btrfs: drop unnecessary ASSERT from btrfs_submit_direct()
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
fa1a0f42 108static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
0b246afa 142 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 143 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 144 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 145 int ret = 0;
fa1a0f42 146 bool created = false;
7237f183 147
47876f7c
FM
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 156 if (!ret) {
47876f7c 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
158 created = true;
159 }
47876f7c
FM
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
7237f183 166 mutex_lock(&root->log_mutex);
34eb2a52 167
fa1a0f42 168again:
7237f183 169 if (root->log_root) {
fa1a0f42
NA
170 int index = (root->log_transid + 1) % 2;
171
4884b8e8 172 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
173 ret = -EAGAIN;
174 goto out;
175 }
34eb2a52 176
fa1a0f42
NA
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
ff782e0a 182 if (!root->log_start_pid) {
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 184 root->log_start_pid = current->pid;
ff782e0a 185 } else if (root->log_start_pid != current->pid) {
27cdeb70 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 187 }
34eb2a52 188 } else {
fa1a0f42
NA
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
e02119d5 200 ret = btrfs_add_log_tree(trans, root);
4a500fd1 201 if (ret)
e87ac136 202 goto out;
34eb2a52 203
e7a79811 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
e02119d5 207 }
34eb2a52 208
7237f183 209 atomic_inc(&root->log_writers);
75b463d2 210 if (ctx && !ctx->logging_new_name) {
34eb2a52 211 int index = root->log_transid % 2;
8b050d35 212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 213 ctx->log_transid = root->log_transid;
8b050d35 214 }
34eb2a52 215
e87ac136 216out:
7237f183 217 mutex_unlock(&root->log_mutex);
e87ac136 218 return ret;
e02119d5
CM
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
fa1a0f42 228 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
229 int ret = -ENOENT;
230
e7a79811
FM
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
7237f183 234 mutex_lock(&root->log_mutex);
fa1a0f42 235again:
e02119d5 236 if (root->log_root) {
fa1a0f42
NA
237 int index = (root->log_transid + 1) % 2;
238
e02119d5 239 ret = 0;
fa1a0f42
NA
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
7237f183 244 atomic_inc(&root->log_writers);
e02119d5 245 }
7237f183 246 mutex_unlock(&root->log_mutex);
e02119d5
CM
247 return ret;
248}
249
12fcfd22
CM
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
45128b08 255void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 256{
12fcfd22 257 atomic_inc(&root->log_writers);
12fcfd22
CM
258}
259
e02119d5
CM
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
143bede5 264void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 265{
7237f183 266 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 269 }
e02119d5
CM
270}
271
247462a5
DS
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
e02119d5
CM
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
f2d72f42
FM
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
e02119d5
CM
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 333 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
581c1760 341 struct walk_control *wc, u64 gen, int level)
e02119d5 342{
0b246afa 343 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
344 int ret = 0;
345
8c2a1a30
JB
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
0b246afa 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 351 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
352 if (ret)
353 return ret;
354 }
355
04018de5 356 if (wc->pin)
9fce5704 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 358 eb->len);
e02119d5 359
b50c6e25 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 361 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 362 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
b50c6e25 368 return ret;
e02119d5
CM
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
4bc4bee4 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
408 if (ret < 0)
409 return ret;
410
e02119d5
CM
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
b3b4aa74 420 btrfs_release_path(path);
e02119d5
CM
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 425 if (!dst_copy || !src_copy) {
b3b4aa74 426 btrfs_release_path(path);
2a29edc6 427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
e02119d5
CM
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
b3b4aa74 448 btrfs_release_path(path);
e02119d5
CM
449 return 0;
450 }
451
4bc4bee4
JB
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
d555438b 459 u32 mode;
4bc4bee4
JB
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
d555438b 479 u32 mode;
4bc4bee4
JB
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
496 }
497insert:
b3b4aa74 498 btrfs_release_path(path);
e02119d5 499 /* try to insert the key into the destination tree */
df8d116f 500 path->skip_release_on_error = 1;
e02119d5
CM
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
df8d116f 503 path->skip_release_on_error = 0;
e02119d5
CM
504
505 /* make sure any existing item is the correct size */
df8d116f 506 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
143bede5 510 if (found_size > item_size)
78ac4f9e 511 btrfs_truncate_item(path, item_size, 1);
143bede5 512 else if (found_size < item_size)
c71dd880 513 btrfs_extend_item(path, item_size - found_size);
e02119d5 514 } else if (ret) {
4a500fd1 515 return ret;
e02119d5
CM
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
1a4bcf47
FM
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 538 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 539
2f2ff0ee
FM
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
1a4bcf47 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 551 goto no_copy;
1a4bcf47 552 }
e02119d5
CM
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 583 btrfs_release_path(path);
e02119d5
CM
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
e02119d5 595
0202e83f 596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 597 if (IS_ERR(inode))
5d4f98a2 598 inode = NULL;
e02119d5
CM
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
5893dfb9 620 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 621 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 622 int found_type;
e02119d5 623 u64 extent_end;
e02119d5 624 u64 start = key->offset;
4bc4bee4 625 u64 nbytes = 0;
e02119d5
CM
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
d899e052 634 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 646 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 648 extent_end = ALIGN(start + size,
0b246afa 649 fs_info->sectorsize);
e02119d5
CM
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
f85b7379
DS
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 668
d899e052
YZ
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 691 btrfs_release_path(path);
e02119d5
CM
692 goto out;
693 }
694 }
b3b4aa74 695 btrfs_release_path(path);
e02119d5
CM
696
697 /* drop any overlapping extents */
5893dfb9
FM
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
702 if (ret)
703 goto out;
e02119d5 704
07d400a6
YZ
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 707 u64 offset;
07d400a6
YZ
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
3168021c
FM
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
07d400a6
YZ
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
3650860b
JB
717 if (ret)
718 goto out;
07d400a6
YZ
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 727 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 728
df2c95f3
QW
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
a95f3aaf 737 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
07d400a6 744 if (ins.objectid > 0) {
82fa113f 745 struct btrfs_ref ref = { 0 };
07d400a6
YZ
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
82fa113f 749
07d400a6
YZ
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
2ff7e61e 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
755 ins.offset);
756 if (ret == 0) {
82fa113f
QW
757 btrfs_init_generic_ref(&ref,
758 BTRFS_ADD_DELAYED_REF,
759 ins.objectid, ins.offset, 0);
760 btrfs_init_data_ref(&ref,
761 root->root_key.objectid,
b06c4bf5 762 key->objectid, offset);
82fa113f 763 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
764 if (ret)
765 goto out;
07d400a6
YZ
766 } else {
767 /*
768 * insert the extent pointer in the extent
769 * allocation tree
770 */
5d4f98a2 771 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 772 root->root_key.objectid,
5d4f98a2 773 key->objectid, offset, &ins);
b50c6e25
JB
774 if (ret)
775 goto out;
07d400a6 776 }
b3b4aa74 777 btrfs_release_path(path);
07d400a6
YZ
778
779 if (btrfs_file_extent_compression(eb, item)) {
780 csum_start = ins.objectid;
781 csum_end = csum_start + ins.offset;
782 } else {
783 csum_start = ins.objectid +
784 btrfs_file_extent_offset(eb, item);
785 csum_end = csum_start +
786 btrfs_file_extent_num_bytes(eb, item);
787 }
788
789 ret = btrfs_lookup_csums_range(root->log_root,
790 csum_start, csum_end - 1,
a2de733c 791 &ordered_sums, 0);
3650860b
JB
792 if (ret)
793 goto out;
b84b8390
FM
794 /*
795 * Now delete all existing cums in the csum root that
796 * cover our range. We do this because we can have an
797 * extent that is completely referenced by one file
798 * extent item and partially referenced by another
799 * file extent item (like after using the clone or
800 * extent_same ioctls). In this case if we end up doing
801 * the replay of the one that partially references the
802 * extent first, and we do not do the csum deletion
803 * below, we can get 2 csum items in the csum tree that
804 * overlap each other. For example, imagine our log has
805 * the two following file extent items:
806 *
807 * key (257 EXTENT_DATA 409600)
808 * extent data disk byte 12845056 nr 102400
809 * extent data offset 20480 nr 20480 ram 102400
810 *
811 * key (257 EXTENT_DATA 819200)
812 * extent data disk byte 12845056 nr 102400
813 * extent data offset 0 nr 102400 ram 102400
814 *
815 * Where the second one fully references the 100K extent
816 * that starts at disk byte 12845056, and the log tree
817 * has a single csum item that covers the entire range
818 * of the extent:
819 *
820 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 *
822 * After the first file extent item is replayed, the
823 * csum tree gets the following csum item:
824 *
825 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 *
827 * Which covers the 20K sub-range starting at offset 20K
828 * of our extent. Now when we replay the second file
829 * extent item, if we do not delete existing csum items
830 * that cover any of its blocks, we end up getting two
831 * csum items in our csum tree that overlap each other:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which is a problem, because after this anyone trying
837 * to lookup up for the checksum of any block of our
838 * extent starting at an offset of 40K or higher, will
839 * end up looking at the second csum item only, which
840 * does not contain the checksum for any block starting
841 * at offset 40K or higher of our extent.
842 */
07d400a6
YZ
843 while (!list_empty(&ordered_sums)) {
844 struct btrfs_ordered_sum *sums;
845 sums = list_entry(ordered_sums.next,
846 struct btrfs_ordered_sum,
847 list);
b84b8390 848 if (!ret)
40e046ac
FM
849 ret = btrfs_del_csums(trans,
850 fs_info->csum_root,
5b4aacef
JM
851 sums->bytenr,
852 sums->len);
3650860b
JB
853 if (!ret)
854 ret = btrfs_csum_file_blocks(trans,
0b246afa 855 fs_info->csum_root, sums);
07d400a6
YZ
856 list_del(&sums->list);
857 kfree(sums);
858 }
3650860b
JB
859 if (ret)
860 goto out;
07d400a6 861 } else {
b3b4aa74 862 btrfs_release_path(path);
07d400a6
YZ
863 }
864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 /* inline extents are easy, we just overwrite them */
866 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
867 if (ret)
868 goto out;
07d400a6 869 }
e02119d5 870
9ddc959e
JB
871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 extent_end - start);
873 if (ret)
874 goto out;
875
3168021c 876update_inode:
2766ff61 877 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 878 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
879out:
880 if (inode)
881 iput(inode);
882 return ret;
883}
884
885/*
886 * when cleaning up conflicts between the directory names in the
887 * subvolume, directory names in the log and directory names in the
888 * inode back references, we may have to unlink inodes from directories.
889 *
890 * This is a helper function to do the unlink of a specific directory
891 * item
892 */
893static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 struct btrfs_root *root,
895 struct btrfs_path *path,
207e7d92 896 struct btrfs_inode *dir,
e02119d5
CM
897 struct btrfs_dir_item *di)
898{
899 struct inode *inode;
900 char *name;
901 int name_len;
902 struct extent_buffer *leaf;
903 struct btrfs_key location;
904 int ret;
905
906 leaf = path->nodes[0];
907
908 btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 name_len = btrfs_dir_name_len(leaf, di);
910 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 911 if (!name)
912 return -ENOMEM;
913
e02119d5 914 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 915 btrfs_release_path(path);
e02119d5
CM
916
917 inode = read_one_inode(root, location.objectid);
c00e9493 918 if (!inode) {
3650860b
JB
919 ret = -EIO;
920 goto out;
c00e9493 921 }
e02119d5 922
ec051c0f 923 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
924 if (ret)
925 goto out;
12fcfd22 926
207e7d92
NB
927 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 name_len);
3650860b
JB
929 if (ret)
930 goto out;
ada9af21 931 else
e5c304e6 932 ret = btrfs_run_delayed_items(trans);
3650860b 933out:
e02119d5 934 kfree(name);
e02119d5
CM
935 iput(inode);
936 return ret;
937}
938
939/*
940 * helper function to see if a given name and sequence number found
941 * in an inode back reference are already in a directory and correctly
942 * point to this inode
943 */
944static noinline int inode_in_dir(struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 dirid, u64 objectid, u64 index,
947 const char *name, int name_len)
948{
949 struct btrfs_dir_item *di;
950 struct btrfs_key location;
951 int match = 0;
952
953 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 index, name, name_len, 0);
955 if (di && !IS_ERR(di)) {
956 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 if (location.objectid != objectid)
958 goto out;
959 } else
960 goto out;
b3b4aa74 961 btrfs_release_path(path);
e02119d5
CM
962
963 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 if (di && !IS_ERR(di)) {
965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 if (location.objectid != objectid)
967 goto out;
968 } else
969 goto out;
970 match = 1;
971out:
b3b4aa74 972 btrfs_release_path(path);
e02119d5
CM
973 return match;
974}
975
976/*
977 * helper function to check a log tree for a named back reference in
978 * an inode. This is used to decide if a back reference that is
979 * found in the subvolume conflicts with what we find in the log.
980 *
981 * inode backreferences may have multiple refs in a single item,
982 * during replay we process one reference at a time, and we don't
983 * want to delete valid links to a file from the subvolume if that
984 * link is also in the log.
985 */
986static noinline int backref_in_log(struct btrfs_root *log,
987 struct btrfs_key *key,
f186373f 988 u64 ref_objectid,
df8d116f 989 const char *name, int namelen)
e02119d5
CM
990{
991 struct btrfs_path *path;
e02119d5 992 int ret;
e02119d5
CM
993
994 path = btrfs_alloc_path();
2a29edc6 995 if (!path)
996 return -ENOMEM;
997
e02119d5 998 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
999 if (ret < 0) {
1000 goto out;
1001 } else if (ret == 1) {
89cbf5f6 1002 ret = 0;
f186373f
MF
1003 goto out;
1004 }
1005
89cbf5f6
NB
1006 if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 path->slots[0],
1009 ref_objectid,
1010 name, namelen);
1011 else
1012 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 path->slots[0],
1014 name, namelen);
e02119d5
CM
1015out:
1016 btrfs_free_path(path);
89cbf5f6 1017 return ret;
e02119d5
CM
1018}
1019
5a1d7843 1020static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1021 struct btrfs_root *root,
e02119d5 1022 struct btrfs_path *path,
5a1d7843 1023 struct btrfs_root *log_root,
94c91a1f
NB
1024 struct btrfs_inode *dir,
1025 struct btrfs_inode *inode,
f186373f
MF
1026 u64 inode_objectid, u64 parent_objectid,
1027 u64 ref_index, char *name, int namelen,
1028 int *search_done)
e02119d5 1029{
34f3e4f2 1030 int ret;
f186373f
MF
1031 char *victim_name;
1032 int victim_name_len;
1033 struct extent_buffer *leaf;
5a1d7843 1034 struct btrfs_dir_item *di;
f186373f
MF
1035 struct btrfs_key search_key;
1036 struct btrfs_inode_extref *extref;
c622ae60 1037
f186373f
MF
1038again:
1039 /* Search old style refs */
1040 search_key.objectid = inode_objectid;
1041 search_key.type = BTRFS_INODE_REF_KEY;
1042 search_key.offset = parent_objectid;
1043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1044 if (ret == 0) {
e02119d5
CM
1045 struct btrfs_inode_ref *victim_ref;
1046 unsigned long ptr;
1047 unsigned long ptr_end;
f186373f
MF
1048
1049 leaf = path->nodes[0];
e02119d5
CM
1050
1051 /* are we trying to overwrite a back ref for the root directory
1052 * if so, just jump out, we're done
1053 */
f186373f 1054 if (search_key.objectid == search_key.offset)
5a1d7843 1055 return 1;
e02119d5
CM
1056
1057 /* check all the names in this back reference to see
1058 * if they are in the log. if so, we allow them to stay
1059 * otherwise they must be unlinked as a conflict
1060 */
1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1063 while (ptr < ptr_end) {
e02119d5
CM
1064 victim_ref = (struct btrfs_inode_ref *)ptr;
1065 victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 victim_ref);
1067 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1068 if (!victim_name)
1069 return -ENOMEM;
e02119d5
CM
1070
1071 read_extent_buffer(leaf, victim_name,
1072 (unsigned long)(victim_ref + 1),
1073 victim_name_len);
1074
d3316c82
NB
1075 ret = backref_in_log(log_root, &search_key,
1076 parent_objectid, victim_name,
1077 victim_name_len);
1078 if (ret < 0) {
1079 kfree(victim_name);
1080 return ret;
1081 } else if (!ret) {
94c91a1f 1082 inc_nlink(&inode->vfs_inode);
b3b4aa74 1083 btrfs_release_path(path);
12fcfd22 1084
94c91a1f 1085 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1086 victim_name, victim_name_len);
f186373f 1087 kfree(victim_name);
3650860b
JB
1088 if (ret)
1089 return ret;
e5c304e6 1090 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1091 if (ret)
1092 return ret;
f186373f
MF
1093 *search_done = 1;
1094 goto again;
e02119d5
CM
1095 }
1096 kfree(victim_name);
f186373f 1097
e02119d5
CM
1098 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 }
e02119d5 1100
c622ae60 1101 /*
1102 * NOTE: we have searched root tree and checked the
bb7ab3b9 1103 * corresponding ref, it does not need to check again.
c622ae60 1104 */
5a1d7843 1105 *search_done = 1;
e02119d5 1106 }
b3b4aa74 1107 btrfs_release_path(path);
e02119d5 1108
f186373f
MF
1109 /* Same search but for extended refs */
1110 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 inode_objectid, parent_objectid, 0,
1112 0);
1113 if (!IS_ERR_OR_NULL(extref)) {
1114 u32 item_size;
1115 u32 cur_offset = 0;
1116 unsigned long base;
1117 struct inode *victim_parent;
1118
1119 leaf = path->nodes[0];
1120
1121 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123
1124 while (cur_offset < item_size) {
dd9ef135 1125 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1126
1127 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128
1129 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 goto next;
1131
1132 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1133 if (!victim_name)
1134 return -ENOMEM;
f186373f
MF
1135 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 victim_name_len);
1137
1138 search_key.objectid = inode_objectid;
1139 search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 search_key.offset = btrfs_extref_hash(parent_objectid,
1141 victim_name,
1142 victim_name_len);
d3316c82
NB
1143 ret = backref_in_log(log_root, &search_key,
1144 parent_objectid, victim_name,
1145 victim_name_len);
1146 if (ret < 0) {
1147 return ret;
1148 } else if (!ret) {
f186373f
MF
1149 ret = -ENOENT;
1150 victim_parent = read_one_inode(root,
94c91a1f 1151 parent_objectid);
f186373f 1152 if (victim_parent) {
94c91a1f 1153 inc_nlink(&inode->vfs_inode);
f186373f
MF
1154 btrfs_release_path(path);
1155
1156 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1157 BTRFS_I(victim_parent),
94c91a1f 1158 inode,
4ec5934e
NB
1159 victim_name,
1160 victim_name_len);
ada9af21
FDBM
1161 if (!ret)
1162 ret = btrfs_run_delayed_items(
e5c304e6 1163 trans);
f186373f 1164 }
f186373f
MF
1165 iput(victim_parent);
1166 kfree(victim_name);
3650860b
JB
1167 if (ret)
1168 return ret;
f186373f
MF
1169 *search_done = 1;
1170 goto again;
1171 }
1172 kfree(victim_name);
f186373f
MF
1173next:
1174 cur_offset += victim_name_len + sizeof(*extref);
1175 }
1176 *search_done = 1;
1177 }
1178 btrfs_release_path(path);
1179
34f3e4f2 1180 /* look for a conflicting sequence number */
94c91a1f 1181 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1182 ref_index, name, namelen, 0);
34f3e4f2 1183 if (di && !IS_ERR(di)) {
94c91a1f 1184 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1185 if (ret)
1186 return ret;
34f3e4f2 1187 }
1188 btrfs_release_path(path);
1189
52042d8e 1190 /* look for a conflicting name */
94c91a1f 1191 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1192 name, namelen, 0);
1193 if (di && !IS_ERR(di)) {
94c91a1f 1194 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1195 if (ret)
1196 return ret;
34f3e4f2 1197 }
1198 btrfs_release_path(path);
1199
5a1d7843
JS
1200 return 0;
1201}
e02119d5 1202
bae15d95
QW
1203static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 u32 *namelen, char **name, u64 *index,
1205 u64 *parent_objectid)
f186373f
MF
1206{
1207 struct btrfs_inode_extref *extref;
1208
1209 extref = (struct btrfs_inode_extref *)ref_ptr;
1210
1211 *namelen = btrfs_inode_extref_name_len(eb, extref);
1212 *name = kmalloc(*namelen, GFP_NOFS);
1213 if (*name == NULL)
1214 return -ENOMEM;
1215
1216 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 *namelen);
1218
1f250e92
FM
1219 if (index)
1220 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1221 if (parent_objectid)
1222 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223
1224 return 0;
1225}
1226
bae15d95
QW
1227static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 u32 *namelen, char **name, u64 *index)
f186373f
MF
1229{
1230 struct btrfs_inode_ref *ref;
1231
1232 ref = (struct btrfs_inode_ref *)ref_ptr;
1233
1234 *namelen = btrfs_inode_ref_name_len(eb, ref);
1235 *name = kmalloc(*namelen, GFP_NOFS);
1236 if (*name == NULL)
1237 return -ENOMEM;
1238
1239 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240
1f250e92
FM
1241 if (index)
1242 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1243
1244 return 0;
1245}
1246
1f250e92
FM
1247/*
1248 * Take an inode reference item from the log tree and iterate all names from the
1249 * inode reference item in the subvolume tree with the same key (if it exists).
1250 * For any name that is not in the inode reference item from the log tree, do a
1251 * proper unlink of that name (that is, remove its entry from the inode
1252 * reference item and both dir index keys).
1253 */
1254static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root,
1256 struct btrfs_path *path,
1257 struct btrfs_inode *inode,
1258 struct extent_buffer *log_eb,
1259 int log_slot,
1260 struct btrfs_key *key)
1261{
1262 int ret;
1263 unsigned long ref_ptr;
1264 unsigned long ref_end;
1265 struct extent_buffer *eb;
1266
1267again:
1268 btrfs_release_path(path);
1269 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 if (ret > 0) {
1271 ret = 0;
1272 goto out;
1273 }
1274 if (ret < 0)
1275 goto out;
1276
1277 eb = path->nodes[0];
1278 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 while (ref_ptr < ref_end) {
1281 char *name = NULL;
1282 int namelen;
1283 u64 parent_id;
1284
1285 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 NULL, &parent_id);
1288 } else {
1289 parent_id = key->offset;
1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 NULL);
1292 }
1293 if (ret)
1294 goto out;
1295
1296 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1297 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 parent_id, name,
1299 namelen);
1f250e92 1300 else
9bb8407f
NB
1301 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 name, namelen);
1f250e92
FM
1303
1304 if (!ret) {
1305 struct inode *dir;
1306
1307 btrfs_release_path(path);
1308 dir = read_one_inode(root, parent_id);
1309 if (!dir) {
1310 ret = -ENOENT;
1311 kfree(name);
1312 goto out;
1313 }
1314 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 inode, name, namelen);
1316 kfree(name);
1317 iput(dir);
1318 if (ret)
1319 goto out;
1320 goto again;
1321 }
1322
1323 kfree(name);
1324 ref_ptr += namelen;
1325 if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 ref_ptr += sizeof(struct btrfs_inode_extref);
1327 else
1328 ref_ptr += sizeof(struct btrfs_inode_ref);
1329 }
1330 ret = 0;
1331 out:
1332 btrfs_release_path(path);
1333 return ret;
1334}
1335
0d836392
FM
1336static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 const u8 ref_type, const char *name,
1338 const int namelen)
1339{
1340 struct btrfs_key key;
1341 struct btrfs_path *path;
1342 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 int ret;
1344
1345 path = btrfs_alloc_path();
1346 if (!path)
1347 return -ENOMEM;
1348
1349 key.objectid = btrfs_ino(BTRFS_I(inode));
1350 key.type = ref_type;
1351 if (key.type == BTRFS_INODE_REF_KEY)
1352 key.offset = parent_id;
1353 else
1354 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355
1356 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 if (ret < 0)
1358 goto out;
1359 if (ret > 0) {
1360 ret = 0;
1361 goto out;
1362 }
1363 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1364 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 path->slots[0], parent_id, name, namelen);
0d836392 1366 else
9bb8407f
NB
1367 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 name, namelen);
0d836392
FM
1369
1370out:
1371 btrfs_free_path(path);
1372 return ret;
1373}
1374
6b5fc433
FM
1375static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 struct inode *dir, struct inode *inode, const char *name,
1377 int namelen, u64 ref_index)
1378{
1379 struct btrfs_dir_item *dir_item;
1380 struct btrfs_key key;
1381 struct btrfs_path *path;
1382 struct inode *other_inode = NULL;
1383 int ret;
1384
1385 path = btrfs_alloc_path();
1386 if (!path)
1387 return -ENOMEM;
1388
1389 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 btrfs_ino(BTRFS_I(dir)),
1391 name, namelen, 0);
1392 if (!dir_item) {
1393 btrfs_release_path(path);
1394 goto add_link;
1395 } else if (IS_ERR(dir_item)) {
1396 ret = PTR_ERR(dir_item);
1397 goto out;
1398 }
1399
1400 /*
1401 * Our inode's dentry collides with the dentry of another inode which is
1402 * in the log but not yet processed since it has a higher inode number.
