btrfs: update function comments
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
c7f13d42 24#include "fs.h"
ad1ac501 25#include "accessors.h"
a0231804 26#include "extent-tree.h"
45c40c8f 27#include "root-tree.h"
e02119d5 28
e09d94c9
FM
29#define MAX_CONFLICT_INODES 10
30
e02119d5
CM
31/* magic values for the inode_only field in btrfs_log_inode:
32 *
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 * during log replay
36 */
e13976cf
DS
37enum {
38 LOG_INODE_ALL,
39 LOG_INODE_EXISTS,
e13976cf 40};
e02119d5 41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
e13976cf
DS
94enum {
95 LOG_WALK_PIN_ONLY,
96 LOG_WALK_REPLAY_INODES,
97 LOG_WALK_REPLAY_DIR_INDEX,
98 LOG_WALK_REPLAY_ALL,
99};
e02119d5 100
12fcfd22 101static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 102 struct btrfs_inode *inode,
49dae1bc 103 int inode_only,
8407f553 104 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
fa1a0f42 113static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
114
115/*
116 * tree logging is a special write ahead log used to make sure that
117 * fsyncs and O_SYNCs can happen without doing full tree commits.
118 *
119 * Full tree commits are expensive because they require commonly
120 * modified blocks to be recowed, creating many dirty pages in the
121 * extent tree an 4x-6x higher write load than ext3.
122 *
123 * Instead of doing a tree commit on every fsync, we use the
124 * key ranges and transaction ids to find items for a given file or directory
125 * that have changed in this transaction. Those items are copied into
126 * a special tree (one per subvolume root), that tree is written to disk
127 * and then the fsync is considered complete.
128 *
129 * After a crash, items are copied out of the log-tree back into the
130 * subvolume tree. Any file data extents found are recorded in the extent
131 * allocation tree, and the log-tree freed.
132 *
133 * The log tree is read three times, once to pin down all the extents it is
134 * using in ram and once, once to create all the inodes logged in the tree
135 * and once to do all the other items.
136 */
137
e02119d5
CM
138/*
139 * start a sub transaction and setup the log tree
140 * this increments the log tree writer count to make the people
141 * syncing the tree wait for us to finish
142 */
143static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
144 struct btrfs_root *root,
145 struct btrfs_log_ctx *ctx)
e02119d5 146{
0b246afa 147 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 148 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 149 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 150 int ret = 0;
fa1a0f42 151 bool created = false;
7237f183 152
47876f7c
FM
153 /*
154 * First check if the log root tree was already created. If not, create
155 * it before locking the root's log_mutex, just to keep lockdep happy.
156 */
157 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
158 mutex_lock(&tree_root->log_mutex);
159 if (!fs_info->log_root_tree) {
160 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 161 if (!ret) {
47876f7c 162 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
163 created = true;
164 }
47876f7c
FM
165 }
166 mutex_unlock(&tree_root->log_mutex);
167 if (ret)
168 return ret;
169 }
170
7237f183 171 mutex_lock(&root->log_mutex);
34eb2a52 172
fa1a0f42 173again:
7237f183 174 if (root->log_root) {
fa1a0f42
NA
175 int index = (root->log_transid + 1) % 2;
176
4884b8e8 177 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 178 ret = BTRFS_LOG_FORCE_COMMIT;
50471a38
MX
179 goto out;
180 }
34eb2a52 181
fa1a0f42
NA
182 if (zoned && atomic_read(&root->log_commit[index])) {
183 wait_log_commit(root, root->log_transid - 1);
184 goto again;
185 }
186
ff782e0a 187 if (!root->log_start_pid) {
27cdeb70 188 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 189 root->log_start_pid = current->pid;
ff782e0a 190 } else if (root->log_start_pid != current->pid) {
27cdeb70 191 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 192 }
34eb2a52 193 } else {
fa1a0f42
NA
194 /*
195 * This means fs_info->log_root_tree was already created
196 * for some other FS trees. Do the full commit not to mix
197 * nodes from multiple log transactions to do sequential
198 * writing.
199 */
200 if (zoned && !created) {
f31f09f6 201 ret = BTRFS_LOG_FORCE_COMMIT;
fa1a0f42
NA
202 goto out;
203 }
204
e02119d5 205 ret = btrfs_add_log_tree(trans, root);
4a500fd1 206 if (ret)
e87ac136 207 goto out;
34eb2a52 208
e7a79811 209 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
e02119d5 212 }
34eb2a52 213
7237f183 214 atomic_inc(&root->log_writers);
289cffcb 215 if (!ctx->logging_new_name) {
34eb2a52 216 int index = root->log_transid % 2;
8b050d35 217 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 218 ctx->log_transid = root->log_transid;
8b050d35 219 }
34eb2a52 220
e87ac136 221out:
7237f183 222 mutex_unlock(&root->log_mutex);
e87ac136 223 return ret;
e02119d5
CM
224}
225
226/*
227 * returns 0 if there was a log transaction running and we were able
228 * to join, or returns -ENOENT if there were not transactions
229 * in progress
230 */
231static int join_running_log_trans(struct btrfs_root *root)
232{
fa1a0f42 233 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
234 int ret = -ENOENT;
235
e7a79811
FM
236 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
237 return ret;
238
7237f183 239 mutex_lock(&root->log_mutex);
fa1a0f42 240again:
e02119d5 241 if (root->log_root) {
fa1a0f42
NA
242 int index = (root->log_transid + 1) % 2;
243
e02119d5 244 ret = 0;
fa1a0f42
NA
245 if (zoned && atomic_read(&root->log_commit[index])) {
246 wait_log_commit(root, root->log_transid - 1);
247 goto again;
248 }
7237f183 249 atomic_inc(&root->log_writers);
e02119d5 250 }
7237f183 251 mutex_unlock(&root->log_mutex);
e02119d5
CM
252 return ret;
253}
254
12fcfd22
CM
255/*
256 * This either makes the current running log transaction wait
257 * until you call btrfs_end_log_trans() or it makes any future
258 * log transactions wait until you call btrfs_end_log_trans()
259 */
45128b08 260void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 261{
12fcfd22 262 atomic_inc(&root->log_writers);
12fcfd22
CM
263}
264
e02119d5
CM
265/*
266 * indicate we're done making changes to the log tree
267 * and wake up anyone waiting to do a sync
268 */
143bede5 269void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 270{
7237f183 271 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
272 /* atomic_dec_and_test implies a barrier */
273 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 274 }
e02119d5
CM
275}
276
247462a5
DS
277static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
278{
279 filemap_fdatawait_range(buf->pages[0]->mapping,
280 buf->start, buf->start + buf->len - 1);
281}
e02119d5
CM
282
283/*
284 * the walk control struct is used to pass state down the chain when
285 * processing the log tree. The stage field tells us which part
286 * of the log tree processing we are currently doing. The others
287 * are state fields used for that specific part
288 */
289struct walk_control {
290 /* should we free the extent on disk when done? This is used
291 * at transaction commit time while freeing a log tree
292 */
293 int free;
294
e02119d5
CM
295 /* pin only walk, we record which extents on disk belong to the
296 * log trees
297 */
298 int pin;
299
300 /* what stage of the replay code we're currently in */
301 int stage;
302
f2d72f42
FM
303 /*
304 * Ignore any items from the inode currently being processed. Needs
305 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
306 * the LOG_WALK_REPLAY_INODES stage.
307 */
308 bool ignore_cur_inode;
309
e02119d5
CM
310 /* the root we are currently replaying */
311 struct btrfs_root *replay_dest;
312
313 /* the trans handle for the current replay */
314 struct btrfs_trans_handle *trans;
315
316 /* the function that gets used to process blocks we find in the
317 * tree. Note the extent_buffer might not be up to date when it is
318 * passed in, and it must be checked or read if you need the data
319 * inside it
320 */
321 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 322 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
323};
324
325/*
326 * process_func used to pin down extents, write them or wait on them
327 */
328static int process_one_buffer(struct btrfs_root *log,
329 struct extent_buffer *eb,
581c1760 330 struct walk_control *wc, u64 gen, int level)
e02119d5 331{
0b246afa 332 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
333 int ret = 0;
334
8c2a1a30
JB
335 /*
336 * If this fs is mixed then we need to be able to process the leaves to
337 * pin down any logged extents, so we have to read the block.
338 */
0b246afa 339 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
6a2e9dc4 340 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
8c2a1a30
JB
341 if (ret)
342 return ret;
343 }
344
c816d705 345 if (wc->pin) {
9fce5704 346 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 347 eb->len);
c816d705
FM
348 if (ret)
349 return ret;
e02119d5 350
c816d705
FM
351 if (btrfs_buffer_uptodate(eb, gen, 0) &&
352 btrfs_header_level(eb) == 0)
bcdc428c 353 ret = btrfs_exclude_logged_extents(eb);
e02119d5 354 }
b50c6e25 355 return ret;
e02119d5
CM
356}
357
086dcbfa
FM
358static int do_overwrite_item(struct btrfs_trans_handle *trans,
359 struct btrfs_root *root,
360 struct btrfs_path *path,
361 struct extent_buffer *eb, int slot,
362 struct btrfs_key *key)
e02119d5
CM
363{
364 int ret;
365 u32 item_size;
366 u64 saved_i_size = 0;
367 int save_old_i_size = 0;
368 unsigned long src_ptr;
369 unsigned long dst_ptr;
370 int overwrite_root = 0;
4bc4bee4 371 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
372
373 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
374 overwrite_root = 1;
375
3212fa14 376 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
377 src_ptr = btrfs_item_ptr_offset(eb, slot);
378
086dcbfa
FM
379 /* Our caller must have done a search for the key for us. */
380 ASSERT(path->nodes[0] != NULL);
381
382 /*
383 * And the slot must point to the exact key or the slot where the key
384 * should be at (the first item with a key greater than 'key')
385 */
386 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
387 struct btrfs_key found_key;
388
389 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
390 ret = btrfs_comp_cpu_keys(&found_key, key);
391 ASSERT(ret >= 0);
392 } else {
393 ret = 1;
394 }
4bc4bee4 395
e02119d5
CM
396 if (ret == 0) {
397 char *src_copy;
398 char *dst_copy;
3212fa14 399 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
400 path->slots[0]);
401 if (dst_size != item_size)
402 goto insert;
403
404 if (item_size == 0) {
b3b4aa74 405 btrfs_release_path(path);
e02119d5
CM
406 return 0;
407 }
408 dst_copy = kmalloc(item_size, GFP_NOFS);
409 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 410 if (!dst_copy || !src_copy) {
b3b4aa74 411 btrfs_release_path(path);
2a29edc6 412 kfree(dst_copy);
413 kfree(src_copy);
414 return -ENOMEM;
415 }
e02119d5
CM
416
417 read_extent_buffer(eb, src_copy, src_ptr, item_size);
418
419 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
420 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
421 item_size);
422 ret = memcmp(dst_copy, src_copy, item_size);
423
424 kfree(dst_copy);
425 kfree(src_copy);
426 /*
427 * they have the same contents, just return, this saves
428 * us from cowing blocks in the destination tree and doing
429 * extra writes that may not have been done by a previous
430 * sync
431 */
432 if (ret == 0) {
b3b4aa74 433 btrfs_release_path(path);
e02119d5
CM
434 return 0;
435 }
436
4bc4bee4
JB
437 /*
438 * We need to load the old nbytes into the inode so when we
439 * replay the extents we've logged we get the right nbytes.
440 */
441 if (inode_item) {
442 struct btrfs_inode_item *item;
443 u64 nbytes;
d555438b 444 u32 mode;
4bc4bee4
JB
445
446 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
447 struct btrfs_inode_item);
448 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
449 item = btrfs_item_ptr(eb, slot,
450 struct btrfs_inode_item);
451 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
452
453 /*
454 * If this is a directory we need to reset the i_size to
455 * 0 so that we can set it up properly when replaying
456 * the rest of the items in this log.
457 */
458 mode = btrfs_inode_mode(eb, item);
459 if (S_ISDIR(mode))
460 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
461 }
462 } else if (inode_item) {
463 struct btrfs_inode_item *item;
d555438b 464 u32 mode;
4bc4bee4
JB
465
466 /*
467 * New inode, set nbytes to 0 so that the nbytes comes out
468 * properly when we replay the extents.
469 */
470 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
471 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
472
473 /*
474 * If this is a directory we need to reset the i_size to 0 so
475 * that we can set it up properly when replaying the rest of
476 * the items in this log.
477 */
478 mode = btrfs_inode_mode(eb, item);
479 if (S_ISDIR(mode))
480 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
481 }
482insert:
b3b4aa74 483 btrfs_release_path(path);
e02119d5 484 /* try to insert the key into the destination tree */
df8d116f 485 path->skip_release_on_error = 1;
e02119d5
CM
486 ret = btrfs_insert_empty_item(trans, root, path,
487 key, item_size);
df8d116f 488 path->skip_release_on_error = 0;
e02119d5
CM
489
490 /* make sure any existing item is the correct size */
df8d116f 491 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 492 u32 found_size;
3212fa14 493 found_size = btrfs_item_size(path->nodes[0],
e02119d5 494 path->slots[0]);
143bede5 495 if (found_size > item_size)
78ac4f9e 496 btrfs_truncate_item(path, item_size, 1);
143bede5 497 else if (found_size < item_size)
c71dd880 498 btrfs_extend_item(path, item_size - found_size);
e02119d5 499 } else if (ret) {
4a500fd1 500 return ret;
e02119d5
CM
501 }
502 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
503 path->slots[0]);
504
505 /* don't overwrite an existing inode if the generation number
506 * was logged as zero. This is done when the tree logging code
507 * is just logging an inode to make sure it exists after recovery.
508 *
509 * Also, don't overwrite i_size on directories during replay.
510 * log replay inserts and removes directory items based on the
511 * state of the tree found in the subvolume, and i_size is modified
512 * as it goes
513 */
514 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
515 struct btrfs_inode_item *src_item;
516 struct btrfs_inode_item *dst_item;
517
518 src_item = (struct btrfs_inode_item *)src_ptr;
519 dst_item = (struct btrfs_inode_item *)dst_ptr;
520
1a4bcf47
FM
521 if (btrfs_inode_generation(eb, src_item) == 0) {
522 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 523 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 524
2f2ff0ee
FM
525 /*
526 * For regular files an ino_size == 0 is used only when
527 * logging that an inode exists, as part of a directory
528 * fsync, and the inode wasn't fsynced before. In this
529 * case don't set the size of the inode in the fs/subvol
530 * tree, otherwise we would be throwing valid data away.
531 */
1a4bcf47 532 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 533 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
534 ino_size != 0)
535 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 536 goto no_copy;
1a4bcf47 537 }
e02119d5
CM
538
539 if (overwrite_root &&
540 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
541 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
542 save_old_i_size = 1;
543 saved_i_size = btrfs_inode_size(path->nodes[0],
544 dst_item);
545 }
546 }
547
548 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
549 src_ptr, item_size);
550
551 if (save_old_i_size) {
552 struct btrfs_inode_item *dst_item;
553 dst_item = (struct btrfs_inode_item *)dst_ptr;
554 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
555 }
556
557 /* make sure the generation is filled in */
558 if (key->type == BTRFS_INODE_ITEM_KEY) {
559 struct btrfs_inode_item *dst_item;
560 dst_item = (struct btrfs_inode_item *)dst_ptr;
561 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
562 btrfs_set_inode_generation(path->nodes[0], dst_item,
563 trans->transid);
564 }
565 }
566no_copy:
567 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 568 btrfs_release_path(path);
e02119d5
CM
569 return 0;
570}
571
086dcbfa
FM
572/*
573 * Item overwrite used by replay and tree logging. eb, slot and key all refer
574 * to the src data we are copying out.
575 *
576 * root is the tree we are copying into, and path is a scratch
577 * path for use in this function (it should be released on entry and
578 * will be released on exit).
579 *
580 * If the key is already in the destination tree the existing item is
581 * overwritten. If the existing item isn't big enough, it is extended.
582 * If it is too large, it is truncated.
583 *
584 * If the key isn't in the destination yet, a new item is inserted.
585 */
586static int overwrite_item(struct btrfs_trans_handle *trans,
587 struct btrfs_root *root,
588 struct btrfs_path *path,
589 struct extent_buffer *eb, int slot,
590 struct btrfs_key *key)
591{
592 int ret;
593
594 /* Look for the key in the destination tree. */
595 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
596 if (ret < 0)
597 return ret;
598
599 return do_overwrite_item(trans, root, path, eb, slot, key);
600}
601
e43eec81 602static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
6db75318 603 struct fscrypt_str *name)
e43eec81
STD
604{
605 char *buf;
606
607 buf = kmalloc(len, GFP_NOFS);
608 if (!buf)
609 return -ENOMEM;
610
611 read_extent_buffer(eb, buf, (unsigned long)start, len);
612 name->name = buf;
613 name->len = len;
614 return 0;
615}
616
e02119d5
CM
617/*
618 * simple helper to read an inode off the disk from a given root
619 * This can only be called for subvolume roots and not for the log
620 */
621static noinline struct inode *read_one_inode(struct btrfs_root *root,
622 u64 objectid)
623{
624 struct inode *inode;
e02119d5 625
0202e83f 626 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 627 if (IS_ERR(inode))
5d4f98a2 628 inode = NULL;
e02119d5
CM
629 return inode;
630}
631
632/* replays a single extent in 'eb' at 'slot' with 'key' into the
633 * subvolume 'root'. path is released on entry and should be released
634 * on exit.
635 *
636 * extents in the log tree have not been allocated out of the extent
637 * tree yet. So, this completes the allocation, taking a reference
638 * as required if the extent already exists or creating a new extent
639 * if it isn't in the extent allocation tree yet.
640 *
641 * The extent is inserted into the file, dropping any existing extents
642 * from the file that overlap the new one.
643 */
644static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
645 struct btrfs_root *root,
646 struct btrfs_path *path,
647 struct extent_buffer *eb, int slot,
648 struct btrfs_key *key)
649{
5893dfb9 650 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 651 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 652 int found_type;
e02119d5 653 u64 extent_end;
e02119d5 654 u64 start = key->offset;
4bc4bee4 655 u64 nbytes = 0;
e02119d5
CM
656 struct btrfs_file_extent_item *item;
657 struct inode *inode = NULL;
658 unsigned long size;
659 int ret = 0;
660
661 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
662 found_type = btrfs_file_extent_type(eb, item);
663
d899e052 664 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 nbytes = btrfs_file_extent_num_bytes(eb, item);
667 extent_end = start + nbytes;
668
669 /*
670 * We don't add to the inodes nbytes if we are prealloc or a
671 * hole.
672 */
673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
674 nbytes = 0;
675 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 676 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 677 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 678 extent_end = ALIGN(start + size,
0b246afa 679 fs_info->sectorsize);
e02119d5
CM
680 } else {
681 ret = 0;
682 goto out;
683 }
684
685 inode = read_one_inode(root, key->objectid);
686 if (!inode) {
687 ret = -EIO;
688 goto out;
689 }
690
691 /*
692 * first check to see if we already have this extent in the
693 * file. This must be done before the btrfs_drop_extents run
694 * so we don't try to drop this extent.
695 */
f85b7379
DS
696 ret = btrfs_lookup_file_extent(trans, root, path,
697 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 698
d899e052
YZ
699 if (ret == 0 &&
700 (found_type == BTRFS_FILE_EXTENT_REG ||
701 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
702 struct btrfs_file_extent_item cmp1;
703 struct btrfs_file_extent_item cmp2;
704 struct btrfs_file_extent_item *existing;
705 struct extent_buffer *leaf;
706
707 leaf = path->nodes[0];
708 existing = btrfs_item_ptr(leaf, path->slots[0],
709 struct btrfs_file_extent_item);
710
711 read_extent_buffer(eb, &cmp1, (unsigned long)item,
712 sizeof(cmp1));
713 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
714 sizeof(cmp2));
715
716 /*
717 * we already have a pointer to this exact extent,
718 * we don't have to do anything
719 */
720 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 721 btrfs_release_path(path);
e02119d5
CM
722 goto out;
723 }
724 }
b3b4aa74 725 btrfs_release_path(path);
e02119d5
CM
726
727 /* drop any overlapping extents */
5893dfb9
FM
728 drop_args.start = start;
729 drop_args.end = extent_end;
730 drop_args.drop_cache = true;
731 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
732 if (ret)
733 goto out;
e02119d5 734
07d400a6
YZ
735 if (found_type == BTRFS_FILE_EXTENT_REG ||
736 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 737 u64 offset;
07d400a6
YZ
738 unsigned long dest_offset;
739 struct btrfs_key ins;
740
3168021c
FM
741 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
742 btrfs_fs_incompat(fs_info, NO_HOLES))
743 goto update_inode;
744
07d400a6
YZ
745 ret = btrfs_insert_empty_item(trans, root, path, key,
746 sizeof(*item));
3650860b
JB
747 if (ret)
748 goto out;
07d400a6
YZ
749 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
750 path->slots[0]);
751 copy_extent_buffer(path->nodes[0], eb, dest_offset,
752 (unsigned long)item, sizeof(*item));
753
754 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
755 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
756 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 757 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 758
df2c95f3
QW
759 /*
760 * Manually record dirty extent, as here we did a shallow
761 * file extent item copy and skip normal backref update,
762 * but modifying extent tree all by ourselves.
763 * So need to manually record dirty extent for qgroup,
764 * as the owner of the file extent changed from log tree
765 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
766 */
a95f3aaf 767 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3 768 btrfs_file_extent_disk_bytenr(eb, item),
e2896e79 769 btrfs_file_extent_disk_num_bytes(eb, item));
df2c95f3
QW
770 if (ret < 0)
771 goto out;
772
07d400a6 773 if (ins.objectid > 0) {
82fa113f 774 struct btrfs_ref ref = { 0 };
07d400a6
YZ
775 u64 csum_start;
776 u64 csum_end;
777 LIST_HEAD(ordered_sums);
82fa113f 778
07d400a6
YZ
779 /*
780 * is this extent already allocated in the extent
781 * allocation tree? If so, just add a reference
782 */
2ff7e61e 783 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 784 ins.offset);
3736127a
MPS
785 if (ret < 0) {
786 goto out;
787 } else if (ret == 0) {
82fa113f
QW
788 btrfs_init_generic_ref(&ref,
789 BTRFS_ADD_DELAYED_REF,
790 ins.objectid, ins.offset, 0);
791 btrfs_init_data_ref(&ref,
792 root->root_key.objectid,
f42c5da6 793 key->objectid, offset, 0, false);
82fa113f 794 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
795 if (ret)
796 goto out;
07d400a6
YZ
797 } else {
798 /*
799 * insert the extent pointer in the extent
800 * allocation tree
801 */
5d4f98a2 802 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 803 root->root_key.objectid,
5d4f98a2 804 key->objectid, offset, &ins);
b50c6e25
JB
805 if (ret)
806 goto out;
07d400a6 807 }
b3b4aa74 808 btrfs_release_path(path);
07d400a6
YZ
809
810 if (btrfs_file_extent_compression(eb, item)) {
811 csum_start = ins.objectid;
812 csum_end = csum_start + ins.offset;
813 } else {
814 csum_start = ins.objectid +
815 btrfs_file_extent_offset(eb, item);
816 csum_end = csum_start +
817 btrfs_file_extent_num_bytes(eb, item);
818 }
819
820 ret = btrfs_lookup_csums_range(root->log_root,
821 csum_start, csum_end - 1,
26ce9114 822 &ordered_sums, 0, false);
3650860b
JB
823 if (ret)
824 goto out;
b84b8390
FM
825 /*
826 * Now delete all existing cums in the csum root that
827 * cover our range. We do this because we can have an
828 * extent that is completely referenced by one file
829 * extent item and partially referenced by another
830 * file extent item (like after using the clone or
831 * extent_same ioctls). In this case if we end up doing
832 * the replay of the one that partially references the
833 * extent first, and we do not do the csum deletion
834 * below, we can get 2 csum items in the csum tree that
835 * overlap each other. For example, imagine our log has
836 * the two following file extent items:
837 *
838 * key (257 EXTENT_DATA 409600)
839 * extent data disk byte 12845056 nr 102400
840 * extent data offset 20480 nr 20480 ram 102400
841 *
842 * key (257 EXTENT_DATA 819200)
843 * extent data disk byte 12845056 nr 102400
844 * extent data offset 0 nr 102400 ram 102400
845 *
846 * Where the second one fully references the 100K extent
847 * that starts at disk byte 12845056, and the log tree
848 * has a single csum item that covers the entire range
849 * of the extent:
850 *
851 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
852 *
853 * After the first file extent item is replayed, the
854 * csum tree gets the following csum item:
855 *
856 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
857 *
858 * Which covers the 20K sub-range starting at offset 20K
859 * of our extent. Now when we replay the second file
860 * extent item, if we do not delete existing csum items
861 * that cover any of its blocks, we end up getting two
862 * csum items in our csum tree that overlap each other:
863 *
864 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
865 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
866 *
867 * Which is a problem, because after this anyone trying
868 * to lookup up for the checksum of any block of our
869 * extent starting at an offset of 40K or higher, will
870 * end up looking at the second csum item only, which
871 * does not contain the checksum for any block starting
872 * at offset 40K or higher of our extent.
873 */
07d400a6
YZ
874 while (!list_empty(&ordered_sums)) {
875 struct btrfs_ordered_sum *sums;
fc28b25e
JB
876 struct btrfs_root *csum_root;
877
07d400a6
YZ
878 sums = list_entry(ordered_sums.next,
879 struct btrfs_ordered_sum,
880 list);
fc28b25e
JB
881 csum_root = btrfs_csum_root(fs_info,
882 sums->bytenr);
b84b8390 883 if (!ret)
fc28b25e 884 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
885 sums->bytenr,
886 sums->len);
3650860b
JB
887 if (!ret)
888 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
889 csum_root,
890 sums);
07d400a6
YZ
891 list_del(&sums->list);
892 kfree(sums);
893 }
3650860b
JB
894 if (ret)
895 goto out;
07d400a6 896 } else {
b3b4aa74 897 btrfs_release_path(path);
07d400a6
YZ
898 }
899 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
900 /* inline extents are easy, we just overwrite them */
901 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
902 if (ret)
903 goto out;
07d400a6 904 }
e02119d5 905
9ddc959e
JB
906 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
907 extent_end - start);
908 if (ret)
909 goto out;
910
3168021c 911update_inode:
2766ff61 912 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 913 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 914out:
8aa1e49e 915 iput(inode);
e02119d5
CM
916 return ret;
917}
918
313ab753
FM
919static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
920 struct btrfs_inode *dir,
921 struct btrfs_inode *inode,
6db75318 922 const struct fscrypt_str *name)
313ab753
FM
923{
924 int ret;
925
e43eec81 926 ret = btrfs_unlink_inode(trans, dir, inode, name);
313ab753
FM
927 if (ret)
928 return ret;
929 /*
930 * Whenever we need to check if a name exists or not, we check the
931 * fs/subvolume tree. So after an unlink we must run delayed items, so
932 * that future checks for a name during log replay see that the name
933 * does not exists anymore.
934 */
935 return btrfs_run_delayed_items(trans);
936}
937
e02119d5
CM
938/*
939 * when cleaning up conflicts between the directory names in the
940 * subvolume, directory names in the log and directory names in the
941 * inode back references, we may have to unlink inodes from directories.
942 *
943 * This is a helper function to do the unlink of a specific directory
944 * item
945 */
946static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 947 struct btrfs_path *path,
207e7d92 948 struct btrfs_inode *dir,
e02119d5
CM
949 struct btrfs_dir_item *di)
950{
9798ba24 951 struct btrfs_root *root = dir->root;
e02119d5 952 struct inode *inode;
6db75318 953 struct fscrypt_str name;
e02119d5
CM
954 struct extent_buffer *leaf;
955 struct btrfs_key location;
956 int ret;
957
958 leaf = path->nodes[0];
959
960 btrfs_dir_item_key_to_cpu(leaf, di, &location);
e43eec81
STD
961 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
962 if (ret)
2a29edc6 963 return -ENOMEM;
964
b3b4aa74 965 btrfs_release_path(path);
e02119d5
CM
966
967 inode = read_one_inode(root, location.objectid);
c00e9493 968 if (!inode) {
3650860b
JB
969 ret = -EIO;
970 goto out;
c00e9493 971 }
e02119d5 972
ec051c0f 973 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
974 if (ret)
975 goto out;
12fcfd22 976
e43eec81 977 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
3650860b 978out:
e43eec81 979 kfree(name.name);
e02119d5
CM
980 iput(inode);
981 return ret;
982}
983
984/*
77a5b9e3
FM
985 * See if a given name and sequence number found in an inode back reference are
986 * already in a directory and correctly point to this inode.
987 *
988 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
989 * exists.
e02119d5
CM
990 */
991static noinline int inode_in_dir(struct btrfs_root *root,
992 struct btrfs_path *path,
993 u64 dirid, u64 objectid, u64 index,
6db75318 994 struct fscrypt_str *name)
e02119d5
CM
995{
996 struct btrfs_dir_item *di;
997 struct btrfs_key location;
77a5b9e3 998 int ret = 0;
e02119d5
CM
999
1000 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
e43eec81 1001 index, name, 0);
77a5b9e3 1002 if (IS_ERR(di)) {
8dcbc261 1003 ret = PTR_ERR(di);
77a5b9e3
FM
1004 goto out;
1005 } else if (di) {
e02119d5
CM
1006 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 if (location.objectid != objectid)
1008 goto out;
77a5b9e3 1009 } else {
e02119d5 1010 goto out;
77a5b9e3 1011 }
e02119d5 1012
77a5b9e3 1013 btrfs_release_path(path);
e43eec81 1014 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
77a5b9e3
FM
1015 if (IS_ERR(di)) {
1016 ret = PTR_ERR(di);
e02119d5 1017 goto out;
77a5b9e3
FM
1018 } else if (di) {
1019 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1020 if (location.objectid == objectid)
1021 ret = 1;
1022 }
e02119d5 1023out:
b3b4aa74 1024 btrfs_release_path(path);
77a5b9e3 1025 return ret;
e02119d5
CM
1026}
1027
1028/*
1029 * helper function to check a log tree for a named back reference in
1030 * an inode. This is used to decide if a back reference that is
1031 * found in the subvolume conflicts with what we find in the log.
1032 *
1033 * inode backreferences may have multiple refs in a single item,
1034 * during replay we process one reference at a time, and we don't
1035 * want to delete valid links to a file from the subvolume if that
1036 * link is also in the log.
