block: make blkcg_punt_bio_submit optional
[linux-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
c7f13d42 24#include "fs.h"
ad1ac501 25#include "accessors.h"
a0231804 26#include "extent-tree.h"
45c40c8f 27#include "root-tree.h"
f2b39277 28#include "dir-item.h"
7c8ede16 29#include "file-item.h"
af142b6f 30#include "file.h"
aa5d3003 31#include "orphan.h"
103c1972 32#include "tree-checker.h"
e02119d5 33
e09d94c9
FM
34#define MAX_CONFLICT_INODES 10
35
e02119d5
CM
36/* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
e13976cf
DS
42enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
e13976cf 45};
e02119d5 46
12fcfd22
CM
47/*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
e02119d5
CM
90/*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
e13976cf
DS
99enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104};
e02119d5 105
12fcfd22 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 107 struct btrfs_inode *inode,
49dae1bc 108 int inode_only,
8407f553 109 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
fa1a0f42 118static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
119
120/*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
e02119d5
CM
143/*
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
147 */
148static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
e02119d5 151{
0b246afa 152 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 153 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 154 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 155 int ret = 0;
fa1a0f42 156 bool created = false;
7237f183 157
47876f7c
FM
158 /*
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
161 */
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 166 if (!ret) {
47876f7c 167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
168 created = true;
169 }
47876f7c
FM
170 }
171 mutex_unlock(&tree_root->log_mutex);
172 if (ret)
173 return ret;
174 }
175
7237f183 176 mutex_lock(&root->log_mutex);
34eb2a52 177
fa1a0f42 178again:
7237f183 179 if (root->log_root) {
fa1a0f42
NA
180 int index = (root->log_transid + 1) % 2;
181
4884b8e8 182 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 183 ret = BTRFS_LOG_FORCE_COMMIT;
50471a38
MX
184 goto out;
185 }
34eb2a52 186
fa1a0f42
NA
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
189 goto again;
190 }
191
ff782e0a 192 if (!root->log_start_pid) {
27cdeb70 193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 194 root->log_start_pid = current->pid;
ff782e0a 195 } else if (root->log_start_pid != current->pid) {
27cdeb70 196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 197 }
34eb2a52 198 } else {
fa1a0f42
NA
199 /*
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
203 * writing.
204 */
205 if (zoned && !created) {
f31f09f6 206 ret = BTRFS_LOG_FORCE_COMMIT;
fa1a0f42
NA
207 goto out;
208 }
209
e02119d5 210 ret = btrfs_add_log_tree(trans, root);
4a500fd1 211 if (ret)
e87ac136 212 goto out;
34eb2a52 213
e7a79811 214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
e02119d5 217 }
34eb2a52 218
7237f183 219 atomic_inc(&root->log_writers);
289cffcb 220 if (!ctx->logging_new_name) {
34eb2a52 221 int index = root->log_transid % 2;
8b050d35 222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 223 ctx->log_transid = root->log_transid;
8b050d35 224 }
34eb2a52 225
e87ac136 226out:
7237f183 227 mutex_unlock(&root->log_mutex);
e87ac136 228 return ret;
e02119d5
CM
229}
230
231/*
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
234 * in progress
235 */
236static int join_running_log_trans(struct btrfs_root *root)
237{
fa1a0f42 238 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
239 int ret = -ENOENT;
240
e7a79811
FM
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 return ret;
243
7237f183 244 mutex_lock(&root->log_mutex);
fa1a0f42 245again:
e02119d5 246 if (root->log_root) {
fa1a0f42
NA
247 int index = (root->log_transid + 1) % 2;
248
e02119d5 249 ret = 0;
fa1a0f42
NA
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
252 goto again;
253 }
7237f183 254 atomic_inc(&root->log_writers);
e02119d5 255 }
7237f183 256 mutex_unlock(&root->log_mutex);
e02119d5
CM
257 return ret;
258}
259
12fcfd22
CM
260/*
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
264 */
45128b08 265void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 266{
12fcfd22 267 atomic_inc(&root->log_writers);
12fcfd22
CM
268}
269
e02119d5
CM
270/*
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
273 */
143bede5 274void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 275{
7237f183 276 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 279 }
e02119d5
CM
280}
281
e02119d5
CM
282/*
283 * the walk control struct is used to pass state down the chain when
284 * processing the log tree. The stage field tells us which part
285 * of the log tree processing we are currently doing. The others
286 * are state fields used for that specific part
287 */
288struct walk_control {
289 /* should we free the extent on disk when done? This is used
290 * at transaction commit time while freeing a log tree
291 */
292 int free;
293
e02119d5
CM
294 /* pin only walk, we record which extents on disk belong to the
295 * log trees
296 */
297 int pin;
298
299 /* what stage of the replay code we're currently in */
300 int stage;
301
f2d72f42
FM
302 /*
303 * Ignore any items from the inode currently being processed. Needs
304 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
305 * the LOG_WALK_REPLAY_INODES stage.
306 */
307 bool ignore_cur_inode;
308
e02119d5
CM
309 /* the root we are currently replaying */
310 struct btrfs_root *replay_dest;
311
312 /* the trans handle for the current replay */
313 struct btrfs_trans_handle *trans;
314
315 /* the function that gets used to process blocks we find in the
316 * tree. Note the extent_buffer might not be up to date when it is
317 * passed in, and it must be checked or read if you need the data
318 * inside it
319 */
320 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 321 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
322};
323
324/*
325 * process_func used to pin down extents, write them or wait on them
326 */
327static int process_one_buffer(struct btrfs_root *log,
328 struct extent_buffer *eb,
581c1760 329 struct walk_control *wc, u64 gen, int level)
e02119d5 330{
0b246afa 331 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
332 int ret = 0;
333
8c2a1a30
JB
334 /*
335 * If this fs is mixed then we need to be able to process the leaves to
336 * pin down any logged extents, so we have to read the block.
337 */
0b246afa 338 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
789d6a3a
QW
339 struct btrfs_tree_parent_check check = {
340 .level = level,
341 .transid = gen
342 };
343
344 ret = btrfs_read_extent_buffer(eb, &check);
8c2a1a30
JB
345 if (ret)
346 return ret;
347 }
348
c816d705 349 if (wc->pin) {
9fce5704 350 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 351 eb->len);
c816d705
FM
352 if (ret)
353 return ret;
e02119d5 354
c816d705
FM
355 if (btrfs_buffer_uptodate(eb, gen, 0) &&
356 btrfs_header_level(eb) == 0)
bcdc428c 357 ret = btrfs_exclude_logged_extents(eb);
e02119d5 358 }
b50c6e25 359 return ret;
e02119d5
CM
360}
361
3a8d1db3
FM
362/*
363 * Item overwrite used by replay and tree logging. eb, slot and key all refer
364 * to the src data we are copying out.
365 *
366 * root is the tree we are copying into, and path is a scratch
367 * path for use in this function (it should be released on entry and
368 * will be released on exit).
369 *
370 * If the key is already in the destination tree the existing item is
371 * overwritten. If the existing item isn't big enough, it is extended.
372 * If it is too large, it is truncated.
373 *
374 * If the key isn't in the destination yet, a new item is inserted.
375 */
376static int overwrite_item(struct btrfs_trans_handle *trans,
377 struct btrfs_root *root,
378 struct btrfs_path *path,
379 struct extent_buffer *eb, int slot,
380 struct btrfs_key *key)
e02119d5
CM
381{
382 int ret;
383 u32 item_size;
384 u64 saved_i_size = 0;
385 int save_old_i_size = 0;
386 unsigned long src_ptr;
387 unsigned long dst_ptr;
4bc4bee4 388 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5 389
3eb42344
FM
390 /*
391 * This is only used during log replay, so the root is always from a
392 * fs/subvolume tree. In case we ever need to support a log root, then
393 * we'll have to clone the leaf in the path, release the path and use
394 * the leaf before writing into the log tree. See the comments at
395 * copy_items() for more details.
396 */
397 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
e02119d5 398
3212fa14 399 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
400 src_ptr = btrfs_item_ptr_offset(eb, slot);
401
3a8d1db3
FM
402 /* Look for the key in the destination tree. */
403 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
404 if (ret < 0)
405 return ret;
4bc4bee4 406
e02119d5
CM
407 if (ret == 0) {
408 char *src_copy;
409 char *dst_copy;
3212fa14 410 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
411 path->slots[0]);
412 if (dst_size != item_size)
413 goto insert;
414
415 if (item_size == 0) {
b3b4aa74 416 btrfs_release_path(path);
e02119d5
CM
417 return 0;
418 }
419 dst_copy = kmalloc(item_size, GFP_NOFS);
420 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 421 if (!dst_copy || !src_copy) {
b3b4aa74 422 btrfs_release_path(path);
2a29edc6 423 kfree(dst_copy);
424 kfree(src_copy);
425 return -ENOMEM;
426 }
e02119d5
CM
427
428 read_extent_buffer(eb, src_copy, src_ptr, item_size);
429
430 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
431 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
432 item_size);
433 ret = memcmp(dst_copy, src_copy, item_size);
434
435 kfree(dst_copy);
436 kfree(src_copy);
437 /*
438 * they have the same contents, just return, this saves
439 * us from cowing blocks in the destination tree and doing
440 * extra writes that may not have been done by a previous
441 * sync
442 */
443 if (ret == 0) {
b3b4aa74 444 btrfs_release_path(path);
e02119d5
CM
445 return 0;
446 }
447
4bc4bee4
JB
448 /*
449 * We need to load the old nbytes into the inode so when we
450 * replay the extents we've logged we get the right nbytes.
451 */
452 if (inode_item) {
453 struct btrfs_inode_item *item;
454 u64 nbytes;
d555438b 455 u32 mode;
4bc4bee4
JB
456
457 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
458 struct btrfs_inode_item);
459 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
460 item = btrfs_item_ptr(eb, slot,
461 struct btrfs_inode_item);
462 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
463
464 /*
465 * If this is a directory we need to reset the i_size to
466 * 0 so that we can set it up properly when replaying
467 * the rest of the items in this log.
468 */
469 mode = btrfs_inode_mode(eb, item);
470 if (S_ISDIR(mode))
471 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
472 }
473 } else if (inode_item) {
474 struct btrfs_inode_item *item;
d555438b 475 u32 mode;
4bc4bee4
JB
476
477 /*
478 * New inode, set nbytes to 0 so that the nbytes comes out
479 * properly when we replay the extents.
480 */
481 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
482 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
483
484 /*
485 * If this is a directory we need to reset the i_size to 0 so
486 * that we can set it up properly when replaying the rest of
487 * the items in this log.
488 */
489 mode = btrfs_inode_mode(eb, item);
490 if (S_ISDIR(mode))
491 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
492 }
493insert:
b3b4aa74 494 btrfs_release_path(path);
e02119d5 495 /* try to insert the key into the destination tree */
df8d116f 496 path->skip_release_on_error = 1;
e02119d5
CM
497 ret = btrfs_insert_empty_item(trans, root, path,
498 key, item_size);
df8d116f 499 path->skip_release_on_error = 0;
e02119d5
CM
500
501 /* make sure any existing item is the correct size */
df8d116f 502 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 503 u32 found_size;
3212fa14 504 found_size = btrfs_item_size(path->nodes[0],
e02119d5 505 path->slots[0]);
143bede5 506 if (found_size > item_size)
78ac4f9e 507 btrfs_truncate_item(path, item_size, 1);
143bede5 508 else if (found_size < item_size)
c71dd880 509 btrfs_extend_item(path, item_size - found_size);
e02119d5 510 } else if (ret) {
4a500fd1 511 return ret;
e02119d5
CM
512 }
513 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
514 path->slots[0]);
515
516 /* don't overwrite an existing inode if the generation number
517 * was logged as zero. This is done when the tree logging code
518 * is just logging an inode to make sure it exists after recovery.
519 *
520 * Also, don't overwrite i_size on directories during replay.
521 * log replay inserts and removes directory items based on the
522 * state of the tree found in the subvolume, and i_size is modified
523 * as it goes
524 */
525 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
526 struct btrfs_inode_item *src_item;
527 struct btrfs_inode_item *dst_item;
528
529 src_item = (struct btrfs_inode_item *)src_ptr;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531
1a4bcf47
FM
532 if (btrfs_inode_generation(eb, src_item) == 0) {
533 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 534 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 535
2f2ff0ee
FM
536 /*
537 * For regular files an ino_size == 0 is used only when
538 * logging that an inode exists, as part of a directory
539 * fsync, and the inode wasn't fsynced before. In this
540 * case don't set the size of the inode in the fs/subvol
541 * tree, otherwise we would be throwing valid data away.
542 */
1a4bcf47 543 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 544 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
545 ino_size != 0)
546 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 547 goto no_copy;
1a4bcf47 548 }
e02119d5 549
3eb42344 550 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
e02119d5
CM
551 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
552 save_old_i_size = 1;
553 saved_i_size = btrfs_inode_size(path->nodes[0],
554 dst_item);
555 }
556 }
557
558 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
559 src_ptr, item_size);
560
561 if (save_old_i_size) {
562 struct btrfs_inode_item *dst_item;
563 dst_item = (struct btrfs_inode_item *)dst_ptr;
564 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
565 }
566
567 /* make sure the generation is filled in */
568 if (key->type == BTRFS_INODE_ITEM_KEY) {
569 struct btrfs_inode_item *dst_item;
570 dst_item = (struct btrfs_inode_item *)dst_ptr;
571 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
572 btrfs_set_inode_generation(path->nodes[0], dst_item,
573 trans->transid);
574 }
575 }
576no_copy:
577 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 578 btrfs_release_path(path);
e02119d5
CM
579 return 0;
580}
581
e43eec81 582static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
6db75318 583 struct fscrypt_str *name)
e43eec81
STD
584{
585 char *buf;
586
587 buf = kmalloc(len, GFP_NOFS);
588 if (!buf)
589 return -ENOMEM;
590
591 read_extent_buffer(eb, buf, (unsigned long)start, len);
592 name->name = buf;
593 name->len = len;
594 return 0;
595}
596
e02119d5
CM
597/*
598 * simple helper to read an inode off the disk from a given root
599 * This can only be called for subvolume roots and not for the log
600 */
601static noinline struct inode *read_one_inode(struct btrfs_root *root,
602 u64 objectid)
603{
604 struct inode *inode;
e02119d5 605
0202e83f 606 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 607 if (IS_ERR(inode))
5d4f98a2 608 inode = NULL;
e02119d5
CM
609 return inode;
610}
611
612/* replays a single extent in 'eb' at 'slot' with 'key' into the
613 * subvolume 'root'. path is released on entry and should be released
614 * on exit.
615 *
616 * extents in the log tree have not been allocated out of the extent
617 * tree yet. So, this completes the allocation, taking a reference
618 * as required if the extent already exists or creating a new extent
619 * if it isn't in the extent allocation tree yet.
620 *
621 * The extent is inserted into the file, dropping any existing extents
622 * from the file that overlap the new one.
623 */
624static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct btrfs_path *path,
627 struct extent_buffer *eb, int slot,
628 struct btrfs_key *key)
629{
5893dfb9 630 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 631 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 632 int found_type;
e02119d5 633 u64 extent_end;
e02119d5 634 u64 start = key->offset;
4bc4bee4 635 u64 nbytes = 0;
e02119d5
CM
636 struct btrfs_file_extent_item *item;
637 struct inode *inode = NULL;
638 unsigned long size;
639 int ret = 0;
640
641 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
642 found_type = btrfs_file_extent_type(eb, item);
643
d899e052 644 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
645 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
646 nbytes = btrfs_file_extent_num_bytes(eb, item);
647 extent_end = start + nbytes;
648
649 /*
650 * We don't add to the inodes nbytes if we are prealloc or a
651 * hole.
652 */
653 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
654 nbytes = 0;
655 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 656 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 657 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 658 extent_end = ALIGN(start + size,
0b246afa 659 fs_info->sectorsize);
e02119d5
CM
660 } else {
661 ret = 0;
662 goto out;
663 }
664
665 inode = read_one_inode(root, key->objectid);
666 if (!inode) {
667 ret = -EIO;
668 goto out;
669 }
670
671 /*
672 * first check to see if we already have this extent in the
673 * file. This must be done before the btrfs_drop_extents run
674 * so we don't try to drop this extent.
675 */
f85b7379
DS
676 ret = btrfs_lookup_file_extent(trans, root, path,
677 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 678
d899e052
YZ
679 if (ret == 0 &&
680 (found_type == BTRFS_FILE_EXTENT_REG ||
681 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
682 struct btrfs_file_extent_item cmp1;
683 struct btrfs_file_extent_item cmp2;
684 struct btrfs_file_extent_item *existing;
685 struct extent_buffer *leaf;
686
687 leaf = path->nodes[0];
688 existing = btrfs_item_ptr(leaf, path->slots[0],
689 struct btrfs_file_extent_item);
690
691 read_extent_buffer(eb, &cmp1, (unsigned long)item,
692 sizeof(cmp1));
693 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
694 sizeof(cmp2));
695
696 /*
697 * we already have a pointer to this exact extent,
698 * we don't have to do anything
699 */
700 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 701 btrfs_release_path(path);
e02119d5
CM
702 goto out;
703 }
704 }
b3b4aa74 705 btrfs_release_path(path);
e02119d5
CM
706
707 /* drop any overlapping extents */
5893dfb9
FM
708 drop_args.start = start;
709 drop_args.end = extent_end;
710 drop_args.drop_cache = true;
711 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
712 if (ret)
713 goto out;
e02119d5 714
07d400a6
YZ
715 if (found_type == BTRFS_FILE_EXTENT_REG ||
716 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 717 u64 offset;
07d400a6
YZ
718 unsigned long dest_offset;
719 struct btrfs_key ins;
720
3168021c
FM
721 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
722 btrfs_fs_incompat(fs_info, NO_HOLES))
723 goto update_inode;
724
07d400a6
YZ
725 ret = btrfs_insert_empty_item(trans, root, path, key,
726 sizeof(*item));
3650860b
JB
727 if (ret)
728 goto out;
07d400a6
YZ
729 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
730 path->slots[0]);
731 copy_extent_buffer(path->nodes[0], eb, dest_offset,
732 (unsigned long)item, sizeof(*item));
733
734 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
735 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
736 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 737 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 738
df2c95f3
QW
739 /*
740 * Manually record dirty extent, as here we did a shallow
741 * file extent item copy and skip normal backref update,
742 * but modifying extent tree all by ourselves.
743 * So need to manually record dirty extent for qgroup,
744 * as the owner of the file extent changed from log tree
745 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
746 */
a95f3aaf 747 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3 748 btrfs_file_extent_disk_bytenr(eb, item),
e2896e79 749 btrfs_file_extent_disk_num_bytes(eb, item));
df2c95f3
QW
750 if (ret < 0)
751 goto out;
752
07d400a6 753 if (ins.objectid > 0) {
82fa113f 754 struct btrfs_ref ref = { 0 };
07d400a6
YZ
755 u64 csum_start;
756 u64 csum_end;
757 LIST_HEAD(ordered_sums);
82fa113f 758
07d400a6
YZ
759 /*
760 * is this extent already allocated in the extent
761 * allocation tree? If so, just add a reference
762 */
2ff7e61e 763 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 764 ins.offset);
3736127a
MPS
765 if (ret < 0) {
766 goto out;
767 } else if (ret == 0) {
82fa113f
QW
768 btrfs_init_generic_ref(&ref,
769 BTRFS_ADD_DELAYED_REF,
770 ins.objectid, ins.offset, 0);
771 btrfs_init_data_ref(&ref,
772 root->root_key.objectid,
f42c5da6 773 key->objectid, offset, 0, false);
82fa113f 774 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
775 if (ret)
776 goto out;
07d400a6
YZ
777 } else {
778 /*
779 * insert the extent pointer in the extent
780 * allocation tree
781 */
5d4f98a2 782 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 783 root->root_key.objectid,
5d4f98a2 784 key->objectid, offset, &ins);
b50c6e25
JB
785 if (ret)
786 goto out;
07d400a6 787 }
b3b4aa74 788 btrfs_release_path(path);
07d400a6
YZ
789
790 if (btrfs_file_extent_compression(eb, item)) {
791 csum_start = ins.objectid;
792 csum_end = csum_start + ins.offset;
793 } else {
794 csum_start = ins.objectid +
795 btrfs_file_extent_offset(eb, item);
796 csum_end = csum_start +
797 btrfs_file_extent_num_bytes(eb, item);
798 }
799
97e38239 800 ret = btrfs_lookup_csums_list(root->log_root,
07d400a6 801 csum_start, csum_end - 1,
26ce9114 802 &ordered_sums, 0, false);
3650860b
JB
803 if (ret)
804 goto out;
b84b8390
FM
805 /*
806 * Now delete all existing cums in the csum root that
807 * cover our range. We do this because we can have an
808 * extent that is completely referenced by one file
809 * extent item and partially referenced by another
810 * file extent item (like after using the clone or
811 * extent_same ioctls). In this case if we end up doing
812 * the replay of the one that partially references the
813 * extent first, and we do not do the csum deletion
814 * below, we can get 2 csum items in the csum tree that
815 * overlap each other. For example, imagine our log has
816 * the two following file extent items:
817 *
818 * key (257 EXTENT_DATA 409600)
819 * extent data disk byte 12845056 nr 102400
820 * extent data offset 20480 nr 20480 ram 102400
821 *
822 * key (257 EXTENT_DATA 819200)
823 * extent data disk byte 12845056 nr 102400
824 * extent data offset 0 nr 102400 ram 102400
825 *
826 * Where the second one fully references the 100K extent
827 * that starts at disk byte 12845056, and the log tree
828 * has a single csum item that covers the entire range
829 * of the extent:
830 *
831 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832 *
833 * After the first file extent item is replayed, the
834 * csum tree gets the following csum item:
835 *
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which covers the 20K sub-range starting at offset 20K
839 * of our extent. Now when we replay the second file
840 * extent item, if we do not delete existing csum items
841 * that cover any of its blocks, we end up getting two
842 * csum items in our csum tree that overlap each other:
843 *
844 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846 *
847 * Which is a problem, because after this anyone trying
848 * to lookup up for the checksum of any block of our
849 * extent starting at an offset of 40K or higher, will
850 * end up looking at the second csum item only, which
851 * does not contain the checksum for any block starting
852 * at offset 40K or higher of our extent.
853 */
07d400a6
YZ
854 while (!list_empty(&ordered_sums)) {
855 struct btrfs_ordered_sum *sums;
fc28b25e
JB
856 struct btrfs_root *csum_root;
857
07d400a6
YZ
858 sums = list_entry(ordered_sums.next,
859 struct btrfs_ordered_sum,
860 list);
fc28b25e
JB
861 csum_root = btrfs_csum_root(fs_info,
862 sums->bytenr);
b84b8390 863 if (!ret)
fc28b25e 864 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
865 sums->bytenr,
866 sums->len);
3650860b
JB
867 if (!ret)
868 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
869 csum_root,
870 sums);
07d400a6
YZ
871 list_del(&sums->list);
872 kfree(sums);
873 }
3650860b
JB
874 if (ret)
875 goto out;
07d400a6 876 } else {
b3b4aa74 877 btrfs_release_path(path);
07d400a6
YZ
878 }
879 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 /* inline extents are easy, we just overwrite them */
881 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
882 if (ret)
883 goto out;
07d400a6 884 }
e02119d5 885
9ddc959e
JB
886 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887 extent_end - start);
888 if (ret)
889 goto out;
890
3168021c 891update_inode:
2766ff61 892 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 893 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 894out:
8aa1e49e 895 iput(inode);
e02119d5
CM
896 return ret;
897}
898
313ab753
FM
899static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 struct btrfs_inode *dir,
901 struct btrfs_inode *inode,
6db75318 902 const struct fscrypt_str *name)
313ab753
FM
903{
904 int ret;
905
e43eec81 906 ret = btrfs_unlink_inode(trans, dir, inode, name);
313ab753
FM
907 if (ret)
908 return ret;
909 /*
910 * Whenever we need to check if a name exists or not, we check the
911 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 * that future checks for a name during log replay see that the name
913 * does not exists anymore.
914 */
915 return btrfs_run_delayed_items(trans);
916}
917
e02119d5
CM
918/*
919 * when cleaning up conflicts between the directory names in the
920 * subvolume, directory names in the log and directory names in the
921 * inode back references, we may have to unlink inodes from directories.
922 *
923 * This is a helper function to do the unlink of a specific directory
924 * item
925 */
926static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 927 struct btrfs_path *path,
207e7d92 928 struct btrfs_inode *dir,
e02119d5
CM
929 struct btrfs_dir_item *di)
930{
9798ba24 931 struct btrfs_root *root = dir->root;
e02119d5 932 struct inode *inode;
6db75318 933 struct fscrypt_str name;
e02119d5
CM
934 struct extent_buffer *leaf;
935 struct btrfs_key location;
936 int ret;
937
938 leaf = path->nodes[0];
939
940 btrfs_dir_item_key_to_cpu(leaf, di, &location);
e43eec81
STD
941 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942 if (ret)
2a29edc6 943 return -ENOMEM;
944
b3b4aa74 945 btrfs_release_path(path);
e02119d5
CM
946
947 inode = read_one_inode(root, location.objectid);
c00e9493 948 if (!inode) {
3650860b
JB
949 ret = -EIO;
950 goto out;
c00e9493 951 }
e02119d5 952
ec051c0f 953 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
954 if (ret)
955 goto out;
12fcfd22 956
e43eec81 957 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
3650860b 958out:
e43eec81 959 kfree(name.name);
e02119d5
CM
960 iput(inode);
961 return ret;
962}
963
964/*
77a5b9e3
FM
965 * See if a given name and sequence number found in an inode back reference are
966 * already in a directory and correctly point to this inode.