1403 * So delete that other dentry.
1404 */
1405 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 btrfs_release_path(path);
1407 other_inode = read_one_inode(root, key.objectid);
1408 if (!other_inode) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 name, namelen);
1414 if (ret)
1415 goto out;
1416 /*
1417 * If we dropped the link count to 0, bump it so that later the iput()
1418 * on the inode will not free it. We will fixup the link count later.
1419 */
1420 if (other_inode->i_nlink == 0)
1421 inc_nlink(other_inode);
1422
1423 ret = btrfs_run_delayed_items(trans);
1424 if (ret)
1425 goto out;
1426add_link:
1427 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 name, namelen, 0, ref_index);
1429out:
1430 iput(other_inode);
1431 btrfs_free_path(path);
1432
1433 return ret;
1434}
1435
5a1d7843
JS
1436/*
1437 * replay one inode back reference item found in the log tree.
1438 * eb, slot and key refer to the buffer and key found in the log tree.
1439 * root is the destination we are replaying into, and path is for temp
1440 * use by this function. (it should be released on return).
1441 */
1442static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root,
1444 struct btrfs_root *log,
1445 struct btrfs_path *path,
1446 struct extent_buffer *eb, int slot,
1447 struct btrfs_key *key)
1448{
03b2f08b
GB
1449 struct inode *dir = NULL;
1450 struct inode *inode = NULL;
5a1d7843
JS
1451 unsigned long ref_ptr;
1452 unsigned long ref_end;
03b2f08b 1453 char *name = NULL;
5a1d7843
JS
1454 int namelen;
1455 int ret;
1456 int search_done = 0;
f186373f
MF
1457 int log_ref_ver = 0;
1458 u64 parent_objectid;
1459 u64 inode_objectid;
f46dbe3d 1460 u64 ref_index = 0;
f186373f
MF
1461 int ref_struct_size;
1462
1463 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465
1466 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 struct btrfs_inode_extref *r;
1468
1469 ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 log_ref_ver = 1;
1471 r = (struct btrfs_inode_extref *)ref_ptr;
1472 parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 } else {
1474 ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 parent_objectid = key->offset;
1476 }
1477 inode_objectid = key->objectid;
e02119d5 1478
5a1d7843
JS
1479 /*
1480 * it is possible that we didn't log all the parent directories
1481 * for a given inode. If we don't find the dir, just don't
1482 * copy the back ref in. The link count fixup code will take
1483 * care of the rest
1484 */
f186373f 1485 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1486 if (!dir) {
1487 ret = -ENOENT;
1488 goto out;
1489 }
5a1d7843 1490
f186373f 1491 inode = read_one_inode(root, inode_objectid);
5a1d7843 1492 if (!inode) {
03b2f08b
GB
1493 ret = -EIO;
1494 goto out;
5a1d7843
JS
1495 }
1496
5a1d7843 1497 while (ref_ptr < ref_end) {
f186373f 1498 if (log_ref_ver) {
bae15d95
QW
1499 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 &ref_index, &parent_objectid);
f186373f
MF
1501 /*
1502 * parent object can change from one array
1503 * item to another.
1504 */
1505 if (!dir)
1506 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1507 if (!dir) {
1508 ret = -ENOENT;
1509 goto out;
1510 }
f186373f 1511 } else {
bae15d95
QW
1512 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 &ref_index);
f186373f
MF
1514 }
1515 if (ret)
03b2f08b 1516 goto out;
5a1d7843
JS
1517
1518 /* if we already have a perfect match, we're done */
f85b7379
DS
1519 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 btrfs_ino(BTRFS_I(inode)), ref_index,
1521 name, namelen)) {
5a1d7843
JS
1522 /*
1523 * look for a conflicting back reference in the
1524 * metadata. if we find one we have to unlink that name
1525 * of the file before we add our new link. Later on, we
1526 * overwrite any existing back reference, and we don't
1527 * want to create dangling pointers in the directory.
1528 */
1529
1530 if (!search_done) {
1531 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1532 BTRFS_I(dir),
d75eefdf 1533 BTRFS_I(inode),
f186373f
MF
1534 inode_objectid,
1535 parent_objectid,
1536 ref_index, name, namelen,
5a1d7843 1537 &search_done);
03b2f08b
GB
1538 if (ret) {
1539 if (ret == 1)
1540 ret = 0;
3650860b
JB
1541 goto out;
1542 }
5a1d7843
JS
1543 }
1544
0d836392
FM
1545 /*
1546 * If a reference item already exists for this inode
1547 * with the same parent and name, but different index,
1548 * drop it and the corresponding directory index entries
1549 * from the parent before adding the new reference item
1550 * and dir index entries, otherwise we would fail with
1551 * -EEXIST returned from btrfs_add_link() below.
1552 */
1553 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 name, namelen);
1555 if (ret > 0) {
1556 ret = btrfs_unlink_inode(trans, root,
1557 BTRFS_I(dir),
1558 BTRFS_I(inode),
1559 name, namelen);
1560 /*
1561 * If we dropped the link count to 0, bump it so
1562 * that later the iput() on the inode will not
1563 * free it. We will fixup the link count later.
1564 */
1565 if (!ret && inode->i_nlink == 0)
1566 inc_nlink(inode);
1567 }
1568 if (ret < 0)
1569 goto out;
1570
5a1d7843 1571 /* insert our name */
6b5fc433
FM
1572 ret = add_link(trans, root, dir, inode, name, namelen,
1573 ref_index);
3650860b
JB
1574 if (ret)
1575 goto out;
5a1d7843 1576
f96d4474
JB
1577 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1578 if (ret)
1579 goto out;
5a1d7843
JS
1580 }
1581
f186373f 1582 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1583 kfree(name);
03b2f08b 1584 name = NULL;
f186373f
MF
1585 if (log_ref_ver) {
1586 iput(dir);
1587 dir = NULL;
1588 }
5a1d7843 1589 }
e02119d5 1590
1f250e92
FM
1591 /*
1592 * Before we overwrite the inode reference item in the subvolume tree
1593 * with the item from the log tree, we must unlink all names from the
1594 * parent directory that are in the subvolume's tree inode reference
1595 * item, otherwise we end up with an inconsistent subvolume tree where
1596 * dir index entries exist for a name but there is no inode reference
1597 * item with the same name.
1598 */
1599 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1600 key);
1601 if (ret)
1602 goto out;
1603
e02119d5
CM
1604 /* finally write the back reference in the inode */
1605 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1606out:
b3b4aa74 1607 btrfs_release_path(path);
03b2f08b 1608 kfree(name);
e02119d5
CM
1609 iput(dir);
1610 iput(inode);
3650860b 1611 return ret;
e02119d5
CM
1612}
1613
f186373f 1614static int count_inode_extrefs(struct btrfs_root *root,
36283658 1615 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1616{
1617 int ret = 0;
1618 int name_len;
1619 unsigned int nlink = 0;
1620 u32 item_size;
1621 u32 cur_offset = 0;
36283658 1622 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1623 u64 offset = 0;
1624 unsigned long ptr;
1625 struct btrfs_inode_extref *extref;
1626 struct extent_buffer *leaf;
1627
1628 while (1) {
1629 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1630 &extref, &offset);
1631 if (ret)
1632 break;
c71bf099 1633
f186373f
MF
1634 leaf = path->nodes[0];
1635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1636 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1637 cur_offset = 0;
f186373f
MF
1638
1639 while (cur_offset < item_size) {
1640 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1641 name_len = btrfs_inode_extref_name_len(leaf, extref);
1642
1643 nlink++;
1644
1645 cur_offset += name_len + sizeof(*extref);
1646 }
1647
1648 offset++;
1649 btrfs_release_path(path);
1650 }
1651 btrfs_release_path(path);
1652
2c2c452b 1653 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1654 return ret;
1655 return nlink;
1656}
1657
1658static int count_inode_refs(struct btrfs_root *root,
f329e319 1659 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1660{
e02119d5
CM
1661 int ret;
1662 struct btrfs_key key;
f186373f 1663 unsigned int nlink = 0;
e02119d5
CM
1664 unsigned long ptr;
1665 unsigned long ptr_end;
1666 int name_len;
f329e319 1667 u64 ino = btrfs_ino(inode);
e02119d5 1668
33345d01 1669 key.objectid = ino;
e02119d5
CM
1670 key.type = BTRFS_INODE_REF_KEY;
1671 key.offset = (u64)-1;
1672
d397712b 1673 while (1) {
e02119d5
CM
1674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1675 if (ret < 0)
1676 break;
1677 if (ret > 0) {
1678 if (path->slots[0] == 0)
1679 break;
1680 path->slots[0]--;
1681 }
e93ae26f 1682process_slot:
e02119d5
CM
1683 btrfs_item_key_to_cpu(path->nodes[0], &key,
1684 path->slots[0]);
33345d01 1685 if (key.objectid != ino ||
e02119d5
CM
1686 key.type != BTRFS_INODE_REF_KEY)
1687 break;
1688 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1689 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1690 path->slots[0]);
d397712b 1691 while (ptr < ptr_end) {
e02119d5
CM
1692 struct btrfs_inode_ref *ref;
1693
1694 ref = (struct btrfs_inode_ref *)ptr;
1695 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1696 ref);
1697 ptr = (unsigned long)(ref + 1) + name_len;
1698 nlink++;
1699 }
1700
1701 if (key.offset == 0)
1702 break;
e93ae26f
FDBM
1703 if (path->slots[0] > 0) {
1704 path->slots[0]--;
1705 goto process_slot;
1706 }
e02119d5 1707 key.offset--;
b3b4aa74 1708 btrfs_release_path(path);
e02119d5 1709 }
b3b4aa74 1710 btrfs_release_path(path);
f186373f
MF
1711
1712 return nlink;
1713}
1714
1715/*
1716 * There are a few corners where the link count of the file can't
1717 * be properly maintained during replay. So, instead of adding
1718 * lots of complexity to the log code, we just scan the backrefs
1719 * for any file that has been through replay.
1720 *
1721 * The scan will update the link count on the inode to reflect the
1722 * number of back refs found. If it goes down to zero, the iput
1723 * will free the inode.
1724 */
1725static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1726 struct btrfs_root *root,
1727 struct inode *inode)
1728{
1729 struct btrfs_path *path;
1730 int ret;
1731 u64 nlink = 0;
4a0cc7ca 1732 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1733
1734 path = btrfs_alloc_path();
1735 if (!path)
1736 return -ENOMEM;
1737
f329e319 1738 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1739 if (ret < 0)
1740 goto out;
1741
1742 nlink = ret;
1743
36283658 1744 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1745 if (ret < 0)
1746 goto out;
1747
1748 nlink += ret;
1749
1750 ret = 0;
1751
e02119d5 1752 if (nlink != inode->i_nlink) {
bfe86848 1753 set_nlink(inode, nlink);
f96d4474
JB
1754 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1755 if (ret)
1756 goto out;
e02119d5 1757 }
8d5bf1cb 1758 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1759
c71bf099
YZ
1760 if (inode->i_nlink == 0) {
1761 if (S_ISDIR(inode->i_mode)) {
1762 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1763 ino, 1);
3650860b
JB
1764 if (ret)
1765 goto out;
c71bf099 1766 }
ecdcf3c2
NB
1767 ret = btrfs_insert_orphan_item(trans, root, ino);
1768 if (ret == -EEXIST)
1769 ret = 0;
12fcfd22 1770 }
12fcfd22 1771
f186373f
MF
1772out:
1773 btrfs_free_path(path);
1774 return ret;
e02119d5
CM
1775}
1776
1777static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1778 struct btrfs_root *root,
1779 struct btrfs_path *path)
1780{
1781 int ret;
1782 struct btrfs_key key;
1783 struct inode *inode;
1784
1785 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1786 key.type = BTRFS_ORPHAN_ITEM_KEY;
1787 key.offset = (u64)-1;
d397712b 1788 while (1) {
e02119d5
CM
1789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1790 if (ret < 0)
1791 break;
1792
1793 if (ret == 1) {
011b28ac 1794 ret = 0;
e02119d5
CM
1795 if (path->slots[0] == 0)
1796 break;
1797 path->slots[0]--;
1798 }
1799
1800 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1801 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1802 key.type != BTRFS_ORPHAN_ITEM_KEY)
1803 break;
1804
1805 ret = btrfs_del_item(trans, root, path);
65a246c5 1806 if (ret)
011b28ac 1807 break;
e02119d5 1808
b3b4aa74 1809 btrfs_release_path(path);
e02119d5 1810 inode = read_one_inode(root, key.offset);
011b28ac
JB
1811 if (!inode) {
1812 ret = -EIO;
1813 break;
1814 }
e02119d5
CM
1815
1816 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1817 iput(inode);
3650860b 1818 if (ret)
011b28ac 1819 break;
e02119d5 1820
12fcfd22
CM
1821 /*
1822 * fixup on a directory may create new entries,
1823 * make sure we always look for the highset possible
1824 * offset
1825 */
1826 key.offset = (u64)-1;
e02119d5 1827 }
b3b4aa74 1828 btrfs_release_path(path);
65a246c5 1829 return ret;
e02119d5
CM
1830}
1831
1832
1833/*
1834 * record a given inode in the fixup dir so we can check its link
1835 * count when replay is done. The link count is incremented here
1836 * so the inode won't go away until we check it
1837 */
1838static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root,
1840 struct btrfs_path *path,
1841 u64 objectid)
1842{
1843 struct btrfs_key key;
1844 int ret = 0;
1845 struct inode *inode;
1846
1847 inode = read_one_inode(root, objectid);
c00e9493
TI
1848 if (!inode)
1849 return -EIO;
e02119d5
CM
1850
1851 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1852 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1853 key.offset = objectid;
1854
1855 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1856
b3b4aa74 1857 btrfs_release_path(path);
e02119d5 1858 if (ret == 0) {
9bf7a489
JB
1859 if (!inode->i_nlink)
1860 set_nlink(inode, 1);
1861 else
8b558c5f 1862 inc_nlink(inode);
9a56fcd1 1863 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1864 } else if (ret == -EEXIST) {
1865 ret = 0;
e02119d5
CM
1866 }
1867 iput(inode);
1868
1869 return ret;
1870}
1871
1872/*
1873 * when replaying the log for a directory, we only insert names
1874 * for inodes that actually exist. This means an fsync on a directory
1875 * does not implicitly fsync all the new files in it
1876 */
1877static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root,
e02119d5 1879 u64 dirid, u64 index,
60d53eb3 1880 char *name, int name_len,
e02119d5
CM
1881 struct btrfs_key *location)
1882{
1883 struct inode *inode;
1884 struct inode *dir;
1885 int ret;
1886
1887 inode = read_one_inode(root, location->objectid);
1888 if (!inode)
1889 return -ENOENT;
1890
1891 dir = read_one_inode(root, dirid);
1892 if (!dir) {
1893 iput(inode);
1894 return -EIO;
1895 }
d555438b 1896
db0a669f
NB
1897 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1898 name_len, 1, index);
e02119d5
CM
1899
1900 /* FIXME, put inode into FIXUP list */
1901
1902 iput(inode);
1903 iput(dir);
1904 return ret;
1905}
1906
1907/*
1908 * take a single entry in a log directory item and replay it into
1909 * the subvolume.
1910 *
1911 * if a conflicting item exists in the subdirectory already,
1912 * the inode it points to is unlinked and put into the link count
1913 * fix up tree.
1914 *
1915 * If a name from the log points to a file or directory that does
1916 * not exist in the FS, it is skipped. fsyncs on directories
1917 * do not force down inodes inside that directory, just changes to the
1918 * names or unlinks in a directory.
bb53eda9
FM
1919 *
1920 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1921 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1922 */
1923static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 struct extent_buffer *eb,
1927 struct btrfs_dir_item *di,
1928 struct btrfs_key *key)
1929{
1930 char *name;
1931 int name_len;
1932 struct btrfs_dir_item *dst_di;
1933 struct btrfs_key found_key;
1934 struct btrfs_key log_key;
1935 struct inode *dir;
e02119d5 1936 u8 log_type;
4bef0848 1937 int exists;
3650860b 1938 int ret = 0;
d555438b 1939 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1940 bool name_added = false;
e02119d5
CM
1941
1942 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1943 if (!dir)
1944 return -EIO;
e02119d5
CM
1945
1946 name_len = btrfs_dir_name_len(eb, di);
1947 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1948 if (!name) {
1949 ret = -ENOMEM;
1950 goto out;
1951 }
2a29edc6 1952
e02119d5
CM
1953 log_type = btrfs_dir_type(eb, di);
1954 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1955 name_len);
1956
1957 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1958 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1959 if (exists == 0)
1960 exists = 1;
1961 else
1962 exists = 0;
b3b4aa74 1963 btrfs_release_path(path);
4bef0848 1964
e02119d5
CM
1965 if (key->type == BTRFS_DIR_ITEM_KEY) {
1966 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1967 name, name_len, 1);
d397712b 1968 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1969 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1970 key->objectid,
1971 key->offset, name,
1972 name_len, 1);
1973 } else {
3650860b
JB
1974 /* Corruption */
1975 ret = -EINVAL;
1976 goto out;
e02119d5 1977 }
c704005d 1978 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1979 /* we need a sequence number to insert, so we only
1980 * do inserts for the BTRFS_DIR_INDEX_KEY types
1981 */
1982 if (key->type != BTRFS_DIR_INDEX_KEY)
1983 goto out;
1984 goto insert;
1985 }
1986
1987 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1988 /* the existing item matches the logged item */
1989 if (found_key.objectid == log_key.objectid &&
1990 found_key.type == log_key.type &&
1991 found_key.offset == log_key.offset &&
1992 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1993 update_size = false;
e02119d5
CM
1994 goto out;
1995 }
1996
1997 /*
1998 * don't drop the conflicting directory entry if the inode
1999 * for the new entry doesn't exist
2000 */
4bef0848 2001 if (!exists)
e02119d5
CM
2002 goto out;
2003
207e7d92 2004 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2005 if (ret)
2006 goto out;
e02119d5
CM
2007
2008 if (key->type == BTRFS_DIR_INDEX_KEY)
2009 goto insert;
2010out:
b3b4aa74 2011 btrfs_release_path(path);
d555438b 2012 if (!ret && update_size) {
6ef06d27 2013 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 2014 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 2015 }
e02119d5
CM
2016 kfree(name);
2017 iput(dir);
bb53eda9
FM
2018 if (!ret && name_added)
2019 ret = 1;
3650860b 2020 return ret;
e02119d5
CM
2021
2022insert:
725af92a
NB
2023 /*
2024 * Check if the inode reference exists in the log for the given name,
2025 * inode and parent inode
2026 */
2027 found_key.objectid = log_key.objectid;
2028 found_key.type = BTRFS_INODE_REF_KEY;
2029 found_key.offset = key->objectid;
2030 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2031 if (ret < 0) {
2032 goto out;
2033 } else if (ret) {
2034 /* The dentry will be added later. */
2035 ret = 0;
2036 update_size = false;
2037 goto out;
2038 }
2039
2040 found_key.objectid = log_key.objectid;
2041 found_key.type = BTRFS_INODE_EXTREF_KEY;
2042 found_key.offset = key->objectid;
2043 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2044 name_len);
2045 if (ret < 0) {
2046 goto out;
2047 } else if (ret) {
df8d116f
FM
2048 /* The dentry will be added later. */
2049 ret = 0;
2050 update_size = false;
2051 goto out;
2052 }
b3b4aa74 2053 btrfs_release_path(path);
60d53eb3
Z
2054 ret = insert_one_name(trans, root, key->objectid, key->offset,
2055 name, name_len, &log_key);
df8d116f 2056 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2057 goto out;
bb53eda9
FM
2058 if (!ret)
2059 name_added = true;
d555438b 2060 update_size = false;
3650860b 2061 ret = 0;
e02119d5
CM
2062 goto out;
2063}
2064
2065/*
2066 * find all the names in a directory item and reconcile them into
2067 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2068 * one name in a directory item, but the same code gets used for
2069 * both directory index types
2070 */
2071static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2072 struct btrfs_root *root,
2073 struct btrfs_path *path,
2074 struct extent_buffer *eb, int slot,
2075 struct btrfs_key *key)
2076{
bb53eda9 2077 int ret = 0;
e02119d5
CM
2078 u32 item_size = btrfs_item_size_nr(eb, slot);
2079 struct btrfs_dir_item *di;
2080 int name_len;
2081 unsigned long ptr;
2082 unsigned long ptr_end;
bb53eda9 2083 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2084
2085 ptr = btrfs_item_ptr_offset(eb, slot);
2086 ptr_end = ptr + item_size;
d397712b 2087 while (ptr < ptr_end) {
e02119d5
CM
2088 di = (struct btrfs_dir_item *)ptr;
2089 name_len = btrfs_dir_name_len(eb, di);
2090 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2091 if (ret < 0)
2092 break;
e02119d5
CM
2093 ptr = (unsigned long)(di + 1);
2094 ptr += name_len;
bb53eda9
FM
2095
2096 /*
2097 * If this entry refers to a non-directory (directories can not
2098 * have a link count > 1) and it was added in the transaction
2099 * that was not committed, make sure we fixup the link count of
2100 * the inode it the entry points to. Otherwise something like
2101 * the following would result in a directory pointing to an
2102 * inode with a wrong link that does not account for this dir
2103 * entry:
2104 *
2105 * mkdir testdir
2106 * touch testdir/foo
2107 * touch testdir/bar
2108 * sync
2109 *
2110 * ln testdir/bar testdir/bar_link
2111 * ln testdir/foo testdir/foo_link
2112 * xfs_io -c "fsync" testdir/bar
2113 *
2114 * <power failure>
2115 *
2116 * mount fs, log replay happens
2117 *
2118 * File foo would remain with a link count of 1 when it has two
2119 * entries pointing to it in the directory testdir. This would
2120 * make it impossible to ever delete the parent directory has
2121 * it would result in stale dentries that can never be deleted.
2122 */
2123 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2124 struct btrfs_key di_key;
2125
2126 if (!fixup_path) {
2127 fixup_path = btrfs_alloc_path();
2128 if (!fixup_path) {
2129 ret = -ENOMEM;
2130 break;
2131 }
2132 }
2133
2134 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2135 ret = link_to_fixup_dir(trans, root, fixup_path,
2136 di_key.objectid);
2137 if (ret)
2138 break;
2139 }
2140 ret = 0;
e02119d5 2141 }
bb53eda9
FM
2142 btrfs_free_path(fixup_path);
2143 return ret;
e02119d5
CM
2144}
2145
2146/*
2147 * directory replay has two parts. There are the standard directory
2148 * items in the log copied from the subvolume, and range items
2149 * created in the log while the subvolume was logged.
2150 *
2151 * The range items tell us which parts of the key space the log
2152 * is authoritative for. During replay, if a key in the subvolume
2153 * directory is in a logged range item, but not actually in the log
2154 * that means it was deleted from the directory before the fsync
2155 * and should be removed.
