02119d5 1001 struct btrfs_path *path,
5a1d7843 1002 struct btrfs_root *log_root,
94c91a1f
NB
1003 struct btrfs_inode *dir,
1004 struct btrfs_inode *inode,
f186373f
MF
1005 u64 inode_objectid, u64 parent_objectid,
1006 u64 ref_index, char *name, int namelen,
1007 int *search_done)
e02119d5 1008{
34f3e4f2 1009 int ret;
f186373f
MF
1010 char *victim_name;
1011 int victim_name_len;
1012 struct extent_buffer *leaf;
5a1d7843 1013 struct btrfs_dir_item *di;
f186373f
MF
1014 struct btrfs_key search_key;
1015 struct btrfs_inode_extref *extref;
c622ae60 1016
f186373f
MF
1017again:
1018 /* Search old style refs */
1019 search_key.objectid = inode_objectid;
1020 search_key.type = BTRFS_INODE_REF_KEY;
1021 search_key.offset = parent_objectid;
1022 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1023 if (ret == 0) {
e02119d5
CM
1024 struct btrfs_inode_ref *victim_ref;
1025 unsigned long ptr;
1026 unsigned long ptr_end;
f186373f
MF
1027
1028 leaf = path->nodes[0];
e02119d5
CM
1029
1030 /* are we trying to overwrite a back ref for the root directory
1031 * if so, just jump out, we're done
1032 */
f186373f 1033 if (search_key.objectid == search_key.offset)
5a1d7843 1034 return 1;
e02119d5
CM
1035
1036 /* check all the names in this back reference to see
1037 * if they are in the log. if so, we allow them to stay
1038 * otherwise they must be unlinked as a conflict
1039 */
1040 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1042 while (ptr < ptr_end) {
e02119d5
CM
1043 victim_ref = (struct btrfs_inode_ref *)ptr;
1044 victim_name_len = btrfs_inode_ref_name_len(leaf,
1045 victim_ref);
1046 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1047 if (!victim_name)
1048 return -ENOMEM;
e02119d5
CM
1049
1050 read_extent_buffer(leaf, victim_name,
1051 (unsigned long)(victim_ref + 1),
1052 victim_name_len);
1053
f186373f
MF
1054 if (!backref_in_log(log_root, &search_key,
1055 parent_objectid,
1056 victim_name,
e02119d5 1057 victim_name_len)) {
94c91a1f 1058 inc_nlink(&inode->vfs_inode);
b3b4aa74 1059 btrfs_release_path(path);
12fcfd22 1060
94c91a1f 1061 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1062 victim_name, victim_name_len);
f186373f 1063 kfree(victim_name);
3650860b
JB
1064 if (ret)
1065 return ret;
e5c304e6 1066 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1067 if (ret)
1068 return ret;
f186373f
MF
1069 *search_done = 1;
1070 goto again;
e02119d5
CM
1071 }
1072 kfree(victim_name);
f186373f 1073
e02119d5
CM
1074 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1075 }
e02119d5 1076
c622ae60 1077 /*
1078 * NOTE: we have searched root tree and checked the
bb7ab3b9 1079 * corresponding ref, it does not need to check again.
c622ae60 1080 */
5a1d7843 1081 *search_done = 1;
e02119d5 1082 }
b3b4aa74 1083 btrfs_release_path(path);
e02119d5 1084
f186373f
MF
1085 /* Same search but for extended refs */
1086 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 inode_objectid, parent_objectid, 0,
1088 0);
1089 if (!IS_ERR_OR_NULL(extref)) {
1090 u32 item_size;
1091 u32 cur_offset = 0;
1092 unsigned long base;
1093 struct inode *victim_parent;
1094
1095 leaf = path->nodes[0];
1096
1097 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099
1100 while (cur_offset < item_size) {
dd9ef135 1101 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1102
1103 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1104
1105 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1106 goto next;
1107
1108 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1109 if (!victim_name)
1110 return -ENOMEM;
f186373f
MF
1111 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1112 victim_name_len);
1113
1114 search_key.objectid = inode_objectid;
1115 search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 search_key.offset = btrfs_extref_hash(parent_objectid,
1117 victim_name,
1118 victim_name_len);
1119 ret = 0;
1120 if (!backref_in_log(log_root, &search_key,
1121 parent_objectid, victim_name,
1122 victim_name_len)) {
1123 ret = -ENOENT;
1124 victim_parent = read_one_inode(root,
94c91a1f 1125 parent_objectid);
f186373f 1126 if (victim_parent) {
94c91a1f 1127 inc_nlink(&inode->vfs_inode);
f186373f
MF
1128 btrfs_release_path(path);
1129
1130 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1131 BTRFS_I(victim_parent),
94c91a1f 1132 inode,
4ec5934e
NB
1133 victim_name,
1134 victim_name_len);
ada9af21
FDBM
1135 if (!ret)
1136 ret = btrfs_run_delayed_items(
e5c304e6 1137 trans);
f186373f 1138 }
f186373f
MF
1139 iput(victim_parent);
1140 kfree(victim_name);
3650860b
JB
1141 if (ret)
1142 return ret;
f186373f
MF
1143 *search_done = 1;
1144 goto again;
1145 }
1146 kfree(victim_name);
f186373f
MF
1147next:
1148 cur_offset += victim_name_len + sizeof(*extref);
1149 }
1150 *search_done = 1;
1151 }
1152 btrfs_release_path(path);
1153
34f3e4f2 1154 /* look for a conflicting sequence number */
94c91a1f 1155 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1156 ref_index, name, namelen, 0);
34f3e4f2 1157 if (di && !IS_ERR(di)) {
94c91a1f 1158 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1159 if (ret)
1160 return ret;
34f3e4f2 1161 }
1162 btrfs_release_path(path);
1163
1164 /* look for a conflicing name */
94c91a1f 1165 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1166 name, namelen, 0);
1167 if (di && !IS_ERR(di)) {
94c91a1f 1168 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1169 if (ret)
1170 return ret;
34f3e4f2 1171 }
1172 btrfs_release_path(path);
1173
5a1d7843
JS
1174 return 0;
1175}
e02119d5 1176
bae15d95
QW
1177static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 u32 *namelen, char **name, u64 *index,
1179 u64 *parent_objectid)
f186373f
MF
1180{
1181 struct btrfs_inode_extref *extref;
1182
1183 extref = (struct btrfs_inode_extref *)ref_ptr;
1184
1185 *namelen = btrfs_inode_extref_name_len(eb, extref);
1186 *name = kmalloc(*namelen, GFP_NOFS);
1187 if (*name == NULL)
1188 return -ENOMEM;
1189
1190 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 *namelen);
1192
1f250e92
FM
1193 if (index)
1194 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1195 if (parent_objectid)
1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197
1198 return 0;
1199}
1200
bae15d95
QW
1201static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 u32 *namelen, char **name, u64 *index)
f186373f
MF
1203{
1204 struct btrfs_inode_ref *ref;
1205
1206 ref = (struct btrfs_inode_ref *)ref_ptr;
1207
1208 *namelen = btrfs_inode_ref_name_len(eb, ref);
1209 *name = kmalloc(*namelen, GFP_NOFS);
1210 if (*name == NULL)
1211 return -ENOMEM;
1212
1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214
1f250e92
FM
1215 if (index)
1216 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1217
1218 return 0;
1219}
1220
1f250e92
FM
1221/*
1222 * Take an inode reference item from the log tree and iterate all names from the
1223 * inode reference item in the subvolume tree with the same key (if it exists).
1224 * For any name that is not in the inode reference item from the log tree, do a
1225 * proper unlink of that name (that is, remove its entry from the inode
1226 * reference item and both dir index keys).
1227 */
1228static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1229 struct btrfs_root *root,
1230 struct btrfs_path *path,
1231 struct btrfs_inode *inode,
1232 struct extent_buffer *log_eb,
1233 int log_slot,
1234 struct btrfs_key *key)
1235{
1236 int ret;
1237 unsigned long ref_ptr;
1238 unsigned long ref_end;
1239 struct extent_buffer *eb;
1240
1241again:
1242 btrfs_release_path(path);
1243 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1244 if (ret > 0) {
1245 ret = 0;
1246 goto out;
1247 }
1248 if (ret < 0)
1249 goto out;
1250
1251 eb = path->nodes[0];
1252 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1253 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1254 while (ref_ptr < ref_end) {
1255 char *name = NULL;
1256 int namelen;
1257 u64 parent_id;
1258
1259 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1261 NULL, &parent_id);
1262 } else {
1263 parent_id = key->offset;
1264 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 NULL);
1266 }
1267 if (ret)
1268 goto out;
1269
1270 if (key->type == BTRFS_INODE_EXTREF_KEY)
1271 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1272 parent_id, name,
1273 namelen, NULL);
1274 else
1275 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1276 namelen, NULL);
1277
1278 if (!ret) {
1279 struct inode *dir;
1280
1281 btrfs_release_path(path);
1282 dir = read_one_inode(root, parent_id);
1283 if (!dir) {
1284 ret = -ENOENT;
1285 kfree(name);
1286 goto out;
1287 }
1288 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1289 inode, name, namelen);
1290 kfree(name);
1291 iput(dir);
1292 if (ret)
1293 goto out;
1294 goto again;
1295 }
1296
1297 kfree(name);
1298 ref_ptr += namelen;
1299 if (key->type == BTRFS_INODE_EXTREF_KEY)
1300 ref_ptr += sizeof(struct btrfs_inode_extref);
1301 else
1302 ref_ptr += sizeof(struct btrfs_inode_ref);
1303 }
1304 ret = 0;
1305 out:
1306 btrfs_release_path(path);
1307 return ret;
1308}
1309
5a1d7843
JS
1310/*
1311 * replay one inode back reference item found in the log tree.
1312 * eb, slot and key refer to the buffer and key found in the log tree.
1313 * root is the destination we are replaying into, and path is for temp
1314 * use by this function. (it should be released on return).
1315 */
1316static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_root *log,
1319 struct btrfs_path *path,
1320 struct extent_buffer *eb, int slot,
1321 struct btrfs_key *key)
1322{
03b2f08b
GB
1323 struct inode *dir = NULL;
1324 struct inode *inode = NULL;
5a1d7843
JS
1325 unsigned long ref_ptr;
1326 unsigned long ref_end;
03b2f08b 1327 char *name = NULL;
5a1d7843
JS
1328 int namelen;
1329 int ret;
1330 int search_done = 0;
f186373f
MF
1331 int log_ref_ver = 0;
1332 u64 parent_objectid;
1333 u64 inode_objectid;
f46dbe3d 1334 u64 ref_index = 0;
f186373f
MF
1335 int ref_struct_size;
1336
1337 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1338 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1339
1340 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1341 struct btrfs_inode_extref *r;
1342
1343 ref_struct_size = sizeof(struct btrfs_inode_extref);
1344 log_ref_ver = 1;
1345 r = (struct btrfs_inode_extref *)ref_ptr;
1346 parent_objectid = btrfs_inode_extref_parent(eb, r);
1347 } else {
1348 ref_struct_size = sizeof(struct btrfs_inode_ref);
1349 parent_objectid = key->offset;
1350 }
1351 inode_objectid = key->objectid;
e02119d5 1352
5a1d7843
JS
1353 /*
1354 * it is possible that we didn't log all the parent directories
1355 * for a given inode. If we don't find the dir, just don't
1356 * copy the back ref in. The link count fixup code will take
1357 * care of the rest
1358 */
f186373f 1359 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1360 if (!dir) {
1361 ret = -ENOENT;
1362 goto out;
1363 }
5a1d7843 1364
f186373f 1365 inode = read_one_inode(root, inode_objectid);
5a1d7843 1366 if (!inode) {
03b2f08b
GB
1367 ret = -EIO;
1368 goto out;
5a1d7843
JS
1369 }
1370
5a1d7843 1371 while (ref_ptr < ref_end) {
f186373f 1372 if (log_ref_ver) {
bae15d95
QW
1373 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index, &parent_objectid);
f186373f
MF
1375 /*
1376 * parent object can change from one array
1377 * item to another.
1378 */
1379 if (!dir)
1380 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1381 if (!dir) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
f186373f 1385 } else {
bae15d95
QW
1386 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1387 &ref_index);
f186373f
MF
1388 }
1389 if (ret)
03b2f08b 1390 goto out;
5a1d7843
JS
1391
1392 /* if we already have a perfect match, we're done */
f85b7379
DS
1393 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1394 btrfs_ino(BTRFS_I(inode)), ref_index,
1395 name, namelen)) {
5a1d7843
JS
1396 /*
1397 * look for a conflicting back reference in the
1398 * metadata. if we find one we have to unlink that name
1399 * of the file before we add our new link. Later on, we
1400 * overwrite any existing back reference, and we don't
1401 * want to create dangling pointers in the directory.
1402 */
1403
1404 if (!search_done) {
1405 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1406 BTRFS_I(dir),
d75eefdf 1407 BTRFS_I(inode),
f186373f
MF
1408 inode_objectid,
1409 parent_objectid,
1410 ref_index, name, namelen,
5a1d7843 1411 &search_done);
03b2f08b
GB
1412 if (ret) {
1413 if (ret == 1)
1414 ret = 0;
3650860b
JB
1415 goto out;
1416 }
5a1d7843
JS
1417 }
1418
1419 /* insert our name */
db0a669f
NB
1420 ret = btrfs_add_link(trans, BTRFS_I(dir),
1421 BTRFS_I(inode),
1422 name, namelen, 0, ref_index);
3650860b
JB
1423 if (ret)
1424 goto out;
5a1d7843
JS
1425
1426 btrfs_update_inode(trans, root, inode);
1427 }
1428
f186373f 1429 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1430 kfree(name);
03b2f08b 1431 name = NULL;
f186373f
MF
1432 if (log_ref_ver) {
1433 iput(dir);
1434 dir = NULL;
1435 }
5a1d7843 1436 }
e02119d5 1437
1f250e92
FM
1438 /*
1439 * Before we overwrite the inode reference item in the subvolume tree
1440 * with the item from the log tree, we must unlink all names from the
1441 * parent directory that are in the subvolume's tree inode reference
1442 * item, otherwise we end up with an inconsistent subvolume tree where
1443 * dir index entries exist for a name but there is no inode reference
1444 * item with the same name.
1445 */
1446 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1447 key);
1448 if (ret)
1449 goto out;
1450
e02119d5
CM
1451 /* finally write the back reference in the inode */
1452 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1453out:
b3b4aa74 1454 btrfs_release_path(path);
03b2f08b 1455 kfree(name);
e02119d5
CM
1456 iput(dir);
1457 iput(inode);
3650860b 1458 return ret;
e02119d5
CM
1459}
1460
c71bf099 1461static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1462 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1463{
1464 int ret;
381cf658 1465
9c4f61f0
DS
1466 ret = btrfs_insert_orphan_item(trans, root, ino);
1467 if (ret == -EEXIST)
1468 ret = 0;
381cf658 1469
c71bf099
YZ
1470 return ret;
1471}
1472
f186373f 1473static int count_inode_extrefs(struct btrfs_root *root,
36283658 1474 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1475{
1476 int ret = 0;
1477 int name_len;
1478 unsigned int nlink = 0;
1479 u32 item_size;
1480 u32 cur_offset = 0;
36283658 1481 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1482 u64 offset = 0;
1483 unsigned long ptr;
1484 struct btrfs_inode_extref *extref;
1485 struct extent_buffer *leaf;
1486
1487 while (1) {
1488 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1489 &extref, &offset);
1490 if (ret)
1491 break;
c71bf099 1492
f186373f
MF
1493 leaf = path->nodes[0];
1494 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1495 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1496 cur_offset = 0;
f186373f
MF
1497
1498 while (cur_offset < item_size) {
1499 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1500 name_len = btrfs_inode_extref_name_len(leaf, extref);
1501
1502 nlink++;
1503
1504 cur_offset += name_len + sizeof(*extref);
1505 }
1506
1507 offset++;
1508 btrfs_release_path(path);
1509 }
1510 btrfs_release_path(path);
1511
2c2c452b 1512 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1513 return ret;
1514 return nlink;
1515}
1516
1517static int count_inode_refs(struct btrfs_root *root,
f329e319 1518 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1519{
e02119d5
CM
1520 int ret;
1521 struct btrfs_key key;
f186373f 1522 unsigned int nlink = 0;
e02119d5
CM
1523 unsigned long ptr;
1524 unsigned long ptr_end;
1525 int name_len;
f329e319 1526 u64 ino = btrfs_ino(inode);
e02119d5 1527
33345d01 1528 key.objectid = ino;
e02119d5
CM
1529 key.type = BTRFS_INODE_REF_KEY;
1530 key.offset = (u64)-1;
1531
d397712b 1532 while (1) {
e02119d5
CM
1533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1534 if (ret < 0)
1535 break;
1536 if (ret > 0) {
1537 if (path->slots[0] == 0)
1538 break;
1539 path->slots[0]--;
1540 }
e93ae26f 1541process_slot:
e02119d5
CM
1542 btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 path->slots[0]);
33345d01 1544 if (key.objectid != ino ||
e02119d5
CM
1545 key.type != BTRFS_INODE_REF_KEY)
1546 break;
1547 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1548 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1549 path->slots[0]);
d397712b 1550 while (ptr < ptr_end) {
e02119d5
CM
1551 struct btrfs_inode_ref *ref;
1552
1553 ref = (struct btrfs_inode_ref *)ptr;
1554 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1555 ref);
1556 ptr = (unsigned long)(ref + 1) + name_len;
1557 nlink++;
1558 }
1559
1560 if (key.offset == 0)
1561 break;
e93ae26f
FDBM
1562 if (path->slots[0] > 0) {
1563 path->slots[0]--;
1564 goto process_slot;
1565 }
e02119d5 1566 key.offset--;
b3b4aa74 1567 btrfs_release_path(path);
e02119d5 1568 }
b3b4aa74 1569 btrfs_release_path(path);
f186373f
MF
1570
1571 return nlink;
1572}
1573
1574/*
1575 * There are a few corners where the link count of the file can't
1576 * be properly maintained during replay. So, instead of adding
1577 * lots of complexity to the log code, we just scan the backrefs
1578 * for any file that has been through replay.
1579 *
1580 * The scan will update the link count on the inode to reflect the
1581 * number of back refs found. If it goes down to zero, the iput
1582 * will free the inode.