1037 */
1038static noinline int backref_in_log(struct btrfs_root *log,
1039 struct btrfs_key *key,
f186373f 1040 u64 ref_objectid,
6db75318 1041 const struct fscrypt_str *name)
e02119d5
CM
1042{
1043 struct btrfs_path *path;
e02119d5 1044 int ret;
e02119d5
CM
1045
1046 path = btrfs_alloc_path();
2a29edc6 1047 if (!path)
1048 return -ENOMEM;
1049
e02119d5 1050 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1051 if (ret < 0) {
1052 goto out;
1053 } else if (ret == 1) {
89cbf5f6 1054 ret = 0;
f186373f
MF
1055 goto out;
1056 }
1057
89cbf5f6
NB
1058 if (key->type == BTRFS_INODE_EXTREF_KEY)
1059 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1060 path->slots[0],
e43eec81 1061 ref_objectid, name);
89cbf5f6
NB
1062 else
1063 ret = !!btrfs_find_name_in_backref(path->nodes[0],
e43eec81 1064 path->slots[0], name);
e02119d5
CM
1065out:
1066 btrfs_free_path(path);
89cbf5f6 1067 return ret;
e02119d5
CM
1068}
1069
5a1d7843 1070static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1071 struct btrfs_root *root,
e02119d5 1072 struct btrfs_path *path,
5a1d7843 1073 struct btrfs_root *log_root,
94c91a1f
NB
1074 struct btrfs_inode *dir,
1075 struct btrfs_inode *inode,
f186373f 1076 u64 inode_objectid, u64 parent_objectid,
6db75318 1077 u64 ref_index, struct fscrypt_str *name)
e02119d5 1078{
34f3e4f2 1079 int ret;
f186373f 1080 struct extent_buffer *leaf;
5a1d7843 1081 struct btrfs_dir_item *di;
f186373f
MF
1082 struct btrfs_key search_key;
1083 struct btrfs_inode_extref *extref;
c622ae60 1084
f186373f
MF
1085again:
1086 /* Search old style refs */
1087 search_key.objectid = inode_objectid;
1088 search_key.type = BTRFS_INODE_REF_KEY;
1089 search_key.offset = parent_objectid;
1090 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1091 if (ret == 0) {
e02119d5
CM
1092 struct btrfs_inode_ref *victim_ref;
1093 unsigned long ptr;
1094 unsigned long ptr_end;
f186373f
MF
1095
1096 leaf = path->nodes[0];
e02119d5
CM
1097
1098 /* are we trying to overwrite a back ref for the root directory
1099 * if so, just jump out, we're done
1100 */
f186373f 1101 if (search_key.objectid == search_key.offset)
5a1d7843 1102 return 1;
e02119d5
CM
1103
1104 /* check all the names in this back reference to see
1105 * if they are in the log. if so, we allow them to stay
1106 * otherwise they must be unlinked as a conflict
1107 */
1108 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1109 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1110 while (ptr < ptr_end) {
6db75318 1111 struct fscrypt_str victim_name;
e02119d5 1112
e43eec81
STD
1113 victim_ref = (struct btrfs_inode_ref *)ptr;
1114 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1115 btrfs_inode_ref_name_len(leaf, victim_ref),
1116 &victim_name);
1117 if (ret)
1118 return ret;
e02119d5 1119
d3316c82 1120 ret = backref_in_log(log_root, &search_key,
e43eec81 1121 parent_objectid, &victim_name);
d3316c82 1122 if (ret < 0) {
e43eec81 1123 kfree(victim_name.name);
d3316c82
NB
1124 return ret;
1125 } else if (!ret) {
94c91a1f 1126 inc_nlink(&inode->vfs_inode);
b3b4aa74 1127 btrfs_release_path(path);
12fcfd22 1128
313ab753 1129 ret = unlink_inode_for_log_replay(trans, dir, inode,
e43eec81
STD
1130 &victim_name);
1131 kfree(victim_name.name);
ada9af21
FDBM
1132 if (ret)
1133 return ret;
f186373f 1134 goto again;
e02119d5 1135 }
e43eec81 1136 kfree(victim_name.name);
f186373f 1137
e43eec81 1138 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
e02119d5 1139 }
e02119d5 1140 }
b3b4aa74 1141 btrfs_release_path(path);
e02119d5 1142
f186373f 1143 /* Same search but for extended refs */
e43eec81 1144 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
f186373f
MF
1145 inode_objectid, parent_objectid, 0,
1146 0);
7a6b75b7
FM
1147 if (IS_ERR(extref)) {
1148 return PTR_ERR(extref);
1149 } else if (extref) {
f186373f
MF
1150 u32 item_size;
1151 u32 cur_offset = 0;
1152 unsigned long base;
1153 struct inode *victim_parent;
1154
1155 leaf = path->nodes[0];
1156
3212fa14 1157 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1158 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1159
1160 while (cur_offset < item_size) {
6db75318 1161 struct fscrypt_str victim_name;
f186373f 1162
e43eec81 1163 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1164
1165 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1166 goto next;
1167
e43eec81
STD
1168 ret = read_alloc_one_name(leaf, &extref->name,
1169 btrfs_inode_extref_name_len(leaf, extref),
1170 &victim_name);
1171 if (ret)
1172 return ret;
f186373f
MF
1173
1174 search_key.objectid = inode_objectid;
1175 search_key.type = BTRFS_INODE_EXTREF_KEY;
1176 search_key.offset = btrfs_extref_hash(parent_objectid,
e43eec81
STD
1177 victim_name.name,
1178 victim_name.len);
d3316c82 1179 ret = backref_in_log(log_root, &search_key,
e43eec81 1180 parent_objectid, &victim_name);
d3316c82 1181 if (ret < 0) {
e43eec81 1182 kfree(victim_name.name);
d3316c82
NB
1183 return ret;
1184 } else if (!ret) {
f186373f
MF
1185 ret = -ENOENT;
1186 victim_parent = read_one_inode(root,
94c91a1f 1187 parent_objectid);
f186373f 1188 if (victim_parent) {
94c91a1f 1189 inc_nlink(&inode->vfs_inode);
f186373f
MF
1190 btrfs_release_path(path);
1191
313ab753 1192 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1193 BTRFS_I(victim_parent),
e43eec81 1194 inode, &victim_name);
f186373f 1195 }
f186373f 1196 iput(victim_parent);
e43eec81 1197 kfree(victim_name.name);
3650860b
JB
1198 if (ret)
1199 return ret;
f186373f
MF
1200 goto again;
1201 }
e43eec81 1202 kfree(victim_name.name);
f186373f 1203next:
e43eec81 1204 cur_offset += victim_name.len + sizeof(*extref);
f186373f 1205 }
f186373f
MF
1206 }
1207 btrfs_release_path(path);
1208
34f3e4f2 1209 /* look for a conflicting sequence number */
94c91a1f 1210 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
e43eec81 1211 ref_index, name, 0);
52db7779 1212 if (IS_ERR(di)) {
8dcbc261 1213 return PTR_ERR(di);
52db7779 1214 } else if (di) {
9798ba24 1215 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1216 if (ret)
1217 return ret;
34f3e4f2 1218 }
1219 btrfs_release_path(path);
1220
52042d8e 1221 /* look for a conflicting name */
e43eec81 1222 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
52db7779
FM
1223 if (IS_ERR(di)) {
1224 return PTR_ERR(di);
1225 } else if (di) {
9798ba24 1226 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1227 if (ret)
1228 return ret;
34f3e4f2 1229 }
1230 btrfs_release_path(path);
1231
5a1d7843
JS
1232 return 0;
1233}
e02119d5 1234
bae15d95 1235static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1236 struct fscrypt_str *name, u64 *index,
bae15d95 1237 u64 *parent_objectid)
f186373f
MF
1238{
1239 struct btrfs_inode_extref *extref;
e43eec81 1240 int ret;
f186373f
MF
1241
1242 extref = (struct btrfs_inode_extref *)ref_ptr;
1243
e43eec81
STD
1244 ret = read_alloc_one_name(eb, &extref->name,
1245 btrfs_inode_extref_name_len(eb, extref), name);
1246 if (ret)
1247 return ret;
f186373f 1248
1f250e92
FM
1249 if (index)
1250 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1251 if (parent_objectid)
1252 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1253
1254 return 0;
1255}
1256
bae15d95 1257static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1258 struct fscrypt_str *name, u64 *index)
f186373f
MF
1259{
1260 struct btrfs_inode_ref *ref;
e43eec81 1261 int ret;
f186373f
MF
1262
1263 ref = (struct btrfs_inode_ref *)ref_ptr;
1264
e43eec81
STD
1265 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1266 name);
1267 if (ret)
1268 return ret;
f186373f 1269
1f250e92
FM
1270 if (index)
1271 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1272
1273 return 0;
1274}
1275
1f250e92
FM
1276/*
1277 * Take an inode reference item from the log tree and iterate all names from the
1278 * inode reference item in the subvolume tree with the same key (if it exists).
1279 * For any name that is not in the inode reference item from the log tree, do a
1280 * proper unlink of that name (that is, remove its entry from the inode
1281 * reference item and both dir index keys).
1282 */
1283static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1284 struct btrfs_root *root,
1285 struct btrfs_path *path,
1286 struct btrfs_inode *inode,
1287 struct extent_buffer *log_eb,
1288 int log_slot,
1289 struct btrfs_key *key)
1290{
1291 int ret;
1292 unsigned long ref_ptr;
1293 unsigned long ref_end;
1294 struct extent_buffer *eb;
1295
1296again:
1297 btrfs_release_path(path);
1298 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1299 if (ret > 0) {
1300 ret = 0;
1301 goto out;
1302 }
1303 if (ret < 0)
1304 goto out;
1305
1306 eb = path->nodes[0];
1307 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1308 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92 1309 while (ref_ptr < ref_end) {
6db75318 1310 struct fscrypt_str name;
1f250e92
FM
1311 u64 parent_id;
1312
1313 if (key->type == BTRFS_INODE_EXTREF_KEY) {
e43eec81 1314 ret = extref_get_fields(eb, ref_ptr, &name,
1f250e92
FM
1315 NULL, &parent_id);
1316 } else {
1317 parent_id = key->offset;
e43eec81 1318 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1f250e92
FM
1319 }
1320 if (ret)
1321 goto out;
1322
1323 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a 1324 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
e43eec81 1325 parent_id, &name);
1f250e92 1326 else
e43eec81 1327 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1f250e92
FM
1328
1329 if (!ret) {
1330 struct inode *dir;
1331
1332 btrfs_release_path(path);
1333 dir = read_one_inode(root, parent_id);
1334 if (!dir) {
1335 ret = -ENOENT;
e43eec81 1336 kfree(name.name);
1f250e92
FM
1337 goto out;
1338 }
313ab753 1339 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
e43eec81
STD
1340 inode, &name);
1341 kfree(name.name);
1f250e92
FM
1342 iput(dir);
1343 if (ret)
1344 goto out;
1345 goto again;
1346 }
1347
e43eec81
STD
1348 kfree(name.name);
1349 ref_ptr += name.len;
1f250e92
FM
1350 if (key->type == BTRFS_INODE_EXTREF_KEY)
1351 ref_ptr += sizeof(struct btrfs_inode_extref);
1352 else
1353 ref_ptr += sizeof(struct btrfs_inode_ref);
1354 }
1355 ret = 0;
1356 out:
1357 btrfs_release_path(path);
1358 return ret;
1359}
1360
5a1d7843
JS
1361/*
1362 * replay one inode back reference item found in the log tree.
1363 * eb, slot and key refer to the buffer and key found in the log tree.
1364 * root is the destination we are replaying into, and path is for temp
1365 * use by this function. (it should be released on return).
1366 */
1367static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root,
1369 struct btrfs_root *log,
1370 struct btrfs_path *path,
1371 struct extent_buffer *eb, int slot,
1372 struct btrfs_key *key)
1373{
03b2f08b
GB
1374 struct inode *dir = NULL;
1375 struct inode *inode = NULL;
5a1d7843
JS
1376 unsigned long ref_ptr;
1377 unsigned long ref_end;
6db75318 1378 struct fscrypt_str name;
5a1d7843 1379 int ret;
f186373f
MF
1380 int log_ref_ver = 0;
1381 u64 parent_objectid;
1382 u64 inode_objectid;
f46dbe3d 1383 u64 ref_index = 0;
f186373f
MF
1384 int ref_struct_size;
1385
1386 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1387 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1388
1389 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1390 struct btrfs_inode_extref *r;
1391
1392 ref_struct_size = sizeof(struct btrfs_inode_extref);
1393 log_ref_ver = 1;
1394 r = (struct btrfs_inode_extref *)ref_ptr;
1395 parent_objectid = btrfs_inode_extref_parent(eb, r);
1396 } else {
1397 ref_struct_size = sizeof(struct btrfs_inode_ref);
1398 parent_objectid = key->offset;
1399 }
1400 inode_objectid = key->objectid;
e02119d5 1401
5a1d7843
JS
1402 /*
1403 * it is possible that we didn't log all the parent directories
1404 * for a given inode. If we don't find the dir, just don't
1405 * copy the back ref in. The link count fixup code will take
1406 * care of the rest
1407 */
f186373f 1408 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1409 if (!dir) {
1410 ret = -ENOENT;
1411 goto out;
1412 }
5a1d7843 1413
f186373f 1414 inode = read_one_inode(root, inode_objectid);
5a1d7843 1415 if (!inode) {
03b2f08b
GB
1416 ret = -EIO;
1417 goto out;
5a1d7843
JS
1418 }
1419
5a1d7843 1420 while (ref_ptr < ref_end) {
f186373f 1421 if (log_ref_ver) {
e43eec81 1422 ret = extref_get_fields(eb, ref_ptr, &name,
bae15d95 1423 &ref_index, &parent_objectid);
f186373f
MF
1424 /*
1425 * parent object can change from one array
1426 * item to another.
1427 */
1428 if (!dir)
1429 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1430 if (!dir) {
1431 ret = -ENOENT;
1432 goto out;
1433 }
f186373f 1434 } else {
e43eec81 1435 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
f186373f
MF
1436 }
1437 if (ret)
03b2f08b 1438 goto out;
5a1d7843 1439
77a5b9e3 1440 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
e43eec81 1441 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
77a5b9e3
FM
1442 if (ret < 0) {
1443 goto out;
1444 } else if (ret == 0) {
5a1d7843
JS
1445 /*
1446 * look for a conflicting back reference in the
1447 * metadata. if we find one we have to unlink that name
1448 * of the file before we add our new link. Later on, we
1449 * overwrite any existing back reference, and we don't
1450 * want to create dangling pointers in the directory.
1451 */
7059c658
FM
1452 ret = __add_inode_ref(trans, root, path, log,
1453 BTRFS_I(dir), BTRFS_I(inode),
1454 inode_objectid, parent_objectid,
e43eec81 1455 ref_index, &name);
7059c658
FM
1456 if (ret) {
1457 if (ret == 1)
1458 ret = 0;
0d836392 1459 goto out;
7059c658 1460 }
0d836392 1461
5a1d7843 1462 /* insert our name */
7059c658 1463 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 1464 &name, 0, ref_index);
3650860b
JB
1465 if (ret)
1466 goto out;
5a1d7843 1467
f96d4474
JB
1468 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1469 if (ret)
1470 goto out;
5a1d7843 1471 }
77a5b9e3 1472 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1473
e43eec81
STD
1474 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1475 kfree(name.name);
1476 name.name = NULL;
f186373f
MF
1477 if (log_ref_ver) {
1478 iput(dir);
1479 dir = NULL;
1480 }
5a1d7843 1481 }
e02119d5 1482
1f250e92
FM
1483 /*
1484 * Before we overwrite the inode reference item in the subvolume tree
1485 * with the item from the log tree, we must unlink all names from the
1486 * parent directory that are in the subvolume's tree inode reference
1487 * item, otherwise we end up with an inconsistent subvolume tree where
1488 * dir index entries exist for a name but there is no inode reference
1489 * item with the same name.
1490 */
1491 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1492 key);
1493 if (ret)
1494 goto out;
1495
e02119d5
CM
1496 /* finally write the back reference in the inode */
1497 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1498out:
b3b4aa74 1499 btrfs_release_path(path);
e43eec81 1500 kfree(name.name);
e02119d5
CM
1501 iput(dir);
1502 iput(inode);
3650860b 1503 return ret;
e02119d5
CM
1504}
1505
f186373f 1506static int count_inode_extrefs(struct btrfs_root *root,
36283658 1507 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1508{
1509 int ret = 0;
1510 int name_len;
1511 unsigned int nlink = 0;
1512 u32 item_size;
1513 u32 cur_offset = 0;
36283658 1514 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1515 u64 offset = 0;
1516 unsigned long ptr;
1517 struct btrfs_inode_extref *extref;
1518 struct extent_buffer *leaf;
1519
1520 while (1) {
1521 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1522 &extref, &offset);
1523 if (ret)
1524 break;
c71bf099 1525
f186373f 1526 leaf = path->nodes[0];
3212fa14 1527 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1528 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1529 cur_offset = 0;
f186373f
MF
1530
1531 while (cur_offset < item_size) {
1532 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1533 name_len = btrfs_inode_extref_name_len(leaf, extref);
1534
1535 nlink++;
1536
1537 cur_offset += name_len + sizeof(*extref);
1538 }
1539
1540 offset++;
1541 btrfs_release_path(path);
1542 }
1543 btrfs_release_path(path);
1544
2c2c452b 1545 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1546 return ret;
1547 return nlink;
1548}
1549
1550static int count_inode_refs(struct btrfs_root *root,
f329e319 1551 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1552{
e02119d5
CM
1553 int ret;
1554 struct btrfs_key key;
f186373f 1555 unsigned int nlink = 0;
e02119d5
CM
1556 unsigned long ptr;
1557 unsigned long ptr_end;
1558 int name_len;
f329e319 1559 u64 ino = btrfs_ino(inode);
e02119d5 1560
33345d01 1561 key.objectid = ino;
e02119d5
CM
1562 key.type = BTRFS_INODE_REF_KEY;
1563 key.offset = (u64)-1;
1564
d397712b 1565 while (1) {
e02119d5
CM
1566 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1567 if (ret < 0)
1568 break;
1569 if (ret > 0) {
1570 if (path->slots[0] == 0)
1571 break;
1572 path->slots[0]--;
1573 }
e93ae26f 1574process_slot:
e02119d5
CM
1575 btrfs_item_key_to_cpu(path->nodes[0], &key,
1576 path->slots[0]);
33345d01 1577 if (key.objectid != ino ||
e02119d5
CM
1578 key.type != BTRFS_INODE_REF_KEY)
1579 break;
1580 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1581 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1582 path->slots[0]);
d397712b 1583 while (ptr < ptr_end) {
e02119d5
CM
1584 struct btrfs_inode_ref *ref;
1585
1586 ref = (struct btrfs_inode_ref *)ptr;
1587 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1588 ref);
1589 ptr = (unsigned long)(ref + 1) + name_len;
1590 nlink++;
1591 }
1592
1593 if (key.offset == 0)
1594 break;
e93ae26f
FDBM
1595 if (path->slots[0] > 0) {
1596 path->slots[0]--;
1597 goto process_slot;
1598 }
e02119d5 1599 key.offset--;
b3b4aa74 1600 btrfs_release_path(path);
e02119d5 1601 }
b3b4aa74 1602 btrfs_release_path(path);
f186373f
MF
1603
1604 return nlink;
1605}
1606
1607/*
1608 * There are a few corners where the link count of the file can't
1609 * be properly maintained during replay. So, instead of adding
1610 * lots of complexity to the log code, we just scan the backrefs
1611 * for any file that has been through replay.
1612 *
1613 * The scan will update the link count on the inode to reflect the
1614 * number of back refs found. If it goes down to zero, the iput
1615 * will free the inode.
1616 */
1617static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1618 struct btrfs_root *root,
1619 struct inode *inode)
1620{
1621 struct btrfs_path *path;
1622 int ret;
1623 u64 nlink = 0;
4a0cc7ca 1624 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1625
1626 path = btrfs_alloc_path();
1627 if (!path)
1628 return -ENOMEM;
1629
f329e319 1630 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1631 if (ret < 0)
1632 goto out;
1633
1634 nlink = ret;
1635
36283658 1636 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1637 if (ret < 0)
1638 goto out;
1639
1640 nlink += ret;
1641
1642 ret = 0;
1643
e02119d5 1644 if (nlink != inode->i_nlink) {
bfe86848 1645 set_nlink(inode, nlink);
f96d4474
JB
1646 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1647 if (ret)
1648 goto out;
e02119d5 1649 }
8d5bf1cb 1650 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1651
c71bf099
YZ
1652 if (inode->i_nlink == 0) {
1653 if (S_ISDIR(inode->i_mode)) {
1654 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1655 ino, 1);
3650860b
JB
1656 if (ret)
1657 goto out;
c71bf099 1658 }
ecdcf3c2
NB
1659 ret = btrfs_insert_orphan_item(trans, root, ino);
1660 if (ret == -EEXIST)
1661 ret = 0;
12fcfd22 1662 }
12fcfd22 1663
f186373f
MF
1664out:
1665 btrfs_free_path(path);
1666 return ret;
e02119d5
CM
1667}
1668
1669static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1670 struct btrfs_root *root,
1671 struct btrfs_path *path)
1672{
1673 int ret;
1674 struct btrfs_key key;
1675 struct inode *inode;
1676
1677 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1678 key.type = BTRFS_ORPHAN_ITEM_KEY;
1679 key.offset = (u64)-1;
d397712b 1680 while (1) {
e02119d5
CM
1681 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1682 if (ret < 0)
1683 break;
1684
1685 if (ret == 1) {
011b28ac 1686 ret = 0;
e02119d5
CM
1687 if (path->slots[0] == 0)
1688 break;
1689 path->slots[0]--;
1690 }
1691
1692 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1693 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1694 key.type != BTRFS_ORPHAN_ITEM_KEY)
1695 break;
1696
1697 ret = btrfs_del_item(trans, root, path);
65a246c5 1698 if (ret)
011b28ac 1699 break;
e02119d5 1700
b3b4aa74 1701 btrfs_release_path(path);
e02119d5 1702 inode = read_one_inode(root, key.offset);
011b28ac
JB
1703 if (!inode) {
1704 ret = -EIO;
1705 break;
1706 }
e02119d5
CM
1707
1708 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1709 iput(inode);
3650860b 1710 if (ret)
011b28ac 1711 break;
e02119d5 1712
12fcfd22
CM
1713 /*
1714 * fixup on a directory may create new entries,
1715 * make sure we always look for the highset possible
1716 * offset
1717 */
1718 key.offset = (u64)-1;
e02119d5 1719 }
b3b4aa74 1720 btrfs_release_path(path);
65a246c5 1721 return ret;
e02119d5
CM
1722}
1723
1724
1725/*
1726 * record a given inode in the fixup dir so we can check its link
1727 * count when replay is done. The link count is incremented here
1728 * so the inode won't go away until we check it
1729 */
1730static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 u64 objectid)
1734{
1735 struct btrfs_key key;
1736 int ret = 0;
1737 struct inode *inode;
1738
1739 inode = read_one_inode(root, objectid);
c00e9493
TI
1740 if (!inode)
1741 return -EIO;
e02119d5
CM
1742
1743 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1744 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1745 key.offset = objectid;
1746
1747 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1748
b3b4aa74 1749 btrfs_release_path(path);
e02119d5 1750 if (ret == 0) {
9bf7a489
JB
1751 if (!inode->i_nlink)
1752 set_nlink(inode, 1);
1753 else
8b558c5f 1754 inc_nlink(inode);
9a56fcd1 1755 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1756 } else if (ret == -EEXIST) {
1757 ret = 0;
e02119d5
CM
1758 }
1759 iput(inode);
1760
1761 return ret;
1762}
1763
1764/*
1765 * when replaying the log for a directory, we only insert names
1766 * for inodes that actually exist. This means an fsync on a directory
1767 * does not implicitly fsync all the new files in it
1768 */
1769static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1770 struct btrfs_root *root,
e02119d5 1771 u64 dirid, u64 index,
6db75318 1772 const struct fscrypt_str *name,
e02119d5
CM
1773 struct btrfs_key *location)
1774{
1775 struct inode *inode;
1776 struct inode *dir;
1777 int ret;
1778
1779 inode = read_one_inode(root, location->objectid);
1780 if (!inode)
1781 return -ENOENT;
1782
1783 dir = read_one_inode(root, dirid);
1784 if (!dir) {
1785 iput(inode);
1786 return -EIO;
1787 }
d555438b 1788
db0a669f 1789 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 1790 1, index);
e02119d5
CM
1791
1792 /* FIXME, put inode into FIXUP list */
1793
1794 iput(inode);
1795 iput(dir);
1796 return ret;
1797}
1798
339d0354
FM
1799static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1800 struct btrfs_inode *dir,
1801 struct btrfs_path *path,
1802 struct btrfs_dir_item *dst_di,
1803 const struct btrfs_key *log_key,
94a48aef 1804 u8 log_flags,
339d0354
FM
1805 bool exists)
1806{
1807 struct btrfs_key found_key;
1808
1809 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1810 /* The existing dentry points to the same inode, don't delete it. */
1811 if (found_key.objectid == log_key->objectid &&
1812 found_key.type == log_key->type &&
1813 found_key.offset == log_key->offset &&
94a48aef 1814 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
339d0354
FM
1815 return 1;
1816
1817 /*
1818 * Don't drop the conflicting directory entry if the inode for the new
1819 * entry doesn't exist.
1820 */
1821 if (!exists)
1822 return 0;
1823
1824 return drop_one_dir_item(trans, path, dir, dst_di);
1825}
1826
e02119d5
CM
1827/*
1828 * take a single entry in a log directory item and replay it into
1829 * the subvolume.
1830 *
1831 * if a conflicting item exists in the subdirectory already,
1832 * the inode it points to is unlinked and put into the link count
1833 * fix up tree.
1834 *
1835 * If a name from the log points to a file or directory that does
1836 * not exist in the FS, it is skipped. fsyncs on directories
1837 * do not force down inodes inside that directory, just changes to the
1838 * names or unlinks in a directory.
bb53eda9
FM
1839 *
1840 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1841 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1842 */
1843static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
1845 struct btrfs_path *path,
1846 struct extent_buffer *eb,
1847 struct btrfs_dir_item *di,
1848 struct btrfs_key *key)
1849{
6db75318 1850 struct fscrypt_str name;
339d0354
FM
1851 struct btrfs_dir_item *dir_dst_di;
1852 struct btrfs_dir_item *index_dst_di;
1853 bool dir_dst_matches = false;
1854 bool index_dst_matches = false;
e02119d5 1855 struct btrfs_key log_key;
339d0354 1856 struct btrfs_key search_key;
e02119d5 1857 struct inode *dir;
94a48aef 1858 u8 log_flags;
cfd31269
FM
1859 bool exists;
1860 int ret;
339d0354 1861 bool update_size = true;
bb53eda9 1862 bool name_added = false;
e02119d5
CM
1863
1864 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1865 if (!dir)
1866 return -EIO;
e02119d5 1867
e43eec81
STD
1868 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1869 if (ret)
2bac325e 1870 goto out;
2a29edc6 1871
94a48aef 1872 log_flags = btrfs_dir_flags(eb, di);
e02119d5 1873 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1874 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1875 btrfs_release_path(path);
cfd31269
FM
1876 if (ret < 0)
1877 goto out;
1878 exists = (ret == 0);
1879 ret = 0;
4bef0848 1880
339d0354 1881 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
e43eec81 1882 &name, 1);
339d0354
FM
1883 if (IS_ERR(dir_dst_di)) {
1884 ret = PTR_ERR(dir_dst_di);
3650860b 1885 goto out;
339d0354
FM
1886 } else if (dir_dst_di) {
1887 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
94a48aef
OS
1888 dir_dst_di, &log_key,
1889 log_flags, exists);
339d0354
FM
1890 if (ret < 0)
1891 goto out;
1892 dir_dst_matches = (ret == 1);
e02119d5 1893 }
e15ac641 1894
339d0354
FM
1895 btrfs_release_path(path);
1896
1897 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1898 key->objectid, key->offset,
e43eec81 1899 &name, 1);
339d0354
FM
1900 if (IS_ERR(index_dst_di)) {
1901 ret = PTR_ERR(index_dst_di);
e15ac641 1902 goto out;
339d0354
FM
1903 } else if (index_dst_di) {
1904 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1905 index_dst_di, &log_key,
94a48aef 1906 log_flags, exists);
339d0354 1907 if (ret < 0)
e02119d5 1908 goto out;
339d0354 1909 index_dst_matches = (ret == 1);
e02119d5
CM
1910 }
1911
339d0354
FM
1912 btrfs_release_path(path);
1913
1914 if (dir_dst_matches && index_dst_matches) {
1915 ret = 0;
a2cc11db 1916 update_size = false;
e02119d5
CM
1917 goto out;
1918 }
1919
725af92a
NB
1920 /*
1921 * Check if the inode reference exists in the log for the given name,
1922 * inode and parent inode
1923 */
339d0354
FM
1924 search_key.objectid = log_key.objectid;
1925 search_key.type = BTRFS_INODE_REF_KEY;
1926 search_key.offset = key->objectid;
e43eec81 1927 ret = backref_in_log(root->log_root, &search_key, 0, &name);
725af92a
NB
1928 if (ret < 0) {
1929 goto out;
1930 } else if (ret) {
1931 /* The dentry will be added later. */
1932 ret = 0;
1933 update_size = false;
1934 goto out;
1935 }
1936
339d0354
FM
1937 search_key.objectid = log_key.objectid;
1938 search_key.type = BTRFS_INODE_EXTREF_KEY;
1939 search_key.offset = key->objectid;
e43eec81 1940 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
725af92a
NB
1941 if (ret < 0) {
1942 goto out;
1943 } else if (ret) {
df8d116f
FM
1944 /* The dentry will be added later. */
1945 ret = 0;
1946 update_size = false;
1947 goto out;
1948 }
b3b4aa74 1949 btrfs_release_path(path);
60d53eb3 1950 ret = insert_one_name(trans, root, key->objectid, key->offset,
e43eec81 1951 &name, &log_key);
df8d116f 1952 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1953 goto out;
bb53eda9
FM
1954 if (!ret)
1955 name_added = true;
d555438b 1956 update_size = false;
3650860b 1957 ret = 0;
339d0354
FM
1958
1959out:
1960 if (!ret && update_size) {
e43eec81 1961 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
339d0354
FM
1962 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1963 }
e43eec81 1964 kfree(name.name);
339d0354
FM
1965 iput(dir);
1966 if (!ret && name_added)
1967 ret = 1;
1968 return ret;
e02119d5
CM
1969}
1970
339d0354 1971/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
1972static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1973 struct btrfs_root *root,
1974 struct btrfs_path *path,
1975 struct extent_buffer *eb, int slot,
1976 struct btrfs_key *key)
1977{
339d0354 1978 int ret;
e02119d5 1979 struct btrfs_dir_item *di;
e02119d5 1980
339d0354
FM
1981 /* We only log dir index keys, which only contain a single dir item. */
1982 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1983
339d0354
FM
1984 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1985 ret = replay_one_name(trans, root, path, eb, di, key);
1986 if (ret < 0)
1987 return ret;
bb53eda9 1988
339d0354
FM
1989 /*
1990 * If this entry refers to a non-directory (directories can not have a
1991 * link count > 1) and it was added in the transaction that was not
1992 * committed, make sure we fixup the link count of the inode the entry
1993 * points to. Otherwise something like the following would result in a
1994 * directory pointing to an inode with a wrong link that does not account
1995 * for this dir entry:
1996 *
1997 * mkdir testdir
1998 * touch testdir/foo
1999 * touch testdir/bar
2000 * sync
2001 *
2002 * ln testdir/bar testdir/bar_link
2003 * ln testdir/foo testdir/foo_link
2004 * xfs_io -c "fsync" testdir/bar
2005 *
2006 * <power failure>
2007 *
2008 * mount fs, log replay happens
2009 *
2010 * File foo would remain with a link count of 1 when it has two entries
2011 * pointing to it in the directory testdir. This would make it impossible
2012 * to ever delete the parent directory has it would result in stale
2013 * dentries that can never be deleted.