2156 */
2157static noinline int find_dir_range(struct btrfs_root *root,
2158 struct btrfs_path *path,
2159 u64 dirid, int key_type,
2160 u64 *start_ret, u64 *end_ret)
2161{
2162 struct btrfs_key key;
2163 u64 found_end;
2164 struct btrfs_dir_log_item *item;
2165 int ret;
2166 int nritems;
2167
2168 if (*start_ret == (u64)-1)
2169 return 1;
2170
2171 key.objectid = dirid;
2172 key.type = key_type;
2173 key.offset = *start_ret;
2174
2175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2176 if (ret < 0)
2177 goto out;
2178 if (ret > 0) {
2179 if (path->slots[0] == 0)
2180 goto out;
2181 path->slots[0]--;
2182 }
2183 if (ret != 0)
2184 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2185
2186 if (key.type != key_type || key.objectid != dirid) {
2187 ret = 1;
2188 goto next;
2189 }
2190 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2191 struct btrfs_dir_log_item);
2192 found_end = btrfs_dir_log_end(path->nodes[0], item);
2193
2194 if (*start_ret >= key.offset && *start_ret <= found_end) {
2195 ret = 0;
2196 *start_ret = key.offset;
2197 *end_ret = found_end;
2198 goto out;
2199 }
2200 ret = 1;
2201next:
2202 /* check the next slot in the tree to see if it is a valid item */
2203 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2204 path->slots[0]++;
e02119d5
CM
2205 if (path->slots[0] >= nritems) {
2206 ret = btrfs_next_leaf(root, path);
2207 if (ret)
2208 goto out;
e02119d5
CM
2209 }
2210
2211 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2212
2213 if (key.type != key_type || key.objectid != dirid) {
2214 ret = 1;
2215 goto out;
2216 }
2217 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2218 struct btrfs_dir_log_item);
2219 found_end = btrfs_dir_log_end(path->nodes[0], item);
2220 *start_ret = key.offset;
2221 *end_ret = found_end;
2222 ret = 0;
2223out:
b3b4aa74 2224 btrfs_release_path(path);
e02119d5
CM
2225 return ret;
2226}
2227
2228/*
2229 * this looks for a given directory item in the log. If the directory
2230 * item is not in the log, the item is removed and the inode it points
2231 * to is unlinked
2232 */
2233static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2234 struct btrfs_root *root,
2235 struct btrfs_root *log,
2236 struct btrfs_path *path,
2237 struct btrfs_path *log_path,
2238 struct inode *dir,
2239 struct btrfs_key *dir_key)
2240{
2241 int ret;
2242 struct extent_buffer *eb;
2243 int slot;
2244 u32 item_size;
2245 struct btrfs_dir_item *di;
2246 struct btrfs_dir_item *log_di;
2247 int name_len;
2248 unsigned long ptr;
2249 unsigned long ptr_end;
2250 char *name;
2251 struct inode *inode;
2252 struct btrfs_key location;
2253
2254again:
2255 eb = path->nodes[0];
2256 slot = path->slots[0];
2257 item_size = btrfs_item_size_nr(eb, slot);
2258 ptr = btrfs_item_ptr_offset(eb, slot);
2259 ptr_end = ptr + item_size;
d397712b 2260 while (ptr < ptr_end) {
e02119d5
CM
2261 di = (struct btrfs_dir_item *)ptr;
2262 name_len = btrfs_dir_name_len(eb, di);
2263 name = kmalloc(name_len, GFP_NOFS);
2264 if (!name) {
2265 ret = -ENOMEM;
2266 goto out;
2267 }
2268 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2269 name_len);
2270 log_di = NULL;
12fcfd22 2271 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2272 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2273 dir_key->objectid,
2274 name, name_len, 0);
12fcfd22 2275 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2276 log_di = btrfs_lookup_dir_index_item(trans, log,
2277 log_path,
2278 dir_key->objectid,
2279 dir_key->offset,
2280 name, name_len, 0);
2281 }
8d9e220c 2282 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2283 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2284 btrfs_release_path(path);
2285 btrfs_release_path(log_path);
e02119d5 2286 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2287 if (!inode) {
2288 kfree(name);
2289 return -EIO;
2290 }
e02119d5
CM
2291
2292 ret = link_to_fixup_dir(trans, root,
2293 path, location.objectid);
3650860b
JB
2294 if (ret) {
2295 kfree(name);
2296 iput(inode);
2297 goto out;
2298 }
2299
8b558c5f 2300 inc_nlink(inode);
4ec5934e
NB
2301 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2302 BTRFS_I(inode), name, name_len);
3650860b 2303 if (!ret)
e5c304e6 2304 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2305 kfree(name);
2306 iput(inode);
3650860b
JB
2307 if (ret)
2308 goto out;
e02119d5
CM
2309
2310 /* there might still be more names under this key
2311 * check and repeat if required
2312 */
2313 ret = btrfs_search_slot(NULL, root, dir_key, path,
2314 0, 0);
2315 if (ret == 0)
2316 goto again;
2317 ret = 0;
2318 goto out;
269d040f
FDBM
2319 } else if (IS_ERR(log_di)) {
2320 kfree(name);
2321 return PTR_ERR(log_di);
e02119d5 2322 }
b3b4aa74 2323 btrfs_release_path(log_path);
e02119d5
CM
2324 kfree(name);
2325
2326 ptr = (unsigned long)(di + 1);
2327 ptr += name_len;
2328 }
2329 ret = 0;
2330out:
b3b4aa74
DS
2331 btrfs_release_path(path);
2332 btrfs_release_path(log_path);
e02119d5
CM
2333 return ret;
2334}
2335
4f764e51
FM
2336static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *root,
2338 struct btrfs_root *log,
2339 struct btrfs_path *path,
2340 const u64 ino)
2341{
2342 struct btrfs_key search_key;
2343 struct btrfs_path *log_path;
2344 int i;
2345 int nritems;
2346 int ret;
2347
2348 log_path = btrfs_alloc_path();
2349 if (!log_path)
2350 return -ENOMEM;
2351
2352 search_key.objectid = ino;
2353 search_key.type = BTRFS_XATTR_ITEM_KEY;
2354 search_key.offset = 0;
2355again:
2356 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2357 if (ret < 0)
2358 goto out;
2359process_leaf:
2360 nritems = btrfs_header_nritems(path->nodes[0]);
2361 for (i = path->slots[0]; i < nritems; i++) {
2362 struct btrfs_key key;
2363 struct btrfs_dir_item *di;
2364 struct btrfs_dir_item *log_di;
2365 u32 total_size;
2366 u32 cur;
2367
2368 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2369 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2370 ret = 0;
2371 goto out;
2372 }
2373
2374 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2375 total_size = btrfs_item_size_nr(path->nodes[0], i);
2376 cur = 0;
2377 while (cur < total_size) {
2378 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2379 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2380 u32 this_len = sizeof(*di) + name_len + data_len;
2381 char *name;
2382
2383 name = kmalloc(name_len, GFP_NOFS);
2384 if (!name) {
2385 ret = -ENOMEM;
2386 goto out;
2387 }
2388 read_extent_buffer(path->nodes[0], name,
2389 (unsigned long)(di + 1), name_len);
2390
2391 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2392 name, name_len, 0);
2393 btrfs_release_path(log_path);
2394 if (!log_di) {
2395 /* Doesn't exist in log tree, so delete it. */
2396 btrfs_release_path(path);
2397 di = btrfs_lookup_xattr(trans, root, path, ino,
2398 name, name_len, -1);
2399 kfree(name);
2400 if (IS_ERR(di)) {
2401 ret = PTR_ERR(di);
2402 goto out;
2403 }
2404 ASSERT(di);
2405 ret = btrfs_delete_one_dir_name(trans, root,
2406 path, di);
2407 if (ret)
2408 goto out;
2409 btrfs_release_path(path);
2410 search_key = key;
2411 goto again;
2412 }
2413 kfree(name);
2414 if (IS_ERR(log_di)) {
2415 ret = PTR_ERR(log_di);
2416 goto out;
2417 }
2418 cur += this_len;
2419 di = (struct btrfs_dir_item *)((char *)di + this_len);
2420 }
2421 }
2422 ret = btrfs_next_leaf(root, path);
2423 if (ret > 0)
2424 ret = 0;
2425 else if (ret == 0)
2426 goto process_leaf;
2427out:
2428 btrfs_free_path(log_path);
2429 btrfs_release_path(path);
2430 return ret;
2431}
2432
2433
e02119d5
CM
2434/*
2435 * deletion replay happens before we copy any new directory items
2436 * out of the log or out of backreferences from inodes. It
2437 * scans the log to find ranges of keys that log is authoritative for,
2438 * and then scans the directory to find items in those ranges that are
2439 * not present in the log.
2440 *
2441 * Anything we don't find in the log is unlinked and removed from the
2442 * directory.
2443 */
2444static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root,
2446 struct btrfs_root *log,
2447 struct btrfs_path *path,
12fcfd22 2448 u64 dirid, int del_all)
e02119d5
CM
2449{
2450 u64 range_start;
2451 u64 range_end;
2452 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2453 int ret = 0;
2454 struct btrfs_key dir_key;
2455 struct btrfs_key found_key;
2456 struct btrfs_path *log_path;
2457 struct inode *dir;
2458
2459 dir_key.objectid = dirid;
2460 dir_key.type = BTRFS_DIR_ITEM_KEY;
2461 log_path = btrfs_alloc_path();
2462 if (!log_path)
2463 return -ENOMEM;
2464
2465 dir = read_one_inode(root, dirid);
2466 /* it isn't an error if the inode isn't there, that can happen
2467 * because we replay the deletes before we copy in the inode item
2468 * from the log
2469 */
2470 if (!dir) {
2471 btrfs_free_path(log_path);
2472 return 0;
2473 }
2474again:
2475 range_start = 0;
2476 range_end = 0;
d397712b 2477 while (1) {
12fcfd22
CM
2478 if (del_all)
2479 range_end = (u64)-1;
2480 else {
2481 ret = find_dir_range(log, path, dirid, key_type,
2482 &range_start, &range_end);
2483 if (ret != 0)
2484 break;
2485 }
e02119d5
CM
2486
2487 dir_key.offset = range_start;
d397712b 2488 while (1) {
e02119d5
CM
2489 int nritems;
2490 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2491 0, 0);
2492 if (ret < 0)
2493 goto out;
2494
2495 nritems = btrfs_header_nritems(path->nodes[0]);
2496 if (path->slots[0] >= nritems) {
2497 ret = btrfs_next_leaf(root, path);
b98def7c 2498 if (ret == 1)
e02119d5 2499 break;
b98def7c
LB
2500 else if (ret < 0)
2501 goto out;
e02119d5
CM
2502 }
2503 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2504 path->slots[0]);
2505 if (found_key.objectid != dirid ||
2506 found_key.type != dir_key.type)
2507 goto next_type;
2508
2509 if (found_key.offset > range_end)
2510 break;
2511
2512 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2513 log_path, dir,
2514 &found_key);
3650860b
JB
2515 if (ret)
2516 goto out;
e02119d5
CM
2517 if (found_key.offset == (u64)-1)
2518 break;
2519 dir_key.offset = found_key.offset + 1;
2520 }
b3b4aa74 2521 btrfs_release_path(path);
e02119d5
CM
2522 if (range_end == (u64)-1)
2523 break;
2524 range_start = range_end + 1;
2525 }
2526
2527next_type:
2528 ret = 0;
2529 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2530 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2531 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2532 btrfs_release_path(path);
e02119d5
CM
2533 goto again;
2534 }
2535out:
b3b4aa74 2536 btrfs_release_path(path);
e02119d5
CM
2537 btrfs_free_path(log_path);
2538 iput(dir);
2539 return ret;
2540}
2541
2542/*
2543 * the process_func used to replay items from the log tree. This
2544 * gets called in two different stages. The first stage just looks
2545 * for inodes and makes sure they are all copied into the subvolume.
2546 *
2547 * The second stage copies all the other item types from the log into
2548 * the subvolume. The two stage approach is slower, but gets rid of
2549 * lots of complexity around inodes referencing other inodes that exist
2550 * only in the log (references come from either directory items or inode
2551 * back refs).
2552 */
2553static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2554 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2555{
2556 int nritems;
2557 struct btrfs_path *path;
2558 struct btrfs_root *root = wc->replay_dest;
2559 struct btrfs_key key;
e02119d5
CM
2560 int i;
2561 int ret;
2562
581c1760 2563 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2564 if (ret)
2565 return ret;
e02119d5
CM
2566
2567 level = btrfs_header_level(eb);
2568
2569 if (level != 0)
2570 return 0;
2571
2572 path = btrfs_alloc_path();
1e5063d0
MF
2573 if (!path)
2574 return -ENOMEM;
e02119d5
CM
2575
2576 nritems = btrfs_header_nritems(eb);
2577 for (i = 0; i < nritems; i++) {
2578 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2579
2580 /* inode keys are done during the first stage */
2581 if (key.type == BTRFS_INODE_ITEM_KEY &&
2582 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2583 struct btrfs_inode_item *inode_item;
2584 u32 mode;
2585
2586 inode_item = btrfs_item_ptr(eb, i,
2587 struct btrfs_inode_item);
f2d72f42
FM
2588 /*
2589 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2590 * and never got linked before the fsync, skip it, as
2591 * replaying it is pointless since it would be deleted
2592 * later. We skip logging tmpfiles, but it's always
2593 * possible we are replaying a log created with a kernel
2594 * that used to log tmpfiles.
2595 */
2596 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2597 wc->ignore_cur_inode = true;
2598 continue;
2599 } else {
2600 wc->ignore_cur_inode = false;
2601 }
4f764e51
FM
2602 ret = replay_xattr_deletes(wc->trans, root, log,
2603 path, key.objectid);
2604 if (ret)
2605 break;
e02119d5
CM
2606 mode = btrfs_inode_mode(eb, inode_item);
2607 if (S_ISDIR(mode)) {
2608 ret = replay_dir_deletes(wc->trans,
12fcfd22 2609 root, log, path, key.objectid, 0);
b50c6e25
JB
2610 if (ret)
2611 break;
e02119d5
CM
2612 }
2613 ret = overwrite_item(wc->trans, root, path,
2614 eb, i, &key);
b50c6e25
JB
2615 if (ret)
2616 break;
e02119d5 2617
471d557a
FM
2618 /*
2619 * Before replaying extents, truncate the inode to its
2620 * size. We need to do it now and not after log replay
2621 * because before an fsync we can have prealloc extents
2622 * added beyond the inode's i_size. If we did it after,
2623 * through orphan cleanup for example, we would drop
2624 * those prealloc extents just after replaying them.
e02119d5
CM
2625 */
2626 if (S_ISREG(mode)) {
5893dfb9 2627 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2628 struct inode *inode;
2629 u64 from;
2630
2631 inode = read_one_inode(root, key.objectid);
2632 if (!inode) {
2633 ret = -EIO;
2634 break;
2635 }
2636 from = ALIGN(i_size_read(inode),
2637 root->fs_info->sectorsize);
5893dfb9
FM
2638 drop_args.start = from;
2639 drop_args.end = (u64)-1;
2640 drop_args.drop_cache = true;
2641 ret = btrfs_drop_extents(wc->trans, root,
2642 BTRFS_I(inode),
2643 &drop_args);
471d557a 2644 if (!ret) {
2766ff61
FM
2645 inode_sub_bytes(inode,
2646 drop_args.bytes_found);
f2d72f42 2647 /* Update the inode's nbytes. */
471d557a 2648 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2649 root, BTRFS_I(inode));
471d557a
FM
2650 }
2651 iput(inode);
b50c6e25
JB
2652 if (ret)
2653 break;
e02119d5 2654 }
c71bf099 2655
e02119d5
CM
2656 ret = link_to_fixup_dir(wc->trans, root,
2657 path, key.objectid);
b50c6e25
JB
2658 if (ret)
2659 break;
e02119d5 2660 }
dd8e7217 2661
f2d72f42
FM
2662 if (wc->ignore_cur_inode)
2663 continue;
2664
dd8e7217
JB
2665 if (key.type == BTRFS_DIR_INDEX_KEY &&
2666 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2667 ret = replay_one_dir_item(wc->trans, root, path,
2668 eb, i, &key);
2669 if (ret)
2670 break;
2671 }
2672
e02119d5
CM
2673 if (wc->stage < LOG_WALK_REPLAY_ALL)
2674 continue;
2675
2676 /* these keys are simply copied */
2677 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2678 ret = overwrite_item(wc->trans, root, path,
2679 eb, i, &key);
b50c6e25
JB
2680 if (ret)
2681 break;
2da1c669
LB
2682 } else if (key.type == BTRFS_INODE_REF_KEY ||
2683 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2684 ret = add_inode_ref(wc->trans, root, log, path,
2685 eb, i, &key);
b50c6e25
JB
2686 if (ret && ret != -ENOENT)
2687 break;
2688 ret = 0;
e02119d5
CM
2689 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2690 ret = replay_one_extent(wc->trans, root, path,
2691 eb, i, &key);
b50c6e25
JB
2692 if (ret)
2693 break;
dd8e7217 2694 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2695 ret = replay_one_dir_item(wc->trans, root, path,
2696 eb, i, &key);
b50c6e25
JB
2697 if (ret)
2698 break;
e02119d5
CM
2699 }
2700 }
2701 btrfs_free_path(path);
b50c6e25 2702 return ret;
e02119d5
CM
2703}
2704
6787bb9f
NB
2705/*
2706 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2707 */
2708static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2709{
2710 struct btrfs_block_group *cache;
2711
2712 cache = btrfs_lookup_block_group(fs_info, start);
2713 if (!cache) {
2714 btrfs_err(fs_info, "unable to find block group for %llu", start);
2715 return;
2716 }
2717
2718 spin_lock(&cache->space_info->lock);
2719 spin_lock(&cache->lock);
2720 cache->reserved -= fs_info->nodesize;
2721 cache->space_info->bytes_reserved -= fs_info->nodesize;
2722 spin_unlock(&cache->lock);
2723 spin_unlock(&cache->space_info->lock);
2724
2725 btrfs_put_block_group(cache);
2726}
2727
d397712b 2728static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2729 struct btrfs_root *root,
2730 struct btrfs_path *path, int *level,
2731 struct walk_control *wc)
2732{
0b246afa 2733 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2734 u64 bytenr;
2735 u64 ptr_gen;
2736 struct extent_buffer *next;
2737 struct extent_buffer *cur;
e02119d5
CM
2738 u32 blocksize;
2739 int ret = 0;
2740
d397712b 2741 while (*level > 0) {
581c1760
QW
2742 struct btrfs_key first_key;
2743
e02119d5
CM
2744 cur = path->nodes[*level];
2745
fae7f21c 2746 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2747
2748 if (path->slots[*level] >=
2749 btrfs_header_nritems(cur))
2750 break;
2751
2752 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2753 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2754 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2755 blocksize = fs_info->nodesize;
e02119d5 2756
3fbaf258
JB
2757 next = btrfs_find_create_tree_block(fs_info, bytenr,
2758 btrfs_header_owner(cur),
2759 *level - 1);
c871b0f2
LB
2760 if (IS_ERR(next))
2761 return PTR_ERR(next);
e02119d5 2762
e02119d5 2763 if (*level == 1) {
581c1760
QW
2764 ret = wc->process_func(root, next, wc, ptr_gen,
2765 *level - 1);
b50c6e25
JB
2766 if (ret) {
2767 free_extent_buffer(next);
1e5063d0 2768 return ret;
b50c6e25 2769 }
4a500fd1 2770
e02119d5
CM
2771 path->slots[*level]++;
2772 if (wc->free) {
581c1760
QW
2773 ret = btrfs_read_buffer(next, ptr_gen,
2774 *level - 1, &first_key);
018642a1
TI
2775 if (ret) {
2776 free_extent_buffer(next);
2777 return ret;
2778 }
e02119d5 2779
681ae509
JB
2780 if (trans) {
2781 btrfs_tree_lock(next);
6a884d7d 2782 btrfs_clean_tree_block(next);
681ae509
JB
2783 btrfs_wait_tree_block_writeback(next);
2784 btrfs_tree_unlock(next);
7bfc1007 2785 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2786 bytenr, blocksize);
2787 if (ret) {
2788 free_extent_buffer(next);
2789 return ret;
2790 }
d3575156
NA
2791 btrfs_redirty_list_add(
2792 trans->transaction, next);
1846430c
LB
2793 } else {
2794 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2795 clear_extent_buffer_dirty(next);
10e958d5 2796 unaccount_log_buffer(fs_info, bytenr);
3650860b 2797 }
e02119d5
CM
2798 }
2799 free_extent_buffer(next);
2800 continue;
2801 }
581c1760 2802 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2803 if (ret) {
2804 free_extent_buffer(next);
2805 return ret;
2806 }
e02119d5 2807
e02119d5
CM
2808 if (path->nodes[*level-1])
2809 free_extent_buffer(path->nodes[*level-1]);
2810 path->nodes[*level-1] = next;
2811 *level = btrfs_header_level(next);
2812 path->slots[*level] = 0;
2813 cond_resched();
2814 }
4a500fd1 2815 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2816
2817 cond_resched();
2818 return 0;
2819}
2820
d397712b 2821static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2822 struct btrfs_root *root,
2823 struct btrfs_path *path, int *level,
2824 struct walk_control *wc)
2825{
0b246afa 2826 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2827 int i;
2828 int slot;
2829 int ret;
2830
d397712b 2831 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2832 slot = path->slots[i];
4a500fd1 2833 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2834 path->slots[i]++;
2835 *level = i;
2836 WARN_ON(*level == 0);
2837 return 0;
2838 } else {
1e5063d0 2839 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2840 btrfs_header_generation(path->nodes[*level]),
2841 *level);
1e5063d0
MF
2842 if (ret)
2843 return ret;
2844
e02119d5
CM
2845 if (wc->free) {
2846 struct extent_buffer *next;
2847
2848 next = path->nodes[*level];
2849
681ae509
JB
2850 if (trans) {
2851 btrfs_tree_lock(next);
6a884d7d 2852 btrfs_clean_tree_block(next);
681ae509
JB
2853 btrfs_wait_tree_block_writeback(next);
2854 btrfs_tree_unlock(next);
7bfc1007 2855 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2856 path->nodes[*level]->start,
2857 path->nodes[*level]->len);
2858 if (ret)
2859 return ret;
1846430c
LB
2860 } else {
2861 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2862 clear_extent_buffer_dirty(next);
e02119d5 2863
10e958d5
NB
2864 unaccount_log_buffer(fs_info,
2865 path->nodes[*level]->start);
2866 }
e02119d5
CM
2867 }
2868 free_extent_buffer(path->nodes[*level]);
2869 path->nodes[*level] = NULL;
2870 *level = i + 1;
2871 }
2872 }
2873 return 1;
2874}
2875
2876/*
2877 * drop the reference count on the tree rooted at 'snap'. This traverses
2878 * the tree freeing any blocks that have a ref count of zero after being
2879 * decremented.