967 *
968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969 * exists.
e02119d5
CM
970 */
971static noinline int inode_in_dir(struct btrfs_root *root,
972 struct btrfs_path *path,
973 u64 dirid, u64 objectid, u64 index,
6db75318 974 struct fscrypt_str *name)
e02119d5
CM
975{
976 struct btrfs_dir_item *di;
977 struct btrfs_key location;
77a5b9e3 978 int ret = 0;
e02119d5
CM
979
980 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
e43eec81 981 index, name, 0);
77a5b9e3 982 if (IS_ERR(di)) {
8dcbc261 983 ret = PTR_ERR(di);
77a5b9e3
FM
984 goto out;
985 } else if (di) {
e02119d5
CM
986 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 if (location.objectid != objectid)
988 goto out;
77a5b9e3 989 } else {
e02119d5 990 goto out;
77a5b9e3 991 }
e02119d5 992
77a5b9e3 993 btrfs_release_path(path);
e43eec81 994 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
77a5b9e3
FM
995 if (IS_ERR(di)) {
996 ret = PTR_ERR(di);
e02119d5 997 goto out;
77a5b9e3
FM
998 } else if (di) {
999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 if (location.objectid == objectid)
1001 ret = 1;
1002 }
e02119d5 1003out:
b3b4aa74 1004 btrfs_release_path(path);
77a5b9e3 1005 return ret;
e02119d5
CM
1006}
1007
1008/*
1009 * helper function to check a log tree for a named back reference in
1010 * an inode. This is used to decide if a back reference that is
1011 * found in the subvolume conflicts with what we find in the log.
1012 *
1013 * inode backreferences may have multiple refs in a single item,
1014 * during replay we process one reference at a time, and we don't
1015 * want to delete valid links to a file from the subvolume if that
1016 * link is also in the log.
1017 */
1018static noinline int backref_in_log(struct btrfs_root *log,
1019 struct btrfs_key *key,
f186373f 1020 u64 ref_objectid,
6db75318 1021 const struct fscrypt_str *name)
e02119d5
CM
1022{
1023 struct btrfs_path *path;
e02119d5 1024 int ret;
e02119d5
CM
1025
1026 path = btrfs_alloc_path();
2a29edc6 1027 if (!path)
1028 return -ENOMEM;
1029
e02119d5 1030 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1031 if (ret < 0) {
1032 goto out;
1033 } else if (ret == 1) {
89cbf5f6 1034 ret = 0;
f186373f
MF
1035 goto out;
1036 }
1037
89cbf5f6
NB
1038 if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040 path->slots[0],
e43eec81 1041 ref_objectid, name);
89cbf5f6
NB
1042 else
1043 ret = !!btrfs_find_name_in_backref(path->nodes[0],
e43eec81 1044 path->slots[0], name);
e02119d5
CM
1045out:
1046 btrfs_free_path(path);
89cbf5f6 1047 return ret;
e02119d5
CM
1048}
1049
5a1d7843 1050static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1051 struct btrfs_root *root,
e02119d5 1052 struct btrfs_path *path,
5a1d7843 1053 struct btrfs_root *log_root,
94c91a1f
NB
1054 struct btrfs_inode *dir,
1055 struct btrfs_inode *inode,
f186373f 1056 u64 inode_objectid, u64 parent_objectid,
6db75318 1057 u64 ref_index, struct fscrypt_str *name)
e02119d5 1058{
34f3e4f2 1059 int ret;
f186373f 1060 struct extent_buffer *leaf;
5a1d7843 1061 struct btrfs_dir_item *di;
f186373f
MF
1062 struct btrfs_key search_key;
1063 struct btrfs_inode_extref *extref;
c622ae60 1064
f186373f
MF
1065again:
1066 /* Search old style refs */
1067 search_key.objectid = inode_objectid;
1068 search_key.type = BTRFS_INODE_REF_KEY;
1069 search_key.offset = parent_objectid;
1070 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1071 if (ret == 0) {
e02119d5
CM
1072 struct btrfs_inode_ref *victim_ref;
1073 unsigned long ptr;
1074 unsigned long ptr_end;
f186373f
MF
1075
1076 leaf = path->nodes[0];
e02119d5
CM
1077
1078 /* are we trying to overwrite a back ref for the root directory
1079 * if so, just jump out, we're done
1080 */
f186373f 1081 if (search_key.objectid == search_key.offset)
5a1d7843 1082 return 1;
e02119d5
CM
1083
1084 /* check all the names in this back reference to see
1085 * if they are in the log. if so, we allow them to stay
1086 * otherwise they must be unlinked as a conflict
1087 */
1088 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1089 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1090 while (ptr < ptr_end) {
6db75318 1091 struct fscrypt_str victim_name;
e02119d5 1092
e43eec81
STD
1093 victim_ref = (struct btrfs_inode_ref *)ptr;
1094 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 btrfs_inode_ref_name_len(leaf, victim_ref),
1096 &victim_name);
1097 if (ret)
1098 return ret;
e02119d5 1099
d3316c82 1100 ret = backref_in_log(log_root, &search_key,
e43eec81 1101 parent_objectid, &victim_name);
d3316c82 1102 if (ret < 0) {
e43eec81 1103 kfree(victim_name.name);
d3316c82
NB
1104 return ret;
1105 } else if (!ret) {
94c91a1f 1106 inc_nlink(&inode->vfs_inode);
b3b4aa74 1107 btrfs_release_path(path);
12fcfd22 1108
313ab753 1109 ret = unlink_inode_for_log_replay(trans, dir, inode,
e43eec81
STD
1110 &victim_name);
1111 kfree(victim_name.name);
ada9af21
FDBM
1112 if (ret)
1113 return ret;
f186373f 1114 goto again;
e02119d5 1115 }
e43eec81 1116 kfree(victim_name.name);
f186373f 1117
e43eec81 1118 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
e02119d5 1119 }
e02119d5 1120 }
b3b4aa74 1121 btrfs_release_path(path);
e02119d5 1122
f186373f 1123 /* Same search but for extended refs */
e43eec81 1124 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
f186373f
MF
1125 inode_objectid, parent_objectid, 0,
1126 0);
7a6b75b7
FM
1127 if (IS_ERR(extref)) {
1128 return PTR_ERR(extref);
1129 } else if (extref) {
f186373f
MF
1130 u32 item_size;
1131 u32 cur_offset = 0;
1132 unsigned long base;
1133 struct inode *victim_parent;
1134
1135 leaf = path->nodes[0];
1136
3212fa14 1137 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1138 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139
1140 while (cur_offset < item_size) {
6db75318 1141 struct fscrypt_str victim_name;
f186373f 1142
e43eec81 1143 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1144
1145 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146 goto next;
1147
e43eec81
STD
1148 ret = read_alloc_one_name(leaf, &extref->name,
1149 btrfs_inode_extref_name_len(leaf, extref),
1150 &victim_name);
1151 if (ret)
1152 return ret;
f186373f
MF
1153
1154 search_key.objectid = inode_objectid;
1155 search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 search_key.offset = btrfs_extref_hash(parent_objectid,
e43eec81
STD
1157 victim_name.name,
1158 victim_name.len);
d3316c82 1159 ret = backref_in_log(log_root, &search_key,
e43eec81 1160 parent_objectid, &victim_name);
d3316c82 1161 if (ret < 0) {
e43eec81 1162 kfree(victim_name.name);
d3316c82
NB
1163 return ret;
1164 } else if (!ret) {
f186373f
MF
1165 ret = -ENOENT;
1166 victim_parent = read_one_inode(root,
94c91a1f 1167 parent_objectid);
f186373f 1168 if (victim_parent) {
94c91a1f 1169 inc_nlink(&inode->vfs_inode);
f186373f
MF
1170 btrfs_release_path(path);
1171
313ab753 1172 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1173 BTRFS_I(victim_parent),
e43eec81 1174 inode, &victim_name);
f186373f 1175 }
f186373f 1176 iput(victim_parent);
e43eec81 1177 kfree(victim_name.name);
3650860b
JB
1178 if (ret)
1179 return ret;
f186373f
MF
1180 goto again;
1181 }
e43eec81 1182 kfree(victim_name.name);
f186373f 1183next:
e43eec81 1184 cur_offset += victim_name.len + sizeof(*extref);
f186373f 1185 }
f186373f
MF
1186 }
1187 btrfs_release_path(path);
1188
34f3e4f2 1189 /* look for a conflicting sequence number */
94c91a1f 1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
e43eec81 1191 ref_index, name, 0);
52db7779 1192 if (IS_ERR(di)) {
8dcbc261 1193 return PTR_ERR(di);
52db7779 1194 } else if (di) {
9798ba24 1195 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1196 if (ret)
1197 return ret;
34f3e4f2 1198 }
1199 btrfs_release_path(path);
1200
52042d8e 1201 /* look for a conflicting name */
e43eec81 1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
52db7779
FM
1203 if (IS_ERR(di)) {
1204 return PTR_ERR(di);
1205 } else if (di) {
9798ba24 1206 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1207 if (ret)
1208 return ret;
34f3e4f2 1209 }
1210 btrfs_release_path(path);
1211
5a1d7843
JS
1212 return 0;
1213}
e02119d5 1214
bae15d95 1215static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1216 struct fscrypt_str *name, u64 *index,
bae15d95 1217 u64 *parent_objectid)
f186373f
MF
1218{
1219 struct btrfs_inode_extref *extref;
e43eec81 1220 int ret;
f186373f
MF
1221
1222 extref = (struct btrfs_inode_extref *)ref_ptr;
1223
e43eec81
STD
1224 ret = read_alloc_one_name(eb, &extref->name,
1225 btrfs_inode_extref_name_len(eb, extref), name);
1226 if (ret)
1227 return ret;
f186373f 1228
1f250e92
FM
1229 if (index)
1230 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1231 if (parent_objectid)
1232 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233
1234 return 0;
1235}
1236
bae15d95 1237static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1238 struct fscrypt_str *name, u64 *index)
f186373f
MF
1239{
1240 struct btrfs_inode_ref *ref;
e43eec81 1241 int ret;
f186373f
MF
1242
1243 ref = (struct btrfs_inode_ref *)ref_ptr;
1244
e43eec81
STD
1245 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246 name);
1247 if (ret)
1248 return ret;
f186373f 1249
1f250e92
FM
1250 if (index)
1251 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1252
1253 return 0;
1254}
1255
1f250e92
FM
1256/*
1257 * Take an inode reference item from the log tree and iterate all names from the
1258 * inode reference item in the subvolume tree with the same key (if it exists).
1259 * For any name that is not in the inode reference item from the log tree, do a
1260 * proper unlink of that name (that is, remove its entry from the inode
1261 * reference item and both dir index keys).
1262 */
1263static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 struct btrfs_root *root,
1265 struct btrfs_path *path,
1266 struct btrfs_inode *inode,
1267 struct extent_buffer *log_eb,
1268 int log_slot,
1269 struct btrfs_key *key)
1270{
1271 int ret;
1272 unsigned long ref_ptr;
1273 unsigned long ref_end;
1274 struct extent_buffer *eb;
1275
1276again:
1277 btrfs_release_path(path);
1278 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279 if (ret > 0) {
1280 ret = 0;
1281 goto out;
1282 }
1283 if (ret < 0)
1284 goto out;
1285
1286 eb = path->nodes[0];
1287 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1288 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92 1289 while (ref_ptr < ref_end) {
6db75318 1290 struct fscrypt_str name;
1f250e92
FM
1291 u64 parent_id;
1292
1293 if (key->type == BTRFS_INODE_EXTREF_KEY) {
e43eec81 1294 ret = extref_get_fields(eb, ref_ptr, &name,
1f250e92
FM
1295 NULL, &parent_id);
1296 } else {
1297 parent_id = key->offset;
e43eec81 1298 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1f250e92
FM
1299 }
1300 if (ret)
1301 goto out;
1302
1303 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a 1304 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
e43eec81 1305 parent_id, &name);
1f250e92 1306 else
e43eec81 1307 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1f250e92
FM
1308
1309 if (!ret) {
1310 struct inode *dir;
1311
1312 btrfs_release_path(path);
1313 dir = read_one_inode(root, parent_id);
1314 if (!dir) {
1315 ret = -ENOENT;
e43eec81 1316 kfree(name.name);
1f250e92
FM
1317 goto out;
1318 }
313ab753 1319 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
e43eec81
STD
1320 inode, &name);
1321 kfree(name.name);
1f250e92
FM
1322 iput(dir);
1323 if (ret)
1324 goto out;
1325 goto again;
1326 }
1327
e43eec81
STD
1328 kfree(name.name);
1329 ref_ptr += name.len;
1f250e92
FM
1330 if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 ref_ptr += sizeof(struct btrfs_inode_extref);
1332 else
1333 ref_ptr += sizeof(struct btrfs_inode_ref);
1334 }
1335 ret = 0;
1336 out:
1337 btrfs_release_path(path);
1338 return ret;
1339}
1340
5a1d7843
JS
1341/*
1342 * replay one inode back reference item found in the log tree.
1343 * eb, slot and key refer to the buffer and key found in the log tree.
1344 * root is the destination we are replaying into, and path is for temp
1345 * use by this function. (it should be released on return).
1346 */
1347static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 struct btrfs_root *root,
1349 struct btrfs_root *log,
1350 struct btrfs_path *path,
1351 struct extent_buffer *eb, int slot,
1352 struct btrfs_key *key)
1353{
03b2f08b
GB
1354 struct inode *dir = NULL;
1355 struct inode *inode = NULL;
5a1d7843
JS
1356 unsigned long ref_ptr;
1357 unsigned long ref_end;
6db75318 1358 struct fscrypt_str name;
5a1d7843 1359 int ret;
f186373f
MF
1360 int log_ref_ver = 0;
1361 u64 parent_objectid;
1362 u64 inode_objectid;
f46dbe3d 1363 u64 ref_index = 0;
f186373f
MF
1364 int ref_struct_size;
1365
1366 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1367 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1368
1369 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 struct btrfs_inode_extref *r;
1371
1372 ref_struct_size = sizeof(struct btrfs_inode_extref);
1373 log_ref_ver = 1;
1374 r = (struct btrfs_inode_extref *)ref_ptr;
1375 parent_objectid = btrfs_inode_extref_parent(eb, r);
1376 } else {
1377 ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 parent_objectid = key->offset;
1379 }
1380 inode_objectid = key->objectid;
e02119d5 1381
5a1d7843
JS
1382 /*
1383 * it is possible that we didn't log all the parent directories
1384 * for a given inode. If we don't find the dir, just don't
1385 * copy the back ref in. The link count fixup code will take
1386 * care of the rest
1387 */
f186373f 1388 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1389 if (!dir) {
1390 ret = -ENOENT;
1391 goto out;
1392 }
5a1d7843 1393
f186373f 1394 inode = read_one_inode(root, inode_objectid);
5a1d7843 1395 if (!inode) {
03b2f08b
GB
1396 ret = -EIO;
1397 goto out;
5a1d7843
JS
1398 }
1399
5a1d7843 1400 while (ref_ptr < ref_end) {
f186373f 1401 if (log_ref_ver) {
e43eec81 1402 ret = extref_get_fields(eb, ref_ptr, &name,
bae15d95 1403 &ref_index, &parent_objectid);
f186373f
MF
1404 /*
1405 * parent object can change from one array
1406 * item to another.
1407 */
1408 if (!dir)
1409 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1410 if (!dir) {
1411 ret = -ENOENT;
1412 goto out;
1413 }
f186373f 1414 } else {
e43eec81 1415 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
f186373f
MF
1416 }
1417 if (ret)
03b2f08b 1418 goto out;
5a1d7843 1419
77a5b9e3 1420 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
e43eec81 1421 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
77a5b9e3
FM
1422 if (ret < 0) {
1423 goto out;
1424 } else if (ret == 0) {
5a1d7843
JS
1425 /*
1426 * look for a conflicting back reference in the
1427 * metadata. if we find one we have to unlink that name
1428 * of the file before we add our new link. Later on, we
1429 * overwrite any existing back reference, and we don't
1430 * want to create dangling pointers in the directory.
1431 */
7059c658
FM
1432 ret = __add_inode_ref(trans, root, path, log,
1433 BTRFS_I(dir), BTRFS_I(inode),
1434 inode_objectid, parent_objectid,
e43eec81 1435 ref_index, &name);
7059c658
FM
1436 if (ret) {
1437 if (ret == 1)
1438 ret = 0;
0d836392 1439 goto out;
7059c658 1440 }
0d836392 1441
5a1d7843 1442 /* insert our name */
7059c658 1443 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 1444 &name, 0, ref_index);
3650860b
JB
1445 if (ret)
1446 goto out;
5a1d7843 1447
f96d4474
JB
1448 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1449 if (ret)
1450 goto out;
5a1d7843 1451 }
77a5b9e3 1452 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1453
e43eec81
STD
1454 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455 kfree(name.name);
1456 name.name = NULL;
f186373f
MF
1457 if (log_ref_ver) {
1458 iput(dir);
1459 dir = NULL;
1460 }
5a1d7843 1461 }
e02119d5 1462
1f250e92
FM
1463 /*
1464 * Before we overwrite the inode reference item in the subvolume tree
1465 * with the item from the log tree, we must unlink all names from the
1466 * parent directory that are in the subvolume's tree inode reference
1467 * item, otherwise we end up with an inconsistent subvolume tree where
1468 * dir index entries exist for a name but there is no inode reference
1469 * item with the same name.
1470 */
1471 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472 key);
1473 if (ret)
1474 goto out;
1475
e02119d5
CM
1476 /* finally write the back reference in the inode */
1477 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1478out:
b3b4aa74 1479 btrfs_release_path(path);
e43eec81 1480 kfree(name.name);
e02119d5
CM
1481 iput(dir);
1482 iput(inode);
3650860b 1483 return ret;
e02119d5
CM
1484}
1485
f186373f 1486static int count_inode_extrefs(struct btrfs_root *root,
36283658 1487 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1488{
1489 int ret = 0;
1490 int name_len;
1491 unsigned int nlink = 0;
1492 u32 item_size;
1493 u32 cur_offset = 0;
36283658 1494 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1495 u64 offset = 0;
1496 unsigned long ptr;
1497 struct btrfs_inode_extref *extref;
1498 struct extent_buffer *leaf;
1499
1500 while (1) {
1501 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1502 &extref, &offset);
1503 if (ret)
1504 break;
c71bf099 1505
f186373f 1506 leaf = path->nodes[0];
3212fa14 1507 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1508 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1509 cur_offset = 0;
f186373f
MF
1510
1511 while (cur_offset < item_size) {
1512 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1513 name_len = btrfs_inode_extref_name_len(leaf, extref);
1514
1515 nlink++;
1516
1517 cur_offset += name_len + sizeof(*extref);
1518 }
1519
1520 offset++;
1521 btrfs_release_path(path);
1522 }
1523 btrfs_release_path(path);
1524
2c2c452b 1525 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1526 return ret;
1527 return nlink;
1528}
1529
1530static int count_inode_refs(struct btrfs_root *root,
f329e319 1531 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1532{
e02119d5
CM
1533 int ret;
1534 struct btrfs_key key;
f186373f 1535 unsigned int nlink = 0;
e02119d5
CM
1536 unsigned long ptr;
1537 unsigned long ptr_end;
1538 int name_len;
f329e319 1539 u64 ino = btrfs_ino(inode);
e02119d5 1540
33345d01 1541 key.objectid = ino;
e02119d5
CM
1542 key.type = BTRFS_INODE_REF_KEY;
1543 key.offset = (u64)-1;
1544
d397712b 1545 while (1) {
e02119d5
CM
1546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547 if (ret < 0)
1548 break;
1549 if (ret > 0) {
1550 if (path->slots[0] == 0)
1551 break;
1552 path->slots[0]--;
1553 }
e93ae26f 1554process_slot:
e02119d5
CM
1555 btrfs_item_key_to_cpu(path->nodes[0], &key,
1556 path->slots[0]);
33345d01 1557 if (key.objectid != ino ||
e02119d5
CM
1558 key.type != BTRFS_INODE_REF_KEY)
1559 break;
1560 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1561 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1562 path->slots[0]);
d397712b 1563 while (ptr < ptr_end) {
e02119d5
CM
1564 struct btrfs_inode_ref *ref;
1565
1566 ref = (struct btrfs_inode_ref *)ptr;
1567 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1568 ref);
1569 ptr = (unsigned long)(ref + 1) + name_len;
1570 nlink++;
1571 }
1572
1573 if (key.offset == 0)
1574 break;
e93ae26f
FDBM
1575 if (path->slots[0] > 0) {
1576 path->slots[0]--;
1577 goto process_slot;
1578 }
e02119d5 1579 key.offset--;
b3b4aa74 1580 btrfs_release_path(path);
e02119d5 1581 }
b3b4aa74 1582 btrfs_release_path(path);
f186373f
MF
1583
1584 return nlink;
1585}
1586
1587/*
1588 * There are a few corners where the link count of the file can't
1589 * be properly maintained during replay. So, instead of adding
1590 * lots of complexity to the log code, we just scan the backrefs
1591 * for any file that has been through replay.
1592 *
1593 * The scan will update the link count on the inode to reflect the
1594 * number of back refs found. If it goes down to zero, the iput
1595 * will free the inode.
1596 */
1597static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root,
1599 struct inode *inode)
1600{
1601 struct btrfs_path *path;
1602 int ret;
1603 u64 nlink = 0;
4a0cc7ca 1604 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1605
1606 path = btrfs_alloc_path();
1607 if (!path)
1608 return -ENOMEM;
1609
f329e319 1610 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1611 if (ret < 0)
1612 goto out;
1613
1614 nlink = ret;
1615
36283658 1616 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink += ret;
1621
1622 ret = 0;
1623
e02119d5 1624 if (nlink != inode->i_nlink) {
bfe86848 1625 set_nlink(inode, nlink);
f96d4474
JB
1626 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1627 if (ret)
1628 goto out;
e02119d5 1629 }
8d5bf1cb 1630 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1631
c71bf099
YZ
1632 if (inode->i_nlink == 0) {
1633 if (S_ISDIR(inode->i_mode)) {
1634 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1635 ino, 1);
3650860b
JB
1636 if (ret)
1637 goto out;
c71bf099 1638 }
ecdcf3c2
NB
1639 ret = btrfs_insert_orphan_item(trans, root, ino);
1640 if (ret == -EEXIST)
1641 ret = 0;
12fcfd22 1642 }
12fcfd22 1643
f186373f
MF
1644out:
1645 btrfs_free_path(path);
1646 return ret;
e02119d5
CM
1647}
1648
1649static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct btrfs_path *path)
1652{
1653 int ret;
1654 struct btrfs_key key;
1655 struct inode *inode;
1656
1657 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1658 key.type = BTRFS_ORPHAN_ITEM_KEY;
1659 key.offset = (u64)-1;
d397712b 1660 while (1) {
e02119d5
CM
1661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1662 if (ret < 0)
1663 break;
1664
1665 if (ret == 1) {
011b28ac 1666 ret = 0;
e02119d5
CM
1667 if (path->slots[0] == 0)
1668 break;
1669 path->slots[0]--;
1670 }
1671
1672 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1673 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1674 key.type != BTRFS_ORPHAN_ITEM_KEY)
1675 break;
1676
1677 ret = btrfs_del_item(trans, root, path);
65a246c5 1678 if (ret)
011b28ac 1679 break;
e02119d5 1680
b3b4aa74 1681 btrfs_release_path(path);
e02119d5 1682 inode = read_one_inode(root, key.offset);
011b28ac
JB
1683 if (!inode) {
1684 ret = -EIO;
1685 break;
1686 }
e02119d5
CM
1687
1688 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1689 iput(inode);
3650860b 1690 if (ret)
011b28ac 1691 break;
e02119d5 1692
12fcfd22
CM
1693 /*
1694 * fixup on a directory may create new entries,
1695 * make sure we always look for the highset possible
1696 * offset
1697 */
1698 key.offset = (u64)-1;
e02119d5 1699 }
b3b4aa74 1700 btrfs_release_path(path);
65a246c5 1701 return ret;
e02119d5
CM
1702}
1703
1704
1705/*
1706 * record a given inode in the fixup dir so we can check its link
1707 * count when replay is done. The link count is incremented here
1708 * so the inode won't go away until we check it
1709 */
1710static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1711 struct btrfs_root *root,
1712 struct btrfs_path *path,
1713 u64 objectid)
1714{
1715 struct btrfs_key key;
1716 int ret = 0;
1717 struct inode *inode;
1718
1719 inode = read_one_inode(root, objectid);
c00e9493
TI
1720 if (!inode)
1721 return -EIO;
e02119d5
CM
1722
1723 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1724 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1725 key.offset = objectid;
1726
1727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1728
b3b4aa74 1729 btrfs_release_path(path);
e02119d5 1730 if (ret == 0) {
9bf7a489
JB
1731 if (!inode->i_nlink)
1732 set_nlink(inode, 1);
1733 else
8b558c5f 1734 inc_nlink(inode);
9a56fcd1 1735 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1736 } else if (ret == -EEXIST) {
1737 ret = 0;
e02119d5
CM
1738 }
1739 iput(inode);
1740
1741 return ret;
1742}
1743
1744/*
1745 * when replaying the log for a directory, we only insert names
1746 * for inodes that actually exist. This means an fsync on a directory
1747 * does not implicitly fsync all the new files in it
1748 */
1749static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root,
e02119d5 1751 u64 dirid, u64 index,
6db75318 1752 const struct fscrypt_str *name,
e02119d5
CM
1753 struct btrfs_key *location)
1754{
1755 struct inode *inode;
1756 struct inode *dir;
1757 int ret;
1758
1759 inode = read_one_inode(root, location->objectid);
1760 if (!inode)
1761 return -ENOENT;
1762
1763 dir = read_one_inode(root, dirid);
1764 if (!dir) {
1765 iput(inode);
1766 return -EIO;
1767 }
d555438b 1768
db0a669f 1769 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 1770 1, index);
e02119d5
CM
1771
1772 /* FIXME, put inode into FIXUP list */
1773
1774 iput(inode);
1775 iput(dir);
1776 return ret;
1777}
1778
339d0354
FM
1779static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1780 struct btrfs_inode *dir,
1781 struct btrfs_path *path,
1782 struct btrfs_dir_item *dst_di,
1783 const struct btrfs_key *log_key,
94a48aef 1784 u8 log_flags,
339d0354
FM
1785 bool exists)
1786{
1787 struct btrfs_key found_key;
1788
1789 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1790 /* The existing dentry points to the same inode, don't delete it. */
1791 if (found_key.objectid == log_key->objectid &&
1792 found_key.type == log_key->type &&
1793 found_key.offset == log_key->offset &&
94a48aef 1794 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
339d0354
FM
1795 return 1;
1796
1797 /*
1798 * Don't drop the conflicting directory entry if the inode for the new
1799 * entry doesn't exist.