2014 */
94a48aef 2015 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
339d0354
FM
2016 struct btrfs_path *fixup_path;
2017 struct btrfs_key di_key;
bb53eda9 2018
339d0354
FM
2019 fixup_path = btrfs_alloc_path();
2020 if (!fixup_path)
2021 return -ENOMEM;
2022
2023 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2024 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2025 btrfs_free_path(fixup_path);
e02119d5 2026 }
339d0354 2027
bb53eda9 2028 return ret;
e02119d5
CM
2029}
2030
2031/*
2032 * directory replay has two parts. There are the standard directory
2033 * items in the log copied from the subvolume, and range items
2034 * created in the log while the subvolume was logged.
2035 *
2036 * The range items tell us which parts of the key space the log
2037 * is authoritative for. During replay, if a key in the subvolume
2038 * directory is in a logged range item, but not actually in the log
2039 * that means it was deleted from the directory before the fsync
2040 * and should be removed.
2041 */
2042static noinline int find_dir_range(struct btrfs_root *root,
2043 struct btrfs_path *path,
ccae4a19 2044 u64 dirid,
e02119d5
CM
2045 u64 *start_ret, u64 *end_ret)
2046{
2047 struct btrfs_key key;
2048 u64 found_end;
2049 struct btrfs_dir_log_item *item;
2050 int ret;
2051 int nritems;
2052
2053 if (*start_ret == (u64)-1)
2054 return 1;
2055
2056 key.objectid = dirid;
ccae4a19 2057 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2058 key.offset = *start_ret;
2059
2060 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2061 if (ret < 0)
2062 goto out;
2063 if (ret > 0) {
2064 if (path->slots[0] == 0)
2065 goto out;
2066 path->slots[0]--;
2067 }
2068 if (ret != 0)
2069 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2070
ccae4a19 2071 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2072 ret = 1;
2073 goto next;
2074 }
2075 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2076 struct btrfs_dir_log_item);
2077 found_end = btrfs_dir_log_end(path->nodes[0], item);
2078
2079 if (*start_ret >= key.offset && *start_ret <= found_end) {
2080 ret = 0;
2081 *start_ret = key.offset;
2082 *end_ret = found_end;
2083 goto out;
2084 }
2085 ret = 1;
2086next:
2087 /* check the next slot in the tree to see if it is a valid item */
2088 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2089 path->slots[0]++;
e02119d5
CM
2090 if (path->slots[0] >= nritems) {
2091 ret = btrfs_next_leaf(root, path);
2092 if (ret)
2093 goto out;
e02119d5
CM
2094 }
2095
2096 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2097
ccae4a19 2098 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2099 ret = 1;
2100 goto out;
2101 }
2102 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2103 struct btrfs_dir_log_item);
2104 found_end = btrfs_dir_log_end(path->nodes[0], item);
2105 *start_ret = key.offset;
2106 *end_ret = found_end;
2107 ret = 0;
2108out:
b3b4aa74 2109 btrfs_release_path(path);
e02119d5
CM
2110 return ret;
2111}
2112
2113/*
2114 * this looks for a given directory item in the log. If the directory
2115 * item is not in the log, the item is removed and the inode it points
2116 * to is unlinked
2117 */
2118static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2119 struct btrfs_root *log,
2120 struct btrfs_path *path,
2121 struct btrfs_path *log_path,
2122 struct inode *dir,
2123 struct btrfs_key *dir_key)
2124{
d1ed82f3 2125 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2126 int ret;
2127 struct extent_buffer *eb;
2128 int slot;
e02119d5 2129 struct btrfs_dir_item *di;
6db75318 2130 struct fscrypt_str name;
ccae4a19 2131 struct inode *inode = NULL;
e02119d5
CM
2132 struct btrfs_key location;
2133
ccae4a19 2134 /*
143823cf 2135 * Currently we only log dir index keys. Even if we replay a log created
ccae4a19
FM
2136 * by an older kernel that logged both dir index and dir item keys, all
2137 * we need to do is process the dir index keys, we (and our caller) can
2138 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2139 */
2140 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2141
e02119d5
CM
2142 eb = path->nodes[0];
2143 slot = path->slots[0];
ccae4a19 2144 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
e43eec81
STD
2145 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2146 if (ret)
ccae4a19 2147 goto out;
3650860b 2148
ccae4a19
FM
2149 if (log) {
2150 struct btrfs_dir_item *log_di;
e02119d5 2151
ccae4a19
FM
2152 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2153 dir_key->objectid,
e43eec81 2154 dir_key->offset, &name, 0);
ccae4a19
FM
2155 if (IS_ERR(log_di)) {
2156 ret = PTR_ERR(log_di);
2157 goto out;
2158 } else if (log_di) {
2159 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2160 ret = 0;
2161 goto out;
2162 }
ccae4a19 2163 }
e02119d5 2164
ccae4a19
FM
2165 btrfs_dir_item_key_to_cpu(eb, di, &location);
2166 btrfs_release_path(path);
2167 btrfs_release_path(log_path);
2168 inode = read_one_inode(root, location.objectid);
2169 if (!inode) {
2170 ret = -EIO;
2171 goto out;
e02119d5 2172 }
ccae4a19
FM
2173
2174 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2175 if (ret)
2176 goto out;
2177
2178 inc_nlink(inode);
313ab753 2179 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 2180 &name);
ccae4a19
FM
2181 /*
2182 * Unlike dir item keys, dir index keys can only have one name (entry) in
2183 * them, as there are no key collisions since each key has a unique offset
2184 * (an index number), so we're done.
2185 */
e02119d5 2186out:
b3b4aa74
DS
2187 btrfs_release_path(path);
2188 btrfs_release_path(log_path);
e43eec81 2189 kfree(name.name);
ccae4a19 2190 iput(inode);
e02119d5
CM
2191 return ret;
2192}
2193
4f764e51
FM
2194static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2195 struct btrfs_root *root,
2196 struct btrfs_root *log,
2197 struct btrfs_path *path,
2198 const u64 ino)
2199{
2200 struct btrfs_key search_key;
2201 struct btrfs_path *log_path;
2202 int i;
2203 int nritems;
2204 int ret;
2205
2206 log_path = btrfs_alloc_path();
2207 if (!log_path)
2208 return -ENOMEM;
2209
2210 search_key.objectid = ino;
2211 search_key.type = BTRFS_XATTR_ITEM_KEY;
2212 search_key.offset = 0;
2213again:
2214 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2215 if (ret < 0)
2216 goto out;
2217process_leaf:
2218 nritems = btrfs_header_nritems(path->nodes[0]);
2219 for (i = path->slots[0]; i < nritems; i++) {
2220 struct btrfs_key key;
2221 struct btrfs_dir_item *di;
2222 struct btrfs_dir_item *log_di;
2223 u32 total_size;
2224 u32 cur;
2225
2226 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2227 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2228 ret = 0;
2229 goto out;
2230 }
2231
2232 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2233 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2234 cur = 0;
2235 while (cur < total_size) {
2236 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2237 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2238 u32 this_len = sizeof(*di) + name_len + data_len;
2239 char *name;
2240
2241 name = kmalloc(name_len, GFP_NOFS);
2242 if (!name) {
2243 ret = -ENOMEM;
2244 goto out;
2245 }
2246 read_extent_buffer(path->nodes[0], name,
2247 (unsigned long)(di + 1), name_len);
2248
2249 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2250 name, name_len, 0);
2251 btrfs_release_path(log_path);
2252 if (!log_di) {
2253 /* Doesn't exist in log tree, so delete it. */
2254 btrfs_release_path(path);
2255 di = btrfs_lookup_xattr(trans, root, path, ino,
2256 name, name_len, -1);
2257 kfree(name);
2258 if (IS_ERR(di)) {
2259 ret = PTR_ERR(di);
2260 goto out;
2261 }
2262 ASSERT(di);
2263 ret = btrfs_delete_one_dir_name(trans, root,
2264 path, di);
2265 if (ret)
2266 goto out;
2267 btrfs_release_path(path);
2268 search_key = key;
2269 goto again;
2270 }
2271 kfree(name);
2272 if (IS_ERR(log_di)) {
2273 ret = PTR_ERR(log_di);
2274 goto out;
2275 }
2276 cur += this_len;
2277 di = (struct btrfs_dir_item *)((char *)di + this_len);
2278 }
2279 }
2280 ret = btrfs_next_leaf(root, path);
2281 if (ret > 0)
2282 ret = 0;
2283 else if (ret == 0)
2284 goto process_leaf;
2285out:
2286 btrfs_free_path(log_path);
2287 btrfs_release_path(path);
2288 return ret;
2289}
2290
2291
e02119d5
CM
2292/*
2293 * deletion replay happens before we copy any new directory items
2294 * out of the log or out of backreferences from inodes. It
2295 * scans the log to find ranges of keys that log is authoritative for,
2296 * and then scans the directory to find items in those ranges that are
2297 * not present in the log.
2298 *
2299 * Anything we don't find in the log is unlinked and removed from the
2300 * directory.
2301 */
2302static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
12fcfd22 2306 u64 dirid, int del_all)
e02119d5
CM
2307{
2308 u64 range_start;
2309 u64 range_end;
e02119d5
CM
2310 int ret = 0;
2311 struct btrfs_key dir_key;
2312 struct btrfs_key found_key;
2313 struct btrfs_path *log_path;
2314 struct inode *dir;
2315
2316 dir_key.objectid = dirid;
ccae4a19 2317 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2318 log_path = btrfs_alloc_path();
2319 if (!log_path)
2320 return -ENOMEM;
2321
2322 dir = read_one_inode(root, dirid);
2323 /* it isn't an error if the inode isn't there, that can happen
2324 * because we replay the deletes before we copy in the inode item
2325 * from the log
2326 */
2327 if (!dir) {
2328 btrfs_free_path(log_path);
2329 return 0;
2330 }
ccae4a19 2331
e02119d5
CM
2332 range_start = 0;
2333 range_end = 0;
d397712b 2334 while (1) {
12fcfd22
CM
2335 if (del_all)
2336 range_end = (u64)-1;
2337 else {
ccae4a19 2338 ret = find_dir_range(log, path, dirid,
12fcfd22 2339 &range_start, &range_end);
10adb115
FM
2340 if (ret < 0)
2341 goto out;
2342 else if (ret > 0)
12fcfd22
CM
2343 break;
2344 }
e02119d5
CM
2345
2346 dir_key.offset = range_start;
d397712b 2347 while (1) {
e02119d5
CM
2348 int nritems;
2349 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2350 0, 0);
2351 if (ret < 0)
2352 goto out;
2353
2354 nritems = btrfs_header_nritems(path->nodes[0]);
2355 if (path->slots[0] >= nritems) {
2356 ret = btrfs_next_leaf(root, path);
b98def7c 2357 if (ret == 1)
e02119d5 2358 break;
b98def7c
LB
2359 else if (ret < 0)
2360 goto out;
e02119d5
CM
2361 }
2362 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2363 path->slots[0]);
2364 if (found_key.objectid != dirid ||
ccae4a19
FM
2365 found_key.type != dir_key.type) {
2366 ret = 0;
2367 goto out;
2368 }
e02119d5
CM
2369
2370 if (found_key.offset > range_end)
2371 break;
2372
d1ed82f3 2373 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2374 log_path, dir,
2375 &found_key);
3650860b
JB
2376 if (ret)
2377 goto out;
e02119d5
CM
2378 if (found_key.offset == (u64)-1)
2379 break;
2380 dir_key.offset = found_key.offset + 1;
2381 }
b3b4aa74 2382 btrfs_release_path(path);
e02119d5
CM
2383 if (range_end == (u64)-1)
2384 break;
2385 range_start = range_end + 1;
2386 }
e02119d5 2387 ret = 0;
e02119d5 2388out:
b3b4aa74 2389 btrfs_release_path(path);
e02119d5
CM
2390 btrfs_free_path(log_path);
2391 iput(dir);
2392 return ret;
2393}
2394
2395/*
2396 * the process_func used to replay items from the log tree. This
2397 * gets called in two different stages. The first stage just looks
2398 * for inodes and makes sure they are all copied into the subvolume.
2399 *
2400 * The second stage copies all the other item types from the log into
2401 * the subvolume. The two stage approach is slower, but gets rid of
2402 * lots of complexity around inodes referencing other inodes that exist
2403 * only in the log (references come from either directory items or inode
2404 * back refs).
2405 */
2406static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2407 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2408{
2409 int nritems;
2410 struct btrfs_path *path;
2411 struct btrfs_root *root = wc->replay_dest;
2412 struct btrfs_key key;
e02119d5
CM
2413 int i;
2414 int ret;
2415
6a2e9dc4 2416 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
018642a1
TI
2417 if (ret)
2418 return ret;
e02119d5
CM
2419
2420 level = btrfs_header_level(eb);
2421
2422 if (level != 0)
2423 return 0;
2424
2425 path = btrfs_alloc_path();
1e5063d0
MF
2426 if (!path)
2427 return -ENOMEM;
e02119d5
CM
2428
2429 nritems = btrfs_header_nritems(eb);
2430 for (i = 0; i < nritems; i++) {
2431 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2432
2433 /* inode keys are done during the first stage */
2434 if (key.type == BTRFS_INODE_ITEM_KEY &&
2435 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2436 struct btrfs_inode_item *inode_item;
2437 u32 mode;
2438
2439 inode_item = btrfs_item_ptr(eb, i,
2440 struct btrfs_inode_item);
f2d72f42
FM
2441 /*
2442 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2443 * and never got linked before the fsync, skip it, as
2444 * replaying it is pointless since it would be deleted
2445 * later. We skip logging tmpfiles, but it's always
2446 * possible we are replaying a log created with a kernel
2447 * that used to log tmpfiles.
2448 */
2449 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2450 wc->ignore_cur_inode = true;
2451 continue;
2452 } else {
2453 wc->ignore_cur_inode = false;
2454 }
4f764e51
FM
2455 ret = replay_xattr_deletes(wc->trans, root, log,
2456 path, key.objectid);
2457 if (ret)
2458 break;
e02119d5
CM
2459 mode = btrfs_inode_mode(eb, inode_item);
2460 if (S_ISDIR(mode)) {
2461 ret = replay_dir_deletes(wc->trans,
12fcfd22 2462 root, log, path, key.objectid, 0);
b50c6e25
JB
2463 if (ret)
2464 break;
e02119d5
CM
2465 }
2466 ret = overwrite_item(wc->trans, root, path,
2467 eb, i, &key);
b50c6e25
JB
2468 if (ret)
2469 break;
e02119d5 2470
471d557a
FM
2471 /*
2472 * Before replaying extents, truncate the inode to its
2473 * size. We need to do it now and not after log replay
2474 * because before an fsync we can have prealloc extents
2475 * added beyond the inode's i_size. If we did it after,
2476 * through orphan cleanup for example, we would drop
2477 * those prealloc extents just after replaying them.
e02119d5
CM
2478 */
2479 if (S_ISREG(mode)) {
5893dfb9 2480 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2481 struct inode *inode;
2482 u64 from;
2483
2484 inode = read_one_inode(root, key.objectid);
2485 if (!inode) {
2486 ret = -EIO;
2487 break;
2488 }
2489 from = ALIGN(i_size_read(inode),
2490 root->fs_info->sectorsize);
5893dfb9
FM
2491 drop_args.start = from;
2492 drop_args.end = (u64)-1;
2493 drop_args.drop_cache = true;
2494 ret = btrfs_drop_extents(wc->trans, root,
2495 BTRFS_I(inode),
2496 &drop_args);
471d557a 2497 if (!ret) {
2766ff61
FM
2498 inode_sub_bytes(inode,
2499 drop_args.bytes_found);
f2d72f42 2500 /* Update the inode's nbytes. */
471d557a 2501 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2502 root, BTRFS_I(inode));
471d557a
FM
2503 }
2504 iput(inode);
b50c6e25
JB
2505 if (ret)
2506 break;
e02119d5 2507 }
c71bf099 2508
e02119d5
CM
2509 ret = link_to_fixup_dir(wc->trans, root,
2510 path, key.objectid);
b50c6e25
JB
2511 if (ret)
2512 break;
e02119d5 2513 }
dd8e7217 2514
f2d72f42
FM
2515 if (wc->ignore_cur_inode)
2516 continue;
2517
dd8e7217
JB
2518 if (key.type == BTRFS_DIR_INDEX_KEY &&
2519 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2520 ret = replay_one_dir_item(wc->trans, root, path,
2521 eb, i, &key);
2522 if (ret)
2523 break;
2524 }
2525
e02119d5
CM
2526 if (wc->stage < LOG_WALK_REPLAY_ALL)
2527 continue;
2528
2529 /* these keys are simply copied */
2530 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2531 ret = overwrite_item(wc->trans, root, path,
2532 eb, i, &key);
b50c6e25
JB
2533 if (ret)
2534 break;
2da1c669
LB
2535 } else if (key.type == BTRFS_INODE_REF_KEY ||
2536 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2537 ret = add_inode_ref(wc->trans, root, log, path,
2538 eb, i, &key);
b50c6e25
JB
2539 if (ret && ret != -ENOENT)
2540 break;
2541 ret = 0;
e02119d5
CM
2542 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2543 ret = replay_one_extent(wc->trans, root, path,
2544 eb, i, &key);
b50c6e25
JB
2545 if (ret)
2546 break;
e02119d5 2547 }
339d0354
FM
2548 /*
2549 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2550 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2551 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2552 * older kernel with such keys, ignore them.
2553 */
e02119d5
CM
2554 }
2555 btrfs_free_path(path);
b50c6e25 2556 return ret;
e02119d5
CM
2557}
2558
6787bb9f
NB
2559/*
2560 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2561 */
2562static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2563{
2564 struct btrfs_block_group *cache;
2565
2566 cache = btrfs_lookup_block_group(fs_info, start);
2567 if (!cache) {
2568 btrfs_err(fs_info, "unable to find block group for %llu", start);
2569 return;
2570 }
2571
2572 spin_lock(&cache->space_info->lock);
2573 spin_lock(&cache->lock);
2574 cache->reserved -= fs_info->nodesize;
2575 cache->space_info->bytes_reserved -= fs_info->nodesize;
2576 spin_unlock(&cache->lock);
2577 spin_unlock(&cache->space_info->lock);
2578
2579 btrfs_put_block_group(cache);
2580}
2581
d397712b 2582static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2583 struct btrfs_root *root,
2584 struct btrfs_path *path, int *level,
2585 struct walk_control *wc)
2586{
0b246afa 2587 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2588 u64 bytenr;
2589 u64 ptr_gen;
2590 struct extent_buffer *next;
2591 struct extent_buffer *cur;
e02119d5
CM
2592 u32 blocksize;
2593 int ret = 0;
2594
d397712b 2595 while (*level > 0) {
581c1760
QW
2596 struct btrfs_key first_key;
2597
e02119d5
CM
2598 cur = path->nodes[*level];
2599
fae7f21c 2600 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2601
2602 if (path->slots[*level] >=
2603 btrfs_header_nritems(cur))
2604 break;
2605
2606 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2607 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2608 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2609 blocksize = fs_info->nodesize;
e02119d5 2610
3fbaf258
JB
2611 next = btrfs_find_create_tree_block(fs_info, bytenr,
2612 btrfs_header_owner(cur),
2613 *level - 1);
c871b0f2
LB
2614 if (IS_ERR(next))
2615 return PTR_ERR(next);
e02119d5 2616
e02119d5 2617 if (*level == 1) {
581c1760
QW
2618 ret = wc->process_func(root, next, wc, ptr_gen,
2619 *level - 1);
b50c6e25
JB
2620 if (ret) {
2621 free_extent_buffer(next);
1e5063d0 2622 return ret;
b50c6e25 2623 }
4a500fd1 2624
e02119d5
CM
2625 path->slots[*level]++;
2626 if (wc->free) {
6a2e9dc4 2627 ret = btrfs_read_extent_buffer(next, ptr_gen,
581c1760 2628 *level - 1, &first_key);
018642a1
TI
2629 if (ret) {
2630 free_extent_buffer(next);
2631 return ret;
2632 }
e02119d5 2633
681ae509
JB
2634 if (trans) {
2635 btrfs_tree_lock(next);
6a884d7d 2636 btrfs_clean_tree_block(next);
681ae509
JB
2637 btrfs_wait_tree_block_writeback(next);
2638 btrfs_tree_unlock(next);
7bfc1007 2639 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2640 bytenr, blocksize);
2641 if (ret) {
2642 free_extent_buffer(next);
2643 return ret;
2644 }
d3575156
NA
2645 btrfs_redirty_list_add(
2646 trans->transaction, next);
1846430c
LB
2647 } else {
2648 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2649 clear_extent_buffer_dirty(next);
10e958d5 2650 unaccount_log_buffer(fs_info, bytenr);
3650860b 2651 }
e02119d5
CM
2652 }
2653 free_extent_buffer(next);
2654 continue;
2655 }
6a2e9dc4 2656 ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2657 if (ret) {
2658 free_extent_buffer(next);
2659 return ret;
2660 }
e02119d5 2661
e02119d5
CM
2662 if (path->nodes[*level-1])
2663 free_extent_buffer(path->nodes[*level-1]);
2664 path->nodes[*level-1] = next;
2665 *level = btrfs_header_level(next);
2666 path->slots[*level] = 0;
2667 cond_resched();
2668 }
4a500fd1 2669 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2670
2671 cond_resched();
2672 return 0;
2673}
2674
d397712b 2675static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2676 struct btrfs_root *root,
2677 struct btrfs_path *path, int *level,
2678 struct walk_control *wc)
2679{
0b246afa 2680 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2681 int i;
2682 int slot;
2683 int ret;
2684
d397712b 2685 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2686 slot = path->slots[i];
4a500fd1 2687 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2688 path->slots[i]++;
2689 *level = i;
2690 WARN_ON(*level == 0);
2691 return 0;
2692 } else {
1e5063d0 2693 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2694 btrfs_header_generation(path->nodes[*level]),
2695 *level);
1e5063d0
MF
2696 if (ret)
2697 return ret;
2698
e02119d5
CM
2699 if (wc->free) {
2700 struct extent_buffer *next;
2701
2702 next = path->nodes[*level];
2703
681ae509
JB
2704 if (trans) {
2705 btrfs_tree_lock(next);
6a884d7d 2706 btrfs_clean_tree_block(next);
681ae509
JB
2707 btrfs_wait_tree_block_writeback(next);
2708 btrfs_tree_unlock(next);
7bfc1007 2709 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2710 path->nodes[*level]->start,
2711 path->nodes[*level]->len);
2712 if (ret)
2713 return ret;
84c25448
NA
2714 btrfs_redirty_list_add(trans->transaction,
2715 next);
1846430c
LB
2716 } else {
2717 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2718 clear_extent_buffer_dirty(next);
e02119d5 2719
10e958d5
NB
2720 unaccount_log_buffer(fs_info,
2721 path->nodes[*level]->start);
2722 }
e02119d5
CM
2723 }
2724 free_extent_buffer(path->nodes[*level]);
2725 path->nodes[*level] = NULL;
2726 *level = i + 1;
2727 }
2728 }
2729 return 1;
2730}
2731
2732/*
2733 * drop the reference count on the tree rooted at 'snap'. This traverses
2734 * the tree freeing any blocks that have a ref count of zero after being
2735 * decremented.
2736 */
2737static int walk_log_tree(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *log, struct walk_control *wc)
2739{
2ff7e61e 2740 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2741 int ret = 0;
2742 int wret;
2743 int level;
2744 struct btrfs_path *path;
e02119d5
CM
2745 int orig_level;
2746
2747 path = btrfs_alloc_path();
db5b493a
TI
2748 if (!path)
2749 return -ENOMEM;
e02119d5
CM
2750
2751 level = btrfs_header_level(log->node);
2752 orig_level = level;
2753 path->nodes[level] = log->node;
67439dad 2754 atomic_inc(&log->node->refs);
e02119d5
CM
2755 path->slots[level] = 0;
2756
d397712b 2757 while (1) {
e02119d5
CM
2758 wret = walk_down_log_tree(trans, log, path, &level, wc);
2759 if (wret > 0)
2760 break;
79787eaa 2761 if (wret < 0) {
e02119d5 2762 ret = wret;
79787eaa
JM
2763 goto out;
2764 }
e02119d5
CM
2765
2766 wret = walk_up_log_tree(trans, log, path, &level, wc);
2767 if (wret > 0)
2768 break;
79787eaa 2769 if (wret < 0) {
e02119d5 2770 ret = wret;
79787eaa
JM
2771 goto out;
2772 }
e02119d5
CM
2773 }
2774
2775 /* was the root node processed? if not, catch it here */
2776 if (path->nodes[orig_level]) {
79787eaa 2777 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2778 btrfs_header_generation(path->nodes[orig_level]),
2779 orig_level);
79787eaa
JM
2780 if (ret)
2781 goto out;
e02119d5
CM
2782 if (wc->free) {
2783 struct extent_buffer *next;
2784
2785 next = path->nodes[orig_level];
2786
681ae509
JB
2787 if (trans) {
2788 btrfs_tree_lock(next);
6a884d7d 2789 btrfs_clean_tree_block(next);
681ae509
JB
2790 btrfs_wait_tree_block_writeback(next);
2791 btrfs_tree_unlock(next);
7bfc1007 2792 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2793 next->start, next->len);
2794 if (ret)
2795 goto out;
84c25448 2796 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2797 } else {
2798 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2799 clear_extent_buffer_dirty(next);
10e958d5 2800 unaccount_log_buffer(fs_info, next->start);
681ae509 2801 }
e02119d5
CM
2802 }
2803 }
2804
79787eaa 2805out:
e02119d5 2806 btrfs_free_path(path);
e02119d5
CM
2807 return ret;
2808}
2809
7237f183
YZ
2810/*
2811 * helper function to update the item for a given subvolumes log root
2812 * in the tree of log roots
2813 */
2814static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2815 struct btrfs_root *log,
2816 struct btrfs_root_item *root_item)
7237f183 2817{
0b246afa 2818 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2819 int ret;
2820
2821 if (log->log_transid == 1) {
2822 /* insert root item on the first sync */
0b246afa 2823 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2824 &log->root_key, root_item);
7237f183 2825 } else {
0b246afa 2826 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2827 &log->root_key, root_item);
7237f183
YZ
2828 }
2829 return ret;
2830}
2831
60d53eb3 2832static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2833{
2834 DEFINE_WAIT(wait);
7237f183 2835 int index = transid % 2;
e02119d5 2836
7237f183
YZ
2837 /*
2838 * we only allow two pending log transactions at a time,
2839 * so we know that if ours is more than 2 older than the
2840 * current transaction, we're done
2841 */
49e83f57 2842 for (;;) {
7237f183
YZ
2843 prepare_to_wait(&root->log_commit_wait[index],
2844 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2845
49e83f57
LB
2846 if (!(root->log_transid_committed < transid &&
2847 atomic_read(&root->log_commit[index])))
2848 break;
12fcfd22 2849
49e83f57
LB
2850 mutex_unlock(&root->log_mutex);
2851 schedule();
7237f183 2852 mutex_lock(&root->log_mutex);
49e83f57
LB
2853 }
2854 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2855}
2856
60d53eb3 2857static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2858{
2859 DEFINE_WAIT(wait);
8b050d35 2860
49e83f57
LB
2861 for (;;) {
2862 prepare_to_wait(&root->log_writer_wait, &wait,
2863 TASK_UNINTERRUPTIBLE);
2864 if (!atomic_read(&root->log_writers))
2865 break;
2866
7237f183 2867 mutex_unlock(&root->log_mutex);
49e83f57 2868 schedule();
575849ec 2869 mutex_lock(&root->log_mutex);
7237f183 2870 }
49e83f57 2871 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2872}
2873
8b050d35
MX
2874static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2875 struct btrfs_log_ctx *ctx)
2876{
8b050d35
MX
2877 mutex_lock(&root->log_mutex);
2878 list_del_init(&ctx->list);
2879 mutex_unlock(&root->log_mutex);
2880}
2881
2882/*
2883 * Invoked in log mutex context, or be sure there is no other task which
2884 * can access the list.
2885 */
2886static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2887 int index, int error)
2888{
2889 struct btrfs_log_ctx *ctx;
570dd450 2890 struct btrfs_log_ctx *safe;
8b050d35 2891
570dd450
CM
2892 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2893 list_del_init(&ctx->list);
8b050d35 2894 ctx->log_ret = error;
570dd450 2895 }
8b050d35
MX
2896}
2897
e02119d5
CM
2898/*
2899 * btrfs_sync_log does sends a given tree log down to the disk and
2900 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2901 * you know that any inodes previously logged are safely on disk only
2902 * if it returns 0.
2903 *
2904 * Any other return value means you need to call btrfs_commit_transaction.
2905 * Some of the edge cases for fsyncing directories that have had unlinks
2906 * or renames done in the past mean that sometimes the only safe
2907 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2908 * that has happened.
e02119d5
CM
2909 */
2910int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2911 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2912{
7237f183
YZ
2913 int index1;
2914 int index2;
8cef4e16 2915 int mark;
e02119d5 2916 int ret;
0b246afa 2917 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2918 struct btrfs_root *log = root->log_root;
0b246afa 2919 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 2920 struct btrfs_root_item new_root_item;
bb14a59b 2921 int log_transid = 0;
8b050d35 2922 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2923 struct blk_plug plug;
47876f7c
FM
2924 u64 log_root_start;
2925 u64 log_root_level;
e02119d5 2926
7237f183 2927 mutex_lock(&root->log_mutex);
d1433deb
MX
2928 log_transid = ctx->log_transid;
2929 if (root->log_transid_committed >= log_transid) {
2930 mutex_unlock(&root->log_mutex);
2931 return ctx->log_ret;
2932 }
2933
2934 index1 = log_transid % 2;
7237f183 2935 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2936 wait_log_commit(root, log_transid);
7237f183 2937 mutex_unlock(&root->log_mutex);
8b050d35 2938 return ctx->log_ret;
e02119d5 2939 }
d1433deb 2940 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2941 atomic_set(&root->log_commit[index1], 1);
2942
2943 /* wait for previous tree log sync to complete */
2944 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2945 wait_log_commit(root, log_transid - 1);
48cab2e0 2946
86df7eb9 2947 while (1) {
2ecb7923 2948 int batch = atomic_read(&root->log_batch);
cd354ad6 2949 /* when we're on an ssd, just kick the log commit out */
0b246afa 2950 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2951 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2952 mutex_unlock(&root->log_mutex);
2953 schedule_timeout_uninterruptible(1);
2954 mutex_lock(&root->log_mutex);
2955 }
60d53eb3 2956 wait_for_writer(root);
2ecb7923 2957 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2958 break;
2959 }
e02119d5 2960
12fcfd22 2961 /* bail out if we need to do a full commit */
4884b8e8 2962 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 2963 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
2964 mutex_unlock(&root->log_mutex);
2965 goto out;
2966 }
2967
8cef4e16
YZ
2968 if (log_transid % 2 == 0)
2969 mark = EXTENT_DIRTY;
2970 else
2971 mark = EXTENT_NEW;
2972
690587d1
CM
2973 /* we start IO on all the marked extents here, but we don't actually
2974 * wait for them until later.