2880 */
2881static int walk_log_tree(struct btrfs_trans_handle *trans,
2882 struct btrfs_root *log, struct walk_control *wc)
2883{
2ff7e61e 2884 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2885 int ret = 0;
2886 int wret;
2887 int level;
2888 struct btrfs_path *path;
e02119d5
CM
2889 int orig_level;
2890
2891 path = btrfs_alloc_path();
db5b493a
TI
2892 if (!path)
2893 return -ENOMEM;
e02119d5
CM
2894
2895 level = btrfs_header_level(log->node);
2896 orig_level = level;
2897 path->nodes[level] = log->node;
67439dad 2898 atomic_inc(&log->node->refs);
e02119d5
CM
2899 path->slots[level] = 0;
2900
d397712b 2901 while (1) {
e02119d5
CM
2902 wret = walk_down_log_tree(trans, log, path, &level, wc);
2903 if (wret > 0)
2904 break;
79787eaa 2905 if (wret < 0) {
e02119d5 2906 ret = wret;
79787eaa
JM
2907 goto out;
2908 }
e02119d5
CM
2909
2910 wret = walk_up_log_tree(trans, log, path, &level, wc);
2911 if (wret > 0)
2912 break;
79787eaa 2913 if (wret < 0) {
e02119d5 2914 ret = wret;
79787eaa
JM
2915 goto out;
2916 }
e02119d5
CM
2917 }
2918
2919 /* was the root node processed? if not, catch it here */
2920 if (path->nodes[orig_level]) {
79787eaa 2921 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2922 btrfs_header_generation(path->nodes[orig_level]),
2923 orig_level);
79787eaa
JM
2924 if (ret)
2925 goto out;
e02119d5
CM
2926 if (wc->free) {
2927 struct extent_buffer *next;
2928
2929 next = path->nodes[orig_level];
2930
681ae509
JB
2931 if (trans) {
2932 btrfs_tree_lock(next);
6a884d7d 2933 btrfs_clean_tree_block(next);
681ae509
JB
2934 btrfs_wait_tree_block_writeback(next);
2935 btrfs_tree_unlock(next);
7bfc1007 2936 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2937 next->start, next->len);
2938 if (ret)
2939 goto out;
1846430c
LB
2940 } else {
2941 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2942 clear_extent_buffer_dirty(next);
10e958d5 2943 unaccount_log_buffer(fs_info, next->start);
681ae509 2944 }
e02119d5
CM
2945 }
2946 }
2947
79787eaa 2948out:
e02119d5 2949 btrfs_free_path(path);
e02119d5
CM
2950 return ret;
2951}
2952
7237f183
YZ
2953/*
2954 * helper function to update the item for a given subvolumes log root
2955 * in the tree of log roots
2956 */
2957static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2958 struct btrfs_root *log,
2959 struct btrfs_root_item *root_item)
7237f183 2960{
0b246afa 2961 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2962 int ret;
2963
2964 if (log->log_transid == 1) {
2965 /* insert root item on the first sync */
0b246afa 2966 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2967 &log->root_key, root_item);
7237f183 2968 } else {
0b246afa 2969 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2970 &log->root_key, root_item);
7237f183
YZ
2971 }
2972 return ret;
2973}
2974
60d53eb3 2975static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2976{
2977 DEFINE_WAIT(wait);
7237f183 2978 int index = transid % 2;
e02119d5 2979
7237f183
YZ
2980 /*
2981 * we only allow two pending log transactions at a time,
2982 * so we know that if ours is more than 2 older than the
2983 * current transaction, we're done
2984 */
49e83f57 2985 for (;;) {
7237f183
YZ
2986 prepare_to_wait(&root->log_commit_wait[index],
2987 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2988
49e83f57
LB
2989 if (!(root->log_transid_committed < transid &&
2990 atomic_read(&root->log_commit[index])))
2991 break;
12fcfd22 2992
49e83f57
LB
2993 mutex_unlock(&root->log_mutex);
2994 schedule();
7237f183 2995 mutex_lock(&root->log_mutex);
49e83f57
LB
2996 }
2997 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2998}
2999
60d53eb3 3000static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
3001{
3002 DEFINE_WAIT(wait);
8b050d35 3003
49e83f57
LB
3004 for (;;) {
3005 prepare_to_wait(&root->log_writer_wait, &wait,
3006 TASK_UNINTERRUPTIBLE);
3007 if (!atomic_read(&root->log_writers))
3008 break;
3009
7237f183 3010 mutex_unlock(&root->log_mutex);
49e83f57 3011 schedule();
575849ec 3012 mutex_lock(&root->log_mutex);
7237f183 3013 }
49e83f57 3014 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
3015}
3016
8b050d35
MX
3017static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3018 struct btrfs_log_ctx *ctx)
3019{
3020 if (!ctx)
3021 return;
3022
3023 mutex_lock(&root->log_mutex);
3024 list_del_init(&ctx->list);
3025 mutex_unlock(&root->log_mutex);
3026}
3027
3028/*
3029 * Invoked in log mutex context, or be sure there is no other task which
3030 * can access the list.
3031 */
3032static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3033 int index, int error)
3034{
3035 struct btrfs_log_ctx *ctx;
570dd450 3036 struct btrfs_log_ctx *safe;
8b050d35 3037
570dd450
CM
3038 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3039 list_del_init(&ctx->list);
8b050d35 3040 ctx->log_ret = error;
570dd450 3041 }
8b050d35
MX
3042}
3043
e02119d5
CM
3044/*
3045 * btrfs_sync_log does sends a given tree log down to the disk and
3046 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3047 * you know that any inodes previously logged are safely on disk only
3048 * if it returns 0.
3049 *
3050 * Any other return value means you need to call btrfs_commit_transaction.
3051 * Some of the edge cases for fsyncing directories that have had unlinks
3052 * or renames done in the past mean that sometimes the only safe
3053 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3054 * that has happened.
e02119d5
CM
3055 */
3056int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3057 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3058{
7237f183
YZ
3059 int index1;
3060 int index2;
8cef4e16 3061 int mark;
e02119d5 3062 int ret;
0b246afa 3063 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3064 struct btrfs_root *log = root->log_root;
0b246afa 3065 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3066 struct btrfs_root_item new_root_item;
bb14a59b 3067 int log_transid = 0;
8b050d35 3068 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3069 struct blk_plug plug;
47876f7c
FM
3070 u64 log_root_start;
3071 u64 log_root_level;
e02119d5 3072
7237f183 3073 mutex_lock(&root->log_mutex);
d1433deb
MX
3074 log_transid = ctx->log_transid;
3075 if (root->log_transid_committed >= log_transid) {
3076 mutex_unlock(&root->log_mutex);
3077 return ctx->log_ret;
3078 }
3079
3080 index1 = log_transid % 2;
7237f183 3081 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3082 wait_log_commit(root, log_transid);
7237f183 3083 mutex_unlock(&root->log_mutex);
8b050d35 3084 return ctx->log_ret;
e02119d5 3085 }
d1433deb 3086 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3087 atomic_set(&root->log_commit[index1], 1);
3088
3089 /* wait for previous tree log sync to complete */
3090 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3091 wait_log_commit(root, log_transid - 1);
48cab2e0 3092
86df7eb9 3093 while (1) {
2ecb7923 3094 int batch = atomic_read(&root->log_batch);
cd354ad6 3095 /* when we're on an ssd, just kick the log commit out */
0b246afa 3096 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3097 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3098 mutex_unlock(&root->log_mutex);
3099 schedule_timeout_uninterruptible(1);
3100 mutex_lock(&root->log_mutex);
3101 }
60d53eb3 3102 wait_for_writer(root);
2ecb7923 3103 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3104 break;
3105 }
e02119d5 3106
12fcfd22 3107 /* bail out if we need to do a full commit */
4884b8e8 3108 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3109 ret = -EAGAIN;
3110 mutex_unlock(&root->log_mutex);
3111 goto out;
3112 }
3113
8cef4e16
YZ
3114 if (log_transid % 2 == 0)
3115 mark = EXTENT_DIRTY;
3116 else
3117 mark = EXTENT_NEW;
3118
690587d1
CM
3119 /* we start IO on all the marked extents here, but we don't actually
3120 * wait for them until later.
3121 */
c6adc9cc 3122 blk_start_plug(&plug);
2ff7e61e 3123 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
3124 /*
3125 * -EAGAIN happens when someone, e.g., a concurrent transaction
3126 * commit, writes a dirty extent in this tree-log commit. This
3127 * concurrent write will create a hole writing out the extents,
3128 * and we cannot proceed on a zoned filesystem, requiring
3129 * sequential writing. While we can bail out to a full commit
3130 * here, but we can continue hoping the concurrent writing fills
3131 * the hole.
3132 */
3133 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3134 ret = 0;
79787eaa 3135 if (ret) {
c6adc9cc 3136 blk_finish_plug(&plug);
66642832 3137 btrfs_abort_transaction(trans, ret);
90787766 3138 btrfs_set_log_full_commit(trans);
79787eaa
JM
3139 mutex_unlock(&root->log_mutex);
3140 goto out;
3141 }
7237f183 3142
4203e968
JB
3143 /*
3144 * We _must_ update under the root->log_mutex in order to make sure we
3145 * have a consistent view of the log root we are trying to commit at
3146 * this moment.
3147 *
3148 * We _must_ copy this into a local copy, because we are not holding the
3149 * log_root_tree->log_mutex yet. This is important because when we
3150 * commit the log_root_tree we must have a consistent view of the
3151 * log_root_tree when we update the super block to point at the
3152 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3153 * with the commit and possibly point at the new block which we may not
3154 * have written out.
3155 */
5d4f98a2 3156 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3157 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3158
7237f183
YZ
3159 root->log_transid++;
3160 log->log_transid = root->log_transid;
ff782e0a 3161 root->log_start_pid = 0;
7237f183 3162 /*
8cef4e16
YZ
3163 * IO has been started, blocks of the log tree have WRITTEN flag set
3164 * in their headers. new modifications of the log will be written to
3165 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3166 */
3167 mutex_unlock(&root->log_mutex);
3168
3ddebf27 3169 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3170 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3171 if (!log_root_tree->node) {
3172 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3173 if (ret) {
ea32af47 3174 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3175 goto out;
3176 }
3177 }
e75f9fd1 3178 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3179 }
3180
e75f9fd1
NA
3181 btrfs_init_log_ctx(&root_log_ctx, NULL);
3182
3183 mutex_lock(&log_root_tree->log_mutex);
3184
e3d3b415
FM
3185 index2 = log_root_tree->log_transid % 2;
3186 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3187 root_log_ctx.log_transid = log_root_tree->log_transid;
3188
4203e968
JB
3189 /*
3190 * Now we are safe to update the log_root_tree because we're under the
3191 * log_mutex, and we're a current writer so we're holding the commit
3192 * open until we drop the log_mutex.
3193 */
3194 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3195 if (ret) {
d1433deb
MX
3196 if (!list_empty(&root_log_ctx.list))
3197 list_del_init(&root_log_ctx.list);
3198
c6adc9cc 3199 blk_finish_plug(&plug);
90787766 3200 btrfs_set_log_full_commit(trans);
995946dd 3201
79787eaa 3202 if (ret != -ENOSPC) {
66642832 3203 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3204 mutex_unlock(&log_root_tree->log_mutex);
3205 goto out;
3206 }
bf89d38f 3207 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3208 mutex_unlock(&log_root_tree->log_mutex);
3209 ret = -EAGAIN;
3210 goto out;
3211 }
3212
d1433deb 3213 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3214 blk_finish_plug(&plug);
cbd60aa7 3215 list_del_init(&root_log_ctx.list);
d1433deb
MX
3216 mutex_unlock(&log_root_tree->log_mutex);
3217 ret = root_log_ctx.log_ret;
3218 goto out;
3219 }
8b050d35 3220
d1433deb 3221 index2 = root_log_ctx.log_transid % 2;
7237f183 3222 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3223 blk_finish_plug(&plug);
bf89d38f 3224 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3225 wait_log_commit(log_root_tree,
d1433deb 3226 root_log_ctx.log_transid);
7237f183 3227 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3228 if (!ret)
3229 ret = root_log_ctx.log_ret;
7237f183
YZ
3230 goto out;
3231 }
d1433deb 3232 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3233 atomic_set(&log_root_tree->log_commit[index2], 1);
3234
12fcfd22 3235 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3236 wait_log_commit(log_root_tree,
d1433deb 3237 root_log_ctx.log_transid - 1);
12fcfd22
CM
3238 }
3239
12fcfd22
CM
3240 /*
3241 * now that we've moved on to the tree of log tree roots,
3242 * check the full commit flag again
3243 */
4884b8e8 3244 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3245 blk_finish_plug(&plug);
bf89d38f 3246 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3247 mutex_unlock(&log_root_tree->log_mutex);
3248 ret = -EAGAIN;
3249 goto out_wake_log_root;
3250 }
7237f183 3251
2ff7e61e 3252 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3253 &log_root_tree->dirty_log_pages,
3254 EXTENT_DIRTY | EXTENT_NEW);
3255 blk_finish_plug(&plug);
b528f467
NA
3256 /*
3257 * As described above, -EAGAIN indicates a hole in the extents. We
3258 * cannot wait for these write outs since the waiting cause a
3259 * deadlock. Bail out to the full commit instead.
3260 */
3261 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3262 btrfs_set_log_full_commit(trans);
3263 btrfs_wait_tree_log_extents(log, mark);
3264 mutex_unlock(&log_root_tree->log_mutex);
3265 goto out_wake_log_root;
3266 } else if (ret) {
90787766 3267 btrfs_set_log_full_commit(trans);
66642832 3268 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3269 mutex_unlock(&log_root_tree->log_mutex);
3270 goto out_wake_log_root;
3271 }
bf89d38f 3272 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3273 if (!ret)
bf89d38f
JM
3274 ret = btrfs_wait_tree_log_extents(log_root_tree,
3275 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3276 if (ret) {
90787766 3277 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3278 mutex_unlock(&log_root_tree->log_mutex);
3279 goto out_wake_log_root;
3280 }
e02119d5 3281
47876f7c
FM
3282 log_root_start = log_root_tree->node->start;
3283 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3284 log_root_tree->log_transid++;
7237f183
YZ
3285 mutex_unlock(&log_root_tree->log_mutex);
3286
3287 /*
47876f7c
FM
3288 * Here we are guaranteed that nobody is going to write the superblock
3289 * for the current transaction before us and that neither we do write
3290 * our superblock before the previous transaction finishes its commit
3291 * and writes its superblock, because:
3292 *
3293 * 1) We are holding a handle on the current transaction, so no body
3294 * can commit it until we release the handle;
3295 *
3296 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3297 * if the previous transaction is still committing, and hasn't yet
3298 * written its superblock, we wait for it to do it, because a
3299 * transaction commit acquires the tree_log_mutex when the commit
3300 * begins and releases it only after writing its superblock.
7237f183 3301 */
47876f7c 3302 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3303
3304 /*
3305 * The previous transaction writeout phase could have failed, and thus
3306 * marked the fs in an error state. We must not commit here, as we
3307 * could have updated our generation in the super_for_commit and
3308 * writing the super here would result in transid mismatches. If there
3309 * is an error here just bail.
3310 */
3311 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3312 ret = -EIO;
3313 btrfs_set_log_full_commit(trans);
3314 btrfs_abort_transaction(trans, ret);
3315 mutex_unlock(&fs_info->tree_log_mutex);
3316 goto out_wake_log_root;
3317 }
3318
47876f7c
FM
3319 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3320 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3321 ret = write_all_supers(fs_info, 1);
47876f7c 3322 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3323 if (ret) {
90787766 3324 btrfs_set_log_full_commit(trans);
66642832 3325 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3326 goto out_wake_log_root;
3327 }
7237f183 3328
e1a6d264
FM
3329 /*
3330 * We know there can only be one task here, since we have not yet set
3331 * root->log_commit[index1] to 0 and any task attempting to sync the
3332 * log must wait for the previous log transaction to commit if it's
3333 * still in progress or wait for the current log transaction commit if
3334 * someone else already started it. We use <= and not < because the
3335 * first log transaction has an ID of 0.
3336 */
3337 ASSERT(root->last_log_commit <= log_transid);
3338 root->last_log_commit = log_transid;
257c62e1 3339
12fcfd22 3340out_wake_log_root:
570dd450 3341 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3342 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3343
d1433deb 3344 log_root_tree->log_transid_committed++;
7237f183 3345 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3346 mutex_unlock(&log_root_tree->log_mutex);
3347
33a9eca7 3348 /*
093258e6
DS
3349 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3350 * all the updates above are seen by the woken threads. It might not be
3351 * necessary, but proving that seems to be hard.
33a9eca7 3352 */
093258e6 3353 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3354out:
d1433deb 3355 mutex_lock(&root->log_mutex);
570dd450 3356 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3357 root->log_transid_committed++;
7237f183 3358 atomic_set(&root->log_commit[index1], 0);
d1433deb 3359 mutex_unlock(&root->log_mutex);
8b050d35 3360
33a9eca7 3361 /*
093258e6
DS
3362 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3363 * all the updates above are seen by the woken threads. It might not be
3364 * necessary, but proving that seems to be hard.
33a9eca7 3365 */
093258e6 3366 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3367 return ret;
e02119d5
CM
3368}
3369
4a500fd1
YZ
3370static void free_log_tree(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *log)
e02119d5
CM
3372{
3373 int ret;
e02119d5
CM
3374 struct walk_control wc = {
3375 .free = 1,
3376 .process_func = process_one_buffer
3377 };
3378
3ddebf27
NA
3379 if (log->node) {
3380 ret = walk_log_tree(trans, log, &wc);
3381 if (ret) {
3382 if (trans)
3383 btrfs_abort_transaction(trans, ret);
3384 else
3385 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3386 }
374b0e2d 3387 }
e02119d5 3388
59b0713a
FM
3389 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3390 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3391 extent_io_tree_release(&log->log_csum_range);
d3575156
NA
3392
3393 if (trans && log->node)
3394 btrfs_redirty_list_add(trans->transaction, log->node);
00246528 3395 btrfs_put_root(log);
4a500fd1
YZ
3396}
3397
3398/*
3399 * free all the extents used by the tree log. This should be called
3400 * at commit time of the full transaction
3401 */
3402int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3403{
3404 if (root->log_root) {
3405 free_log_tree(trans, root->log_root);
3406 root->log_root = NULL;
e7a79811 3407 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3408 }
3409 return 0;
3410}
3411
3412int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3413 struct btrfs_fs_info *fs_info)
3414{
3415 if (fs_info->log_root_tree) {
3416 free_log_tree(trans, fs_info->log_root_tree);
3417 fs_info->log_root_tree = NULL;
47876f7c 3418 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3419 }
e02119d5
CM
3420 return 0;
3421}
3422
803f0f64
FM
3423/*
3424 * Check if an inode was logged in the current transaction. We can't always rely
3425 * on an inode's logged_trans value, because it's an in-memory only field and
3426 * therefore not persisted. This means that its value is lost if the inode gets
3427 * evicted and loaded again from disk (in which case it has a value of 0, and
3428 * certainly it is smaller then any possible transaction ID), when that happens
3429 * the full_sync flag is set in the inode's runtime flags, so on that case we
3430 * assume eviction happened and ignore the logged_trans value, assuming the
3431 * worst case, that the inode was logged before in the current transaction.
3432 */
3433static bool inode_logged(struct btrfs_trans_handle *trans,
3434 struct btrfs_inode *inode)
3435{
3436 if (inode->logged_trans == trans->transid)
3437 return true;
3438
3439 if (inode->last_trans == trans->transid &&
3440 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3441 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3442 return true;
3443
3444 return false;
3445}
3446
e02119d5
CM
3447/*
3448 * If both a file and directory are logged, and unlinks or renames are
3449 * mixed in, we have a few interesting corners:
3450 *
3451 * create file X in dir Y
3452 * link file X to X.link in dir Y
3453 * fsync file X
3454 * unlink file X but leave X.link
3455 * fsync dir Y
3456 *
3457 * After a crash we would expect only X.link to exist. But file X
3458 * didn't get fsync'd again so the log has back refs for X and X.link.
3459 *
3460 * We solve this by removing directory entries and inode backrefs from the
3461 * log when a file that was logged in the current transaction is
3462 * unlinked. Any later fsync will include the updated log entries, and
3463 * we'll be able to reconstruct the proper directory items from backrefs.
3464 *
3465 * This optimizations allows us to avoid relogging the entire inode
3466 * or the entire directory.
3467 */
3468int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3469 struct btrfs_root *root,
3470 const char *name, int name_len,
49f34d1f 3471 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3472{
3473 struct btrfs_root *log;
3474 struct btrfs_dir_item *di;
3475 struct btrfs_path *path;
3476 int ret;
4a500fd1 3477 int err = 0;
49f34d1f 3478 u64 dir_ino = btrfs_ino(dir);
e02119d5 3479
803f0f64 3480 if (!inode_logged(trans, dir))
3a5f1d45
CM
3481 return 0;
3482
e02119d5
CM
3483 ret = join_running_log_trans(root);
3484 if (ret)
3485 return 0;
3486
49f34d1f 3487 mutex_lock(&dir->log_mutex);
e02119d5
CM
3488
3489 log = root->log_root;
3490 path = btrfs_alloc_path();
a62f44a5
TI
3491 if (!path) {
3492 err = -ENOMEM;
3493 goto out_unlock;
3494 }
2a29edc6 3495
33345d01 3496 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3497 name, name_len, -1);
4a500fd1
YZ
3498 if (IS_ERR(di)) {
3499 err = PTR_ERR(di);
3500 goto fail;
3501 }
3502 if (di) {
e02119d5 3503 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3504 if (ret) {
3505 err = ret;
3506 goto fail;
3507 }
e02119d5 3508 }
b3b4aa74 3509 btrfs_release_path(path);
33345d01 3510 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3511 index, name, name_len, -1);
4a500fd1
YZ
3512 if (IS_ERR(di)) {
3513 err = PTR_ERR(di);
3514 goto fail;
3515 }
3516 if (di) {
e02119d5 3517 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3650860b
JB
3518 if (ret) {
3519 err = ret;
3520 goto fail;
3521 }
e02119d5
CM
3522 }
3523
ddffcf6f
FM
3524 /*
3525 * We do not need to update the size field of the directory's inode item
3526 * because on log replay we update the field to reflect all existing
3527 * entries in the directory (see overwrite_item()).
e02119d5 3528 */
4a500fd1 3529fail:
e02119d5 3530 btrfs_free_path(path);
a62f44a5 3531out_unlock:
49f34d1f 3532 mutex_unlock(&dir->log_mutex);
fb2fecba 3533 if (err == -ENOSPC) {
90787766 3534 btrfs_set_log_full_commit(trans);
fb2fecba
JB
3535 err = 0;
3536 } else if (err < 0 && err != -ENOENT) {
3537 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3538 btrfs_abort_transaction(trans, err);
3539 }
79787eaa 3540
12fcfd22 3541 btrfs_end_log_trans(root);
e02119d5 3542
411fc6bc 3543 return err;
e02119d5
CM
3544}
3545
3546/* see comments for btrfs_del_dir_entries_in_log */
3547int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3548 struct btrfs_root *root,
3549 const char *name, int name_len,
a491abb2 3550 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3551{
3552 struct btrfs_root *log;
3553 u64 index;
3554 int ret;
3555
803f0f64 3556 if (!inode_logged(trans, inode))
3a5f1d45
CM
3557 return 0;
3558
e02119d5
CM
3559 ret = join_running_log_trans(root);
3560 if (ret)
3561 return 0;
3562 log = root->log_root;
a491abb2 3563 mutex_lock(&inode->log_mutex);
e02119d5 3564
a491abb2 3565 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3566 dirid, &index);
a491abb2 3567 mutex_unlock(&inode->log_mutex);
4a500fd1 3568 if (ret == -ENOSPC) {
90787766 3569 btrfs_set_log_full_commit(trans);
4a500fd1 3570 ret = 0;
79787eaa 3571 } else if (ret < 0 && ret != -ENOENT)
66642832 3572 btrfs_abort_transaction(trans, ret);
12fcfd22 3573 btrfs_end_log_trans(root);
e02119d5 3574
e02119d5
CM
3575 return ret;
3576}
3577
3578/*
3579 * creates a range item in the log for 'dirid'. first_offset and
3580 * last_offset tell us which parts of the key space the log should
3581 * be considered authoritative for.