1800 */
1801 if (!exists)
1802 return 0;
1803
1804 return drop_one_dir_item(trans, path, dir, dst_di);
1805}
1806
e02119d5
CM
1807/*
1808 * take a single entry in a log directory item and replay it into
1809 * the subvolume.
1810 *
1811 * if a conflicting item exists in the subdirectory already,
1812 * the inode it points to is unlinked and put into the link count
1813 * fix up tree.
1814 *
1815 * If a name from the log points to a file or directory that does
1816 * not exist in the FS, it is skipped. fsyncs on directories
1817 * do not force down inodes inside that directory, just changes to the
1818 * names or unlinks in a directory.
bb53eda9
FM
1819 *
1820 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1821 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1822 */
1823static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1824 struct btrfs_root *root,
1825 struct btrfs_path *path,
1826 struct extent_buffer *eb,
1827 struct btrfs_dir_item *di,
1828 struct btrfs_key *key)
1829{
6db75318 1830 struct fscrypt_str name;
339d0354
FM
1831 struct btrfs_dir_item *dir_dst_di;
1832 struct btrfs_dir_item *index_dst_di;
1833 bool dir_dst_matches = false;
1834 bool index_dst_matches = false;
e02119d5 1835 struct btrfs_key log_key;
339d0354 1836 struct btrfs_key search_key;
e02119d5 1837 struct inode *dir;
94a48aef 1838 u8 log_flags;
cfd31269
FM
1839 bool exists;
1840 int ret;
339d0354 1841 bool update_size = true;
bb53eda9 1842 bool name_added = false;
e02119d5
CM
1843
1844 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1845 if (!dir)
1846 return -EIO;
e02119d5 1847
e43eec81
STD
1848 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1849 if (ret)
2bac325e 1850 goto out;
2a29edc6 1851
94a48aef 1852 log_flags = btrfs_dir_flags(eb, di);
e02119d5 1853 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1854 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1855 btrfs_release_path(path);
cfd31269
FM
1856 if (ret < 0)
1857 goto out;
1858 exists = (ret == 0);
1859 ret = 0;
4bef0848 1860
339d0354 1861 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
e43eec81 1862 &name, 1);
339d0354
FM
1863 if (IS_ERR(dir_dst_di)) {
1864 ret = PTR_ERR(dir_dst_di);
3650860b 1865 goto out;
339d0354
FM
1866 } else if (dir_dst_di) {
1867 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
94a48aef
OS
1868 dir_dst_di, &log_key,
1869 log_flags, exists);
339d0354
FM
1870 if (ret < 0)
1871 goto out;
1872 dir_dst_matches = (ret == 1);
e02119d5 1873 }
e15ac641 1874
339d0354
FM
1875 btrfs_release_path(path);
1876
1877 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1878 key->objectid, key->offset,
e43eec81 1879 &name, 1);
339d0354
FM
1880 if (IS_ERR(index_dst_di)) {
1881 ret = PTR_ERR(index_dst_di);
e15ac641 1882 goto out;
339d0354
FM
1883 } else if (index_dst_di) {
1884 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885 index_dst_di, &log_key,
94a48aef 1886 log_flags, exists);
339d0354 1887 if (ret < 0)
e02119d5 1888 goto out;
339d0354 1889 index_dst_matches = (ret == 1);
e02119d5
CM
1890 }
1891
339d0354
FM
1892 btrfs_release_path(path);
1893
1894 if (dir_dst_matches && index_dst_matches) {
1895 ret = 0;
a2cc11db 1896 update_size = false;
e02119d5
CM
1897 goto out;
1898 }
1899
725af92a
NB
1900 /*
1901 * Check if the inode reference exists in the log for the given name,
1902 * inode and parent inode
1903 */
339d0354
FM
1904 search_key.objectid = log_key.objectid;
1905 search_key.type = BTRFS_INODE_REF_KEY;
1906 search_key.offset = key->objectid;
e43eec81 1907 ret = backref_in_log(root->log_root, &search_key, 0, &name);
725af92a
NB
1908 if (ret < 0) {
1909 goto out;
1910 } else if (ret) {
1911 /* The dentry will be added later. */
1912 ret = 0;
1913 update_size = false;
1914 goto out;
1915 }
1916
339d0354
FM
1917 search_key.objectid = log_key.objectid;
1918 search_key.type = BTRFS_INODE_EXTREF_KEY;
1919 search_key.offset = key->objectid;
e43eec81 1920 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
725af92a
NB
1921 if (ret < 0) {
1922 goto out;
1923 } else if (ret) {
df8d116f
FM
1924 /* The dentry will be added later. */
1925 ret = 0;
1926 update_size = false;
1927 goto out;
1928 }
b3b4aa74 1929 btrfs_release_path(path);
60d53eb3 1930 ret = insert_one_name(trans, root, key->objectid, key->offset,
e43eec81 1931 &name, &log_key);
df8d116f 1932 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1933 goto out;
bb53eda9
FM
1934 if (!ret)
1935 name_added = true;
d555438b 1936 update_size = false;
3650860b 1937 ret = 0;
339d0354
FM
1938
1939out:
1940 if (!ret && update_size) {
e43eec81 1941 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
339d0354
FM
1942 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1943 }
e43eec81 1944 kfree(name.name);
339d0354
FM
1945 iput(dir);
1946 if (!ret && name_added)
1947 ret = 1;
1948 return ret;
e02119d5
CM
1949}
1950
339d0354 1951/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
1952static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct extent_buffer *eb, int slot,
1956 struct btrfs_key *key)
1957{
339d0354 1958 int ret;
e02119d5 1959 struct btrfs_dir_item *di;
e02119d5 1960
339d0354
FM
1961 /* We only log dir index keys, which only contain a single dir item. */
1962 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1963
339d0354
FM
1964 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1965 ret = replay_one_name(trans, root, path, eb, di, key);
1966 if (ret < 0)
1967 return ret;
bb53eda9 1968
339d0354
FM
1969 /*
1970 * If this entry refers to a non-directory (directories can not have a
1971 * link count > 1) and it was added in the transaction that was not
1972 * committed, make sure we fixup the link count of the inode the entry
1973 * points to. Otherwise something like the following would result in a
1974 * directory pointing to an inode with a wrong link that does not account
1975 * for this dir entry:
1976 *
1977 * mkdir testdir
1978 * touch testdir/foo
1979 * touch testdir/bar
1980 * sync
1981 *
1982 * ln testdir/bar testdir/bar_link
1983 * ln testdir/foo testdir/foo_link
1984 * xfs_io -c "fsync" testdir/bar
1985 *
1986 * <power failure>
1987 *
1988 * mount fs, log replay happens
1989 *
1990 * File foo would remain with a link count of 1 when it has two entries
1991 * pointing to it in the directory testdir. This would make it impossible
1992 * to ever delete the parent directory has it would result in stale
1993 * dentries that can never be deleted.
1994 */
94a48aef 1995 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
339d0354
FM
1996 struct btrfs_path *fixup_path;
1997 struct btrfs_key di_key;
bb53eda9 1998
339d0354
FM
1999 fixup_path = btrfs_alloc_path();
2000 if (!fixup_path)
2001 return -ENOMEM;
2002
2003 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2004 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2005 btrfs_free_path(fixup_path);
e02119d5 2006 }
339d0354 2007
bb53eda9 2008 return ret;
e02119d5
CM
2009}
2010
2011/*
2012 * directory replay has two parts. There are the standard directory
2013 * items in the log copied from the subvolume, and range items
2014 * created in the log while the subvolume was logged.
2015 *
2016 * The range items tell us which parts of the key space the log
2017 * is authoritative for. During replay, if a key in the subvolume
2018 * directory is in a logged range item, but not actually in the log
2019 * that means it was deleted from the directory before the fsync
2020 * and should be removed.
2021 */
2022static noinline int find_dir_range(struct btrfs_root *root,
2023 struct btrfs_path *path,
ccae4a19 2024 u64 dirid,
e02119d5
CM
2025 u64 *start_ret, u64 *end_ret)
2026{
2027 struct btrfs_key key;
2028 u64 found_end;
2029 struct btrfs_dir_log_item *item;
2030 int ret;
2031 int nritems;
2032
2033 if (*start_ret == (u64)-1)
2034 return 1;
2035
2036 key.objectid = dirid;
ccae4a19 2037 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2038 key.offset = *start_ret;
2039
2040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2041 if (ret < 0)
2042 goto out;
2043 if (ret > 0) {
2044 if (path->slots[0] == 0)
2045 goto out;
2046 path->slots[0]--;
2047 }
2048 if (ret != 0)
2049 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2050
ccae4a19 2051 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2052 ret = 1;
2053 goto next;
2054 }
2055 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2056 struct btrfs_dir_log_item);
2057 found_end = btrfs_dir_log_end(path->nodes[0], item);
2058
2059 if (*start_ret >= key.offset && *start_ret <= found_end) {
2060 ret = 0;
2061 *start_ret = key.offset;
2062 *end_ret = found_end;
2063 goto out;
2064 }
2065 ret = 1;
2066next:
2067 /* check the next slot in the tree to see if it is a valid item */
2068 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2069 path->slots[0]++;
e02119d5
CM
2070 if (path->slots[0] >= nritems) {
2071 ret = btrfs_next_leaf(root, path);
2072 if (ret)
2073 goto out;
e02119d5
CM
2074 }
2075
2076 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2077
ccae4a19 2078 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2079 ret = 1;
2080 goto out;
2081 }
2082 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2083 struct btrfs_dir_log_item);
2084 found_end = btrfs_dir_log_end(path->nodes[0], item);
2085 *start_ret = key.offset;
2086 *end_ret = found_end;
2087 ret = 0;
2088out:
b3b4aa74 2089 btrfs_release_path(path);
e02119d5
CM
2090 return ret;
2091}
2092
2093/*
2094 * this looks for a given directory item in the log. If the directory
2095 * item is not in the log, the item is removed and the inode it points
2096 * to is unlinked
2097 */
2098static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2099 struct btrfs_root *log,
2100 struct btrfs_path *path,
2101 struct btrfs_path *log_path,
2102 struct inode *dir,
2103 struct btrfs_key *dir_key)
2104{
d1ed82f3 2105 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2106 int ret;
2107 struct extent_buffer *eb;
2108 int slot;
e02119d5 2109 struct btrfs_dir_item *di;
6db75318 2110 struct fscrypt_str name;
ccae4a19 2111 struct inode *inode = NULL;
e02119d5
CM
2112 struct btrfs_key location;
2113
ccae4a19 2114 /*
143823cf 2115 * Currently we only log dir index keys. Even if we replay a log created
ccae4a19
FM
2116 * by an older kernel that logged both dir index and dir item keys, all
2117 * we need to do is process the dir index keys, we (and our caller) can
2118 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2119 */
2120 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2121
e02119d5
CM
2122 eb = path->nodes[0];
2123 slot = path->slots[0];
ccae4a19 2124 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
e43eec81
STD
2125 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2126 if (ret)
ccae4a19 2127 goto out;
3650860b 2128
ccae4a19
FM
2129 if (log) {
2130 struct btrfs_dir_item *log_di;
e02119d5 2131
ccae4a19
FM
2132 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2133 dir_key->objectid,
e43eec81 2134 dir_key->offset, &name, 0);
ccae4a19
FM
2135 if (IS_ERR(log_di)) {
2136 ret = PTR_ERR(log_di);
2137 goto out;
2138 } else if (log_di) {
2139 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2140 ret = 0;
2141 goto out;
2142 }
ccae4a19 2143 }
e02119d5 2144
ccae4a19
FM
2145 btrfs_dir_item_key_to_cpu(eb, di, &location);
2146 btrfs_release_path(path);
2147 btrfs_release_path(log_path);
2148 inode = read_one_inode(root, location.objectid);
2149 if (!inode) {
2150 ret = -EIO;
2151 goto out;
e02119d5 2152 }
ccae4a19
FM
2153
2154 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2155 if (ret)
2156 goto out;
2157
2158 inc_nlink(inode);
313ab753 2159 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 2160 &name);
ccae4a19
FM
2161 /*
2162 * Unlike dir item keys, dir index keys can only have one name (entry) in
2163 * them, as there are no key collisions since each key has a unique offset
2164 * (an index number), so we're done.
2165 */
e02119d5 2166out:
b3b4aa74
DS
2167 btrfs_release_path(path);
2168 btrfs_release_path(log_path);
e43eec81 2169 kfree(name.name);
ccae4a19 2170 iput(inode);
e02119d5
CM
2171 return ret;
2172}
2173
4f764e51
FM
2174static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 struct btrfs_root *log,
2177 struct btrfs_path *path,
2178 const u64 ino)
2179{
2180 struct btrfs_key search_key;
2181 struct btrfs_path *log_path;
2182 int i;
2183 int nritems;
2184 int ret;
2185
2186 log_path = btrfs_alloc_path();
2187 if (!log_path)
2188 return -ENOMEM;
2189
2190 search_key.objectid = ino;
2191 search_key.type = BTRFS_XATTR_ITEM_KEY;
2192 search_key.offset = 0;
2193again:
2194 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2195 if (ret < 0)
2196 goto out;
2197process_leaf:
2198 nritems = btrfs_header_nritems(path->nodes[0]);
2199 for (i = path->slots[0]; i < nritems; i++) {
2200 struct btrfs_key key;
2201 struct btrfs_dir_item *di;
2202 struct btrfs_dir_item *log_di;
2203 u32 total_size;
2204 u32 cur;
2205
2206 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2207 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2208 ret = 0;
2209 goto out;
2210 }
2211
2212 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2213 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2214 cur = 0;
2215 while (cur < total_size) {
2216 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2217 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2218 u32 this_len = sizeof(*di) + name_len + data_len;
2219 char *name;
2220
2221 name = kmalloc(name_len, GFP_NOFS);
2222 if (!name) {
2223 ret = -ENOMEM;
2224 goto out;
2225 }
2226 read_extent_buffer(path->nodes[0], name,
2227 (unsigned long)(di + 1), name_len);
2228
2229 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2230 name, name_len, 0);
2231 btrfs_release_path(log_path);
2232 if (!log_di) {
2233 /* Doesn't exist in log tree, so delete it. */
2234 btrfs_release_path(path);
2235 di = btrfs_lookup_xattr(trans, root, path, ino,
2236 name, name_len, -1);
2237 kfree(name);
2238 if (IS_ERR(di)) {
2239 ret = PTR_ERR(di);
2240 goto out;
2241 }
2242 ASSERT(di);
2243 ret = btrfs_delete_one_dir_name(trans, root,
2244 path, di);
2245 if (ret)
2246 goto out;
2247 btrfs_release_path(path);
2248 search_key = key;
2249 goto again;
2250 }
2251 kfree(name);
2252 if (IS_ERR(log_di)) {
2253 ret = PTR_ERR(log_di);
2254 goto out;
2255 }
2256 cur += this_len;
2257 di = (struct btrfs_dir_item *)((char *)di + this_len);
2258 }
2259 }
2260 ret = btrfs_next_leaf(root, path);
2261 if (ret > 0)
2262 ret = 0;
2263 else if (ret == 0)
2264 goto process_leaf;
2265out:
2266 btrfs_free_path(log_path);
2267 btrfs_release_path(path);
2268 return ret;
2269}
2270
2271
e02119d5
CM
2272/*
2273 * deletion replay happens before we copy any new directory items
2274 * out of the log or out of backreferences from inodes. It
2275 * scans the log to find ranges of keys that log is authoritative for,
2276 * and then scans the directory to find items in those ranges that are
2277 * not present in the log.
2278 *
2279 * Anything we don't find in the log is unlinked and removed from the
2280 * directory.
2281 */
2282static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2283 struct btrfs_root *root,
2284 struct btrfs_root *log,
2285 struct btrfs_path *path,
12fcfd22 2286 u64 dirid, int del_all)
e02119d5
CM
2287{
2288 u64 range_start;
2289 u64 range_end;
e02119d5
CM
2290 int ret = 0;
2291 struct btrfs_key dir_key;
2292 struct btrfs_key found_key;
2293 struct btrfs_path *log_path;
2294 struct inode *dir;
2295
2296 dir_key.objectid = dirid;
ccae4a19 2297 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2298 log_path = btrfs_alloc_path();
2299 if (!log_path)
2300 return -ENOMEM;
2301
2302 dir = read_one_inode(root, dirid);
2303 /* it isn't an error if the inode isn't there, that can happen
2304 * because we replay the deletes before we copy in the inode item
2305 * from the log
2306 */
2307 if (!dir) {
2308 btrfs_free_path(log_path);
2309 return 0;
2310 }
ccae4a19 2311
e02119d5
CM
2312 range_start = 0;
2313 range_end = 0;
d397712b 2314 while (1) {
12fcfd22
CM
2315 if (del_all)
2316 range_end = (u64)-1;
2317 else {
ccae4a19 2318 ret = find_dir_range(log, path, dirid,
12fcfd22 2319 &range_start, &range_end);
10adb115
FM
2320 if (ret < 0)
2321 goto out;
2322 else if (ret > 0)
12fcfd22
CM
2323 break;
2324 }
e02119d5
CM
2325
2326 dir_key.offset = range_start;
d397712b 2327 while (1) {
e02119d5
CM
2328 int nritems;
2329 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2330 0, 0);
2331 if (ret < 0)
2332 goto out;
2333
2334 nritems = btrfs_header_nritems(path->nodes[0]);
2335 if (path->slots[0] >= nritems) {
2336 ret = btrfs_next_leaf(root, path);
b98def7c 2337 if (ret == 1)
e02119d5 2338 break;
b98def7c
LB
2339 else if (ret < 0)
2340 goto out;
e02119d5
CM
2341 }
2342 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2343 path->slots[0]);
2344 if (found_key.objectid != dirid ||
ccae4a19
FM
2345 found_key.type != dir_key.type) {
2346 ret = 0;
2347 goto out;
2348 }
e02119d5
CM
2349
2350 if (found_key.offset > range_end)
2351 break;
2352
d1ed82f3 2353 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2354 log_path, dir,
2355 &found_key);
3650860b
JB
2356 if (ret)
2357 goto out;
e02119d5
CM
2358 if (found_key.offset == (u64)-1)
2359 break;
2360 dir_key.offset = found_key.offset + 1;
2361 }
b3b4aa74 2362 btrfs_release_path(path);
e02119d5
CM
2363 if (range_end == (u64)-1)
2364 break;
2365 range_start = range_end + 1;
2366 }
e02119d5 2367 ret = 0;
e02119d5 2368out:
b3b4aa74 2369 btrfs_release_path(path);
e02119d5
CM
2370 btrfs_free_path(log_path);
2371 iput(dir);
2372 return ret;
2373}
2374
2375/*
2376 * the process_func used to replay items from the log tree. This
2377 * gets called in two different stages. The first stage just looks
2378 * for inodes and makes sure they are all copied into the subvolume.
2379 *
2380 * The second stage copies all the other item types from the log into
2381 * the subvolume. The two stage approach is slower, but gets rid of
2382 * lots of complexity around inodes referencing other inodes that exist
2383 * only in the log (references come from either directory items or inode
2384 * back refs).
2385 */
2386static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2387 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2388{
2389 int nritems;
789d6a3a
QW
2390 struct btrfs_tree_parent_check check = {
2391 .transid = gen,
2392 .level = level
2393 };
e02119d5
CM
2394 struct btrfs_path *path;
2395 struct btrfs_root *root = wc->replay_dest;
2396 struct btrfs_key key;
e02119d5
CM
2397 int i;
2398 int ret;
2399
789d6a3a 2400 ret = btrfs_read_extent_buffer(eb, &check);
018642a1
TI
2401 if (ret)
2402 return ret;
e02119d5
CM
2403
2404 level = btrfs_header_level(eb);
2405
2406 if (level != 0)
2407 return 0;
2408
2409 path = btrfs_alloc_path();
1e5063d0
MF
2410 if (!path)
2411 return -ENOMEM;
e02119d5
CM
2412
2413 nritems = btrfs_header_nritems(eb);
2414 for (i = 0; i < nritems; i++) {
2415 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2416
2417 /* inode keys are done during the first stage */
2418 if (key.type == BTRFS_INODE_ITEM_KEY &&
2419 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2420 struct btrfs_inode_item *inode_item;
2421 u32 mode;
2422
2423 inode_item = btrfs_item_ptr(eb, i,
2424 struct btrfs_inode_item);
f2d72f42
FM
2425 /*
2426 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2427 * and never got linked before the fsync, skip it, as
2428 * replaying it is pointless since it would be deleted
2429 * later. We skip logging tmpfiles, but it's always
2430 * possible we are replaying a log created with a kernel
2431 * that used to log tmpfiles.
2432 */
2433 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2434 wc->ignore_cur_inode = true;
2435 continue;
2436 } else {
2437 wc->ignore_cur_inode = false;
2438 }
4f764e51
FM
2439 ret = replay_xattr_deletes(wc->trans, root, log,
2440 path, key.objectid);
2441 if (ret)
2442 break;
e02119d5
CM
2443 mode = btrfs_inode_mode(eb, inode_item);
2444 if (S_ISDIR(mode)) {
2445 ret = replay_dir_deletes(wc->trans,
12fcfd22 2446 root, log, path, key.objectid, 0);
b50c6e25
JB
2447 if (ret)
2448 break;
e02119d5
CM
2449 }
2450 ret = overwrite_item(wc->trans, root, path,
2451 eb, i, &key);
b50c6e25
JB
2452 if (ret)
2453 break;
e02119d5 2454
471d557a
FM
2455 /*
2456 * Before replaying extents, truncate the inode to its
2457 * size. We need to do it now and not after log replay
2458 * because before an fsync we can have prealloc extents
2459 * added beyond the inode's i_size. If we did it after,
2460 * through orphan cleanup for example, we would drop
2461 * those prealloc extents just after replaying them.
e02119d5
CM
2462 */
2463 if (S_ISREG(mode)) {
5893dfb9 2464 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2465 struct inode *inode;
2466 u64 from;
2467
2468 inode = read_one_inode(root, key.objectid);
2469 if (!inode) {
2470 ret = -EIO;
2471 break;
2472 }
2473 from = ALIGN(i_size_read(inode),
2474 root->fs_info->sectorsize);
5893dfb9
FM
2475 drop_args.start = from;
2476 drop_args.end = (u64)-1;
2477 drop_args.drop_cache = true;
2478 ret = btrfs_drop_extents(wc->trans, root,
2479 BTRFS_I(inode),
2480 &drop_args);
471d557a 2481 if (!ret) {
2766ff61
FM
2482 inode_sub_bytes(inode,
2483 drop_args.bytes_found);
f2d72f42 2484 /* Update the inode's nbytes. */
471d557a 2485 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2486 root, BTRFS_I(inode));
471d557a
FM
2487 }
2488 iput(inode);
b50c6e25
JB
2489 if (ret)
2490 break;
e02119d5 2491 }
c71bf099 2492
e02119d5
CM
2493 ret = link_to_fixup_dir(wc->trans, root,
2494 path, key.objectid);
b50c6e25
JB
2495 if (ret)
2496 break;
e02119d5 2497 }
dd8e7217 2498
f2d72f42
FM
2499 if (wc->ignore_cur_inode)
2500 continue;
2501
dd8e7217
JB
2502 if (key.type == BTRFS_DIR_INDEX_KEY &&
2503 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2504 ret = replay_one_dir_item(wc->trans, root, path,
2505 eb, i, &key);
2506 if (ret)
2507 break;
2508 }
2509
e02119d5
CM
2510 if (wc->stage < LOG_WALK_REPLAY_ALL)
2511 continue;
2512
2513 /* these keys are simply copied */
2514 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2515 ret = overwrite_item(wc->trans, root, path,
2516 eb, i, &key);
b50c6e25
JB
2517 if (ret)
2518 break;
2da1c669
LB
2519 } else if (key.type == BTRFS_INODE_REF_KEY ||
2520 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2521 ret = add_inode_ref(wc->trans, root, log, path,
2522 eb, i, &key);
b50c6e25
JB
2523 if (ret && ret != -ENOENT)
2524 break;
2525 ret = 0;
e02119d5
CM
2526 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2527 ret = replay_one_extent(wc->trans, root, path,
2528 eb, i, &key);
b50c6e25
JB
2529 if (ret)
2530 break;
e02119d5 2531 }
339d0354
FM
2532 /*
2533 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2534 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2535 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2536 * older kernel with such keys, ignore them.