2975 */
c6adc9cc 2976 blk_start_plug(&plug);
2ff7e61e 2977 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
2978 /*
2979 * -EAGAIN happens when someone, e.g., a concurrent transaction
2980 * commit, writes a dirty extent in this tree-log commit. This
2981 * concurrent write will create a hole writing out the extents,
2982 * and we cannot proceed on a zoned filesystem, requiring
2983 * sequential writing. While we can bail out to a full commit
2984 * here, but we can continue hoping the concurrent writing fills
2985 * the hole.
2986 */
2987 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2988 ret = 0;
79787eaa 2989 if (ret) {
c6adc9cc 2990 blk_finish_plug(&plug);
66642832 2991 btrfs_abort_transaction(trans, ret);
90787766 2992 btrfs_set_log_full_commit(trans);
79787eaa
JM
2993 mutex_unlock(&root->log_mutex);
2994 goto out;
2995 }
7237f183 2996
4203e968
JB
2997 /*
2998 * We _must_ update under the root->log_mutex in order to make sure we
2999 * have a consistent view of the log root we are trying to commit at
3000 * this moment.
3001 *
3002 * We _must_ copy this into a local copy, because we are not holding the
3003 * log_root_tree->log_mutex yet. This is important because when we
3004 * commit the log_root_tree we must have a consistent view of the
3005 * log_root_tree when we update the super block to point at the
3006 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3007 * with the commit and possibly point at the new block which we may not
3008 * have written out.
3009 */
5d4f98a2 3010 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3011 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3012
7237f183
YZ
3013 root->log_transid++;
3014 log->log_transid = root->log_transid;
ff782e0a 3015 root->log_start_pid = 0;
7237f183 3016 /*
8cef4e16
YZ
3017 * IO has been started, blocks of the log tree have WRITTEN flag set
3018 * in their headers. new modifications of the log will be written to
3019 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3020 */
3021 mutex_unlock(&root->log_mutex);
3022
3ddebf27 3023 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3024 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3025 if (!log_root_tree->node) {
3026 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3027 if (ret) {
ea32af47 3028 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3029 blk_finish_plug(&plug);
3ddebf27
NA
3030 goto out;
3031 }
3032 }
e75f9fd1 3033 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3034 }
3035
e75f9fd1
NA
3036 btrfs_init_log_ctx(&root_log_ctx, NULL);
3037
3038 mutex_lock(&log_root_tree->log_mutex);
3039
e3d3b415
FM
3040 index2 = log_root_tree->log_transid % 2;
3041 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3042 root_log_ctx.log_transid = log_root_tree->log_transid;
3043
4203e968
JB
3044 /*
3045 * Now we are safe to update the log_root_tree because we're under the
3046 * log_mutex, and we're a current writer so we're holding the commit
3047 * open until we drop the log_mutex.
3048 */
3049 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3050 if (ret) {
d1433deb
MX
3051 if (!list_empty(&root_log_ctx.list))
3052 list_del_init(&root_log_ctx.list);
3053
c6adc9cc 3054 blk_finish_plug(&plug);
90787766 3055 btrfs_set_log_full_commit(trans);
995946dd 3056
79787eaa 3057 if (ret != -ENOSPC) {
66642832 3058 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 goto out;
3061 }
bf89d38f 3062 btrfs_wait_tree_log_extents(log, mark);
4a500fd1 3063 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3064 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1
YZ
3065 goto out;
3066 }
3067
d1433deb 3068 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3069 blk_finish_plug(&plug);
cbd60aa7 3070 list_del_init(&root_log_ctx.list);
d1433deb
MX
3071 mutex_unlock(&log_root_tree->log_mutex);
3072 ret = root_log_ctx.log_ret;
3073 goto out;
3074 }
8b050d35 3075
d1433deb 3076 index2 = root_log_ctx.log_transid % 2;
7237f183 3077 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3078 blk_finish_plug(&plug);
bf89d38f 3079 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3080 wait_log_commit(log_root_tree,
d1433deb 3081 root_log_ctx.log_transid);
7237f183 3082 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3083 if (!ret)
3084 ret = root_log_ctx.log_ret;
7237f183
YZ
3085 goto out;
3086 }
d1433deb 3087 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3088 atomic_set(&log_root_tree->log_commit[index2], 1);
3089
12fcfd22 3090 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3091 wait_log_commit(log_root_tree,
d1433deb 3092 root_log_ctx.log_transid - 1);
12fcfd22
CM
3093 }
3094
12fcfd22
CM
3095 /*
3096 * now that we've moved on to the tree of log tree roots,
3097 * check the full commit flag again
3098 */
4884b8e8 3099 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3100 blk_finish_plug(&plug);
bf89d38f 3101 btrfs_wait_tree_log_extents(log, mark);
12fcfd22 3102 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3103 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
3104 goto out_wake_log_root;
3105 }
7237f183 3106
2ff7e61e 3107 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3108 &log_root_tree->dirty_log_pages,
3109 EXTENT_DIRTY | EXTENT_NEW);
3110 blk_finish_plug(&plug);
b528f467
NA
3111 /*
3112 * As described above, -EAGAIN indicates a hole in the extents. We
3113 * cannot wait for these write outs since the waiting cause a
3114 * deadlock. Bail out to the full commit instead.
3115 */
3116 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3117 btrfs_set_log_full_commit(trans);
3118 btrfs_wait_tree_log_extents(log, mark);
3119 mutex_unlock(&log_root_tree->log_mutex);
3120 goto out_wake_log_root;
3121 } else if (ret) {
90787766 3122 btrfs_set_log_full_commit(trans);
66642832 3123 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3124 mutex_unlock(&log_root_tree->log_mutex);
3125 goto out_wake_log_root;
3126 }
bf89d38f 3127 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3128 if (!ret)
bf89d38f
JM
3129 ret = btrfs_wait_tree_log_extents(log_root_tree,
3130 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3131 if (ret) {
90787766 3132 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3133 mutex_unlock(&log_root_tree->log_mutex);
3134 goto out_wake_log_root;
3135 }
e02119d5 3136
47876f7c
FM
3137 log_root_start = log_root_tree->node->start;
3138 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3139 log_root_tree->log_transid++;
7237f183
YZ
3140 mutex_unlock(&log_root_tree->log_mutex);
3141
3142 /*
47876f7c
FM
3143 * Here we are guaranteed that nobody is going to write the superblock
3144 * for the current transaction before us and that neither we do write
3145 * our superblock before the previous transaction finishes its commit
3146 * and writes its superblock, because:
3147 *
3148 * 1) We are holding a handle on the current transaction, so no body
3149 * can commit it until we release the handle;
3150 *
3151 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3152 * if the previous transaction is still committing, and hasn't yet
3153 * written its superblock, we wait for it to do it, because a
3154 * transaction commit acquires the tree_log_mutex when the commit
3155 * begins and releases it only after writing its superblock.
7237f183 3156 */
47876f7c 3157 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3158
3159 /*
3160 * The previous transaction writeout phase could have failed, and thus
3161 * marked the fs in an error state. We must not commit here, as we
3162 * could have updated our generation in the super_for_commit and
3163 * writing the super here would result in transid mismatches. If there
3164 * is an error here just bail.
3165 */
84961539 3166 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3167 ret = -EIO;
3168 btrfs_set_log_full_commit(trans);
3169 btrfs_abort_transaction(trans, ret);
3170 mutex_unlock(&fs_info->tree_log_mutex);
3171 goto out_wake_log_root;
3172 }
3173
47876f7c
FM
3174 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3175 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3176 ret = write_all_supers(fs_info, 1);
47876f7c 3177 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3178 if (ret) {
90787766 3179 btrfs_set_log_full_commit(trans);
66642832 3180 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3181 goto out_wake_log_root;
3182 }
7237f183 3183
e1a6d264
FM
3184 /*
3185 * We know there can only be one task here, since we have not yet set
3186 * root->log_commit[index1] to 0 and any task attempting to sync the
3187 * log must wait for the previous log transaction to commit if it's
3188 * still in progress or wait for the current log transaction commit if
3189 * someone else already started it. We use <= and not < because the
3190 * first log transaction has an ID of 0.
3191 */
3192 ASSERT(root->last_log_commit <= log_transid);
3193 root->last_log_commit = log_transid;
257c62e1 3194
12fcfd22 3195out_wake_log_root:
570dd450 3196 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3197 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3198
d1433deb 3199 log_root_tree->log_transid_committed++;
7237f183 3200 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3201 mutex_unlock(&log_root_tree->log_mutex);
3202
33a9eca7 3203 /*
093258e6
DS
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
33a9eca7 3207 */
093258e6 3208 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3209out:
d1433deb 3210 mutex_lock(&root->log_mutex);
570dd450 3211 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3212 root->log_transid_committed++;
7237f183 3213 atomic_set(&root->log_commit[index1], 0);
d1433deb 3214 mutex_unlock(&root->log_mutex);
8b050d35 3215
33a9eca7 3216 /*
093258e6
DS
3217 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3218 * all the updates above are seen by the woken threads. It might not be
3219 * necessary, but proving that seems to be hard.
33a9eca7 3220 */
093258e6 3221 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3222 return ret;
e02119d5
CM
3223}
3224
4a500fd1
YZ
3225static void free_log_tree(struct btrfs_trans_handle *trans,
3226 struct btrfs_root *log)
e02119d5
CM
3227{
3228 int ret;
e02119d5
CM
3229 struct walk_control wc = {
3230 .free = 1,
3231 .process_func = process_one_buffer
3232 };
3233
3ddebf27
NA
3234 if (log->node) {
3235 ret = walk_log_tree(trans, log, &wc);
3236 if (ret) {
40cdc509
FM
3237 /*
3238 * We weren't able to traverse the entire log tree, the
3239 * typical scenario is getting an -EIO when reading an
3240 * extent buffer of the tree, due to a previous writeback
3241 * failure of it.
3242 */
3243 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3244 &log->fs_info->fs_state);
3245
3246 /*
3247 * Some extent buffers of the log tree may still be dirty
3248 * and not yet written back to storage, because we may
3249 * have updates to a log tree without syncing a log tree,
3250 * such as during rename and link operations. So flush
3251 * them out and wait for their writeback to complete, so
3252 * that we properly cleanup their state and pages.
3253 */
3254 btrfs_write_marked_extents(log->fs_info,
3255 &log->dirty_log_pages,
3256 EXTENT_DIRTY | EXTENT_NEW);
3257 btrfs_wait_tree_log_extents(log,
3258 EXTENT_DIRTY | EXTENT_NEW);
3259
3ddebf27
NA
3260 if (trans)
3261 btrfs_abort_transaction(trans, ret);
3262 else
3263 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3264 }
374b0e2d 3265 }
e02119d5 3266
59b0713a
FM
3267 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3268 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3269 extent_io_tree_release(&log->log_csum_range);
d3575156 3270
00246528 3271 btrfs_put_root(log);
4a500fd1
YZ
3272}
3273
3274/*
3275 * free all the extents used by the tree log. This should be called
3276 * at commit time of the full transaction
3277 */
3278int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3279{
3280 if (root->log_root) {
3281 free_log_tree(trans, root->log_root);
3282 root->log_root = NULL;
e7a79811 3283 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3284 }
3285 return 0;
3286}
3287
3288int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3289 struct btrfs_fs_info *fs_info)
3290{
3291 if (fs_info->log_root_tree) {
3292 free_log_tree(trans, fs_info->log_root_tree);
3293 fs_info->log_root_tree = NULL;
47876f7c 3294 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3295 }
e02119d5
CM
3296 return 0;
3297}
3298
803f0f64 3299/*
0f8ce498
FM
3300 * Check if an inode was logged in the current transaction. This correctly deals
3301 * with the case where the inode was logged but has a logged_trans of 0, which
3302 * happens if the inode is evicted and loaded again, as logged_trans is an in
3303 * memory only field (not persisted).
3304 *
3305 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3306 * and < 0 on error.
803f0f64 3307 */
0f8ce498
FM
3308static int inode_logged(struct btrfs_trans_handle *trans,
3309 struct btrfs_inode *inode,
3310 struct btrfs_path *path_in)
803f0f64 3311{
0f8ce498
FM
3312 struct btrfs_path *path = path_in;
3313 struct btrfs_key key;
3314 int ret;
3315
803f0f64 3316 if (inode->logged_trans == trans->transid)
0f8ce498 3317 return 1;
803f0f64 3318
0f8ce498
FM
3319 /*
3320 * If logged_trans is not 0, then we know the inode logged was not logged
3321 * in this transaction, so we can return false right away.
3322 */
3323 if (inode->logged_trans > 0)
3324 return 0;
3325
3326 /*
3327 * If no log tree was created for this root in this transaction, then
3328 * the inode can not have been logged in this transaction. In that case
3329 * set logged_trans to anything greater than 0 and less than the current
3330 * transaction's ID, to avoid the search below in a future call in case
3331 * a log tree gets created after this.
3332 */
3333 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3334 inode->logged_trans = trans->transid - 1;
3335 return 0;
3336 }
3337
3338 /*
3339 * We have a log tree and the inode's logged_trans is 0. We can't tell
3340 * for sure if the inode was logged before in this transaction by looking
3341 * only at logged_trans. We could be pessimistic and assume it was, but
3342 * that can lead to unnecessarily logging an inode during rename and link
3343 * operations, and then further updating the log in followup rename and
3344 * link operations, specially if it's a directory, which adds latency
3345 * visible to applications doing a series of rename or link operations.
3346 *
3347 * A logged_trans of 0 here can mean several things:
3348 *
3349 * 1) The inode was never logged since the filesystem was mounted, and may
3350 * or may have not been evicted and loaded again;
3351 *
3352 * 2) The inode was logged in a previous transaction, then evicted and
3353 * then loaded again;
3354 *
3355 * 3) The inode was logged in the current transaction, then evicted and
3356 * then loaded again.
3357 *
3358 * For cases 1) and 2) we don't want to return true, but we need to detect
3359 * case 3) and return true. So we do a search in the log root for the inode
3360 * item.
3361 */
3362 key.objectid = btrfs_ino(inode);
3363 key.type = BTRFS_INODE_ITEM_KEY;
3364 key.offset = 0;
3365
3366 if (!path) {
3367 path = btrfs_alloc_path();
3368 if (!path)
3369 return -ENOMEM;
3370 }
3371
3372 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3373
3374 if (path_in)
3375 btrfs_release_path(path);
3376 else
3377 btrfs_free_path(path);
1e0860f3 3378
6e8e777d 3379 /*
0f8ce498
FM
3380 * Logging an inode always results in logging its inode item. So if we
3381 * did not find the item we know the inode was not logged for sure.
6e8e777d 3382 */
0f8ce498
FM
3383 if (ret < 0) {
3384 return ret;
3385 } else if (ret > 0) {
3386 /*
3387 * Set logged_trans to a value greater than 0 and less then the
3388 * current transaction to avoid doing the search in future calls.
3389 */
3390 inode->logged_trans = trans->transid - 1;
3391 return 0;
3392 }
3393
3394 /*
3395 * The inode was previously logged and then evicted, set logged_trans to
3396 * the current transacion's ID, to avoid future tree searches as long as
3397 * the inode is not evicted again.
3398 */
3399 inode->logged_trans = trans->transid;
3400
3401 /*
3402 * If it's a directory, then we must set last_dir_index_offset to the
3403 * maximum possible value, so that the next attempt to log the inode does
3404 * not skip checking if dir index keys found in modified subvolume tree
3405 * leaves have been logged before, otherwise it would result in attempts
3406 * to insert duplicate dir index keys in the log tree. This must be done
3407 * because last_dir_index_offset is an in-memory only field, not persisted
3408 * in the inode item or any other on-disk structure, so its value is lost
3409 * once the inode is evicted.
3410 */
3411 if (S_ISDIR(inode->vfs_inode.i_mode))
3412 inode->last_dir_index_offset = (u64)-1;
803f0f64 3413
0f8ce498 3414 return 1;
803f0f64
FM
3415}
3416
839061fe
FM
3417/*
3418 * Delete a directory entry from the log if it exists.
3419 *
3420 * Returns < 0 on error
3421 * 1 if the entry does not exists
3422 * 0 if the entry existed and was successfully deleted
3423 */
3424static int del_logged_dentry(struct btrfs_trans_handle *trans,
3425 struct btrfs_root *log,
3426 struct btrfs_path *path,
3427 u64 dir_ino,
6db75318 3428 const struct fscrypt_str *name,
839061fe
FM
3429 u64 index)
3430{
3431 struct btrfs_dir_item *di;
3432
3433 /*
3434 * We only log dir index items of a directory, so we don't need to look
3435 * for dir item keys.
3436 */
3437 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e43eec81 3438 index, name, -1);
839061fe
FM
3439 if (IS_ERR(di))
3440 return PTR_ERR(di);
3441 else if (!di)
3442 return 1;
3443
3444 /*
3445 * We do not need to update the size field of the directory's
3446 * inode item because on log replay we update the field to reflect
3447 * all existing entries in the directory (see overwrite_item()).
3448 */
3449 return btrfs_delete_one_dir_name(trans, log, path, di);
3450}
3451
e02119d5
CM
3452/*
3453 * If both a file and directory are logged, and unlinks or renames are
3454 * mixed in, we have a few interesting corners:
3455 *
3456 * create file X in dir Y
3457 * link file X to X.link in dir Y
3458 * fsync file X
3459 * unlink file X but leave X.link
3460 * fsync dir Y
3461 *
3462 * After a crash we would expect only X.link to exist. But file X
3463 * didn't get fsync'd again so the log has back refs for X and X.link.
3464 *
3465 * We solve this by removing directory entries and inode backrefs from the
3466 * log when a file that was logged in the current transaction is
3467 * unlinked. Any later fsync will include the updated log entries, and
3468 * we'll be able to reconstruct the proper directory items from backrefs.
3469 *
3470 * This optimizations allows us to avoid relogging the entire inode
3471 * or the entire directory.
3472 */
9a35fc95
JB
3473void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root,
6db75318 3475 const struct fscrypt_str *name,
9a35fc95 3476 struct btrfs_inode *dir, u64 index)
e02119d5 3477{
e02119d5
CM
3478 struct btrfs_path *path;
3479 int ret;
e02119d5 3480
0f8ce498
FM
3481 ret = inode_logged(trans, dir, NULL);
3482 if (ret == 0)
3483 return;
3484 else if (ret < 0) {
3485 btrfs_set_log_full_commit(trans);
9a35fc95 3486 return;
0f8ce498 3487 }
3a5f1d45 3488
e02119d5
CM
3489 ret = join_running_log_trans(root);
3490 if (ret)
9a35fc95 3491 return;
e02119d5 3492
49f34d1f 3493 mutex_lock(&dir->log_mutex);
e02119d5 3494
e02119d5 3495 path = btrfs_alloc_path();
a62f44a5 3496 if (!path) {
839061fe 3497 ret = -ENOMEM;
a62f44a5
TI
3498 goto out_unlock;
3499 }
2a29edc6 3500
839061fe 3501 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
e43eec81 3502 name, index);
e02119d5 3503 btrfs_free_path(path);
a62f44a5 3504out_unlock:
49f34d1f 3505 mutex_unlock(&dir->log_mutex);
839061fe 3506 if (ret < 0)
90787766 3507 btrfs_set_log_full_commit(trans);
12fcfd22 3508 btrfs_end_log_trans(root);
e02119d5
CM
3509}
3510
3511/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3512void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3513 struct btrfs_root *root,
6db75318 3514 const struct fscrypt_str *name,
9a35fc95 3515 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3516{
3517 struct btrfs_root *log;
3518 u64 index;
3519 int ret;
3520
0f8ce498
FM
3521 ret = inode_logged(trans, inode, NULL);
3522 if (ret == 0)
9a35fc95 3523 return;
0f8ce498
FM
3524 else if (ret < 0) {
3525 btrfs_set_log_full_commit(trans);
3526 return;
3527 }
3a5f1d45 3528
e02119d5
CM
3529 ret = join_running_log_trans(root);
3530 if (ret)
9a35fc95 3531 return;
e02119d5 3532 log = root->log_root;
a491abb2 3533 mutex_lock(&inode->log_mutex);
e02119d5 3534
e43eec81 3535 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
e02119d5 3536 dirid, &index);
a491abb2 3537 mutex_unlock(&inode->log_mutex);
9a35fc95 3538 if (ret < 0 && ret != -ENOENT)
90787766 3539 btrfs_set_log_full_commit(trans);
12fcfd22 3540 btrfs_end_log_trans(root);
e02119d5
CM
3541}
3542
3543/*
3544 * creates a range item in the log for 'dirid'. first_offset and
3545 * last_offset tell us which parts of the key space the log should
3546 * be considered authoritative for.
3547 */
3548static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *log,
3550 struct btrfs_path *path,
339d0354 3551 u64 dirid,
e02119d5
CM
3552 u64 first_offset, u64 last_offset)
3553{
3554 int ret;
3555 struct btrfs_key key;
3556 struct btrfs_dir_log_item *item;
3557
3558 key.objectid = dirid;
3559 key.offset = first_offset;
339d0354 3560 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3561 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3562 /*
3563 * -EEXIST is fine and can happen sporadically when we are logging a
3564 * directory and have concurrent insertions in the subvolume's tree for
3565 * items from other inodes and that result in pushing off some dir items
3566 * from one leaf to another in order to accommodate for the new items.
3567 * This results in logging the same dir index range key.
3568 */
3569 if (ret && ret != -EEXIST)
4a500fd1 3570 return ret;
e02119d5
CM
3571
3572 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3573 struct btrfs_dir_log_item);
750ee454
FM
3574 if (ret == -EEXIST) {
3575 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3576
3577 /*
3578 * btrfs_del_dir_entries_in_log() might have been called during
3579 * an unlink between the initial insertion of this key and the
3580 * current update, or we might be logging a single entry deletion
3581 * during a rename, so set the new last_offset to the max value.
3582 */
3583 last_offset = max(last_offset, curr_end);
3584 }
e02119d5
CM
3585 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3586 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3587 btrfs_release_path(path);
e02119d5
CM
3588 return 0;
3589}
3590
086dcbfa
FM
3591static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3592 struct btrfs_root *log,
3593 struct extent_buffer *src,
3594 struct btrfs_path *dst_path,
3595 int start_slot,
3596 int count)
3597{
3598 char *ins_data = NULL;
b7ef5f3a 3599 struct btrfs_item_batch batch;
086dcbfa 3600 struct extent_buffer *dst;
da1b811f
FM
3601 unsigned long src_offset;
3602 unsigned long dst_offset;
086dcbfa
FM
3603 struct btrfs_key key;
3604 u32 item_size;
3605 int ret;
3606 int i;
3607
3608 ASSERT(count > 0);
b7ef5f3a 3609 batch.nr = count;
086dcbfa
FM
3610
3611 if (count == 1) {
3612 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3613 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3614 batch.keys = &key;
3615 batch.data_sizes = &item_size;
3616 batch.total_data_size = item_size;
086dcbfa 3617 } else {
b7ef5f3a
FM
3618 struct btrfs_key *ins_keys;
3619 u32 *ins_sizes;
3620
086dcbfa
FM
3621 ins_data = kmalloc(count * sizeof(u32) +
3622 count * sizeof(struct btrfs_key), GFP_NOFS);
3623 if (!ins_data)
3624 return -ENOMEM;
3625
3626 ins_sizes = (u32 *)ins_data;
3627 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3628 batch.keys = ins_keys;
3629 batch.data_sizes = ins_sizes;
3630 batch.total_data_size = 0;
086dcbfa
FM
3631
3632 for (i = 0; i < count; i++) {
3633 const int slot = start_slot + i;
3634
3635 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3636 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3637 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3638 }
3639 }
3640
b7ef5f3a 3641 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3642 if (ret)
3643 goto out;
3644
3645 dst = dst_path->nodes[0];
da1b811f
FM
3646 /*
3647 * Copy all the items in bulk, in a single copy operation. Item data is
3648 * organized such that it's placed at the end of a leaf and from right
3649 * to left. For example, the data for the second item ends at an offset
3650 * that matches the offset where the data for the first item starts, the
3651 * data for the third item ends at an offset that matches the offset
3652 * where the data of the second items starts, and so on.
3653 * Therefore our source and destination start offsets for copy match the
3654 * offsets of the last items (highest slots).
3655 */
3656 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3657 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3658 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa
FM
3659 btrfs_release_path(dst_path);
3660out:
3661 kfree(ins_data);
3662
3663 return ret;
3664}
3665
eb10d85e
FM
3666static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3667 struct btrfs_inode *inode,
3668 struct btrfs_path *path,
3669 struct btrfs_path *dst_path,
732d591a
FM
3670 struct btrfs_log_ctx *ctx,
3671 u64 *last_old_dentry_offset)
eb10d85e
FM
3672{
3673 struct btrfs_root *log = inode->root->log_root;
796787c9
FM
3674 struct extent_buffer *src;
3675 const int nritems = btrfs_header_nritems(path->nodes[0]);
eb10d85e 3676 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3677 bool last_found = false;
3678 int batch_start = 0;
3679 int batch_size = 0;
eb10d85e
FM
3680 int i;
3681
796787c9
FM
3682 /*
3683 * We need to clone the leaf, release the read lock on it, and use the
3684 * clone before modifying the log tree. See the comment at copy_items()
3685 * about why we need to do this.
3686 */
3687 src = btrfs_clone_extent_buffer(path->nodes[0]);
3688 if (!src)
3689 return -ENOMEM;
3690
3691 i = path->slots[0];
3692 btrfs_release_path(path);
3693 path->nodes[0] = src;
3694 path->slots[0] = i;
3695
3696 for (; i < nritems; i++) {
732d591a 3697 struct btrfs_dir_item *di;
eb10d85e 3698 struct btrfs_key key;
eb10d85e
FM
3699 int ret;
3700
3701 btrfs_item_key_to_cpu(src, &key, i);
3702
339d0354 3703 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3704 last_found = true;
3705 break;
3706 }
eb10d85e 3707
732d591a 3708 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
dc287224 3709 ctx->last_dir_item_offset = key.offset;
732d591a
FM
3710
3711 /*
3712 * Skip ranges of items that consist only of dir item keys created
3713 * in past transactions. However if we find a gap, we must log a
3714 * dir index range item for that gap, so that index keys in that
3715 * gap are deleted during log replay.
3716 */
3717 if (btrfs_dir_transid(src, di) < trans->transid) {
3718 if (key.offset > *last_old_dentry_offset + 1) {
3719 ret = insert_dir_log_key(trans, log, dst_path,
3720 ino, *last_old_dentry_offset + 1,
3721 key.offset - 1);
732d591a
FM
3722 if (ret < 0)
3723 return ret;
3724 }
3725
3726 *last_old_dentry_offset = key.offset;
3727 continue;
3728 }
193df624
FM
3729
3730 /* If we logged this dir index item before, we can skip it. */
3731 if (key.offset <= inode->last_dir_index_offset)
3732 continue;
3733
eb10d85e
FM
3734 /*
3735 * We must make sure that when we log a directory entry, the
3736 * corresponding inode, after log replay, has a matching link
3737 * count. For example:
3738 *
3739 * touch foo
3740 * mkdir mydir
3741 * sync
3742 * ln foo mydir/bar
3743 * xfs_io -c "fsync" mydir
3744 * <crash>
3745 * <mount fs and log replay>
3746 *
3747 * Would result in a fsync log that when replayed, our file inode
3748 * would have a link count of 1, but we get two directory entries
3749 * pointing to the same inode. After removing one of the names,
3750 * it would not be possible to remove the other name, which
3751 * resulted always in stale file handle errors, and would not be
3752 * possible to rmdir the parent directory, since its i_size could
3753 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3754 * resulting in -ENOTEMPTY errors.
3755 */
086dcbfa 3756 if (!ctx->log_new_dentries) {
086dcbfa
FM
3757 struct btrfs_key di_key;
3758
086dcbfa 3759 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3760 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3761 ctx->log_new_dentries = true;
3762 }
3763
086dcbfa
FM
3764 if (batch_size == 0)
3765 batch_start = i;
3766 batch_size++;
eb10d85e
FM
3767 }
3768
086dcbfa
FM
3769 if (batch_size > 0) {
3770 int ret;
3771
3772 ret = flush_dir_items_batch(trans, log, src, dst_path,
3773 batch_start, batch_size);
3774 if (ret < 0)
3775 return ret;
3776 }
3777
3778 return last_found ? 1 : 0;
eb10d85e
FM
3779}
3780
e02119d5
CM
3781/*
3782 * log all the items included in the current transaction for a given
3783 * directory. This also creates the range items in the log tree required
3784 * to replay anything deleted before the fsync
3785 */
3786static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3787 struct btrfs_inode *inode,
e02119d5 3788 struct btrfs_path *path,
339d0354 3789 struct btrfs_path *dst_path,
2f2ff0ee 3790 struct btrfs_log_ctx *ctx,
e02119d5
CM
3791 u64 min_offset, u64 *last_offset_ret)
3792{
3793 struct btrfs_key min_key;
90d04510 3794 struct btrfs_root *root = inode->root;
e02119d5 3795 struct btrfs_root *log = root->log_root;
4a500fd1 3796 int err = 0;
e02119d5 3797 int ret;
732d591a 3798 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3799 u64 last_offset = (u64)-1;
684a5773 3800 u64 ino = btrfs_ino(inode);
e02119d5 3801
33345d01 3802 min_key.objectid = ino;
339d0354 3803 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3804 min_key.offset = min_offset;
3805
6174d3cb 3806 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3807
3808 /*
3809 * we didn't find anything from this transaction, see if there
3810 * is anything at all
3811 */
339d0354
FM
3812 if (ret != 0 || min_key.objectid != ino ||
3813 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3814 min_key.objectid = ino;
339d0354 3815 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3816 min_key.offset = (u64)-1;
b3b4aa74 3817 btrfs_release_path(path);
e02119d5
CM
3818 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3819 if (ret < 0) {
b3b4aa74 3820 btrfs_release_path(path);
e02119d5
CM
3821 return ret;
3822 }
339d0354 3823 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3824
3825 /* if ret == 0 there are items for this type,
3826 * create a range to tell us the last key of this type.
3827 * otherwise, there are no items in this directory after
3828 * *min_offset, and we create a range to indicate that.