3582 */
3583static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3584 struct btrfs_root *log,
3585 struct btrfs_path *path,
3586 int key_type, u64 dirid,
3587 u64 first_offset, u64 last_offset)
3588{
3589 int ret;
3590 struct btrfs_key key;
3591 struct btrfs_dir_log_item *item;
3592
3593 key.objectid = dirid;
3594 key.offset = first_offset;
3595 if (key_type == BTRFS_DIR_ITEM_KEY)
3596 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3597 else
3598 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3599 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3600 if (ret)
3601 return ret;
e02119d5
CM
3602
3603 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3604 struct btrfs_dir_log_item);
3605 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3606 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3607 btrfs_release_path(path);
e02119d5
CM
3608 return 0;
3609}
3610
3611/*
3612 * log all the items included in the current transaction for a given
3613 * directory. This also creates the range items in the log tree required
3614 * to replay anything deleted before the fsync
3615 */
3616static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3617 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3618 struct btrfs_path *path,
3619 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3620 struct btrfs_log_ctx *ctx,
e02119d5
CM
3621 u64 min_offset, u64 *last_offset_ret)
3622{
3623 struct btrfs_key min_key;
e02119d5
CM
3624 struct btrfs_root *log = root->log_root;
3625 struct extent_buffer *src;
4a500fd1 3626 int err = 0;
e02119d5
CM
3627 int ret;
3628 int i;
3629 int nritems;
3630 u64 first_offset = min_offset;
3631 u64 last_offset = (u64)-1;
684a5773 3632 u64 ino = btrfs_ino(inode);
e02119d5
CM
3633
3634 log = root->log_root;
e02119d5 3635
33345d01 3636 min_key.objectid = ino;
e02119d5
CM
3637 min_key.type = key_type;
3638 min_key.offset = min_offset;
3639
6174d3cb 3640 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3641
3642 /*
3643 * we didn't find anything from this transaction, see if there
3644 * is anything at all
3645 */
33345d01
LZ
3646 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3647 min_key.objectid = ino;
e02119d5
CM
3648 min_key.type = key_type;
3649 min_key.offset = (u64)-1;
b3b4aa74 3650 btrfs_release_path(path);
e02119d5
CM
3651 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3652 if (ret < 0) {
b3b4aa74 3653 btrfs_release_path(path);
e02119d5
CM
3654 return ret;
3655 }
33345d01 3656 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3657
3658 /* if ret == 0 there are items for this type,
3659 * create a range to tell us the last key of this type.
3660 * otherwise, there are no items in this directory after
3661 * *min_offset, and we create a range to indicate that.
3662 */
3663 if (ret == 0) {
3664 struct btrfs_key tmp;
3665 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3666 path->slots[0]);
d397712b 3667 if (key_type == tmp.type)
e02119d5 3668 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3669 }
3670 goto done;
3671 }
3672
3673 /* go backward to find any previous key */
33345d01 3674 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3675 if (ret == 0) {
3676 struct btrfs_key tmp;
3677 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3678 if (key_type == tmp.type) {
3679 first_offset = tmp.offset;
3680 ret = overwrite_item(trans, log, dst_path,
3681 path->nodes[0], path->slots[0],
3682 &tmp);
4a500fd1
YZ
3683 if (ret) {
3684 err = ret;
3685 goto done;
3686 }
e02119d5
CM
3687 }
3688 }
b3b4aa74 3689 btrfs_release_path(path);
e02119d5 3690
2cc83342
JB
3691 /*
3692 * Find the first key from this transaction again. See the note for
3693 * log_new_dir_dentries, if we're logging a directory recursively we
3694 * won't be holding its i_mutex, which means we can modify the directory
3695 * while we're logging it. If we remove an entry between our first
3696 * search and this search we'll not find the key again and can just
3697 * bail.
3698 */
bb56f02f 3699search:
e02119d5 3700 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3701 if (ret != 0)
e02119d5 3702 goto done;
e02119d5
CM
3703
3704 /*
3705 * we have a block from this transaction, log every item in it
3706 * from our directory
3707 */
d397712b 3708 while (1) {
e02119d5
CM
3709 struct btrfs_key tmp;
3710 src = path->nodes[0];
3711 nritems = btrfs_header_nritems(src);
3712 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3713 struct btrfs_dir_item *di;
3714
e02119d5
CM
3715 btrfs_item_key_to_cpu(src, &min_key, i);
3716
33345d01 3717 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5 3718 goto done;
bb56f02f
FM
3719
3720 if (need_resched()) {
3721 btrfs_release_path(path);
3722 cond_resched();
3723 goto search;
3724 }
3725
e02119d5
CM
3726 ret = overwrite_item(trans, log, dst_path, src, i,
3727 &min_key);
4a500fd1
YZ
3728 if (ret) {
3729 err = ret;
3730 goto done;
3731 }
2f2ff0ee
FM
3732
3733 /*
3734 * We must make sure that when we log a directory entry,
3735 * the corresponding inode, after log replay, has a
3736 * matching link count. For example:
3737 *
3738 * touch foo
3739 * mkdir mydir
3740 * sync
3741 * ln foo mydir/bar
3742 * xfs_io -c "fsync" mydir
3743 * <crash>
3744 * <mount fs and log replay>
3745 *
3746 * Would result in a fsync log that when replayed, our
3747 * file inode would have a link count of 1, but we get
3748 * two directory entries pointing to the same inode.
3749 * After removing one of the names, it would not be
3750 * possible to remove the other name, which resulted
3751 * always in stale file handle errors, and would not
3752 * be possible to rmdir the parent directory, since
3753 * its i_size could never decrement to the value
3754 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3755 */
3756 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3757 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3758 if (ctx &&
3759 (btrfs_dir_transid(src, di) == trans->transid ||
3760 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3761 tmp.type != BTRFS_ROOT_ITEM_KEY)
3762 ctx->log_new_dentries = true;
e02119d5
CM
3763 }
3764 path->slots[0] = nritems;
3765
3766 /*
3767 * look ahead to the next item and see if it is also
3768 * from this directory and from this transaction
3769 */
3770 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3771 if (ret) {
3772 if (ret == 1)
3773 last_offset = (u64)-1;
3774 else
3775 err = ret;
e02119d5
CM
3776 goto done;
3777 }
3778 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3779 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3780 last_offset = (u64)-1;
3781 goto done;
3782 }
3783 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3784 ret = overwrite_item(trans, log, dst_path,
3785 path->nodes[0], path->slots[0],
3786 &tmp);
4a500fd1
YZ
3787 if (ret)
3788 err = ret;
3789 else
3790 last_offset = tmp.offset;
e02119d5
CM
3791 goto done;
3792 }
3793 }
3794done:
b3b4aa74
DS
3795 btrfs_release_path(path);
3796 btrfs_release_path(dst_path);
e02119d5 3797
4a500fd1
YZ
3798 if (err == 0) {
3799 *last_offset_ret = last_offset;
3800 /*
3801 * insert the log range keys to indicate where the log
3802 * is valid
3803 */
3804 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3805 ino, first_offset, last_offset);
4a500fd1
YZ
3806 if (ret)
3807 err = ret;
3808 }
3809 return err;
e02119d5
CM
3810}
3811
3812/*
3813 * logging directories is very similar to logging inodes, We find all the items
3814 * from the current transaction and write them to the log.
3815 *
3816 * The recovery code scans the directory in the subvolume, and if it finds a
3817 * key in the range logged that is not present in the log tree, then it means
3818 * that dir entry was unlinked during the transaction.
3819 *
3820 * In order for that scan to work, we must include one key smaller than
3821 * the smallest logged by this transaction and one key larger than the largest
3822 * key logged by this transaction.
3823 */
3824static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3825 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3826 struct btrfs_path *path,
2f2ff0ee
FM
3827 struct btrfs_path *dst_path,
3828 struct btrfs_log_ctx *ctx)
e02119d5
CM
3829{
3830 u64 min_key;
3831 u64 max_key;
3832 int ret;
3833 int key_type = BTRFS_DIR_ITEM_KEY;
3834
3835again:
3836 min_key = 0;
3837 max_key = 0;
d397712b 3838 while (1) {
dbf39ea4
NB
3839 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3840 ctx, min_key, &max_key);
4a500fd1
YZ
3841 if (ret)
3842 return ret;
e02119d5
CM
3843 if (max_key == (u64)-1)
3844 break;
3845 min_key = max_key + 1;
3846 }
3847
3848 if (key_type == BTRFS_DIR_ITEM_KEY) {
3849 key_type = BTRFS_DIR_INDEX_KEY;
3850 goto again;
3851 }
3852 return 0;
3853}
3854
3855/*
3856 * a helper function to drop items from the log before we relog an
3857 * inode. max_key_type indicates the highest item type to remove.
3858 * This cannot be run for file data extents because it does not
3859 * free the extents they point to.
3860 */
3861static int drop_objectid_items(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *log,
3863 struct btrfs_path *path,
3864 u64 objectid, int max_key_type)
3865{
3866 int ret;
3867 struct btrfs_key key;
3868 struct btrfs_key found_key;
18ec90d6 3869 int start_slot;
e02119d5
CM
3870
3871 key.objectid = objectid;
3872 key.type = max_key_type;
3873 key.offset = (u64)-1;
3874
d397712b 3875 while (1) {
e02119d5 3876 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3877 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3878 if (ret < 0)
e02119d5
CM
3879 break;
3880
3881 if (path->slots[0] == 0)
3882 break;
3883
3884 path->slots[0]--;
3885 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3886 path->slots[0]);
3887
3888 if (found_key.objectid != objectid)
3889 break;
3890
18ec90d6
JB
3891 found_key.offset = 0;
3892 found_key.type = 0;
e3b83361 3893 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3894 if (ret < 0)
3895 break;
18ec90d6
JB
3896
3897 ret = btrfs_del_items(trans, log, path, start_slot,
3898 path->slots[0] - start_slot + 1);
3899 /*
3900 * If start slot isn't 0 then we don't need to re-search, we've
3901 * found the last guy with the objectid in this tree.
3902 */
3903 if (ret || start_slot != 0)
65a246c5 3904 break;
b3b4aa74 3905 btrfs_release_path(path);
e02119d5 3906 }
b3b4aa74 3907 btrfs_release_path(path);
5bdbeb21
JB
3908 if (ret > 0)
3909 ret = 0;
4a500fd1 3910 return ret;
e02119d5
CM
3911}
3912
94edf4ae
JB
3913static void fill_inode_item(struct btrfs_trans_handle *trans,
3914 struct extent_buffer *leaf,
3915 struct btrfs_inode_item *item,
1a4bcf47
FM
3916 struct inode *inode, int log_inode_only,
3917 u64 logged_isize)
94edf4ae 3918{
0b1c6cca
JB
3919 struct btrfs_map_token token;
3920
c82f823c 3921 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3922
3923 if (log_inode_only) {
3924 /* set the generation to zero so the recover code
3925 * can tell the difference between an logging
3926 * just to say 'this inode exists' and a logging
3927 * to say 'update this inode with these values'
3928 */
cc4c13d5
DS
3929 btrfs_set_token_inode_generation(&token, item, 0);
3930 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3931 } else {
cc4c13d5
DS
3932 btrfs_set_token_inode_generation(&token, item,
3933 BTRFS_I(inode)->generation);
3934 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3935 }
3936
cc4c13d5
DS
3937 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3938 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3939 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3940 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3941
3942 btrfs_set_token_timespec_sec(&token, &item->atime,
3943 inode->i_atime.tv_sec);
3944 btrfs_set_token_timespec_nsec(&token, &item->atime,
3945 inode->i_atime.tv_nsec);
3946
3947 btrfs_set_token_timespec_sec(&token, &item->mtime,
3948 inode->i_mtime.tv_sec);
3949 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3950 inode->i_mtime.tv_nsec);
3951
3952 btrfs_set_token_timespec_sec(&token, &item->ctime,
3953 inode->i_ctime.tv_sec);
3954 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3955 inode->i_ctime.tv_nsec);
3956
e593e54e
FM
3957 /*
3958 * We do not need to set the nbytes field, in fact during a fast fsync
3959 * its value may not even be correct, since a fast fsync does not wait
3960 * for ordered extent completion, which is where we update nbytes, it
3961 * only waits for writeback to complete. During log replay as we find
3962 * file extent items and replay them, we adjust the nbytes field of the
3963 * inode item in subvolume tree as needed (see overwrite_item()).
3964 */
cc4c13d5
DS
3965
3966 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3967 btrfs_set_token_inode_transid(&token, item, trans->transid);
3968 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3969 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3970 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
3971}
3972
a95249b3
JB
3973static int log_inode_item(struct btrfs_trans_handle *trans,
3974 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 3975 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
3976{
3977 struct btrfs_inode_item *inode_item;
a95249b3
JB
3978 int ret;
3979
2ac691d8
FM
3980 /*
3981 * If we are doing a fast fsync and the inode was logged before in the
3982 * current transaction, then we know the inode was previously logged and
3983 * it exists in the log tree. For performance reasons, in this case use
3984 * btrfs_search_slot() directly with ins_len set to 0 so that we never
3985 * attempt a write lock on the leaf's parent, which adds unnecessary lock
3986 * contention in case there are concurrent fsyncs for other inodes of the
3987 * same subvolume. Using btrfs_insert_empty_item() when the inode item
3988 * already exists can also result in unnecessarily splitting a leaf.
3989 */
3990 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
3991 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
3992 ASSERT(ret <= 0);
3993 if (ret > 0)
3994 ret = -ENOENT;
3995 } else {
3996 /*
3997 * This means it is the first fsync in the current transaction,
3998 * so the inode item is not in the log and we need to insert it.
3999 * We can never get -EEXIST because we are only called for a fast
4000 * fsync and in case an inode eviction happens after the inode was
4001 * logged before in the current transaction, when we load again
4002 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4003 * flags and set ->logged_trans to 0.
4004 */
4005 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4006 sizeof(*inode_item));
4007 ASSERT(ret != -EEXIST);
4008 }
4009 if (ret)
a95249b3
JB
4010 return ret;
4011 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4012 struct btrfs_inode_item);
6d889a3b
NB
4013 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4014 0, 0);
a95249b3
JB
4015 btrfs_release_path(path);
4016 return 0;
4017}
4018
40e046ac 4019static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4020 struct btrfs_inode *inode,
40e046ac
FM
4021 struct btrfs_root *log_root,
4022 struct btrfs_ordered_sum *sums)
4023{
e289f03e
FM
4024 const u64 lock_end = sums->bytenr + sums->len - 1;
4025 struct extent_state *cached_state = NULL;
40e046ac
FM
4026 int ret;
4027
3ebac17c
FM
4028 /*
4029 * If this inode was not used for reflink operations in the current
4030 * transaction with new extents, then do the fast path, no need to
4031 * worry about logging checksum items with overlapping ranges.
4032 */
4033 if (inode->last_reflink_trans < trans->transid)
4034 return btrfs_csum_file_blocks(trans, log_root, sums);
4035
e289f03e
FM
4036 /*
4037 * Serialize logging for checksums. This is to avoid racing with the
4038 * same checksum being logged by another task that is logging another
4039 * file which happens to refer to the same extent as well. Such races
4040 * can leave checksum items in the log with overlapping ranges.
4041 */
4042 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4043 lock_end, &cached_state);
4044 if (ret)
4045 return ret;
40e046ac
FM
4046 /*
4047 * Due to extent cloning, we might have logged a csum item that covers a
4048 * subrange of a cloned extent, and later we can end up logging a csum
4049 * item for a larger subrange of the same extent or the entire range.
4050 * This would leave csum items in the log tree that cover the same range
4051 * and break the searches for checksums in the log tree, resulting in
4052 * some checksums missing in the fs/subvolume tree. So just delete (or
4053 * trim and adjust) any existing csum items in the log for this range.
4054 */
4055 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4056 if (!ret)
4057 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4058
e289f03e
FM
4059 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4060 &cached_state);
4061
4062 return ret;
40e046ac
FM
4063}
4064
31ff1cd2 4065static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4066 struct btrfs_inode *inode,
31ff1cd2 4067 struct btrfs_path *dst_path,
0e56315c 4068 struct btrfs_path *src_path,
1a4bcf47
FM
4069 int start_slot, int nr, int inode_only,
4070 u64 logged_isize)
31ff1cd2 4071{
3ffbd68c 4072 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
4073 unsigned long src_offset;
4074 unsigned long dst_offset;
44d70e19 4075 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
4076 struct btrfs_file_extent_item *extent;
4077 struct btrfs_inode_item *inode_item;
16e7549f 4078 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
4079 int ret;
4080 struct btrfs_key *ins_keys;
4081 u32 *ins_sizes;
4082 char *ins_data;
4083 int i;
d20f7043 4084 struct list_head ordered_sums;
44d70e19 4085 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
4086
4087 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
4088
4089 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4090 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4091 if (!ins_data)
4092 return -ENOMEM;
4093
31ff1cd2
CM
4094 ins_sizes = (u32 *)ins_data;
4095 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4096
4097 for (i = 0; i < nr; i++) {
4098 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4099 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4100 }
4101 ret = btrfs_insert_empty_items(trans, log, dst_path,
4102 ins_keys, ins_sizes, nr);
4a500fd1
YZ
4103 if (ret) {
4104 kfree(ins_data);
4105 return ret;
4106 }
31ff1cd2 4107
5d4f98a2 4108 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
4109 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4110 dst_path->slots[0]);
4111
4112 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4113
94edf4ae 4114 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
4115 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4116 dst_path->slots[0],
4117 struct btrfs_inode_item);
94edf4ae 4118 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4119 &inode->vfs_inode,
4120 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4121 logged_isize);
94edf4ae
JB
4122 } else {
4123 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4124 src_offset, ins_sizes[i]);
31ff1cd2 4125 }
94edf4ae 4126
31ff1cd2
CM
4127 /* take a reference on file data extents so that truncates
4128 * or deletes of this inode don't have to relog the inode
4129 * again
4130 */
962a298f 4131 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4132 !skip_csum) {
31ff1cd2
CM
4133 int found_type;
4134 extent = btrfs_item_ptr(src, start_slot + i,
4135 struct btrfs_file_extent_item);
4136
8e531cdf 4137 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4138 continue;
4139
31ff1cd2 4140 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4141 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4142 u64 ds, dl, cs, cl;
4143 ds = btrfs_file_extent_disk_bytenr(src,
4144 extent);
4145 /* ds == 0 is a hole */
4146 if (ds == 0)
4147 continue;
4148
4149 dl = btrfs_file_extent_disk_num_bytes(src,
4150 extent);
4151 cs = btrfs_file_extent_offset(src, extent);
4152 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4153 extent);
580afd76
CM
4154 if (btrfs_file_extent_compression(src,
4155 extent)) {
4156 cs = 0;
4157 cl = dl;
4158 }
5d4f98a2
YZ
4159
4160 ret = btrfs_lookup_csums_range(
0b246afa 4161 fs_info->csum_root,
5d4f98a2 4162 ds + cs, ds + cs + cl - 1,
a2de733c 4163 &ordered_sums, 0);
4f26433e
FM
4164 if (ret)
4165 break;
31ff1cd2
CM
4166 }
4167 }
31ff1cd2
CM
4168 }
4169
4170 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4171 btrfs_release_path(dst_path);
31ff1cd2 4172 kfree(ins_data);
d20f7043
CM
4173
4174 /*
4175 * we have to do this after the loop above to avoid changing the
4176 * log tree while trying to change the log tree.
4177 */
d397712b 4178 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4179 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4180 struct btrfs_ordered_sum,
4181 list);
4a500fd1 4182 if (!ret)
3ebac17c 4183 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4184 list_del(&sums->list);
4185 kfree(sums);
4186 }
16e7549f 4187
4a500fd1 4188 return ret;
31ff1cd2
CM
4189}
4190
4f0f586b
ST
4191static int extent_cmp(void *priv, const struct list_head *a,
4192 const struct list_head *b)
5dc562c5 4193{
214cc184 4194 const struct extent_map *em1, *em2;
5dc562c5
JB
4195
4196 em1 = list_entry(a, struct extent_map, list);
4197 em2 = list_entry(b, struct extent_map, list);
4198
4199 if (em1->start < em2->start)
4200 return -1;
4201 else if (em1->start > em2->start)
4202 return 1;
4203 return 0;
4204}
4205
e7175a69
JB
4206static int log_extent_csums(struct btrfs_trans_handle *trans,
4207 struct btrfs_inode *inode,
a9ecb653 4208 struct btrfs_root *log_root,
48778179
FM
4209 const struct extent_map *em,
4210 struct btrfs_log_ctx *ctx)
5dc562c5 4211{
48778179 4212 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4213 u64 csum_offset;
4214 u64 csum_len;
48778179
FM
4215 u64 mod_start = em->mod_start;
4216 u64 mod_len = em->mod_len;
8407f553
FM
4217 LIST_HEAD(ordered_sums);
4218 int ret = 0;
0aa4a17d 4219
e7175a69
JB
4220 if (inode->flags & BTRFS_INODE_NODATASUM ||
4221 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4222 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4223 return 0;
5dc562c5 4224
48778179
FM
4225 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4226 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4227 const u64 mod_end = mod_start + mod_len;
4228 struct btrfs_ordered_sum *sums;
4229
4230 if (mod_len == 0)
4231 break;
4232
4233 if (ordered_end <= mod_start)
4234 continue;
4235 if (mod_end <= ordered->file_offset)
4236 break;
4237
4238 /*
4239 * We are going to copy all the csums on this ordered extent, so
4240 * go ahead and adjust mod_start and mod_len in case this ordered
4241 * extent has already been logged.
4242 */
4243 if (ordered->file_offset > mod_start) {
4244 if (ordered_end >= mod_end)
4245 mod_len = ordered->file_offset - mod_start;
4246 /*
4247 * If we have this case
4248 *
4249 * |--------- logged extent ---------|
4250 * |----- ordered extent ----|
4251 *
4252 * Just don't mess with mod_start and mod_len, we'll
4253 * just end up logging more csums than we need and it
4254 * will be ok.
4255 */
4256 } else {
4257 if (ordered_end < mod_end) {
4258 mod_len = mod_end - ordered_end;
4259 mod_start = ordered_end;
4260 } else {
4261 mod_len = 0;
4262 }
4263 }
4264
4265 /*
4266 * To keep us from looping for the above case of an ordered
4267 * extent that falls inside of the logged extent.
4268 */
4269 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4270 continue;
4271
4272 list_for_each_entry(sums, &ordered->list, list) {
4273 ret = log_csums(trans, inode, log_root, sums);
4274 if (ret)
4275 return ret;
4276 }
4277 }
4278
4279 /* We're done, found all csums in the ordered extents. */
4280 if (mod_len == 0)
4281 return 0;
4282
e7175a69 4283 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4284 if (em->compress_type) {
4285 csum_offset = 0;
8407f553 4286 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4287 } else {
48778179
FM
4288 csum_offset = mod_start - em->start;
4289 csum_len = mod_len;
488111aa 4290 }
2ab28f32 4291
70c8a91c 4292 /* block start is already adjusted for the file extent offset. */
a9ecb653 4293 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4294 em->block_start + csum_offset,
4295 em->block_start + csum_offset +
4296 csum_len - 1, &ordered_sums, 0);
4297 if (ret)
4298 return ret;
5dc562c5 4299
70c8a91c
JB
4300 while (!list_empty(&ordered_sums)) {
4301 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4302 struct btrfs_ordered_sum,
4303 list);
4304 if (!ret)
3ebac17c 4305 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4306 list_del(&sums->list);
4307 kfree(sums);
5dc562c5
JB
4308 }
4309
70c8a91c 4310 return ret;
5dc562c5
JB
4311}
4312
8407f553 4313static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4314 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4315 const struct extent_map *em,
4316 struct btrfs_path *path,
8407f553
FM
4317 struct btrfs_log_ctx *ctx)
4318{
5893dfb9 4319 struct btrfs_drop_extents_args drop_args = { 0 };
8407f553
FM
4320 struct btrfs_root *log = root->log_root;
4321 struct btrfs_file_extent_item *fi;
4322 struct extent_buffer *leaf;
4323 struct btrfs_map_token token;
4324 struct btrfs_key key;
4325 u64 extent_offset = em->start - em->orig_start;
4326 u64 block_len;
4327 int ret;
8407f553 4328
48778179 4329 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4330 if (ret)
4331 return ret;
4332
5893dfb9
FM
4333 drop_args.path = path;
4334 drop_args.start = em->start;
4335 drop_args.end = em->start + em->len;
4336 drop_args.replace_extent = true;
4337 drop_args.extent_item_size = sizeof(*fi);
4338 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
8407f553
FM
4339 if (ret)
4340 return ret;
4341
5893dfb9 4342 if (!drop_args.extent_inserted) {
9d122629 4343 key.objectid = btrfs_ino(inode);
8407f553
FM
4344 key.type = BTRFS_EXTENT_DATA_KEY;
4345 key.offset = em->start;
4346
4347 ret = btrfs_insert_empty_item(trans, log, path, &key,
4348 sizeof(*fi));
4349 if (ret)
4350 return ret;
4351 }
4352 leaf = path->nodes[0];
c82f823c 4353 btrfs_init_map_token(&token, leaf);
8407f553
FM
4354 fi = btrfs_item_ptr(leaf, path->slots[0],
4355 struct btrfs_file_extent_item);
4356
cc4c13d5 4357 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4358 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4359 btrfs_set_token_file_extent_type(&token, fi,
4360 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4361 else
cc4c13d5
DS
4362 btrfs_set_token_file_extent_type(&token, fi,
4363 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4364
4365 block_len = max(em->block_len, em->orig_block_len);
4366 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4367 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4368 em->block_start);
4369 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4370 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4371 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4372 em->block_start -
cc4c13d5
DS
4373 extent_offset);
4374 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4375 } else {
cc4c13d5
DS
4376 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4377 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4378 }
4379
cc4c13d5
DS
4380 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4381 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4382 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4383 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4384 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4385 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4386 btrfs_mark_buffer_dirty(leaf);
4387
4388 btrfs_release_path(path);
4389
4390 return ret;
4391}
4392
31d11b83
FM
4393/*
4394 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4395 * lose them after doing a fast fsync and replaying the log. We scan the
4396 * subvolume's root instead of iterating the inode's extent map tree because
4397 * otherwise we can log incorrect extent items based on extent map conversion.