1583 */
1584static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct inode *inode)
1587{
1588 struct btrfs_path *path;
1589 int ret;
1590 u64 nlink = 0;
4a0cc7ca 1591 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1592
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
1596
f329e319 1597 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1598 if (ret < 0)
1599 goto out;
1600
1601 nlink = ret;
1602
36283658 1603 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1604 if (ret < 0)
1605 goto out;
1606
1607 nlink += ret;
1608
1609 ret = 0;
1610
e02119d5 1611 if (nlink != inode->i_nlink) {
bfe86848 1612 set_nlink(inode, nlink);
e02119d5
CM
1613 btrfs_update_inode(trans, root, inode);
1614 }
8d5bf1cb 1615 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1616
c71bf099
YZ
1617 if (inode->i_nlink == 0) {
1618 if (S_ISDIR(inode->i_mode)) {
1619 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1620 ino, 1);
3650860b
JB
1621 if (ret)
1622 goto out;
c71bf099 1623 }
33345d01 1624 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1625 }
12fcfd22 1626
f186373f
MF
1627out:
1628 btrfs_free_path(path);
1629 return ret;
e02119d5
CM
1630}
1631
1632static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1633 struct btrfs_root *root,
1634 struct btrfs_path *path)
1635{
1636 int ret;
1637 struct btrfs_key key;
1638 struct inode *inode;
1639
1640 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1641 key.type = BTRFS_ORPHAN_ITEM_KEY;
1642 key.offset = (u64)-1;
d397712b 1643 while (1) {
e02119d5
CM
1644 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 if (ret < 0)
1646 break;
1647
1648 if (ret == 1) {
1649 if (path->slots[0] == 0)
1650 break;
1651 path->slots[0]--;
1652 }
1653
1654 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1655 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1656 key.type != BTRFS_ORPHAN_ITEM_KEY)
1657 break;
1658
1659 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1660 if (ret)
1661 goto out;
e02119d5 1662
b3b4aa74 1663 btrfs_release_path(path);
e02119d5 1664 inode = read_one_inode(root, key.offset);
c00e9493
TI
1665 if (!inode)
1666 return -EIO;
e02119d5
CM
1667
1668 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1669 iput(inode);
3650860b
JB
1670 if (ret)
1671 goto out;
e02119d5 1672
12fcfd22
CM
1673 /*
1674 * fixup on a directory may create new entries,
1675 * make sure we always look for the highset possible
1676 * offset
1677 */
1678 key.offset = (u64)-1;
e02119d5 1679 }
65a246c5
TI
1680 ret = 0;
1681out:
b3b4aa74 1682 btrfs_release_path(path);
65a246c5 1683 return ret;
e02119d5
CM
1684}
1685
1686
1687/*
1688 * record a given inode in the fixup dir so we can check its link
1689 * count when replay is done. The link count is incremented here
1690 * so the inode won't go away until we check it
1691 */
1692static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 struct btrfs_path *path,
1695 u64 objectid)
1696{
1697 struct btrfs_key key;
1698 int ret = 0;
1699 struct inode *inode;
1700
1701 inode = read_one_inode(root, objectid);
c00e9493
TI
1702 if (!inode)
1703 return -EIO;
e02119d5
CM
1704
1705 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1706 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1707 key.offset = objectid;
1708
1709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1710
b3b4aa74 1711 btrfs_release_path(path);
e02119d5 1712 if (ret == 0) {
9bf7a489
JB
1713 if (!inode->i_nlink)
1714 set_nlink(inode, 1);
1715 else
8b558c5f 1716 inc_nlink(inode);
b9959295 1717 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1718 } else if (ret == -EEXIST) {
1719 ret = 0;
1720 } else {
3650860b 1721 BUG(); /* Logic Error */
e02119d5
CM
1722 }
1723 iput(inode);
1724
1725 return ret;
1726}
1727
1728/*
1729 * when replaying the log for a directory, we only insert names
1730 * for inodes that actually exist. This means an fsync on a directory
1731 * does not implicitly fsync all the new files in it
1732 */
1733static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
e02119d5 1735 u64 dirid, u64 index,
60d53eb3 1736 char *name, int name_len,
e02119d5
CM
1737 struct btrfs_key *location)
1738{
1739 struct inode *inode;
1740 struct inode *dir;
1741 int ret;
1742
1743 inode = read_one_inode(root, location->objectid);
1744 if (!inode)
1745 return -ENOENT;
1746
1747 dir = read_one_inode(root, dirid);
1748 if (!dir) {
1749 iput(inode);
1750 return -EIO;
1751 }
d555438b 1752
db0a669f
NB
1753 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1754 name_len, 1, index);
e02119d5
CM
1755
1756 /* FIXME, put inode into FIXUP list */
1757
1758 iput(inode);
1759 iput(dir);
1760 return ret;
1761}
1762
df8d116f
FM
1763/*
1764 * Return true if an inode reference exists in the log for the given name,
1765 * inode and parent inode.
1766 */
1767static bool name_in_log_ref(struct btrfs_root *log_root,
1768 const char *name, const int name_len,
1769 const u64 dirid, const u64 ino)
1770{
1771 struct btrfs_key search_key;
1772
1773 search_key.objectid = ino;
1774 search_key.type = BTRFS_INODE_REF_KEY;
1775 search_key.offset = dirid;
1776 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1777 return true;
1778
1779 search_key.type = BTRFS_INODE_EXTREF_KEY;
1780 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1781 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1782 return true;
1783
1784 return false;
1785}
1786
e02119d5
CM
1787/*
1788 * take a single entry in a log directory item and replay it into
1789 * the subvolume.
1790 *
1791 * if a conflicting item exists in the subdirectory already,
1792 * the inode it points to is unlinked and put into the link count
1793 * fix up tree.
1794 *
1795 * If a name from the log points to a file or directory that does
1796 * not exist in the FS, it is skipped. fsyncs on directories
1797 * do not force down inodes inside that directory, just changes to the
1798 * names or unlinks in a directory.
bb53eda9
FM
1799 *
1800 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1801 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1802 */
1803static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_path *path,
1806 struct extent_buffer *eb,
1807 struct btrfs_dir_item *di,
1808 struct btrfs_key *key)
1809{
1810 char *name;
1811 int name_len;
1812 struct btrfs_dir_item *dst_di;
1813 struct btrfs_key found_key;
1814 struct btrfs_key log_key;
1815 struct inode *dir;
e02119d5 1816 u8 log_type;
4bef0848 1817 int exists;
3650860b 1818 int ret = 0;
d555438b 1819 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1820 bool name_added = false;
e02119d5
CM
1821
1822 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1823 if (!dir)
1824 return -EIO;
e02119d5
CM
1825
1826 name_len = btrfs_dir_name_len(eb, di);
1827 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1828 if (!name) {
1829 ret = -ENOMEM;
1830 goto out;
1831 }
2a29edc6 1832
e02119d5
CM
1833 log_type = btrfs_dir_type(eb, di);
1834 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1835 name_len);
1836
1837 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1838 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1839 if (exists == 0)
1840 exists = 1;
1841 else
1842 exists = 0;
b3b4aa74 1843 btrfs_release_path(path);
4bef0848 1844
e02119d5
CM
1845 if (key->type == BTRFS_DIR_ITEM_KEY) {
1846 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1847 name, name_len, 1);
d397712b 1848 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1849 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1850 key->objectid,
1851 key->offset, name,
1852 name_len, 1);
1853 } else {
3650860b
JB
1854 /* Corruption */
1855 ret = -EINVAL;
1856 goto out;
e02119d5 1857 }
c704005d 1858 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1859 /* we need a sequence number to insert, so we only
1860 * do inserts for the BTRFS_DIR_INDEX_KEY types
1861 */
1862 if (key->type != BTRFS_DIR_INDEX_KEY)
1863 goto out;
1864 goto insert;
1865 }
1866
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1868 /* the existing item matches the logged item */
1869 if (found_key.objectid == log_key.objectid &&
1870 found_key.type == log_key.type &&
1871 found_key.offset == log_key.offset &&
1872 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1873 update_size = false;
e02119d5
CM
1874 goto out;
1875 }
1876
1877 /*
1878 * don't drop the conflicting directory entry if the inode
1879 * for the new entry doesn't exist
1880 */
4bef0848 1881 if (!exists)
e02119d5
CM
1882 goto out;
1883
207e7d92 1884 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1885 if (ret)
1886 goto out;
e02119d5
CM
1887
1888 if (key->type == BTRFS_DIR_INDEX_KEY)
1889 goto insert;
1890out:
b3b4aa74 1891 btrfs_release_path(path);
d555438b 1892 if (!ret && update_size) {
6ef06d27 1893 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1894 ret = btrfs_update_inode(trans, root, dir);
1895 }
e02119d5
CM
1896 kfree(name);
1897 iput(dir);
bb53eda9
FM
1898 if (!ret && name_added)
1899 ret = 1;
3650860b 1900 return ret;
e02119d5
CM
1901
1902insert:
df8d116f
FM
1903 if (name_in_log_ref(root->log_root, name, name_len,
1904 key->objectid, log_key.objectid)) {
1905 /* The dentry will be added later. */
1906 ret = 0;
1907 update_size = false;
1908 goto out;
1909 }
b3b4aa74 1910 btrfs_release_path(path);
60d53eb3
Z
1911 ret = insert_one_name(trans, root, key->objectid, key->offset,
1912 name, name_len, &log_key);
df8d116f 1913 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1914 goto out;
bb53eda9
FM
1915 if (!ret)
1916 name_added = true;
d555438b 1917 update_size = false;
3650860b 1918 ret = 0;
e02119d5
CM
1919 goto out;
1920}
1921
1922/*
1923 * find all the names in a directory item and reconcile them into
1924 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1925 * one name in a directory item, but the same code gets used for
1926 * both directory index types
1927 */
1928static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
1930 struct btrfs_path *path,
1931 struct extent_buffer *eb, int slot,
1932 struct btrfs_key *key)
1933{
bb53eda9 1934 int ret = 0;
e02119d5
CM
1935 u32 item_size = btrfs_item_size_nr(eb, slot);
1936 struct btrfs_dir_item *di;
1937 int name_len;
1938 unsigned long ptr;
1939 unsigned long ptr_end;
bb53eda9 1940 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1941
1942 ptr = btrfs_item_ptr_offset(eb, slot);
1943 ptr_end = ptr + item_size;
d397712b 1944 while (ptr < ptr_end) {
e02119d5
CM
1945 di = (struct btrfs_dir_item *)ptr;
1946 name_len = btrfs_dir_name_len(eb, di);
1947 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1948 if (ret < 0)
1949 break;
e02119d5
CM
1950 ptr = (unsigned long)(di + 1);
1951 ptr += name_len;
bb53eda9
FM
1952
1953 /*
1954 * If this entry refers to a non-directory (directories can not
1955 * have a link count > 1) and it was added in the transaction
1956 * that was not committed, make sure we fixup the link count of
1957 * the inode it the entry points to. Otherwise something like
1958 * the following would result in a directory pointing to an
1959 * inode with a wrong link that does not account for this dir
1960 * entry:
1961 *
1962 * mkdir testdir
1963 * touch testdir/foo
1964 * touch testdir/bar
1965 * sync
1966 *
1967 * ln testdir/bar testdir/bar_link
1968 * ln testdir/foo testdir/foo_link
1969 * xfs_io -c "fsync" testdir/bar
1970 *
1971 * <power failure>
1972 *
1973 * mount fs, log replay happens
1974 *
1975 * File foo would remain with a link count of 1 when it has two
1976 * entries pointing to it in the directory testdir. This would
1977 * make it impossible to ever delete the parent directory has
1978 * it would result in stale dentries that can never be deleted.
1979 */
1980 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1981 struct btrfs_key di_key;
1982
1983 if (!fixup_path) {
1984 fixup_path = btrfs_alloc_path();
1985 if (!fixup_path) {
1986 ret = -ENOMEM;
1987 break;
1988 }
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1992 ret = link_to_fixup_dir(trans, root, fixup_path,
1993 di_key.objectid);
1994 if (ret)
1995 break;
1996 }
1997 ret = 0;
e02119d5 1998 }
bb53eda9
FM
1999 btrfs_free_path(fixup_path);
2000 return ret;
e02119d5
CM
2001}
2002
2003/*
2004 * directory replay has two parts. There are the standard directory
2005 * items in the log copied from the subvolume, and range items
2006 * created in the log while the subvolume was logged.
2007 *
2008 * The range items tell us which parts of the key space the log
2009 * is authoritative for. During replay, if a key in the subvolume
2010 * directory is in a logged range item, but not actually in the log
2011 * that means it was deleted from the directory before the fsync
2012 * and should be removed.
2013 */
2014static noinline int find_dir_range(struct btrfs_root *root,
2015 struct btrfs_path *path,
2016 u64 dirid, int key_type,
2017 u64 *start_ret, u64 *end_ret)
2018{
2019 struct btrfs_key key;
2020 u64 found_end;
2021 struct btrfs_dir_log_item *item;
2022 int ret;
2023 int nritems;
2024
2025 if (*start_ret == (u64)-1)
2026 return 1;
2027
2028 key.objectid = dirid;
2029 key.type = key_type;
2030 key.offset = *start_ret;
2031
2032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2033 if (ret < 0)
2034 goto out;
2035 if (ret > 0) {
2036 if (path->slots[0] == 0)
2037 goto out;
2038 path->slots[0]--;
2039 }
2040 if (ret != 0)
2041 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2042
2043 if (key.type != key_type || key.objectid != dirid) {
2044 ret = 1;
2045 goto next;
2046 }
2047 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2048 struct btrfs_dir_log_item);
2049 found_end = btrfs_dir_log_end(path->nodes[0], item);
2050
2051 if (*start_ret >= key.offset && *start_ret <= found_end) {
2052 ret = 0;
2053 *start_ret = key.offset;
2054 *end_ret = found_end;
2055 goto out;
2056 }
2057 ret = 1;
2058next:
2059 /* check the next slot in the tree to see if it is a valid item */
2060 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2061 path->slots[0]++;
e02119d5
CM
2062 if (path->slots[0] >= nritems) {
2063 ret = btrfs_next_leaf(root, path);
2064 if (ret)
2065 goto out;
e02119d5
CM
2066 }
2067
2068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2069
2070 if (key.type != key_type || key.objectid != dirid) {
2071 ret = 1;
2072 goto out;
2073 }
2074 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 struct btrfs_dir_log_item);
2076 found_end = btrfs_dir_log_end(path->nodes[0], item);
2077 *start_ret = key.offset;
2078 *end_ret = found_end;
2079 ret = 0;
2080out:
b3b4aa74 2081 btrfs_release_path(path);
e02119d5
CM
2082 return ret;
2083}
2084
2085/*
2086 * this looks for a given directory item in the log. If the directory
2087 * item is not in the log, the item is removed and the inode it points
2088 * to is unlinked
2089 */
2090static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 struct btrfs_path *log_path,
2095 struct inode *dir,
2096 struct btrfs_key *dir_key)
2097{
2098 int ret;
2099 struct extent_buffer *eb;
2100 int slot;
2101 u32 item_size;
2102 struct btrfs_dir_item *di;
2103 struct btrfs_dir_item *log_di;
2104 int name_len;
2105 unsigned long ptr;
2106 unsigned long ptr_end;
2107 char *name;
2108 struct inode *inode;
2109 struct btrfs_key location;
2110
2111again:
2112 eb = path->nodes[0];
2113 slot = path->slots[0];
2114 item_size = btrfs_item_size_nr(eb, slot);
2115 ptr = btrfs_item_ptr_offset(eb, slot);
2116 ptr_end = ptr + item_size;
d397712b 2117 while (ptr < ptr_end) {
e02119d5
CM
2118 di = (struct btrfs_dir_item *)ptr;
2119 name_len = btrfs_dir_name_len(eb, di);
2120 name = kmalloc(name_len, GFP_NOFS);
2121 if (!name) {
2122 ret = -ENOMEM;
2123 goto out;
2124 }
2125 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2126 name_len);
2127 log_di = NULL;
12fcfd22 2128 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2129 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2130 dir_key->objectid,
2131 name, name_len, 0);
12fcfd22 2132 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2133 log_di = btrfs_lookup_dir_index_item(trans, log,
2134 log_path,
2135 dir_key->objectid,
2136 dir_key->offset,
2137 name, name_len, 0);
2138 }
269d040f 2139 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2140 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2141 btrfs_release_path(path);
2142 btrfs_release_path(log_path);
e02119d5 2143 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2144 if (!inode) {
2145 kfree(name);
2146 return -EIO;
2147 }
e02119d5
CM
2148
2149 ret = link_to_fixup_dir(trans, root,
2150 path, location.objectid);
3650860b
JB
2151 if (ret) {
2152 kfree(name);
2153 iput(inode);
2154 goto out;
2155 }
2156
8b558c5f 2157 inc_nlink(inode);
4ec5934e
NB
2158 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2159 BTRFS_I(inode), name, name_len);
3650860b 2160 if (!ret)
e5c304e6 2161 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2162 kfree(name);
2163 iput(inode);
3650860b
JB
2164 if (ret)
2165 goto out;
e02119d5
CM
2166
2167 /* there might still be more names under this key
2168 * check and repeat if required
2169 */
2170 ret = btrfs_search_slot(NULL, root, dir_key, path,
2171 0, 0);
2172 if (ret == 0)
2173 goto again;
2174 ret = 0;
2175 goto out;
269d040f
FDBM
2176 } else if (IS_ERR(log_di)) {
2177 kfree(name);
2178 return PTR_ERR(log_di);
e02119d5 2179 }
b3b4aa74 2180 btrfs_release_path(log_path);
e02119d5
CM
2181 kfree(name);
2182
2183 ptr = (unsigned long)(di + 1);
2184 ptr += name_len;
2185 }
2186 ret = 0;
2187out:
b3b4aa74
DS
2188 btrfs_release_path(path);
2189 btrfs_release_path(log_path);
e02119d5
CM
2190 return ret;
2191}
2192
4f764e51
FM
2193static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_root *log,
2196 struct btrfs_path *path,
2197 const u64 ino)
2198{
2199 struct btrfs_key search_key;
2200 struct btrfs_path *log_path;
2201 int i;
2202 int nritems;
2203 int ret;
2204
2205 log_path = btrfs_alloc_path();
2206 if (!log_path)
2207 return -ENOMEM;
2208
2209 search_key.objectid = ino;
2210 search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 search_key.offset = 0;
2212again:
2213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2214 if (ret < 0)
2215 goto out;
2216process_leaf:
2217 nritems = btrfs_header_nritems(path->nodes[0]);
2218 for (i = path->slots[0]; i < nritems; i++) {
2219 struct btrfs_key key;
2220 struct btrfs_dir_item *di;
2221 struct btrfs_dir_item *log_di;
2222 u32 total_size;
2223 u32 cur;
2224
2225 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2227 ret = 0;
2228 goto out;
2229 }
2230
2231 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 total_size = btrfs_item_size_nr(path->nodes[0], i);
2233 cur = 0;
2234 while (cur < total_size) {
2235 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 u32 this_len = sizeof(*di) + name_len + data_len;
2238 char *name;
2239
2240 name = kmalloc(name_len, GFP_NOFS);
2241 if (!name) {
2242 ret = -ENOMEM;
2243 goto out;
2244 }
2245 read_extent_buffer(path->nodes[0], name,
2246 (unsigned long)(di + 1), name_len);
2247
2248 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2249 name, name_len, 0);
2250 btrfs_release_path(log_path);
2251 if (!log_di) {
2252 /* Doesn't exist in log tree, so delete it. */
2253 btrfs_release_path(path);
2254 di = btrfs_lookup_xattr(trans, root, path, ino,
2255 name, name_len, -1);
2256 kfree(name);
2257 if (IS_ERR(di)) {
2258 ret = PTR_ERR(di);
2259 goto out;
2260 }
2261 ASSERT(di);
2262 ret = btrfs_delete_one_dir_name(trans, root,
2263 path, di);
2264 if (ret)
2265 goto out;
2266 btrfs_release_path(path);
2267 search_key = key;
2268 goto again;
2269 }
2270 kfree(name);
2271 if (IS_ERR(log_di)) {
2272 ret = PTR_ERR(log_di);
2273 goto out;
2274 }
2275 cur += this_len;
2276 di = (struct btrfs_dir_item *)((char *)di + this_len);
2277 }
2278 }
2279 ret = btrfs_next_leaf(root, path);
2280 if (ret > 0)
2281 ret = 0;
2282 else if (ret == 0)
2283 goto process_leaf;
2284out:
2285 btrfs_free_path(log_path);
2286 btrfs_release_path(path);
2287 return ret;
2288}
2289
2290
e02119d5
CM
2291/*
2292 * deletion replay happens before we copy any new directory items
2293 * out of the log or out of backreferences from inodes. It
2294 * scans the log to find ranges of keys that log is authoritative for,
2295 * and then scans the directory to find items in those ranges that are
2296 * not present in the log.
2297 *
2298 * Anything we don't find in the log is unlinked and removed from the
2299 * directory.