3829 */
3830 if (ret == 0) {
3831 struct btrfs_key tmp;
732d591a 3832
e02119d5
CM
3833 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3834 path->slots[0]);
339d0354 3835 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3836 last_old_dentry_offset = tmp.offset;
e02119d5
CM
3837 }
3838 goto done;
3839 }
3840
3841 /* go backward to find any previous key */
339d0354 3842 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3843 if (ret == 0) {
3844 struct btrfs_key tmp;
a450a4af 3845
e02119d5 3846 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
3847 /*
3848 * The dir index key before the first one we found that needs to
3849 * be logged might be in a previous leaf, and there might be a
3850 * gap between these keys, meaning that we had deletions that
3851 * happened. So the key range item we log (key type
3852 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3853 * previous key's offset plus 1, so that those deletes are replayed.
3854 */
3855 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3856 last_old_dentry_offset = tmp.offset;
e02119d5 3857 }
b3b4aa74 3858 btrfs_release_path(path);
e02119d5 3859
2cc83342
JB
3860 /*
3861 * Find the first key from this transaction again. See the note for
3862 * log_new_dir_dentries, if we're logging a directory recursively we
3863 * won't be holding its i_mutex, which means we can modify the directory
3864 * while we're logging it. If we remove an entry between our first
3865 * search and this search we'll not find the key again and can just
3866 * bail.
3867 */
bb56f02f 3868search:
e02119d5 3869 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3870 if (ret != 0)
e02119d5 3871 goto done;
e02119d5
CM
3872
3873 /*
3874 * we have a block from this transaction, log every item in it
3875 * from our directory
3876 */
d397712b 3877 while (1) {
732d591a
FM
3878 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3879 &last_old_dentry_offset);
eb10d85e
FM
3880 if (ret != 0) {
3881 if (ret < 0)
4a500fd1 3882 err = ret;
eb10d85e 3883 goto done;
e02119d5 3884 }
eb10d85e 3885 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3886
3887 /*
3888 * look ahead to the next item and see if it is also
3889 * from this directory and from this transaction
3890 */
3891 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3892 if (ret) {
3893 if (ret == 1)
3894 last_offset = (u64)-1;
3895 else
3896 err = ret;
e02119d5
CM
3897 goto done;
3898 }
eb10d85e 3899 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3900 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3901 last_offset = (u64)-1;
3902 goto done;
3903 }
3904 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
3905 /*
3906 * The next leaf was not changed in the current transaction
3907 * and has at least one dir index key.
3908 * We check for the next key because there might have been
3909 * one or more deletions between the last key we logged and
3910 * that next key. So the key range item we log (key type
3911 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3912 * offset minus 1, so that those deletes are replayed.
3913 */
3914 last_offset = min_key.offset - 1;
e02119d5
CM
3915 goto done;
3916 }
eb10d85e
FM
3917 if (need_resched()) {
3918 btrfs_release_path(path);
3919 cond_resched();
3920 goto search;
3921 }
e02119d5
CM
3922 }
3923done:
b3b4aa74
DS
3924 btrfs_release_path(path);
3925 btrfs_release_path(dst_path);
e02119d5 3926
4a500fd1
YZ
3927 if (err == 0) {
3928 *last_offset_ret = last_offset;
3929 /*
732d591a
FM
3930 * In case the leaf was changed in the current transaction but
3931 * all its dir items are from a past transaction, the last item
3932 * in the leaf is a dir item and there's no gap between that last
3933 * dir item and the first one on the next leaf (which did not
3934 * change in the current transaction), then we don't need to log
3935 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 3936 */
732d591a
FM
3937 ASSERT(last_old_dentry_offset <= last_offset);
3938 if (last_old_dentry_offset < last_offset) {
3939 ret = insert_dir_log_key(trans, log, path, ino,
3940 last_old_dentry_offset + 1,
3941 last_offset);
3942 if (ret)
3943 err = ret;
3944 }
4a500fd1
YZ
3945 }
3946 return err;
e02119d5
CM
3947}
3948
193df624
FM
3949/*
3950 * If the inode was logged before and it was evicted, then its
3951 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3952 * key offset. If that's the case, search for it and update the inode. This
3953 * is to avoid lookups in the log tree every time we try to insert a dir index
3954 * key from a leaf changed in the current transaction, and to allow us to always
3955 * do batch insertions of dir index keys.
3956 */
3957static int update_last_dir_index_offset(struct btrfs_inode *inode,
3958 struct btrfs_path *path,
3959 const struct btrfs_log_ctx *ctx)
3960{
3961 const u64 ino = btrfs_ino(inode);
3962 struct btrfs_key key;
3963 int ret;
3964
3965 lockdep_assert_held(&inode->log_mutex);
3966
3967 if (inode->last_dir_index_offset != (u64)-1)
3968 return 0;
3969
3970 if (!ctx->logged_before) {
3971 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3972 return 0;
3973 }
3974
3975 key.objectid = ino;
3976 key.type = BTRFS_DIR_INDEX_KEY;
3977 key.offset = (u64)-1;
3978
3979 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3980 /*
3981 * An error happened or we actually have an index key with an offset
3982 * value of (u64)-1. Bail out, we're done.
3983 */
3984 if (ret <= 0)
3985 goto out;
3986
3987 ret = 0;
3988 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3989
3990 /*
3991 * No dir index items, bail out and leave last_dir_index_offset with
3992 * the value right before the first valid index value.
3993 */
3994 if (path->slots[0] == 0)
3995 goto out;
3996
3997 /*
3998 * btrfs_search_slot() left us at one slot beyond the slot with the last
3999 * index key, or beyond the last key of the directory that is not an
4000 * index key. If we have an index key before, set last_dir_index_offset
4001 * to its offset value, otherwise leave it with a value right before the
4002 * first valid index value, as it means we have an empty directory.
4003 */
4004 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4005 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4006 inode->last_dir_index_offset = key.offset;
4007
4008out:
4009 btrfs_release_path(path);
4010
4011 return ret;
4012}
4013
e02119d5
CM
4014/*
4015 * logging directories is very similar to logging inodes, We find all the items
4016 * from the current transaction and write them to the log.
4017 *
4018 * The recovery code scans the directory in the subvolume, and if it finds a
4019 * key in the range logged that is not present in the log tree, then it means
4020 * that dir entry was unlinked during the transaction.
4021 *
4022 * In order for that scan to work, we must include one key smaller than
4023 * the smallest logged by this transaction and one key larger than the largest
4024 * key logged by this transaction.
4025 */
4026static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4027 struct btrfs_inode *inode,
e02119d5 4028 struct btrfs_path *path,
2f2ff0ee
FM
4029 struct btrfs_path *dst_path,
4030 struct btrfs_log_ctx *ctx)
e02119d5
CM
4031{
4032 u64 min_key;
4033 u64 max_key;
4034 int ret;
e02119d5 4035
193df624
FM
4036 ret = update_last_dir_index_offset(inode, path, ctx);
4037 if (ret)
4038 return ret;
4039
732d591a 4040 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4041 max_key = 0;
339d0354 4042 ctx->last_dir_item_offset = inode->last_dir_index_offset;
dc287224 4043
d397712b 4044 while (1) {
339d0354 4045 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4046 ctx, min_key, &max_key);
4a500fd1
YZ
4047 if (ret)
4048 return ret;
e02119d5
CM
4049 if (max_key == (u64)-1)
4050 break;
4051 min_key = max_key + 1;
4052 }
4053
339d0354
FM
4054 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4055
e02119d5
CM
4056 return 0;
4057}
4058
4059/*
4060 * a helper function to drop items from the log before we relog an
4061 * inode. max_key_type indicates the highest item type to remove.
4062 * This cannot be run for file data extents because it does not
4063 * free the extents they point to.
4064 */
88e221cd 4065static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4066 struct btrfs_root *log,
4067 struct btrfs_path *path,
88e221cd
FM
4068 struct btrfs_inode *inode,
4069 int max_key_type)
e02119d5
CM
4070{
4071 int ret;
4072 struct btrfs_key key;
4073 struct btrfs_key found_key;
18ec90d6 4074 int start_slot;
e02119d5 4075
88e221cd 4076 key.objectid = btrfs_ino(inode);
e02119d5
CM
4077 key.type = max_key_type;
4078 key.offset = (u64)-1;
4079
d397712b 4080 while (1) {
e02119d5 4081 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4082 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4083 if (ret < 0)
e02119d5
CM
4084 break;
4085
4086 if (path->slots[0] == 0)
4087 break;
4088
4089 path->slots[0]--;
4090 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4091 path->slots[0]);
4092
88e221cd 4093 if (found_key.objectid != key.objectid)
e02119d5
CM
4094 break;
4095
18ec90d6
JB
4096 found_key.offset = 0;
4097 found_key.type = 0;
e3b83361 4098 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4099 if (ret < 0)
4100 break;
18ec90d6
JB
4101
4102 ret = btrfs_del_items(trans, log, path, start_slot,
4103 path->slots[0] - start_slot + 1);
4104 /*
4105 * If start slot isn't 0 then we don't need to re-search, we've
4106 * found the last guy with the objectid in this tree.
4107 */
4108 if (ret || start_slot != 0)
65a246c5 4109 break;
b3b4aa74 4110 btrfs_release_path(path);
e02119d5 4111 }
b3b4aa74 4112 btrfs_release_path(path);
5bdbeb21
JB
4113 if (ret > 0)
4114 ret = 0;
4a500fd1 4115 return ret;
e02119d5
CM
4116}
4117
8a2b3da1
FM
4118static int truncate_inode_items(struct btrfs_trans_handle *trans,
4119 struct btrfs_root *log_root,
4120 struct btrfs_inode *inode,
4121 u64 new_size, u32 min_type)
4122{
d9ac19c3
JB
4123 struct btrfs_truncate_control control = {
4124 .new_size = new_size,
487e81d2 4125 .ino = btrfs_ino(inode),
d9ac19c3 4126 .min_type = min_type,
5caa490e 4127 .skip_ref_updates = true,
d9ac19c3 4128 };
8a2b3da1 4129
8697b8f8 4130 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4131}
4132
94edf4ae
JB
4133static void fill_inode_item(struct btrfs_trans_handle *trans,
4134 struct extent_buffer *leaf,
4135 struct btrfs_inode_item *item,
1a4bcf47
FM
4136 struct inode *inode, int log_inode_only,
4137 u64 logged_isize)
94edf4ae 4138{
0b1c6cca 4139 struct btrfs_map_token token;
77eea05e 4140 u64 flags;
0b1c6cca 4141
c82f823c 4142 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4143
4144 if (log_inode_only) {
4145 /* set the generation to zero so the recover code
4146 * can tell the difference between an logging
4147 * just to say 'this inode exists' and a logging
4148 * to say 'update this inode with these values'
4149 */
cc4c13d5
DS
4150 btrfs_set_token_inode_generation(&token, item, 0);
4151 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4152 } else {
cc4c13d5
DS
4153 btrfs_set_token_inode_generation(&token, item,
4154 BTRFS_I(inode)->generation);
4155 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4156 }
4157
cc4c13d5
DS
4158 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4159 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4160 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4161 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4162
4163 btrfs_set_token_timespec_sec(&token, &item->atime,
4164 inode->i_atime.tv_sec);
4165 btrfs_set_token_timespec_nsec(&token, &item->atime,
4166 inode->i_atime.tv_nsec);
4167
4168 btrfs_set_token_timespec_sec(&token, &item->mtime,
4169 inode->i_mtime.tv_sec);
4170 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4171 inode->i_mtime.tv_nsec);
4172
4173 btrfs_set_token_timespec_sec(&token, &item->ctime,
4174 inode->i_ctime.tv_sec);
4175 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4176 inode->i_ctime.tv_nsec);
4177
e593e54e
FM
4178 /*
4179 * We do not need to set the nbytes field, in fact during a fast fsync
4180 * its value may not even be correct, since a fast fsync does not wait
4181 * for ordered extent completion, which is where we update nbytes, it
4182 * only waits for writeback to complete. During log replay as we find
4183 * file extent items and replay them, we adjust the nbytes field of the
4184 * inode item in subvolume tree as needed (see overwrite_item()).
4185 */
cc4c13d5
DS
4186
4187 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4188 btrfs_set_token_inode_transid(&token, item, trans->transid);
4189 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4190 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4191 BTRFS_I(inode)->ro_flags);
4192 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4193 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4194}
4195
a95249b3
JB
4196static int log_inode_item(struct btrfs_trans_handle *trans,
4197 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4198 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4199{
4200 struct btrfs_inode_item *inode_item;
a95249b3
JB
4201 int ret;
4202
2ac691d8
FM
4203 /*
4204 * If we are doing a fast fsync and the inode was logged before in the
4205 * current transaction, then we know the inode was previously logged and
4206 * it exists in the log tree. For performance reasons, in this case use
4207 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4208 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4209 * contention in case there are concurrent fsyncs for other inodes of the
4210 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4211 * already exists can also result in unnecessarily splitting a leaf.
4212 */
4213 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4214 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4215 ASSERT(ret <= 0);
4216 if (ret > 0)
4217 ret = -ENOENT;
4218 } else {
4219 /*
4220 * This means it is the first fsync in the current transaction,
4221 * so the inode item is not in the log and we need to insert it.
4222 * We can never get -EEXIST because we are only called for a fast
4223 * fsync and in case an inode eviction happens after the inode was
4224 * logged before in the current transaction, when we load again
4225 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4226 * flags and set ->logged_trans to 0.
4227 */
4228 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4229 sizeof(*inode_item));
4230 ASSERT(ret != -EEXIST);
4231 }
4232 if (ret)
a95249b3
JB
4233 return ret;
4234 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4235 struct btrfs_inode_item);
6d889a3b
NB
4236 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4237 0, 0);
a95249b3
JB
4238 btrfs_release_path(path);
4239 return 0;
4240}
4241
40e046ac 4242static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4243 struct btrfs_inode *inode,
40e046ac
FM
4244 struct btrfs_root *log_root,
4245 struct btrfs_ordered_sum *sums)
4246{
e289f03e
FM
4247 const u64 lock_end = sums->bytenr + sums->len - 1;
4248 struct extent_state *cached_state = NULL;
40e046ac
FM
4249 int ret;
4250
3ebac17c
FM
4251 /*
4252 * If this inode was not used for reflink operations in the current
4253 * transaction with new extents, then do the fast path, no need to
4254 * worry about logging checksum items with overlapping ranges.
4255 */
4256 if (inode->last_reflink_trans < trans->transid)
4257 return btrfs_csum_file_blocks(trans, log_root, sums);
4258
e289f03e
FM
4259 /*
4260 * Serialize logging for checksums. This is to avoid racing with the
4261 * same checksum being logged by another task that is logging another
4262 * file which happens to refer to the same extent as well. Such races
4263 * can leave checksum items in the log with overlapping ranges.
4264 */
570eb97b
JB
4265 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4266 &cached_state);
e289f03e
FM
4267 if (ret)
4268 return ret;
40e046ac
FM
4269 /*
4270 * Due to extent cloning, we might have logged a csum item that covers a
4271 * subrange of a cloned extent, and later we can end up logging a csum
4272 * item for a larger subrange of the same extent or the entire range.
4273 * This would leave csum items in the log tree that cover the same range
4274 * and break the searches for checksums in the log tree, resulting in
4275 * some checksums missing in the fs/subvolume tree. So just delete (or
4276 * trim and adjust) any existing csum items in the log for this range.
4277 */
4278 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4279 if (!ret)
4280 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4281
570eb97b
JB
4282 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4283 &cached_state);
e289f03e
FM
4284
4285 return ret;
40e046ac
FM
4286}
4287
31ff1cd2 4288static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4289 struct btrfs_inode *inode,
31ff1cd2 4290 struct btrfs_path *dst_path,
0e56315c 4291 struct btrfs_path *src_path,
1a4bcf47
FM
4292 int start_slot, int nr, int inode_only,
4293 u64 logged_isize)
31ff1cd2 4294{
44d70e19 4295 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4296 struct btrfs_file_extent_item *extent;
796787c9 4297 struct extent_buffer *src;
7f30c072 4298 int ret = 0;
31ff1cd2
CM
4299 struct btrfs_key *ins_keys;
4300 u32 *ins_sizes;
b7ef5f3a 4301 struct btrfs_item_batch batch;
31ff1cd2
CM
4302 char *ins_data;
4303 int i;
7f30c072 4304 int dst_index;
7f30c072
FM
4305 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4306 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4307
796787c9
FM
4308 /*
4309 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4310 * use the clone. This is because otherwise we would be changing the log
4311 * tree, to insert items from the subvolume tree or insert csum items,
4312 * while holding a read lock on a leaf from the subvolume tree, which
4313 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4314 *
4315 * 1) Modifying the log tree triggers an extent buffer allocation while
4316 * holding a write lock on a parent extent buffer from the log tree.
4317 * Allocating the pages for an extent buffer, or the extent buffer
4318 * struct, can trigger inode eviction and finally the inode eviction
4319 * will trigger a release/remove of a delayed node, which requires
4320 * taking the delayed node's mutex;
4321 *
4322 * 2) Allocating a metadata extent for a log tree can trigger the async
4323 * reclaim thread and make us wait for it to release enough space and
4324 * unblock our reservation ticket. The reclaim thread can start
4325 * flushing delayed items, and that in turn results in the need to
4326 * lock delayed node mutexes and in the need to write lock extent
4327 * buffers of a subvolume tree - all this while holding a write lock
4328 * on the parent extent buffer in the log tree.
4329 *
4330 * So one task in scenario 1) running in parallel with another task in
4331 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4332 * node mutex while having a read lock on a leaf from the subvolume,
4333 * while the other is holding the delayed node's mutex and wants to
4334 * write lock the same subvolume leaf for flushing delayed items.
4335 */
4336 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4337 if (!src)
4338 return -ENOMEM;
4339
4340 i = src_path->slots[0];
4341 btrfs_release_path(src_path);
4342 src_path->nodes[0] = src;
4343 src_path->slots[0] = i;
4344
31ff1cd2
CM
4345 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4346 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4347 if (!ins_data)
4348 return -ENOMEM;
4349
31ff1cd2
CM
4350 ins_sizes = (u32 *)ins_data;
4351 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4352 batch.keys = ins_keys;
4353 batch.data_sizes = ins_sizes;
4354 batch.total_data_size = 0;
7f30c072 4355 batch.nr = 0;
31ff1cd2 4356
7f30c072 4357 dst_index = 0;
31ff1cd2 4358 for (i = 0; i < nr; i++) {
7f30c072
FM
4359 const int src_slot = start_slot + i;
4360 struct btrfs_root *csum_root;
5b7ce5e2
FM
4361 struct btrfs_ordered_sum *sums;
4362 struct btrfs_ordered_sum *sums_next;
4363 LIST_HEAD(ordered_sums);
7f30c072
FM
4364 u64 disk_bytenr;
4365 u64 disk_num_bytes;
4366 u64 extent_offset;
4367 u64 extent_num_bytes;
4368 bool is_old_extent;
4369
4370 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4371
4372 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4373 goto add_to_batch;
4374
4375 extent = btrfs_item_ptr(src, src_slot,
4376 struct btrfs_file_extent_item);
4377
4378 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4379 trans->transid);
4380
4381 /*
4382 * Don't copy extents from past generations. That would make us
4383 * log a lot more metadata for common cases like doing only a
4384 * few random writes into a file and then fsync it for the first
4385 * time or after the full sync flag is set on the inode. We can
4386 * get leaves full of extent items, most of which are from past
4387 * generations, so we can skip them - as long as the inode has
4388 * not been the target of a reflink operation in this transaction,
4389 * as in that case it might have had file extent items with old
4390 * generations copied into it. We also must always log prealloc
4391 * extents that start at or beyond eof, otherwise we would lose
4392 * them on log replay.
4393 */
4394 if (is_old_extent &&
4395 ins_keys[dst_index].offset < i_size &&
4396 inode->last_reflink_trans < trans->transid)
4397 continue;
4398
4399 if (skip_csum)
4400 goto add_to_batch;
4401
4402 /* Only regular extents have checksums. */
4403 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4404 goto add_to_batch;
4405
4406 /*
4407 * If it's an extent created in a past transaction, then its
4408 * checksums are already accessible from the committed csum tree,
4409 * no need to log them.
4410 */
4411 if (is_old_extent)
4412 goto add_to_batch;
4413
4414 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4415 /* If it's an explicit hole, there are no checksums. */
4416 if (disk_bytenr == 0)
4417 goto add_to_batch;
4418
4419 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4420
4421 if (btrfs_file_extent_compression(src, extent)) {
4422 extent_offset = 0;
4423 extent_num_bytes = disk_num_bytes;
4424 } else {
4425 extent_offset = btrfs_file_extent_offset(src, extent);
4426 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4427 }
4428
4429 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4430 disk_bytenr += extent_offset;
4431 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4432 disk_bytenr + extent_num_bytes - 1,
26ce9114 4433 &ordered_sums, 0, false);
7f30c072
FM
4434 if (ret)
4435 goto out;
4436
5b7ce5e2
FM
4437 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4438 if (!ret)
4439 ret = log_csums(trans, inode, log, sums);
4440 list_del(&sums->list);
4441 kfree(sums);
4442 }
4443 if (ret)
4444 goto out;
4445
7f30c072
FM
4446add_to_batch:
4447 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4448 batch.total_data_size += ins_sizes[dst_index];
4449 batch.nr++;
4450 dst_index++;
31ff1cd2 4451 }
7f30c072
FM
4452
4453 /*
4454 * We have a leaf full of old extent items that don't need to be logged,
4455 * so we don't need to do anything.
4456 */
4457 if (batch.nr == 0)
4458 goto out;
4459
b7ef5f3a 4460 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4461 if (ret)
4462 goto out;
4463
4464 dst_index = 0;
4465 for (i = 0; i < nr; i++) {
4466 const int src_slot = start_slot + i;
4467 const int dst_slot = dst_path->slots[0] + dst_index;
4468 struct btrfs_key key;
4469 unsigned long src_offset;
4470 unsigned long dst_offset;
4471
4472 /*
4473 * We're done, all the remaining items in the source leaf
4474 * correspond to old file extent items.
4475 */
4476 if (dst_index >= batch.nr)
4477 break;
4478
4479 btrfs_item_key_to_cpu(src, &key, src_slot);
4480
4481 if (key.type != BTRFS_EXTENT_DATA_KEY)
4482 goto copy_item;
31ff1cd2 4483
7f30c072
FM
4484 extent = btrfs_item_ptr(src, src_slot,
4485 struct btrfs_file_extent_item);
31ff1cd2 4486
7f30c072
FM
4487 /* See the comment in the previous loop, same logic. */
4488 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4489 key.offset < i_size &&
4490 inode->last_reflink_trans < trans->transid)
4491 continue;
4492
4493copy_item:
4494 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4495 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4496
7f30c072
FM
4497 if (key.type == BTRFS_INODE_ITEM_KEY) {
4498 struct btrfs_inode_item *inode_item;
4499
4500 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4501 struct btrfs_inode_item);
94edf4ae 4502 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4503 &inode->vfs_inode,
4504 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4505 logged_isize);
94edf4ae
JB
4506 } else {
4507 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4508 src_offset, ins_sizes[dst_index]);
31ff1cd2 4509 }
94edf4ae 4510
7f30c072 4511 dst_index++;
31ff1cd2
CM
4512 }
4513
4514 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4515 btrfs_release_path(dst_path);
7f30c072 4516out:
31ff1cd2 4517 kfree(ins_data);
d20f7043 4518
4a500fd1 4519 return ret;
31ff1cd2
CM
4520}
4521
4f0f586b
ST
4522static int extent_cmp(void *priv, const struct list_head *a,
4523 const struct list_head *b)
5dc562c5 4524{
214cc184 4525 const struct extent_map *em1, *em2;
5dc562c5
JB
4526
4527 em1 = list_entry(a, struct extent_map, list);
4528 em2 = list_entry(b, struct extent_map, list);
4529
4530 if (em1->start < em2->start)
4531 return -1;
4532 else if (em1->start > em2->start)
4533 return 1;
4534 return 0;
4535}
4536
e7175a69
JB
4537static int log_extent_csums(struct btrfs_trans_handle *trans,
4538 struct btrfs_inode *inode,
a9ecb653 4539 struct btrfs_root *log_root,
48778179
FM
4540 const struct extent_map *em,
4541 struct btrfs_log_ctx *ctx)
5dc562c5 4542{
48778179 4543 struct btrfs_ordered_extent *ordered;
fc28b25e 4544 struct btrfs_root *csum_root;
2ab28f32
JB
4545 u64 csum_offset;
4546 u64 csum_len;
48778179
FM
4547 u64 mod_start = em->mod_start;
4548 u64 mod_len = em->mod_len;
8407f553
FM
4549 LIST_HEAD(ordered_sums);
4550 int ret = 0;
0aa4a17d 4551
e7175a69
JB
4552 if (inode->flags & BTRFS_INODE_NODATASUM ||
4553 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4554 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4555 return 0;
5dc562c5 4556
48778179
FM
4557 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4558 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4559 const u64 mod_end = mod_start + mod_len;
4560 struct btrfs_ordered_sum *sums;
4561
4562 if (mod_len == 0)
4563 break;
4564
4565 if (ordered_end <= mod_start)
4566 continue;
4567 if (mod_end <= ordered->file_offset)
4568 break;
4569
4570 /*
4571 * We are going to copy all the csums on this ordered extent, so
4572 * go ahead and adjust mod_start and mod_len in case this ordered
4573 * extent has already been logged.
4574 */
4575 if (ordered->file_offset > mod_start) {
4576 if (ordered_end >= mod_end)
4577 mod_len = ordered->file_offset - mod_start;
4578 /*
4579 * If we have this case
4580 *
4581 * |--------- logged extent ---------|
4582 * |----- ordered extent ----|
4583 *
4584 * Just don't mess with mod_start and mod_len, we'll
4585 * just end up logging more csums than we need and it
4586 * will be ok.
4587 */
4588 } else {
4589 if (ordered_end < mod_end) {
4590 mod_len = mod_end - ordered_end;
4591 mod_start = ordered_end;
4592 } else {
4593 mod_len = 0;
4594 }
4595 }
4596
4597 /*
4598 * To keep us from looping for the above case of an ordered
4599 * extent that falls inside of the logged extent.
4600 */
4601 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4602 continue;
4603
4604 list_for_each_entry(sums, &ordered->list, list) {
4605 ret = log_csums(trans, inode, log_root, sums);
4606 if (ret)
4607 return ret;
4608 }
4609 }
4610
4611 /* We're done, found all csums in the ordered extents. */
4612 if (mod_len == 0)
4613 return 0;
4614
e7175a69 4615 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4616 if (em->compress_type) {
4617 csum_offset = 0;
8407f553 4618 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4619 } else {
48778179
FM
4620 csum_offset = mod_start - em->start;
4621 csum_len = mod_len;
488111aa 4622 }
2ab28f32 4623
70c8a91c 4624 /* block start is already adjusted for the file extent offset. */
fc28b25e
JB
4625 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4626 ret = btrfs_lookup_csums_range(csum_root,
70c8a91c
JB
4627 em->block_start + csum_offset,
4628 em->block_start + csum_offset +
26ce9114 4629 csum_len - 1, &ordered_sums, 0, false);
70c8a91c
JB
4630 if (ret)
4631 return ret;
5dc562c5 4632
70c8a91c
JB
4633 while (!list_empty(&ordered_sums)) {
4634 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4635 struct btrfs_ordered_sum,
4636 list);
4637 if (!ret)
3ebac17c 4638 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4639 list_del(&sums->list);
4640 kfree(sums);
5dc562c5
JB
4641 }
4642
70c8a91c 4643 return ret;
5dc562c5
JB
4644}
4645
8407f553 4646static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4647 struct btrfs_inode *inode,
8407f553
FM
4648 const struct extent_map *em,
4649 struct btrfs_path *path,
8407f553
FM
4650 struct btrfs_log_ctx *ctx)
4651{
5893dfb9 4652 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4653 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4654 struct btrfs_file_extent_item fi = { 0 };
8407f553 4655 struct extent_buffer *leaf;
8407f553
FM
4656 struct btrfs_key key;
4657 u64 extent_offset = em->start - em->orig_start;
4658 u64 block_len;
4659 int ret;
8407f553 4660
e1f53ed8
FM
4661 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4662 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4663 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4664 else
4665 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4666
4667 block_len = max(em->block_len, em->orig_block_len);
4668 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4669 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4670 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4671 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4672 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4673 extent_offset);
4674 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4675 }
4676
4677 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4678 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4679 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4680 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4681
48778179 4682 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4683 if (ret)
4684 return ret;
4685
5328b2a7
FM
4686 /*
4687 * If this is the first time we are logging the inode in the current
4688 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4689 * because it does a deletion search, which always acquires write locks
4690 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4691 * but also adds significant contention in a log tree, since log trees
4692 * are small, with a root at level 2 or 3 at most, due to their short
4693 * life span.
4694 */
0f8ce498 4695 if (ctx->logged_before) {
5328b2a7
FM
4696 drop_args.path = path;
4697 drop_args.start = em->start;
4698 drop_args.end = em->start + em->len;
4699 drop_args.replace_extent = true;
e1f53ed8 4700 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4701 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4702 if (ret)
4703 return ret;
4704 }
8407f553 4705
5893dfb9 4706 if (!drop_args.extent_inserted) {
9d122629 4707 key.objectid = btrfs_ino(inode);
8407f553
FM
4708 key.type = BTRFS_EXTENT_DATA_KEY;
4709 key.offset = em->start;
4710
4711 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4712 sizeof(fi));
8407f553
FM
4713 if (ret)
4714 return ret;
4715 }
4716 leaf = path->nodes[0];
e1f53ed8
FM
4717 write_extent_buffer(leaf, &fi,
4718 btrfs_item_ptr_offset(leaf, path->slots[0]),
4719 sizeof(fi));
8407f553
FM
4720 btrfs_mark_buffer_dirty(leaf);
4721
4722 btrfs_release_path(path);
4723
4724 return ret;
4725}
4726
31d11b83
FM
4727/*
4728 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4729 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4730 * subvolume's root instead of iterating the inode's extent map tree because
4731 * otherwise we can log incorrect extent items based on extent map conversion.
4732 * That can happen due to the fact that extent maps are merged when they
4733 * are not in the extent map tree's list of modified extents.