4398 * That can happen due to the fact that extent maps are merged when they
4399 * are not in the extent map tree's list of modified extents.
4400 */
4401static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4402 struct btrfs_inode *inode,
4403 struct btrfs_path *path)
4404{
4405 struct btrfs_root *root = inode->root;
4406 struct btrfs_key key;
4407 const u64 i_size = i_size_read(&inode->vfs_inode);
4408 const u64 ino = btrfs_ino(inode);
4409 struct btrfs_path *dst_path = NULL;
0e56315c 4410 bool dropped_extents = false;
f135cea3
FM
4411 u64 truncate_offset = i_size;
4412 struct extent_buffer *leaf;
4413 int slot;
31d11b83
FM
4414 int ins_nr = 0;
4415 int start_slot;
4416 int ret;
4417
4418 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4419 return 0;
4420
4421 key.objectid = ino;
4422 key.type = BTRFS_EXTENT_DATA_KEY;
4423 key.offset = i_size;
4424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4425 if (ret < 0)
4426 goto out;
4427
f135cea3
FM
4428 /*
4429 * We must check if there is a prealloc extent that starts before the
4430 * i_size and crosses the i_size boundary. This is to ensure later we
4431 * truncate down to the end of that extent and not to the i_size, as
4432 * otherwise we end up losing part of the prealloc extent after a log
4433 * replay and with an implicit hole if there is another prealloc extent
4434 * that starts at an offset beyond i_size.
4435 */
4436 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4437 if (ret < 0)
4438 goto out;
4439
4440 if (ret == 0) {
4441 struct btrfs_file_extent_item *ei;
4442
4443 leaf = path->nodes[0];
4444 slot = path->slots[0];
4445 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4446
4447 if (btrfs_file_extent_type(leaf, ei) ==
4448 BTRFS_FILE_EXTENT_PREALLOC) {
4449 u64 extent_end;
4450
4451 btrfs_item_key_to_cpu(leaf, &key, slot);
4452 extent_end = key.offset +
4453 btrfs_file_extent_num_bytes(leaf, ei);
4454
4455 if (extent_end > i_size)
4456 truncate_offset = extent_end;
4457 }
4458 } else {
4459 ret = 0;
4460 }
4461
31d11b83 4462 while (true) {
f135cea3
FM
4463 leaf = path->nodes[0];
4464 slot = path->slots[0];
31d11b83
FM
4465
4466 if (slot >= btrfs_header_nritems(leaf)) {
4467 if (ins_nr > 0) {
4468 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4469 start_slot, ins_nr, 1, 0);
31d11b83
FM
4470 if (ret < 0)
4471 goto out;
4472 ins_nr = 0;
4473 }
4474 ret = btrfs_next_leaf(root, path);
4475 if (ret < 0)
4476 goto out;
4477 if (ret > 0) {
4478 ret = 0;
4479 break;
4480 }
4481 continue;
4482 }
4483
4484 btrfs_item_key_to_cpu(leaf, &key, slot);
4485 if (key.objectid > ino)
4486 break;
4487 if (WARN_ON_ONCE(key.objectid < ino) ||
4488 key.type < BTRFS_EXTENT_DATA_KEY ||
4489 key.offset < i_size) {
4490 path->slots[0]++;
4491 continue;
4492 }
0e56315c 4493 if (!dropped_extents) {
31d11b83
FM
4494 /*
4495 * Avoid logging extent items logged in past fsync calls
4496 * and leading to duplicate keys in the log tree.
4497 */
4498 do {
4499 ret = btrfs_truncate_inode_items(trans,
4500 root->log_root,
50743398 4501 inode, truncate_offset,
0d7d3165
FM
4502 BTRFS_EXTENT_DATA_KEY,
4503 NULL);
31d11b83
FM
4504 } while (ret == -EAGAIN);
4505 if (ret)
4506 goto out;
0e56315c 4507 dropped_extents = true;
31d11b83
FM
4508 }
4509 if (ins_nr == 0)
4510 start_slot = slot;
4511 ins_nr++;
4512 path->slots[0]++;
4513 if (!dst_path) {
4514 dst_path = btrfs_alloc_path();
4515 if (!dst_path) {
4516 ret = -ENOMEM;
4517 goto out;
4518 }
4519 }
4520 }
0bc2d3c0 4521 if (ins_nr > 0)
0e56315c 4522 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4523 start_slot, ins_nr, 1, 0);
31d11b83
FM
4524out:
4525 btrfs_release_path(path);
4526 btrfs_free_path(dst_path);
4527 return ret;
4528}
4529
5dc562c5
JB
4530static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4531 struct btrfs_root *root,
9d122629 4532 struct btrfs_inode *inode,
827463c4 4533 struct btrfs_path *path,
48778179 4534 struct btrfs_log_ctx *ctx)
5dc562c5 4535{
48778179
FM
4536 struct btrfs_ordered_extent *ordered;
4537 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4538 struct extent_map *em, *n;
4539 struct list_head extents;
9d122629 4540 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4541 int ret = 0;
2ab28f32 4542 int num = 0;
5dc562c5
JB
4543
4544 INIT_LIST_HEAD(&extents);
4545
5dc562c5 4546 write_lock(&tree->lock);
5dc562c5
JB
4547
4548 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4549 list_del_init(&em->list);
2ab28f32
JB
4550 /*
4551 * Just an arbitrary number, this can be really CPU intensive
4552 * once we start getting a lot of extents, and really once we
4553 * have a bunch of extents we just want to commit since it will
4554 * be faster.
4555 */
4556 if (++num > 32768) {
4557 list_del_init(&tree->modified_extents);
4558 ret = -EFBIG;
4559 goto process;
4560 }
4561
5f96bfb7 4562 if (em->generation < trans->transid)
5dc562c5 4563 continue;
8c6c5928 4564
31d11b83
FM
4565 /* We log prealloc extents beyond eof later. */
4566 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4567 em->start >= i_size_read(&inode->vfs_inode))
4568 continue;
4569
ff44c6e3 4570 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4571 refcount_inc(&em->refs);
ff44c6e3 4572 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4573 list_add_tail(&em->list, &extents);
2ab28f32 4574 num++;
5dc562c5
JB
4575 }
4576
4577 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4578process:
5dc562c5
JB
4579 while (!list_empty(&extents)) {
4580 em = list_entry(extents.next, struct extent_map, list);
4581
4582 list_del_init(&em->list);
4583
4584 /*
4585 * If we had an error we just need to delete everybody from our
4586 * private list.
4587 */
ff44c6e3 4588 if (ret) {
201a9038 4589 clear_em_logging(tree, em);
ff44c6e3 4590 free_extent_map(em);
5dc562c5 4591 continue;
ff44c6e3
JB
4592 }
4593
4594 write_unlock(&tree->lock);
5dc562c5 4595
a2120a47 4596 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4597 write_lock(&tree->lock);
201a9038
JB
4598 clear_em_logging(tree, em);
4599 free_extent_map(em);
5dc562c5 4600 }
ff44c6e3
JB
4601 WARN_ON(!list_empty(&extents));
4602 write_unlock(&tree->lock);
5dc562c5 4603
5dc562c5 4604 btrfs_release_path(path);
31d11b83
FM
4605 if (!ret)
4606 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4607 if (ret)
4608 return ret;
31d11b83 4609
48778179
FM
4610 /*
4611 * We have logged all extents successfully, now make sure the commit of
4612 * the current transaction waits for the ordered extents to complete
4613 * before it commits and wipes out the log trees, otherwise we would
4614 * lose data if an ordered extents completes after the transaction
4615 * commits and a power failure happens after the transaction commit.
4616 */
4617 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4618 list_del_init(&ordered->log_list);
4619 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4620
4621 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4622 spin_lock_irq(&inode->ordered_tree.lock);
4623 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4624 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4625 atomic_inc(&trans->transaction->pending_ordered);
4626 }
4627 spin_unlock_irq(&inode->ordered_tree.lock);
4628 }
4629 btrfs_put_ordered_extent(ordered);
4630 }
4631
4632 return 0;
5dc562c5
JB
4633}
4634
481b01c0 4635static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4636 struct btrfs_path *path, u64 *size_ret)
4637{
4638 struct btrfs_key key;
4639 int ret;
4640
481b01c0 4641 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4642 key.type = BTRFS_INODE_ITEM_KEY;
4643 key.offset = 0;
4644
4645 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4646 if (ret < 0) {
4647 return ret;
4648 } else if (ret > 0) {
2f2ff0ee 4649 *size_ret = 0;
1a4bcf47
FM
4650 } else {
4651 struct btrfs_inode_item *item;
4652
4653 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4654 struct btrfs_inode_item);
4655 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4656 /*
4657 * If the in-memory inode's i_size is smaller then the inode
4658 * size stored in the btree, return the inode's i_size, so
4659 * that we get a correct inode size after replaying the log
4660 * when before a power failure we had a shrinking truncate
4661 * followed by addition of a new name (rename / new hard link).
4662 * Otherwise return the inode size from the btree, to avoid
4663 * data loss when replaying a log due to previously doing a
4664 * write that expands the inode's size and logging a new name
4665 * immediately after.
4666 */
4667 if (*size_ret > inode->vfs_inode.i_size)
4668 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4669 }
4670
4671 btrfs_release_path(path);
4672 return 0;
4673}
4674
36283bf7
FM
4675/*
4676 * At the moment we always log all xattrs. This is to figure out at log replay
4677 * time which xattrs must have their deletion replayed. If a xattr is missing
4678 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4679 * because if a xattr is deleted, the inode is fsynced and a power failure
4680 * happens, causing the log to be replayed the next time the fs is mounted,
4681 * we want the xattr to not exist anymore (same behaviour as other filesystems
4682 * with a journal, ext3/4, xfs, f2fs, etc).
4683 */
4684static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4685 struct btrfs_root *root,
1a93c36a 4686 struct btrfs_inode *inode,
36283bf7
FM
4687 struct btrfs_path *path,
4688 struct btrfs_path *dst_path)
4689{
4690 int ret;
4691 struct btrfs_key key;
1a93c36a 4692 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4693 int ins_nr = 0;
4694 int start_slot = 0;
f2f121ab
FM
4695 bool found_xattrs = false;
4696
4697 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4698 return 0;
36283bf7
FM
4699
4700 key.objectid = ino;
4701 key.type = BTRFS_XATTR_ITEM_KEY;
4702 key.offset = 0;
4703
4704 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4705 if (ret < 0)
4706 return ret;
4707
4708 while (true) {
4709 int slot = path->slots[0];
4710 struct extent_buffer *leaf = path->nodes[0];
4711 int nritems = btrfs_header_nritems(leaf);
4712
4713 if (slot >= nritems) {
4714 if (ins_nr > 0) {
1a93c36a 4715 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4716 start_slot, ins_nr, 1, 0);
36283bf7
FM
4717 if (ret < 0)
4718 return ret;
4719 ins_nr = 0;
4720 }
4721 ret = btrfs_next_leaf(root, path);
4722 if (ret < 0)
4723 return ret;
4724 else if (ret > 0)
4725 break;
4726 continue;
4727 }
4728
4729 btrfs_item_key_to_cpu(leaf, &key, slot);
4730 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4731 break;
4732
4733 if (ins_nr == 0)
4734 start_slot = slot;
4735 ins_nr++;
4736 path->slots[0]++;
f2f121ab 4737 found_xattrs = true;
36283bf7
FM
4738 cond_resched();
4739 }
4740 if (ins_nr > 0) {
1a93c36a 4741 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4742 start_slot, ins_nr, 1, 0);
36283bf7
FM
4743 if (ret < 0)
4744 return ret;
4745 }
4746
f2f121ab
FM
4747 if (!found_xattrs)
4748 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4749
36283bf7
FM
4750 return 0;
4751}
4752
a89ca6f2 4753/*
0e56315c
FM
4754 * When using the NO_HOLES feature if we punched a hole that causes the
4755 * deletion of entire leafs or all the extent items of the first leaf (the one
4756 * that contains the inode item and references) we may end up not processing
4757 * any extents, because there are no leafs with a generation matching the
4758 * current transaction that have extent items for our inode. So we need to find
4759 * if any holes exist and then log them. We also need to log holes after any
4760 * truncate operation that changes the inode's size.
a89ca6f2 4761 */
0e56315c
FM
4762static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4763 struct btrfs_root *root,
4764 struct btrfs_inode *inode,
7af59743 4765 struct btrfs_path *path)
a89ca6f2 4766{
0b246afa 4767 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4768 struct btrfs_key key;
a0308dd7
NB
4769 const u64 ino = btrfs_ino(inode);
4770 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4771 u64 prev_extent_end = 0;
0e56315c 4772 int ret;
a89ca6f2 4773
0e56315c 4774 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4775 return 0;
4776
4777 key.objectid = ino;
4778 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4779 key.offset = 0;
a89ca6f2
FM
4780
4781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4782 if (ret < 0)
4783 return ret;
4784
0e56315c 4785 while (true) {
0e56315c 4786 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4787
0e56315c
FM
4788 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4789 ret = btrfs_next_leaf(root, path);
4790 if (ret < 0)
4791 return ret;
4792 if (ret > 0) {
4793 ret = 0;
4794 break;
4795 }
4796 leaf = path->nodes[0];
4797 }
4798
4799 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4800 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4801 break;
4802
4803 /* We have a hole, log it. */
4804 if (prev_extent_end < key.offset) {
7af59743 4805 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4806
4807 /*
4808 * Release the path to avoid deadlocks with other code
4809 * paths that search the root while holding locks on
4810 * leafs from the log root.
4811 */
4812 btrfs_release_path(path);
4813 ret = btrfs_insert_file_extent(trans, root->log_root,
4814 ino, prev_extent_end, 0,
4815 0, hole_len, 0, hole_len,
4816 0, 0, 0);
4817 if (ret < 0)
4818 return ret;
4819
4820 /*
4821 * Search for the same key again in the root. Since it's
4822 * an extent item and we are holding the inode lock, the
4823 * key must still exist. If it doesn't just emit warning
4824 * and return an error to fall back to a transaction
4825 * commit.
4826 */
4827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4828 if (ret < 0)
4829 return ret;
4830 if (WARN_ON(ret > 0))
4831 return -ENOENT;
4832 leaf = path->nodes[0];
4833 }
a89ca6f2 4834
7af59743 4835 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4836 path->slots[0]++;
4837 cond_resched();
a89ca6f2 4838 }
a89ca6f2 4839
7af59743 4840 if (prev_extent_end < i_size) {
0e56315c 4841 u64 hole_len;
a89ca6f2 4842
0e56315c 4843 btrfs_release_path(path);
7af59743 4844 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4845 ret = btrfs_insert_file_extent(trans, root->log_root,
4846 ino, prev_extent_end, 0, 0,
4847 hole_len, 0, hole_len,
4848 0, 0, 0);
4849 if (ret < 0)
4850 return ret;
4851 }
4852
4853 return 0;
a89ca6f2
FM
4854}
4855
56f23fdb
FM
4856/*
4857 * When we are logging a new inode X, check if it doesn't have a reference that
4858 * matches the reference from some other inode Y created in a past transaction
4859 * and that was renamed in the current transaction. If we don't do this, then at
4860 * log replay time we can lose inode Y (and all its files if it's a directory):
4861 *
4862 * mkdir /mnt/x
4863 * echo "hello world" > /mnt/x/foobar
4864 * sync
4865 * mv /mnt/x /mnt/y
4866 * mkdir /mnt/x # or touch /mnt/x
4867 * xfs_io -c fsync /mnt/x
4868 * <power fail>
4869 * mount fs, trigger log replay
4870 *
4871 * After the log replay procedure, we would lose the first directory and all its
4872 * files (file foobar).
4873 * For the case where inode Y is not a directory we simply end up losing it:
4874 *
4875 * echo "123" > /mnt/foo
4876 * sync
4877 * mv /mnt/foo /mnt/bar
4878 * echo "abc" > /mnt/foo
4879 * xfs_io -c fsync /mnt/foo
4880 * <power fail>
4881 *
4882 * We also need this for cases where a snapshot entry is replaced by some other
4883 * entry (file or directory) otherwise we end up with an unreplayable log due to
4884 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4885 * if it were a regular entry:
4886 *
4887 * mkdir /mnt/x
4888 * btrfs subvolume snapshot /mnt /mnt/x/snap
4889 * btrfs subvolume delete /mnt/x/snap
4890 * rmdir /mnt/x
4891 * mkdir /mnt/x
4892 * fsync /mnt/x or fsync some new file inside it
4893 * <power fail>
4894 *
4895 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4896 * the same transaction.
4897 */
4898static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4899 const int slot,
4900 const struct btrfs_key *key,
4791c8f1 4901 struct btrfs_inode *inode,
a3baaf0d 4902 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4903{
4904 int ret;
4905 struct btrfs_path *search_path;
4906 char *name = NULL;
4907 u32 name_len = 0;
4908 u32 item_size = btrfs_item_size_nr(eb, slot);
4909 u32 cur_offset = 0;
4910 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4911
4912 search_path = btrfs_alloc_path();
4913 if (!search_path)
4914 return -ENOMEM;
4915 search_path->search_commit_root = 1;
4916 search_path->skip_locking = 1;
4917
4918 while (cur_offset < item_size) {
4919 u64 parent;
4920 u32 this_name_len;
4921 u32 this_len;
4922 unsigned long name_ptr;
4923 struct btrfs_dir_item *di;
4924
4925 if (key->type == BTRFS_INODE_REF_KEY) {
4926 struct btrfs_inode_ref *iref;
4927
4928 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4929 parent = key->offset;
4930 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4931 name_ptr = (unsigned long)(iref + 1);
4932 this_len = sizeof(*iref) + this_name_len;
4933 } else {
4934 struct btrfs_inode_extref *extref;
4935
4936 extref = (struct btrfs_inode_extref *)(ptr +
4937 cur_offset);
4938 parent = btrfs_inode_extref_parent(eb, extref);
4939 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4940 name_ptr = (unsigned long)&extref->name;
4941 this_len = sizeof(*extref) + this_name_len;
4942 }
4943
4944 if (this_name_len > name_len) {
4945 char *new_name;
4946
4947 new_name = krealloc(name, this_name_len, GFP_NOFS);
4948 if (!new_name) {
4949 ret = -ENOMEM;
4950 goto out;
4951 }
4952 name_len = this_name_len;
4953 name = new_name;
4954 }
4955
4956 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4957 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4958 parent, name, this_name_len, 0);
56f23fdb 4959 if (di && !IS_ERR(di)) {
44f714da
FM
4960 struct btrfs_key di_key;
4961
4962 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4963 di, &di_key);
4964 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4965 if (di_key.objectid != key->objectid) {
4966 ret = 1;
4967 *other_ino = di_key.objectid;
a3baaf0d 4968 *other_parent = parent;
6b5fc433
FM
4969 } else {
4970 ret = 0;
4971 }
44f714da
FM
4972 } else {
4973 ret = -EAGAIN;
4974 }
56f23fdb
FM
4975 goto out;
4976 } else if (IS_ERR(di)) {
4977 ret = PTR_ERR(di);
4978 goto out;
4979 }
4980 btrfs_release_path(search_path);
4981
4982 cur_offset += this_len;
4983 }
4984 ret = 0;
4985out:
4986 btrfs_free_path(search_path);
4987 kfree(name);
4988 return ret;
4989}
4990
6b5fc433
FM
4991struct btrfs_ino_list {
4992 u64 ino;
a3baaf0d 4993 u64 parent;
6b5fc433
FM
4994 struct list_head list;
4995};
4996
4997static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4998 struct btrfs_root *root,
4999 struct btrfs_path *path,
5000 struct btrfs_log_ctx *ctx,
a3baaf0d 5001 u64 ino, u64 parent)
6b5fc433
FM
5002{
5003 struct btrfs_ino_list *ino_elem;
5004 LIST_HEAD(inode_list);
5005 int ret = 0;
5006
5007 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5008 if (!ino_elem)
5009 return -ENOMEM;
5010 ino_elem->ino = ino;
a3baaf0d 5011 ino_elem->parent = parent;
6b5fc433
FM
5012 list_add_tail(&ino_elem->list, &inode_list);
5013
5014 while (!list_empty(&inode_list)) {
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct btrfs_key key;
5017 struct inode *inode;
5018
5019 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5020 list);
5021 ino = ino_elem->ino;
a3baaf0d 5022 parent = ino_elem->parent;
6b5fc433
FM
5023 list_del(&ino_elem->list);
5024 kfree(ino_elem);
5025 if (ret)
5026 continue;
5027
5028 btrfs_release_path(path);
5029
0202e83f 5030 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5031 /*
5032 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
5033 * deleted in the current transaction, we need to log its parent
5034 * directory.
6b5fc433
FM
5035 */
5036 if (IS_ERR(inode)) {
5037 ret = PTR_ERR(inode);
a3baaf0d 5038 if (ret == -ENOENT) {
0202e83f 5039 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
5040 if (IS_ERR(inode)) {
5041 ret = PTR_ERR(inode);
5042 } else {
5043 ret = btrfs_log_inode(trans, root,
5044 BTRFS_I(inode),
5045 LOG_OTHER_INODE_ALL,
48778179 5046 ctx);
410f954c 5047 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
5048 }
5049 }
6b5fc433
FM
5050 continue;
5051 }
b5e4ff9d
FM
5052 /*
5053 * If the inode was already logged skip it - otherwise we can
5054 * hit an infinite loop. Example:
5055 *
5056 * From the commit root (previous transaction) we have the
5057 * following inodes:
5058 *
5059 * inode 257 a directory
5060 * inode 258 with references "zz" and "zz_link" on inode 257
5061 * inode 259 with reference "a" on inode 257
5062 *
5063 * And in the current (uncommitted) transaction we have:
5064 *
5065 * inode 257 a directory, unchanged
5066 * inode 258 with references "a" and "a2" on inode 257
5067 * inode 259 with reference "zz_link" on inode 257
5068 * inode 261 with reference "zz" on inode 257
5069 *
5070 * When logging inode 261 the following infinite loop could
5071 * happen if we don't skip already logged inodes:
5072 *
5073 * - we detect inode 258 as a conflicting inode, with inode 261
5074 * on reference "zz", and log it;
5075 *
5076 * - we detect inode 259 as a conflicting inode, with inode 258
5077 * on reference "a", and log it;
5078 *
5079 * - we detect inode 258 as a conflicting inode, with inode 259
5080 * on reference "zz_link", and log it - again! After this we
5081 * repeat the above steps forever.
5082 */
5083 spin_lock(&BTRFS_I(inode)->lock);
5084 /*
5085 * Check the inode's logged_trans only instead of
5086 * btrfs_inode_in_log(). This is because the last_log_commit of
5087 * the inode is not updated when we only log that it exists and
260db43c 5088 * it has the full sync bit set (see btrfs_log_inode()).
b5e4ff9d
FM
5089 */
5090 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5091 spin_unlock(&BTRFS_I(inode)->lock);
5092 btrfs_add_delayed_iput(inode);
5093 continue;
5094 }
5095 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
5096 /*
5097 * We are safe logging the other inode without acquiring its
5098 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5099 * are safe against concurrent renames of the other inode as
5100 * well because during a rename we pin the log and update the
5101 * log with the new name before we unpin it.