2300 */
2301static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root,
2303 struct btrfs_root *log,
2304 struct btrfs_path *path,
12fcfd22 2305 u64 dirid, int del_all)
e02119d5
CM
2306{
2307 u64 range_start;
2308 u64 range_end;
2309 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2310 int ret = 0;
2311 struct btrfs_key dir_key;
2312 struct btrfs_key found_key;
2313 struct btrfs_path *log_path;
2314 struct inode *dir;
2315
2316 dir_key.objectid = dirid;
2317 dir_key.type = BTRFS_DIR_ITEM_KEY;
2318 log_path = btrfs_alloc_path();
2319 if (!log_path)
2320 return -ENOMEM;
2321
2322 dir = read_one_inode(root, dirid);
2323 /* it isn't an error if the inode isn't there, that can happen
2324 * because we replay the deletes before we copy in the inode item
2325 * from the log
2326 */
2327 if (!dir) {
2328 btrfs_free_path(log_path);
2329 return 0;
2330 }
2331again:
2332 range_start = 0;
2333 range_end = 0;
d397712b 2334 while (1) {
12fcfd22
CM
2335 if (del_all)
2336 range_end = (u64)-1;
2337 else {
2338 ret = find_dir_range(log, path, dirid, key_type,
2339 &range_start, &range_end);
2340 if (ret != 0)
2341 break;
2342 }
e02119d5
CM
2343
2344 dir_key.offset = range_start;
d397712b 2345 while (1) {
e02119d5
CM
2346 int nritems;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 0, 0);
2349 if (ret < 0)
2350 goto out;
2351
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
b98def7c 2355 if (ret == 1)
e02119d5 2356 break;
b98def7c
LB
2357 else if (ret < 0)
2358 goto out;
e02119d5
CM
2359 }
2360 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361 path->slots[0]);
2362 if (found_key.objectid != dirid ||
2363 found_key.type != dir_key.type)
2364 goto next_type;
2365
2366 if (found_key.offset > range_end)
2367 break;
2368
2369 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2370 log_path, dir,
2371 &found_key);
3650860b
JB
2372 if (ret)
2373 goto out;
e02119d5
CM
2374 if (found_key.offset == (u64)-1)
2375 break;
2376 dir_key.offset = found_key.offset + 1;
2377 }
b3b4aa74 2378 btrfs_release_path(path);
e02119d5
CM
2379 if (range_end == (u64)-1)
2380 break;
2381 range_start = range_end + 1;
2382 }
2383
2384next_type:
2385 ret = 0;
2386 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2387 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2388 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2389 btrfs_release_path(path);
e02119d5
CM
2390 goto again;
2391 }
2392out:
b3b4aa74 2393 btrfs_release_path(path);
e02119d5
CM
2394 btrfs_free_path(log_path);
2395 iput(dir);
2396 return ret;
2397}
2398
2399/*
2400 * the process_func used to replay items from the log tree. This
2401 * gets called in two different stages. The first stage just looks
2402 * for inodes and makes sure they are all copied into the subvolume.
2403 *
2404 * The second stage copies all the other item types from the log into
2405 * the subvolume. The two stage approach is slower, but gets rid of
2406 * lots of complexity around inodes referencing other inodes that exist
2407 * only in the log (references come from either directory items or inode
2408 * back refs).
2409 */
2410static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2411 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2412{
2413 int nritems;
2414 struct btrfs_path *path;
2415 struct btrfs_root *root = wc->replay_dest;
2416 struct btrfs_key key;
e02119d5
CM
2417 int i;
2418 int ret;
2419
581c1760 2420 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2421 if (ret)
2422 return ret;
e02119d5
CM
2423
2424 level = btrfs_header_level(eb);
2425
2426 if (level != 0)
2427 return 0;
2428
2429 path = btrfs_alloc_path();
1e5063d0
MF
2430 if (!path)
2431 return -ENOMEM;
e02119d5
CM
2432
2433 nritems = btrfs_header_nritems(eb);
2434 for (i = 0; i < nritems; i++) {
2435 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2436
2437 /* inode keys are done during the first stage */
2438 if (key.type == BTRFS_INODE_ITEM_KEY &&
2439 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2440 struct btrfs_inode_item *inode_item;
2441 u32 mode;
2442
2443 inode_item = btrfs_item_ptr(eb, i,
2444 struct btrfs_inode_item);
4f764e51
FM
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2447 if (ret)
2448 break;
e02119d5
CM
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
12fcfd22 2452 root, log, path, key.objectid, 0);
b50c6e25
JB
2453 if (ret)
2454 break;
e02119d5
CM
2455 }
2456 ret = overwrite_item(wc->trans, root, path,
2457 eb, i, &key);
b50c6e25
JB
2458 if (ret)
2459 break;
e02119d5 2460
471d557a
FM
2461 /*
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
e02119d5
CM
2468 */
2469 if (S_ISREG(mode)) {
471d557a
FM
2470 struct inode *inode;
2471 u64 from;
2472
2473 inode = read_one_inode(root, key.objectid);
2474 if (!inode) {
2475 ret = -EIO;
2476 break;
2477 }
2478 from = ALIGN(i_size_read(inode),
2479 root->fs_info->sectorsize);
2480 ret = btrfs_drop_extents(wc->trans, root, inode,
2481 from, (u64)-1, 1);
2482 /*
2483 * If the nlink count is zero here, the iput
2484 * will free the inode. We bump it to make
2485 * sure it doesn't get freed until the link
2486 * count fixup is done.
2487 */
2488 if (!ret) {
2489 if (inode->i_nlink == 0)
2490 inc_nlink(inode);
2491 /* Update link count and nbytes. */
2492 ret = btrfs_update_inode(wc->trans,
2493 root, inode);
2494 }
2495 iput(inode);
b50c6e25
JB
2496 if (ret)
2497 break;
e02119d5 2498 }
c71bf099 2499
e02119d5
CM
2500 ret = link_to_fixup_dir(wc->trans, root,
2501 path, key.objectid);
b50c6e25
JB
2502 if (ret)
2503 break;
e02119d5 2504 }
dd8e7217
JB
2505
2506 if (key.type == BTRFS_DIR_INDEX_KEY &&
2507 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2508 ret = replay_one_dir_item(wc->trans, root, path,
2509 eb, i, &key);
2510 if (ret)
2511 break;
2512 }
2513
e02119d5
CM
2514 if (wc->stage < LOG_WALK_REPLAY_ALL)
2515 continue;
2516
2517 /* these keys are simply copied */
2518 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2519 ret = overwrite_item(wc->trans, root, path,
2520 eb, i, &key);
b50c6e25
JB
2521 if (ret)
2522 break;
2da1c669
LB
2523 } else if (key.type == BTRFS_INODE_REF_KEY ||
2524 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2525 ret = add_inode_ref(wc->trans, root, log, path,
2526 eb, i, &key);
b50c6e25
JB
2527 if (ret && ret != -ENOENT)
2528 break;
2529 ret = 0;
e02119d5
CM
2530 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2531 ret = replay_one_extent(wc->trans, root, path,
2532 eb, i, &key);
b50c6e25
JB
2533 if (ret)
2534 break;
dd8e7217 2535 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2536 ret = replay_one_dir_item(wc->trans, root, path,
2537 eb, i, &key);
b50c6e25
JB
2538 if (ret)
2539 break;
e02119d5
CM
2540 }
2541 }
2542 btrfs_free_path(path);
b50c6e25 2543 return ret;
e02119d5
CM
2544}
2545
d397712b 2546static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2547 struct btrfs_root *root,
2548 struct btrfs_path *path, int *level,
2549 struct walk_control *wc)
2550{
0b246afa 2551 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2552 u64 root_owner;
e02119d5
CM
2553 u64 bytenr;
2554 u64 ptr_gen;
2555 struct extent_buffer *next;
2556 struct extent_buffer *cur;
2557 struct extent_buffer *parent;
2558 u32 blocksize;
2559 int ret = 0;
2560
2561 WARN_ON(*level < 0);
2562 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2563
d397712b 2564 while (*level > 0) {
581c1760
QW
2565 struct btrfs_key first_key;
2566
e02119d5
CM
2567 WARN_ON(*level < 0);
2568 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2569 cur = path->nodes[*level];
2570
fae7f21c 2571 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2572
2573 if (path->slots[*level] >=
2574 btrfs_header_nritems(cur))
2575 break;
2576
2577 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2578 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2579 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2580 blocksize = fs_info->nodesize;
e02119d5
CM
2581
2582 parent = path->nodes[*level];
2583 root_owner = btrfs_header_owner(parent);
e02119d5 2584
2ff7e61e 2585 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2586 if (IS_ERR(next))
2587 return PTR_ERR(next);
e02119d5 2588
e02119d5 2589 if (*level == 1) {
581c1760
QW
2590 ret = wc->process_func(root, next, wc, ptr_gen,
2591 *level - 1);
b50c6e25
JB
2592 if (ret) {
2593 free_extent_buffer(next);
1e5063d0 2594 return ret;
b50c6e25 2595 }
4a500fd1 2596
e02119d5
CM
2597 path->slots[*level]++;
2598 if (wc->free) {
581c1760
QW
2599 ret = btrfs_read_buffer(next, ptr_gen,
2600 *level - 1, &first_key);
018642a1
TI
2601 if (ret) {
2602 free_extent_buffer(next);
2603 return ret;
2604 }
e02119d5 2605
681ae509
JB
2606 if (trans) {
2607 btrfs_tree_lock(next);
2608 btrfs_set_lock_blocking(next);
7c302b49 2609 clean_tree_block(fs_info, next);
681ae509
JB
2610 btrfs_wait_tree_block_writeback(next);
2611 btrfs_tree_unlock(next);
1846430c
LB
2612 } else {
2613 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2614 clear_extent_buffer_dirty(next);
681ae509 2615 }
e02119d5 2616
e02119d5
CM
2617 WARN_ON(root_owner !=
2618 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2619 ret = btrfs_free_and_pin_reserved_extent(
2620 fs_info, bytenr,
2621 blocksize);
3650860b
JB
2622 if (ret) {
2623 free_extent_buffer(next);
2624 return ret;
2625 }
e02119d5
CM
2626 }
2627 free_extent_buffer(next);
2628 continue;
2629 }
581c1760 2630 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2631 if (ret) {
2632 free_extent_buffer(next);
2633 return ret;
2634 }
e02119d5
CM
2635
2636 WARN_ON(*level <= 0);
2637 if (path->nodes[*level-1])
2638 free_extent_buffer(path->nodes[*level-1]);
2639 path->nodes[*level-1] = next;
2640 *level = btrfs_header_level(next);
2641 path->slots[*level] = 0;
2642 cond_resched();
2643 }
2644 WARN_ON(*level < 0);
2645 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2646
4a500fd1 2647 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2648
2649 cond_resched();
2650 return 0;
2651}
2652
d397712b 2653static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2654 struct btrfs_root *root,
2655 struct btrfs_path *path, int *level,
2656 struct walk_control *wc)
2657{
0b246afa 2658 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2659 u64 root_owner;
e02119d5
CM
2660 int i;
2661 int slot;
2662 int ret;
2663
d397712b 2664 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2665 slot = path->slots[i];
4a500fd1 2666 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2667 path->slots[i]++;
2668 *level = i;
2669 WARN_ON(*level == 0);
2670 return 0;
2671 } else {
31840ae1
ZY
2672 struct extent_buffer *parent;
2673 if (path->nodes[*level] == root->node)
2674 parent = path->nodes[*level];
2675 else
2676 parent = path->nodes[*level + 1];
2677
2678 root_owner = btrfs_header_owner(parent);
1e5063d0 2679 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2680 btrfs_header_generation(path->nodes[*level]),
2681 *level);
1e5063d0
MF
2682 if (ret)
2683 return ret;
2684
e02119d5
CM
2685 if (wc->free) {
2686 struct extent_buffer *next;
2687
2688 next = path->nodes[*level];
2689
681ae509
JB
2690 if (trans) {
2691 btrfs_tree_lock(next);
2692 btrfs_set_lock_blocking(next);
7c302b49 2693 clean_tree_block(fs_info, next);
681ae509
JB
2694 btrfs_wait_tree_block_writeback(next);
2695 btrfs_tree_unlock(next);
1846430c
LB
2696 } else {
2697 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2698 clear_extent_buffer_dirty(next);
681ae509 2699 }
e02119d5 2700
e02119d5 2701 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2702 ret = btrfs_free_and_pin_reserved_extent(
2703 fs_info,
e02119d5 2704 path->nodes[*level]->start,
d00aff00 2705 path->nodes[*level]->len);
3650860b
JB
2706 if (ret)
2707 return ret;
e02119d5
CM
2708 }
2709 free_extent_buffer(path->nodes[*level]);
2710 path->nodes[*level] = NULL;
2711 *level = i + 1;
2712 }
2713 }
2714 return 1;
2715}
2716
2717/*
2718 * drop the reference count on the tree rooted at 'snap'. This traverses
2719 * the tree freeing any blocks that have a ref count of zero after being
2720 * decremented.
2721 */
2722static int walk_log_tree(struct btrfs_trans_handle *trans,
2723 struct btrfs_root *log, struct walk_control *wc)
2724{
2ff7e61e 2725 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2726 int ret = 0;
2727 int wret;
2728 int level;
2729 struct btrfs_path *path;
e02119d5
CM
2730 int orig_level;
2731
2732 path = btrfs_alloc_path();
db5b493a
TI
2733 if (!path)
2734 return -ENOMEM;
e02119d5
CM
2735
2736 level = btrfs_header_level(log->node);
2737 orig_level = level;
2738 path->nodes[level] = log->node;
2739 extent_buffer_get(log->node);
2740 path->slots[level] = 0;
2741
d397712b 2742 while (1) {
e02119d5
CM
2743 wret = walk_down_log_tree(trans, log, path, &level, wc);
2744 if (wret > 0)
2745 break;
79787eaa 2746 if (wret < 0) {
e02119d5 2747 ret = wret;
79787eaa
JM
2748 goto out;
2749 }
e02119d5
CM
2750
2751 wret = walk_up_log_tree(trans, log, path, &level, wc);
2752 if (wret > 0)
2753 break;
79787eaa 2754 if (wret < 0) {
e02119d5 2755 ret = wret;
79787eaa
JM
2756 goto out;
2757 }
e02119d5
CM
2758 }
2759
2760 /* was the root node processed? if not, catch it here */
2761 if (path->nodes[orig_level]) {
79787eaa 2762 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2763 btrfs_header_generation(path->nodes[orig_level]),
2764 orig_level);
79787eaa
JM
2765 if (ret)
2766 goto out;
e02119d5
CM
2767 if (wc->free) {
2768 struct extent_buffer *next;
2769
2770 next = path->nodes[orig_level];
2771
681ae509
JB
2772 if (trans) {
2773 btrfs_tree_lock(next);
2774 btrfs_set_lock_blocking(next);
7c302b49 2775 clean_tree_block(fs_info, next);
681ae509
JB
2776 btrfs_wait_tree_block_writeback(next);
2777 btrfs_tree_unlock(next);
1846430c
LB
2778 } else {
2779 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2780 clear_extent_buffer_dirty(next);
681ae509 2781 }
e02119d5 2782
e02119d5
CM
2783 WARN_ON(log->root_key.objectid !=
2784 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2785 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2786 next->start, next->len);
3650860b
JB
2787 if (ret)
2788 goto out;
e02119d5
CM
2789 }
2790 }
2791
79787eaa 2792out:
e02119d5 2793 btrfs_free_path(path);
e02119d5
CM
2794 return ret;
2795}
2796
7237f183
YZ
2797/*
2798 * helper function to update the item for a given subvolumes log root
2799 * in the tree of log roots
2800 */
2801static int update_log_root(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *log)
2803{
0b246afa 2804 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2805 int ret;
2806
2807 if (log->log_transid == 1) {
2808 /* insert root item on the first sync */
0b246afa 2809 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2810 &log->root_key, &log->root_item);
2811 } else {
0b246afa 2812 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2813 &log->root_key, &log->root_item);
2814 }
2815 return ret;
2816}
2817
60d53eb3 2818static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2819{
2820 DEFINE_WAIT(wait);
7237f183 2821 int index = transid % 2;
e02119d5 2822
7237f183
YZ
2823 /*
2824 * we only allow two pending log transactions at a time,
2825 * so we know that if ours is more than 2 older than the
2826 * current transaction, we're done
2827 */
49e83f57 2828 for (;;) {
7237f183
YZ
2829 prepare_to_wait(&root->log_commit_wait[index],
2830 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2831
49e83f57
LB
2832 if (!(root->log_transid_committed < transid &&
2833 atomic_read(&root->log_commit[index])))
2834 break;
12fcfd22 2835
49e83f57
LB
2836 mutex_unlock(&root->log_mutex);
2837 schedule();
7237f183 2838 mutex_lock(&root->log_mutex);
49e83f57
LB
2839 }
2840 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2841}
2842
60d53eb3 2843static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2844{
2845 DEFINE_WAIT(wait);
8b050d35 2846
49e83f57
LB
2847 for (;;) {
2848 prepare_to_wait(&root->log_writer_wait, &wait,
2849 TASK_UNINTERRUPTIBLE);
2850 if (!atomic_read(&root->log_writers))
2851 break;
2852
7237f183 2853 mutex_unlock(&root->log_mutex);
49e83f57 2854 schedule();
575849ec 2855 mutex_lock(&root->log_mutex);
7237f183 2856 }
49e83f57 2857 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2858}
2859
8b050d35
MX
2860static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2861 struct btrfs_log_ctx *ctx)
2862{
2863 if (!ctx)
2864 return;
2865
2866 mutex_lock(&root->log_mutex);
2867 list_del_init(&ctx->list);
2868 mutex_unlock(&root->log_mutex);
2869}
2870
2871/*
2872 * Invoked in log mutex context, or be sure there is no other task which
2873 * can access the list.
2874 */
2875static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2876 int index, int error)
2877{
2878 struct btrfs_log_ctx *ctx;
570dd450 2879 struct btrfs_log_ctx *safe;
8b050d35 2880
570dd450
CM
2881 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2882 list_del_init(&ctx->list);
8b050d35 2883 ctx->log_ret = error;
570dd450 2884 }
8b050d35
MX
2885
2886 INIT_LIST_HEAD(&root->log_ctxs[index]);
2887}
2888
e02119d5
CM
2889/*
2890 * btrfs_sync_log does sends a given tree log down to the disk and
2891 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2892 * you know that any inodes previously logged are safely on disk only
2893 * if it returns 0.
2894 *
2895 * Any other return value means you need to call btrfs_commit_transaction.
2896 * Some of the edge cases for fsyncing directories that have had unlinks
2897 * or renames done in the past mean that sometimes the only safe
2898 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2899 * that has happened.
e02119d5
CM
2900 */
2901int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2902 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2903{
7237f183
YZ
2904 int index1;
2905 int index2;
8cef4e16 2906 int mark;
e02119d5 2907 int ret;
0b246afa 2908 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2909 struct btrfs_root *log = root->log_root;
0b246afa 2910 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2911 int log_transid = 0;
8b050d35 2912 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2913 struct blk_plug plug;
e02119d5 2914
7237f183 2915 mutex_lock(&root->log_mutex);
d1433deb
MX
2916 log_transid = ctx->log_transid;
2917 if (root->log_transid_committed >= log_transid) {
2918 mutex_unlock(&root->log_mutex);
2919 return ctx->log_ret;
2920 }
2921
2922 index1 = log_transid % 2;
7237f183 2923 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2924 wait_log_commit(root, log_transid);
7237f183 2925 mutex_unlock(&root->log_mutex);
8b050d35 2926 return ctx->log_ret;
e02119d5 2927 }
d1433deb 2928 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2929 atomic_set(&root->log_commit[index1], 1);
2930
2931 /* wait for previous tree log sync to complete */
2932 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2933 wait_log_commit(root, log_transid - 1);
48cab2e0 2934
86df7eb9 2935 while (1) {
2ecb7923 2936 int batch = atomic_read(&root->log_batch);
cd354ad6 2937 /* when we're on an ssd, just kick the log commit out */
0b246afa 2938 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2939 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2940 mutex_unlock(&root->log_mutex);
2941 schedule_timeout_uninterruptible(1);
2942 mutex_lock(&root->log_mutex);
2943 }
60d53eb3 2944 wait_for_writer(root);
2ecb7923 2945 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2946 break;
2947 }
e02119d5 2948
12fcfd22 2949 /* bail out if we need to do a full commit */
0b246afa 2950 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2951 ret = -EAGAIN;
2ab28f32 2952 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2953 mutex_unlock(&root->log_mutex);
2954 goto out;
2955 }
2956
8cef4e16
YZ
2957 if (log_transid % 2 == 0)
2958 mark = EXTENT_DIRTY;
2959 else
2960 mark = EXTENT_NEW;
2961
690587d1
CM
2962 /* we start IO on all the marked extents here, but we don't actually
2963 * wait for them until later.