2537 */
e02119d5
CM
2538 }
2539 btrfs_free_path(path);
b50c6e25 2540 return ret;
e02119d5
CM
2541}
2542
6787bb9f
NB
2543/*
2544 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2545 */
2546static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2547{
2548 struct btrfs_block_group *cache;
2549
2550 cache = btrfs_lookup_block_group(fs_info, start);
2551 if (!cache) {
2552 btrfs_err(fs_info, "unable to find block group for %llu", start);
2553 return;
2554 }
2555
2556 spin_lock(&cache->space_info->lock);
2557 spin_lock(&cache->lock);
2558 cache->reserved -= fs_info->nodesize;
2559 cache->space_info->bytes_reserved -= fs_info->nodesize;
2560 spin_unlock(&cache->lock);
2561 spin_unlock(&cache->space_info->lock);
2562
2563 btrfs_put_block_group(cache);
2564}
2565
d397712b 2566static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2567 struct btrfs_root *root,
2568 struct btrfs_path *path, int *level,
2569 struct walk_control *wc)
2570{
0b246afa 2571 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2572 u64 bytenr;
2573 u64 ptr_gen;
2574 struct extent_buffer *next;
2575 struct extent_buffer *cur;
e02119d5
CM
2576 u32 blocksize;
2577 int ret = 0;
2578
d397712b 2579 while (*level > 0) {
789d6a3a 2580 struct btrfs_tree_parent_check check = { 0 };
581c1760 2581
e02119d5
CM
2582 cur = path->nodes[*level];
2583
fae7f21c 2584 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2585
2586 if (path->slots[*level] >=
2587 btrfs_header_nritems(cur))
2588 break;
2589
2590 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2591 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
789d6a3a
QW
2592 check.transid = ptr_gen;
2593 check.level = *level - 1;
2594 check.has_first_key = true;
2595 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
0b246afa 2596 blocksize = fs_info->nodesize;
e02119d5 2597
3fbaf258
JB
2598 next = btrfs_find_create_tree_block(fs_info, bytenr,
2599 btrfs_header_owner(cur),
2600 *level - 1);
c871b0f2
LB
2601 if (IS_ERR(next))
2602 return PTR_ERR(next);
e02119d5 2603
e02119d5 2604 if (*level == 1) {
581c1760
QW
2605 ret = wc->process_func(root, next, wc, ptr_gen,
2606 *level - 1);
b50c6e25
JB
2607 if (ret) {
2608 free_extent_buffer(next);
1e5063d0 2609 return ret;
b50c6e25 2610 }
4a500fd1 2611
e02119d5
CM
2612 path->slots[*level]++;
2613 if (wc->free) {
789d6a3a 2614 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2615 if (ret) {
2616 free_extent_buffer(next);
2617 return ret;
2618 }
e02119d5 2619
c4e54a65 2620 btrfs_tree_lock(next);
190a8339 2621 btrfs_clear_buffer_dirty(trans, next);
79b02ec1 2622 wait_on_extent_buffer_writeback(next);
c4e54a65
JB
2623 btrfs_tree_unlock(next);
2624
681ae509 2625 if (trans) {
7bfc1007 2626 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2627 bytenr, blocksize);
2628 if (ret) {
2629 free_extent_buffer(next);
2630 return ret;
2631 }
d3575156
NA
2632 btrfs_redirty_list_add(
2633 trans->transaction, next);
1846430c 2634 } else {
10e958d5 2635 unaccount_log_buffer(fs_info, bytenr);
3650860b 2636 }
e02119d5
CM
2637 }
2638 free_extent_buffer(next);
2639 continue;
2640 }
789d6a3a 2641 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2642 if (ret) {
2643 free_extent_buffer(next);
2644 return ret;
2645 }
e02119d5 2646
e02119d5
CM
2647 if (path->nodes[*level-1])
2648 free_extent_buffer(path->nodes[*level-1]);
2649 path->nodes[*level-1] = next;
2650 *level = btrfs_header_level(next);
2651 path->slots[*level] = 0;
2652 cond_resched();
2653 }
4a500fd1 2654 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2655
2656 cond_resched();
2657 return 0;
2658}
2659
d397712b 2660static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2661 struct btrfs_root *root,
2662 struct btrfs_path *path, int *level,
2663 struct walk_control *wc)
2664{
0b246afa 2665 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2666 int i;
2667 int slot;
2668 int ret;
2669
d397712b 2670 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2671 slot = path->slots[i];
4a500fd1 2672 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2673 path->slots[i]++;
2674 *level = i;
2675 WARN_ON(*level == 0);
2676 return 0;
2677 } else {
1e5063d0 2678 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2679 btrfs_header_generation(path->nodes[*level]),
2680 *level);
1e5063d0
MF
2681 if (ret)
2682 return ret;
2683
e02119d5
CM
2684 if (wc->free) {
2685 struct extent_buffer *next;
2686
2687 next = path->nodes[*level];
2688
c4e54a65 2689 btrfs_tree_lock(next);
190a8339 2690 btrfs_clear_buffer_dirty(trans, next);
79b02ec1 2691 wait_on_extent_buffer_writeback(next);
c4e54a65
JB
2692 btrfs_tree_unlock(next);
2693
681ae509 2694 if (trans) {
7bfc1007 2695 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2696 path->nodes[*level]->start,
2697 path->nodes[*level]->len);
2698 if (ret)
2699 return ret;
84c25448
NA
2700 btrfs_redirty_list_add(trans->transaction,
2701 next);
1846430c 2702 } else {
10e958d5
NB
2703 unaccount_log_buffer(fs_info,
2704 path->nodes[*level]->start);
2705 }
e02119d5
CM
2706 }
2707 free_extent_buffer(path->nodes[*level]);
2708 path->nodes[*level] = NULL;
2709 *level = i + 1;
2710 }
2711 }
2712 return 1;
2713}
2714
2715/*
2716 * drop the reference count on the tree rooted at 'snap'. This traverses
2717 * the tree freeing any blocks that have a ref count of zero after being
2718 * decremented.
2719 */
2720static int walk_log_tree(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *log, struct walk_control *wc)
2722{
2ff7e61e 2723 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2724 int ret = 0;
2725 int wret;
2726 int level;
2727 struct btrfs_path *path;
e02119d5
CM
2728 int orig_level;
2729
2730 path = btrfs_alloc_path();
db5b493a
TI
2731 if (!path)
2732 return -ENOMEM;
e02119d5
CM
2733
2734 level = btrfs_header_level(log->node);
2735 orig_level = level;
2736 path->nodes[level] = log->node;
67439dad 2737 atomic_inc(&log->node->refs);
e02119d5
CM
2738 path->slots[level] = 0;
2739
d397712b 2740 while (1) {
e02119d5
CM
2741 wret = walk_down_log_tree(trans, log, path, &level, wc);
2742 if (wret > 0)
2743 break;
79787eaa 2744 if (wret < 0) {
e02119d5 2745 ret = wret;
79787eaa
JM
2746 goto out;
2747 }
e02119d5
CM
2748
2749 wret = walk_up_log_tree(trans, log, path, &level, wc);
2750 if (wret > 0)
2751 break;
79787eaa 2752 if (wret < 0) {
e02119d5 2753 ret = wret;
79787eaa
JM
2754 goto out;
2755 }
e02119d5
CM
2756 }
2757
2758 /* was the root node processed? if not, catch it here */
2759 if (path->nodes[orig_level]) {
79787eaa 2760 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2761 btrfs_header_generation(path->nodes[orig_level]),
2762 orig_level);
79787eaa
JM
2763 if (ret)
2764 goto out;
e02119d5
CM
2765 if (wc->free) {
2766 struct extent_buffer *next;
2767
2768 next = path->nodes[orig_level];
2769
c4e54a65 2770 btrfs_tree_lock(next);
190a8339 2771 btrfs_clear_buffer_dirty(trans, next);
79b02ec1 2772 wait_on_extent_buffer_writeback(next);
c4e54a65
JB
2773 btrfs_tree_unlock(next);
2774
681ae509 2775 if (trans) {
7bfc1007 2776 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2777 next->start, next->len);
2778 if (ret)
2779 goto out;
84c25448 2780 btrfs_redirty_list_add(trans->transaction, next);
1846430c 2781 } else {
10e958d5 2782 unaccount_log_buffer(fs_info, next->start);
681ae509 2783 }
e02119d5
CM
2784 }
2785 }
2786
79787eaa 2787out:
e02119d5 2788 btrfs_free_path(path);
e02119d5
CM
2789 return ret;
2790}
2791
7237f183
YZ
2792/*
2793 * helper function to update the item for a given subvolumes log root
2794 * in the tree of log roots
2795 */
2796static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2797 struct btrfs_root *log,
2798 struct btrfs_root_item *root_item)
7237f183 2799{
0b246afa 2800 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2801 int ret;
2802
2803 if (log->log_transid == 1) {
2804 /* insert root item on the first sync */
0b246afa 2805 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2806 &log->root_key, root_item);
7237f183 2807 } else {
0b246afa 2808 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2809 &log->root_key, root_item);
7237f183
YZ
2810 }
2811 return ret;
2812}
2813
60d53eb3 2814static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2815{
2816 DEFINE_WAIT(wait);
7237f183 2817 int index = transid % 2;
e02119d5 2818
7237f183
YZ
2819 /*
2820 * we only allow two pending log transactions at a time,
2821 * so we know that if ours is more than 2 older than the
2822 * current transaction, we're done
2823 */
49e83f57 2824 for (;;) {
7237f183
YZ
2825 prepare_to_wait(&root->log_commit_wait[index],
2826 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2827
49e83f57
LB
2828 if (!(root->log_transid_committed < transid &&
2829 atomic_read(&root->log_commit[index])))
2830 break;
12fcfd22 2831
49e83f57
LB
2832 mutex_unlock(&root->log_mutex);
2833 schedule();
7237f183 2834 mutex_lock(&root->log_mutex);
49e83f57
LB
2835 }
2836 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2837}
2838
60d53eb3 2839static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2840{
2841 DEFINE_WAIT(wait);
8b050d35 2842
49e83f57
LB
2843 for (;;) {
2844 prepare_to_wait(&root->log_writer_wait, &wait,
2845 TASK_UNINTERRUPTIBLE);
2846 if (!atomic_read(&root->log_writers))
2847 break;
2848
7237f183 2849 mutex_unlock(&root->log_mutex);
49e83f57 2850 schedule();
575849ec 2851 mutex_lock(&root->log_mutex);
7237f183 2852 }
49e83f57 2853 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2854}
2855
8b050d35
MX
2856static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2857 struct btrfs_log_ctx *ctx)
2858{
8b050d35
MX
2859 mutex_lock(&root->log_mutex);
2860 list_del_init(&ctx->list);
2861 mutex_unlock(&root->log_mutex);
2862}
2863
2864/*
2865 * Invoked in log mutex context, or be sure there is no other task which
2866 * can access the list.
2867 */
2868static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2869 int index, int error)
2870{
2871 struct btrfs_log_ctx *ctx;
570dd450 2872 struct btrfs_log_ctx *safe;
8b050d35 2873
570dd450
CM
2874 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2875 list_del_init(&ctx->list);
8b050d35 2876 ctx->log_ret = error;
570dd450 2877 }
8b050d35
MX
2878}
2879
e02119d5
CM
2880/*
2881 * btrfs_sync_log does sends a given tree log down to the disk and
2882 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2883 * you know that any inodes previously logged are safely on disk only
2884 * if it returns 0.
2885 *
2886 * Any other return value means you need to call btrfs_commit_transaction.
2887 * Some of the edge cases for fsyncing directories that have had unlinks
2888 * or renames done in the past mean that sometimes the only safe
2889 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2890 * that has happened.
e02119d5
CM
2891 */
2892int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2893 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2894{
7237f183
YZ
2895 int index1;
2896 int index2;
8cef4e16 2897 int mark;
e02119d5 2898 int ret;
0b246afa 2899 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2900 struct btrfs_root *log = root->log_root;
0b246afa 2901 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 2902 struct btrfs_root_item new_root_item;
bb14a59b 2903 int log_transid = 0;
8b050d35 2904 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2905 struct blk_plug plug;
47876f7c
FM
2906 u64 log_root_start;
2907 u64 log_root_level;
e02119d5 2908
7237f183 2909 mutex_lock(&root->log_mutex);
d1433deb
MX
2910 log_transid = ctx->log_transid;
2911 if (root->log_transid_committed >= log_transid) {
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2914 }
2915
2916 index1 = log_transid % 2;
7237f183 2917 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2918 wait_log_commit(root, log_transid);
7237f183 2919 mutex_unlock(&root->log_mutex);
8b050d35 2920 return ctx->log_ret;
e02119d5 2921 }
d1433deb 2922 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2923 atomic_set(&root->log_commit[index1], 1);
2924
2925 /* wait for previous tree log sync to complete */
2926 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2927 wait_log_commit(root, log_transid - 1);
48cab2e0 2928
86df7eb9 2929 while (1) {
2ecb7923 2930 int batch = atomic_read(&root->log_batch);
cd354ad6 2931 /* when we're on an ssd, just kick the log commit out */
0b246afa 2932 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2933 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2934 mutex_unlock(&root->log_mutex);
2935 schedule_timeout_uninterruptible(1);
2936 mutex_lock(&root->log_mutex);
2937 }
60d53eb3 2938 wait_for_writer(root);
2ecb7923 2939 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2940 break;
2941 }
e02119d5 2942
12fcfd22 2943 /* bail out if we need to do a full commit */
4884b8e8 2944 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 2945 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
2946 mutex_unlock(&root->log_mutex);
2947 goto out;
2948 }
2949
8cef4e16
YZ
2950 if (log_transid % 2 == 0)
2951 mark = EXTENT_DIRTY;
2952 else
2953 mark = EXTENT_NEW;
2954
690587d1
CM
2955 /* we start IO on all the marked extents here, but we don't actually
2956 * wait for them until later.
2957 */
c6adc9cc 2958 blk_start_plug(&plug);
2ff7e61e 2959 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
2960 /*
2961 * -EAGAIN happens when someone, e.g., a concurrent transaction
2962 * commit, writes a dirty extent in this tree-log commit. This
2963 * concurrent write will create a hole writing out the extents,
2964 * and we cannot proceed on a zoned filesystem, requiring
2965 * sequential writing. While we can bail out to a full commit
2966 * here, but we can continue hoping the concurrent writing fills
2967 * the hole.
2968 */
2969 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2970 ret = 0;
79787eaa 2971 if (ret) {
c6adc9cc 2972 blk_finish_plug(&plug);
90787766 2973 btrfs_set_log_full_commit(trans);
79787eaa
JM
2974 mutex_unlock(&root->log_mutex);
2975 goto out;
2976 }
7237f183 2977
4203e968
JB
2978 /*
2979 * We _must_ update under the root->log_mutex in order to make sure we
2980 * have a consistent view of the log root we are trying to commit at
2981 * this moment.
2982 *
2983 * We _must_ copy this into a local copy, because we are not holding the
2984 * log_root_tree->log_mutex yet. This is important because when we
2985 * commit the log_root_tree we must have a consistent view of the
2986 * log_root_tree when we update the super block to point at the
2987 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2988 * with the commit and possibly point at the new block which we may not
2989 * have written out.
2990 */
5d4f98a2 2991 btrfs_set_root_node(&log->root_item, log->node);
4203e968 2992 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 2993
7237f183
YZ
2994 root->log_transid++;
2995 log->log_transid = root->log_transid;
ff782e0a 2996 root->log_start_pid = 0;
7237f183 2997 /*
8cef4e16
YZ
2998 * IO has been started, blocks of the log tree have WRITTEN flag set
2999 * in their headers. new modifications of the log will be written to
3000 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3001 */
3002 mutex_unlock(&root->log_mutex);
3003
3ddebf27 3004 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3005 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3006 if (!log_root_tree->node) {
3007 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3008 if (ret) {
ea32af47 3009 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3010 blk_finish_plug(&plug);
3ddebf27
NA
3011 goto out;
3012 }
3013 }
e75f9fd1 3014 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3015 }
3016
e75f9fd1
NA
3017 btrfs_init_log_ctx(&root_log_ctx, NULL);
3018
3019 mutex_lock(&log_root_tree->log_mutex);
3020
e3d3b415
FM
3021 index2 = log_root_tree->log_transid % 2;
3022 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3023 root_log_ctx.log_transid = log_root_tree->log_transid;
3024
4203e968
JB
3025 /*
3026 * Now we are safe to update the log_root_tree because we're under the
3027 * log_mutex, and we're a current writer so we're holding the commit
3028 * open until we drop the log_mutex.
3029 */
3030 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3031 if (ret) {
d1433deb
MX
3032 if (!list_empty(&root_log_ctx.list))
3033 list_del_init(&root_log_ctx.list);
3034
c6adc9cc 3035 blk_finish_plug(&plug);
90787766 3036 btrfs_set_log_full_commit(trans);
09e44868
FM
3037 if (ret != -ENOSPC)
3038 btrfs_err(fs_info,
3039 "failed to update log for root %llu ret %d",
3040 root->root_key.objectid, ret);
bf89d38f 3041 btrfs_wait_tree_log_extents(log, mark);
4a500fd1 3042 mutex_unlock(&log_root_tree->log_mutex);
4a500fd1
YZ
3043 goto out;
3044 }
3045
d1433deb 3046 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3047 blk_finish_plug(&plug);
cbd60aa7 3048 list_del_init(&root_log_ctx.list);
d1433deb
MX
3049 mutex_unlock(&log_root_tree->log_mutex);
3050 ret = root_log_ctx.log_ret;
3051 goto out;
3052 }
8b050d35 3053
d1433deb 3054 index2 = root_log_ctx.log_transid % 2;
7237f183 3055 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3056 blk_finish_plug(&plug);
bf89d38f 3057 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3058 wait_log_commit(log_root_tree,
d1433deb 3059 root_log_ctx.log_transid);
7237f183 3060 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3061 if (!ret)
3062 ret = root_log_ctx.log_ret;
7237f183
YZ
3063 goto out;
3064 }
d1433deb 3065 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3066 atomic_set(&log_root_tree->log_commit[index2], 1);
3067
12fcfd22 3068 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3069 wait_log_commit(log_root_tree,
d1433deb 3070 root_log_ctx.log_transid - 1);
12fcfd22
CM
3071 }
3072
12fcfd22
CM
3073 /*
3074 * now that we've moved on to the tree of log tree roots,
3075 * check the full commit flag again
3076 */
4884b8e8 3077 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3078 blk_finish_plug(&plug);
bf89d38f 3079 btrfs_wait_tree_log_extents(log, mark);
12fcfd22 3080 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3081 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
3082 goto out_wake_log_root;
3083 }
7237f183 3084
2ff7e61e 3085 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3086 &log_root_tree->dirty_log_pages,
3087 EXTENT_DIRTY | EXTENT_NEW);
3088 blk_finish_plug(&plug);
b528f467
NA
3089 /*
3090 * As described above, -EAGAIN indicates a hole in the extents. We
3091 * cannot wait for these write outs since the waiting cause a
3092 * deadlock. Bail out to the full commit instead.
3093 */
3094 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3095 btrfs_set_log_full_commit(trans);
3096 btrfs_wait_tree_log_extents(log, mark);
3097 mutex_unlock(&log_root_tree->log_mutex);
3098 goto out_wake_log_root;
3099 } else if (ret) {
90787766 3100 btrfs_set_log_full_commit(trans);
79787eaa
JM
3101 mutex_unlock(&log_root_tree->log_mutex);
3102 goto out_wake_log_root;
3103 }
bf89d38f 3104 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3105 if (!ret)
bf89d38f
JM
3106 ret = btrfs_wait_tree_log_extents(log_root_tree,
3107 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3108 if (ret) {
90787766 3109 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3110 mutex_unlock(&log_root_tree->log_mutex);
3111 goto out_wake_log_root;
3112 }
e02119d5 3113
47876f7c
FM
3114 log_root_start = log_root_tree->node->start;
3115 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3116 log_root_tree->log_transid++;
7237f183
YZ
3117 mutex_unlock(&log_root_tree->log_mutex);
3118
3119 /*
47876f7c
FM
3120 * Here we are guaranteed that nobody is going to write the superblock
3121 * for the current transaction before us and that neither we do write
3122 * our superblock before the previous transaction finishes its commit
3123 * and writes its superblock, because:
3124 *
3125 * 1) We are holding a handle on the current transaction, so no body
3126 * can commit it until we release the handle;
3127 *
3128 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3129 * if the previous transaction is still committing, and hasn't yet
3130 * written its superblock, we wait for it to do it, because a
3131 * transaction commit acquires the tree_log_mutex when the commit
3132 * begins and releases it only after writing its superblock.
7237f183 3133 */
47876f7c 3134 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3135
3136 /*
3137 * The previous transaction writeout phase could have failed, and thus
3138 * marked the fs in an error state. We must not commit here, as we
3139 * could have updated our generation in the super_for_commit and
3140 * writing the super here would result in transid mismatches. If there
3141 * is an error here just bail.
3142 */
84961539 3143 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3144 ret = -EIO;
3145 btrfs_set_log_full_commit(trans);
3146 btrfs_abort_transaction(trans, ret);
3147 mutex_unlock(&fs_info->tree_log_mutex);
3148 goto out_wake_log_root;
3149 }
3150
47876f7c
FM
3151 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3152 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3153 ret = write_all_supers(fs_info, 1);
47876f7c 3154 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3155 if (ret) {
90787766 3156 btrfs_set_log_full_commit(trans);
66642832 3157 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3158 goto out_wake_log_root;
3159 }
7237f183 3160
e1a6d264
FM
3161 /*
3162 * We know there can only be one task here, since we have not yet set
3163 * root->log_commit[index1] to 0 and any task attempting to sync the
3164 * log must wait for the previous log transaction to commit if it's
3165 * still in progress or wait for the current log transaction commit if
3166 * someone else already started it. We use <= and not < because the
3167 * first log transaction has an ID of 0.
3168 */
3169 ASSERT(root->last_log_commit <= log_transid);
3170 root->last_log_commit = log_transid;
257c62e1 3171
12fcfd22 3172out_wake_log_root:
570dd450 3173 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3174 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3175
d1433deb 3176 log_root_tree->log_transid_committed++;
7237f183 3177 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3178 mutex_unlock(&log_root_tree->log_mutex);
3179
33a9eca7 3180 /*
093258e6
DS
3181 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3182 * all the updates above are seen by the woken threads. It might not be
3183 * necessary, but proving that seems to be hard.
33a9eca7 3184 */
093258e6 3185 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3186out:
d1433deb 3187 mutex_lock(&root->log_mutex);
570dd450 3188 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3189 root->log_transid_committed++;
7237f183 3190 atomic_set(&root->log_commit[index1], 0);
d1433deb 3191 mutex_unlock(&root->log_mutex);
8b050d35 3192
33a9eca7 3193 /*
093258e6
DS
3194 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3195 * all the updates above are seen by the woken threads. It might not be
3196 * necessary, but proving that seems to be hard.
33a9eca7 3197 */
093258e6 3198 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3199 return ret;
e02119d5
CM
3200}
3201
4a500fd1
YZ
3202static void free_log_tree(struct btrfs_trans_handle *trans,
3203 struct btrfs_root *log)
e02119d5
CM
3204{
3205 int ret;
e02119d5
CM
3206 struct walk_control wc = {
3207 .free = 1,
3208 .process_func = process_one_buffer
3209 };
3210
3ddebf27
NA
3211 if (log->node) {
3212 ret = walk_log_tree(trans, log, &wc);
3213 if (ret) {
40cdc509
FM
3214 /*
3215 * We weren't able to traverse the entire log tree, the
3216 * typical scenario is getting an -EIO when reading an
3217 * extent buffer of the tree, due to a previous writeback
3218 * failure of it.
3219 */
3220 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3221 &log->fs_info->fs_state);
3222
3223 /*
3224 * Some extent buffers of the log tree may still be dirty
3225 * and not yet written back to storage, because we may
3226 * have updates to a log tree without syncing a log tree,
3227 * such as during rename and link operations. So flush
3228 * them out and wait for their writeback to complete, so
3229 * that we properly cleanup their state and pages.