5102 */
5103 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5104 LOG_OTHER_INODE, ctx);
6b5fc433 5105 if (ret) {
410f954c 5106 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5107 continue;
5108 }
5109
5110 key.objectid = ino;
5111 key.type = BTRFS_INODE_REF_KEY;
5112 key.offset = 0;
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114 if (ret < 0) {
410f954c 5115 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5116 continue;
5117 }
5118
5119 while (true) {
5120 struct extent_buffer *leaf = path->nodes[0];
5121 int slot = path->slots[0];
5122 u64 other_ino = 0;
a3baaf0d 5123 u64 other_parent = 0;
6b5fc433
FM
5124
5125 if (slot >= btrfs_header_nritems(leaf)) {
5126 ret = btrfs_next_leaf(root, path);
5127 if (ret < 0) {
5128 break;
5129 } else if (ret > 0) {
5130 ret = 0;
5131 break;
5132 }
5133 continue;
5134 }
5135
5136 btrfs_item_key_to_cpu(leaf, &key, slot);
5137 if (key.objectid != ino ||
5138 (key.type != BTRFS_INODE_REF_KEY &&
5139 key.type != BTRFS_INODE_EXTREF_KEY)) {
5140 ret = 0;
5141 break;
5142 }
5143
5144 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5145 BTRFS_I(inode), &other_ino,
5146 &other_parent);
6b5fc433
FM
5147 if (ret < 0)
5148 break;
5149 if (ret > 0) {
5150 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5151 if (!ino_elem) {
5152 ret = -ENOMEM;
5153 break;
5154 }
5155 ino_elem->ino = other_ino;
a3baaf0d 5156 ino_elem->parent = other_parent;
6b5fc433
FM
5157 list_add_tail(&ino_elem->list, &inode_list);
5158 ret = 0;
5159 }
5160 path->slots[0]++;
5161 }
410f954c 5162 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5163 }
5164
5165 return ret;
5166}
5167
da447009
FM
5168static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5169 struct btrfs_inode *inode,
5170 struct btrfs_key *min_key,
5171 const struct btrfs_key *max_key,
5172 struct btrfs_path *path,
5173 struct btrfs_path *dst_path,
5174 const u64 logged_isize,
5175 const bool recursive_logging,
5176 const int inode_only,
5177 struct btrfs_log_ctx *ctx,
5178 bool *need_log_inode_item)
5179{
5180 struct btrfs_root *root = inode->root;
5181 int ins_start_slot = 0;
5182 int ins_nr = 0;
5183 int ret;
5184
5185 while (1) {
5186 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5187 if (ret < 0)
5188 return ret;
5189 if (ret > 0) {
5190 ret = 0;
5191 break;
5192 }
5193again:
5194 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5195 if (min_key->objectid != max_key->objectid)
5196 break;
5197 if (min_key->type > max_key->type)
5198 break;
5199
5200 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5201 *need_log_inode_item = false;
5202
5203 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5204 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5205 inode->generation == trans->transid &&
5206 !recursive_logging) {
5207 u64 other_ino = 0;
5208 u64 other_parent = 0;
5209
5210 ret = btrfs_check_ref_name_override(path->nodes[0],
5211 path->slots[0], min_key, inode,
5212 &other_ino, &other_parent);
5213 if (ret < 0) {
5214 return ret;
5215 } else if (ret > 0 && ctx &&
5216 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5217 if (ins_nr > 0) {
5218 ins_nr++;
5219 } else {
5220 ins_nr = 1;
5221 ins_start_slot = path->slots[0];
5222 }
5223 ret = copy_items(trans, inode, dst_path, path,
5224 ins_start_slot, ins_nr,
5225 inode_only, logged_isize);
5226 if (ret < 0)
5227 return ret;
5228 ins_nr = 0;
5229
5230 ret = log_conflicting_inodes(trans, root, path,
5231 ctx, other_ino, other_parent);
5232 if (ret)
5233 return ret;
5234 btrfs_release_path(path);
5235 goto next_key;
5236 }
5237 }
5238
5239 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5240 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5241 if (ins_nr == 0)
5242 goto next_slot;
5243 ret = copy_items(trans, inode, dst_path, path,
5244 ins_start_slot,
5245 ins_nr, inode_only, logged_isize);
5246 if (ret < 0)
5247 return ret;
5248 ins_nr = 0;
5249 goto next_slot;
5250 }
5251
5252 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5253 ins_nr++;
5254 goto next_slot;
5255 } else if (!ins_nr) {
5256 ins_start_slot = path->slots[0];
5257 ins_nr = 1;
5258 goto next_slot;
5259 }
5260
5261 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5262 ins_nr, inode_only, logged_isize);
5263 if (ret < 0)
5264 return ret;
5265 ins_nr = 1;
5266 ins_start_slot = path->slots[0];
5267next_slot:
5268 path->slots[0]++;
5269 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5270 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5271 path->slots[0]);
5272 goto again;
5273 }
5274 if (ins_nr) {
5275 ret = copy_items(trans, inode, dst_path, path,
5276 ins_start_slot, ins_nr, inode_only,
5277 logged_isize);
5278 if (ret < 0)
5279 return ret;
5280 ins_nr = 0;
5281 }
5282 btrfs_release_path(path);
5283next_key:
5284 if (min_key->offset < (u64)-1) {
5285 min_key->offset++;
5286 } else if (min_key->type < max_key->type) {
5287 min_key->type++;
5288 min_key->offset = 0;
5289 } else {
5290 break;
5291 }
5292 }
5293 if (ins_nr)
5294 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5295 ins_nr, inode_only, logged_isize);
5296
5297 return ret;
5298}
5299
e02119d5
CM
5300/* log a single inode in the tree log.
5301 * At least one parent directory for this inode must exist in the tree
5302 * or be logged already.
5303 *
5304 * Any items from this inode changed by the current transaction are copied
5305 * to the log tree. An extra reference is taken on any extents in this
5306 * file, allowing us to avoid a whole pile of corner cases around logging
5307 * blocks that have been removed from the tree.
5308 *
5309 * See LOG_INODE_ALL and related defines for a description of what inode_only
5310 * does.
5311 *
5312 * This handles both files and directories.
5313 */
12fcfd22 5314static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5315 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5316 int inode_only,
8407f553 5317 struct btrfs_log_ctx *ctx)
e02119d5
CM
5318{
5319 struct btrfs_path *path;
5320 struct btrfs_path *dst_path;
5321 struct btrfs_key min_key;
5322 struct btrfs_key max_key;
5323 struct btrfs_root *log = root->log_root;
4a500fd1 5324 int err = 0;
8c8648dd 5325 int ret = 0;
5dc562c5 5326 bool fast_search = false;
a59108a7
NB
5327 u64 ino = btrfs_ino(inode);
5328 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5329 u64 logged_isize = 0;
e4545de5 5330 bool need_log_inode_item = true;
9a8fca62 5331 bool xattrs_logged = false;
a3baaf0d 5332 bool recursive_logging = false;
2ac691d8 5333 bool inode_item_dropped = true;
e02119d5 5334
e02119d5 5335 path = btrfs_alloc_path();
5df67083
TI
5336 if (!path)
5337 return -ENOMEM;
e02119d5 5338 dst_path = btrfs_alloc_path();
5df67083
TI
5339 if (!dst_path) {
5340 btrfs_free_path(path);
5341 return -ENOMEM;
5342 }
e02119d5 5343
33345d01 5344 min_key.objectid = ino;
e02119d5
CM
5345 min_key.type = BTRFS_INODE_ITEM_KEY;
5346 min_key.offset = 0;
5347
33345d01 5348 max_key.objectid = ino;
12fcfd22 5349
12fcfd22 5350
5dc562c5 5351 /* today the code can only do partial logging of directories */
a59108a7 5352 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5353 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5354 &inode->runtime_flags) &&
781feef7 5355 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5356 max_key.type = BTRFS_XATTR_ITEM_KEY;
5357 else
5358 max_key.type = (u8)-1;
5359 max_key.offset = (u64)-1;
5360
2c2c452b 5361 /*
5aa7d1a7
FM
5362 * Only run delayed items if we are a directory. We want to make sure
5363 * all directory indexes hit the fs/subvolume tree so we can find them
5364 * and figure out which index ranges have to be logged.
5365 *
8c8648dd
FM
5366 * Otherwise commit the delayed inode only if the full sync flag is set,
5367 * as we want to make sure an up to date version is in the subvolume
5368 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5369 * it to the log tree. For a non full sync, we always log the inode item
5370 * based on the in-memory struct btrfs_inode which is always up to date.
2c2c452b 5371 */
5aa7d1a7 5372 if (S_ISDIR(inode->vfs_inode.i_mode))
a59108a7 5373 ret = btrfs_commit_inode_delayed_items(trans, inode);
8c8648dd 5374 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
a59108a7 5375 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5376
5377 if (ret) {
5378 btrfs_free_path(path);
5379 btrfs_free_path(dst_path);
5380 return ret;
16cdcec7
MX
5381 }
5382
a3baaf0d
FM
5383 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5384 recursive_logging = true;
5385 if (inode_only == LOG_OTHER_INODE)
5386 inode_only = LOG_INODE_EXISTS;
5387 else
5388 inode_only = LOG_INODE_ALL;
a59108a7 5389 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5390 } else {
a59108a7 5391 mutex_lock(&inode->log_mutex);
781feef7 5392 }
e02119d5 5393
64d6b281
FM
5394 /*
5395 * This is for cases where logging a directory could result in losing a
5396 * a file after replaying the log. For example, if we move a file from a
5397 * directory A to a directory B, then fsync directory A, we have no way
5398 * to known the file was moved from A to B, so logging just A would
5399 * result in losing the file after a log replay.
5400 */
5401 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5402 inode_only == LOG_INODE_ALL &&
5403 inode->last_unlink_trans >= trans->transid) {
5404 btrfs_set_log_full_commit(trans);
5405 err = 1;
5406 goto out_unlock;
5407 }
5408
e02119d5
CM
5409 /*
5410 * a brute force approach to making sure we get the most uptodate
5411 * copies of everything.
5412 */
a59108a7 5413 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5414 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5415
ab12313a 5416 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
4f764e51
FM
5417 if (inode_only == LOG_INODE_EXISTS)
5418 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5419 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5420 } else {
1a4bcf47
FM
5421 if (inode_only == LOG_INODE_EXISTS) {
5422 /*
5423 * Make sure the new inode item we write to the log has
5424 * the same isize as the current one (if it exists).
5425 * This is necessary to prevent data loss after log
5426 * replay, and also to prevent doing a wrong expanding
5427 * truncate - for e.g. create file, write 4K into offset
5428 * 0, fsync, write 4K into offset 4096, add hard link,
5429 * fsync some other file (to sync log), power fail - if
5430 * we use the inode's current i_size, after log replay
5431 * we get a 8Kb file, with the last 4Kb extent as a hole
5432 * (zeroes), as if an expanding truncate happened,
5433 * instead of getting a file of 4Kb only.
5434 */
a59108a7 5435 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5436 if (err)
5437 goto out_unlock;
5438 }
a742994a 5439 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5440 &inode->runtime_flags)) {
a742994a 5441 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5442 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5443 ret = drop_objectid_items(trans, log, path, ino,
5444 max_key.type);
5445 } else {
5446 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5447 &inode->runtime_flags);
a742994a 5448 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5449 &inode->runtime_flags);
28ed1345
CM
5450 while(1) {
5451 ret = btrfs_truncate_inode_items(trans,
0d7d3165 5452 log, inode, 0, 0, NULL);
28ed1345
CM
5453 if (ret != -EAGAIN)
5454 break;
5455 }
a742994a 5456 }
4f764e51 5457 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5458 &inode->runtime_flags) ||
6cfab851 5459 inode_only == LOG_INODE_EXISTS) {
4f764e51 5460 if (inode_only == LOG_INODE_ALL)
183f37fa 5461 fast_search = true;
4f764e51 5462 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5463 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5464 max_key.type);
a95249b3
JB
5465 } else {
5466 if (inode_only == LOG_INODE_ALL)
5467 fast_search = true;
2ac691d8 5468 inode_item_dropped = false;
a95249b3 5469 goto log_extents;
5dc562c5 5470 }
a95249b3 5471
e02119d5 5472 }
4a500fd1
YZ
5473 if (ret) {
5474 err = ret;
5475 goto out_unlock;
5476 }
e02119d5 5477
da447009
FM
5478 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5479 path, dst_path, logged_isize,
7af59743
FM
5480 recursive_logging, inode_only, ctx,
5481 &need_log_inode_item);
da447009
FM
5482 if (err)
5483 goto out_unlock;
5dc562c5 5484
36283bf7
FM
5485 btrfs_release_path(path);
5486 btrfs_release_path(dst_path);
a59108a7 5487 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5488 if (err)
5489 goto out_unlock;
9a8fca62 5490 xattrs_logged = true;
a89ca6f2
FM
5491 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5492 btrfs_release_path(path);
5493 btrfs_release_path(dst_path);
7af59743 5494 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5495 if (err)
5496 goto out_unlock;
5497 }
a95249b3 5498log_extents:
f3b15ccd
JB
5499 btrfs_release_path(path);
5500 btrfs_release_path(dst_path);
e4545de5 5501 if (need_log_inode_item) {
2ac691d8 5502 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
b590b839
FM
5503 if (err)
5504 goto out_unlock;
5505 /*
5506 * If we are doing a fast fsync and the inode was logged before
5507 * in this transaction, we don't need to log the xattrs because
5508 * they were logged before. If xattrs were added, changed or
5509 * deleted since the last time we logged the inode, then we have
5510 * already logged them because the inode had the runtime flag
5511 * BTRFS_INODE_COPY_EVERYTHING set.
5512 */
5513 if (!xattrs_logged && inode->logged_trans < trans->transid) {
9a8fca62
FM
5514 err = btrfs_log_all_xattrs(trans, root, inode, path,
5515 dst_path);
b590b839
FM
5516 if (err)
5517 goto out_unlock;
9a8fca62
FM
5518 btrfs_release_path(path);
5519 }
e4545de5 5520 }
5dc562c5 5521 if (fast_search) {
a59108a7 5522 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
48778179 5523 ctx);
5dc562c5
JB
5524 if (ret) {
5525 err = ret;
5526 goto out_unlock;
5527 }
d006a048 5528 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5529 struct extent_map *em, *n;
5530
49dae1bc 5531 write_lock(&em_tree->lock);
48778179
FM
5532 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5533 list_del_init(&em->list);
49dae1bc 5534 write_unlock(&em_tree->lock);
5dc562c5
JB
5535 }
5536
a59108a7
NB
5537 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5538 ret = log_directory_changes(trans, root, inode, path, dst_path,
5539 ctx);
4a500fd1
YZ
5540 if (ret) {
5541 err = ret;
5542 goto out_unlock;
5543 }
e02119d5 5544 }
49dae1bc 5545
d1d832a0 5546 /*
75b463d2
FM
5547 * If we are logging that an ancestor inode exists as part of logging a
5548 * new name from a link or rename operation, don't mark the inode as
5549 * logged - otherwise if an explicit fsync is made against an ancestor,
5550 * the fsync considers the inode in the log and doesn't sync the log,
5551 * resulting in the ancestor missing after a power failure unless the
5552 * log was synced as part of an fsync against any other unrelated inode.
5553 * So keep it simple for this case and just don't flag the ancestors as
5554 * logged.
d1d832a0 5555 */
75b463d2
FM
5556 if (!ctx ||
5557 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5558 &inode->vfs_inode != ctx->inode)) {
5559 spin_lock(&inode->lock);
5560 inode->logged_trans = trans->transid;
5561 /*
9acc8103
FM
5562 * Don't update last_log_commit if we logged that an inode exists.
5563 * We do this for two reasons:
5564 *
5565 * 1) We might have had buffered writes to this inode that were
5566 * flushed and had their ordered extents completed in this
5567 * transaction, but we did not previously log the inode with
5568 * LOG_INODE_ALL. Later the inode was evicted and after that
5569 * it was loaded again and this LOG_INODE_EXISTS log operation
5570 * happened. We must make sure that if an explicit fsync against
5571 * the inode is performed later, it logs the new extents, an
5572 * updated inode item, etc, and syncs the log. The same logic
5573 * applies to direct IO writes instead of buffered writes.
5574 *
5575 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5576 * is logged with an i_size of 0 or whatever value was logged
5577 * before. If later the i_size of the inode is increased by a
5578 * truncate operation, the log is synced through an fsync of
5579 * some other inode and then finally an explicit fsync against
5580 * this inode is made, we must make sure this fsync logs the
5581 * inode with the new i_size, the hole between old i_size and
5582 * the new i_size, and syncs the log.
75b463d2 5583 */
9acc8103 5584 if (inode_only != LOG_INODE_EXISTS)
75b463d2
FM
5585 inode->last_log_commit = inode->last_sub_trans;
5586 spin_unlock(&inode->lock);
5587 }
4a500fd1 5588out_unlock:
a59108a7 5589 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5590
5591 btrfs_free_path(path);
5592 btrfs_free_path(dst_path);
4a500fd1 5593 return err;
e02119d5
CM
5594}
5595
ab12313a
FM
5596/*
5597 * Check if we need to log an inode. This is used in contexts where while
5598 * logging an inode we need to log another inode (either that it exists or in
5599 * full mode). This is used instead of btrfs_inode_in_log() because the later
5600 * requires the inode to be in the log and have the log transaction committed,
5601 * while here we do not care if the log transaction was already committed - our
5602 * caller will commit the log later - and we want to avoid logging an inode
5603 * multiple times when multiple tasks have joined the same log transaction.
5604 */
5605static bool need_log_inode(struct btrfs_trans_handle *trans,
5606 struct btrfs_inode *inode)
5607{
5608 /*
5609 * If this inode does not have new/updated/deleted xattrs since the last
5610 * time it was logged and is flagged as logged in the current transaction,
5611 * we can skip logging it. As for new/deleted names, those are updated in
5612 * the log by link/unlink/rename operations.
5613 * In case the inode was logged and then evicted and reloaded, its
5614 * logged_trans will be 0, in which case we have to fully log it since
5615 * logged_trans is a transient field, not persisted.
5616 */
5617 if (inode->logged_trans == trans->transid &&
5618 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5619 return false;
5620
5621 return true;
5622}
5623
2f2ff0ee
FM
5624struct btrfs_dir_list {
5625 u64 ino;
5626 struct list_head list;
5627};
5628
5629/*
5630 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5631 * details about the why it is needed.
5632 * This is a recursive operation - if an existing dentry corresponds to a
5633 * directory, that directory's new entries are logged too (same behaviour as
5634 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5635 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5636 * complains about the following circular lock dependency / possible deadlock:
5637 *
5638 * CPU0 CPU1
5639 * ---- ----
5640 * lock(&type->i_mutex_dir_key#3/2);
5641 * lock(sb_internal#2);
5642 * lock(&type->i_mutex_dir_key#3/2);
5643 * lock(&sb->s_type->i_mutex_key#14);
5644 *
5645 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5646 * sb_start_intwrite() in btrfs_start_transaction().
5647 * Not locking i_mutex of the inodes is still safe because:
5648 *
5649 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5650 * that while logging the inode new references (names) are added or removed
5651 * from the inode, leaving the logged inode item with a link count that does
5652 * not match the number of logged inode reference items. This is fine because
5653 * at log replay time we compute the real number of links and correct the
5654 * link count in the inode item (see replay_one_buffer() and
5655 * link_to_fixup_dir());
5656 *
5657 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5658 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5659 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5660 * has a size that doesn't match the sum of the lengths of all the logged
5661 * names. This does not result in a problem because if a dir_item key is
5662 * logged but its matching dir_index key is not logged, at log replay time we
5663 * don't use it to replay the respective name (see replay_one_name()). On the
5664 * other hand if only the dir_index key ends up being logged, the respective
5665 * name is added to the fs/subvol tree with both the dir_item and dir_index
5666 * keys created (see replay_one_name()).
5667 * The directory's inode item with a wrong i_size is not a problem as well,
5668 * since we don't use it at log replay time to set the i_size in the inode
5669 * item of the fs/subvol tree (see overwrite_item()).
5670 */
5671static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5672 struct btrfs_root *root,
51cc0d32 5673 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5674 struct btrfs_log_ctx *ctx)
5675{
0b246afa 5676 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5677 struct btrfs_root *log = root->log_root;
5678 struct btrfs_path *path;
5679 LIST_HEAD(dir_list);
5680 struct btrfs_dir_list *dir_elem;
5681 int ret = 0;
5682
5683 path = btrfs_alloc_path();
5684 if (!path)
5685 return -ENOMEM;
5686
5687 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5688 if (!dir_elem) {
5689 btrfs_free_path(path);
5690 return -ENOMEM;
5691 }
51cc0d32 5692 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5693 list_add_tail(&dir_elem->list, &dir_list);
5694
5695 while (!list_empty(&dir_list)) {
5696 struct extent_buffer *leaf;
5697 struct btrfs_key min_key;
5698 int nritems;
5699 int i;
5700
5701 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5702 list);
5703 if (ret)
5704 goto next_dir_inode;
5705
5706 min_key.objectid = dir_elem->ino;
5707 min_key.type = BTRFS_DIR_ITEM_KEY;
5708 min_key.offset = 0;
5709again:
5710 btrfs_release_path(path);
5711 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5712 if (ret < 0) {
5713 goto next_dir_inode;
5714 } else if (ret > 0) {
5715 ret = 0;
5716 goto next_dir_inode;
5717 }
5718
5719process_leaf:
5720 leaf = path->nodes[0];
5721 nritems = btrfs_header_nritems(leaf);
5722 for (i = path->slots[0]; i < nritems; i++) {
5723 struct btrfs_dir_item *di;
5724 struct btrfs_key di_key;
5725 struct inode *di_inode;
5726 struct btrfs_dir_list *new_dir_elem;
5727 int log_mode = LOG_INODE_EXISTS;
5728 int type;
5729
5730 btrfs_item_key_to_cpu(leaf, &min_key, i);
5731 if (min_key.objectid != dir_elem->ino ||
5732 min_key.type != BTRFS_DIR_ITEM_KEY)
5733 goto next_dir_inode;
5734
5735 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5736 type = btrfs_dir_type(leaf, di);
5737 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5738 type != BTRFS_FT_DIR)
5739 continue;
5740 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5741 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5742 continue;
5743
ec125cfb 5744 btrfs_release_path(path);
0202e83f 5745 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5746 if (IS_ERR(di_inode)) {
5747 ret = PTR_ERR(di_inode);
5748 goto next_dir_inode;
5749 }
5750
0e44cb3f 5751 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
410f954c 5752 btrfs_add_delayed_iput(di_inode);
ec125cfb 5753 break;
2f2ff0ee
FM
5754 }
5755
5756 ctx->log_new_dentries = false;
3f9749f6 5757 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5758 log_mode = LOG_INODE_ALL;
a59108a7 5759 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
48778179 5760 log_mode, ctx);
410f954c 5761 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5762 if (ret)
5763 goto next_dir_inode;
5764 if (ctx->log_new_dentries) {
5765 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5766 GFP_NOFS);
5767 if (!new_dir_elem) {
5768 ret = -ENOMEM;
5769 goto next_dir_inode;
5770 }
5771 new_dir_elem->ino = di_key.objectid;
5772 list_add_tail(&new_dir_elem->list, &dir_list);
5773 }
5774 break;
5775 }
5776 if (i == nritems) {
5777 ret = btrfs_next_leaf(log, path);
5778 if (ret < 0) {
5779 goto next_dir_inode;
5780 } else if (ret > 0) {
5781 ret = 0;
5782 goto next_dir_inode;
5783 }
5784 goto process_leaf;
5785 }
5786 if (min_key.offset < (u64)-1) {
5787 min_key.offset++;
5788 goto again;
5789 }
5790next_dir_inode:
5791 list_del(&dir_elem->list);
5792 kfree(dir_elem);
5793 }
5794
5795 btrfs_free_path(path);
5796 return ret;
5797}
5798
18aa0922 5799static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5800 struct btrfs_inode *inode,
18aa0922
FM
5801 struct btrfs_log_ctx *ctx)
5802{
3ffbd68c 5803 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5804 int ret;
5805 struct btrfs_path *path;
5806 struct btrfs_key key;
d0a0b78d
NB
5807 struct btrfs_root *root = inode->root;
5808 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5809
5810 path = btrfs_alloc_path();
5811 if (!path)
5812 return -ENOMEM;
5813 path->skip_locking = 1;
5814 path->search_commit_root = 1;
5815
5816 key.objectid = ino;
5817 key.type = BTRFS_INODE_REF_KEY;
5818 key.offset = 0;
5819 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5820 if (ret < 0)
5821 goto out;
5822
5823 while (true) {
5824 struct extent_buffer *leaf = path->nodes[0];
5825 int slot = path->slots[0];
5826 u32 cur_offset = 0;
5827 u32 item_size;
5828 unsigned long ptr;
5829
5830 if (slot >= btrfs_header_nritems(leaf)) {
5831 ret = btrfs_next_leaf(root, path);
5832 if (ret < 0)
5833 goto out;
5834 else if (ret > 0)
5835 break;
5836 continue;
5837 }
5838
5839 btrfs_item_key_to_cpu(leaf, &key, slot);
5840 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5841 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5842 break;
5843
5844 item_size = btrfs_item_size_nr(leaf, slot);
5845 ptr = btrfs_item_ptr_offset(leaf, slot);
5846 while (cur_offset < item_size) {
5847 struct btrfs_key inode_key;
5848 struct inode *dir_inode;
5849
5850 inode_key.type = BTRFS_INODE_ITEM_KEY;
5851 inode_key.offset = 0;
5852
5853 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5854 struct btrfs_inode_extref *extref;
5855
5856 extref = (struct btrfs_inode_extref *)
5857 (ptr + cur_offset);
5858 inode_key.objectid = btrfs_inode_extref_parent(
5859 leaf, extref);
5860 cur_offset += sizeof(*extref);
5861 cur_offset += btrfs_inode_extref_name_len(leaf,
5862 extref);
5863 } else {
5864 inode_key.objectid = key.offset;
5865 cur_offset = item_size;
5866 }
5867
0202e83f
DS
5868 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5869 root);
0f375eed
FM
5870 /*
5871 * If the parent inode was deleted, return an error to
5872 * fallback to a transaction commit. This is to prevent
5873 * getting an inode that was moved from one parent A to
5874 * a parent B, got its former parent A deleted and then
5875 * it got fsync'ed, from existing at both parents after
5876 * a log replay (and the old parent still existing).