2964 */
c6adc9cc 2965 blk_start_plug(&plug);
2ff7e61e 2966 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2967 if (ret) {
c6adc9cc 2968 blk_finish_plug(&plug);
66642832 2969 btrfs_abort_transaction(trans, ret);
2ab28f32 2970 btrfs_free_logged_extents(log, log_transid);
0b246afa 2971 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2972 mutex_unlock(&root->log_mutex);
2973 goto out;
2974 }
7237f183 2975
5d4f98a2 2976 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2977
7237f183
YZ
2978 root->log_transid++;
2979 log->log_transid = root->log_transid;
ff782e0a 2980 root->log_start_pid = 0;
7237f183 2981 /*
8cef4e16
YZ
2982 * IO has been started, blocks of the log tree have WRITTEN flag set
2983 * in their headers. new modifications of the log will be written to
2984 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2985 */
2986 mutex_unlock(&root->log_mutex);
2987
28a23593 2988 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2989
7237f183 2990 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2991 atomic_inc(&log_root_tree->log_batch);
7237f183 2992 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2993
2994 index2 = log_root_tree->log_transid % 2;
2995 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2996 root_log_ctx.log_transid = log_root_tree->log_transid;
2997
7237f183
YZ
2998 mutex_unlock(&log_root_tree->log_mutex);
2999
3000 ret = update_log_root(trans, log);
7237f183
YZ
3001
3002 mutex_lock(&log_root_tree->log_mutex);
3003 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
3004 /*
3005 * Implicit memory barrier after atomic_dec_and_test
3006 */
7237f183
YZ
3007 if (waitqueue_active(&log_root_tree->log_writer_wait))
3008 wake_up(&log_root_tree->log_writer_wait);
3009 }
3010
4a500fd1 3011 if (ret) {
d1433deb
MX
3012 if (!list_empty(&root_log_ctx.list))
3013 list_del_init(&root_log_ctx.list);
3014
c6adc9cc 3015 blk_finish_plug(&plug);
0b246afa 3016 btrfs_set_log_full_commit(fs_info, trans);
995946dd 3017
79787eaa 3018 if (ret != -ENOSPC) {
66642832 3019 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3020 mutex_unlock(&log_root_tree->log_mutex);
3021 goto out;
3022 }
bf89d38f 3023 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 3024 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
3025 mutex_unlock(&log_root_tree->log_mutex);
3026 ret = -EAGAIN;
3027 goto out;
3028 }
3029
d1433deb 3030 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3031 blk_finish_plug(&plug);
cbd60aa7 3032 list_del_init(&root_log_ctx.list);
d1433deb
MX
3033 mutex_unlock(&log_root_tree->log_mutex);
3034 ret = root_log_ctx.log_ret;
3035 goto out;
3036 }
8b050d35 3037
d1433deb 3038 index2 = root_log_ctx.log_transid % 2;
7237f183 3039 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3040 blk_finish_plug(&plug);
bf89d38f 3041 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 3042 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 3043 wait_log_commit(log_root_tree,
d1433deb 3044 root_log_ctx.log_transid);
7237f183 3045 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3046 if (!ret)
3047 ret = root_log_ctx.log_ret;
7237f183
YZ
3048 goto out;
3049 }
d1433deb 3050 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3051 atomic_set(&log_root_tree->log_commit[index2], 1);
3052
12fcfd22 3053 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3054 wait_log_commit(log_root_tree,
d1433deb 3055 root_log_ctx.log_transid - 1);
12fcfd22
CM
3056 }
3057
60d53eb3 3058 wait_for_writer(log_root_tree);
7237f183 3059
12fcfd22
CM
3060 /*
3061 * now that we've moved on to the tree of log tree roots,
3062 * check the full commit flag again
3063 */
0b246afa 3064 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 3065 blk_finish_plug(&plug);
bf89d38f 3066 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 3067 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
3068 mutex_unlock(&log_root_tree->log_mutex);
3069 ret = -EAGAIN;
3070 goto out_wake_log_root;
3071 }
7237f183 3072
2ff7e61e 3073 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3074 &log_root_tree->dirty_log_pages,
3075 EXTENT_DIRTY | EXTENT_NEW);
3076 blk_finish_plug(&plug);
79787eaa 3077 if (ret) {
0b246afa 3078 btrfs_set_log_full_commit(fs_info, trans);
66642832 3079 btrfs_abort_transaction(trans, ret);
2ab28f32 3080 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
3081 mutex_unlock(&log_root_tree->log_mutex);
3082 goto out_wake_log_root;
3083 }
bf89d38f 3084 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3085 if (!ret)
bf89d38f
JM
3086 ret = btrfs_wait_tree_log_extents(log_root_tree,
3087 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3088 if (ret) {
0b246afa 3089 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
3090 btrfs_free_logged_extents(log, log_transid);
3091 mutex_unlock(&log_root_tree->log_mutex);
3092 goto out_wake_log_root;
3093 }
50d9aa99 3094 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 3095
0b246afa
JM
3096 btrfs_set_super_log_root(fs_info->super_for_commit,
3097 log_root_tree->node->start);
3098 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3099 btrfs_header_level(log_root_tree->node));
e02119d5 3100
7237f183 3101 log_root_tree->log_transid++;
7237f183
YZ
3102 mutex_unlock(&log_root_tree->log_mutex);
3103
3104 /*
3105 * nobody else is going to jump in and write the the ctree
3106 * super here because the log_commit atomic below is protecting
3107 * us. We must be called with a transaction handle pinning
3108 * the running transaction open, so a full commit can't hop
3109 * in and cause problems either.
3110 */
eece6a9c 3111 ret = write_all_supers(fs_info, 1);
5af3e8cc 3112 if (ret) {
0b246afa 3113 btrfs_set_log_full_commit(fs_info, trans);
66642832 3114 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3115 goto out_wake_log_root;
3116 }
7237f183 3117
257c62e1
CM
3118 mutex_lock(&root->log_mutex);
3119 if (root->last_log_commit < log_transid)
3120 root->last_log_commit = log_transid;
3121 mutex_unlock(&root->log_mutex);
3122
12fcfd22 3123out_wake_log_root:
570dd450 3124 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3125 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3126
d1433deb 3127 log_root_tree->log_transid_committed++;
7237f183 3128 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3129 mutex_unlock(&log_root_tree->log_mutex);
3130
33a9eca7
DS
3131 /*
3132 * The barrier before waitqueue_active is implied by mutex_unlock
3133 */
7237f183
YZ
3134 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3135 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3136out:
d1433deb 3137 mutex_lock(&root->log_mutex);
570dd450 3138 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3139 root->log_transid_committed++;
7237f183 3140 atomic_set(&root->log_commit[index1], 0);
d1433deb 3141 mutex_unlock(&root->log_mutex);
8b050d35 3142
33a9eca7
DS
3143 /*
3144 * The barrier before waitqueue_active is implied by mutex_unlock
3145 */
7237f183
YZ
3146 if (waitqueue_active(&root->log_commit_wait[index1]))
3147 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3148 return ret;
e02119d5
CM
3149}
3150
4a500fd1
YZ
3151static void free_log_tree(struct btrfs_trans_handle *trans,
3152 struct btrfs_root *log)
e02119d5
CM
3153{
3154 int ret;
d0c803c4
CM
3155 u64 start;
3156 u64 end;
e02119d5
CM
3157 struct walk_control wc = {
3158 .free = 1,
3159 .process_func = process_one_buffer
3160 };
3161
681ae509
JB
3162 ret = walk_log_tree(trans, log, &wc);
3163 /* I don't think this can happen but just in case */
3164 if (ret)
66642832 3165 btrfs_abort_transaction(trans, ret);
e02119d5 3166
d397712b 3167 while (1) {
d0c803c4 3168 ret = find_first_extent_bit(&log->dirty_log_pages,
55237a5f
LB
3169 0, &start, &end,
3170 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
e6138876 3171 NULL);
d0c803c4
CM
3172 if (ret)
3173 break;
3174
8cef4e16 3175 clear_extent_bits(&log->dirty_log_pages, start, end,
55237a5f 3176 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
d0c803c4
CM
3177 }
3178
2ab28f32
JB
3179 /*
3180 * We may have short-circuited the log tree with the full commit logic
3181 * and left ordered extents on our list, so clear these out to keep us
3182 * from leaking inodes and memory.
3183 */
3184 btrfs_free_logged_extents(log, 0);
3185 btrfs_free_logged_extents(log, 1);
3186
7237f183
YZ
3187 free_extent_buffer(log->node);
3188 kfree(log);
4a500fd1
YZ
3189}
3190
3191/*
3192 * free all the extents used by the tree log. This should be called
3193 * at commit time of the full transaction
3194 */
3195int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3196{
3197 if (root->log_root) {
3198 free_log_tree(trans, root->log_root);
3199 root->log_root = NULL;
3200 }
3201 return 0;
3202}
3203
3204int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3205 struct btrfs_fs_info *fs_info)
3206{
3207 if (fs_info->log_root_tree) {
3208 free_log_tree(trans, fs_info->log_root_tree);
3209 fs_info->log_root_tree = NULL;
3210 }
e02119d5
CM
3211 return 0;
3212}
3213
e02119d5
CM
3214/*
3215 * If both a file and directory are logged, and unlinks or renames are
3216 * mixed in, we have a few interesting corners:
3217 *
3218 * create file X in dir Y
3219 * link file X to X.link in dir Y
3220 * fsync file X
3221 * unlink file X but leave X.link
3222 * fsync dir Y
3223 *
3224 * After a crash we would expect only X.link to exist. But file X
3225 * didn't get fsync'd again so the log has back refs for X and X.link.
3226 *
3227 * We solve this by removing directory entries and inode backrefs from the
3228 * log when a file that was logged in the current transaction is
3229 * unlinked. Any later fsync will include the updated log entries, and
3230 * we'll be able to reconstruct the proper directory items from backrefs.
3231 *
3232 * This optimizations allows us to avoid relogging the entire inode
3233 * or the entire directory.
3234 */
3235int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3236 struct btrfs_root *root,
3237 const char *name, int name_len,
49f34d1f 3238 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3239{
3240 struct btrfs_root *log;
3241 struct btrfs_dir_item *di;
3242 struct btrfs_path *path;
3243 int ret;
4a500fd1 3244 int err = 0;
e02119d5 3245 int bytes_del = 0;
49f34d1f 3246 u64 dir_ino = btrfs_ino(dir);
e02119d5 3247
49f34d1f 3248 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3249 return 0;
3250
e02119d5
CM
3251 ret = join_running_log_trans(root);
3252 if (ret)
3253 return 0;
3254
49f34d1f 3255 mutex_lock(&dir->log_mutex);
e02119d5
CM
3256
3257 log = root->log_root;
3258 path = btrfs_alloc_path();
a62f44a5
TI
3259 if (!path) {
3260 err = -ENOMEM;
3261 goto out_unlock;
3262 }
2a29edc6 3263
33345d01 3264 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3265 name, name_len, -1);
4a500fd1
YZ
3266 if (IS_ERR(di)) {
3267 err = PTR_ERR(di);
3268 goto fail;
3269 }
3270 if (di) {
e02119d5
CM
3271 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3272 bytes_del += name_len;
3650860b
JB
3273 if (ret) {
3274 err = ret;
3275 goto fail;
3276 }
e02119d5 3277 }
b3b4aa74 3278 btrfs_release_path(path);
33345d01 3279 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3280 index, name, name_len, -1);
4a500fd1
YZ
3281 if (IS_ERR(di)) {
3282 err = PTR_ERR(di);
3283 goto fail;
3284 }
3285 if (di) {
e02119d5
CM
3286 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3287 bytes_del += name_len;
3650860b
JB
3288 if (ret) {
3289 err = ret;
3290 goto fail;
3291 }
e02119d5
CM
3292 }
3293
3294 /* update the directory size in the log to reflect the names
3295 * we have removed
3296 */
3297 if (bytes_del) {
3298 struct btrfs_key key;
3299
33345d01 3300 key.objectid = dir_ino;
e02119d5
CM
3301 key.offset = 0;
3302 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3303 btrfs_release_path(path);
e02119d5
CM
3304
3305 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3306 if (ret < 0) {
3307 err = ret;
3308 goto fail;
3309 }
e02119d5
CM
3310 if (ret == 0) {
3311 struct btrfs_inode_item *item;
3312 u64 i_size;
3313
3314 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3315 struct btrfs_inode_item);
3316 i_size = btrfs_inode_size(path->nodes[0], item);
3317 if (i_size > bytes_del)
3318 i_size -= bytes_del;
3319 else
3320 i_size = 0;
3321 btrfs_set_inode_size(path->nodes[0], item, i_size);
3322 btrfs_mark_buffer_dirty(path->nodes[0]);
3323 } else
3324 ret = 0;
b3b4aa74 3325 btrfs_release_path(path);
e02119d5 3326 }
4a500fd1 3327fail:
e02119d5 3328 btrfs_free_path(path);
a62f44a5 3329out_unlock:
49f34d1f 3330 mutex_unlock(&dir->log_mutex);
4a500fd1 3331 if (ret == -ENOSPC) {
995946dd 3332 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3333 ret = 0;
79787eaa 3334 } else if (ret < 0)
66642832 3335 btrfs_abort_transaction(trans, ret);
79787eaa 3336
12fcfd22 3337 btrfs_end_log_trans(root);
e02119d5 3338
411fc6bc 3339 return err;
e02119d5
CM
3340}
3341
3342/* see comments for btrfs_del_dir_entries_in_log */
3343int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root,
3345 const char *name, int name_len,
a491abb2 3346 struct btrfs_inode *inode, u64 dirid)
e02119d5 3347{
0b246afa 3348 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3349 struct btrfs_root *log;
3350 u64 index;
3351 int ret;
3352
a491abb2 3353 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3354 return 0;
3355
e02119d5
CM
3356 ret = join_running_log_trans(root);
3357 if (ret)
3358 return 0;
3359 log = root->log_root;
a491abb2 3360 mutex_lock(&inode->log_mutex);
e02119d5 3361
a491abb2 3362 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3363 dirid, &index);
a491abb2 3364 mutex_unlock(&inode->log_mutex);
4a500fd1 3365 if (ret == -ENOSPC) {
0b246afa 3366 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3367 ret = 0;
79787eaa 3368 } else if (ret < 0 && ret != -ENOENT)
66642832 3369 btrfs_abort_transaction(trans, ret);
12fcfd22 3370 btrfs_end_log_trans(root);
e02119d5 3371
e02119d5
CM
3372 return ret;
3373}
3374
3375/*
3376 * creates a range item in the log for 'dirid'. first_offset and
3377 * last_offset tell us which parts of the key space the log should
3378 * be considered authoritative for.
3379 */
3380static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3381 struct btrfs_root *log,
3382 struct btrfs_path *path,
3383 int key_type, u64 dirid,
3384 u64 first_offset, u64 last_offset)
3385{
3386 int ret;
3387 struct btrfs_key key;
3388 struct btrfs_dir_log_item *item;
3389
3390 key.objectid = dirid;
3391 key.offset = first_offset;
3392 if (key_type == BTRFS_DIR_ITEM_KEY)
3393 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3394 else
3395 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3396 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3397 if (ret)
3398 return ret;
e02119d5
CM
3399
3400 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3401 struct btrfs_dir_log_item);
3402 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3403 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3404 btrfs_release_path(path);
e02119d5
CM
3405 return 0;
3406}
3407
3408/*
3409 * log all the items included in the current transaction for a given
3410 * directory. This also creates the range items in the log tree required
3411 * to replay anything deleted before the fsync
3412 */
3413static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3414 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3415 struct btrfs_path *path,
3416 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3417 struct btrfs_log_ctx *ctx,
e02119d5
CM
3418 u64 min_offset, u64 *last_offset_ret)
3419{
3420 struct btrfs_key min_key;
e02119d5
CM
3421 struct btrfs_root *log = root->log_root;
3422 struct extent_buffer *src;
4a500fd1 3423 int err = 0;
e02119d5
CM
3424 int ret;
3425 int i;
3426 int nritems;
3427 u64 first_offset = min_offset;
3428 u64 last_offset = (u64)-1;
684a5773 3429 u64 ino = btrfs_ino(inode);
e02119d5
CM
3430
3431 log = root->log_root;
e02119d5 3432
33345d01 3433 min_key.objectid = ino;
e02119d5
CM
3434 min_key.type = key_type;
3435 min_key.offset = min_offset;
3436
6174d3cb 3437 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3438
3439 /*
3440 * we didn't find anything from this transaction, see if there
3441 * is anything at all
3442 */
33345d01
LZ
3443 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3444 min_key.objectid = ino;
e02119d5
CM
3445 min_key.type = key_type;
3446 min_key.offset = (u64)-1;
b3b4aa74 3447 btrfs_release_path(path);
e02119d5
CM
3448 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3449 if (ret < 0) {
b3b4aa74 3450 btrfs_release_path(path);
e02119d5
CM
3451 return ret;
3452 }
33345d01 3453 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3454
3455 /* if ret == 0 there are items for this type,
3456 * create a range to tell us the last key of this type.
3457 * otherwise, there are no items in this directory after
3458 * *min_offset, and we create a range to indicate that.
3459 */
3460 if (ret == 0) {
3461 struct btrfs_key tmp;
3462 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3463 path->slots[0]);
d397712b 3464 if (key_type == tmp.type)
e02119d5 3465 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3466 }
3467 goto done;
3468 }
3469
3470 /* go backward to find any previous key */
33345d01 3471 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3472 if (ret == 0) {
3473 struct btrfs_key tmp;
3474 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3475 if (key_type == tmp.type) {
3476 first_offset = tmp.offset;
3477 ret = overwrite_item(trans, log, dst_path,
3478 path->nodes[0], path->slots[0],
3479 &tmp);
4a500fd1
YZ
3480 if (ret) {
3481 err = ret;
3482 goto done;
3483 }
e02119d5
CM
3484 }
3485 }
b3b4aa74 3486 btrfs_release_path(path);
e02119d5
CM
3487
3488 /* find the first key from this transaction again */
3489 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3490 if (WARN_ON(ret != 0))
e02119d5 3491 goto done;
e02119d5
CM
3492
3493 /*
3494 * we have a block from this transaction, log every item in it
3495 * from our directory
3496 */
d397712b 3497 while (1) {
e02119d5
CM
3498 struct btrfs_key tmp;
3499 src = path->nodes[0];
3500 nritems = btrfs_header_nritems(src);
3501 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3502 struct btrfs_dir_item *di;
3503
e02119d5
CM
3504 btrfs_item_key_to_cpu(src, &min_key, i);
3505
33345d01 3506 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3507 goto done;
3508 ret = overwrite_item(trans, log, dst_path, src, i,
3509 &min_key);
4a500fd1
YZ
3510 if (ret) {
3511 err = ret;
3512 goto done;
3513 }
2f2ff0ee
FM
3514
3515 /*
3516 * We must make sure that when we log a directory entry,
3517 * the corresponding inode, after log replay, has a
3518 * matching link count. For example:
3519 *
3520 * touch foo
3521 * mkdir mydir
3522 * sync
3523 * ln foo mydir/bar
3524 * xfs_io -c "fsync" mydir
3525 * <crash>
3526 * <mount fs and log replay>
3527 *
3528 * Would result in a fsync log that when replayed, our
3529 * file inode would have a link count of 1, but we get
3530 * two directory entries pointing to the same inode.
3531 * After removing one of the names, it would not be
3532 * possible to remove the other name, which resulted
3533 * always in stale file handle errors, and would not
3534 * be possible to rmdir the parent directory, since
3535 * its i_size could never decrement to the value
3536 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3537 */
3538 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3539 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3540 if (ctx &&
3541 (btrfs_dir_transid(src, di) == trans->transid ||
3542 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3543 tmp.type != BTRFS_ROOT_ITEM_KEY)
3544 ctx->log_new_dentries = true;
e02119d5
CM
3545 }
3546 path->slots[0] = nritems;
3547
3548 /*
3549 * look ahead to the next item and see if it is also
3550 * from this directory and from this transaction
3551 */
3552 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3553 if (ret) {
3554 if (ret == 1)
3555 last_offset = (u64)-1;
3556 else
3557 err = ret;
e02119d5
CM
3558 goto done;
3559 }
3560 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3561 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3562 last_offset = (u64)-1;
3563 goto done;
3564 }
3565 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3566 ret = overwrite_item(trans, log, dst_path,
3567 path->nodes[0], path->slots[0],
3568 &tmp);
4a500fd1
YZ
3569 if (ret)
3570 err = ret;
3571 else
3572 last_offset = tmp.offset;
e02119d5
CM
3573 goto done;
3574 }
3575 }
3576done:
b3b4aa74
DS
3577 btrfs_release_path(path);
3578 btrfs_release_path(dst_path);
e02119d5 3579
4a500fd1
YZ
3580 if (err == 0) {
3581 *last_offset_ret = last_offset;
3582 /*
3583 * insert the log range keys to indicate where the log
3584 * is valid
3585 */
3586 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3587 ino, first_offset, last_offset);
4a500fd1
YZ
3588 if (ret)
3589 err = ret;
3590 }
3591 return err;
e02119d5
CM
3592}
3593
3594/*
3595 * logging directories is very similar to logging inodes, We find all the items
3596 * from the current transaction and write them to the log.