3230 */
3231 btrfs_write_marked_extents(log->fs_info,
3232 &log->dirty_log_pages,
3233 EXTENT_DIRTY | EXTENT_NEW);
3234 btrfs_wait_tree_log_extents(log,
3235 EXTENT_DIRTY | EXTENT_NEW);
3236
3ddebf27
NA
3237 if (trans)
3238 btrfs_abort_transaction(trans, ret);
3239 else
3240 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3241 }
374b0e2d 3242 }
e02119d5 3243
59b0713a
FM
3244 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3245 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3246 extent_io_tree_release(&log->log_csum_range);
d3575156 3247
00246528 3248 btrfs_put_root(log);
4a500fd1
YZ
3249}
3250
3251/*
3252 * free all the extents used by the tree log. This should be called
3253 * at commit time of the full transaction
3254 */
3255int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3256{
3257 if (root->log_root) {
3258 free_log_tree(trans, root->log_root);
3259 root->log_root = NULL;
e7a79811 3260 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3261 }
3262 return 0;
3263}
3264
3265int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3266 struct btrfs_fs_info *fs_info)
3267{
3268 if (fs_info->log_root_tree) {
3269 free_log_tree(trans, fs_info->log_root_tree);
3270 fs_info->log_root_tree = NULL;
47876f7c 3271 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3272 }
e02119d5
CM
3273 return 0;
3274}
3275
803f0f64 3276/*
0f8ce498
FM
3277 * Check if an inode was logged in the current transaction. This correctly deals
3278 * with the case where the inode was logged but has a logged_trans of 0, which
3279 * happens if the inode is evicted and loaded again, as logged_trans is an in
3280 * memory only field (not persisted).
3281 *
3282 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3283 * and < 0 on error.
803f0f64 3284 */
0f8ce498
FM
3285static int inode_logged(struct btrfs_trans_handle *trans,
3286 struct btrfs_inode *inode,
3287 struct btrfs_path *path_in)
803f0f64 3288{
0f8ce498
FM
3289 struct btrfs_path *path = path_in;
3290 struct btrfs_key key;
3291 int ret;
3292
803f0f64 3293 if (inode->logged_trans == trans->transid)
0f8ce498 3294 return 1;
803f0f64 3295
0f8ce498
FM
3296 /*
3297 * If logged_trans is not 0, then we know the inode logged was not logged
3298 * in this transaction, so we can return false right away.
3299 */
3300 if (inode->logged_trans > 0)
3301 return 0;
3302
3303 /*
3304 * If no log tree was created for this root in this transaction, then
3305 * the inode can not have been logged in this transaction. In that case
3306 * set logged_trans to anything greater than 0 and less than the current
3307 * transaction's ID, to avoid the search below in a future call in case
3308 * a log tree gets created after this.
3309 */
3310 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3311 inode->logged_trans = trans->transid - 1;
3312 return 0;
3313 }
3314
3315 /*
3316 * We have a log tree and the inode's logged_trans is 0. We can't tell
3317 * for sure if the inode was logged before in this transaction by looking
3318 * only at logged_trans. We could be pessimistic and assume it was, but
3319 * that can lead to unnecessarily logging an inode during rename and link
3320 * operations, and then further updating the log in followup rename and
3321 * link operations, specially if it's a directory, which adds latency
3322 * visible to applications doing a series of rename or link operations.
3323 *
3324 * A logged_trans of 0 here can mean several things:
3325 *
3326 * 1) The inode was never logged since the filesystem was mounted, and may
3327 * or may have not been evicted and loaded again;
3328 *
3329 * 2) The inode was logged in a previous transaction, then evicted and
3330 * then loaded again;
3331 *
3332 * 3) The inode was logged in the current transaction, then evicted and
3333 * then loaded again.
3334 *
3335 * For cases 1) and 2) we don't want to return true, but we need to detect
3336 * case 3) and return true. So we do a search in the log root for the inode
3337 * item.
3338 */
3339 key.objectid = btrfs_ino(inode);
3340 key.type = BTRFS_INODE_ITEM_KEY;
3341 key.offset = 0;
3342
3343 if (!path) {
3344 path = btrfs_alloc_path();
3345 if (!path)
3346 return -ENOMEM;
3347 }
3348
3349 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3350
3351 if (path_in)
3352 btrfs_release_path(path);
3353 else
3354 btrfs_free_path(path);
1e0860f3 3355
6e8e777d 3356 /*
0f8ce498
FM
3357 * Logging an inode always results in logging its inode item. So if we
3358 * did not find the item we know the inode was not logged for sure.
6e8e777d 3359 */
0f8ce498
FM
3360 if (ret < 0) {
3361 return ret;
3362 } else if (ret > 0) {
3363 /*
3364 * Set logged_trans to a value greater than 0 and less then the
3365 * current transaction to avoid doing the search in future calls.
3366 */
3367 inode->logged_trans = trans->transid - 1;
3368 return 0;
3369 }
3370
3371 /*
3372 * The inode was previously logged and then evicted, set logged_trans to
3373 * the current transacion's ID, to avoid future tree searches as long as
3374 * the inode is not evicted again.
3375 */
3376 inode->logged_trans = trans->transid;
3377
3378 /*
3379 * If it's a directory, then we must set last_dir_index_offset to the
3380 * maximum possible value, so that the next attempt to log the inode does
3381 * not skip checking if dir index keys found in modified subvolume tree
3382 * leaves have been logged before, otherwise it would result in attempts
3383 * to insert duplicate dir index keys in the log tree. This must be done
3384 * because last_dir_index_offset is an in-memory only field, not persisted
3385 * in the inode item or any other on-disk structure, so its value is lost
3386 * once the inode is evicted.
3387 */
3388 if (S_ISDIR(inode->vfs_inode.i_mode))
3389 inode->last_dir_index_offset = (u64)-1;
803f0f64 3390
0f8ce498 3391 return 1;
803f0f64
FM
3392}
3393
839061fe
FM
3394/*
3395 * Delete a directory entry from the log if it exists.
3396 *
3397 * Returns < 0 on error
3398 * 1 if the entry does not exists
3399 * 0 if the entry existed and was successfully deleted
3400 */
3401static int del_logged_dentry(struct btrfs_trans_handle *trans,
3402 struct btrfs_root *log,
3403 struct btrfs_path *path,
3404 u64 dir_ino,
6db75318 3405 const struct fscrypt_str *name,
839061fe
FM
3406 u64 index)
3407{
3408 struct btrfs_dir_item *di;
3409
3410 /*
3411 * We only log dir index items of a directory, so we don't need to look
3412 * for dir item keys.
3413 */
3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e43eec81 3415 index, name, -1);
839061fe
FM
3416 if (IS_ERR(di))
3417 return PTR_ERR(di);
3418 else if (!di)
3419 return 1;
3420
3421 /*
3422 * We do not need to update the size field of the directory's
3423 * inode item because on log replay we update the field to reflect
3424 * all existing entries in the directory (see overwrite_item()).
3425 */
3426 return btrfs_delete_one_dir_name(trans, log, path, di);
3427}
3428
e02119d5
CM
3429/*
3430 * If both a file and directory are logged, and unlinks or renames are
3431 * mixed in, we have a few interesting corners:
3432 *
3433 * create file X in dir Y
3434 * link file X to X.link in dir Y
3435 * fsync file X
3436 * unlink file X but leave X.link
3437 * fsync dir Y
3438 *
3439 * After a crash we would expect only X.link to exist. But file X
3440 * didn't get fsync'd again so the log has back refs for X and X.link.
3441 *
3442 * We solve this by removing directory entries and inode backrefs from the
3443 * log when a file that was logged in the current transaction is
3444 * unlinked. Any later fsync will include the updated log entries, and
3445 * we'll be able to reconstruct the proper directory items from backrefs.
3446 *
3447 * This optimizations allows us to avoid relogging the entire inode
3448 * or the entire directory.
3449 */
9a35fc95
JB
3450void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3451 struct btrfs_root *root,
6db75318 3452 const struct fscrypt_str *name,
9a35fc95 3453 struct btrfs_inode *dir, u64 index)
e02119d5 3454{
e02119d5
CM
3455 struct btrfs_path *path;
3456 int ret;
e02119d5 3457
0f8ce498
FM
3458 ret = inode_logged(trans, dir, NULL);
3459 if (ret == 0)
3460 return;
3461 else if (ret < 0) {
3462 btrfs_set_log_full_commit(trans);
9a35fc95 3463 return;
0f8ce498 3464 }
3a5f1d45 3465
e02119d5
CM
3466 ret = join_running_log_trans(root);
3467 if (ret)
9a35fc95 3468 return;
e02119d5 3469
49f34d1f 3470 mutex_lock(&dir->log_mutex);
e02119d5 3471
e02119d5 3472 path = btrfs_alloc_path();
a62f44a5 3473 if (!path) {
839061fe 3474 ret = -ENOMEM;
a62f44a5
TI
3475 goto out_unlock;
3476 }
2a29edc6 3477
839061fe 3478 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
e43eec81 3479 name, index);
e02119d5 3480 btrfs_free_path(path);
a62f44a5 3481out_unlock:
49f34d1f 3482 mutex_unlock(&dir->log_mutex);
839061fe 3483 if (ret < 0)
90787766 3484 btrfs_set_log_full_commit(trans);
12fcfd22 3485 btrfs_end_log_trans(root);
e02119d5
CM
3486}
3487
3488/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3489void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
6db75318 3491 const struct fscrypt_str *name,
9a35fc95 3492 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3493{
3494 struct btrfs_root *log;
3495 u64 index;
3496 int ret;
3497
0f8ce498
FM
3498 ret = inode_logged(trans, inode, NULL);
3499 if (ret == 0)
9a35fc95 3500 return;
0f8ce498
FM
3501 else if (ret < 0) {
3502 btrfs_set_log_full_commit(trans);
3503 return;
3504 }
3a5f1d45 3505
e02119d5
CM
3506 ret = join_running_log_trans(root);
3507 if (ret)
9a35fc95 3508 return;
e02119d5 3509 log = root->log_root;
a491abb2 3510 mutex_lock(&inode->log_mutex);
e02119d5 3511
e43eec81 3512 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
e02119d5 3513 dirid, &index);
a491abb2 3514 mutex_unlock(&inode->log_mutex);
9a35fc95 3515 if (ret < 0 && ret != -ENOENT)
90787766 3516 btrfs_set_log_full_commit(trans);
12fcfd22 3517 btrfs_end_log_trans(root);
e02119d5
CM
3518}
3519
3520/*
3521 * creates a range item in the log for 'dirid'. first_offset and
3522 * last_offset tell us which parts of the key space the log should
3523 * be considered authoritative for.
3524 */
3525static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *log,
3527 struct btrfs_path *path,
339d0354 3528 u64 dirid,
e02119d5
CM
3529 u64 first_offset, u64 last_offset)
3530{
3531 int ret;
3532 struct btrfs_key key;
3533 struct btrfs_dir_log_item *item;
3534
3535 key.objectid = dirid;
3536 key.offset = first_offset;
339d0354 3537 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3538 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3539 /*
3540 * -EEXIST is fine and can happen sporadically when we are logging a
3541 * directory and have concurrent insertions in the subvolume's tree for
3542 * items from other inodes and that result in pushing off some dir items
3543 * from one leaf to another in order to accommodate for the new items.
3544 * This results in logging the same dir index range key.
3545 */
3546 if (ret && ret != -EEXIST)
4a500fd1 3547 return ret;
e02119d5
CM
3548
3549 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3550 struct btrfs_dir_log_item);
750ee454
FM
3551 if (ret == -EEXIST) {
3552 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3553
3554 /*
3555 * btrfs_del_dir_entries_in_log() might have been called during
3556 * an unlink between the initial insertion of this key and the
3557 * current update, or we might be logging a single entry deletion
3558 * during a rename, so set the new last_offset to the max value.
3559 */
3560 last_offset = max(last_offset, curr_end);
3561 }
e02119d5
CM
3562 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3563 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3564 btrfs_release_path(path);
e02119d5
CM
3565 return 0;
3566}
3567
086dcbfa 3568static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
6afaed53 3569 struct btrfs_inode *inode,
086dcbfa
FM
3570 struct extent_buffer *src,
3571 struct btrfs_path *dst_path,
3572 int start_slot,
3573 int count)
3574{
6afaed53 3575 struct btrfs_root *log = inode->root->log_root;
086dcbfa 3576 char *ins_data = NULL;
b7ef5f3a 3577 struct btrfs_item_batch batch;
086dcbfa 3578 struct extent_buffer *dst;
da1b811f
FM
3579 unsigned long src_offset;
3580 unsigned long dst_offset;
6afaed53 3581 u64 last_index;
086dcbfa
FM
3582 struct btrfs_key key;
3583 u32 item_size;
3584 int ret;
3585 int i;
3586
3587 ASSERT(count > 0);
b7ef5f3a 3588 batch.nr = count;
086dcbfa
FM
3589
3590 if (count == 1) {
3591 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3592 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3593 batch.keys = &key;
3594 batch.data_sizes = &item_size;
3595 batch.total_data_size = item_size;
086dcbfa 3596 } else {
b7ef5f3a
FM
3597 struct btrfs_key *ins_keys;
3598 u32 *ins_sizes;
3599
086dcbfa
FM
3600 ins_data = kmalloc(count * sizeof(u32) +
3601 count * sizeof(struct btrfs_key), GFP_NOFS);
3602 if (!ins_data)
3603 return -ENOMEM;
3604
3605 ins_sizes = (u32 *)ins_data;
3606 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3607 batch.keys = ins_keys;
3608 batch.data_sizes = ins_sizes;
3609 batch.total_data_size = 0;
086dcbfa
FM
3610
3611 for (i = 0; i < count; i++) {
3612 const int slot = start_slot + i;
3613
3614 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3615 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3616 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3617 }
3618 }
3619
b7ef5f3a 3620 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3621 if (ret)
3622 goto out;
3623
3624 dst = dst_path->nodes[0];
da1b811f
FM
3625 /*
3626 * Copy all the items in bulk, in a single copy operation. Item data is
3627 * organized such that it's placed at the end of a leaf and from right
3628 * to left. For example, the data for the second item ends at an offset
3629 * that matches the offset where the data for the first item starts, the
3630 * data for the third item ends at an offset that matches the offset
3631 * where the data of the second items starts, and so on.
3632 * Therefore our source and destination start offsets for copy match the
3633 * offsets of the last items (highest slots).
3634 */
3635 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3636 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3637 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa 3638 btrfs_release_path(dst_path);
6afaed53
FM
3639
3640 last_index = batch.keys[count - 1].offset;
3641 ASSERT(last_index > inode->last_dir_index_offset);
3642
3643 /*
3644 * If for some unexpected reason the last item's index is not greater
5cce1780 3645 * than the last index we logged, warn and force a transaction commit.
6afaed53
FM
3646 */
3647 if (WARN_ON(last_index <= inode->last_dir_index_offset))
5cce1780 3648 ret = BTRFS_LOG_FORCE_COMMIT;
6afaed53
FM
3649 else
3650 inode->last_dir_index_offset = last_index;
086dcbfa
FM
3651out:
3652 kfree(ins_data);
3653
3654 return ret;
3655}
3656
eb10d85e
FM
3657static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3658 struct btrfs_inode *inode,
3659 struct btrfs_path *path,
3660 struct btrfs_path *dst_path,
732d591a
FM
3661 struct btrfs_log_ctx *ctx,
3662 u64 *last_old_dentry_offset)
eb10d85e
FM
3663{
3664 struct btrfs_root *log = inode->root->log_root;
796787c9
FM
3665 struct extent_buffer *src;
3666 const int nritems = btrfs_header_nritems(path->nodes[0]);
eb10d85e 3667 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3668 bool last_found = false;
3669 int batch_start = 0;
3670 int batch_size = 0;
eb10d85e
FM
3671 int i;
3672
796787c9
FM
3673 /*
3674 * We need to clone the leaf, release the read lock on it, and use the
3675 * clone before modifying the log tree. See the comment at copy_items()
3676 * about why we need to do this.
3677 */
3678 src = btrfs_clone_extent_buffer(path->nodes[0]);
3679 if (!src)
3680 return -ENOMEM;
3681
3682 i = path->slots[0];
3683 btrfs_release_path(path);
3684 path->nodes[0] = src;
3685 path->slots[0] = i;
3686
3687 for (; i < nritems; i++) {
732d591a 3688 struct btrfs_dir_item *di;
eb10d85e 3689 struct btrfs_key key;
eb10d85e
FM
3690 int ret;
3691
3692 btrfs_item_key_to_cpu(src, &key, i);
3693
339d0354 3694 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3695 last_found = true;
3696 break;
3697 }
eb10d85e 3698
732d591a 3699 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
732d591a
FM
3700
3701 /*
3702 * Skip ranges of items that consist only of dir item keys created
3703 * in past transactions. However if we find a gap, we must log a
3704 * dir index range item for that gap, so that index keys in that
3705 * gap are deleted during log replay.
3706 */
3707 if (btrfs_dir_transid(src, di) < trans->transid) {
3708 if (key.offset > *last_old_dentry_offset + 1) {
3709 ret = insert_dir_log_key(trans, log, dst_path,
3710 ino, *last_old_dentry_offset + 1,
3711 key.offset - 1);
732d591a
FM
3712 if (ret < 0)
3713 return ret;
3714 }
3715
3716 *last_old_dentry_offset = key.offset;
3717 continue;
3718 }
193df624
FM
3719
3720 /* If we logged this dir index item before, we can skip it. */
3721 if (key.offset <= inode->last_dir_index_offset)
3722 continue;
3723
eb10d85e
FM
3724 /*
3725 * We must make sure that when we log a directory entry, the
3726 * corresponding inode, after log replay, has a matching link
3727 * count. For example:
3728 *
3729 * touch foo
3730 * mkdir mydir
3731 * sync
3732 * ln foo mydir/bar
3733 * xfs_io -c "fsync" mydir
3734 * <crash>
3735 * <mount fs and log replay>
3736 *
3737 * Would result in a fsync log that when replayed, our file inode
3738 * would have a link count of 1, but we get two directory entries
3739 * pointing to the same inode. After removing one of the names,
3740 * it would not be possible to remove the other name, which
3741 * resulted always in stale file handle errors, and would not be
3742 * possible to rmdir the parent directory, since its i_size could
3743 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3744 * resulting in -ENOTEMPTY errors.
3745 */
086dcbfa 3746 if (!ctx->log_new_dentries) {
086dcbfa
FM
3747 struct btrfs_key di_key;
3748
086dcbfa 3749 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3750 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3751 ctx->log_new_dentries = true;
3752 }
3753
086dcbfa
FM
3754 if (batch_size == 0)
3755 batch_start = i;
3756 batch_size++;
eb10d85e
FM
3757 }
3758
086dcbfa
FM
3759 if (batch_size > 0) {
3760 int ret;
3761
6afaed53 3762 ret = flush_dir_items_batch(trans, inode, src, dst_path,
086dcbfa
FM
3763 batch_start, batch_size);
3764 if (ret < 0)
3765 return ret;
3766 }
3767
3768 return last_found ? 1 : 0;
eb10d85e
FM
3769}
3770
e02119d5
CM
3771/*
3772 * log all the items included in the current transaction for a given
3773 * directory. This also creates the range items in the log tree required
3774 * to replay anything deleted before the fsync
3775 */
3776static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3777 struct btrfs_inode *inode,
e02119d5 3778 struct btrfs_path *path,
339d0354 3779 struct btrfs_path *dst_path,
2f2ff0ee 3780 struct btrfs_log_ctx *ctx,
e02119d5
CM
3781 u64 min_offset, u64 *last_offset_ret)
3782{
3783 struct btrfs_key min_key;
90d04510 3784 struct btrfs_root *root = inode->root;
e02119d5 3785 struct btrfs_root *log = root->log_root;
e02119d5 3786 int ret;
732d591a 3787 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3788 u64 last_offset = (u64)-1;
684a5773 3789 u64 ino = btrfs_ino(inode);
e02119d5 3790
33345d01 3791 min_key.objectid = ino;
339d0354 3792 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3793 min_key.offset = min_offset;
3794
6174d3cb 3795 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3796
3797 /*
3798 * we didn't find anything from this transaction, see if there
3799 * is anything at all
3800 */
339d0354
FM
3801 if (ret != 0 || min_key.objectid != ino ||
3802 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3803 min_key.objectid = ino;
339d0354 3804 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3805 min_key.offset = (u64)-1;
b3b4aa74 3806 btrfs_release_path(path);
e02119d5
CM
3807 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3808 if (ret < 0) {
b3b4aa74 3809 btrfs_release_path(path);
e02119d5
CM
3810 return ret;
3811 }
339d0354 3812 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3813
3814 /* if ret == 0 there are items for this type,
3815 * create a range to tell us the last key of this type.
3816 * otherwise, there are no items in this directory after
3817 * *min_offset, and we create a range to indicate that.
3818 */
3819 if (ret == 0) {
3820 struct btrfs_key tmp;
732d591a 3821
e02119d5
CM
3822 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3823 path->slots[0]);
339d0354 3824 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3825 last_old_dentry_offset = tmp.offset;
235e1c7b
FM
3826 } else if (ret > 0) {
3827 ret = 0;
e02119d5 3828 }
6d3d970b 3829
e02119d5
CM
3830 goto done;
3831 }
3832
3833 /* go backward to find any previous key */
339d0354 3834 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3835 if (ret == 0) {
3836 struct btrfs_key tmp;
a450a4af 3837
e02119d5 3838 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
3839 /*
3840 * The dir index key before the first one we found that needs to
3841 * be logged might be in a previous leaf, and there might be a
3842 * gap between these keys, meaning that we had deletions that
3843 * happened. So the key range item we log (key type
3844 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3845 * previous key's offset plus 1, so that those deletes are replayed.
3846 */
3847 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3848 last_old_dentry_offset = tmp.offset;
6d3d970b 3849 } else if (ret < 0) {
6d3d970b 3850 goto done;
e02119d5 3851 }
6d3d970b 3852
b3b4aa74 3853 btrfs_release_path(path);
e02119d5 3854
2cc83342 3855 /*
8bb6898d
FM
3856 * Find the first key from this transaction again or the one we were at
3857 * in the loop below in case we had to reschedule. We may be logging the
3858 * directory without holding its VFS lock, which happen when logging new
3859 * dentries (through log_new_dir_dentries()) or in some cases when we
3860 * need to log the parent directory of an inode. This means a dir index
3861 * key might be deleted from the inode's root, and therefore we may not
3862 * find it anymore. If we can't find it, just move to the next key. We
3863 * can not bail out and ignore, because if we do that we will simply
3864 * not log dir index keys that come after the one that was just deleted
3865 * and we can end up logging a dir index range that ends at (u64)-1
3866 * (@last_offset is initialized to that), resulting in removing dir
3867 * entries we should not remove at log replay time.
2cc83342 3868 */
bb56f02f 3869search:
e02119d5 3870 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
235e1c7b 3871 if (ret > 0) {
8bb6898d 3872 ret = btrfs_next_item(root, path);
235e1c7b
FM
3873 if (ret > 0) {
3874 /* There are no more keys in the inode's root. */
3875 ret = 0;
3876 goto done;
3877 }
3878 }
6d3d970b 3879 if (ret < 0)
e02119d5 3880 goto done;
e02119d5
CM
3881
3882 /*
3883 * we have a block from this transaction, log every item in it
3884 * from our directory
3885 */
d397712b 3886 while (1) {
732d591a
FM
3887 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3888 &last_old_dentry_offset);
eb10d85e 3889 if (ret != 0) {
235e1c7b
FM
3890 if (ret > 0)
3891 ret = 0;
eb10d85e 3892 goto done;
e02119d5 3893 }
eb10d85e 3894 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3895
3896 /*
3897 * look ahead to the next item and see if it is also
3898 * from this directory and from this transaction
3899 */
3900 ret = btrfs_next_leaf(root, path);
80c0b421 3901 if (ret) {
235e1c7b 3902 if (ret == 1) {
80c0b421 3903 last_offset = (u64)-1;
235e1c7b
FM
3904 ret = 0;
3905 }
e02119d5
CM
3906 goto done;
3907 }
eb10d85e 3908 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3909 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3910 last_offset = (u64)-1;
3911 goto done;
3912 }
3913 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
3914 /*
3915 * The next leaf was not changed in the current transaction
3916 * and has at least one dir index key.
3917 * We check for the next key because there might have been
3918 * one or more deletions between the last key we logged and
3919 * that next key. So the key range item we log (key type
3920 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3921 * offset minus 1, so that those deletes are replayed.
3922 */
3923 last_offset = min_key.offset - 1;
e02119d5
CM
3924 goto done;
3925 }
eb10d85e
FM
3926 if (need_resched()) {
3927 btrfs_release_path(path);
3928 cond_resched();
3929 goto search;
3930 }
e02119d5
CM
3931 }
3932done:
b3b4aa74
DS
3933 btrfs_release_path(path);
3934 btrfs_release_path(dst_path);
e02119d5 3935
235e1c7b 3936 if (ret == 0) {
4a500fd1
YZ
3937 *last_offset_ret = last_offset;
3938 /*
732d591a
FM
3939 * In case the leaf was changed in the current transaction but
3940 * all its dir items are from a past transaction, the last item
3941 * in the leaf is a dir item and there's no gap between that last
3942 * dir item and the first one on the next leaf (which did not
3943 * change in the current transaction), then we don't need to log
3944 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 3945 */
732d591a 3946 ASSERT(last_old_dentry_offset <= last_offset);
235e1c7b 3947 if (last_old_dentry_offset < last_offset)
732d591a
FM
3948 ret = insert_dir_log_key(trans, log, path, ino,
3949 last_old_dentry_offset + 1,
3950 last_offset);
4a500fd1 3951 }
235e1c7b
FM
3952
3953 return ret;
e02119d5
CM
3954}
3955
193df624
FM
3956/*
3957 * If the inode was logged before and it was evicted, then its
3958 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3959 * key offset. If that's the case, search for it and update the inode. This
3960 * is to avoid lookups in the log tree every time we try to insert a dir index
3961 * key from a leaf changed in the current transaction, and to allow us to always
3962 * do batch insertions of dir index keys.