5877 * Example:
5878 *
5879 * mkdir /mnt/A
5880 * mkdir /mnt/B
5881 * touch /mnt/B/bar
5882 * sync
5883 * mv /mnt/B/bar /mnt/A/bar
5884 * mv -T /mnt/A /mnt/B
5885 * fsync /mnt/B/bar
5886 * <power fail>
5887 *
5888 * If we ignore the old parent B which got deleted,
5889 * after a log replay we would have file bar linked
5890 * at both parents and the old parent B would still
5891 * exist.
5892 */
5893 if (IS_ERR(dir_inode)) {
5894 ret = PTR_ERR(dir_inode);
5895 goto out;
5896 }
18aa0922 5897
3e6a86a1
FM
5898 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5899 btrfs_add_delayed_iput(dir_inode);
5900 continue;
5901 }
5902
657ed1aa
FM
5903 if (ctx)
5904 ctx->log_new_dentries = false;
a59108a7 5905 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
48778179 5906 LOG_INODE_ALL, ctx);
657ed1aa
FM
5907 if (!ret && ctx && ctx->log_new_dentries)
5908 ret = log_new_dir_dentries(trans, root,
f85b7379 5909 BTRFS_I(dir_inode), ctx);
410f954c 5910 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5911 if (ret)
5912 goto out;
5913 }
5914 path->slots[0]++;
5915 }
5916 ret = 0;
5917out:
5918 btrfs_free_path(path);
5919 return ret;
5920}
5921
b8aa330d
FM
5922static int log_new_ancestors(struct btrfs_trans_handle *trans,
5923 struct btrfs_root *root,
5924 struct btrfs_path *path,
5925 struct btrfs_log_ctx *ctx)
5926{
5927 struct btrfs_key found_key;
5928
5929 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5930
5931 while (true) {
5932 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
5933 struct extent_buffer *leaf = path->nodes[0];
5934 int slot = path->slots[0];
5935 struct btrfs_key search_key;
5936 struct inode *inode;
0202e83f 5937 u64 ino;
b8aa330d
FM
5938 int ret = 0;
5939
5940 btrfs_release_path(path);
5941
0202e83f
DS
5942 ino = found_key.offset;
5943
b8aa330d
FM
5944 search_key.objectid = found_key.offset;
5945 search_key.type = BTRFS_INODE_ITEM_KEY;
5946 search_key.offset = 0;
0202e83f 5947 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
5948 if (IS_ERR(inode))
5949 return PTR_ERR(inode);
5950
ab12313a
FM
5951 if (BTRFS_I(inode)->generation >= trans->transid &&
5952 need_log_inode(trans, BTRFS_I(inode)))
b8aa330d 5953 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5954 LOG_INODE_EXISTS, ctx);
410f954c 5955 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5956 if (ret)
5957 return ret;
5958
5959 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5960 break;
5961
5962 search_key.type = BTRFS_INODE_REF_KEY;
5963 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5964 if (ret < 0)
5965 return ret;
5966
5967 leaf = path->nodes[0];
5968 slot = path->slots[0];
5969 if (slot >= btrfs_header_nritems(leaf)) {
5970 ret = btrfs_next_leaf(root, path);
5971 if (ret < 0)
5972 return ret;
5973 else if (ret > 0)
5974 return -ENOENT;
5975 leaf = path->nodes[0];
5976 slot = path->slots[0];
5977 }
5978
5979 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5980 if (found_key.objectid != search_key.objectid ||
5981 found_key.type != BTRFS_INODE_REF_KEY)
5982 return -ENOENT;
5983 }
5984 return 0;
5985}
5986
5987static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5988 struct btrfs_inode *inode,
5989 struct dentry *parent,
5990 struct btrfs_log_ctx *ctx)
5991{
5992 struct btrfs_root *root = inode->root;
b8aa330d
FM
5993 struct dentry *old_parent = NULL;
5994 struct super_block *sb = inode->vfs_inode.i_sb;
5995 int ret = 0;
5996
5997 while (true) {
5998 if (!parent || d_really_is_negative(parent) ||
5999 sb != parent->d_sb)
6000 break;
6001
6002 inode = BTRFS_I(d_inode(parent));
6003 if (root != inode->root)
6004 break;
6005
ab12313a
FM
6006 if (inode->generation >= trans->transid &&
6007 need_log_inode(trans, inode)) {
b8aa330d 6008 ret = btrfs_log_inode(trans, root, inode,
48778179 6009 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6010 if (ret)
6011 break;
6012 }
6013 if (IS_ROOT(parent))
6014 break;
6015
6016 parent = dget_parent(parent);
6017 dput(old_parent);
6018 old_parent = parent;
6019 }
6020 dput(old_parent);
6021
6022 return ret;
6023}
6024
6025static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6026 struct btrfs_inode *inode,
6027 struct dentry *parent,
6028 struct btrfs_log_ctx *ctx)
6029{
6030 struct btrfs_root *root = inode->root;
6031 const u64 ino = btrfs_ino(inode);
6032 struct btrfs_path *path;
6033 struct btrfs_key search_key;
6034 int ret;
6035
6036 /*
6037 * For a single hard link case, go through a fast path that does not
6038 * need to iterate the fs/subvolume tree.
6039 */
6040 if (inode->vfs_inode.i_nlink < 2)
6041 return log_new_ancestors_fast(trans, inode, parent, ctx);
6042
6043 path = btrfs_alloc_path();
6044 if (!path)
6045 return -ENOMEM;
6046
6047 search_key.objectid = ino;
6048 search_key.type = BTRFS_INODE_REF_KEY;
6049 search_key.offset = 0;
6050again:
6051 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6052 if (ret < 0)
6053 goto out;
6054 if (ret == 0)
6055 path->slots[0]++;
6056
6057 while (true) {
6058 struct extent_buffer *leaf = path->nodes[0];
6059 int slot = path->slots[0];
6060 struct btrfs_key found_key;
6061
6062 if (slot >= btrfs_header_nritems(leaf)) {
6063 ret = btrfs_next_leaf(root, path);
6064 if (ret < 0)
6065 goto out;
6066 else if (ret > 0)
6067 break;
6068 continue;
6069 }
6070
6071 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6072 if (found_key.objectid != ino ||
6073 found_key.type > BTRFS_INODE_EXTREF_KEY)
6074 break;
6075
6076 /*
6077 * Don't deal with extended references because they are rare
6078 * cases and too complex to deal with (we would need to keep
6079 * track of which subitem we are processing for each item in
6080 * this loop, etc). So just return some error to fallback to
6081 * a transaction commit.
6082 */
6083 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6084 ret = -EMLINK;
6085 goto out;
6086 }
6087
6088 /*
6089 * Logging ancestors needs to do more searches on the fs/subvol
6090 * tree, so it releases the path as needed to avoid deadlocks.
6091 * Keep track of the last inode ref key and resume from that key
6092 * after logging all new ancestors for the current hard link.
6093 */
6094 memcpy(&search_key, &found_key, sizeof(search_key));
6095
6096 ret = log_new_ancestors(trans, root, path, ctx);
6097 if (ret)
6098 goto out;
6099 btrfs_release_path(path);
6100 goto again;
6101 }
6102 ret = 0;
6103out:
6104 btrfs_free_path(path);
6105 return ret;
6106}
6107
e02119d5
CM
6108/*
6109 * helper function around btrfs_log_inode to make sure newly created
6110 * parent directories also end up in the log. A minimal inode and backref
6111 * only logging is done of any parent directories that are older than
6112 * the last committed transaction
6113 */
48a3b636 6114static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6115 struct btrfs_inode *inode,
49dae1bc 6116 struct dentry *parent,
41a1eada 6117 int inode_only,
8b050d35 6118 struct btrfs_log_ctx *ctx)
e02119d5 6119{
f882274b 6120 struct btrfs_root *root = inode->root;
0b246afa 6121 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6122 int ret = 0;
2f2ff0ee 6123 bool log_dentries = false;
12fcfd22 6124
0b246afa 6125 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6126 ret = 1;
6127 goto end_no_trans;
6128 }
6129
f882274b 6130 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6131 ret = 1;
6132 goto end_no_trans;
6133 }
6134
f2d72f42
FM
6135 /*
6136 * Skip already logged inodes or inodes corresponding to tmpfiles
6137 * (since logging them is pointless, a link count of 0 means they
6138 * will never be accessible).
6139 */
626e9f41
FM
6140 if ((btrfs_inode_in_log(inode, trans->transid) &&
6141 list_empty(&ctx->ordered_extents)) ||
f2d72f42 6142 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6143 ret = BTRFS_NO_LOG_SYNC;
6144 goto end_no_trans;
6145 }
6146
8b050d35 6147 ret = start_log_trans(trans, root, ctx);
4a500fd1 6148 if (ret)
e87ac136 6149 goto end_no_trans;
e02119d5 6150
48778179 6151 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
4a500fd1
YZ
6152 if (ret)
6153 goto end_trans;
12fcfd22 6154
af4176b4
CM
6155 /*
6156 * for regular files, if its inode is already on disk, we don't
6157 * have to worry about the parents at all. This is because
6158 * we can use the last_unlink_trans field to record renames
6159 * and other fun in this file.
6160 */
19df27a9 6161 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
6162 inode->generation < trans->transid &&
6163 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
6164 ret = 0;
6165 goto end_trans;
6166 }
af4176b4 6167
19df27a9 6168 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6169 log_dentries = true;
6170
18aa0922 6171 /*
01327610 6172 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6173 * inodes are fully logged. This is to prevent leaving dangling
6174 * directory index entries in directories that were our parents but are
6175 * not anymore. Not doing this results in old parent directory being
6176 * impossible to delete after log replay (rmdir will always fail with
6177 * error -ENOTEMPTY).
6178 *
6179 * Example 1:
6180 *
6181 * mkdir testdir
6182 * touch testdir/foo
6183 * ln testdir/foo testdir/bar
6184 * sync
6185 * unlink testdir/bar
6186 * xfs_io -c fsync testdir/foo
6187 * <power failure>
6188 * mount fs, triggers log replay
6189 *
6190 * If we don't log the parent directory (testdir), after log replay the
6191 * directory still has an entry pointing to the file inode using the bar
6192 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6193 * the file inode has a link count of 1.
6194 *
6195 * Example 2:
6196 *
6197 * mkdir testdir
6198 * touch foo
6199 * ln foo testdir/foo2
6200 * ln foo testdir/foo3
6201 * sync
6202 * unlink testdir/foo3
6203 * xfs_io -c fsync foo
6204 * <power failure>
6205 * mount fs, triggers log replay
6206 *
6207 * Similar as the first example, after log replay the parent directory
6208 * testdir still has an entry pointing to the inode file with name foo3
6209 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6210 * and has a link count of 2.
6211 */
47d3db41 6212 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 6213 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6214 if (ret)
6215 goto end_trans;
6216 }
6217
b8aa330d
FM
6218 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6219 if (ret)
41bd6067 6220 goto end_trans;
76dda93c 6221
2f2ff0ee 6222 if (log_dentries)
b8aa330d 6223 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6224 else
6225 ret = 0;
4a500fd1
YZ
6226end_trans:
6227 if (ret < 0) {
90787766 6228 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6229 ret = 1;
6230 }
8b050d35
MX
6231
6232 if (ret)
6233 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6234 btrfs_end_log_trans(root);
6235end_no_trans:
6236 return ret;
e02119d5
CM
6237}
6238
6239/*
6240 * it is not safe to log dentry if the chunk root has added new
6241 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6242 * If this returns 1, you must commit the transaction to safely get your
6243 * data on disk.
6244 */
6245int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6246 struct dentry *dentry,
8b050d35 6247 struct btrfs_log_ctx *ctx)
e02119d5 6248{
6a912213
JB
6249 struct dentry *parent = dget_parent(dentry);
6250 int ret;
6251
f882274b 6252 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6253 LOG_INODE_ALL, ctx);
6a912213
JB
6254 dput(parent);
6255
6256 return ret;
e02119d5
CM
6257}
6258
6259/*
6260 * should be called during mount to recover any replay any log trees
6261 * from the FS
6262 */
6263int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6264{
6265 int ret;
6266 struct btrfs_path *path;
6267 struct btrfs_trans_handle *trans;
6268 struct btrfs_key key;
6269 struct btrfs_key found_key;
e02119d5
CM
6270 struct btrfs_root *log;
6271 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6272 struct walk_control wc = {
6273 .process_func = process_one_buffer,
430a6626 6274 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6275 };
6276
e02119d5 6277 path = btrfs_alloc_path();
db5b493a
TI
6278 if (!path)
6279 return -ENOMEM;
6280
afcdd129 6281 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6282
4a500fd1 6283 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6284 if (IS_ERR(trans)) {
6285 ret = PTR_ERR(trans);
6286 goto error;
6287 }
e02119d5
CM
6288
6289 wc.trans = trans;
6290 wc.pin = 1;
6291
db5b493a 6292 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6293 if (ret) {
5d163e0e
JM
6294 btrfs_handle_fs_error(fs_info, ret,
6295 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6296 goto error;
6297 }
e02119d5
CM
6298
6299again:
6300 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6301 key.offset = (u64)-1;
962a298f 6302 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6303
d397712b 6304 while (1) {
e02119d5 6305 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6306
6307 if (ret < 0) {
34d97007 6308 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6309 "Couldn't find tree log root.");
6310 goto error;
6311 }
e02119d5
CM
6312 if (ret > 0) {
6313 if (path->slots[0] == 0)
6314 break;
6315 path->slots[0]--;
6316 }
6317 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6318 path->slots[0]);
b3b4aa74 6319 btrfs_release_path(path);
e02119d5
CM
6320 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6321 break;
6322
62a2c73e 6323 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6324 if (IS_ERR(log)) {
6325 ret = PTR_ERR(log);
34d97007 6326 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6327 "Couldn't read tree log root.");
6328 goto error;
6329 }
e02119d5 6330
56e9357a
DS
6331 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6332 true);
79787eaa
JM
6333 if (IS_ERR(wc.replay_dest)) {
6334 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6335
6336 /*
6337 * We didn't find the subvol, likely because it was
6338 * deleted. This is ok, simply skip this log and go to
6339 * the next one.
6340 *
6341 * We need to exclude the root because we can't have
6342 * other log replays overwriting this log as we'll read
6343 * it back in a few more times. This will keep our
6344 * block from being modified, and we'll just bail for
6345 * each subsequent pass.
6346 */
6347 if (ret == -ENOENT)
9fce5704 6348 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6349 log->node->start,
6350 log->node->len);
00246528 6351 btrfs_put_root(log);
9bc574de
JB
6352
6353 if (!ret)
6354 goto next;
5d163e0e
JM
6355 btrfs_handle_fs_error(fs_info, ret,
6356 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6357 goto error;
6358 }
e02119d5 6359
07d400a6 6360 wc.replay_dest->log_root = log;
2002ae11
JB
6361 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6362 if (ret)
6363 /* The loop needs to continue due to the root refs */
6364 btrfs_handle_fs_error(fs_info, ret,
6365 "failed to record the log root in transaction");
6366 else
6367 ret = walk_log_tree(trans, log, &wc);
e02119d5 6368
b50c6e25 6369 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6370 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6371 path);
e02119d5
CM
6372 }
6373
900c9981
LB
6374 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6375 struct btrfs_root *root = wc.replay_dest;
6376
6377 btrfs_release_path(path);
6378
6379 /*
6380 * We have just replayed everything, and the highest
6381 * objectid of fs roots probably has changed in case
6382 * some inode_item's got replayed.
6383 *
6384 * root->objectid_mutex is not acquired as log replay
6385 * could only happen during mount.
6386 */
453e4873 6387 ret = btrfs_init_root_free_objectid(root);
900c9981
LB
6388 }
6389
07d400a6 6390 wc.replay_dest->log_root = NULL;
00246528 6391 btrfs_put_root(wc.replay_dest);
00246528 6392 btrfs_put_root(log);
e02119d5 6393
b50c6e25
JB
6394 if (ret)
6395 goto error;
9bc574de 6396next:
e02119d5
CM
6397 if (found_key.offset == 0)
6398 break;
9bc574de 6399 key.offset = found_key.offset - 1;
e02119d5 6400 }
b3b4aa74 6401 btrfs_release_path(path);
e02119d5
CM
6402
6403 /* step one is to pin it all, step two is to replay just inodes */
6404 if (wc.pin) {
6405 wc.pin = 0;
6406 wc.process_func = replay_one_buffer;
6407 wc.stage = LOG_WALK_REPLAY_INODES;
6408 goto again;
6409 }
6410 /* step three is to replay everything */
6411 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6412 wc.stage++;
6413 goto again;
6414 }
6415
6416 btrfs_free_path(path);
6417
abefa55a 6418 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6419 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6420 if (ret)
6421 return ret;
6422
e02119d5 6423 log_root_tree->log_root = NULL;
afcdd129 6424 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6425 btrfs_put_root(log_root_tree);
79787eaa 6426
abefa55a 6427 return 0;
79787eaa 6428error:
b50c6e25 6429 if (wc.trans)
3a45bb20 6430 btrfs_end_transaction(wc.trans);
1aeb6b56 6431 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
6432 btrfs_free_path(path);
6433 return ret;
e02119d5 6434}
12fcfd22
CM
6435
6436/*
6437 * there are some corner cases where we want to force a full
6438 * commit instead of allowing a directory to be logged.
6439 *
6440 * They revolve around files there were unlinked from the directory, and
6441 * this function updates the parent directory so that a full commit is
6442 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6443 *
6444 * Must be called before the unlink operations (updates to the subvolume tree,
6445 * inodes, etc) are done.
12fcfd22
CM
6446 */
6447void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6448 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6449 int for_rename)
6450{
af4176b4
CM
6451 /*
6452 * when we're logging a file, if it hasn't been renamed
6453 * or unlinked, and its inode is fully committed on disk,
6454 * we don't have to worry about walking up the directory chain
6455 * to log its parents.
6456 *
6457 * So, we use the last_unlink_trans field to put this transid
6458 * into the file. When the file is logged we check it and
6459 * don't log the parents if the file is fully on disk.
6460 */
4176bdbf
NB
6461 mutex_lock(&inode->log_mutex);
6462 inode->last_unlink_trans = trans->transid;
6463 mutex_unlock(&inode->log_mutex);
af4176b4 6464
12fcfd22
CM
6465 /*
6466 * if this directory was already logged any new
6467 * names for this file/dir will get recorded
6468 */
4176bdbf 6469 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6470 return;
6471
6472 /*
6473 * if the inode we're about to unlink was logged,
6474 * the log will be properly updated for any new names
6475 */
4176bdbf 6476 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6477 return;
6478
6479 /*
6480 * when renaming files across directories, if the directory
6481 * there we're unlinking from gets fsync'd later on, there's
6482 * no way to find the destination directory later and fsync it
6483 * properly. So, we have to be conservative and force commits
6484 * so the new name gets discovered.
6485 */
6486 if (for_rename)
6487 goto record;
6488
6489 /* we can safely do the unlink without any special recording */
6490 return;
6491
6492record:
4176bdbf
NB
6493 mutex_lock(&dir->log_mutex);
6494 dir->last_unlink_trans = trans->transid;
6495 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6496}
6497
6498/*
6499 * Make sure that if someone attempts to fsync the parent directory of a deleted
6500 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6501 * that after replaying the log tree of the parent directory's root we will not
6502 * see the snapshot anymore and at log replay time we will not see any log tree
6503 * corresponding to the deleted snapshot's root, which could lead to replaying
6504 * it after replaying the log tree of the parent directory (which would replay
6505 * the snapshot delete operation).
2be63d5c
FM
6506 *
6507 * Must be called before the actual snapshot destroy operation (updates to the
6508 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6509 */
6510void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6511 struct btrfs_inode *dir)
1ec9a1ae 6512{
43663557
NB
6513 mutex_lock(&dir->log_mutex);
6514 dir->last_unlink_trans = trans->transid;
6515 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6516}
6517
6518/*
6519 * Call this after adding a new name for a file and it will properly
6520 * update the log to reflect the new name.
12fcfd22 6521 */
75b463d2 6522void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6523 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6524 struct dentry *parent)
12fcfd22 6525{
75b463d2 6526 struct btrfs_log_ctx ctx;
12fcfd22 6527
af4176b4
CM
6528 /*
6529 * this will force the logging code to walk the dentry chain
6530 * up for the file
6531 */
9a6509c4 6532 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6533 inode->last_unlink_trans = trans->transid;
af4176b4 6534
12fcfd22
CM
6535 /*
6536 * if this inode hasn't been logged and directory we're renaming it
6537 * from hasn't been logged, we don't need to log it
6538 */
ecc64fab
FM
6539 if (!inode_logged(trans, inode) &&
6540 (!old_dir || !inode_logged(trans, old_dir)))
75b463d2 6541 return;
12fcfd22 6542
54a40fc3
FM
6543 /*
6544 * If we are doing a rename (old_dir is not NULL) from a directory that
6545 * was previously logged, make sure the next log attempt on the directory
6546 * is not skipped and logs the inode again. This is because the log may
6547 * not currently be authoritative for a range including the old
6548 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6549 * sure after a log replay we do not end up with both the new and old
6550 * dentries around (in case the inode is a directory we would have a
6551 * directory with two hard links and 2 inode references for different
6552 * parents). The next log attempt of old_dir will happen at
6553 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6554 * below, because we have previously set inode->last_unlink_trans to the
6555 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6556 * case inode is a directory.
6557 */
6558 if (old_dir)
6559 old_dir->logged_trans = 0;
6560
75b463d2
FM
6561 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6562 ctx.logging_new_name = true;
6563 /*
6564 * We don't care about the return value. If we fail to log the new name
6565 * then we know the next attempt to sync the log will fallback to a full
6566 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6567 * we don't need to worry about getting a log committed that has an
6568 * inconsistent state after a rename operation.
6569 */
48778179 6570 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6571}
6572