3597 *
3598 * The recovery code scans the directory in the subvolume, and if it finds a
3599 * key in the range logged that is not present in the log tree, then it means
3600 * that dir entry was unlinked during the transaction.
3601 *
3602 * In order for that scan to work, we must include one key smaller than
3603 * the smallest logged by this transaction and one key larger than the largest
3604 * key logged by this transaction.
3605 */
3606static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3607 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3608 struct btrfs_path *path,
2f2ff0ee
FM
3609 struct btrfs_path *dst_path,
3610 struct btrfs_log_ctx *ctx)
e02119d5
CM
3611{
3612 u64 min_key;
3613 u64 max_key;
3614 int ret;
3615 int key_type = BTRFS_DIR_ITEM_KEY;
3616
3617again:
3618 min_key = 0;
3619 max_key = 0;
d397712b 3620 while (1) {
dbf39ea4
NB
3621 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3622 ctx, min_key, &max_key);
4a500fd1
YZ
3623 if (ret)
3624 return ret;
e02119d5
CM
3625 if (max_key == (u64)-1)
3626 break;
3627 min_key = max_key + 1;
3628 }
3629
3630 if (key_type == BTRFS_DIR_ITEM_KEY) {
3631 key_type = BTRFS_DIR_INDEX_KEY;
3632 goto again;
3633 }
3634 return 0;
3635}
3636
3637/*
3638 * a helper function to drop items from the log before we relog an
3639 * inode. max_key_type indicates the highest item type to remove.
3640 * This cannot be run for file data extents because it does not
3641 * free the extents they point to.
3642 */
3643static int drop_objectid_items(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *log,
3645 struct btrfs_path *path,
3646 u64 objectid, int max_key_type)
3647{
3648 int ret;
3649 struct btrfs_key key;
3650 struct btrfs_key found_key;
18ec90d6 3651 int start_slot;
e02119d5
CM
3652
3653 key.objectid = objectid;
3654 key.type = max_key_type;
3655 key.offset = (u64)-1;
3656
d397712b 3657 while (1) {
e02119d5 3658 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3659 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3660 if (ret < 0)
e02119d5
CM
3661 break;
3662
3663 if (path->slots[0] == 0)
3664 break;
3665
3666 path->slots[0]--;
3667 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3668 path->slots[0]);
3669
3670 if (found_key.objectid != objectid)
3671 break;
3672
18ec90d6
JB
3673 found_key.offset = 0;
3674 found_key.type = 0;
3675 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3676 &start_slot);
3677
3678 ret = btrfs_del_items(trans, log, path, start_slot,
3679 path->slots[0] - start_slot + 1);
3680 /*
3681 * If start slot isn't 0 then we don't need to re-search, we've
3682 * found the last guy with the objectid in this tree.
3683 */
3684 if (ret || start_slot != 0)
65a246c5 3685 break;
b3b4aa74 3686 btrfs_release_path(path);
e02119d5 3687 }
b3b4aa74 3688 btrfs_release_path(path);
5bdbeb21
JB
3689 if (ret > 0)
3690 ret = 0;
4a500fd1 3691 return ret;
e02119d5
CM
3692}
3693
94edf4ae
JB
3694static void fill_inode_item(struct btrfs_trans_handle *trans,
3695 struct extent_buffer *leaf,
3696 struct btrfs_inode_item *item,
1a4bcf47
FM
3697 struct inode *inode, int log_inode_only,
3698 u64 logged_isize)
94edf4ae 3699{
0b1c6cca
JB
3700 struct btrfs_map_token token;
3701
3702 btrfs_init_map_token(&token);
94edf4ae
JB
3703
3704 if (log_inode_only) {
3705 /* set the generation to zero so the recover code
3706 * can tell the difference between an logging
3707 * just to say 'this inode exists' and a logging
3708 * to say 'update this inode with these values'
3709 */
0b1c6cca 3710 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3711 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3712 } else {
0b1c6cca
JB
3713 btrfs_set_token_inode_generation(leaf, item,
3714 BTRFS_I(inode)->generation,
3715 &token);
3716 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3717 }
3718
3719 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3720 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3721 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3722 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3723
a937b979 3724 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3725 inode->i_atime.tv_sec, &token);
a937b979 3726 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3727 inode->i_atime.tv_nsec, &token);
3728
a937b979 3729 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3730 inode->i_mtime.tv_sec, &token);
a937b979 3731 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3732 inode->i_mtime.tv_nsec, &token);
3733
a937b979 3734 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3735 inode->i_ctime.tv_sec, &token);
a937b979 3736 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3737 inode->i_ctime.tv_nsec, &token);
3738
3739 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3740 &token);
3741
c7f88c4e
JL
3742 btrfs_set_token_inode_sequence(leaf, item,
3743 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3744 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3745 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3746 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3747 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3748}
3749
a95249b3
JB
3750static int log_inode_item(struct btrfs_trans_handle *trans,
3751 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3752 struct btrfs_inode *inode)
a95249b3
JB
3753{
3754 struct btrfs_inode_item *inode_item;
a95249b3
JB
3755 int ret;
3756
efd0c405 3757 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3758 &inode->location, sizeof(*inode_item));
a95249b3
JB
3759 if (ret && ret != -EEXIST)
3760 return ret;
3761 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3762 struct btrfs_inode_item);
6d889a3b
NB
3763 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3764 0, 0);
a95249b3
JB
3765 btrfs_release_path(path);
3766 return 0;
3767}
3768
31ff1cd2 3769static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3770 struct btrfs_inode *inode,
31ff1cd2 3771 struct btrfs_path *dst_path,
16e7549f 3772 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3773 int start_slot, int nr, int inode_only,
3774 u64 logged_isize)
31ff1cd2 3775{
44d70e19 3776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3777 unsigned long src_offset;
3778 unsigned long dst_offset;
44d70e19 3779 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3780 struct btrfs_file_extent_item *extent;
3781 struct btrfs_inode_item *inode_item;
16e7549f
JB
3782 struct extent_buffer *src = src_path->nodes[0];
3783 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3784 int ret;
3785 struct btrfs_key *ins_keys;
3786 u32 *ins_sizes;
3787 char *ins_data;
3788 int i;
d20f7043 3789 struct list_head ordered_sums;
44d70e19 3790 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3791 bool has_extents = false;
74121f7c 3792 bool need_find_last_extent = true;
16e7549f 3793 bool done = false;
d20f7043
CM
3794
3795 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3796
3797 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3798 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3799 if (!ins_data)
3800 return -ENOMEM;
3801
16e7549f
JB
3802 first_key.objectid = (u64)-1;
3803
31ff1cd2
CM
3804 ins_sizes = (u32 *)ins_data;
3805 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3806
3807 for (i = 0; i < nr; i++) {
3808 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3809 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3810 }
3811 ret = btrfs_insert_empty_items(trans, log, dst_path,
3812 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3813 if (ret) {
3814 kfree(ins_data);
3815 return ret;
3816 }
31ff1cd2 3817
5d4f98a2 3818 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3819 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3820 dst_path->slots[0]);
3821
3822 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3823
0dde10be 3824 if (i == nr - 1)
16e7549f
JB
3825 last_key = ins_keys[i];
3826
94edf4ae 3827 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3828 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3829 dst_path->slots[0],
3830 struct btrfs_inode_item);
94edf4ae 3831 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3832 &inode->vfs_inode,
3833 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3834 logged_isize);
94edf4ae
JB
3835 } else {
3836 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3837 src_offset, ins_sizes[i]);
31ff1cd2 3838 }
94edf4ae 3839
16e7549f
JB
3840 /*
3841 * We set need_find_last_extent here in case we know we were
3842 * processing other items and then walk into the first extent in
3843 * the inode. If we don't hit an extent then nothing changes,
3844 * we'll do the last search the next time around.
3845 */
3846 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3847 has_extents = true;
74121f7c 3848 if (first_key.objectid == (u64)-1)
16e7549f
JB
3849 first_key = ins_keys[i];
3850 } else {
3851 need_find_last_extent = false;
3852 }
3853
31ff1cd2
CM
3854 /* take a reference on file data extents so that truncates
3855 * or deletes of this inode don't have to relog the inode
3856 * again
3857 */
962a298f 3858 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3859 !skip_csum) {
31ff1cd2
CM
3860 int found_type;
3861 extent = btrfs_item_ptr(src, start_slot + i,
3862 struct btrfs_file_extent_item);
3863
8e531cdf 3864 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3865 continue;
3866
31ff1cd2 3867 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3868 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3869 u64 ds, dl, cs, cl;
3870 ds = btrfs_file_extent_disk_bytenr(src,
3871 extent);
3872 /* ds == 0 is a hole */
3873 if (ds == 0)
3874 continue;
3875
3876 dl = btrfs_file_extent_disk_num_bytes(src,
3877 extent);
3878 cs = btrfs_file_extent_offset(src, extent);
3879 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3880 extent);
580afd76
CM
3881 if (btrfs_file_extent_compression(src,
3882 extent)) {
3883 cs = 0;
3884 cl = dl;
3885 }
5d4f98a2
YZ
3886
3887 ret = btrfs_lookup_csums_range(
0b246afa 3888 fs_info->csum_root,
5d4f98a2 3889 ds + cs, ds + cs + cl - 1,
a2de733c 3890 &ordered_sums, 0);
3650860b
JB
3891 if (ret) {
3892 btrfs_release_path(dst_path);
3893 kfree(ins_data);
3894 return ret;
3895 }
31ff1cd2
CM
3896 }
3897 }
31ff1cd2
CM
3898 }
3899
3900 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3901 btrfs_release_path(dst_path);
31ff1cd2 3902 kfree(ins_data);
d20f7043
CM
3903
3904 /*
3905 * we have to do this after the loop above to avoid changing the
3906 * log tree while trying to change the log tree.
3907 */
4a500fd1 3908 ret = 0;
d397712b 3909 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3910 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3911 struct btrfs_ordered_sum,
3912 list);
4a500fd1
YZ
3913 if (!ret)
3914 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3915 list_del(&sums->list);
3916 kfree(sums);
3917 }
16e7549f
JB
3918
3919 if (!has_extents)
3920 return ret;
3921
74121f7c
FM
3922 if (need_find_last_extent && *last_extent == first_key.offset) {
3923 /*
3924 * We don't have any leafs between our current one and the one
3925 * we processed before that can have file extent items for our
3926 * inode (and have a generation number smaller than our current
3927 * transaction id).
3928 */
3929 need_find_last_extent = false;
3930 }
3931
16e7549f
JB
3932 /*
3933 * Because we use btrfs_search_forward we could skip leaves that were
3934 * not modified and then assume *last_extent is valid when it really
3935 * isn't. So back up to the previous leaf and read the end of the last
3936 * extent before we go and fill in holes.
3937 */
3938 if (need_find_last_extent) {
3939 u64 len;
3940
44d70e19 3941 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3942 if (ret < 0)
3943 return ret;
3944 if (ret)
3945 goto fill_holes;
3946 if (src_path->slots[0])
3947 src_path->slots[0]--;
3948 src = src_path->nodes[0];
3949 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3950 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3951 key.type != BTRFS_EXTENT_DATA_KEY)
3952 goto fill_holes;
3953 extent = btrfs_item_ptr(src, src_path->slots[0],
3954 struct btrfs_file_extent_item);
3955 if (btrfs_file_extent_type(src, extent) ==
3956 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3957 len = btrfs_file_extent_inline_len(src,
3958 src_path->slots[0],
3959 extent);
16e7549f 3960 *last_extent = ALIGN(key.offset + len,
0b246afa 3961 fs_info->sectorsize);
16e7549f
JB
3962 } else {
3963 len = btrfs_file_extent_num_bytes(src, extent);
3964 *last_extent = key.offset + len;
3965 }
3966 }
3967fill_holes:
3968 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3969 * things could have happened
3970 *
3971 * 1) A merge could have happened, so we could currently be on a leaf
3972 * that holds what we were copying in the first place.
3973 * 2) A split could have happened, and now not all of the items we want
3974 * are on the same leaf.
3975 *
3976 * So we need to adjust how we search for holes, we need to drop the
3977 * path and re-search for the first extent key we found, and then walk
3978 * forward until we hit the last one we copied.
3979 */
3980 if (need_find_last_extent) {
3981 /* btrfs_prev_leaf could return 1 without releasing the path */
3982 btrfs_release_path(src_path);
f85b7379
DS
3983 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3984 src_path, 0, 0);
16e7549f
JB
3985 if (ret < 0)
3986 return ret;
3987 ASSERT(ret == 0);
3988 src = src_path->nodes[0];
3989 i = src_path->slots[0];
3990 } else {
3991 i = start_slot;
3992 }
3993
3994 /*
3995 * Ok so here we need to go through and fill in any holes we may have
3996 * to make sure that holes are punched for those areas in case they had
3997 * extents previously.
3998 */
3999 while (!done) {
4000 u64 offset, len;
4001 u64 extent_end;
4002
4003 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4004 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4005 if (ret < 0)
4006 return ret;
4007 ASSERT(ret == 0);
4008 src = src_path->nodes[0];
4009 i = 0;
8434ec46 4010 need_find_last_extent = true;
16e7549f
JB
4011 }
4012
4013 btrfs_item_key_to_cpu(src, &key, i);
4014 if (!btrfs_comp_cpu_keys(&key, &last_key))
4015 done = true;
44d70e19 4016 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4017 key.type != BTRFS_EXTENT_DATA_KEY) {
4018 i++;
4019 continue;
4020 }
4021 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4022 if (btrfs_file_extent_type(src, extent) ==
4023 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 4024 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 4025 extent_end = ALIGN(key.offset + len,
0b246afa 4026 fs_info->sectorsize);
16e7549f
JB
4027 } else {
4028 len = btrfs_file_extent_num_bytes(src, extent);
4029 extent_end = key.offset + len;
4030 }
4031 i++;
4032
4033 if (*last_extent == key.offset) {
4034 *last_extent = extent_end;
4035 continue;
4036 }
4037 offset = *last_extent;
4038 len = key.offset - *last_extent;
44d70e19 4039 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4040 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4041 if (ret)
4042 break;
74121f7c 4043 *last_extent = extent_end;
16e7549f 4044 }
4ee3fad3
FM
4045
4046 /*
4047 * Check if there is a hole between the last extent found in our leaf
4048 * and the first extent in the next leaf. If there is one, we need to
4049 * log an explicit hole so that at replay time we can punch the hole.
4050 */
4051 if (ret == 0 &&
4052 key.objectid == btrfs_ino(inode) &&
4053 key.type == BTRFS_EXTENT_DATA_KEY &&
4054 i == btrfs_header_nritems(src_path->nodes[0])) {
4055 ret = btrfs_next_leaf(inode->root, src_path);
4056 need_find_last_extent = true;
4057 if (ret > 0) {
4058 ret = 0;
4059 } else if (ret == 0) {
4060 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4061 src_path->slots[0]);
4062 if (key.objectid == btrfs_ino(inode) &&
4063 key.type == BTRFS_EXTENT_DATA_KEY &&
4064 *last_extent < key.offset) {
4065 const u64 len = key.offset - *last_extent;
4066
4067 ret = btrfs_insert_file_extent(trans, log,
4068 btrfs_ino(inode),
4069 *last_extent, 0,
4070 0, len, 0, len,
4071 0, 0, 0);
4072 }
4073 }
4074 }
16e7549f
JB
4075 /*
4076 * Need to let the callers know we dropped the path so they should
4077 * re-search.
4078 */
4079 if (!ret && need_find_last_extent)
4080 ret = 1;
4a500fd1 4081 return ret;
31ff1cd2
CM
4082}
4083
5dc562c5
JB
4084static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4085{
4086 struct extent_map *em1, *em2;
4087
4088 em1 = list_entry(a, struct extent_map, list);
4089 em2 = list_entry(b, struct extent_map, list);
4090
4091 if (em1->start < em2->start)
4092 return -1;
4093 else if (em1->start > em2->start)
4094 return 1;
4095 return 0;
4096}
4097
8407f553
FM
4098static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4099 struct inode *inode,
4100 struct btrfs_root *root,
4101 const struct extent_map *em,
4102 const struct list_head *logged_list,
4103 bool *ordered_io_error)
5dc562c5 4104{
0b246afa 4105 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 4106 struct btrfs_ordered_extent *ordered;
8407f553 4107 struct btrfs_root *log = root->log_root;
2ab28f32
JB
4108 u64 mod_start = em->mod_start;
4109 u64 mod_len = em->mod_len;
8407f553 4110 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
4111 u64 csum_offset;
4112 u64 csum_len;
8407f553
FM
4113 LIST_HEAD(ordered_sums);
4114 int ret = 0;
0aa4a17d 4115
8407f553 4116 *ordered_io_error = false;
0aa4a17d 4117
8407f553
FM
4118 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4119 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4120 return 0;
5dc562c5 4121
2ab28f32 4122 /*
8407f553
FM
4123 * Wait far any ordered extent that covers our extent map. If it
4124 * finishes without an error, first check and see if our csums are on
4125 * our outstanding ordered extents.
2ab28f32 4126 */
827463c4 4127 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
4128 struct btrfs_ordered_sum *sum;
4129
4130 if (!mod_len)
4131 break;
4132
2ab28f32
JB
4133 if (ordered->file_offset + ordered->len <= mod_start ||
4134 mod_start + mod_len <= ordered->file_offset)
4135 continue;
4136
8407f553
FM
4137 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4138 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4139 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4140 const u64 start = ordered->file_offset;
4141 const u64 end = ordered->file_offset + ordered->len - 1;
4142
4143 WARN_ON(ordered->inode != inode);
4144 filemap_fdatawrite_range(inode->i_mapping, start, end);
4145 }
4146
4147 wait_event(ordered->wait,
4148 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4149 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4150
4151 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
4152 /*
4153 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4154 * i_mapping flags, so that the next fsync won't get
4155 * an outdated io error too.
4156 */
f0312210 4157 filemap_check_errors(inode->i_mapping);
8407f553
FM
4158 *ordered_io_error = true;
4159 break;
4160 }
2ab28f32
JB
4161 /*
4162 * We are going to copy all the csums on this ordered extent, so
4163 * go ahead and adjust mod_start and mod_len in case this
4164 * ordered extent has already been logged.
4165 */
4166 if (ordered->file_offset > mod_start) {
4167 if (ordered->file_offset + ordered->len >=
4168 mod_start + mod_len)
4169 mod_len = ordered->file_offset - mod_start;
4170 /*
4171 * If we have this case
4172 *
4173 * |--------- logged extent ---------|
4174 * |----- ordered extent ----|
4175 *
4176 * Just don't mess with mod_start and mod_len, we'll
4177 * just end up logging more csums than we need and it
4178 * will be ok.
4179 */
4180 } else {
4181 if (ordered->file_offset + ordered->len <
4182 mod_start + mod_len) {
4183 mod_len = (mod_start + mod_len) -
4184 (ordered->file_offset + ordered->len);
4185 mod_start = ordered->file_offset +
4186 ordered->len;
4187 } else {
4188 mod_len = 0;
4189 }
4190 }
4191
8407f553
FM
4192 if (skip_csum)
4193 continue;
4194
2ab28f32
JB
4195 /*
4196 * To keep us from looping for the above case of an ordered
4197 * extent that falls inside of the logged extent.