4734 */
4735static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4736 struct btrfs_inode *inode,
4737 struct btrfs_path *path)
4738{
4739 struct btrfs_root *root = inode->root;
4740 struct btrfs_key key;
4741 const u64 i_size = i_size_read(&inode->vfs_inode);
4742 const u64 ino = btrfs_ino(inode);
4743 struct btrfs_path *dst_path = NULL;
0e56315c 4744 bool dropped_extents = false;
f135cea3
FM
4745 u64 truncate_offset = i_size;
4746 struct extent_buffer *leaf;
4747 int slot;
31d11b83
FM
4748 int ins_nr = 0;
4749 int start_slot;
4750 int ret;
4751
4752 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4753 return 0;
4754
4755 key.objectid = ino;
4756 key.type = BTRFS_EXTENT_DATA_KEY;
4757 key.offset = i_size;
4758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759 if (ret < 0)
4760 goto out;
4761
f135cea3
FM
4762 /*
4763 * We must check if there is a prealloc extent that starts before the
4764 * i_size and crosses the i_size boundary. This is to ensure later we
4765 * truncate down to the end of that extent and not to the i_size, as
4766 * otherwise we end up losing part of the prealloc extent after a log
4767 * replay and with an implicit hole if there is another prealloc extent
4768 * that starts at an offset beyond i_size.
4769 */
4770 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4771 if (ret < 0)
4772 goto out;
4773
4774 if (ret == 0) {
4775 struct btrfs_file_extent_item *ei;
4776
4777 leaf = path->nodes[0];
4778 slot = path->slots[0];
4779 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4780
4781 if (btrfs_file_extent_type(leaf, ei) ==
4782 BTRFS_FILE_EXTENT_PREALLOC) {
4783 u64 extent_end;
4784
4785 btrfs_item_key_to_cpu(leaf, &key, slot);
4786 extent_end = key.offset +
4787 btrfs_file_extent_num_bytes(leaf, ei);
4788
4789 if (extent_end > i_size)
4790 truncate_offset = extent_end;
4791 }
4792 } else {
4793 ret = 0;
4794 }
4795
31d11b83 4796 while (true) {
f135cea3
FM
4797 leaf = path->nodes[0];
4798 slot = path->slots[0];
31d11b83
FM
4799
4800 if (slot >= btrfs_header_nritems(leaf)) {
4801 if (ins_nr > 0) {
4802 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4803 start_slot, ins_nr, 1, 0);
31d11b83
FM
4804 if (ret < 0)
4805 goto out;
4806 ins_nr = 0;
4807 }
4808 ret = btrfs_next_leaf(root, path);
4809 if (ret < 0)
4810 goto out;
4811 if (ret > 0) {
4812 ret = 0;
4813 break;
4814 }
4815 continue;
4816 }
4817
4818 btrfs_item_key_to_cpu(leaf, &key, slot);
4819 if (key.objectid > ino)
4820 break;
4821 if (WARN_ON_ONCE(key.objectid < ino) ||
4822 key.type < BTRFS_EXTENT_DATA_KEY ||
4823 key.offset < i_size) {
4824 path->slots[0]++;
4825 continue;
4826 }
0e56315c 4827 if (!dropped_extents) {
31d11b83
FM
4828 /*
4829 * Avoid logging extent items logged in past fsync calls
4830 * and leading to duplicate keys in the log tree.
4831 */
8a2b3da1
FM
4832 ret = truncate_inode_items(trans, root->log_root, inode,
4833 truncate_offset,
4834 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4835 if (ret)
4836 goto out;
0e56315c 4837 dropped_extents = true;
31d11b83
FM
4838 }
4839 if (ins_nr == 0)
4840 start_slot = slot;
4841 ins_nr++;
4842 path->slots[0]++;
4843 if (!dst_path) {
4844 dst_path = btrfs_alloc_path();
4845 if (!dst_path) {
4846 ret = -ENOMEM;
4847 goto out;
4848 }
4849 }
4850 }
0bc2d3c0 4851 if (ins_nr > 0)
0e56315c 4852 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4853 start_slot, ins_nr, 1, 0);
31d11b83
FM
4854out:
4855 btrfs_release_path(path);
4856 btrfs_free_path(dst_path);
4857 return ret;
4858}
4859
5dc562c5 4860static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4861 struct btrfs_inode *inode,
827463c4 4862 struct btrfs_path *path,
48778179 4863 struct btrfs_log_ctx *ctx)
5dc562c5 4864{
48778179
FM
4865 struct btrfs_ordered_extent *ordered;
4866 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4867 struct extent_map *em, *n;
4868 struct list_head extents;
9d122629 4869 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4870 int ret = 0;
2ab28f32 4871 int num = 0;
5dc562c5
JB
4872
4873 INIT_LIST_HEAD(&extents);
4874
5dc562c5 4875 write_lock(&tree->lock);
5dc562c5
JB
4876
4877 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4878 list_del_init(&em->list);
2ab28f32
JB
4879 /*
4880 * Just an arbitrary number, this can be really CPU intensive
4881 * once we start getting a lot of extents, and really once we
4882 * have a bunch of extents we just want to commit since it will
4883 * be faster.
4884 */
4885 if (++num > 32768) {
4886 list_del_init(&tree->modified_extents);
4887 ret = -EFBIG;
4888 goto process;
4889 }
4890
5f96bfb7 4891 if (em->generation < trans->transid)
5dc562c5 4892 continue;
8c6c5928 4893
31d11b83
FM
4894 /* We log prealloc extents beyond eof later. */
4895 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4896 em->start >= i_size_read(&inode->vfs_inode))
4897 continue;
4898
ff44c6e3 4899 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4900 refcount_inc(&em->refs);
ff44c6e3 4901 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4902 list_add_tail(&em->list, &extents);
2ab28f32 4903 num++;
5dc562c5
JB
4904 }
4905
4906 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4907process:
5dc562c5
JB
4908 while (!list_empty(&extents)) {
4909 em = list_entry(extents.next, struct extent_map, list);
4910
4911 list_del_init(&em->list);
4912
4913 /*
4914 * If we had an error we just need to delete everybody from our
4915 * private list.
4916 */
ff44c6e3 4917 if (ret) {
201a9038 4918 clear_em_logging(tree, em);
ff44c6e3 4919 free_extent_map(em);
5dc562c5 4920 continue;
ff44c6e3
JB
4921 }
4922
4923 write_unlock(&tree->lock);
5dc562c5 4924
90d04510 4925 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4926 write_lock(&tree->lock);
201a9038
JB
4927 clear_em_logging(tree, em);
4928 free_extent_map(em);
5dc562c5 4929 }
ff44c6e3
JB
4930 WARN_ON(!list_empty(&extents));
4931 write_unlock(&tree->lock);
5dc562c5 4932
31d11b83
FM
4933 if (!ret)
4934 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4935 if (ret)
4936 return ret;
31d11b83 4937
48778179
FM
4938 /*
4939 * We have logged all extents successfully, now make sure the commit of
4940 * the current transaction waits for the ordered extents to complete
4941 * before it commits and wipes out the log trees, otherwise we would
4942 * lose data if an ordered extents completes after the transaction
4943 * commits and a power failure happens after the transaction commit.
4944 */
4945 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4946 list_del_init(&ordered->log_list);
4947 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4948
4949 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4950 spin_lock_irq(&inode->ordered_tree.lock);
4951 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4952 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4953 atomic_inc(&trans->transaction->pending_ordered);
4954 }
4955 spin_unlock_irq(&inode->ordered_tree.lock);
4956 }
4957 btrfs_put_ordered_extent(ordered);
4958 }
4959
4960 return 0;
5dc562c5
JB
4961}
4962
481b01c0 4963static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4964 struct btrfs_path *path, u64 *size_ret)
4965{
4966 struct btrfs_key key;
4967 int ret;
4968
481b01c0 4969 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4970 key.type = BTRFS_INODE_ITEM_KEY;
4971 key.offset = 0;
4972
4973 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4974 if (ret < 0) {
4975 return ret;
4976 } else if (ret > 0) {
2f2ff0ee 4977 *size_ret = 0;
1a4bcf47
FM
4978 } else {
4979 struct btrfs_inode_item *item;
4980
4981 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4982 struct btrfs_inode_item);
4983 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4984 /*
4985 * If the in-memory inode's i_size is smaller then the inode
4986 * size stored in the btree, return the inode's i_size, so
4987 * that we get a correct inode size after replaying the log
4988 * when before a power failure we had a shrinking truncate
4989 * followed by addition of a new name (rename / new hard link).
4990 * Otherwise return the inode size from the btree, to avoid
4991 * data loss when replaying a log due to previously doing a
4992 * write that expands the inode's size and logging a new name
4993 * immediately after.
4994 */
4995 if (*size_ret > inode->vfs_inode.i_size)
4996 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4997 }
4998
4999 btrfs_release_path(path);
5000 return 0;
5001}
5002
36283bf7
FM
5003/*
5004 * At the moment we always log all xattrs. This is to figure out at log replay
5005 * time which xattrs must have their deletion replayed. If a xattr is missing
5006 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5007 * because if a xattr is deleted, the inode is fsynced and a power failure
5008 * happens, causing the log to be replayed the next time the fs is mounted,
5009 * we want the xattr to not exist anymore (same behaviour as other filesystems
5010 * with a journal, ext3/4, xfs, f2fs, etc).
5011 */
5012static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5013 struct btrfs_inode *inode,
36283bf7
FM
5014 struct btrfs_path *path,
5015 struct btrfs_path *dst_path)
5016{
90d04510 5017 struct btrfs_root *root = inode->root;
36283bf7
FM
5018 int ret;
5019 struct btrfs_key key;
1a93c36a 5020 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5021 int ins_nr = 0;
5022 int start_slot = 0;
f2f121ab
FM
5023 bool found_xattrs = false;
5024
5025 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5026 return 0;
36283bf7
FM
5027
5028 key.objectid = ino;
5029 key.type = BTRFS_XATTR_ITEM_KEY;
5030 key.offset = 0;
5031
5032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033 if (ret < 0)
5034 return ret;
5035
5036 while (true) {
5037 int slot = path->slots[0];
5038 struct extent_buffer *leaf = path->nodes[0];
5039 int nritems = btrfs_header_nritems(leaf);
5040
5041 if (slot >= nritems) {
5042 if (ins_nr > 0) {
1a93c36a 5043 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5044 start_slot, ins_nr, 1, 0);
36283bf7
FM
5045 if (ret < 0)
5046 return ret;
5047 ins_nr = 0;
5048 }
5049 ret = btrfs_next_leaf(root, path);
5050 if (ret < 0)
5051 return ret;
5052 else if (ret > 0)
5053 break;
5054 continue;
5055 }
5056
5057 btrfs_item_key_to_cpu(leaf, &key, slot);
5058 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5059 break;
5060
5061 if (ins_nr == 0)
5062 start_slot = slot;
5063 ins_nr++;
5064 path->slots[0]++;
f2f121ab 5065 found_xattrs = true;
36283bf7
FM
5066 cond_resched();
5067 }
5068 if (ins_nr > 0) {
1a93c36a 5069 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5070 start_slot, ins_nr, 1, 0);
36283bf7
FM
5071 if (ret < 0)
5072 return ret;
5073 }
5074
f2f121ab
FM
5075 if (!found_xattrs)
5076 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5077
36283bf7
FM
5078 return 0;
5079}
5080
a89ca6f2 5081/*
0e56315c
FM
5082 * When using the NO_HOLES feature if we punched a hole that causes the
5083 * deletion of entire leafs or all the extent items of the first leaf (the one
5084 * that contains the inode item and references) we may end up not processing
5085 * any extents, because there are no leafs with a generation matching the
5086 * current transaction that have extent items for our inode. So we need to find
5087 * if any holes exist and then log them. We also need to log holes after any
5088 * truncate operation that changes the inode's size.
a89ca6f2 5089 */
0e56315c 5090static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5091 struct btrfs_inode *inode,
7af59743 5092 struct btrfs_path *path)
a89ca6f2 5093{
90d04510 5094 struct btrfs_root *root = inode->root;
0b246afa 5095 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5096 struct btrfs_key key;
a0308dd7
NB
5097 const u64 ino = btrfs_ino(inode);
5098 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5099 u64 prev_extent_end = 0;
0e56315c 5100 int ret;
a89ca6f2 5101
0e56315c 5102 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5103 return 0;
5104
5105 key.objectid = ino;
5106 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5107 key.offset = 0;
a89ca6f2
FM
5108
5109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5110 if (ret < 0)
5111 return ret;
5112
0e56315c 5113 while (true) {
0e56315c 5114 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5115
0e56315c
FM
5116 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5117 ret = btrfs_next_leaf(root, path);
5118 if (ret < 0)
5119 return ret;
5120 if (ret > 0) {
5121 ret = 0;
5122 break;
5123 }
5124 leaf = path->nodes[0];
5125 }
5126
5127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5128 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5129 break;
5130
5131 /* We have a hole, log it. */
5132 if (prev_extent_end < key.offset) {
7af59743 5133 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5134
5135 /*
5136 * Release the path to avoid deadlocks with other code
5137 * paths that search the root while holding locks on
5138 * leafs from the log root.
5139 */
5140 btrfs_release_path(path);
d1f68ba0
OS
5141 ret = btrfs_insert_hole_extent(trans, root->log_root,
5142 ino, prev_extent_end,
5143 hole_len);
0e56315c
FM
5144 if (ret < 0)
5145 return ret;
5146
5147 /*
5148 * Search for the same key again in the root. Since it's
5149 * an extent item and we are holding the inode lock, the
5150 * key must still exist. If it doesn't just emit warning
5151 * and return an error to fall back to a transaction
5152 * commit.
5153 */
5154 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5155 if (ret < 0)
5156 return ret;
5157 if (WARN_ON(ret > 0))
5158 return -ENOENT;
5159 leaf = path->nodes[0];
5160 }
a89ca6f2 5161
7af59743 5162 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5163 path->slots[0]++;
5164 cond_resched();
a89ca6f2 5165 }
a89ca6f2 5166
7af59743 5167 if (prev_extent_end < i_size) {
0e56315c 5168 u64 hole_len;
a89ca6f2 5169
0e56315c 5170 btrfs_release_path(path);
7af59743 5171 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
d1f68ba0
OS
5172 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5173 prev_extent_end, hole_len);
0e56315c
FM
5174 if (ret < 0)
5175 return ret;
5176 }
5177
5178 return 0;
a89ca6f2
FM
5179}
5180
56f23fdb
FM
5181/*
5182 * When we are logging a new inode X, check if it doesn't have a reference that
5183 * matches the reference from some other inode Y created in a past transaction
5184 * and that was renamed in the current transaction. If we don't do this, then at
5185 * log replay time we can lose inode Y (and all its files if it's a directory):
5186 *
5187 * mkdir /mnt/x
5188 * echo "hello world" > /mnt/x/foobar
5189 * sync
5190 * mv /mnt/x /mnt/y
5191 * mkdir /mnt/x # or touch /mnt/x
5192 * xfs_io -c fsync /mnt/x
5193 * <power fail>
5194 * mount fs, trigger log replay
5195 *
5196 * After the log replay procedure, we would lose the first directory and all its
5197 * files (file foobar).
5198 * For the case where inode Y is not a directory we simply end up losing it:
5199 *
5200 * echo "123" > /mnt/foo
5201 * sync
5202 * mv /mnt/foo /mnt/bar
5203 * echo "abc" > /mnt/foo
5204 * xfs_io -c fsync /mnt/foo
5205 * <power fail>
5206 *
5207 * We also need this for cases where a snapshot entry is replaced by some other
5208 * entry (file or directory) otherwise we end up with an unreplayable log due to
5209 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5210 * if it were a regular entry:
5211 *
5212 * mkdir /mnt/x
5213 * btrfs subvolume snapshot /mnt /mnt/x/snap
5214 * btrfs subvolume delete /mnt/x/snap
5215 * rmdir /mnt/x
5216 * mkdir /mnt/x
5217 * fsync /mnt/x or fsync some new file inside it
5218 * <power fail>
5219 *
5220 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5221 * the same transaction.
5222 */
5223static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5224 const int slot,
5225 const struct btrfs_key *key,
4791c8f1 5226 struct btrfs_inode *inode,
a3baaf0d 5227 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5228{
5229 int ret;
5230 struct btrfs_path *search_path;
5231 char *name = NULL;
5232 u32 name_len = 0;
3212fa14 5233 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5234 u32 cur_offset = 0;
5235 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5236
5237 search_path = btrfs_alloc_path();
5238 if (!search_path)
5239 return -ENOMEM;
5240 search_path->search_commit_root = 1;
5241 search_path->skip_locking = 1;
5242
5243 while (cur_offset < item_size) {
5244 u64 parent;
5245 u32 this_name_len;
5246 u32 this_len;
5247 unsigned long name_ptr;
5248 struct btrfs_dir_item *di;
6db75318 5249 struct fscrypt_str name_str;
56f23fdb
FM
5250
5251 if (key->type == BTRFS_INODE_REF_KEY) {
5252 struct btrfs_inode_ref *iref;
5253
5254 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5255 parent = key->offset;
5256 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5257 name_ptr = (unsigned long)(iref + 1);
5258 this_len = sizeof(*iref) + this_name_len;
5259 } else {
5260 struct btrfs_inode_extref *extref;
5261
5262 extref = (struct btrfs_inode_extref *)(ptr +
5263 cur_offset);
5264 parent = btrfs_inode_extref_parent(eb, extref);
5265 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5266 name_ptr = (unsigned long)&extref->name;
5267 this_len = sizeof(*extref) + this_name_len;
5268 }
5269
5270 if (this_name_len > name_len) {
5271 char *new_name;
5272
5273 new_name = krealloc(name, this_name_len, GFP_NOFS);
5274 if (!new_name) {
5275 ret = -ENOMEM;
5276 goto out;
5277 }
5278 name_len = this_name_len;
5279 name = new_name;
5280 }
5281
5282 read_extent_buffer(eb, name, name_ptr, this_name_len);
e43eec81
STD
5283
5284 name_str.name = name;
5285 name_str.len = this_name_len;
4791c8f1 5286 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
e43eec81 5287 parent, &name_str, 0);
56f23fdb 5288 if (di && !IS_ERR(di)) {
44f714da
FM
5289 struct btrfs_key di_key;
5290
5291 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5292 di, &di_key);
5293 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5294 if (di_key.objectid != key->objectid) {
5295 ret = 1;
5296 *other_ino = di_key.objectid;
a3baaf0d 5297 *other_parent = parent;
6b5fc433
FM
5298 } else {
5299 ret = 0;
5300 }
44f714da
FM
5301 } else {
5302 ret = -EAGAIN;
5303 }
56f23fdb
FM
5304 goto out;
5305 } else if (IS_ERR(di)) {
5306 ret = PTR_ERR(di);
5307 goto out;
5308 }
5309 btrfs_release_path(search_path);
5310
5311 cur_offset += this_len;
5312 }
5313 ret = 0;
5314out:
5315 btrfs_free_path(search_path);
5316 kfree(name);
5317 return ret;
5318}
5319
a3751024
FM
5320/*
5321 * Check if we need to log an inode. This is used in contexts where while
5322 * logging an inode we need to log another inode (either that it exists or in
5323 * full mode). This is used instead of btrfs_inode_in_log() because the later
5324 * requires the inode to be in the log and have the log transaction committed,
5325 * while here we do not care if the log transaction was already committed - our
5326 * caller will commit the log later - and we want to avoid logging an inode
5327 * multiple times when multiple tasks have joined the same log transaction.
5328 */
5329static bool need_log_inode(const struct btrfs_trans_handle *trans,
5330 const struct btrfs_inode *inode)
5331{
5332 /*
5333 * If a directory was not modified, no dentries added or removed, we can
5334 * and should avoid logging it.
5335 */
5336 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5337 return false;
5338
5339 /*
5340 * If this inode does not have new/updated/deleted xattrs since the last
5341 * time it was logged and is flagged as logged in the current transaction,
5342 * we can skip logging it. As for new/deleted names, those are updated in
5343 * the log by link/unlink/rename operations.
5344 * In case the inode was logged and then evicted and reloaded, its
5345 * logged_trans will be 0, in which case we have to fully log it since
5346 * logged_trans is a transient field, not persisted.
5347 */
5348 if (inode->logged_trans == trans->transid &&
5349 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5350 return false;
5351
5352 return true;
5353}
5354
f6d86dbe
FM
5355struct btrfs_dir_list {
5356 u64 ino;
5357 struct list_head list;
5358};
5359
5360/*
5361 * Log the inodes of the new dentries of a directory.
5362 * See process_dir_items_leaf() for details about why it is needed.
5363 * This is a recursive operation - if an existing dentry corresponds to a
5364 * directory, that directory's new entries are logged too (same behaviour as
5365 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5366 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5367 * complains about the following circular lock dependency / possible deadlock:
5368 *
5369 * CPU0 CPU1
5370 * ---- ----
5371 * lock(&type->i_mutex_dir_key#3/2);
5372 * lock(sb_internal#2);
5373 * lock(&type->i_mutex_dir_key#3/2);
5374 * lock(&sb->s_type->i_mutex_key#14);
5375 *
5376 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5377 * sb_start_intwrite() in btrfs_start_transaction().
5378 * Not acquiring the VFS lock of the inodes is still safe because:
5379 *
5380 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5381 * that while logging the inode new references (names) are added or removed
5382 * from the inode, leaving the logged inode item with a link count that does
5383 * not match the number of logged inode reference items. This is fine because
5384 * at log replay time we compute the real number of links and correct the
5385 * link count in the inode item (see replay_one_buffer() and
5386 * link_to_fixup_dir());
5387 *
5388 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5389 * while logging the inode's items new index items (key type
5390 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5391 * has a size that doesn't match the sum of the lengths of all the logged
5392 * names - this is ok, not a problem, because at log replay time we set the
5393 * directory's i_size to the correct value (see replay_one_name() and
5394 * do_overwrite_item()).
5395 */
5396static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5397 struct btrfs_inode *start_inode,
5398 struct btrfs_log_ctx *ctx)
5399{
5400 struct btrfs_root *root = start_inode->root;
5401 struct btrfs_fs_info *fs_info = root->fs_info;
5402 struct btrfs_path *path;
5403 LIST_HEAD(dir_list);
5404 struct btrfs_dir_list *dir_elem;
5405 u64 ino = btrfs_ino(start_inode);
5406 int ret = 0;
5407
5408 /*
5409 * If we are logging a new name, as part of a link or rename operation,
5410 * don't bother logging new dentries, as we just want to log the names
5411 * of an inode and that any new parents exist.
5412 */
5413 if (ctx->logging_new_name)
5414 return 0;
5415
5416 path = btrfs_alloc_path();
5417 if (!path)
5418 return -ENOMEM;
5419
5420 while (true) {
5421 struct extent_buffer *leaf;
5422 struct btrfs_key min_key;
5423 bool continue_curr_inode = true;
5424 int nritems;
5425 int i;
5426
5427 min_key.objectid = ino;
5428 min_key.type = BTRFS_DIR_INDEX_KEY;
5429 min_key.offset = 0;
5430again:
5431 btrfs_release_path(path);
5432 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5433 if (ret < 0) {
5434 break;
5435 } else if (ret > 0) {
5436 ret = 0;
5437 goto next;
5438 }
5439
5440 leaf = path->nodes[0];
5441 nritems = btrfs_header_nritems(leaf);
5442 for (i = path->slots[0]; i < nritems; i++) {
5443 struct btrfs_dir_item *di;
5444 struct btrfs_key di_key;
5445 struct inode *di_inode;
5446 int log_mode = LOG_INODE_EXISTS;
5447 int type;
5448
5449 btrfs_item_key_to_cpu(leaf, &min_key, i);
5450 if (min_key.objectid != ino ||
5451 min_key.type != BTRFS_DIR_INDEX_KEY) {
5452 continue_curr_inode = false;
5453 break;
5454 }
5455
5456 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
94a48aef 5457 type = btrfs_dir_ftype(leaf, di);
f6d86dbe
FM
5458 if (btrfs_dir_transid(leaf, di) < trans->transid)
5459 continue;
5460 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5461 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5462 continue;
5463
5464 btrfs_release_path(path);
5465 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5466 if (IS_ERR(di_inode)) {
5467 ret = PTR_ERR(di_inode);
5468 goto out;
5469 }
5470
5471 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5472 btrfs_add_delayed_iput(di_inode);
5473 break;
5474 }
5475
5476 ctx->log_new_dentries = false;
5477 if (type == BTRFS_FT_DIR)
5478 log_mode = LOG_INODE_ALL;
5479 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5480 log_mode, ctx);
5481 btrfs_add_delayed_iput(di_inode);
5482 if (ret)
5483 goto out;
5484 if (ctx->log_new_dentries) {
5485 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5486 if (!dir_elem) {
5487 ret = -ENOMEM;
5488 goto out;
5489 }
5490 dir_elem->ino = di_key.objectid;
5491 list_add_tail(&dir_elem->list, &dir_list);
5492 }
5493 break;
5494 }
5495
5496 if (continue_curr_inode && min_key.offset < (u64)-1) {
5497 min_key.offset++;
5498 goto again;
5499 }
5500
5501next:
5502 if (list_empty(&dir_list))
5503 break;
5504
5505 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5506 ino = dir_elem->ino;
5507 list_del(&dir_elem->list);
5508 kfree(dir_elem);
5509 }
5510out:
5511 btrfs_free_path(path);
5512 if (ret) {
5513 struct btrfs_dir_list *next;
5514
5515 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5516 kfree(dir_elem);
5517 }
5518
5519 return ret;
5520}
5521
6b5fc433
FM
5522struct btrfs_ino_list {
5523 u64 ino;
a3baaf0d 5524 u64 parent;
6b5fc433
FM
5525 struct list_head list;
5526};
5527
e09d94c9
FM
5528static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5529{
5530 struct btrfs_ino_list *curr;
5531 struct btrfs_ino_list *next;
5532
5533 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5534 list_del(&curr->list);
5535 kfree(curr);
5536 }
5537}
5538
5557a069
FM
5539static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5540 struct btrfs_path *path)
5541{
5542 struct btrfs_key key;
5543 int ret;
5544
5545 key.objectid = ino;
5546 key.type = BTRFS_INODE_ITEM_KEY;
5547 key.offset = 0;
5548
5549 path->search_commit_root = 1;
5550 path->skip_locking = 1;
5551
5552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5553 if (WARN_ON_ONCE(ret > 0)) {
5554 /*
5555 * We have previously found the inode through the commit root
5556 * so this should not happen. If it does, just error out and
5557 * fallback to a transaction commit.
5558 */
5559 ret = -ENOENT;
5560 } else if (ret == 0) {
5561 struct btrfs_inode_item *item;
5562
5563 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5564 struct btrfs_inode_item);
5565 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5566 ret = 1;
5567 }
5568
5569 btrfs_release_path(path);
5570 path->search_commit_root = 0;
5571 path->skip_locking = 0;
5572
5573 return ret;
5574}
5575
e09d94c9
FM
5576static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5577 struct btrfs_root *root,
5557a069 5578 struct btrfs_path *path,
e09d94c9
FM
5579 u64 ino, u64 parent,
5580 struct btrfs_log_ctx *ctx)
6b5fc433
FM
5581{
5582 struct btrfs_ino_list *ino_elem;
e09d94c9
FM
5583 struct inode *inode;
5584
5585 /*
5586 * It's rare to have a lot of conflicting inodes, in practice it is not
5587 * common to have more than 1 or 2. We don't want to collect too many,
5588 * as we could end up logging too many inodes (even if only in
5589 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5590 * commits.
5591 */
5592 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5593 return BTRFS_LOG_FORCE_COMMIT;
5594
5595 inode = btrfs_iget(root->fs_info->sb, ino, root);
5596 /*
5597 * If the other inode that had a conflicting dir entry was deleted in
5557a069
FM
5598 * the current transaction then we either:
5599 *
5600 * 1) Log the parent directory (later after adding it to the list) if
5601 * the inode is a directory. This is because it may be a deleted
5602 * subvolume/snapshot or it may be a regular directory that had
5603 * deleted subvolumes/snapshots (or subdirectories that had them),
5604 * and at the moment we can't deal with dropping subvolumes/snapshots
5605 * during log replay. So we just log the parent, which will result in
5606 * a fallback to a transaction commit if we are dealing with those
5607 * cases (last_unlink_trans will match the current transaction);
5608 *
5609 * 2) Do nothing if it's not a directory. During log replay we simply
5610 * unlink the conflicting dentry from the parent directory and then
5611 * add the dentry for our inode. Like this we can avoid logging the
5612 * parent directory (and maybe fallback to a transaction commit in
5613 * case it has a last_unlink_trans == trans->transid, due to moving
5614 * some inode from it to some other directory).
e09d94c9
FM
5615 */
5616 if (IS_ERR(inode)) {
5617 int ret = PTR_ERR(inode);
5618
5619 if (ret != -ENOENT)
5620 return ret;
5621
5557a069
FM
5622 ret = conflicting_inode_is_dir(root, ino, path);
5623 /* Not a directory or we got an error. */
5624 if (ret <= 0)
5625 return ret;
5626
5627 /* Conflicting inode is a directory, so we'll log its parent. */
e09d94c9
FM
5628 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5629 if (!ino_elem)
5630 return -ENOMEM;
5631 ino_elem->ino = ino;
5632 ino_elem->parent = parent;
5633 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5634 ctx->num_conflict_inodes++;
5635
5636 return 0;
5637 }
5638
5639 /*
5640 * If the inode was already logged skip it - otherwise we can hit an
5641 * infinite loop. Example:
5642 *
5643 * From the commit root (previous transaction) we have the following
5644 * inodes:
5645 *
5646 * inode 257 a directory
5647 * inode 258 with references "zz" and "zz_link" on inode 257
5648 * inode 259 with reference "a" on inode 257
5649 *
5650 * And in the current (uncommitted) transaction we have:
5651 *
5652 * inode 257 a directory, unchanged
5653 * inode 258 with references "a" and "a2" on inode 257
5654 * inode 259 with reference "zz_link" on inode 257
5655 * inode 261 with reference "zz" on inode 257
5656 *
5657 * When logging inode 261 the following infinite loop could
5658 * happen if we don't skip already logged inodes:
5659 *
5660 * - we detect inode 258 as a conflicting inode, with inode 261
5661 * on reference "zz", and log it;
5662 *
5663 * - we detect inode 259 as a conflicting inode, with inode 258
5664 * on reference "a", and log it;
5665 *
5666 * - we detect inode 258 as a conflicting inode, with inode 259
5667 * on reference "zz_link", and log it - again! After this we
5668 * repeat the above steps forever.
5669 *
5670 * Here we can use need_log_inode() because we only need to log the
5671 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5672 * so that the log ends up with the new name and without the old name.
5673 */
5674 if (!need_log_inode(trans, BTRFS_I(inode))) {
5675 btrfs_add_delayed_iput(inode);
5676 return 0;
5677 }
5678
5679 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5680
5681 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5682 if (!ino_elem)
5683 return -ENOMEM;
5684 ino_elem->ino = ino;
a3baaf0d 5685 ino_elem->parent = parent;
e09d94c9
FM
5686 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5687 ctx->num_conflict_inodes++;
6b5fc433 5688
e09d94c9
FM
5689 return 0;
5690}
6b5fc433 5691
e09d94c9
FM
5692static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5693 struct btrfs_root *root,
5694 struct btrfs_log_ctx *ctx)
5695{
5696 struct btrfs_fs_info *fs_info = root->fs_info;
5697 int ret = 0;
6b5fc433 5698
e09d94c9
FM
5699 /*
5700 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5701 * otherwise we could have unbounded recursion of btrfs_log_inode()
5702 * calls. This check guarantees we can have only 1 level of recursion.