3963 */
3964static int update_last_dir_index_offset(struct btrfs_inode *inode,
3965 struct btrfs_path *path,
3966 const struct btrfs_log_ctx *ctx)
3967{
3968 const u64 ino = btrfs_ino(inode);
3969 struct btrfs_key key;
3970 int ret;
3971
3972 lockdep_assert_held(&inode->log_mutex);
3973
3974 if (inode->last_dir_index_offset != (u64)-1)
3975 return 0;
3976
3977 if (!ctx->logged_before) {
3978 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3979 return 0;
3980 }
3981
3982 key.objectid = ino;
3983 key.type = BTRFS_DIR_INDEX_KEY;
3984 key.offset = (u64)-1;
3985
3986 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3987 /*
3988 * An error happened or we actually have an index key with an offset
3989 * value of (u64)-1. Bail out, we're done.
3990 */
3991 if (ret <= 0)
3992 goto out;
3993
3994 ret = 0;
3995 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3996
3997 /*
3998 * No dir index items, bail out and leave last_dir_index_offset with
3999 * the value right before the first valid index value.
4000 */
4001 if (path->slots[0] == 0)
4002 goto out;
4003
4004 /*
4005 * btrfs_search_slot() left us at one slot beyond the slot with the last
4006 * index key, or beyond the last key of the directory that is not an
4007 * index key. If we have an index key before, set last_dir_index_offset
4008 * to its offset value, otherwise leave it with a value right before the
4009 * first valid index value, as it means we have an empty directory.
4010 */
4011 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4012 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4013 inode->last_dir_index_offset = key.offset;
4014
4015out:
4016 btrfs_release_path(path);
4017
4018 return ret;
4019}
4020
e02119d5
CM
4021/*
4022 * logging directories is very similar to logging inodes, We find all the items
4023 * from the current transaction and write them to the log.
4024 *
4025 * The recovery code scans the directory in the subvolume, and if it finds a
4026 * key in the range logged that is not present in the log tree, then it means
4027 * that dir entry was unlinked during the transaction.
4028 *
4029 * In order for that scan to work, we must include one key smaller than
4030 * the smallest logged by this transaction and one key larger than the largest
4031 * key logged by this transaction.
4032 */
4033static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4034 struct btrfs_inode *inode,
e02119d5 4035 struct btrfs_path *path,
2f2ff0ee
FM
4036 struct btrfs_path *dst_path,
4037 struct btrfs_log_ctx *ctx)
e02119d5
CM
4038{
4039 u64 min_key;
4040 u64 max_key;
4041 int ret;
e02119d5 4042
193df624
FM
4043 ret = update_last_dir_index_offset(inode, path, ctx);
4044 if (ret)
4045 return ret;
4046
732d591a 4047 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4048 max_key = 0;
dc287224 4049
d397712b 4050 while (1) {
339d0354 4051 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4052 ctx, min_key, &max_key);
4a500fd1
YZ
4053 if (ret)
4054 return ret;
e02119d5
CM
4055 if (max_key == (u64)-1)
4056 break;
4057 min_key = max_key + 1;
4058 }
4059
e02119d5
CM
4060 return 0;
4061}
4062
4063/*
4064 * a helper function to drop items from the log before we relog an
4065 * inode. max_key_type indicates the highest item type to remove.
4066 * This cannot be run for file data extents because it does not
4067 * free the extents they point to.
4068 */
88e221cd 4069static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4070 struct btrfs_root *log,
4071 struct btrfs_path *path,
88e221cd
FM
4072 struct btrfs_inode *inode,
4073 int max_key_type)
e02119d5
CM
4074{
4075 int ret;
4076 struct btrfs_key key;
4077 struct btrfs_key found_key;
18ec90d6 4078 int start_slot;
e02119d5 4079
88e221cd 4080 key.objectid = btrfs_ino(inode);
e02119d5
CM
4081 key.type = max_key_type;
4082 key.offset = (u64)-1;
4083
d397712b 4084 while (1) {
e02119d5 4085 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4086 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4087 if (ret < 0)
e02119d5
CM
4088 break;
4089
4090 if (path->slots[0] == 0)
4091 break;
4092
4093 path->slots[0]--;
4094 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4095 path->slots[0]);
4096
88e221cd 4097 if (found_key.objectid != key.objectid)
e02119d5
CM
4098 break;
4099
18ec90d6
JB
4100 found_key.offset = 0;
4101 found_key.type = 0;
fdf8d595 4102 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
cbca7d59
FM
4103 if (ret < 0)
4104 break;
18ec90d6
JB
4105
4106 ret = btrfs_del_items(trans, log, path, start_slot,
4107 path->slots[0] - start_slot + 1);
4108 /*
4109 * If start slot isn't 0 then we don't need to re-search, we've
4110 * found the last guy with the objectid in this tree.
4111 */
4112 if (ret || start_slot != 0)
65a246c5 4113 break;
b3b4aa74 4114 btrfs_release_path(path);
e02119d5 4115 }
b3b4aa74 4116 btrfs_release_path(path);
5bdbeb21
JB
4117 if (ret > 0)
4118 ret = 0;
4a500fd1 4119 return ret;
e02119d5
CM
4120}
4121
8a2b3da1
FM
4122static int truncate_inode_items(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *log_root,
4124 struct btrfs_inode *inode,
4125 u64 new_size, u32 min_type)
4126{
d9ac19c3
JB
4127 struct btrfs_truncate_control control = {
4128 .new_size = new_size,
487e81d2 4129 .ino = btrfs_ino(inode),
d9ac19c3 4130 .min_type = min_type,
5caa490e 4131 .skip_ref_updates = true,
d9ac19c3 4132 };
8a2b3da1 4133
8697b8f8 4134 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4135}
4136
94edf4ae
JB
4137static void fill_inode_item(struct btrfs_trans_handle *trans,
4138 struct extent_buffer *leaf,
4139 struct btrfs_inode_item *item,
1a4bcf47
FM
4140 struct inode *inode, int log_inode_only,
4141 u64 logged_isize)
94edf4ae 4142{
0b1c6cca 4143 struct btrfs_map_token token;
77eea05e 4144 u64 flags;
0b1c6cca 4145
c82f823c 4146 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4147
4148 if (log_inode_only) {
4149 /* set the generation to zero so the recover code
4150 * can tell the difference between an logging
4151 * just to say 'this inode exists' and a logging
4152 * to say 'update this inode with these values'
4153 */
cc4c13d5
DS
4154 btrfs_set_token_inode_generation(&token, item, 0);
4155 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4156 } else {
cc4c13d5
DS
4157 btrfs_set_token_inode_generation(&token, item,
4158 BTRFS_I(inode)->generation);
4159 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4160 }
4161
cc4c13d5
DS
4162 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4163 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4164 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4165 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4166
4167 btrfs_set_token_timespec_sec(&token, &item->atime,
4168 inode->i_atime.tv_sec);
4169 btrfs_set_token_timespec_nsec(&token, &item->atime,
4170 inode->i_atime.tv_nsec);
4171
4172 btrfs_set_token_timespec_sec(&token, &item->mtime,
4173 inode->i_mtime.tv_sec);
4174 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4175 inode->i_mtime.tv_nsec);
4176
4177 btrfs_set_token_timespec_sec(&token, &item->ctime,
4178 inode->i_ctime.tv_sec);
4179 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4180 inode->i_ctime.tv_nsec);
4181
e593e54e
FM
4182 /*
4183 * We do not need to set the nbytes field, in fact during a fast fsync
4184 * its value may not even be correct, since a fast fsync does not wait
4185 * for ordered extent completion, which is where we update nbytes, it
4186 * only waits for writeback to complete. During log replay as we find
4187 * file extent items and replay them, we adjust the nbytes field of the
4188 * inode item in subvolume tree as needed (see overwrite_item()).
4189 */
cc4c13d5
DS
4190
4191 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4192 btrfs_set_token_inode_transid(&token, item, trans->transid);
4193 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4194 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4195 BTRFS_I(inode)->ro_flags);
4196 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4197 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4198}
4199
a95249b3
JB
4200static int log_inode_item(struct btrfs_trans_handle *trans,
4201 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4202 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4203{
4204 struct btrfs_inode_item *inode_item;
a95249b3
JB
4205 int ret;
4206
2ac691d8
FM
4207 /*
4208 * If we are doing a fast fsync and the inode was logged before in the
4209 * current transaction, then we know the inode was previously logged and
4210 * it exists in the log tree. For performance reasons, in this case use
4211 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4212 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4213 * contention in case there are concurrent fsyncs for other inodes of the
4214 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4215 * already exists can also result in unnecessarily splitting a leaf.
4216 */
4217 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4218 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4219 ASSERT(ret <= 0);
4220 if (ret > 0)
4221 ret = -ENOENT;
4222 } else {
4223 /*
4224 * This means it is the first fsync in the current transaction,
4225 * so the inode item is not in the log and we need to insert it.
4226 * We can never get -EEXIST because we are only called for a fast
4227 * fsync and in case an inode eviction happens after the inode was
4228 * logged before in the current transaction, when we load again
4229 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4230 * flags and set ->logged_trans to 0.
4231 */
4232 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4233 sizeof(*inode_item));
4234 ASSERT(ret != -EEXIST);
4235 }
4236 if (ret)
a95249b3
JB
4237 return ret;
4238 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4239 struct btrfs_inode_item);
6d889a3b
NB
4240 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4241 0, 0);
a95249b3
JB
4242 btrfs_release_path(path);
4243 return 0;
4244}
4245
40e046ac 4246static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4247 struct btrfs_inode *inode,
40e046ac
FM
4248 struct btrfs_root *log_root,
4249 struct btrfs_ordered_sum *sums)
4250{
e289f03e
FM
4251 const u64 lock_end = sums->bytenr + sums->len - 1;
4252 struct extent_state *cached_state = NULL;
40e046ac
FM
4253 int ret;
4254
3ebac17c
FM
4255 /*
4256 * If this inode was not used for reflink operations in the current
4257 * transaction with new extents, then do the fast path, no need to
4258 * worry about logging checksum items with overlapping ranges.
4259 */
4260 if (inode->last_reflink_trans < trans->transid)
4261 return btrfs_csum_file_blocks(trans, log_root, sums);
4262
e289f03e
FM
4263 /*
4264 * Serialize logging for checksums. This is to avoid racing with the
4265 * same checksum being logged by another task that is logging another
4266 * file which happens to refer to the same extent as well. Such races
4267 * can leave checksum items in the log with overlapping ranges.
4268 */
570eb97b
JB
4269 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4270 &cached_state);
e289f03e
FM
4271 if (ret)
4272 return ret;
40e046ac
FM
4273 /*
4274 * Due to extent cloning, we might have logged a csum item that covers a
4275 * subrange of a cloned extent, and later we can end up logging a csum
4276 * item for a larger subrange of the same extent or the entire range.
4277 * This would leave csum items in the log tree that cover the same range
4278 * and break the searches for checksums in the log tree, resulting in
4279 * some checksums missing in the fs/subvolume tree. So just delete (or
4280 * trim and adjust) any existing csum items in the log for this range.
4281 */
4282 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4283 if (!ret)
4284 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4285
570eb97b
JB
4286 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4287 &cached_state);
e289f03e
FM
4288
4289 return ret;
40e046ac
FM
4290}
4291
31ff1cd2 4292static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4293 struct btrfs_inode *inode,
31ff1cd2 4294 struct btrfs_path *dst_path,
0e56315c 4295 struct btrfs_path *src_path,
1a4bcf47
FM
4296 int start_slot, int nr, int inode_only,
4297 u64 logged_isize)
31ff1cd2 4298{
44d70e19 4299 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4300 struct btrfs_file_extent_item *extent;
796787c9 4301 struct extent_buffer *src;
7f30c072 4302 int ret = 0;
31ff1cd2
CM
4303 struct btrfs_key *ins_keys;
4304 u32 *ins_sizes;
b7ef5f3a 4305 struct btrfs_item_batch batch;
31ff1cd2
CM
4306 char *ins_data;
4307 int i;
7f30c072 4308 int dst_index;
7f30c072
FM
4309 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4310 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4311
796787c9
FM
4312 /*
4313 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4314 * use the clone. This is because otherwise we would be changing the log
4315 * tree, to insert items from the subvolume tree or insert csum items,
4316 * while holding a read lock on a leaf from the subvolume tree, which
4317 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4318 *
4319 * 1) Modifying the log tree triggers an extent buffer allocation while
4320 * holding a write lock on a parent extent buffer from the log tree.
4321 * Allocating the pages for an extent buffer, or the extent buffer
4322 * struct, can trigger inode eviction and finally the inode eviction
4323 * will trigger a release/remove of a delayed node, which requires
4324 * taking the delayed node's mutex;
4325 *
4326 * 2) Allocating a metadata extent for a log tree can trigger the async
4327 * reclaim thread and make us wait for it to release enough space and
4328 * unblock our reservation ticket. The reclaim thread can start
4329 * flushing delayed items, and that in turn results in the need to
4330 * lock delayed node mutexes and in the need to write lock extent
4331 * buffers of a subvolume tree - all this while holding a write lock
4332 * on the parent extent buffer in the log tree.
4333 *
4334 * So one task in scenario 1) running in parallel with another task in
4335 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4336 * node mutex while having a read lock on a leaf from the subvolume,
4337 * while the other is holding the delayed node's mutex and wants to
4338 * write lock the same subvolume leaf for flushing delayed items.
4339 */
4340 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4341 if (!src)
4342 return -ENOMEM;
4343
4344 i = src_path->slots[0];
4345 btrfs_release_path(src_path);
4346 src_path->nodes[0] = src;
4347 src_path->slots[0] = i;
4348
31ff1cd2
CM
4349 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4350 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4351 if (!ins_data)
4352 return -ENOMEM;
4353
31ff1cd2
CM
4354 ins_sizes = (u32 *)ins_data;
4355 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4356 batch.keys = ins_keys;
4357 batch.data_sizes = ins_sizes;
4358 batch.total_data_size = 0;
7f30c072 4359 batch.nr = 0;
31ff1cd2 4360
7f30c072 4361 dst_index = 0;
31ff1cd2 4362 for (i = 0; i < nr; i++) {
7f30c072
FM
4363 const int src_slot = start_slot + i;
4364 struct btrfs_root *csum_root;
5b7ce5e2
FM
4365 struct btrfs_ordered_sum *sums;
4366 struct btrfs_ordered_sum *sums_next;
4367 LIST_HEAD(ordered_sums);
7f30c072
FM
4368 u64 disk_bytenr;
4369 u64 disk_num_bytes;
4370 u64 extent_offset;
4371 u64 extent_num_bytes;
4372 bool is_old_extent;
4373
4374 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4375
4376 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4377 goto add_to_batch;
4378
4379 extent = btrfs_item_ptr(src, src_slot,
4380 struct btrfs_file_extent_item);
4381
4382 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4383 trans->transid);
4384
4385 /*
4386 * Don't copy extents from past generations. That would make us
4387 * log a lot more metadata for common cases like doing only a
4388 * few random writes into a file and then fsync it for the first
4389 * time or after the full sync flag is set on the inode. We can
4390 * get leaves full of extent items, most of which are from past
4391 * generations, so we can skip them - as long as the inode has
4392 * not been the target of a reflink operation in this transaction,
4393 * as in that case it might have had file extent items with old
4394 * generations copied into it. We also must always log prealloc
4395 * extents that start at or beyond eof, otherwise we would lose
4396 * them on log replay.
4397 */
4398 if (is_old_extent &&
4399 ins_keys[dst_index].offset < i_size &&
4400 inode->last_reflink_trans < trans->transid)
4401 continue;
4402
4403 if (skip_csum)
4404 goto add_to_batch;
4405
4406 /* Only regular extents have checksums. */
4407 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4408 goto add_to_batch;
4409
4410 /*
4411 * If it's an extent created in a past transaction, then its
4412 * checksums are already accessible from the committed csum tree,
4413 * no need to log them.
4414 */
4415 if (is_old_extent)
4416 goto add_to_batch;
4417
4418 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4419 /* If it's an explicit hole, there are no checksums. */
4420 if (disk_bytenr == 0)
4421 goto add_to_batch;
4422
4423 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4424
4425 if (btrfs_file_extent_compression(src, extent)) {
4426 extent_offset = 0;
4427 extent_num_bytes = disk_num_bytes;
4428 } else {
4429 extent_offset = btrfs_file_extent_offset(src, extent);
4430 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4431 }
4432
4433 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4434 disk_bytenr += extent_offset;
97e38239
QW
4435 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4436 disk_bytenr + extent_num_bytes - 1,
4437 &ordered_sums, 0, false);
7f30c072
FM
4438 if (ret)
4439 goto out;
4440
5b7ce5e2
FM
4441 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4442 if (!ret)
4443 ret = log_csums(trans, inode, log, sums);
4444 list_del(&sums->list);
4445 kfree(sums);
4446 }
4447 if (ret)
4448 goto out;
4449
7f30c072
FM
4450add_to_batch:
4451 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4452 batch.total_data_size += ins_sizes[dst_index];
4453 batch.nr++;
4454 dst_index++;
31ff1cd2 4455 }
7f30c072
FM
4456
4457 /*
4458 * We have a leaf full of old extent items that don't need to be logged,
4459 * so we don't need to do anything.
4460 */
4461 if (batch.nr == 0)
4462 goto out;
4463
b7ef5f3a 4464 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4465 if (ret)
4466 goto out;
4467
4468 dst_index = 0;
4469 for (i = 0; i < nr; i++) {
4470 const int src_slot = start_slot + i;
4471 const int dst_slot = dst_path->slots[0] + dst_index;
4472 struct btrfs_key key;
4473 unsigned long src_offset;
4474 unsigned long dst_offset;
4475
4476 /*
4477 * We're done, all the remaining items in the source leaf
4478 * correspond to old file extent items.
4479 */
4480 if (dst_index >= batch.nr)
4481 break;
4482
4483 btrfs_item_key_to_cpu(src, &key, src_slot);
4484
4485 if (key.type != BTRFS_EXTENT_DATA_KEY)
4486 goto copy_item;
31ff1cd2 4487
7f30c072
FM
4488 extent = btrfs_item_ptr(src, src_slot,
4489 struct btrfs_file_extent_item);
31ff1cd2 4490
7f30c072
FM
4491 /* See the comment in the previous loop, same logic. */
4492 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4493 key.offset < i_size &&
4494 inode->last_reflink_trans < trans->transid)
4495 continue;
4496
4497copy_item:
4498 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4499 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4500
7f30c072
FM
4501 if (key.type == BTRFS_INODE_ITEM_KEY) {
4502 struct btrfs_inode_item *inode_item;
4503
4504 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4505 struct btrfs_inode_item);
94edf4ae 4506 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4507 &inode->vfs_inode,
4508 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4509 logged_isize);
94edf4ae
JB
4510 } else {
4511 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4512 src_offset, ins_sizes[dst_index]);
31ff1cd2 4513 }
94edf4ae 4514
7f30c072 4515 dst_index++;
31ff1cd2
CM
4516 }
4517
4518 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4519 btrfs_release_path(dst_path);
7f30c072 4520out:
31ff1cd2 4521 kfree(ins_data);
d20f7043 4522
4a500fd1 4523 return ret;
31ff1cd2
CM
4524}
4525
4f0f586b
ST
4526static int extent_cmp(void *priv, const struct list_head *a,
4527 const struct list_head *b)
5dc562c5 4528{
214cc184 4529 const struct extent_map *em1, *em2;
5dc562c5
JB
4530
4531 em1 = list_entry(a, struct extent_map, list);
4532 em2 = list_entry(b, struct extent_map, list);
4533
4534 if (em1->start < em2->start)
4535 return -1;
4536 else if (em1->start > em2->start)
4537 return 1;
4538 return 0;
4539}
4540
e7175a69
JB
4541static int log_extent_csums(struct btrfs_trans_handle *trans,
4542 struct btrfs_inode *inode,
a9ecb653 4543 struct btrfs_root *log_root,
48778179
FM
4544 const struct extent_map *em,
4545 struct btrfs_log_ctx *ctx)
5dc562c5 4546{
48778179 4547 struct btrfs_ordered_extent *ordered;
fc28b25e 4548 struct btrfs_root *csum_root;
2ab28f32
JB
4549 u64 csum_offset;
4550 u64 csum_len;
48778179
FM
4551 u64 mod_start = em->mod_start;
4552 u64 mod_len = em->mod_len;
8407f553
FM
4553 LIST_HEAD(ordered_sums);
4554 int ret = 0;
0aa4a17d 4555
e7175a69
JB
4556 if (inode->flags & BTRFS_INODE_NODATASUM ||
4557 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4558 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4559 return 0;
5dc562c5 4560
48778179
FM
4561 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4562 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4563 const u64 mod_end = mod_start + mod_len;
4564 struct btrfs_ordered_sum *sums;
4565
4566 if (mod_len == 0)
4567 break;
4568
4569 if (ordered_end <= mod_start)
4570 continue;
4571 if (mod_end <= ordered->file_offset)
4572 break;
4573
4574 /*
4575 * We are going to copy all the csums on this ordered extent, so
4576 * go ahead and adjust mod_start and mod_len in case this ordered
4577 * extent has already been logged.
4578 */
4579 if (ordered->file_offset > mod_start) {
4580 if (ordered_end >= mod_end)
4581 mod_len = ordered->file_offset - mod_start;
4582 /*
4583 * If we have this case
4584 *
4585 * |--------- logged extent ---------|
4586 * |----- ordered extent ----|
4587 *
4588 * Just don't mess with mod_start and mod_len, we'll
4589 * just end up logging more csums than we need and it
4590 * will be ok.
4591 */
4592 } else {
4593 if (ordered_end < mod_end) {
4594 mod_len = mod_end - ordered_end;
4595 mod_start = ordered_end;
4596 } else {
4597 mod_len = 0;
4598 }
4599 }
4600
4601 /*
4602 * To keep us from looping for the above case of an ordered
4603 * extent that falls inside of the logged extent.
4604 */
4605 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4606 continue;
4607
4608 list_for_each_entry(sums, &ordered->list, list) {
4609 ret = log_csums(trans, inode, log_root, sums);
4610 if (ret)
4611 return ret;
4612 }
4613 }
4614
4615 /* We're done, found all csums in the ordered extents. */
4616 if (mod_len == 0)
4617 return 0;
4618
e7175a69 4619 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4620 if (em->compress_type) {
4621 csum_offset = 0;
8407f553 4622 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4623 } else {
48778179
FM
4624 csum_offset = mod_start - em->start;
4625 csum_len = mod_len;
488111aa 4626 }
2ab28f32 4627
70c8a91c 4628 /* block start is already adjusted for the file extent offset. */
fc28b25e 4629 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
97e38239
QW
4630 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4631 em->block_start + csum_offset +
4632 csum_len - 1, &ordered_sums, 0, false);
70c8a91c
JB
4633 if (ret)
4634 return ret;
5dc562c5 4635
70c8a91c
JB
4636 while (!list_empty(&ordered_sums)) {
4637 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4638 struct btrfs_ordered_sum,
4639 list);
4640 if (!ret)
3ebac17c 4641 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4642 list_del(&sums->list);
4643 kfree(sums);
5dc562c5
JB
4644 }
4645
70c8a91c 4646 return ret;
5dc562c5
JB
4647}
4648
8407f553 4649static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4650 struct btrfs_inode *inode,
8407f553
FM
4651 const struct extent_map *em,
4652 struct btrfs_path *path,
8407f553
FM
4653 struct btrfs_log_ctx *ctx)
4654{
5893dfb9 4655 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4656 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4657 struct btrfs_file_extent_item fi = { 0 };
8407f553 4658 struct extent_buffer *leaf;
8407f553
FM
4659 struct btrfs_key key;
4660 u64 extent_offset = em->start - em->orig_start;
4661 u64 block_len;
4662 int ret;
8407f553 4663
e1f53ed8
FM
4664 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4665 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4666 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4667 else
4668 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4669
4670 block_len = max(em->block_len, em->orig_block_len);
4671 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4672 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4673 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4674 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4675 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4676 extent_offset);
4677 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4678 }
4679
4680 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4681 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4682 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4683 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4684
48778179 4685 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4686 if (ret)
4687 return ret;
4688
5328b2a7
FM
4689 /*
4690 * If this is the first time we are logging the inode in the current
4691 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4692 * because it does a deletion search, which always acquires write locks
4693 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4694 * but also adds significant contention in a log tree, since log trees
4695 * are small, with a root at level 2 or 3 at most, due to their short
4696 * life span.
4697 */
0f8ce498 4698 if (ctx->logged_before) {
5328b2a7
FM
4699 drop_args.path = path;
4700 drop_args.start = em->start;
4701 drop_args.end = em->start + em->len;
4702 drop_args.replace_extent = true;
e1f53ed8 4703 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4704 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4705 if (ret)
4706 return ret;
4707 }
8407f553 4708
5893dfb9 4709 if (!drop_args.extent_inserted) {
9d122629 4710 key.objectid = btrfs_ino(inode);
8407f553
FM
4711 key.type = BTRFS_EXTENT_DATA_KEY;
4712 key.offset = em->start;
4713
4714 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4715 sizeof(fi));
8407f553
FM
4716 if (ret)
4717 return ret;
4718 }
4719 leaf = path->nodes[0];
e1f53ed8
FM
4720 write_extent_buffer(leaf, &fi,
4721 btrfs_item_ptr_offset(leaf, path->slots[0]),
4722 sizeof(fi));
8407f553
FM
4723 btrfs_mark_buffer_dirty(leaf);
4724
4725 btrfs_release_path(path);
4726
4727 return ret;
4728}
4729
31d11b83
FM
4730/*
4731 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4732 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4733 * subvolume's root instead of iterating the inode's extent map tree because
4734 * otherwise we can log incorrect extent items based on extent map conversion.