4198 */
4199 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4200 &ordered->flags))
4201 continue;
2ab28f32 4202
2ab28f32
JB
4203 list_for_each_entry(sum, &ordered->list, list) {
4204 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4205 if (ret)
8407f553 4206 break;
2ab28f32 4207 }
2ab28f32 4208 }
2ab28f32 4209
8407f553 4210 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4211 return ret;
4212
488111aa
FDBM
4213 if (em->compress_type) {
4214 csum_offset = 0;
8407f553 4215 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4216 } else {
4217 csum_offset = mod_start - em->start;
4218 csum_len = mod_len;
4219 }
2ab28f32 4220
70c8a91c 4221 /* block start is already adjusted for the file extent offset. */
0b246afa 4222 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4223 em->block_start + csum_offset,
4224 em->block_start + csum_offset +
4225 csum_len - 1, &ordered_sums, 0);
4226 if (ret)
4227 return ret;
5dc562c5 4228
70c8a91c
JB
4229 while (!list_empty(&ordered_sums)) {
4230 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4231 struct btrfs_ordered_sum,
4232 list);
4233 if (!ret)
4234 ret = btrfs_csum_file_blocks(trans, log, sums);
4235 list_del(&sums->list);
4236 kfree(sums);
5dc562c5
JB
4237 }
4238
70c8a91c 4239 return ret;
5dc562c5
JB
4240}
4241
8407f553 4242static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4243 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4244 const struct extent_map *em,
4245 struct btrfs_path *path,
4246 const struct list_head *logged_list,
4247 struct btrfs_log_ctx *ctx)
4248{
4249 struct btrfs_root *log = root->log_root;
4250 struct btrfs_file_extent_item *fi;
4251 struct extent_buffer *leaf;
4252 struct btrfs_map_token token;
4253 struct btrfs_key key;
4254 u64 extent_offset = em->start - em->orig_start;
4255 u64 block_len;
4256 int ret;
4257 int extent_inserted = 0;
4258 bool ordered_io_err = false;
4259
f85b7379
DS
4260 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4261 logged_list, &ordered_io_err);
8407f553
FM
4262 if (ret)
4263 return ret;
4264
4265 if (ordered_io_err) {
4266 ctx->io_err = -EIO;
ebb70442 4267 return ctx->io_err;
8407f553
FM
4268 }
4269
4270 btrfs_init_map_token(&token);
4271
9d122629 4272 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4273 em->start + em->len, NULL, 0, 1,
4274 sizeof(*fi), &extent_inserted);
4275 if (ret)
4276 return ret;
4277
4278 if (!extent_inserted) {
9d122629 4279 key.objectid = btrfs_ino(inode);
8407f553
FM
4280 key.type = BTRFS_EXTENT_DATA_KEY;
4281 key.offset = em->start;
4282
4283 ret = btrfs_insert_empty_item(trans, log, path, &key,
4284 sizeof(*fi));
4285 if (ret)
4286 return ret;
4287 }
4288 leaf = path->nodes[0];
4289 fi = btrfs_item_ptr(leaf, path->slots[0],
4290 struct btrfs_file_extent_item);
4291
50d9aa99 4292 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4293 &token);
4294 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4295 btrfs_set_token_file_extent_type(leaf, fi,
4296 BTRFS_FILE_EXTENT_PREALLOC,
4297 &token);
4298 else
4299 btrfs_set_token_file_extent_type(leaf, fi,
4300 BTRFS_FILE_EXTENT_REG,
4301 &token);
4302
4303 block_len = max(em->block_len, em->orig_block_len);
4304 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4305 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4306 em->block_start,
4307 &token);
4308 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4309 &token);
4310 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4311 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4312 em->block_start -
4313 extent_offset, &token);
4314 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4315 &token);
4316 } else {
4317 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4318 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4319 &token);
4320 }
4321
4322 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4323 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4324 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4325 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4326 &token);
4327 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4328 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4329 btrfs_mark_buffer_dirty(leaf);
4330
4331 btrfs_release_path(path);
4332
4333 return ret;
4334}
4335
5dc562c5
JB
4336static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4337 struct btrfs_root *root,
9d122629 4338 struct btrfs_inode *inode,
827463c4 4339 struct btrfs_path *path,
8407f553 4340 struct list_head *logged_list,
de0ee0ed
FM
4341 struct btrfs_log_ctx *ctx,
4342 const u64 start,
4343 const u64 end)
5dc562c5 4344{
5dc562c5
JB
4345 struct extent_map *em, *n;
4346 struct list_head extents;
9d122629 4347 struct extent_map_tree *tree = &inode->extent_tree;
8c6c5928 4348 u64 logged_start, logged_end;
5dc562c5
JB
4349 u64 test_gen;
4350 int ret = 0;
2ab28f32 4351 int num = 0;
5dc562c5
JB
4352
4353 INIT_LIST_HEAD(&extents);
4354
9d122629 4355 down_write(&inode->dio_sem);
5dc562c5
JB
4356 write_lock(&tree->lock);
4357 test_gen = root->fs_info->last_trans_committed;
8c6c5928
JB
4358 logged_start = start;
4359 logged_end = end;
5dc562c5
JB
4360
4361 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 list_del_init(&em->list);
2ab28f32
JB
4363 /*
4364 * Just an arbitrary number, this can be really CPU intensive
4365 * once we start getting a lot of extents, and really once we
4366 * have a bunch of extents we just want to commit since it will
4367 * be faster.
4368 */
4369 if (++num > 32768) {
4370 list_del_init(&tree->modified_extents);
4371 ret = -EFBIG;
4372 goto process;
4373 }
4374
5dc562c5
JB
4375 if (em->generation <= test_gen)
4376 continue;
8c6c5928
JB
4377
4378 if (em->start < logged_start)
4379 logged_start = em->start;
4380 if ((em->start + em->len - 1) > logged_end)
4381 logged_end = em->start + em->len - 1;
4382
ff44c6e3 4383 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4384 refcount_inc(&em->refs);
ff44c6e3 4385 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4386 list_add_tail(&em->list, &extents);
2ab28f32 4387 num++;
5dc562c5
JB
4388 }
4389
471d557a
FM
4390 /*
4391 * Add all prealloc extents beyond the inode's i_size to make sure we
4392 * don't lose them after doing a fast fsync and replaying the log.
4393 */
4394 if (inode->flags & BTRFS_INODE_PREALLOC) {
4395 struct rb_node *node;
4396
4397 for (node = rb_last(&tree->map); node; node = rb_prev(node)) {
4398 em = rb_entry(node, struct extent_map, rb_node);
4399 if (em->start < i_size_read(&inode->vfs_inode))
4400 break;
4401 if (!list_empty(&em->list))
4402 continue;
4403 /* Same as above loop. */
4404 if (++num > 32768) {
4405 list_del_init(&tree->modified_extents);
4406 ret = -EFBIG;
4407 goto process;
4408 }
4409 refcount_inc(&em->refs);
4410 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4411 list_add_tail(&em->list, &extents);
4412 }
4413 }
4414
5dc562c5 4415 list_sort(NULL, &extents, extent_cmp);
8c6c5928 4416 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
de0ee0ed 4417 /*
5f9a8a51
FM
4418 * Some ordered extents started by fsync might have completed
4419 * before we could collect them into the list logged_list, which
4420 * means they're gone, not in our logged_list nor in the inode's
4421 * ordered tree. We want the application/user space to know an
4422 * error happened while attempting to persist file data so that
4423 * it can take proper action. If such error happened, we leave
4424 * without writing to the log tree and the fsync must report the
4425 * file data write error and not commit the current transaction.
de0ee0ed 4426 */
9d122629 4427 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4428 if (ret)
4429 ctx->io_err = ret;
2ab28f32 4430process:
5dc562c5
JB
4431 while (!list_empty(&extents)) {
4432 em = list_entry(extents.next, struct extent_map, list);
4433
4434 list_del_init(&em->list);
4435
4436 /*
4437 * If we had an error we just need to delete everybody from our
4438 * private list.
4439 */
ff44c6e3 4440 if (ret) {
201a9038 4441 clear_em_logging(tree, em);
ff44c6e3 4442 free_extent_map(em);
5dc562c5 4443 continue;
ff44c6e3
JB
4444 }
4445
4446 write_unlock(&tree->lock);
5dc562c5 4447
8407f553
FM
4448 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4449 ctx);
ff44c6e3 4450 write_lock(&tree->lock);
201a9038
JB
4451 clear_em_logging(tree, em);
4452 free_extent_map(em);
5dc562c5 4453 }
ff44c6e3
JB
4454 WARN_ON(!list_empty(&extents));
4455 write_unlock(&tree->lock);
9d122629 4456 up_write(&inode->dio_sem);
5dc562c5 4457
5dc562c5 4458 btrfs_release_path(path);
5dc562c5
JB
4459 return ret;
4460}
4461
481b01c0 4462static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4463 struct btrfs_path *path, u64 *size_ret)
4464{
4465 struct btrfs_key key;
4466 int ret;
4467
481b01c0 4468 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4469 key.type = BTRFS_INODE_ITEM_KEY;
4470 key.offset = 0;
4471
4472 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4473 if (ret < 0) {
4474 return ret;
4475 } else if (ret > 0) {
2f2ff0ee 4476 *size_ret = 0;
1a4bcf47
FM
4477 } else {
4478 struct btrfs_inode_item *item;
4479
4480 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4481 struct btrfs_inode_item);
4482 *size_ret = btrfs_inode_size(path->nodes[0], item);
4483 }
4484
4485 btrfs_release_path(path);
4486 return 0;
4487}
4488
36283bf7
FM
4489/*
4490 * At the moment we always log all xattrs. This is to figure out at log replay
4491 * time which xattrs must have their deletion replayed. If a xattr is missing
4492 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4493 * because if a xattr is deleted, the inode is fsynced and a power failure
4494 * happens, causing the log to be replayed the next time the fs is mounted,
4495 * we want the xattr to not exist anymore (same behaviour as other filesystems
4496 * with a journal, ext3/4, xfs, f2fs, etc).
4497 */
4498static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
1a93c36a 4500 struct btrfs_inode *inode,
36283bf7
FM
4501 struct btrfs_path *path,
4502 struct btrfs_path *dst_path)
4503{
4504 int ret;
4505 struct btrfs_key key;
1a93c36a 4506 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4507 int ins_nr = 0;
4508 int start_slot = 0;
4509
4510 key.objectid = ino;
4511 key.type = BTRFS_XATTR_ITEM_KEY;
4512 key.offset = 0;
4513
4514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4515 if (ret < 0)
4516 return ret;
4517
4518 while (true) {
4519 int slot = path->slots[0];
4520 struct extent_buffer *leaf = path->nodes[0];
4521 int nritems = btrfs_header_nritems(leaf);
4522
4523 if (slot >= nritems) {
4524 if (ins_nr > 0) {
4525 u64 last_extent = 0;
4526
1a93c36a 4527 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4528 &last_extent, start_slot,
4529 ins_nr, 1, 0);
4530 /* can't be 1, extent items aren't processed */
4531 ASSERT(ret <= 0);
4532 if (ret < 0)
4533 return ret;
4534 ins_nr = 0;
4535 }
4536 ret = btrfs_next_leaf(root, path);
4537 if (ret < 0)
4538 return ret;
4539 else if (ret > 0)
4540 break;
4541 continue;
4542 }
4543
4544 btrfs_item_key_to_cpu(leaf, &key, slot);
4545 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4546 break;
4547
4548 if (ins_nr == 0)
4549 start_slot = slot;
4550 ins_nr++;
4551 path->slots[0]++;
4552 cond_resched();
4553 }
4554 if (ins_nr > 0) {
4555 u64 last_extent = 0;
4556
1a93c36a 4557 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4558 &last_extent, start_slot,
4559 ins_nr, 1, 0);
4560 /* can't be 1, extent items aren't processed */
4561 ASSERT(ret <= 0);
4562 if (ret < 0)
4563 return ret;
4564 }
4565
4566 return 0;
4567}
4568
a89ca6f2
FM
4569/*
4570 * If the no holes feature is enabled we need to make sure any hole between the
4571 * last extent and the i_size of our inode is explicitly marked in the log. This
4572 * is to make sure that doing something like:
4573 *
4574 * 1) create file with 128Kb of data
4575 * 2) truncate file to 64Kb
4576 * 3) truncate file to 256Kb
4577 * 4) fsync file
4578 * 5) <crash/power failure>
4579 * 6) mount fs and trigger log replay
4580 *
4581 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4582 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4583 * file correspond to a hole. The presence of explicit holes in a log tree is
4584 * what guarantees that log replay will remove/adjust file extent items in the
4585 * fs/subvol tree.
4586 *
4587 * Here we do not need to care about holes between extents, that is already done
4588 * by copy_items(). We also only need to do this in the full sync path, where we
4589 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4590 * lookup the list of modified extent maps and if any represents a hole, we
4591 * insert a corresponding extent representing a hole in the log tree.
4592 */
4593static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4594 struct btrfs_root *root,
a0308dd7 4595 struct btrfs_inode *inode,
a89ca6f2
FM
4596 struct btrfs_path *path)
4597{
0b246afa 4598 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4599 int ret;
4600 struct btrfs_key key;
4601 u64 hole_start;
4602 u64 hole_size;
4603 struct extent_buffer *leaf;
4604 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4605 const u64 ino = btrfs_ino(inode);
4606 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4607
0b246afa 4608 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4609 return 0;
4610
4611 key.objectid = ino;
4612 key.type = BTRFS_EXTENT_DATA_KEY;
4613 key.offset = (u64)-1;
4614
4615 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4616 ASSERT(ret != 0);
4617 if (ret < 0)
4618 return ret;
4619
4620 ASSERT(path->slots[0] > 0);
4621 path->slots[0]--;
4622 leaf = path->nodes[0];
4623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4624
4625 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4626 /* inode does not have any extents */
4627 hole_start = 0;
4628 hole_size = i_size;
4629 } else {
4630 struct btrfs_file_extent_item *extent;
4631 u64 len;
4632
4633 /*
4634 * If there's an extent beyond i_size, an explicit hole was
4635 * already inserted by copy_items().
4636 */
4637 if (key.offset >= i_size)
4638 return 0;
4639
4640 extent = btrfs_item_ptr(leaf, path->slots[0],
4641 struct btrfs_file_extent_item);
4642
4643 if (btrfs_file_extent_type(leaf, extent) ==
4644 BTRFS_FILE_EXTENT_INLINE) {
4645 len = btrfs_file_extent_inline_len(leaf,
4646 path->slots[0],
4647 extent);
6399fb5a
FM
4648 ASSERT(len == i_size ||
4649 (len == fs_info->sectorsize &&
4650 btrfs_file_extent_compression(leaf, extent) !=
4651 BTRFS_COMPRESS_NONE));
a89ca6f2
FM
4652 return 0;
4653 }
4654
4655 len = btrfs_file_extent_num_bytes(leaf, extent);
4656 /* Last extent goes beyond i_size, no need to log a hole. */
4657 if (key.offset + len > i_size)
4658 return 0;
4659 hole_start = key.offset + len;
4660 hole_size = i_size - hole_start;
4661 }
4662 btrfs_release_path(path);
4663
4664 /* Last extent ends at i_size. */
4665 if (hole_size == 0)
4666 return 0;
4667
0b246afa 4668 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4669 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4670 hole_size, 0, hole_size, 0, 0, 0);
4671 return ret;
4672}
4673
56f23fdb
FM
4674/*
4675 * When we are logging a new inode X, check if it doesn't have a reference that
4676 * matches the reference from some other inode Y created in a past transaction
4677 * and that was renamed in the current transaction. If we don't do this, then at
4678 * log replay time we can lose inode Y (and all its files if it's a directory):
4679 *
4680 * mkdir /mnt/x
4681 * echo "hello world" > /mnt/x/foobar
4682 * sync
4683 * mv /mnt/x /mnt/y
4684 * mkdir /mnt/x # or touch /mnt/x
4685 * xfs_io -c fsync /mnt/x
4686 * <power fail>
4687 * mount fs, trigger log replay
4688 *
4689 * After the log replay procedure, we would lose the first directory and all its
4690 * files (file foobar).
4691 * For the case where inode Y is not a directory we simply end up losing it:
4692 *
4693 * echo "123" > /mnt/foo
4694 * sync
4695 * mv /mnt/foo /mnt/bar
4696 * echo "abc" > /mnt/foo
4697 * xfs_io -c fsync /mnt/foo
4698 * <power fail>
4699 *
4700 * We also need this for cases where a snapshot entry is replaced by some other
4701 * entry (file or directory) otherwise we end up with an unreplayable log due to
4702 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4703 * if it were a regular entry:
4704 *
4705 * mkdir /mnt/x
4706 * btrfs subvolume snapshot /mnt /mnt/x/snap
4707 * btrfs subvolume delete /mnt/x/snap
4708 * rmdir /mnt/x
4709 * mkdir /mnt/x
4710 * fsync /mnt/x or fsync some new file inside it
4711 * <power fail>
4712 *
4713 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4714 * the same transaction.
4715 */
4716static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4717 const int slot,
4718 const struct btrfs_key *key,
4791c8f1 4719 struct btrfs_inode *inode,
44f714da 4720 u64 *other_ino)
56f23fdb
FM
4721{
4722 int ret;
4723 struct btrfs_path *search_path;
4724 char *name = NULL;
4725 u32 name_len = 0;
4726 u32 item_size = btrfs_item_size_nr(eb, slot);
4727 u32 cur_offset = 0;
4728 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4729
4730 search_path = btrfs_alloc_path();
4731 if (!search_path)
4732 return -ENOMEM;
4733 search_path->search_commit_root = 1;
4734 search_path->skip_locking = 1;
4735
4736 while (cur_offset < item_size) {
4737 u64 parent;
4738 u32 this_name_len;
4739 u32 this_len;
4740 unsigned long name_ptr;
4741 struct btrfs_dir_item *di;
4742
4743 if (key->type == BTRFS_INODE_REF_KEY) {
4744 struct btrfs_inode_ref *iref;
4745
4746 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4747 parent = key->offset;
4748 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4749 name_ptr = (unsigned long)(iref + 1);
4750 this_len = sizeof(*iref) + this_name_len;
4751 } else {
4752 struct btrfs_inode_extref *extref;
4753
4754 extref = (struct btrfs_inode_extref *)(ptr +
4755 cur_offset);
4756 parent = btrfs_inode_extref_parent(eb, extref);
4757 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4758 name_ptr = (unsigned long)&extref->name;
4759 this_len = sizeof(*extref) + this_name_len;
4760 }
4761
4762 if (this_name_len > name_len) {
4763 char *new_name;
4764
4765 new_name = krealloc(name, this_name_len, GFP_NOFS);
4766 if (!new_name) {
4767 ret = -ENOMEM;
4768 goto out;
4769 }
4770 name_len = this_name_len;
4771 name = new_name;
4772 }
4773
4774 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4775 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4776 parent, name, this_name_len, 0);
56f23fdb 4777 if (di && !IS_ERR(di)) {
44f714da
FM
4778 struct btrfs_key di_key;
4779
4780 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4781 di, &di_key);
4782 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4783 ret = 1;
4784 *other_ino = di_key.objectid;
4785 } else {
4786 ret = -EAGAIN;
4787 }
56f23fdb
FM
4788 goto out;
4789 } else if (IS_ERR(di)) {
4790 ret = PTR_ERR(di);
4791 goto out;
4792 }
4793 btrfs_release_path(search_path);
4794
4795 cur_offset += this_len;
4796 }
4797 ret = 0;
4798out:
4799 btrfs_free_path(search_path);
4800 kfree(name);
4801 return ret;
4802}
4803
e02119d5
CM
4804/* log a single inode in the tree log.
4805 * At least one parent directory for this inode must exist in the tree
4806 * or be logged already.
4807 *
4808 * Any items from this inode changed by the current transaction are copied
4809 * to the log tree. An extra reference is taken on any extents in this
4810 * file, allowing us to avoid a whole pile of corner cases around logging
4811 * blocks that have been removed from the tree.
4812 *
4813 * See LOG_INODE_ALL and related defines for a description of what inode_only
4814 * does.
4815 *
4816 * This handles both files and directories.