5703 */
5704 if (ctx->logging_conflict_inodes)
5705 return 0;
5706
5707 ctx->logging_conflict_inodes = true;
5708
5709 /*
5710 * New conflicting inodes may be found and added to the list while we
5711 * are logging a conflicting inode, so keep iterating while the list is
5712 * not empty.
5713 */
5714 while (!list_empty(&ctx->conflict_inodes)) {
5715 struct btrfs_ino_list *curr;
5716 struct inode *inode;
5717 u64 ino;
5718 u64 parent;
5719
5720 curr = list_first_entry(&ctx->conflict_inodes,
5721 struct btrfs_ino_list, list);
5722 ino = curr->ino;
5723 parent = curr->parent;
5724 list_del(&curr->list);
5725 kfree(curr);
6b5fc433 5726
0202e83f 5727 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5728 /*
5729 * If the other inode that had a conflicting dir entry was
a3baaf0d 5730 * deleted in the current transaction, we need to log its parent
e09d94c9 5731 * directory. See the comment at add_conflicting_inode().
6b5fc433
FM
5732 */
5733 if (IS_ERR(inode)) {
5734 ret = PTR_ERR(inode);
e09d94c9
FM
5735 if (ret != -ENOENT)
5736 break;
5737
5738 inode = btrfs_iget(fs_info->sb, parent, root);
5739 if (IS_ERR(inode)) {
5740 ret = PTR_ERR(inode);
5741 break;
a3baaf0d 5742 }
e09d94c9
FM
5743
5744 /*
5745 * Always log the directory, we cannot make this
5746 * conditional on need_log_inode() because the directory
5747 * might have been logged in LOG_INODE_EXISTS mode or
5748 * the dir index of the conflicting inode is not in a
5749 * dir index key range logged for the directory. So we
5750 * must make sure the deletion is recorded.
5751 */
5752 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5753 LOG_INODE_ALL, ctx);
5754 btrfs_add_delayed_iput(inode);
5755 if (ret)
5756 break;
6b5fc433
FM
5757 continue;
5758 }
e09d94c9 5759
b5e4ff9d 5760 /*
e09d94c9
FM
5761 * Here we can use need_log_inode() because we only need to log
5762 * the inode in LOG_INODE_EXISTS mode and rename operations
5763 * update the log, so that the log ends up with the new name and
5764 * without the old name.
b5e4ff9d 5765 *
e09d94c9
FM
5766 * We did this check at add_conflicting_inode(), but here we do
5767 * it again because if some other task logged the inode after
5768 * that, we can avoid doing it again.
b5e4ff9d 5769 */
e09d94c9 5770 if (!need_log_inode(trans, BTRFS_I(inode))) {
b5e4ff9d
FM
5771 btrfs_add_delayed_iput(inode);
5772 continue;
5773 }
e09d94c9 5774
6b5fc433
FM
5775 /*
5776 * We are safe logging the other inode without acquiring its
5777 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5778 * are safe against concurrent renames of the other inode as
5779 * well because during a rename we pin the log and update the
5780 * log with the new name before we unpin it.
5781 */
e09d94c9 5782 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
410f954c 5783 btrfs_add_delayed_iput(inode);
e09d94c9
FM
5784 if (ret)
5785 break;
6b5fc433
FM
5786 }
5787
e09d94c9
FM
5788 ctx->logging_conflict_inodes = false;
5789 if (ret)
5790 free_conflicting_inodes(ctx);
5791
6b5fc433
FM
5792 return ret;
5793}
5794
da447009
FM
5795static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5796 struct btrfs_inode *inode,
5797 struct btrfs_key *min_key,
5798 const struct btrfs_key *max_key,
5799 struct btrfs_path *path,
5800 struct btrfs_path *dst_path,
5801 const u64 logged_isize,
da447009
FM
5802 const int inode_only,
5803 struct btrfs_log_ctx *ctx,
5804 bool *need_log_inode_item)
5805{
d9947887 5806 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5807 struct btrfs_root *root = inode->root;
5808 int ins_start_slot = 0;
5809 int ins_nr = 0;
5810 int ret;
5811
5812 while (1) {
5813 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5814 if (ret < 0)
5815 return ret;
5816 if (ret > 0) {
5817 ret = 0;
5818 break;
5819 }
5820again:
5821 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5822 if (min_key->objectid != max_key->objectid)
5823 break;
5824 if (min_key->type > max_key->type)
5825 break;
5826
d9947887 5827 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5828 *need_log_inode_item = false;
d9947887
FM
5829 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5830 min_key->offset >= i_size) {
5831 /*
5832 * Extents at and beyond eof are logged with
5833 * btrfs_log_prealloc_extents().
5834 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5835 * and no keys greater than that, so bail out.
5836 */
5837 break;
5838 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5839 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
e09d94c9
FM
5840 (inode->generation == trans->transid ||
5841 ctx->logging_conflict_inodes)) {
da447009
FM
5842 u64 other_ino = 0;
5843 u64 other_parent = 0;
5844
5845 ret = btrfs_check_ref_name_override(path->nodes[0],
5846 path->slots[0], min_key, inode,
5847 &other_ino, &other_parent);
5848 if (ret < 0) {
5849 return ret;
289cffcb 5850 } else if (ret > 0 &&
da447009
FM
5851 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5852 if (ins_nr > 0) {
5853 ins_nr++;
5854 } else {
5855 ins_nr = 1;
5856 ins_start_slot = path->slots[0];
5857 }
5858 ret = copy_items(trans, inode, dst_path, path,
5859 ins_start_slot, ins_nr,
5860 inode_only, logged_isize);
5861 if (ret < 0)
5862 return ret;
5863 ins_nr = 0;
5864
e09d94c9 5865 btrfs_release_path(path);
5557a069 5866 ret = add_conflicting_inode(trans, root, path,
e09d94c9
FM
5867 other_ino,
5868 other_parent, ctx);
da447009
FM
5869 if (ret)
5870 return ret;
da447009
FM
5871 goto next_key;
5872 }
d9947887
FM
5873 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5874 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5875 if (ins_nr == 0)
5876 goto next_slot;
5877 ret = copy_items(trans, inode, dst_path, path,
5878 ins_start_slot,
5879 ins_nr, inode_only, logged_isize);
5880 if (ret < 0)
5881 return ret;
5882 ins_nr = 0;
5883 goto next_slot;
5884 }
5885
5886 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5887 ins_nr++;
5888 goto next_slot;
5889 } else if (!ins_nr) {
5890 ins_start_slot = path->slots[0];
5891 ins_nr = 1;
5892 goto next_slot;
5893 }
5894
5895 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5896 ins_nr, inode_only, logged_isize);
5897 if (ret < 0)
5898 return ret;
5899 ins_nr = 1;
5900 ins_start_slot = path->slots[0];
5901next_slot:
5902 path->slots[0]++;
5903 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5904 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5905 path->slots[0]);
5906 goto again;
5907 }
5908 if (ins_nr) {
5909 ret = copy_items(trans, inode, dst_path, path,
5910 ins_start_slot, ins_nr, inode_only,
5911 logged_isize);
5912 if (ret < 0)
5913 return ret;
5914 ins_nr = 0;
5915 }
5916 btrfs_release_path(path);
5917next_key:
5918 if (min_key->offset < (u64)-1) {
5919 min_key->offset++;
5920 } else if (min_key->type < max_key->type) {
5921 min_key->type++;
5922 min_key->offset = 0;
5923 } else {
5924 break;
5925 }
96acb375
FM
5926
5927 /*
5928 * We may process many leaves full of items for our inode, so
5929 * avoid monopolizing a cpu for too long by rescheduling while
5930 * not holding locks on any tree.
5931 */
5932 cond_resched();
da447009 5933 }
d9947887 5934 if (ins_nr) {
da447009
FM
5935 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5936 ins_nr, inode_only, logged_isize);
d9947887
FM
5937 if (ret)
5938 return ret;
5939 }
5940
5941 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5942 /*
5943 * Release the path because otherwise we might attempt to double
5944 * lock the same leaf with btrfs_log_prealloc_extents() below.
5945 */
5946 btrfs_release_path(path);
5947 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5948 }
da447009
FM
5949
5950 return ret;
5951}
5952
30b80f3c
FM
5953static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5954 struct btrfs_root *log,
5955 struct btrfs_path *path,
5956 const struct btrfs_item_batch *batch,
5957 const struct btrfs_delayed_item *first_item)
5958{
5959 const struct btrfs_delayed_item *curr = first_item;
5960 int ret;
5961
5962 ret = btrfs_insert_empty_items(trans, log, path, batch);
5963 if (ret)
5964 return ret;
5965
5966 for (int i = 0; i < batch->nr; i++) {
5967 char *data_ptr;
5968
5969 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5970 write_extent_buffer(path->nodes[0], &curr->data,
5971 (unsigned long)data_ptr, curr->data_len);
5972 curr = list_next_entry(curr, log_list);
5973 path->slots[0]++;
5974 }
5975
5976 btrfs_release_path(path);
5977
5978 return 0;
5979}
5980
5981static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5982 struct btrfs_inode *inode,
5983 struct btrfs_path *path,
5984 const struct list_head *delayed_ins_list,
5985 struct btrfs_log_ctx *ctx)
5986{
5987 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5988 const int max_batch_size = 195;
5989 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5990 const u64 ino = btrfs_ino(inode);
5991 struct btrfs_root *log = inode->root->log_root;
5992 struct btrfs_item_batch batch = {
5993 .nr = 0,
5994 .total_data_size = 0,
5995 };
5996 const struct btrfs_delayed_item *first = NULL;
5997 const struct btrfs_delayed_item *curr;
5998 char *ins_data;
5999 struct btrfs_key *ins_keys;
6000 u32 *ins_sizes;
6001 u64 curr_batch_size = 0;
6002 int batch_idx = 0;
6003 int ret;
6004
6005 /* We are adding dir index items to the log tree. */
6006 lockdep_assert_held(&inode->log_mutex);
6007
6008 /*
6009 * We collect delayed items before copying index keys from the subvolume
6010 * to the log tree. However just after we collected them, they may have
6011 * been flushed (all of them or just some of them), and therefore we
6012 * could have copied them from the subvolume tree to the log tree.
6013 * So find the first delayed item that was not yet logged (they are
6014 * sorted by index number).
6015 */
6016 list_for_each_entry(curr, delayed_ins_list, log_list) {
6017 if (curr->index > inode->last_dir_index_offset) {
6018 first = curr;
6019 break;
6020 }
6021 }
6022
6023 /* Empty list or all delayed items were already logged. */
6024 if (!first)
6025 return 0;
6026
6027 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6028 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6029 if (!ins_data)
6030 return -ENOMEM;
6031 ins_sizes = (u32 *)ins_data;
6032 batch.data_sizes = ins_sizes;
6033 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6034 batch.keys = ins_keys;
6035
6036 curr = first;
6037 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6038 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6039
6040 if (curr_batch_size + curr_size > leaf_data_size ||
6041 batch.nr == max_batch_size) {
6042 ret = insert_delayed_items_batch(trans, log, path,
6043 &batch, first);
6044 if (ret)
6045 goto out;
6046 batch_idx = 0;
6047 batch.nr = 0;
6048 batch.total_data_size = 0;
6049 curr_batch_size = 0;
6050 first = curr;
6051 }
6052
6053 ins_sizes[batch_idx] = curr->data_len;
6054 ins_keys[batch_idx].objectid = ino;
6055 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6056 ins_keys[batch_idx].offset = curr->index;
6057 curr_batch_size += curr_size;
6058 batch.total_data_size += curr->data_len;
6059 batch.nr++;
6060 batch_idx++;
6061 curr = list_next_entry(curr, log_list);
6062 }
6063
6064 ASSERT(batch.nr >= 1);
6065 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6066
6067 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6068 log_list);
6069 inode->last_dir_index_offset = curr->index;
6070out:
6071 kfree(ins_data);
6072
6073 return ret;
6074}
6075
6076static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6077 struct btrfs_inode *inode,
6078 struct btrfs_path *path,
6079 const struct list_head *delayed_del_list,
6080 struct btrfs_log_ctx *ctx)
6081{
6082 const u64 ino = btrfs_ino(inode);
6083 const struct btrfs_delayed_item *curr;
6084
6085 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6086 log_list);
6087
6088 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6089 u64 first_dir_index = curr->index;
6090 u64 last_dir_index;
6091 const struct btrfs_delayed_item *next;
6092 int ret;
6093
6094 /*
6095 * Find a range of consecutive dir index items to delete. Like
6096 * this we log a single dir range item spanning several contiguous
6097 * dir items instead of logging one range item per dir index item.
6098 */
6099 next = list_next_entry(curr, log_list);
6100 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6101 if (next->index != curr->index + 1)
6102 break;
6103 curr = next;
6104 next = list_next_entry(next, log_list);
6105 }
6106
6107 last_dir_index = curr->index;
6108 ASSERT(last_dir_index >= first_dir_index);
6109
6110 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6111 ino, first_dir_index, last_dir_index);
6112 if (ret)
6113 return ret;
6114 curr = list_next_entry(curr, log_list);
6115 }
6116
6117 return 0;
6118}
6119
6120static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6121 struct btrfs_inode *inode,
6122 struct btrfs_path *path,
6123 struct btrfs_log_ctx *ctx,
6124 const struct list_head *delayed_del_list,
6125 const struct btrfs_delayed_item *first,
6126 const struct btrfs_delayed_item **last_ret)
6127{
6128 const struct btrfs_delayed_item *next;
6129 struct extent_buffer *leaf = path->nodes[0];
6130 const int last_slot = btrfs_header_nritems(leaf) - 1;
6131 int slot = path->slots[0] + 1;
6132 const u64 ino = btrfs_ino(inode);
6133
6134 next = list_next_entry(first, log_list);
6135
6136 while (slot < last_slot &&
6137 !list_entry_is_head(next, delayed_del_list, log_list)) {
6138 struct btrfs_key key;
6139
6140 btrfs_item_key_to_cpu(leaf, &key, slot);
6141 if (key.objectid != ino ||
6142 key.type != BTRFS_DIR_INDEX_KEY ||
6143 key.offset != next->index)
6144 break;
6145
6146 slot++;
6147 *last_ret = next;
6148 next = list_next_entry(next, log_list);
6149 }
6150
6151 return btrfs_del_items(trans, inode->root->log_root, path,
6152 path->slots[0], slot - path->slots[0]);
6153}
6154
6155static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6156 struct btrfs_inode *inode,
6157 struct btrfs_path *path,
6158 const struct list_head *delayed_del_list,
6159 struct btrfs_log_ctx *ctx)
6160{
6161 struct btrfs_root *log = inode->root->log_root;
6162 const struct btrfs_delayed_item *curr;
6163 u64 last_range_start;
6164 u64 last_range_end = 0;
6165 struct btrfs_key key;
6166
6167 key.objectid = btrfs_ino(inode);
6168 key.type = BTRFS_DIR_INDEX_KEY;
6169 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170 log_list);
6171
6172 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173 const struct btrfs_delayed_item *last = curr;
6174 u64 first_dir_index = curr->index;
6175 u64 last_dir_index;
6176 bool deleted_items = false;
6177 int ret;
6178
6179 key.offset = curr->index;
6180 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6181 if (ret < 0) {
6182 return ret;
6183 } else if (ret == 0) {
6184 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6185 delayed_del_list, curr,
6186 &last);
6187 if (ret)
6188 return ret;
6189 deleted_items = true;
6190 }
6191
6192 btrfs_release_path(path);
6193
6194 /*
6195 * If we deleted items from the leaf, it means we have a range
6196 * item logging their range, so no need to add one or update an
6197 * existing one. Otherwise we have to log a dir range item.
6198 */
6199 if (deleted_items)
6200 goto next_batch;
6201
6202 last_dir_index = last->index;
6203 ASSERT(last_dir_index >= first_dir_index);
6204 /*
6205 * If this range starts right after where the previous one ends,
6206 * then we want to reuse the previous range item and change its
6207 * end offset to the end of this range. This is just to minimize
6208 * leaf space usage, by avoiding adding a new range item.
6209 */
6210 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6211 first_dir_index = last_range_start;
6212
6213 ret = insert_dir_log_key(trans, log, path, key.objectid,
6214 first_dir_index, last_dir_index);
6215 if (ret)
6216 return ret;
6217
6218 last_range_start = first_dir_index;
6219 last_range_end = last_dir_index;
6220next_batch:
6221 curr = list_next_entry(last, log_list);
6222 }
6223
6224 return 0;
6225}
6226
6227static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6228 struct btrfs_inode *inode,
6229 struct btrfs_path *path,
6230 const struct list_head *delayed_del_list,
6231 struct btrfs_log_ctx *ctx)
6232{
6233 /*
6234 * We are deleting dir index items from the log tree or adding range
6235 * items to it.
6236 */
6237 lockdep_assert_held(&inode->log_mutex);
6238
6239 if (list_empty(delayed_del_list))
6240 return 0;
6241
6242 if (ctx->logged_before)
6243 return log_delayed_deletions_incremental(trans, inode, path,
6244 delayed_del_list, ctx);
6245
6246 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6247 ctx);
6248}
6249
6250/*
6251 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6252 * items instead of the subvolume tree.
6253 */
6254static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6255 struct btrfs_inode *inode,
6256 const struct list_head *delayed_ins_list,
6257 struct btrfs_log_ctx *ctx)
6258{
6259 const bool orig_log_new_dentries = ctx->log_new_dentries;
6260 struct btrfs_fs_info *fs_info = trans->fs_info;
6261 struct btrfs_delayed_item *item;
6262 int ret = 0;
6263
6264 /*
6265 * No need for the log mutex, plus to avoid potential deadlocks or
6266 * lockdep annotations due to nesting of delayed inode mutexes and log
6267 * mutexes.
6268 */
6269 lockdep_assert_not_held(&inode->log_mutex);
6270
6271 ASSERT(!ctx->logging_new_delayed_dentries);
6272 ctx->logging_new_delayed_dentries = true;
6273
6274 list_for_each_entry(item, delayed_ins_list, log_list) {
6275 struct btrfs_dir_item *dir_item;
6276 struct inode *di_inode;
6277 struct btrfs_key key;
6278 int log_mode = LOG_INODE_EXISTS;
6279
6280 dir_item = (struct btrfs_dir_item *)item->data;
6281 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6282
6283 if (key.type == BTRFS_ROOT_ITEM_KEY)
6284 continue;
6285
6286 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6287 if (IS_ERR(di_inode)) {
6288 ret = PTR_ERR(di_inode);
6289 break;
6290 }
6291
6292 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6293 btrfs_add_delayed_iput(di_inode);
6294 continue;
6295 }
6296
94a48aef 6297 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
30b80f3c
FM
6298 log_mode = LOG_INODE_ALL;
6299
6300 ctx->log_new_dentries = false;
6301 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6302
6303 if (!ret && ctx->log_new_dentries)
6304 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6305
6306 btrfs_add_delayed_iput(di_inode);
6307
6308 if (ret)
6309 break;
6310 }
6311
6312 ctx->log_new_dentries = orig_log_new_dentries;
6313 ctx->logging_new_delayed_dentries = false;
6314
6315 return ret;
6316}
6317
e02119d5
CM
6318/* log a single inode in the tree log.
6319 * At least one parent directory for this inode must exist in the tree
6320 * or be logged already.
6321 *
6322 * Any items from this inode changed by the current transaction are copied
6323 * to the log tree. An extra reference is taken on any extents in this
6324 * file, allowing us to avoid a whole pile of corner cases around logging
6325 * blocks that have been removed from the tree.
6326 *
6327 * See LOG_INODE_ALL and related defines for a description of what inode_only
6328 * does.
6329 *
6330 * This handles both files and directories.
6331 */
12fcfd22 6332static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 6333 struct btrfs_inode *inode,
49dae1bc 6334 int inode_only,
8407f553 6335 struct btrfs_log_ctx *ctx)
e02119d5
CM
6336{
6337 struct btrfs_path *path;
6338 struct btrfs_path *dst_path;
6339 struct btrfs_key min_key;
6340 struct btrfs_key max_key;
90d04510 6341 struct btrfs_root *log = inode->root->log_root;
65faced5 6342 int ret;
5dc562c5 6343 bool fast_search = false;
a59108a7
NB
6344 u64 ino = btrfs_ino(inode);
6345 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 6346 u64 logged_isize = 0;
e4545de5 6347 bool need_log_inode_item = true;
9a8fca62 6348 bool xattrs_logged = false;
2ac691d8 6349 bool inode_item_dropped = true;
30b80f3c
FM
6350 bool full_dir_logging = false;
6351 LIST_HEAD(delayed_ins_list);
6352 LIST_HEAD(delayed_del_list);
e02119d5 6353
e02119d5 6354 path = btrfs_alloc_path();
5df67083
TI
6355 if (!path)
6356 return -ENOMEM;
e02119d5 6357 dst_path = btrfs_alloc_path();
5df67083
TI
6358 if (!dst_path) {
6359 btrfs_free_path(path);
6360 return -ENOMEM;
6361 }
e02119d5 6362
33345d01 6363 min_key.objectid = ino;
e02119d5
CM
6364 min_key.type = BTRFS_INODE_ITEM_KEY;
6365 min_key.offset = 0;
6366
33345d01 6367 max_key.objectid = ino;
12fcfd22 6368
12fcfd22 6369
5dc562c5 6370 /* today the code can only do partial logging of directories */
a59108a7 6371 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 6372 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6373 &inode->runtime_flags) &&
781feef7 6374 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
6375 max_key.type = BTRFS_XATTR_ITEM_KEY;
6376 else
6377 max_key.type = (u8)-1;
6378 max_key.offset = (u64)-1;
6379
30b80f3c
FM
6380 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6381 full_dir_logging = true;
6382
2c2c452b 6383 /*
30b80f3c
FM
6384 * If we are logging a directory while we are logging dentries of the
6385 * delayed items of some other inode, then we need to flush the delayed
6386 * items of this directory and not log the delayed items directly. This
6387 * is to prevent more than one level of recursion into btrfs_log_inode()
6388 * by having something like this:
6389 *
6390 * $ mkdir -p a/b/c/d/e/f/g/h/...
6391 * $ xfs_io -c "fsync" a
6392 *
6393 * Where all directories in the path did not exist before and are
6394 * created in the current transaction.
6395 * So in such a case we directly log the delayed items of the main
6396 * directory ("a") without flushing them first, while for each of its
6397 * subdirectories we flush their delayed items before logging them.
6398 * This prevents a potential unbounded recursion like this:
6399 *
6400 * btrfs_log_inode()
6401 * log_new_delayed_dentries()
6402 * btrfs_log_inode()
6403 * log_new_delayed_dentries()
6404 * btrfs_log_inode()
6405 * log_new_delayed_dentries()
6406 * (...)
6407 *
6408 * We have thresholds for the maximum number of delayed items to have in
6409 * memory, and once they are hit, the items are flushed asynchronously.
6410 * However the limit is quite high, so lets prevent deep levels of
6411 * recursion to happen by limiting the maximum depth to be 1.
2c2c452b 6412 */
30b80f3c 6413 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
65faced5
FM
6414 ret = btrfs_commit_inode_delayed_items(trans, inode);
6415 if (ret)
f6df27dd 6416 goto out;
16cdcec7
MX
6417 }
6418
e09d94c9 6419 mutex_lock(&inode->log_mutex);
e02119d5 6420
d0e64a98
FM
6421 /*
6422 * For symlinks, we must always log their content, which is stored in an
6423 * inline extent, otherwise we could end up with an empty symlink after
6424 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6425 * one attempts to create an empty symlink).
6426 * We don't need to worry about flushing delalloc, because when we create
6427 * the inline extent when the symlink is created (we never have delalloc
6428 * for symlinks).
6429 */
6430 if (S_ISLNK(inode->vfs_inode.i_mode))
6431 inode_only = LOG_INODE_ALL;
6432
0f8ce498
FM
6433 /*
6434 * Before logging the inode item, cache the value returned by
6435 * inode_logged(), because after that we have the need to figure out if
6436 * the inode was previously logged in this transaction.
6437 */
6438 ret = inode_logged(trans, inode, path);
65faced5 6439 if (ret < 0)
0f8ce498 6440 goto out_unlock;
0f8ce498 6441 ctx->logged_before = (ret == 1);
65faced5 6442 ret = 0;
0f8ce498 6443
64d6b281
FM
6444 /*
6445 * This is for cases where logging a directory could result in losing a
6446 * a file after replaying the log. For example, if we move a file from a
6447 * directory A to a directory B, then fsync directory A, we have no way
6448 * to known the file was moved from A to B, so logging just A would
6449 * result in losing the file after a log replay.
6450 */
30b80f3c 6451 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
64d6b281 6452 btrfs_set_log_full_commit(trans);
f31f09f6 6453 ret = BTRFS_LOG_FORCE_COMMIT;
64d6b281
FM
6454 goto out_unlock;
6455 }
6456
e02119d5
CM
6457 /*
6458 * a brute force approach to making sure we get the most uptodate
6459 * copies of everything.
6460 */
a59108a7 6461 if (S_ISDIR(inode->vfs_inode.i_mode)) {
ab12313a 6462 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
0f8ce498
FM
6463 if (ctx->logged_before)
6464 ret = drop_inode_items(trans, log, path, inode,
04fc7d51 6465 BTRFS_XATTR_ITEM_KEY);
e02119d5 6466 } else {
0f8ce498 6467 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
6468 /*
6469 * Make sure the new inode item we write to the log has
6470 * the same isize as the current one (if it exists).
6471 * This is necessary to prevent data loss after log
6472 * replay, and also to prevent doing a wrong expanding
6473 * truncate - for e.g. create file, write 4K into offset
6474 * 0, fsync, write 4K into offset 4096, add hard link,
6475 * fsync some other file (to sync log), power fail - if
6476 * we use the inode's current i_size, after log replay
6477 * we get a 8Kb file, with the last 4Kb extent as a hole
6478 * (zeroes), as if an expanding truncate happened,
6479 * instead of getting a file of 4Kb only.
6480 */
65faced5
FM
6481 ret = logged_inode_size(log, inode, path, &logged_isize);
6482 if (ret)
1a4bcf47
FM
6483 goto out_unlock;
6484 }
a742994a 6485 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6486 &inode->runtime_flags)) {
a742994a 6487 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 6488 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6489 if (ctx->logged_before)
6490 ret = drop_inode_items(trans, log, path,
6491 inode, max_key.type);
a742994a
FM
6492 } else {
6493 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6494 &inode->runtime_flags);
a742994a 6495 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6496 &inode->runtime_flags);
0f8ce498 6497 if (ctx->logged_before)
4934a815
FM
6498 ret = truncate_inode_items(trans, log,
6499 inode, 0, 0);
a742994a 6500 }
4f764e51 6501 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6502 &inode->runtime_flags) ||
6cfab851 6503 inode_only == LOG_INODE_EXISTS) {
4f764e51 6504 if (inode_only == LOG_INODE_ALL)
183f37fa 6505 fast_search = true;
4f764e51 6506 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6507 if (ctx->logged_before)
6508 ret = drop_inode_items(trans, log, path, inode,
6509 max_key.type);
a95249b3
JB
6510 } else {
6511 if (inode_only == LOG_INODE_ALL)
6512 fast_search = true;
2ac691d8 6513 inode_item_dropped = false;
a95249b3 6514 goto log_extents;
5dc562c5 6515 }
a95249b3 6516
e02119d5 6517 }
65faced5 6518 if (ret)
4a500fd1 6519 goto out_unlock;
e02119d5 6520
30b80f3c
FM
6521 /*
6522 * If we are logging a directory in full mode, collect the delayed items
6523 * before iterating the subvolume tree, so that we don't miss any new
6524 * dir index items in case they get flushed while or right after we are
6525 * iterating the subvolume tree.
6526 */
6527 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6528 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6529 &delayed_del_list);
6530
65faced5 6531 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 6532 path, dst_path, logged_isize,
e09d94c9 6533 inode_only, ctx,
7af59743 6534 &need_log_inode_item);
65faced5 6535 if (ret)
da447009 6536 goto out_unlock;
5dc562c5 6537
36283bf7
FM
6538 btrfs_release_path(path);
6539 btrfs_release_path(dst_path);
65faced5
FM
6540 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6541 if (ret)
36283bf7 6542 goto out_unlock;
9a8fca62 6543 xattrs_logged = true;
a89ca6f2
FM
6544 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6545 btrfs_release_path(path);
6546 btrfs_release_path(dst_path);
65faced5
FM
6547 ret = btrfs_log_holes(trans, inode, path);
6548 if (ret)
a89ca6f2
FM
6549 goto out_unlock;
6550 }
a95249b3 6551log_extents:
f3b15ccd
JB
6552 btrfs_release_path(path);
6553 btrfs_release_path(dst_path);
e4545de5 6554 if (need_log_inode_item) {
65faced5
FM
6555 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6556 if (ret)
b590b839
FM
6557 goto out_unlock;
6558 /*
6559 * If we are doing a fast fsync and the inode was logged before
6560 * in this transaction, we don't need to log the xattrs because
6561 * they were logged before. If xattrs were added, changed or
6562 * deleted since the last time we logged the inode, then we have
6563 * already logged them because the inode had the runtime flag
6564 * BTRFS_INODE_COPY_EVERYTHING set.
6565 */
6566 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
6567 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6568 if (ret)
b590b839 6569 goto out_unlock;
9a8fca62
FM
6570 btrfs_release_path(path);
6571 }
e4545de5 6572 }
5dc562c5 6573 if (fast_search) {
90d04510 6574 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 6575 if (ret)
5dc562c5 6576 goto out_unlock;
d006a048 6577 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
6578 struct extent_map *em, *n;
6579
49dae1bc 6580 write_lock(&em_tree->lock);
48778179
FM
6581 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6582 list_del_init(&em->list);
49dae1bc 6583 write_unlock(&em_tree->lock);
5dc562c5
JB
6584 }
6585
30b80f3c 6586 if (full_dir_logging) {
90d04510 6587 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 6588 if (ret)
4a500fd1 6589 goto out_unlock;
30b80f3c
FM
6590 ret = log_delayed_insertion_items(trans, inode, path,
6591 &delayed_ins_list, ctx);
6592 if (ret)
6593 goto out_unlock;
6594 ret = log_delayed_deletion_items(trans, inode, path,
6595 &delayed_del_list, ctx);
6596 if (ret)
6597 goto out_unlock;
e02119d5 6598 }
49dae1bc 6599
130341be
FM
6600 spin_lock(&inode->lock);
6601 inode->logged_trans = trans->transid;
d1d832a0 6602 /*
130341be
FM
6603 * Don't update last_log_commit if we logged that an inode exists.