4735 * That can happen due to the fact that extent maps are merged when they
4736 * are not in the extent map tree's list of modified extents.
4737 */
4738static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4739 struct btrfs_inode *inode,
4740 struct btrfs_path *path)
4741{
4742 struct btrfs_root *root = inode->root;
4743 struct btrfs_key key;
4744 const u64 i_size = i_size_read(&inode->vfs_inode);
4745 const u64 ino = btrfs_ino(inode);
4746 struct btrfs_path *dst_path = NULL;
0e56315c 4747 bool dropped_extents = false;
f135cea3
FM
4748 u64 truncate_offset = i_size;
4749 struct extent_buffer *leaf;
4750 int slot;
31d11b83
FM
4751 int ins_nr = 0;
4752 int start_slot;
4753 int ret;
4754
4755 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4756 return 0;
4757
4758 key.objectid = ino;
4759 key.type = BTRFS_EXTENT_DATA_KEY;
4760 key.offset = i_size;
4761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4762 if (ret < 0)
4763 goto out;
4764
f135cea3
FM
4765 /*
4766 * We must check if there is a prealloc extent that starts before the
4767 * i_size and crosses the i_size boundary. This is to ensure later we
4768 * truncate down to the end of that extent and not to the i_size, as
4769 * otherwise we end up losing part of the prealloc extent after a log
4770 * replay and with an implicit hole if there is another prealloc extent
4771 * that starts at an offset beyond i_size.
4772 */
4773 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4774 if (ret < 0)
4775 goto out;
4776
4777 if (ret == 0) {
4778 struct btrfs_file_extent_item *ei;
4779
4780 leaf = path->nodes[0];
4781 slot = path->slots[0];
4782 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4783
4784 if (btrfs_file_extent_type(leaf, ei) ==
4785 BTRFS_FILE_EXTENT_PREALLOC) {
4786 u64 extent_end;
4787
4788 btrfs_item_key_to_cpu(leaf, &key, slot);
4789 extent_end = key.offset +
4790 btrfs_file_extent_num_bytes(leaf, ei);
4791
4792 if (extent_end > i_size)
4793 truncate_offset = extent_end;
4794 }
4795 } else {
4796 ret = 0;
4797 }
4798
31d11b83 4799 while (true) {
f135cea3
FM
4800 leaf = path->nodes[0];
4801 slot = path->slots[0];
31d11b83
FM
4802
4803 if (slot >= btrfs_header_nritems(leaf)) {
4804 if (ins_nr > 0) {
4805 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4806 start_slot, ins_nr, 1, 0);
31d11b83
FM
4807 if (ret < 0)
4808 goto out;
4809 ins_nr = 0;
4810 }
4811 ret = btrfs_next_leaf(root, path);
4812 if (ret < 0)
4813 goto out;
4814 if (ret > 0) {
4815 ret = 0;
4816 break;
4817 }
4818 continue;
4819 }
4820
4821 btrfs_item_key_to_cpu(leaf, &key, slot);
4822 if (key.objectid > ino)
4823 break;
4824 if (WARN_ON_ONCE(key.objectid < ino) ||
4825 key.type < BTRFS_EXTENT_DATA_KEY ||
4826 key.offset < i_size) {
4827 path->slots[0]++;
4828 continue;
4829 }
0e56315c 4830 if (!dropped_extents) {
31d11b83
FM
4831 /*
4832 * Avoid logging extent items logged in past fsync calls
4833 * and leading to duplicate keys in the log tree.
4834 */
8a2b3da1
FM
4835 ret = truncate_inode_items(trans, root->log_root, inode,
4836 truncate_offset,
4837 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4838 if (ret)
4839 goto out;
0e56315c 4840 dropped_extents = true;
31d11b83
FM
4841 }
4842 if (ins_nr == 0)
4843 start_slot = slot;
4844 ins_nr++;
4845 path->slots[0]++;
4846 if (!dst_path) {
4847 dst_path = btrfs_alloc_path();
4848 if (!dst_path) {
4849 ret = -ENOMEM;
4850 goto out;
4851 }
4852 }
4853 }
0bc2d3c0 4854 if (ins_nr > 0)
0e56315c 4855 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4856 start_slot, ins_nr, 1, 0);
31d11b83
FM
4857out:
4858 btrfs_release_path(path);
4859 btrfs_free_path(dst_path);
4860 return ret;
4861}
4862
5dc562c5 4863static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4864 struct btrfs_inode *inode,
827463c4 4865 struct btrfs_path *path,
48778179 4866 struct btrfs_log_ctx *ctx)
5dc562c5 4867{
48778179
FM
4868 struct btrfs_ordered_extent *ordered;
4869 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4870 struct extent_map *em, *n;
4871 struct list_head extents;
9d122629 4872 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4873 int ret = 0;
2ab28f32 4874 int num = 0;
5dc562c5
JB
4875
4876 INIT_LIST_HEAD(&extents);
4877
5dc562c5 4878 write_lock(&tree->lock);
5dc562c5
JB
4879
4880 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4881 list_del_init(&em->list);
2ab28f32
JB
4882 /*
4883 * Just an arbitrary number, this can be really CPU intensive
4884 * once we start getting a lot of extents, and really once we
4885 * have a bunch of extents we just want to commit since it will
4886 * be faster.
4887 */
4888 if (++num > 32768) {
4889 list_del_init(&tree->modified_extents);
4890 ret = -EFBIG;
4891 goto process;
4892 }
4893
5f96bfb7 4894 if (em->generation < trans->transid)
5dc562c5 4895 continue;
8c6c5928 4896
31d11b83
FM
4897 /* We log prealloc extents beyond eof later. */
4898 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4899 em->start >= i_size_read(&inode->vfs_inode))
4900 continue;
4901
ff44c6e3 4902 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4903 refcount_inc(&em->refs);
ff44c6e3 4904 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4905 list_add_tail(&em->list, &extents);
2ab28f32 4906 num++;
5dc562c5
JB
4907 }
4908
4909 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4910process:
5dc562c5
JB
4911 while (!list_empty(&extents)) {
4912 em = list_entry(extents.next, struct extent_map, list);
4913
4914 list_del_init(&em->list);
4915
4916 /*
4917 * If we had an error we just need to delete everybody from our
4918 * private list.
4919 */
ff44c6e3 4920 if (ret) {
201a9038 4921 clear_em_logging(tree, em);
ff44c6e3 4922 free_extent_map(em);
5dc562c5 4923 continue;
ff44c6e3
JB
4924 }
4925
4926 write_unlock(&tree->lock);
5dc562c5 4927
90d04510 4928 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4929 write_lock(&tree->lock);
201a9038
JB
4930 clear_em_logging(tree, em);
4931 free_extent_map(em);
5dc562c5 4932 }
ff44c6e3
JB
4933 WARN_ON(!list_empty(&extents));
4934 write_unlock(&tree->lock);
5dc562c5 4935
31d11b83
FM
4936 if (!ret)
4937 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4938 if (ret)
4939 return ret;
31d11b83 4940
48778179
FM
4941 /*
4942 * We have logged all extents successfully, now make sure the commit of
4943 * the current transaction waits for the ordered extents to complete
4944 * before it commits and wipes out the log trees, otherwise we would
4945 * lose data if an ordered extents completes after the transaction
4946 * commits and a power failure happens after the transaction commit.
4947 */
4948 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4949 list_del_init(&ordered->log_list);
4950 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4951
4952 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4953 spin_lock_irq(&inode->ordered_tree.lock);
4954 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4955 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4956 atomic_inc(&trans->transaction->pending_ordered);
4957 }
4958 spin_unlock_irq(&inode->ordered_tree.lock);
4959 }
4960 btrfs_put_ordered_extent(ordered);
4961 }
4962
4963 return 0;
5dc562c5
JB
4964}
4965
481b01c0 4966static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4967 struct btrfs_path *path, u64 *size_ret)
4968{
4969 struct btrfs_key key;
4970 int ret;
4971
481b01c0 4972 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4973 key.type = BTRFS_INODE_ITEM_KEY;
4974 key.offset = 0;
4975
4976 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4977 if (ret < 0) {
4978 return ret;
4979 } else if (ret > 0) {
2f2ff0ee 4980 *size_ret = 0;
1a4bcf47
FM
4981 } else {
4982 struct btrfs_inode_item *item;
4983
4984 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4985 struct btrfs_inode_item);
4986 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4987 /*
4988 * If the in-memory inode's i_size is smaller then the inode
4989 * size stored in the btree, return the inode's i_size, so
4990 * that we get a correct inode size after replaying the log
4991 * when before a power failure we had a shrinking truncate
4992 * followed by addition of a new name (rename / new hard link).
4993 * Otherwise return the inode size from the btree, to avoid
4994 * data loss when replaying a log due to previously doing a
4995 * write that expands the inode's size and logging a new name
4996 * immediately after.
4997 */
4998 if (*size_ret > inode->vfs_inode.i_size)
4999 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5000 }
5001
5002 btrfs_release_path(path);
5003 return 0;
5004}
5005
36283bf7
FM
5006/*
5007 * At the moment we always log all xattrs. This is to figure out at log replay
5008 * time which xattrs must have their deletion replayed. If a xattr is missing
5009 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5010 * because if a xattr is deleted, the inode is fsynced and a power failure
5011 * happens, causing the log to be replayed the next time the fs is mounted,
5012 * we want the xattr to not exist anymore (same behaviour as other filesystems
5013 * with a journal, ext3/4, xfs, f2fs, etc).
5014 */
5015static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5016 struct btrfs_inode *inode,
36283bf7
FM
5017 struct btrfs_path *path,
5018 struct btrfs_path *dst_path)
5019{
90d04510 5020 struct btrfs_root *root = inode->root;
36283bf7
FM
5021 int ret;
5022 struct btrfs_key key;
1a93c36a 5023 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5024 int ins_nr = 0;
5025 int start_slot = 0;
f2f121ab
FM
5026 bool found_xattrs = false;
5027
5028 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5029 return 0;
36283bf7
FM
5030
5031 key.objectid = ino;
5032 key.type = BTRFS_XATTR_ITEM_KEY;
5033 key.offset = 0;
5034
5035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5036 if (ret < 0)
5037 return ret;
5038
5039 while (true) {
5040 int slot = path->slots[0];
5041 struct extent_buffer *leaf = path->nodes[0];
5042 int nritems = btrfs_header_nritems(leaf);
5043
5044 if (slot >= nritems) {
5045 if (ins_nr > 0) {
1a93c36a 5046 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5047 start_slot, ins_nr, 1, 0);
36283bf7
FM
5048 if (ret < 0)
5049 return ret;
5050 ins_nr = 0;
5051 }
5052 ret = btrfs_next_leaf(root, path);
5053 if (ret < 0)
5054 return ret;
5055 else if (ret > 0)
5056 break;
5057 continue;
5058 }
5059
5060 btrfs_item_key_to_cpu(leaf, &key, slot);
5061 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5062 break;
5063
5064 if (ins_nr == 0)
5065 start_slot = slot;
5066 ins_nr++;
5067 path->slots[0]++;
f2f121ab 5068 found_xattrs = true;
36283bf7
FM
5069 cond_resched();
5070 }
5071 if (ins_nr > 0) {
1a93c36a 5072 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5073 start_slot, ins_nr, 1, 0);
36283bf7
FM
5074 if (ret < 0)
5075 return ret;
5076 }
5077
f2f121ab
FM
5078 if (!found_xattrs)
5079 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5080
36283bf7
FM
5081 return 0;
5082}
5083
a89ca6f2 5084/*
0e56315c
FM
5085 * When using the NO_HOLES feature if we punched a hole that causes the
5086 * deletion of entire leafs or all the extent items of the first leaf (the one
5087 * that contains the inode item and references) we may end up not processing
5088 * any extents, because there are no leafs with a generation matching the
5089 * current transaction that have extent items for our inode. So we need to find
5090 * if any holes exist and then log them. We also need to log holes after any
5091 * truncate operation that changes the inode's size.
a89ca6f2 5092 */
0e56315c 5093static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5094 struct btrfs_inode *inode,
7af59743 5095 struct btrfs_path *path)
a89ca6f2 5096{
90d04510 5097 struct btrfs_root *root = inode->root;
0b246afa 5098 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5099 struct btrfs_key key;
a0308dd7
NB
5100 const u64 ino = btrfs_ino(inode);
5101 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5102 u64 prev_extent_end = 0;
0e56315c 5103 int ret;
a89ca6f2 5104
0e56315c 5105 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5106 return 0;
5107
5108 key.objectid = ino;
5109 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5110 key.offset = 0;
a89ca6f2
FM
5111
5112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5113 if (ret < 0)
5114 return ret;
5115
0e56315c 5116 while (true) {
0e56315c 5117 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5118
0e56315c
FM
5119 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5120 ret = btrfs_next_leaf(root, path);
5121 if (ret < 0)
5122 return ret;
5123 if (ret > 0) {
5124 ret = 0;
5125 break;
5126 }
5127 leaf = path->nodes[0];
5128 }
5129
5130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5131 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5132 break;
5133
5134 /* We have a hole, log it. */
5135 if (prev_extent_end < key.offset) {
7af59743 5136 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5137
5138 /*
5139 * Release the path to avoid deadlocks with other code
5140 * paths that search the root while holding locks on
5141 * leafs from the log root.
5142 */
5143 btrfs_release_path(path);
d1f68ba0
OS
5144 ret = btrfs_insert_hole_extent(trans, root->log_root,
5145 ino, prev_extent_end,
5146 hole_len);
0e56315c
FM
5147 if (ret < 0)
5148 return ret;
5149
5150 /*
5151 * Search for the same key again in the root. Since it's
5152 * an extent item and we are holding the inode lock, the
5153 * key must still exist. If it doesn't just emit warning
5154 * and return an error to fall back to a transaction
5155 * commit.
5156 */
5157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5158 if (ret < 0)
5159 return ret;
5160 if (WARN_ON(ret > 0))
5161 return -ENOENT;
5162 leaf = path->nodes[0];
5163 }
a89ca6f2 5164
7af59743 5165 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5166 path->slots[0]++;
5167 cond_resched();
a89ca6f2 5168 }
a89ca6f2 5169
7af59743 5170 if (prev_extent_end < i_size) {
0e56315c 5171 u64 hole_len;
a89ca6f2 5172
0e56315c 5173 btrfs_release_path(path);
7af59743 5174 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
d1f68ba0
OS
5175 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5176 prev_extent_end, hole_len);
0e56315c
FM
5177 if (ret < 0)
5178 return ret;
5179 }
5180
5181 return 0;
a89ca6f2
FM
5182}
5183
56f23fdb
FM
5184/*
5185 * When we are logging a new inode X, check if it doesn't have a reference that
5186 * matches the reference from some other inode Y created in a past transaction
5187 * and that was renamed in the current transaction. If we don't do this, then at
5188 * log replay time we can lose inode Y (and all its files if it's a directory):
5189 *
5190 * mkdir /mnt/x
5191 * echo "hello world" > /mnt/x/foobar
5192 * sync
5193 * mv /mnt/x /mnt/y
5194 * mkdir /mnt/x # or touch /mnt/x
5195 * xfs_io -c fsync /mnt/x
5196 * <power fail>
5197 * mount fs, trigger log replay
5198 *
5199 * After the log replay procedure, we would lose the first directory and all its
5200 * files (file foobar).
5201 * For the case where inode Y is not a directory we simply end up losing it:
5202 *
5203 * echo "123" > /mnt/foo
5204 * sync
5205 * mv /mnt/foo /mnt/bar
5206 * echo "abc" > /mnt/foo
5207 * xfs_io -c fsync /mnt/foo
5208 * <power fail>
5209 *
5210 * We also need this for cases where a snapshot entry is replaced by some other
5211 * entry (file or directory) otherwise we end up with an unreplayable log due to
5212 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5213 * if it were a regular entry:
5214 *
5215 * mkdir /mnt/x
5216 * btrfs subvolume snapshot /mnt /mnt/x/snap
5217 * btrfs subvolume delete /mnt/x/snap
5218 * rmdir /mnt/x
5219 * mkdir /mnt/x
5220 * fsync /mnt/x or fsync some new file inside it
5221 * <power fail>
5222 *
5223 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5224 * the same transaction.
5225 */
5226static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5227 const int slot,
5228 const struct btrfs_key *key,
4791c8f1 5229 struct btrfs_inode *inode,
a3baaf0d 5230 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5231{
5232 int ret;
5233 struct btrfs_path *search_path;
5234 char *name = NULL;
5235 u32 name_len = 0;
3212fa14 5236 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5237 u32 cur_offset = 0;
5238 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5239
5240 search_path = btrfs_alloc_path();
5241 if (!search_path)
5242 return -ENOMEM;
5243 search_path->search_commit_root = 1;
5244 search_path->skip_locking = 1;
5245
5246 while (cur_offset < item_size) {
5247 u64 parent;
5248 u32 this_name_len;
5249 u32 this_len;
5250 unsigned long name_ptr;
5251 struct btrfs_dir_item *di;
6db75318 5252 struct fscrypt_str name_str;
56f23fdb
FM
5253
5254 if (key->type == BTRFS_INODE_REF_KEY) {
5255 struct btrfs_inode_ref *iref;
5256
5257 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5258 parent = key->offset;
5259 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5260 name_ptr = (unsigned long)(iref + 1);
5261 this_len = sizeof(*iref) + this_name_len;
5262 } else {
5263 struct btrfs_inode_extref *extref;
5264
5265 extref = (struct btrfs_inode_extref *)(ptr +
5266 cur_offset);
5267 parent = btrfs_inode_extref_parent(eb, extref);
5268 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5269 name_ptr = (unsigned long)&extref->name;
5270 this_len = sizeof(*extref) + this_name_len;
5271 }
5272
5273 if (this_name_len > name_len) {
5274 char *new_name;
5275
5276 new_name = krealloc(name, this_name_len, GFP_NOFS);
5277 if (!new_name) {
5278 ret = -ENOMEM;
5279 goto out;
5280 }
5281 name_len = this_name_len;
5282 name = new_name;
5283 }
5284
5285 read_extent_buffer(eb, name, name_ptr, this_name_len);
e43eec81
STD
5286
5287 name_str.name = name;
5288 name_str.len = this_name_len;
4791c8f1 5289 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
e43eec81 5290 parent, &name_str, 0);
56f23fdb 5291 if (di && !IS_ERR(di)) {
44f714da
FM
5292 struct btrfs_key di_key;
5293
5294 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5295 di, &di_key);
5296 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5297 if (di_key.objectid != key->objectid) {
5298 ret = 1;
5299 *other_ino = di_key.objectid;
a3baaf0d 5300 *other_parent = parent;
6b5fc433
FM
5301 } else {
5302 ret = 0;
5303 }
44f714da
FM
5304 } else {
5305 ret = -EAGAIN;
5306 }
56f23fdb
FM
5307 goto out;
5308 } else if (IS_ERR(di)) {
5309 ret = PTR_ERR(di);
5310 goto out;
5311 }
5312 btrfs_release_path(search_path);
5313
5314 cur_offset += this_len;
5315 }
5316 ret = 0;
5317out:
5318 btrfs_free_path(search_path);
5319 kfree(name);
5320 return ret;
5321}
5322
a3751024
FM
5323/*
5324 * Check if we need to log an inode. This is used in contexts where while
5325 * logging an inode we need to log another inode (either that it exists or in
5326 * full mode). This is used instead of btrfs_inode_in_log() because the later
5327 * requires the inode to be in the log and have the log transaction committed,
5328 * while here we do not care if the log transaction was already committed - our
5329 * caller will commit the log later - and we want to avoid logging an inode
5330 * multiple times when multiple tasks have joined the same log transaction.
5331 */
5332static bool need_log_inode(const struct btrfs_trans_handle *trans,
5333 const struct btrfs_inode *inode)
5334{
5335 /*
5336 * If a directory was not modified, no dentries added or removed, we can
5337 * and should avoid logging it.
5338 */
5339 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5340 return false;
5341
5342 /*
5343 * If this inode does not have new/updated/deleted xattrs since the last
5344 * time it was logged and is flagged as logged in the current transaction,
5345 * we can skip logging it. As for new/deleted names, those are updated in
5346 * the log by link/unlink/rename operations.
5347 * In case the inode was logged and then evicted and reloaded, its
5348 * logged_trans will be 0, in which case we have to fully log it since
5349 * logged_trans is a transient field, not persisted.
5350 */
5351 if (inode->logged_trans == trans->transid &&
5352 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5353 return false;
5354
5355 return true;
5356}
5357
f6d86dbe
FM
5358struct btrfs_dir_list {
5359 u64 ino;
5360 struct list_head list;
5361};
5362
5363/*
5364 * Log the inodes of the new dentries of a directory.
5365 * See process_dir_items_leaf() for details about why it is needed.
5366 * This is a recursive operation - if an existing dentry corresponds to a
5367 * directory, that directory's new entries are logged too (same behaviour as
5368 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5369 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5370 * complains about the following circular lock dependency / possible deadlock:
5371 *
5372 * CPU0 CPU1
5373 * ---- ----
5374 * lock(&type->i_mutex_dir_key#3/2);
5375 * lock(sb_internal#2);
5376 * lock(&type->i_mutex_dir_key#3/2);
5377 * lock(&sb->s_type->i_mutex_key#14);
5378 *
5379 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5380 * sb_start_intwrite() in btrfs_start_transaction().
5381 * Not acquiring the VFS lock of the inodes is still safe because:
5382 *
5383 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5384 * that while logging the inode new references (names) are added or removed
5385 * from the inode, leaving the logged inode item with a link count that does
5386 * not match the number of logged inode reference items. This is fine because
5387 * at log replay time we compute the real number of links and correct the
5388 * link count in the inode item (see replay_one_buffer() and
5389 * link_to_fixup_dir());
5390 *
5391 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5392 * while logging the inode's items new index items (key type
5393 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5394 * has a size that doesn't match the sum of the lengths of all the logged
5395 * names - this is ok, not a problem, because at log replay time we set the
5396 * directory's i_size to the correct value (see replay_one_name() and
3a8d1db3 5397 * overwrite_item()).
f6d86dbe
FM
5398 */
5399static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5400 struct btrfs_inode *start_inode,
5401 struct btrfs_log_ctx *ctx)
5402{
5403 struct btrfs_root *root = start_inode->root;
5404 struct btrfs_fs_info *fs_info = root->fs_info;
5405 struct btrfs_path *path;
5406 LIST_HEAD(dir_list);
5407 struct btrfs_dir_list *dir_elem;
5408 u64 ino = btrfs_ino(start_inode);
5409 int ret = 0;
5410
5411 /*
5412 * If we are logging a new name, as part of a link or rename operation,
5413 * don't bother logging new dentries, as we just want to log the names
5414 * of an inode and that any new parents exist.
5415 */
5416 if (ctx->logging_new_name)
5417 return 0;
5418
5419 path = btrfs_alloc_path();
5420 if (!path)
5421 return -ENOMEM;
5422
5423 while (true) {
5424 struct extent_buffer *leaf;
5425 struct btrfs_key min_key;
5426 bool continue_curr_inode = true;
5427 int nritems;
5428 int i;
5429
5430 min_key.objectid = ino;
5431 min_key.type = BTRFS_DIR_INDEX_KEY;
5432 min_key.offset = 0;
5433again:
5434 btrfs_release_path(path);
5435 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5436 if (ret < 0) {
5437 break;
5438 } else if (ret > 0) {
5439 ret = 0;
5440 goto next;
5441 }
5442
5443 leaf = path->nodes[0];
5444 nritems = btrfs_header_nritems(leaf);
5445 for (i = path->slots[0]; i < nritems; i++) {
5446 struct btrfs_dir_item *di;
5447 struct btrfs_key di_key;
5448 struct inode *di_inode;
5449 int log_mode = LOG_INODE_EXISTS;
5450 int type;
5451
5452 btrfs_item_key_to_cpu(leaf, &min_key, i);
5453 if (min_key.objectid != ino ||
5454 min_key.type != BTRFS_DIR_INDEX_KEY) {
5455 continue_curr_inode = false;
5456 break;
5457 }
5458
5459 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
94a48aef 5460 type = btrfs_dir_ftype(leaf, di);
f6d86dbe
FM
5461 if (btrfs_dir_transid(leaf, di) < trans->transid)
5462 continue;
5463 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5464 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5465 continue;
5466
5467 btrfs_release_path(path);
5468 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5469 if (IS_ERR(di_inode)) {
5470 ret = PTR_ERR(di_inode);
5471 goto out;
5472 }
5473
5474 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 5475 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5476 break;
5477 }
5478
5479 ctx->log_new_dentries = false;
5480 if (type == BTRFS_FT_DIR)
5481 log_mode = LOG_INODE_ALL;
5482 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5483 log_mode, ctx);
e55cf7ca 5484 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5485 if (ret)
5486 goto out;
5487 if (ctx->log_new_dentries) {
5488 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5489 if (!dir_elem) {
5490 ret = -ENOMEM;
5491 goto out;
5492 }
5493 dir_elem->ino = di_key.objectid;
5494 list_add_tail(&dir_elem->list, &dir_list);
5495 }
5496 break;
5497 }
5498
5499 if (continue_curr_inode && min_key.offset < (u64)-1) {
5500 min_key.offset++;
5501 goto again;
5502 }
5503
5504next:
5505 if (list_empty(&dir_list))
5506 break;
5507
5508 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5509 ino = dir_elem->ino;
5510 list_del(&dir_elem->list);
5511 kfree(dir_elem);
5512 }
5513out:
5514 btrfs_free_path(path);
5515 if (ret) {
5516 struct btrfs_dir_list *next;
5517
5518 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5519 kfree(dir_elem);
5520 }
5521
5522 return ret;
5523}
5524
6b5fc433
FM
5525struct btrfs_ino_list {
5526 u64 ino;
a3baaf0d 5527 u64 parent;
6b5fc433
FM
5528 struct list_head list;
5529};
5530
e09d94c9
FM
5531static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5532{
5533 struct btrfs_ino_list *curr;
5534 struct btrfs_ino_list *next;
5535
5536 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5537 list_del(&curr->list);
5538 kfree(curr);
5539 }
5540}
5541
5557a069
FM
5542static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5543 struct btrfs_path *path)
5544{
5545 struct btrfs_key key;
5546 int ret;
5547
5548 key.objectid = ino;
5549 key.type = BTRFS_INODE_ITEM_KEY;
5550 key.offset = 0;
5551
5552 path->search_commit_root = 1;
5553 path->skip_locking = 1;
5554
5555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5556 if (WARN_ON_ONCE(ret > 0)) {
5557 /*
5558 * We have previously found the inode through the commit root
5559 * so this should not happen. If it does, just error out and
5560 * fallback to a transaction commit.