4817 */
12fcfd22 4818static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4819 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4820 int inode_only,
4821 const loff_t start,
8407f553
FM
4822 const loff_t end,
4823 struct btrfs_log_ctx *ctx)
e02119d5 4824{
0b246afa 4825 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4826 struct btrfs_path *path;
4827 struct btrfs_path *dst_path;
4828 struct btrfs_key min_key;
4829 struct btrfs_key max_key;
4830 struct btrfs_root *log = root->log_root;
827463c4 4831 LIST_HEAD(logged_list);
16e7549f 4832 u64 last_extent = 0;
4a500fd1 4833 int err = 0;
e02119d5 4834 int ret;
3a5f1d45 4835 int nritems;
31ff1cd2
CM
4836 int ins_start_slot = 0;
4837 int ins_nr;
5dc562c5 4838 bool fast_search = false;
a59108a7
NB
4839 u64 ino = btrfs_ino(inode);
4840 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4841 u64 logged_isize = 0;
e4545de5 4842 bool need_log_inode_item = true;
e02119d5 4843
e02119d5 4844 path = btrfs_alloc_path();
5df67083
TI
4845 if (!path)
4846 return -ENOMEM;
e02119d5 4847 dst_path = btrfs_alloc_path();
5df67083
TI
4848 if (!dst_path) {
4849 btrfs_free_path(path);
4850 return -ENOMEM;
4851 }
e02119d5 4852
33345d01 4853 min_key.objectid = ino;
e02119d5
CM
4854 min_key.type = BTRFS_INODE_ITEM_KEY;
4855 min_key.offset = 0;
4856
33345d01 4857 max_key.objectid = ino;
12fcfd22 4858
12fcfd22 4859
5dc562c5 4860 /* today the code can only do partial logging of directories */
a59108a7 4861 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4862 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4863 &inode->runtime_flags) &&
781feef7 4864 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4865 max_key.type = BTRFS_XATTR_ITEM_KEY;
4866 else
4867 max_key.type = (u8)-1;
4868 max_key.offset = (u64)-1;
4869
2c2c452b
FM
4870 /*
4871 * Only run delayed items if we are a dir or a new file.
4872 * Otherwise commit the delayed inode only, which is needed in
4873 * order for the log replay code to mark inodes for link count
4874 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4875 */
a59108a7
NB
4876 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4877 inode->generation > fs_info->last_trans_committed)
4878 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4879 else
a59108a7 4880 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4881
4882 if (ret) {
4883 btrfs_free_path(path);
4884 btrfs_free_path(dst_path);
4885 return ret;
16cdcec7
MX
4886 }
4887
781feef7
LB
4888 if (inode_only == LOG_OTHER_INODE) {
4889 inode_only = LOG_INODE_EXISTS;
a59108a7 4890 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4891 } else {
a59108a7 4892 mutex_lock(&inode->log_mutex);
781feef7 4893 }
e02119d5
CM
4894
4895 /*
4896 * a brute force approach to making sure we get the most uptodate
4897 * copies of everything.
4898 */
a59108a7 4899 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4900 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4901
4f764e51
FM
4902 if (inode_only == LOG_INODE_EXISTS)
4903 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4904 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4905 } else {
1a4bcf47
FM
4906 if (inode_only == LOG_INODE_EXISTS) {
4907 /*
4908 * Make sure the new inode item we write to the log has
4909 * the same isize as the current one (if it exists).
4910 * This is necessary to prevent data loss after log
4911 * replay, and also to prevent doing a wrong expanding
4912 * truncate - for e.g. create file, write 4K into offset
4913 * 0, fsync, write 4K into offset 4096, add hard link,
4914 * fsync some other file (to sync log), power fail - if
4915 * we use the inode's current i_size, after log replay
4916 * we get a 8Kb file, with the last 4Kb extent as a hole
4917 * (zeroes), as if an expanding truncate happened,
4918 * instead of getting a file of 4Kb only.
4919 */
a59108a7 4920 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4921 if (err)
4922 goto out_unlock;
4923 }
a742994a 4924 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4925 &inode->runtime_flags)) {
a742994a 4926 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4927 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4928 ret = drop_objectid_items(trans, log, path, ino,
4929 max_key.type);
4930 } else {
4931 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4932 &inode->runtime_flags);
a742994a 4933 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4934 &inode->runtime_flags);
28ed1345
CM
4935 while(1) {
4936 ret = btrfs_truncate_inode_items(trans,
a59108a7 4937 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4938 if (ret != -EAGAIN)
4939 break;
4940 }
a742994a 4941 }
4f764e51 4942 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4943 &inode->runtime_flags) ||
6cfab851 4944 inode_only == LOG_INODE_EXISTS) {
4f764e51 4945 if (inode_only == LOG_INODE_ALL)
183f37fa 4946 fast_search = true;
4f764e51 4947 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4948 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4949 max_key.type);
a95249b3
JB
4950 } else {
4951 if (inode_only == LOG_INODE_ALL)
4952 fast_search = true;
a95249b3 4953 goto log_extents;
5dc562c5 4954 }
a95249b3 4955
e02119d5 4956 }
4a500fd1
YZ
4957 if (ret) {
4958 err = ret;
4959 goto out_unlock;
4960 }
e02119d5 4961
d397712b 4962 while (1) {
31ff1cd2 4963 ins_nr = 0;
6174d3cb 4964 ret = btrfs_search_forward(root, &min_key,
de78b51a 4965 path, trans->transid);
fb770ae4
LB
4966 if (ret < 0) {
4967 err = ret;
4968 goto out_unlock;
4969 }
e02119d5
CM
4970 if (ret != 0)
4971 break;
3a5f1d45 4972again:
31ff1cd2 4973 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4974 if (min_key.objectid != ino)
e02119d5
CM
4975 break;
4976 if (min_key.type > max_key.type)
4977 break;
31ff1cd2 4978
e4545de5
FM
4979 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4980 need_log_inode_item = false;
4981
56f23fdb
FM
4982 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4983 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4984 inode->generation == trans->transid) {
44f714da
FM
4985 u64 other_ino = 0;
4986
56f23fdb 4987 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4988 path->slots[0], &min_key, inode,
4989 &other_ino);
56f23fdb
FM
4990 if (ret < 0) {
4991 err = ret;
4992 goto out_unlock;
28a23593 4993 } else if (ret > 0 && ctx &&
4a0cc7ca 4994 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4995 struct btrfs_key inode_key;
4996 struct inode *other_inode;
4997
4998 if (ins_nr > 0) {
4999 ins_nr++;
5000 } else {
5001 ins_nr = 1;
5002 ins_start_slot = path->slots[0];
5003 }
a59108a7 5004 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5005 &last_extent, ins_start_slot,
5006 ins_nr, inode_only,
5007 logged_isize);
5008 if (ret < 0) {
5009 err = ret;
5010 goto out_unlock;
5011 }
5012 ins_nr = 0;
5013 btrfs_release_path(path);
5014 inode_key.objectid = other_ino;
5015 inode_key.type = BTRFS_INODE_ITEM_KEY;
5016 inode_key.offset = 0;
0b246afa 5017 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
5018 &inode_key, root,
5019 NULL);
5020 /*
5021 * If the other inode that had a conflicting dir
5022 * entry was deleted in the current transaction,
5023 * we don't need to do more work nor fallback to
5024 * a transaction commit.
5025 */
5026 if (IS_ERR(other_inode) &&
5027 PTR_ERR(other_inode) == -ENOENT) {
5028 goto next_key;
5029 } else if (IS_ERR(other_inode)) {
5030 err = PTR_ERR(other_inode);
5031 goto out_unlock;
5032 }
5033 /*
5034 * We are safe logging the other inode without
5035 * acquiring its i_mutex as long as we log with
5036 * the LOG_INODE_EXISTS mode. We're safe against
5037 * concurrent renames of the other inode as well
5038 * because during a rename we pin the log and
5039 * update the log with the new name before we
5040 * unpin it.
5041 */
a59108a7
NB
5042 err = btrfs_log_inode(trans, root,
5043 BTRFS_I(other_inode),
5044 LOG_OTHER_INODE, 0, LLONG_MAX,
5045 ctx);
44f714da
FM
5046 iput(other_inode);
5047 if (err)
5048 goto out_unlock;
5049 else
5050 goto next_key;
56f23fdb
FM
5051 }
5052 }
5053
36283bf7
FM
5054 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5055 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5056 if (ins_nr == 0)
5057 goto next_slot;
a59108a7 5058 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5059 &last_extent, ins_start_slot,
5060 ins_nr, inode_only, logged_isize);
5061 if (ret < 0) {
5062 err = ret;
5063 goto out_unlock;
5064 }
5065 ins_nr = 0;
5066 if (ret) {
5067 btrfs_release_path(path);
5068 continue;
5069 }
5070 goto next_slot;
5071 }
5072
31ff1cd2
CM
5073 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5074 ins_nr++;
5075 goto next_slot;
5076 } else if (!ins_nr) {
5077 ins_start_slot = path->slots[0];
5078 ins_nr = 1;
5079 goto next_slot;
e02119d5
CM
5080 }
5081
a59108a7 5082 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5083 ins_start_slot, ins_nr, inode_only,
5084 logged_isize);
16e7549f 5085 if (ret < 0) {
4a500fd1
YZ
5086 err = ret;
5087 goto out_unlock;
a71db86e
RV
5088 }
5089 if (ret) {
16e7549f
JB
5090 ins_nr = 0;
5091 btrfs_release_path(path);
5092 continue;
4a500fd1 5093 }
31ff1cd2
CM
5094 ins_nr = 1;
5095 ins_start_slot = path->slots[0];
5096next_slot:
e02119d5 5097
3a5f1d45
CM
5098 nritems = btrfs_header_nritems(path->nodes[0]);
5099 path->slots[0]++;
5100 if (path->slots[0] < nritems) {
5101 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5102 path->slots[0]);
5103 goto again;
5104 }
31ff1cd2 5105 if (ins_nr) {
a59108a7 5106 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5107 &last_extent, ins_start_slot,
1a4bcf47 5108 ins_nr, inode_only, logged_isize);
16e7549f 5109 if (ret < 0) {
4a500fd1
YZ
5110 err = ret;
5111 goto out_unlock;
5112 }
16e7549f 5113 ret = 0;
31ff1cd2
CM
5114 ins_nr = 0;
5115 }
b3b4aa74 5116 btrfs_release_path(path);
44f714da 5117next_key:
3d41d702 5118 if (min_key.offset < (u64)-1) {
e02119d5 5119 min_key.offset++;
3d41d702 5120 } else if (min_key.type < max_key.type) {
e02119d5 5121 min_key.type++;
3d41d702
FDBM
5122 min_key.offset = 0;
5123 } else {
e02119d5 5124 break;
3d41d702 5125 }
e02119d5 5126 }
31ff1cd2 5127 if (ins_nr) {
a59108a7 5128 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5129 ins_start_slot, ins_nr, inode_only,
5130 logged_isize);
16e7549f 5131 if (ret < 0) {
4a500fd1
YZ
5132 err = ret;
5133 goto out_unlock;
5134 }
16e7549f 5135 ret = 0;
31ff1cd2
CM
5136 ins_nr = 0;
5137 }
5dc562c5 5138
36283bf7
FM
5139 btrfs_release_path(path);
5140 btrfs_release_path(dst_path);
a59108a7 5141 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5142 if (err)
5143 goto out_unlock;
a89ca6f2
FM
5144 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5145 btrfs_release_path(path);
5146 btrfs_release_path(dst_path);
a59108a7 5147 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5148 if (err)
5149 goto out_unlock;
5150 }
a95249b3 5151log_extents:
f3b15ccd
JB
5152 btrfs_release_path(path);
5153 btrfs_release_path(dst_path);
e4545de5 5154 if (need_log_inode_item) {
a59108a7 5155 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
5156 if (err)
5157 goto out_unlock;
5158 }
5dc562c5 5159 if (fast_search) {
a59108a7 5160 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 5161 &logged_list, ctx, start, end);
5dc562c5
JB
5162 if (ret) {
5163 err = ret;
5164 goto out_unlock;
5165 }
d006a048 5166 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5167 struct extent_map *em, *n;
5168
49dae1bc
FM
5169 write_lock(&em_tree->lock);
5170 /*
5171 * We can't just remove every em if we're called for a ranged
5172 * fsync - that is, one that doesn't cover the whole possible
5173 * file range (0 to LLONG_MAX). This is because we can have
5174 * em's that fall outside the range we're logging and therefore
5175 * their ordered operations haven't completed yet
5176 * (btrfs_finish_ordered_io() not invoked yet). This means we
5177 * didn't get their respective file extent item in the fs/subvol
5178 * tree yet, and need to let the next fast fsync (one which
5179 * consults the list of modified extent maps) find the em so
5180 * that it logs a matching file extent item and waits for the
5181 * respective ordered operation to complete (if it's still
5182 * running).
5183 *
5184 * Removing every em outside the range we're logging would make
5185 * the next fast fsync not log their matching file extent items,
5186 * therefore making us lose data after a log replay.
5187 */
5188 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5189 list) {
5190 const u64 mod_end = em->mod_start + em->mod_len - 1;
5191
5192 if (em->mod_start >= start && mod_end <= end)
5193 list_del_init(&em->list);
5194 }
5195 write_unlock(&em_tree->lock);
5dc562c5
JB
5196 }
5197
a59108a7
NB
5198 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5199 ret = log_directory_changes(trans, root, inode, path, dst_path,
5200 ctx);
4a500fd1
YZ
5201 if (ret) {
5202 err = ret;
5203 goto out_unlock;
5204 }
e02119d5 5205 }
49dae1bc 5206
a59108a7
NB
5207 spin_lock(&inode->lock);
5208 inode->logged_trans = trans->transid;
5209 inode->last_log_commit = inode->last_sub_trans;
5210 spin_unlock(&inode->lock);
4a500fd1 5211out_unlock:
827463c4
MX
5212 if (unlikely(err))
5213 btrfs_put_logged_extents(&logged_list);
5214 else
5215 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5216 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5217
5218 btrfs_free_path(path);
5219 btrfs_free_path(dst_path);
4a500fd1 5220 return err;
e02119d5
CM
5221}
5222
2be63d5c
FM
5223/*
5224 * Check if we must fallback to a transaction commit when logging an inode.
5225 * This must be called after logging the inode and is used only in the context
5226 * when fsyncing an inode requires the need to log some other inode - in which
5227 * case we can't lock the i_mutex of each other inode we need to log as that
5228 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5229 * log inodes up or down in the hierarchy) or rename operations for example. So
5230 * we take the log_mutex of the inode after we have logged it and then check for
5231 * its last_unlink_trans value - this is safe because any task setting
5232 * last_unlink_trans must take the log_mutex and it must do this before it does
5233 * the actual unlink operation, so if we do this check before a concurrent task
5234 * sets last_unlink_trans it means we've logged a consistent version/state of
5235 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5236 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5237 * we logged the inode or it might have also done the unlink).
5238 */
5239static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5240 struct btrfs_inode *inode)
2be63d5c 5241{
ab1717b2 5242 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5243 bool ret = false;
5244
ab1717b2
NB
5245 mutex_lock(&inode->log_mutex);
5246 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5247 /*
5248 * Make sure any commits to the log are forced to be full
5249 * commits.
5250 */
5251 btrfs_set_log_full_commit(fs_info, trans);
5252 ret = true;
5253 }
ab1717b2 5254 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5255
5256 return ret;
5257}
5258
12fcfd22
CM
5259/*
5260 * follow the dentry parent pointers up the chain and see if any
5261 * of the directories in it require a full commit before they can
5262 * be logged. Returns zero if nothing special needs to be done or 1 if
5263 * a full commit is required.
5264 */
5265static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5266 struct btrfs_inode *inode,
12fcfd22
CM
5267 struct dentry *parent,
5268 struct super_block *sb,
5269 u64 last_committed)
e02119d5 5270{
12fcfd22 5271 int ret = 0;
6a912213 5272 struct dentry *old_parent = NULL;
aefa6115 5273 struct btrfs_inode *orig_inode = inode;
e02119d5 5274
af4176b4
CM
5275 /*
5276 * for regular files, if its inode is already on disk, we don't
5277 * have to worry about the parents at all. This is because
5278 * we can use the last_unlink_trans field to record renames
5279 * and other fun in this file.
5280 */
aefa6115
NB
5281 if (S_ISREG(inode->vfs_inode.i_mode) &&
5282 inode->generation <= last_committed &&
5283 inode->last_unlink_trans <= last_committed)
5284 goto out;
af4176b4 5285
aefa6115 5286 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5287 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5288 goto out;
aefa6115 5289 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5290 }
5291
5292 while (1) {
de2b530b
JB
5293 /*
5294 * If we are logging a directory then we start with our inode,
01327610 5295 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5296 * logged_trans so that further down in the log code we don't
5297 * think this inode has already been logged.
5298 */
5299 if (inode != orig_inode)
aefa6115 5300 inode->logged_trans = trans->transid;
12fcfd22
CM
5301 smp_mb();
5302
aefa6115 5303 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5304 ret = 1;
5305 break;
5306 }
5307
fc64005c 5308 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5309 break;
5310
44f714da 5311 if (IS_ROOT(parent)) {
aefa6115
NB
5312 inode = BTRFS_I(d_inode(parent));
5313 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5314 ret = 1;
12fcfd22 5315 break;
44f714da 5316 }
12fcfd22 5317
6a912213
JB
5318 parent = dget_parent(parent);
5319 dput(old_parent);
5320 old_parent = parent;
aefa6115 5321 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5322
5323 }
6a912213 5324 dput(old_parent);
12fcfd22 5325out:
e02119d5
CM
5326 return ret;
5327}
5328
2f2ff0ee
FM
5329struct btrfs_dir_list {
5330 u64 ino;
5331 struct list_head list;
5332};
5333
5334/*
5335 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5336 * details about the why it is needed.
5337 * This is a recursive operation - if an existing dentry corresponds to a
5338 * directory, that directory's new entries are logged too (same behaviour as
5339 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5340 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5341 * complains about the following circular lock dependency / possible deadlock:
5342 *
5343 * CPU0 CPU1
5344 * ---- ----
5345 * lock(&type->i_mutex_dir_key#3/2);
5346 * lock(sb_internal#2);
5347 * lock(&type->i_mutex_dir_key#3/2);
5348 * lock(&sb->s_type->i_mutex_key#14);
5349 *
5350 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5351 * sb_start_intwrite() in btrfs_start_transaction().
5352 * Not locking i_mutex of the inodes is still safe because:
5353 *
5354 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5355 * that while logging the inode new references (names) are added or removed
5356 * from the inode, leaving the logged inode item with a link count that does
5357 * not match the number of logged inode reference items. This is fine because
5358 * at log replay time we compute the real number of links and correct the
5359 * link count in the inode item (see replay_one_buffer() and
5360 * link_to_fixup_dir());
5361 *
5362 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5363 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5364 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5365 * has a size that doesn't match the sum of the lengths of all the logged
5366 * names. This does not result in a problem because if a dir_item key is
5367 * logged but its matching dir_index key is not logged, at log replay time we
5368 * don't use it to replay the respective name (see replay_one_name()). On the
5369 * other hand if only the dir_index key ends up being logged, the respective
5370 * name is added to the fs/subvol tree with both the dir_item and dir_index
5371 * keys created (see replay_one_name()).
5372 * The directory's inode item with a wrong i_size is not a problem as well,
5373 * since we don't use it at log replay time to set the i_size in the inode
5374 * item of the fs/subvol tree (see overwrite_item()).