6604 * We do this for three reasons:
6605 *
6606 * 1) We might have had buffered writes to this inode that were
6607 * flushed and had their ordered extents completed in this
6608 * transaction, but we did not previously log the inode with
6609 * LOG_INODE_ALL. Later the inode was evicted and after that
6610 * it was loaded again and this LOG_INODE_EXISTS log operation
6611 * happened. We must make sure that if an explicit fsync against
6612 * the inode is performed later, it logs the new extents, an
6613 * updated inode item, etc, and syncs the log. The same logic
6614 * applies to direct IO writes instead of buffered writes.
6615 *
6616 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6617 * is logged with an i_size of 0 or whatever value was logged
6618 * before. If later the i_size of the inode is increased by a
6619 * truncate operation, the log is synced through an fsync of
6620 * some other inode and then finally an explicit fsync against
6621 * this inode is made, we must make sure this fsync logs the
6622 * inode with the new i_size, the hole between old i_size and
6623 * the new i_size, and syncs the log.
6624 *
6625 * 3) If we are logging that an ancestor inode exists as part of
6626 * logging a new name from a link or rename operation, don't update
6627 * its last_log_commit - otherwise if an explicit fsync is made
6628 * against an ancestor, the fsync considers the inode in the log
6629 * and doesn't sync the log, resulting in the ancestor missing after
6630 * a power failure unless the log was synced as part of an fsync
6631 * against any other unrelated inode.
d1d832a0 6632 */
130341be
FM
6633 if (inode_only != LOG_INODE_EXISTS)
6634 inode->last_log_commit = inode->last_sub_trans;
6635 spin_unlock(&inode->lock);
23e3337f
FM
6636
6637 /*
6638 * Reset the last_reflink_trans so that the next fsync does not need to
6639 * go through the slower path when logging extents and their checksums.
6640 */
6641 if (inode_only == LOG_INODE_ALL)
6642 inode->last_reflink_trans = 0;
6643
4a500fd1 6644out_unlock:
a59108a7 6645 mutex_unlock(&inode->log_mutex);
f6df27dd 6646out:
e02119d5
CM
6647 btrfs_free_path(path);
6648 btrfs_free_path(dst_path);
0f8ce498 6649
e09d94c9
FM
6650 if (ret)
6651 free_conflicting_inodes(ctx);
6652 else
6653 ret = log_conflicting_inodes(trans, inode->root, ctx);
0f8ce498 6654
30b80f3c
FM
6655 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6656 if (!ret)
6657 ret = log_new_delayed_dentries(trans, inode,
6658 &delayed_ins_list, ctx);
6659
6660 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6661 &delayed_del_list);
6662 }
6663
65faced5 6664 return ret;
e02119d5
CM
6665}
6666
18aa0922 6667static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6668 struct btrfs_inode *inode,
18aa0922
FM
6669 struct btrfs_log_ctx *ctx)
6670{
3ffbd68c 6671 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6672 int ret;
6673 struct btrfs_path *path;
6674 struct btrfs_key key;
d0a0b78d
NB
6675 struct btrfs_root *root = inode->root;
6676 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6677
6678 path = btrfs_alloc_path();
6679 if (!path)
6680 return -ENOMEM;
6681 path->skip_locking = 1;
6682 path->search_commit_root = 1;
6683
6684 key.objectid = ino;
6685 key.type = BTRFS_INODE_REF_KEY;
6686 key.offset = 0;
6687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6688 if (ret < 0)
6689 goto out;
6690
6691 while (true) {
6692 struct extent_buffer *leaf = path->nodes[0];
6693 int slot = path->slots[0];
6694 u32 cur_offset = 0;
6695 u32 item_size;
6696 unsigned long ptr;
6697
6698 if (slot >= btrfs_header_nritems(leaf)) {
6699 ret = btrfs_next_leaf(root, path);
6700 if (ret < 0)
6701 goto out;
6702 else if (ret > 0)
6703 break;
6704 continue;
6705 }
6706
6707 btrfs_item_key_to_cpu(leaf, &key, slot);
6708 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6709 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6710 break;
6711
3212fa14 6712 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6713 ptr = btrfs_item_ptr_offset(leaf, slot);
6714 while (cur_offset < item_size) {
6715 struct btrfs_key inode_key;
6716 struct inode *dir_inode;
6717
6718 inode_key.type = BTRFS_INODE_ITEM_KEY;
6719 inode_key.offset = 0;
6720
6721 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6722 struct btrfs_inode_extref *extref;
6723
6724 extref = (struct btrfs_inode_extref *)
6725 (ptr + cur_offset);
6726 inode_key.objectid = btrfs_inode_extref_parent(
6727 leaf, extref);
6728 cur_offset += sizeof(*extref);
6729 cur_offset += btrfs_inode_extref_name_len(leaf,
6730 extref);
6731 } else {
6732 inode_key.objectid = key.offset;
6733 cur_offset = item_size;
6734 }
6735
0202e83f
DS
6736 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6737 root);
0f375eed
FM
6738 /*
6739 * If the parent inode was deleted, return an error to
6740 * fallback to a transaction commit. This is to prevent
6741 * getting an inode that was moved from one parent A to
6742 * a parent B, got its former parent A deleted and then
6743 * it got fsync'ed, from existing at both parents after
6744 * a log replay (and the old parent still existing).
6745 * Example:
6746 *
6747 * mkdir /mnt/A
6748 * mkdir /mnt/B
6749 * touch /mnt/B/bar
6750 * sync
6751 * mv /mnt/B/bar /mnt/A/bar
6752 * mv -T /mnt/A /mnt/B
6753 * fsync /mnt/B/bar
6754 * <power fail>
6755 *
6756 * If we ignore the old parent B which got deleted,
6757 * after a log replay we would have file bar linked
6758 * at both parents and the old parent B would still
6759 * exist.
6760 */
6761 if (IS_ERR(dir_inode)) {
6762 ret = PTR_ERR(dir_inode);
6763 goto out;
6764 }
18aa0922 6765
3e6a86a1
FM
6766 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6767 btrfs_add_delayed_iput(dir_inode);
6768 continue;
6769 }
6770
289cffcb 6771 ctx->log_new_dentries = false;
90d04510 6772 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6773 LOG_INODE_ALL, ctx);
289cffcb 6774 if (!ret && ctx->log_new_dentries)
8786a6d7 6775 ret = log_new_dir_dentries(trans,
f85b7379 6776 BTRFS_I(dir_inode), ctx);
410f954c 6777 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
6778 if (ret)
6779 goto out;
6780 }
6781 path->slots[0]++;
6782 }
6783 ret = 0;
6784out:
6785 btrfs_free_path(path);
6786 return ret;
6787}
6788
b8aa330d
FM
6789static int log_new_ancestors(struct btrfs_trans_handle *trans,
6790 struct btrfs_root *root,
6791 struct btrfs_path *path,
6792 struct btrfs_log_ctx *ctx)
6793{
6794 struct btrfs_key found_key;
6795
6796 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6797
6798 while (true) {
6799 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6800 struct extent_buffer *leaf = path->nodes[0];
6801 int slot = path->slots[0];
6802 struct btrfs_key search_key;
6803 struct inode *inode;
0202e83f 6804 u64 ino;
b8aa330d
FM
6805 int ret = 0;
6806
6807 btrfs_release_path(path);
6808
0202e83f
DS
6809 ino = found_key.offset;
6810
b8aa330d
FM
6811 search_key.objectid = found_key.offset;
6812 search_key.type = BTRFS_INODE_ITEM_KEY;
6813 search_key.offset = 0;
0202e83f 6814 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6815 if (IS_ERR(inode))
6816 return PTR_ERR(inode);
6817
ab12313a
FM
6818 if (BTRFS_I(inode)->generation >= trans->transid &&
6819 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6820 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6821 LOG_INODE_EXISTS, ctx);
410f954c 6822 btrfs_add_delayed_iput(inode);
b8aa330d
FM
6823 if (ret)
6824 return ret;
6825
6826 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6827 break;
6828
6829 search_key.type = BTRFS_INODE_REF_KEY;
6830 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6831 if (ret < 0)
6832 return ret;
6833
6834 leaf = path->nodes[0];
6835 slot = path->slots[0];
6836 if (slot >= btrfs_header_nritems(leaf)) {
6837 ret = btrfs_next_leaf(root, path);
6838 if (ret < 0)
6839 return ret;
6840 else if (ret > 0)
6841 return -ENOENT;
6842 leaf = path->nodes[0];
6843 slot = path->slots[0];
6844 }
6845
6846 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6847 if (found_key.objectid != search_key.objectid ||
6848 found_key.type != BTRFS_INODE_REF_KEY)
6849 return -ENOENT;
6850 }
6851 return 0;
6852}
6853
6854static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6855 struct btrfs_inode *inode,
6856 struct dentry *parent,
6857 struct btrfs_log_ctx *ctx)
6858{
6859 struct btrfs_root *root = inode->root;
b8aa330d
FM
6860 struct dentry *old_parent = NULL;
6861 struct super_block *sb = inode->vfs_inode.i_sb;
6862 int ret = 0;
6863
6864 while (true) {
6865 if (!parent || d_really_is_negative(parent) ||
6866 sb != parent->d_sb)
6867 break;
6868
6869 inode = BTRFS_I(d_inode(parent));
6870 if (root != inode->root)
6871 break;
6872
ab12313a
FM
6873 if (inode->generation >= trans->transid &&
6874 need_log_inode(trans, inode)) {
90d04510 6875 ret = btrfs_log_inode(trans, inode,
48778179 6876 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6877 if (ret)
6878 break;
6879 }
6880 if (IS_ROOT(parent))
6881 break;
6882
6883 parent = dget_parent(parent);
6884 dput(old_parent);
6885 old_parent = parent;
6886 }
6887 dput(old_parent);
6888
6889 return ret;
6890}
6891
6892static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6893 struct btrfs_inode *inode,
6894 struct dentry *parent,
6895 struct btrfs_log_ctx *ctx)
6896{
6897 struct btrfs_root *root = inode->root;
6898 const u64 ino = btrfs_ino(inode);
6899 struct btrfs_path *path;
6900 struct btrfs_key search_key;
6901 int ret;
6902
6903 /*
6904 * For a single hard link case, go through a fast path that does not
6905 * need to iterate the fs/subvolume tree.
6906 */
6907 if (inode->vfs_inode.i_nlink < 2)
6908 return log_new_ancestors_fast(trans, inode, parent, ctx);
6909
6910 path = btrfs_alloc_path();
6911 if (!path)
6912 return -ENOMEM;
6913
6914 search_key.objectid = ino;
6915 search_key.type = BTRFS_INODE_REF_KEY;
6916 search_key.offset = 0;
6917again:
6918 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6919 if (ret < 0)
6920 goto out;
6921 if (ret == 0)
6922 path->slots[0]++;
6923
6924 while (true) {
6925 struct extent_buffer *leaf = path->nodes[0];
6926 int slot = path->slots[0];
6927 struct btrfs_key found_key;
6928
6929 if (slot >= btrfs_header_nritems(leaf)) {
6930 ret = btrfs_next_leaf(root, path);
6931 if (ret < 0)
6932 goto out;
6933 else if (ret > 0)
6934 break;
6935 continue;
6936 }
6937
6938 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6939 if (found_key.objectid != ino ||
6940 found_key.type > BTRFS_INODE_EXTREF_KEY)
6941 break;
6942
6943 /*
6944 * Don't deal with extended references because they are rare
6945 * cases and too complex to deal with (we would need to keep
6946 * track of which subitem we are processing for each item in
6947 * this loop, etc). So just return some error to fallback to
6948 * a transaction commit.
6949 */
6950 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6951 ret = -EMLINK;
6952 goto out;
6953 }
6954
6955 /*
6956 * Logging ancestors needs to do more searches on the fs/subvol
6957 * tree, so it releases the path as needed to avoid deadlocks.
6958 * Keep track of the last inode ref key and resume from that key
6959 * after logging all new ancestors for the current hard link.
6960 */
6961 memcpy(&search_key, &found_key, sizeof(search_key));
6962
6963 ret = log_new_ancestors(trans, root, path, ctx);
6964 if (ret)
6965 goto out;
6966 btrfs_release_path(path);
6967 goto again;
6968 }
6969 ret = 0;
6970out:
6971 btrfs_free_path(path);
6972 return ret;
6973}
6974
e02119d5
CM
6975/*
6976 * helper function around btrfs_log_inode to make sure newly created
6977 * parent directories also end up in the log. A minimal inode and backref
6978 * only logging is done of any parent directories that are older than
6979 * the last committed transaction
6980 */
48a3b636 6981static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6982 struct btrfs_inode *inode,
49dae1bc 6983 struct dentry *parent,
41a1eada 6984 int inode_only,
8b050d35 6985 struct btrfs_log_ctx *ctx)
e02119d5 6986{
f882274b 6987 struct btrfs_root *root = inode->root;
0b246afa 6988 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6989 int ret = 0;
2f2ff0ee 6990 bool log_dentries = false;
12fcfd22 6991
0b246afa 6992 if (btrfs_test_opt(fs_info, NOTREELOG)) {
f31f09f6 6993 ret = BTRFS_LOG_FORCE_COMMIT;
3a5e1404
SW
6994 goto end_no_trans;
6995 }
6996
f882274b 6997 if (btrfs_root_refs(&root->root_item) == 0) {
f31f09f6 6998 ret = BTRFS_LOG_FORCE_COMMIT;
76dda93c
YZ
6999 goto end_no_trans;
7000 }
7001
f2d72f42
FM
7002 /*
7003 * Skip already logged inodes or inodes corresponding to tmpfiles
7004 * (since logging them is pointless, a link count of 0 means they
7005 * will never be accessible).
7006 */
626e9f41
FM
7007 if ((btrfs_inode_in_log(inode, trans->transid) &&
7008 list_empty(&ctx->ordered_extents)) ||
f2d72f42 7009 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
7010 ret = BTRFS_NO_LOG_SYNC;
7011 goto end_no_trans;
7012 }
7013
8b050d35 7014 ret = start_log_trans(trans, root, ctx);
4a500fd1 7015 if (ret)
e87ac136 7016 goto end_no_trans;
e02119d5 7017
90d04510 7018 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
7019 if (ret)
7020 goto end_trans;
12fcfd22 7021
af4176b4
CM
7022 /*
7023 * for regular files, if its inode is already on disk, we don't
7024 * have to worry about the parents at all. This is because
7025 * we can use the last_unlink_trans field to record renames
7026 * and other fun in this file.
7027 */
19df27a9 7028 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
7029 inode->generation < trans->transid &&
7030 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
7031 ret = 0;
7032 goto end_trans;
7033 }
af4176b4 7034
289cffcb 7035 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
7036 log_dentries = true;
7037
18aa0922 7038 /*
01327610 7039 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
7040 * inodes are fully logged. This is to prevent leaving dangling
7041 * directory index entries in directories that were our parents but are
7042 * not anymore. Not doing this results in old parent directory being
7043 * impossible to delete after log replay (rmdir will always fail with
7044 * error -ENOTEMPTY).
7045 *
7046 * Example 1:
7047 *
7048 * mkdir testdir
7049 * touch testdir/foo
7050 * ln testdir/foo testdir/bar
7051 * sync
7052 * unlink testdir/bar
7053 * xfs_io -c fsync testdir/foo
7054 * <power failure>
7055 * mount fs, triggers log replay
7056 *
7057 * If we don't log the parent directory (testdir), after log replay the
7058 * directory still has an entry pointing to the file inode using the bar
7059 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7060 * the file inode has a link count of 1.
7061 *
7062 * Example 2:
7063 *
7064 * mkdir testdir
7065 * touch foo
7066 * ln foo testdir/foo2
7067 * ln foo testdir/foo3
7068 * sync
7069 * unlink testdir/foo3
7070 * xfs_io -c fsync foo
7071 * <power failure>
7072 * mount fs, triggers log replay
7073 *
7074 * Similar as the first example, after log replay the parent directory
7075 * testdir still has an entry pointing to the inode file with name foo3
7076 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7077 * and has a link count of 2.
7078 */
47d3db41 7079 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 7080 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
7081 if (ret)
7082 goto end_trans;
7083 }
7084
b8aa330d
FM
7085 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7086 if (ret)
41bd6067 7087 goto end_trans;
76dda93c 7088
2f2ff0ee 7089 if (log_dentries)
8786a6d7 7090 ret = log_new_dir_dentries(trans, inode, ctx);
2f2ff0ee
FM
7091 else
7092 ret = 0;
4a500fd1
YZ
7093end_trans:
7094 if (ret < 0) {
90787766 7095 btrfs_set_log_full_commit(trans);
f31f09f6 7096 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1 7097 }
8b050d35
MX
7098
7099 if (ret)
7100 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
7101 btrfs_end_log_trans(root);
7102end_no_trans:
7103 return ret;
e02119d5
CM
7104}
7105
7106/*
7107 * it is not safe to log dentry if the chunk root has added new
7108 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7109 * If this returns 1, you must commit the transaction to safely get your
7110 * data on disk.
7111 */
7112int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 7113 struct dentry *dentry,
8b050d35 7114 struct btrfs_log_ctx *ctx)
e02119d5 7115{
6a912213
JB
7116 struct dentry *parent = dget_parent(dentry);
7117 int ret;
7118
f882274b 7119 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 7120 LOG_INODE_ALL, ctx);
6a912213
JB
7121 dput(parent);
7122
7123 return ret;
e02119d5
CM
7124}
7125
7126/*
7127 * should be called during mount to recover any replay any log trees
7128 * from the FS
7129 */
7130int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7131{
7132 int ret;
7133 struct btrfs_path *path;
7134 struct btrfs_trans_handle *trans;
7135 struct btrfs_key key;
7136 struct btrfs_key found_key;
e02119d5
CM
7137 struct btrfs_root *log;
7138 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7139 struct walk_control wc = {
7140 .process_func = process_one_buffer,
430a6626 7141 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
7142 };
7143
e02119d5 7144 path = btrfs_alloc_path();
db5b493a
TI
7145 if (!path)
7146 return -ENOMEM;
7147
afcdd129 7148 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 7149
4a500fd1 7150 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
7151 if (IS_ERR(trans)) {
7152 ret = PTR_ERR(trans);
7153 goto error;
7154 }
e02119d5
CM
7155
7156 wc.trans = trans;
7157 wc.pin = 1;
7158
db5b493a 7159 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 7160 if (ret) {
ba51e2a1 7161 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7162 goto error;
7163 }
e02119d5
CM
7164
7165again:
7166 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7167 key.offset = (u64)-1;
962a298f 7168 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 7169
d397712b 7170 while (1) {
e02119d5 7171 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
7172
7173 if (ret < 0) {
ba51e2a1 7174 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7175 goto error;
7176 }
e02119d5
CM
7177 if (ret > 0) {
7178 if (path->slots[0] == 0)
7179 break;
7180 path->slots[0]--;
7181 }
7182 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7183 path->slots[0]);
b3b4aa74 7184 btrfs_release_path(path);
e02119d5
CM
7185 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7186 break;
7187
62a2c73e 7188 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
7189 if (IS_ERR(log)) {
7190 ret = PTR_ERR(log);
ba51e2a1 7191 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7192 goto error;
7193 }
e02119d5 7194
56e9357a
DS
7195 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7196 true);
79787eaa
JM
7197 if (IS_ERR(wc.replay_dest)) {
7198 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
7199
7200 /*
7201 * We didn't find the subvol, likely because it was
7202 * deleted. This is ok, simply skip this log and go to
7203 * the next one.
7204 *
7205 * We need to exclude the root because we can't have
7206 * other log replays overwriting this log as we'll read
7207 * it back in a few more times. This will keep our
7208 * block from being modified, and we'll just bail for
7209 * each subsequent pass.
7210 */
7211 if (ret == -ENOENT)
9fce5704 7212 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
7213 log->node->start,
7214 log->node->len);
00246528 7215 btrfs_put_root(log);
9bc574de
JB
7216
7217 if (!ret)
7218 goto next;
ba51e2a1 7219 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7220 goto error;
7221 }
e02119d5 7222
07d400a6 7223 wc.replay_dest->log_root = log;
2002ae11
JB
7224 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7225 if (ret)
7226 /* The loop needs to continue due to the root refs */
ba51e2a1 7227 btrfs_abort_transaction(trans, ret);
2002ae11
JB
7228 else
7229 ret = walk_log_tree(trans, log, &wc);
e02119d5 7230
b50c6e25 7231 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
7232 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7233 path);
ba51e2a1
JB
7234 if (ret)
7235 btrfs_abort_transaction(trans, ret);
e02119d5
CM
7236 }
7237
900c9981
LB
7238 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7239 struct btrfs_root *root = wc.replay_dest;
7240
7241 btrfs_release_path(path);
7242
7243 /*
7244 * We have just replayed everything, and the highest
7245 * objectid of fs roots probably has changed in case
7246 * some inode_item's got replayed.
7247 *
7248 * root->objectid_mutex is not acquired as log replay
7249 * could only happen during mount.
7250 */
453e4873 7251 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
7252 if (ret)
7253 btrfs_abort_transaction(trans, ret);
900c9981
LB
7254 }
7255
07d400a6 7256 wc.replay_dest->log_root = NULL;
00246528 7257 btrfs_put_root(wc.replay_dest);
00246528 7258 btrfs_put_root(log);
e02119d5 7259
b50c6e25
JB
7260 if (ret)
7261 goto error;
9bc574de 7262next:
e02119d5
CM
7263 if (found_key.offset == 0)
7264 break;
9bc574de 7265 key.offset = found_key.offset - 1;
e02119d5 7266 }
b3b4aa74 7267 btrfs_release_path(path);
e02119d5
CM
7268
7269 /* step one is to pin it all, step two is to replay just inodes */
7270 if (wc.pin) {
7271 wc.pin = 0;
7272 wc.process_func = replay_one_buffer;
7273 wc.stage = LOG_WALK_REPLAY_INODES;
7274 goto again;
7275 }
7276 /* step three is to replay everything */
7277 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7278 wc.stage++;
7279 goto again;
7280 }
7281
7282 btrfs_free_path(path);
7283
abefa55a 7284 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 7285 ret = btrfs_commit_transaction(trans);
abefa55a
JB
7286 if (ret)
7287 return ret;
7288
e02119d5 7289 log_root_tree->log_root = NULL;
afcdd129 7290 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 7291 btrfs_put_root(log_root_tree);
79787eaa 7292
abefa55a 7293 return 0;
79787eaa 7294error:
b50c6e25 7295 if (wc.trans)
3a45bb20 7296 btrfs_end_transaction(wc.trans);
1aeb6b56 7297 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
7298 btrfs_free_path(path);
7299 return ret;
e02119d5 7300}
12fcfd22
CM
7301
7302/*
7303 * there are some corner cases where we want to force a full
7304 * commit instead of allowing a directory to be logged.
7305 *
7306 * They revolve around files there were unlinked from the directory, and
7307 * this function updates the parent directory so that a full commit is
7308 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
7309 *
7310 * Must be called before the unlink operations (updates to the subvolume tree,
7311 * inodes, etc) are done.
12fcfd22
CM
7312 */
7313void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 7314 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
7315 int for_rename)
7316{
af4176b4
CM
7317 /*
7318 * when we're logging a file, if it hasn't been renamed
7319 * or unlinked, and its inode is fully committed on disk,
7320 * we don't have to worry about walking up the directory chain
7321 * to log its parents.
7322 *
7323 * So, we use the last_unlink_trans field to put this transid
7324 * into the file. When the file is logged we check it and
7325 * don't log the parents if the file is fully on disk.
7326 */
4176bdbf
NB
7327 mutex_lock(&inode->log_mutex);
7328 inode->last_unlink_trans = trans->transid;
7329 mutex_unlock(&inode->log_mutex);
af4176b4 7330
12fcfd22
CM
7331 /*
7332 * if this directory was already logged any new
7333 * names for this file/dir will get recorded
7334 */
4176bdbf 7335 if (dir->logged_trans == trans->transid)
12fcfd22
CM
7336 return;
7337
7338 /*
7339 * if the inode we're about to unlink was logged,
7340 * the log will be properly updated for any new names
7341 */
4176bdbf 7342 if (inode->logged_trans == trans->transid)
12fcfd22
CM
7343 return;
7344
7345 /*
7346 * when renaming files across directories, if the directory
7347 * there we're unlinking from gets fsync'd later on, there's
7348 * no way to find the destination directory later and fsync it
7349 * properly. So, we have to be conservative and force commits
7350 * so the new name gets discovered.
7351 */
7352 if (for_rename)
7353 goto record;
7354
7355 /* we can safely do the unlink without any special recording */
7356 return;
7357
7358record:
4176bdbf
NB
7359 mutex_lock(&dir->log_mutex);
7360 dir->last_unlink_trans = trans->transid;
7361 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
7362}
7363
7364/*
7365 * Make sure that if someone attempts to fsync the parent directory of a deleted
7366 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7367 * that after replaying the log tree of the parent directory's root we will not
7368 * see the snapshot anymore and at log replay time we will not see any log tree
7369 * corresponding to the deleted snapshot's root, which could lead to replaying
7370 * it after replaying the log tree of the parent directory (which would replay
7371 * the snapshot delete operation).
2be63d5c
FM
7372 *
7373 * Must be called before the actual snapshot destroy operation (updates to the
7374 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
7375 */
7376void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 7377 struct btrfs_inode *dir)
1ec9a1ae 7378{
43663557
NB
7379 mutex_lock(&dir->log_mutex);
7380 dir->last_unlink_trans = trans->transid;
7381 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
7382}
7383
43dd529a 7384/*
d5f5bd54
FM
7385 * Update the log after adding a new name for an inode.
7386 *
7387 * @trans: Transaction handle.
7388 * @old_dentry: The dentry associated with the old name and the old
7389 * parent directory.
7390 * @old_dir: The inode of the previous parent directory for the case
7391 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
7392 * @old_dir_index: The index number associated with the old name, meaningful
7393 * only for rename operations (when @old_dir is not NULL).
7394 * Ignored for link operations.
d5f5bd54
FM
7395 * @parent: The dentry associated with the directory under which the
7396 * new name is located.
7397 *
7398 * Call this after adding a new name for an inode, as a result of a link or
7399 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 7400 */
75b463d2 7401void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 7402 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 7403 u64 old_dir_index, struct dentry *parent)
12fcfd22 7404{
d5f5bd54 7405 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 7406 struct btrfs_root *root = inode->root;
75b463d2 7407 struct btrfs_log_ctx ctx;
259c4b96 7408 bool log_pinned = false;
0f8ce498 7409 int ret;
12fcfd22 7410
af4176b4
CM
7411 /*
7412 * this will force the logging code to walk the dentry chain
7413 * up for the file
7414 */
9a6509c4 7415 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 7416 inode->last_unlink_trans = trans->transid;
af4176b4 7417
12fcfd22
CM
7418 /*
7419 * if this inode hasn't been logged and directory we're renaming it
7420 * from hasn't been logged, we don't need to log it
7421 */
0f8ce498
FM
7422 ret = inode_logged(trans, inode, NULL);
7423 if (ret < 0) {
7424 goto out;
7425 } else if (ret == 0) {
7426 if (!old_dir)
7427 return;
7428 /*
7429 * If the inode was not logged and we are doing a rename (old_dir is not
7430 * NULL), check if old_dir was logged - if it was not we can return and
7431 * do nothing.
7432 */
7433 ret = inode_logged(trans, old_dir, NULL);
7434 if (ret < 0)
7435 goto out;
7436 else if (ret == 0)
7437 return;
7438 }
7439 ret = 0;
12fcfd22 7440
54a40fc3
FM
7441 /*
7442 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7443 * was previously logged, make sure that on log replay we get the old
7444 * dir entry deleted. This is needed because we will also log the new
7445 * name of the renamed inode, so we need to make sure that after log
7446 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7447 */
88d2beec
FM
7448 if (old_dir && old_dir->logged_trans == trans->transid) {
7449 struct btrfs_root *log = old_dir->root->log_root;
7450 struct btrfs_path *path;
ab3c5c18 7451 struct fscrypt_name fname;
88d2beec
FM
7452
7453 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7454
ab3c5c18
STD
7455 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7456 &old_dentry->d_name, 0, &fname);
7457 if (ret)
7458 goto out;
259c4b96
FM
7459 /*
7460 * We have two inodes to update in the log, the old directory and
7461 * the inode that got renamed, so we must pin the log to prevent
7462 * anyone from syncing the log until we have updated both inodes
7463 * in the log.
7464 */
723df2bc
FM
7465 ret = join_running_log_trans(root);
7466 /*
7467 * At least one of the inodes was logged before, so this should
7468 * not fail, but if it does, it's not serious, just bail out and
7469 * mark the log for a full commit.
7470 */
7471 if (WARN_ON_ONCE(ret < 0))
7472 goto out;
259c4b96 7473 log_pinned = true;
259c4b96 7474
88d2beec
FM
7475 path = btrfs_alloc_path();
7476 if (!path) {
259c4b96 7477 ret = -ENOMEM;
ab3c5c18 7478 fscrypt_free_filename(&fname);
259c4b96 7479 goto out;
88d2beec
FM
7480 }
7481
7482 /*
7483 * Other concurrent task might be logging the old directory,
7484 * as it can be triggered when logging other inode that had or
750ee454
FM
7485 * still has a dentry in the old directory. We lock the old
7486 * directory's log_mutex to ensure the deletion of the old
7487 * name is persisted, because during directory logging we
7488 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7489 * the old name's dir index item is in the delayed items, so
7490 * it could be missed by an in progress directory logging.
88d2beec
FM
7491 */
7492 mutex_lock(&old_dir->log_mutex);
7493 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
6db75318 7494 &fname.disk_name, old_dir_index);
88d2beec
FM
7495 if (ret > 0) {
7496 /*
7497 * The dentry does not exist in the log, so record its
7498 * deletion.
7499 */
7500 btrfs_release_path(path);
7501 ret = insert_dir_log_key(trans, log, path,
7502 btrfs_ino(old_dir),
7503 old_dir_index, old_dir_index);
7504 }
7505 mutex_unlock(&old_dir->log_mutex);
7506
7507 btrfs_free_path(path);
ab3c5c18 7508 fscrypt_free_filename(&fname);
259c4b96
FM
7509 if (ret < 0)
7510 goto out;
88d2beec 7511 }
54a40fc3 7512
75b463d2
FM
7513 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7514 ctx.logging_new_name = true;
7515 /*
7516 * We don't care about the return value. If we fail to log the new name
7517 * then we know the next attempt to sync the log will fallback to a full
7518 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7519 * we don't need to worry about getting a log committed that has an
7520 * inconsistent state after a rename operation.
7521 */
48778179 7522 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
e09d94c9 7523 ASSERT(list_empty(&ctx.conflict_inodes));
259c4b96 7524out:
0f8ce498
FM
7525 /*
7526 * If an error happened mark the log for a full commit because it's not
7527 * consistent and up to date or we couldn't find out if one of the
7528 * inodes was logged before in this transaction. Do it before unpinning
7529 * the log, to avoid any races with someone else trying to commit it.
7530 */
7531 if (ret < 0)
7532 btrfs_set_log_full_commit(trans);
7533 if (log_pinned)
259c4b96 7534 btrfs_end_log_trans(root);
12fcfd22
CM
7535}
7536