5375 */
5376static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5377 struct btrfs_root *root,
51cc0d32 5378 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5379 struct btrfs_log_ctx *ctx)
5380{
0b246afa 5381 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5382 struct btrfs_root *log = root->log_root;
5383 struct btrfs_path *path;
5384 LIST_HEAD(dir_list);
5385 struct btrfs_dir_list *dir_elem;
5386 int ret = 0;
5387
5388 path = btrfs_alloc_path();
5389 if (!path)
5390 return -ENOMEM;
5391
5392 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5393 if (!dir_elem) {
5394 btrfs_free_path(path);
5395 return -ENOMEM;
5396 }
51cc0d32 5397 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5398 list_add_tail(&dir_elem->list, &dir_list);
5399
5400 while (!list_empty(&dir_list)) {
5401 struct extent_buffer *leaf;
5402 struct btrfs_key min_key;
5403 int nritems;
5404 int i;
5405
5406 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5407 list);
5408 if (ret)
5409 goto next_dir_inode;
5410
5411 min_key.objectid = dir_elem->ino;
5412 min_key.type = BTRFS_DIR_ITEM_KEY;
5413 min_key.offset = 0;
5414again:
5415 btrfs_release_path(path);
5416 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5417 if (ret < 0) {
5418 goto next_dir_inode;
5419 } else if (ret > 0) {
5420 ret = 0;
5421 goto next_dir_inode;
5422 }
5423
5424process_leaf:
5425 leaf = path->nodes[0];
5426 nritems = btrfs_header_nritems(leaf);
5427 for (i = path->slots[0]; i < nritems; i++) {
5428 struct btrfs_dir_item *di;
5429 struct btrfs_key di_key;
5430 struct inode *di_inode;
5431 struct btrfs_dir_list *new_dir_elem;
5432 int log_mode = LOG_INODE_EXISTS;
5433 int type;
5434
5435 btrfs_item_key_to_cpu(leaf, &min_key, i);
5436 if (min_key.objectid != dir_elem->ino ||
5437 min_key.type != BTRFS_DIR_ITEM_KEY)
5438 goto next_dir_inode;
5439
5440 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5441 type = btrfs_dir_type(leaf, di);
5442 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5443 type != BTRFS_FT_DIR)
5444 continue;
5445 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5446 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5447 continue;
5448
ec125cfb 5449 btrfs_release_path(path);
0b246afa 5450 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5451 if (IS_ERR(di_inode)) {
5452 ret = PTR_ERR(di_inode);
5453 goto next_dir_inode;
5454 }
5455
0f8939b8 5456 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5457 iput(di_inode);
ec125cfb 5458 break;
2f2ff0ee
FM
5459 }
5460
5461 ctx->log_new_dentries = false;
3f9749f6 5462 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5463 log_mode = LOG_INODE_ALL;
a59108a7 5464 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5465 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5466 if (!ret &&
ab1717b2 5467 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5468 ret = 1;
2f2ff0ee
FM
5469 iput(di_inode);
5470 if (ret)
5471 goto next_dir_inode;
5472 if (ctx->log_new_dentries) {
5473 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5474 GFP_NOFS);
5475 if (!new_dir_elem) {
5476 ret = -ENOMEM;
5477 goto next_dir_inode;
5478 }
5479 new_dir_elem->ino = di_key.objectid;
5480 list_add_tail(&new_dir_elem->list, &dir_list);
5481 }
5482 break;
5483 }
5484 if (i == nritems) {
5485 ret = btrfs_next_leaf(log, path);
5486 if (ret < 0) {
5487 goto next_dir_inode;
5488 } else if (ret > 0) {
5489 ret = 0;
5490 goto next_dir_inode;
5491 }
5492 goto process_leaf;
5493 }
5494 if (min_key.offset < (u64)-1) {
5495 min_key.offset++;
5496 goto again;
5497 }
5498next_dir_inode:
5499 list_del(&dir_elem->list);
5500 kfree(dir_elem);
5501 }
5502
5503 btrfs_free_path(path);
5504 return ret;
5505}
5506
18aa0922 5507static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5508 struct btrfs_inode *inode,
18aa0922
FM
5509 struct btrfs_log_ctx *ctx)
5510{
d0a0b78d 5511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5512 int ret;
5513 struct btrfs_path *path;
5514 struct btrfs_key key;
d0a0b78d
NB
5515 struct btrfs_root *root = inode->root;
5516 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5517
5518 path = btrfs_alloc_path();
5519 if (!path)
5520 return -ENOMEM;
5521 path->skip_locking = 1;
5522 path->search_commit_root = 1;
5523
5524 key.objectid = ino;
5525 key.type = BTRFS_INODE_REF_KEY;
5526 key.offset = 0;
5527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5528 if (ret < 0)
5529 goto out;
5530
5531 while (true) {
5532 struct extent_buffer *leaf = path->nodes[0];
5533 int slot = path->slots[0];
5534 u32 cur_offset = 0;
5535 u32 item_size;
5536 unsigned long ptr;
5537
5538 if (slot >= btrfs_header_nritems(leaf)) {
5539 ret = btrfs_next_leaf(root, path);
5540 if (ret < 0)
5541 goto out;
5542 else if (ret > 0)
5543 break;
5544 continue;
5545 }
5546
5547 btrfs_item_key_to_cpu(leaf, &key, slot);
5548 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5549 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5550 break;
5551
5552 item_size = btrfs_item_size_nr(leaf, slot);
5553 ptr = btrfs_item_ptr_offset(leaf, slot);
5554 while (cur_offset < item_size) {
5555 struct btrfs_key inode_key;
5556 struct inode *dir_inode;
5557
5558 inode_key.type = BTRFS_INODE_ITEM_KEY;
5559 inode_key.offset = 0;
5560
5561 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5562 struct btrfs_inode_extref *extref;
5563
5564 extref = (struct btrfs_inode_extref *)
5565 (ptr + cur_offset);
5566 inode_key.objectid = btrfs_inode_extref_parent(
5567 leaf, extref);
5568 cur_offset += sizeof(*extref);
5569 cur_offset += btrfs_inode_extref_name_len(leaf,
5570 extref);
5571 } else {
5572 inode_key.objectid = key.offset;
5573 cur_offset = item_size;
5574 }
5575
0b246afa 5576 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5577 root, NULL);
5578 /* If parent inode was deleted, skip it. */
5579 if (IS_ERR(dir_inode))
5580 continue;
5581
657ed1aa
FM
5582 if (ctx)
5583 ctx->log_new_dentries = false;
a59108a7 5584 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5585 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5586 if (!ret &&
ab1717b2 5587 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5588 ret = 1;
657ed1aa
FM
5589 if (!ret && ctx && ctx->log_new_dentries)
5590 ret = log_new_dir_dentries(trans, root,
f85b7379 5591 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5592 iput(dir_inode);
5593 if (ret)
5594 goto out;
5595 }
5596 path->slots[0]++;
5597 }
5598 ret = 0;
5599out:
5600 btrfs_free_path(path);
5601 return ret;
5602}
5603
e02119d5
CM
5604/*
5605 * helper function around btrfs_log_inode to make sure newly created
5606 * parent directories also end up in the log. A minimal inode and backref
5607 * only logging is done of any parent directories that are older than
5608 * the last committed transaction
5609 */
48a3b636 5610static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5611 struct btrfs_inode *inode,
49dae1bc
FM
5612 struct dentry *parent,
5613 const loff_t start,
5614 const loff_t end,
41a1eada 5615 int inode_only,
8b050d35 5616 struct btrfs_log_ctx *ctx)
e02119d5 5617{
f882274b 5618 struct btrfs_root *root = inode->root;
0b246afa 5619 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5620 struct super_block *sb;
6a912213 5621 struct dentry *old_parent = NULL;
12fcfd22 5622 int ret = 0;
0b246afa 5623 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5624 bool log_dentries = false;
19df27a9 5625 struct btrfs_inode *orig_inode = inode;
12fcfd22 5626
19df27a9 5627 sb = inode->vfs_inode.i_sb;
12fcfd22 5628
0b246afa 5629 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5630 ret = 1;
5631 goto end_no_trans;
5632 }
5633
995946dd
MX
5634 /*
5635 * The prev transaction commit doesn't complete, we need do
5636 * full commit by ourselves.
5637 */
0b246afa
JM
5638 if (fs_info->last_trans_log_full_commit >
5639 fs_info->last_trans_committed) {
12fcfd22
CM
5640 ret = 1;
5641 goto end_no_trans;
5642 }
5643
f882274b 5644 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5645 ret = 1;
5646 goto end_no_trans;
5647 }
5648
19df27a9
NB
5649 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5650 last_committed);
12fcfd22
CM
5651 if (ret)
5652 goto end_no_trans;
e02119d5 5653
19df27a9 5654 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5655 ret = BTRFS_NO_LOG_SYNC;
5656 goto end_no_trans;
5657 }
5658
8b050d35 5659 ret = start_log_trans(trans, root, ctx);
4a500fd1 5660 if (ret)
e87ac136 5661 goto end_no_trans;
e02119d5 5662
19df27a9 5663 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5664 if (ret)
5665 goto end_trans;
12fcfd22 5666
af4176b4
CM
5667 /*
5668 * for regular files, if its inode is already on disk, we don't
5669 * have to worry about the parents at all. This is because
5670 * we can use the last_unlink_trans field to record renames
5671 * and other fun in this file.
5672 */
19df27a9
NB
5673 if (S_ISREG(inode->vfs_inode.i_mode) &&
5674 inode->generation <= last_committed &&
5675 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5676 ret = 0;
5677 goto end_trans;
5678 }
af4176b4 5679
19df27a9 5680 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5681 log_dentries = true;
5682
18aa0922 5683 /*
01327610 5684 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5685 * inodes are fully logged. This is to prevent leaving dangling
5686 * directory index entries in directories that were our parents but are
5687 * not anymore. Not doing this results in old parent directory being
5688 * impossible to delete after log replay (rmdir will always fail with
5689 * error -ENOTEMPTY).
5690 *
5691 * Example 1:
5692 *
5693 * mkdir testdir
5694 * touch testdir/foo
5695 * ln testdir/foo testdir/bar
5696 * sync
5697 * unlink testdir/bar
5698 * xfs_io -c fsync testdir/foo
5699 * <power failure>
5700 * mount fs, triggers log replay
5701 *
5702 * If we don't log the parent directory (testdir), after log replay the
5703 * directory still has an entry pointing to the file inode using the bar
5704 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5705 * the file inode has a link count of 1.
5706 *
5707 * Example 2:
5708 *
5709 * mkdir testdir
5710 * touch foo
5711 * ln foo testdir/foo2
5712 * ln foo testdir/foo3
5713 * sync
5714 * unlink testdir/foo3
5715 * xfs_io -c fsync foo
5716 * <power failure>
5717 * mount fs, triggers log replay
5718 *
5719 * Similar as the first example, after log replay the parent directory
5720 * testdir still has an entry pointing to the inode file with name foo3
5721 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5722 * and has a link count of 2.
5723 */
19df27a9 5724 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5725 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5726 if (ret)
5727 goto end_trans;
5728 }
5729
12fcfd22 5730 while (1) {
fc64005c 5731 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5732 break;
5733
19df27a9
NB
5734 inode = BTRFS_I(d_inode(parent));
5735 if (root != inode->root)
76dda93c
YZ
5736 break;
5737
19df27a9
NB
5738 if (inode->generation > last_committed) {
5739 ret = btrfs_log_inode(trans, root, inode,
5740 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5741 if (ret)
5742 goto end_trans;
12fcfd22 5743 }
76dda93c 5744 if (IS_ROOT(parent))
e02119d5 5745 break;
12fcfd22 5746
6a912213
JB
5747 parent = dget_parent(parent);
5748 dput(old_parent);
5749 old_parent = parent;
e02119d5 5750 }
2f2ff0ee 5751 if (log_dentries)
19df27a9 5752 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5753 else
5754 ret = 0;
4a500fd1 5755end_trans:
6a912213 5756 dput(old_parent);
4a500fd1 5757 if (ret < 0) {
0b246afa 5758 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5759 ret = 1;
5760 }
8b050d35
MX
5761
5762 if (ret)
5763 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5764 btrfs_end_log_trans(root);
5765end_no_trans:
5766 return ret;
e02119d5
CM
5767}
5768
5769/*
5770 * it is not safe to log dentry if the chunk root has added new
5771 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5772 * If this returns 1, you must commit the transaction to safely get your
5773 * data on disk.
5774 */
5775int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 5776 struct dentry *dentry,
49dae1bc
FM
5777 const loff_t start,
5778 const loff_t end,
8b050d35 5779 struct btrfs_log_ctx *ctx)
e02119d5 5780{
6a912213
JB
5781 struct dentry *parent = dget_parent(dentry);
5782 int ret;
5783
f882274b
NB
5784 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5785 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
5786 dput(parent);
5787
5788 return ret;
e02119d5
CM
5789}
5790
5791/*
5792 * should be called during mount to recover any replay any log trees
5793 * from the FS
5794 */
5795int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5796{
5797 int ret;
5798 struct btrfs_path *path;
5799 struct btrfs_trans_handle *trans;
5800 struct btrfs_key key;
5801 struct btrfs_key found_key;
5802 struct btrfs_key tmp_key;
5803 struct btrfs_root *log;
5804 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5805 struct walk_control wc = {
5806 .process_func = process_one_buffer,
5807 .stage = 0,
5808 };
5809
e02119d5 5810 path = btrfs_alloc_path();
db5b493a
TI
5811 if (!path)
5812 return -ENOMEM;
5813
afcdd129 5814 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5815
4a500fd1 5816 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5817 if (IS_ERR(trans)) {
5818 ret = PTR_ERR(trans);
5819 goto error;
5820 }
e02119d5
CM
5821
5822 wc.trans = trans;
5823 wc.pin = 1;
5824
db5b493a 5825 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5826 if (ret) {
5d163e0e
JM
5827 btrfs_handle_fs_error(fs_info, ret,
5828 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5829 goto error;
5830 }
e02119d5
CM
5831
5832again:
5833 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5834 key.offset = (u64)-1;
962a298f 5835 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5836
d397712b 5837 while (1) {
e02119d5 5838 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5839
5840 if (ret < 0) {
34d97007 5841 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5842 "Couldn't find tree log root.");
5843 goto error;
5844 }
e02119d5
CM
5845 if (ret > 0) {
5846 if (path->slots[0] == 0)
5847 break;
5848 path->slots[0]--;
5849 }
5850 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5851 path->slots[0]);
b3b4aa74 5852 btrfs_release_path(path);
e02119d5
CM
5853 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5854 break;
5855
cb517eab 5856 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5857 if (IS_ERR(log)) {
5858 ret = PTR_ERR(log);
34d97007 5859 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5860 "Couldn't read tree log root.");
5861 goto error;
5862 }
e02119d5
CM
5863
5864 tmp_key.objectid = found_key.offset;
5865 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5866 tmp_key.offset = (u64)-1;
5867
5868 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5869 if (IS_ERR(wc.replay_dest)) {
5870 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5871 free_extent_buffer(log->node);
5872 free_extent_buffer(log->commit_root);
5873 kfree(log);
5d163e0e
JM
5874 btrfs_handle_fs_error(fs_info, ret,
5875 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5876 goto error;
5877 }
e02119d5 5878
07d400a6 5879 wc.replay_dest->log_root = log;
5d4f98a2 5880 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5881 ret = walk_log_tree(trans, log, &wc);
e02119d5 5882
b50c6e25 5883 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5884 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5885 path);
e02119d5
CM
5886 }
5887
900c9981
LB
5888 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5889 struct btrfs_root *root = wc.replay_dest;
5890
5891 btrfs_release_path(path);
5892
5893 /*
5894 * We have just replayed everything, and the highest
5895 * objectid of fs roots probably has changed in case
5896 * some inode_item's got replayed.
5897 *
5898 * root->objectid_mutex is not acquired as log replay
5899 * could only happen during mount.
5900 */
5901 ret = btrfs_find_highest_objectid(root,
5902 &root->highest_objectid);
5903 }
5904
e02119d5 5905 key.offset = found_key.offset - 1;
07d400a6 5906 wc.replay_dest->log_root = NULL;
e02119d5 5907 free_extent_buffer(log->node);
b263c2c8 5908 free_extent_buffer(log->commit_root);
e02119d5
CM
5909 kfree(log);
5910
b50c6e25
JB
5911 if (ret)
5912 goto error;
5913
e02119d5
CM
5914 if (found_key.offset == 0)
5915 break;
5916 }
b3b4aa74 5917 btrfs_release_path(path);
e02119d5
CM
5918
5919 /* step one is to pin it all, step two is to replay just inodes */
5920 if (wc.pin) {
5921 wc.pin = 0;
5922 wc.process_func = replay_one_buffer;
5923 wc.stage = LOG_WALK_REPLAY_INODES;
5924 goto again;
5925 }
5926 /* step three is to replay everything */
5927 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5928 wc.stage++;
5929 goto again;
5930 }
5931
5932 btrfs_free_path(path);
5933
abefa55a 5934 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5935 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5936 if (ret)
5937 return ret;
5938
e02119d5
CM
5939 free_extent_buffer(log_root_tree->node);
5940 log_root_tree->log_root = NULL;
afcdd129 5941 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5942 kfree(log_root_tree);
79787eaa 5943
abefa55a 5944 return 0;
79787eaa 5945error:
b50c6e25 5946 if (wc.trans)
3a45bb20 5947 btrfs_end_transaction(wc.trans);
79787eaa
JM
5948 btrfs_free_path(path);
5949 return ret;
e02119d5 5950}
12fcfd22
CM
5951
5952/*
5953 * there are some corner cases where we want to force a full
5954 * commit instead of allowing a directory to be logged.
5955 *
5956 * They revolve around files there were unlinked from the directory, and
5957 * this function updates the parent directory so that a full commit is
5958 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5959 *
5960 * Must be called before the unlink operations (updates to the subvolume tree,
5961 * inodes, etc) are done.
12fcfd22
CM
5962 */
5963void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5964 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5965 int for_rename)
5966{
af4176b4
CM
5967 /*
5968 * when we're logging a file, if it hasn't been renamed
5969 * or unlinked, and its inode is fully committed on disk,
5970 * we don't have to worry about walking up the directory chain
5971 * to log its parents.
5972 *
5973 * So, we use the last_unlink_trans field to put this transid
5974 * into the file. When the file is logged we check it and
5975 * don't log the parents if the file is fully on disk.
5976 */
4176bdbf
NB
5977 mutex_lock(&inode->log_mutex);
5978 inode->last_unlink_trans = trans->transid;
5979 mutex_unlock(&inode->log_mutex);
af4176b4 5980
12fcfd22
CM
5981 /*
5982 * if this directory was already logged any new
5983 * names for this file/dir will get recorded
5984 */
5985 smp_mb();
4176bdbf 5986 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5987 return;
5988
5989 /*
5990 * if the inode we're about to unlink was logged,
5991 * the log will be properly updated for any new names
5992 */
4176bdbf 5993 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5994 return;
5995
5996 /*
5997 * when renaming files across directories, if the directory
5998 * there we're unlinking from gets fsync'd later on, there's
5999 * no way to find the destination directory later and fsync it
6000 * properly. So, we have to be conservative and force commits
6001 * so the new name gets discovered.
6002 */
6003 if (for_rename)
6004 goto record;
6005
6006 /* we can safely do the unlink without any special recording */
6007 return;
6008
6009record:
4176bdbf
NB
6010 mutex_lock(&dir->log_mutex);
6011 dir->last_unlink_trans = trans->transid;
6012 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6013}
6014
6015/*
6016 * Make sure that if someone attempts to fsync the parent directory of a deleted
6017 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6018 * that after replaying the log tree of the parent directory's root we will not
6019 * see the snapshot anymore and at log replay time we will not see any log tree
6020 * corresponding to the deleted snapshot's root, which could lead to replaying
6021 * it after replaying the log tree of the parent directory (which would replay
6022 * the snapshot delete operation).
2be63d5c
FM
6023 *
6024 * Must be called before the actual snapshot destroy operation (updates to the
6025 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6026 */
6027void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6028 struct btrfs_inode *dir)
1ec9a1ae 6029{
43663557
NB
6030 mutex_lock(&dir->log_mutex);
6031 dir->last_unlink_trans = trans->transid;
6032 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6033}
6034
6035/*
6036 * Call this after adding a new name for a file and it will properly
6037 * update the log to reflect the new name.
6038 *
6039 * It will return zero if all goes well, and it will return 1 if a
6040 * full transaction commit is required.
6041 */
6042int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6043 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
6044 struct dentry *parent)
6045{
9ca5fbfb 6046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
12fcfd22 6047
af4176b4
CM
6048 /*
6049 * this will force the logging code to walk the dentry chain
6050 * up for the file
6051 */
9a6509c4 6052 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6053 inode->last_unlink_trans = trans->transid;
af4176b4 6054
12fcfd22
CM
6055 /*
6056 * if this inode hasn't been logged and directory we're renaming it
6057 * from hasn't been logged, we don't need to log it
6058 */
9ca5fbfb
NB
6059 if (inode->logged_trans <= fs_info->last_trans_committed &&
6060 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
6061 return 0;
6062
f882274b
NB
6063 return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6064 LOG_INODE_EXISTS, NULL);
12fcfd22
CM
6065}
6066