5561 */
5562 ret = -ENOENT;
5563 } else if (ret == 0) {
5564 struct btrfs_inode_item *item;
5565
5566 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5567 struct btrfs_inode_item);
5568 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5569 ret = 1;
5570 }
5571
5572 btrfs_release_path(path);
5573 path->search_commit_root = 0;
5574 path->skip_locking = 0;
5575
5576 return ret;
5577}
5578
e09d94c9
FM
5579static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5580 struct btrfs_root *root,
5557a069 5581 struct btrfs_path *path,
e09d94c9
FM
5582 u64 ino, u64 parent,
5583 struct btrfs_log_ctx *ctx)
6b5fc433
FM
5584{
5585 struct btrfs_ino_list *ino_elem;
e09d94c9
FM
5586 struct inode *inode;
5587
5588 /*
5589 * It's rare to have a lot of conflicting inodes, in practice it is not
5590 * common to have more than 1 or 2. We don't want to collect too many,
5591 * as we could end up logging too many inodes (even if only in
5592 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5593 * commits.
5594 */
5cce1780 5595 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
e09d94c9
FM
5596 return BTRFS_LOG_FORCE_COMMIT;
5597
5598 inode = btrfs_iget(root->fs_info->sb, ino, root);
5599 /*
5600 * If the other inode that had a conflicting dir entry was deleted in
5557a069
FM
5601 * the current transaction then we either:
5602 *
5603 * 1) Log the parent directory (later after adding it to the list) if
5604 * the inode is a directory. This is because it may be a deleted
5605 * subvolume/snapshot or it may be a regular directory that had
5606 * deleted subvolumes/snapshots (or subdirectories that had them),
5607 * and at the moment we can't deal with dropping subvolumes/snapshots
5608 * during log replay. So we just log the parent, which will result in
5609 * a fallback to a transaction commit if we are dealing with those
5610 * cases (last_unlink_trans will match the current transaction);
5611 *
5612 * 2) Do nothing if it's not a directory. During log replay we simply
5613 * unlink the conflicting dentry from the parent directory and then
5614 * add the dentry for our inode. Like this we can avoid logging the
5615 * parent directory (and maybe fallback to a transaction commit in
5616 * case it has a last_unlink_trans == trans->transid, due to moving
5617 * some inode from it to some other directory).
e09d94c9
FM
5618 */
5619 if (IS_ERR(inode)) {
5620 int ret = PTR_ERR(inode);
5621
5622 if (ret != -ENOENT)
5623 return ret;
5624
5557a069
FM
5625 ret = conflicting_inode_is_dir(root, ino, path);
5626 /* Not a directory or we got an error. */
5627 if (ret <= 0)
5628 return ret;
5629
5630 /* Conflicting inode is a directory, so we'll log its parent. */
e09d94c9
FM
5631 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5632 if (!ino_elem)
5633 return -ENOMEM;
5634 ino_elem->ino = ino;
5635 ino_elem->parent = parent;
5636 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5637 ctx->num_conflict_inodes++;
5638
5639 return 0;
5640 }
5641
5642 /*
5643 * If the inode was already logged skip it - otherwise we can hit an
5644 * infinite loop. Example:
5645 *
5646 * From the commit root (previous transaction) we have the following
5647 * inodes:
5648 *
5649 * inode 257 a directory
5650 * inode 258 with references "zz" and "zz_link" on inode 257
5651 * inode 259 with reference "a" on inode 257
5652 *
5653 * And in the current (uncommitted) transaction we have:
5654 *
5655 * inode 257 a directory, unchanged
5656 * inode 258 with references "a" and "a2" on inode 257
5657 * inode 259 with reference "zz_link" on inode 257
5658 * inode 261 with reference "zz" on inode 257
5659 *
5660 * When logging inode 261 the following infinite loop could
5661 * happen if we don't skip already logged inodes:
5662 *
5663 * - we detect inode 258 as a conflicting inode, with inode 261
5664 * on reference "zz", and log it;
5665 *
5666 * - we detect inode 259 as a conflicting inode, with inode 258
5667 * on reference "a", and log it;
5668 *
5669 * - we detect inode 258 as a conflicting inode, with inode 259
5670 * on reference "zz_link", and log it - again! After this we
5671 * repeat the above steps forever.
5672 *
5673 * Here we can use need_log_inode() because we only need to log the
5674 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5675 * so that the log ends up with the new name and without the old name.
5676 */
5677 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5678 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5679 return 0;
5680 }
5681
e55cf7ca 5682 btrfs_add_delayed_iput(BTRFS_I(inode));
6b5fc433
FM
5683
5684 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5685 if (!ino_elem)
5686 return -ENOMEM;
5687 ino_elem->ino = ino;
a3baaf0d 5688 ino_elem->parent = parent;
e09d94c9
FM
5689 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5690 ctx->num_conflict_inodes++;
6b5fc433 5691
e09d94c9
FM
5692 return 0;
5693}
6b5fc433 5694
e09d94c9
FM
5695static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5696 struct btrfs_root *root,
5697 struct btrfs_log_ctx *ctx)
5698{
5699 struct btrfs_fs_info *fs_info = root->fs_info;
5700 int ret = 0;
6b5fc433 5701
e09d94c9
FM
5702 /*
5703 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5704 * otherwise we could have unbounded recursion of btrfs_log_inode()
5705 * calls. This check guarantees we can have only 1 level of recursion.
5706 */
5707 if (ctx->logging_conflict_inodes)
5708 return 0;
5709
5710 ctx->logging_conflict_inodes = true;
5711
5712 /*
5713 * New conflicting inodes may be found and added to the list while we
5714 * are logging a conflicting inode, so keep iterating while the list is
5715 * not empty.
5716 */
5717 while (!list_empty(&ctx->conflict_inodes)) {
5718 struct btrfs_ino_list *curr;
5719 struct inode *inode;
5720 u64 ino;
5721 u64 parent;
5722
5723 curr = list_first_entry(&ctx->conflict_inodes,
5724 struct btrfs_ino_list, list);
5725 ino = curr->ino;
5726 parent = curr->parent;
5727 list_del(&curr->list);
5728 kfree(curr);
6b5fc433 5729
0202e83f 5730 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5731 /*
5732 * If the other inode that had a conflicting dir entry was
a3baaf0d 5733 * deleted in the current transaction, we need to log its parent
e09d94c9 5734 * directory. See the comment at add_conflicting_inode().
6b5fc433
FM
5735 */
5736 if (IS_ERR(inode)) {
5737 ret = PTR_ERR(inode);
e09d94c9
FM
5738 if (ret != -ENOENT)
5739 break;
5740
5741 inode = btrfs_iget(fs_info->sb, parent, root);
5742 if (IS_ERR(inode)) {
5743 ret = PTR_ERR(inode);
5744 break;
a3baaf0d 5745 }
e09d94c9
FM
5746
5747 /*
5748 * Always log the directory, we cannot make this
5749 * conditional on need_log_inode() because the directory
5750 * might have been logged in LOG_INODE_EXISTS mode or
5751 * the dir index of the conflicting inode is not in a
5752 * dir index key range logged for the directory. So we
5753 * must make sure the deletion is recorded.
5754 */
5755 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5756 LOG_INODE_ALL, ctx);
e55cf7ca 5757 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5758 if (ret)
5759 break;
6b5fc433
FM
5760 continue;
5761 }
e09d94c9 5762
b5e4ff9d 5763 /*
e09d94c9
FM
5764 * Here we can use need_log_inode() because we only need to log
5765 * the inode in LOG_INODE_EXISTS mode and rename operations
5766 * update the log, so that the log ends up with the new name and
5767 * without the old name.
b5e4ff9d 5768 *
e09d94c9
FM
5769 * We did this check at add_conflicting_inode(), but here we do
5770 * it again because if some other task logged the inode after
5771 * that, we can avoid doing it again.
b5e4ff9d 5772 */
e09d94c9 5773 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5774 btrfs_add_delayed_iput(BTRFS_I(inode));
b5e4ff9d
FM
5775 continue;
5776 }
e09d94c9 5777
6b5fc433
FM
5778 /*
5779 * We are safe logging the other inode without acquiring its
5780 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5781 * are safe against concurrent renames of the other inode as
5782 * well because during a rename we pin the log and update the
5783 * log with the new name before we unpin it.
5784 */
e09d94c9 5785 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
e55cf7ca 5786 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5787 if (ret)
5788 break;
6b5fc433
FM
5789 }
5790
e09d94c9
FM
5791 ctx->logging_conflict_inodes = false;
5792 if (ret)
5793 free_conflicting_inodes(ctx);
5794
6b5fc433
FM
5795 return ret;
5796}
5797
da447009
FM
5798static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5799 struct btrfs_inode *inode,
5800 struct btrfs_key *min_key,
5801 const struct btrfs_key *max_key,
5802 struct btrfs_path *path,
5803 struct btrfs_path *dst_path,
5804 const u64 logged_isize,
da447009
FM
5805 const int inode_only,
5806 struct btrfs_log_ctx *ctx,
5807 bool *need_log_inode_item)
5808{
d9947887 5809 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5810 struct btrfs_root *root = inode->root;
5811 int ins_start_slot = 0;
5812 int ins_nr = 0;
5813 int ret;
5814
5815 while (1) {
5816 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5817 if (ret < 0)
5818 return ret;
5819 if (ret > 0) {
5820 ret = 0;
5821 break;
5822 }
5823again:
5824 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5825 if (min_key->objectid != max_key->objectid)
5826 break;
5827 if (min_key->type > max_key->type)
5828 break;
5829
d9947887 5830 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5831 *need_log_inode_item = false;
d9947887
FM
5832 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5833 min_key->offset >= i_size) {
5834 /*
5835 * Extents at and beyond eof are logged with
5836 * btrfs_log_prealloc_extents().
5837 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5838 * and no keys greater than that, so bail out.
5839 */
5840 break;
5841 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5842 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
e09d94c9
FM
5843 (inode->generation == trans->transid ||
5844 ctx->logging_conflict_inodes)) {
da447009
FM
5845 u64 other_ino = 0;
5846 u64 other_parent = 0;
5847
5848 ret = btrfs_check_ref_name_override(path->nodes[0],
5849 path->slots[0], min_key, inode,
5850 &other_ino, &other_parent);
5851 if (ret < 0) {
5852 return ret;
289cffcb 5853 } else if (ret > 0 &&
da447009
FM
5854 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5855 if (ins_nr > 0) {
5856 ins_nr++;
5857 } else {
5858 ins_nr = 1;
5859 ins_start_slot = path->slots[0];
5860 }
5861 ret = copy_items(trans, inode, dst_path, path,
5862 ins_start_slot, ins_nr,
5863 inode_only, logged_isize);
5864 if (ret < 0)
5865 return ret;
5866 ins_nr = 0;
5867
e09d94c9 5868 btrfs_release_path(path);
5557a069 5869 ret = add_conflicting_inode(trans, root, path,
e09d94c9
FM
5870 other_ino,
5871 other_parent, ctx);
da447009
FM
5872 if (ret)
5873 return ret;
da447009
FM
5874 goto next_key;
5875 }
d9947887
FM
5876 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5877 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5878 if (ins_nr == 0)
5879 goto next_slot;
5880 ret = copy_items(trans, inode, dst_path, path,
5881 ins_start_slot,
5882 ins_nr, inode_only, logged_isize);
5883 if (ret < 0)
5884 return ret;
5885 ins_nr = 0;
5886 goto next_slot;
5887 }
5888
5889 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5890 ins_nr++;
5891 goto next_slot;
5892 } else if (!ins_nr) {
5893 ins_start_slot = path->slots[0];
5894 ins_nr = 1;
5895 goto next_slot;
5896 }
5897
5898 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5899 ins_nr, inode_only, logged_isize);
5900 if (ret < 0)
5901 return ret;
5902 ins_nr = 1;
5903 ins_start_slot = path->slots[0];
5904next_slot:
5905 path->slots[0]++;
5906 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5907 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5908 path->slots[0]);
5909 goto again;
5910 }
5911 if (ins_nr) {
5912 ret = copy_items(trans, inode, dst_path, path,
5913 ins_start_slot, ins_nr, inode_only,
5914 logged_isize);
5915 if (ret < 0)
5916 return ret;
5917 ins_nr = 0;
5918 }
5919 btrfs_release_path(path);
5920next_key:
5921 if (min_key->offset < (u64)-1) {
5922 min_key->offset++;
5923 } else if (min_key->type < max_key->type) {
5924 min_key->type++;
5925 min_key->offset = 0;
5926 } else {
5927 break;
5928 }
96acb375
FM
5929
5930 /*
5931 * We may process many leaves full of items for our inode, so
5932 * avoid monopolizing a cpu for too long by rescheduling while
5933 * not holding locks on any tree.
5934 */
5935 cond_resched();
da447009 5936 }
d9947887 5937 if (ins_nr) {
da447009
FM
5938 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5939 ins_nr, inode_only, logged_isize);
d9947887
FM
5940 if (ret)
5941 return ret;
5942 }
5943
5944 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5945 /*
5946 * Release the path because otherwise we might attempt to double
5947 * lock the same leaf with btrfs_log_prealloc_extents() below.
5948 */
5949 btrfs_release_path(path);
5950 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5951 }
da447009
FM
5952
5953 return ret;
5954}
5955
30b80f3c
FM
5956static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5957 struct btrfs_root *log,
5958 struct btrfs_path *path,
5959 const struct btrfs_item_batch *batch,
5960 const struct btrfs_delayed_item *first_item)
5961{
5962 const struct btrfs_delayed_item *curr = first_item;
5963 int ret;
5964
5965 ret = btrfs_insert_empty_items(trans, log, path, batch);
5966 if (ret)
5967 return ret;
5968
5969 for (int i = 0; i < batch->nr; i++) {
5970 char *data_ptr;
5971
5972 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5973 write_extent_buffer(path->nodes[0], &curr->data,
5974 (unsigned long)data_ptr, curr->data_len);
5975 curr = list_next_entry(curr, log_list);
5976 path->slots[0]++;
5977 }
5978
5979 btrfs_release_path(path);
5980
5981 return 0;
5982}
5983
5984static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5985 struct btrfs_inode *inode,
5986 struct btrfs_path *path,
5987 const struct list_head *delayed_ins_list,
5988 struct btrfs_log_ctx *ctx)
5989{
5990 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5991 const int max_batch_size = 195;
5992 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5993 const u64 ino = btrfs_ino(inode);
5994 struct btrfs_root *log = inode->root->log_root;
5995 struct btrfs_item_batch batch = {
5996 .nr = 0,
5997 .total_data_size = 0,
5998 };
5999 const struct btrfs_delayed_item *first = NULL;
6000 const struct btrfs_delayed_item *curr;
6001 char *ins_data;
6002 struct btrfs_key *ins_keys;
6003 u32 *ins_sizes;
6004 u64 curr_batch_size = 0;
6005 int batch_idx = 0;
6006 int ret;
6007
6008 /* We are adding dir index items to the log tree. */
6009 lockdep_assert_held(&inode->log_mutex);
6010
6011 /*
6012 * We collect delayed items before copying index keys from the subvolume
6013 * to the log tree. However just after we collected them, they may have
6014 * been flushed (all of them or just some of them), and therefore we
6015 * could have copied them from the subvolume tree to the log tree.
6016 * So find the first delayed item that was not yet logged (they are
6017 * sorted by index number).
6018 */
6019 list_for_each_entry(curr, delayed_ins_list, log_list) {
6020 if (curr->index > inode->last_dir_index_offset) {
6021 first = curr;
6022 break;
6023 }
6024 }
6025
6026 /* Empty list or all delayed items were already logged. */
6027 if (!first)
6028 return 0;
6029
6030 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6031 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6032 if (!ins_data)
6033 return -ENOMEM;
6034 ins_sizes = (u32 *)ins_data;
6035 batch.data_sizes = ins_sizes;
6036 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6037 batch.keys = ins_keys;
6038
6039 curr = first;
6040 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6041 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6042
6043 if (curr_batch_size + curr_size > leaf_data_size ||
6044 batch.nr == max_batch_size) {
6045 ret = insert_delayed_items_batch(trans, log, path,
6046 &batch, first);
6047 if (ret)
6048 goto out;
6049 batch_idx = 0;
6050 batch.nr = 0;
6051 batch.total_data_size = 0;
6052 curr_batch_size = 0;
6053 first = curr;
6054 }
6055
6056 ins_sizes[batch_idx] = curr->data_len;
6057 ins_keys[batch_idx].objectid = ino;
6058 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6059 ins_keys[batch_idx].offset = curr->index;
6060 curr_batch_size += curr_size;
6061 batch.total_data_size += curr->data_len;
6062 batch.nr++;
6063 batch_idx++;
6064 curr = list_next_entry(curr, log_list);
6065 }
6066
6067 ASSERT(batch.nr >= 1);
6068 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6069
6070 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6071 log_list);
6072 inode->last_dir_index_offset = curr->index;
6073out:
6074 kfree(ins_data);
6075
6076 return ret;
6077}
6078
6079static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6080 struct btrfs_inode *inode,
6081 struct btrfs_path *path,
6082 const struct list_head *delayed_del_list,
6083 struct btrfs_log_ctx *ctx)
6084{
6085 const u64 ino = btrfs_ino(inode);
6086 const struct btrfs_delayed_item *curr;
6087
6088 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6089 log_list);
6090
6091 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6092 u64 first_dir_index = curr->index;
6093 u64 last_dir_index;
6094 const struct btrfs_delayed_item *next;
6095 int ret;
6096
6097 /*
6098 * Find a range of consecutive dir index items to delete. Like
6099 * this we log a single dir range item spanning several contiguous
6100 * dir items instead of logging one range item per dir index item.
6101 */
6102 next = list_next_entry(curr, log_list);
6103 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6104 if (next->index != curr->index + 1)
6105 break;
6106 curr = next;
6107 next = list_next_entry(next, log_list);
6108 }
6109
6110 last_dir_index = curr->index;
6111 ASSERT(last_dir_index >= first_dir_index);
6112
6113 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6114 ino, first_dir_index, last_dir_index);
6115 if (ret)
6116 return ret;
6117 curr = list_next_entry(curr, log_list);
6118 }
6119
6120 return 0;
6121}
6122
6123static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6124 struct btrfs_inode *inode,
6125 struct btrfs_path *path,
6126 struct btrfs_log_ctx *ctx,
6127 const struct list_head *delayed_del_list,
6128 const struct btrfs_delayed_item *first,
6129 const struct btrfs_delayed_item **last_ret)
6130{
6131 const struct btrfs_delayed_item *next;
6132 struct extent_buffer *leaf = path->nodes[0];
6133 const int last_slot = btrfs_header_nritems(leaf) - 1;
6134 int slot = path->slots[0] + 1;
6135 const u64 ino = btrfs_ino(inode);
6136
6137 next = list_next_entry(first, log_list);
6138
6139 while (slot < last_slot &&
6140 !list_entry_is_head(next, delayed_del_list, log_list)) {
6141 struct btrfs_key key;
6142
6143 btrfs_item_key_to_cpu(leaf, &key, slot);
6144 if (key.objectid != ino ||
6145 key.type != BTRFS_DIR_INDEX_KEY ||
6146 key.offset != next->index)
6147 break;
6148
6149 slot++;
6150 *last_ret = next;
6151 next = list_next_entry(next, log_list);
6152 }
6153
6154 return btrfs_del_items(trans, inode->root->log_root, path,
6155 path->slots[0], slot - path->slots[0]);
6156}
6157
6158static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6159 struct btrfs_inode *inode,
6160 struct btrfs_path *path,
6161 const struct list_head *delayed_del_list,
6162 struct btrfs_log_ctx *ctx)
6163{
6164 struct btrfs_root *log = inode->root->log_root;
6165 const struct btrfs_delayed_item *curr;
6166 u64 last_range_start;
6167 u64 last_range_end = 0;
6168 struct btrfs_key key;
6169
6170 key.objectid = btrfs_ino(inode);
6171 key.type = BTRFS_DIR_INDEX_KEY;
6172 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6173 log_list);
6174
6175 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6176 const struct btrfs_delayed_item *last = curr;
6177 u64 first_dir_index = curr->index;
6178 u64 last_dir_index;
6179 bool deleted_items = false;
6180 int ret;
6181
6182 key.offset = curr->index;
6183 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6184 if (ret < 0) {
6185 return ret;
6186 } else if (ret == 0) {
6187 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6188 delayed_del_list, curr,
6189 &last);
6190 if (ret)
6191 return ret;
6192 deleted_items = true;
6193 }
6194
6195 btrfs_release_path(path);
6196
6197 /*
6198 * If we deleted items from the leaf, it means we have a range
6199 * item logging their range, so no need to add one or update an
6200 * existing one. Otherwise we have to log a dir range item.
6201 */
6202 if (deleted_items)
6203 goto next_batch;
6204
6205 last_dir_index = last->index;
6206 ASSERT(last_dir_index >= first_dir_index);
6207 /*
6208 * If this range starts right after where the previous one ends,
6209 * then we want to reuse the previous range item and change its
6210 * end offset to the end of this range. This is just to minimize
6211 * leaf space usage, by avoiding adding a new range item.
6212 */
6213 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6214 first_dir_index = last_range_start;
6215
6216 ret = insert_dir_log_key(trans, log, path, key.objectid,
6217 first_dir_index, last_dir_index);
6218 if (ret)
6219 return ret;
6220
6221 last_range_start = first_dir_index;
6222 last_range_end = last_dir_index;
6223next_batch:
6224 curr = list_next_entry(last, log_list);
6225 }
6226
6227 return 0;
6228}
6229
6230static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6231 struct btrfs_inode *inode,
6232 struct btrfs_path *path,
6233 const struct list_head *delayed_del_list,
6234 struct btrfs_log_ctx *ctx)
6235{
6236 /*
6237 * We are deleting dir index items from the log tree or adding range
6238 * items to it.
6239 */
6240 lockdep_assert_held(&inode->log_mutex);
6241
6242 if (list_empty(delayed_del_list))
6243 return 0;
6244
6245 if (ctx->logged_before)
6246 return log_delayed_deletions_incremental(trans, inode, path,
6247 delayed_del_list, ctx);
6248
6249 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6250 ctx);
6251}
6252
6253/*
6254 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6255 * items instead of the subvolume tree.
6256 */
6257static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6258 struct btrfs_inode *inode,
6259 const struct list_head *delayed_ins_list,
6260 struct btrfs_log_ctx *ctx)
6261{
6262 const bool orig_log_new_dentries = ctx->log_new_dentries;
6263 struct btrfs_fs_info *fs_info = trans->fs_info;
6264 struct btrfs_delayed_item *item;
6265 int ret = 0;
6266
6267 /*
6268 * No need for the log mutex, plus to avoid potential deadlocks or
6269 * lockdep annotations due to nesting of delayed inode mutexes and log
6270 * mutexes.
6271 */
6272 lockdep_assert_not_held(&inode->log_mutex);
6273
6274 ASSERT(!ctx->logging_new_delayed_dentries);
6275 ctx->logging_new_delayed_dentries = true;
6276
6277 list_for_each_entry(item, delayed_ins_list, log_list) {
6278 struct btrfs_dir_item *dir_item;
6279 struct inode *di_inode;
6280 struct btrfs_key key;
6281 int log_mode = LOG_INODE_EXISTS;
6282
6283 dir_item = (struct btrfs_dir_item *)item->data;
6284 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6285
6286 if (key.type == BTRFS_ROOT_ITEM_KEY)
6287 continue;
6288
6289 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6290 if (IS_ERR(di_inode)) {
6291 ret = PTR_ERR(di_inode);
6292 break;
6293 }
6294
6295 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 6296 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6297 continue;
6298 }
6299
94a48aef 6300 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
30b80f3c
FM
6301 log_mode = LOG_INODE_ALL;
6302
6303 ctx->log_new_dentries = false;
6304 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6305
6306 if (!ret && ctx->log_new_dentries)
6307 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6308
e55cf7ca 6309 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6310
6311 if (ret)
6312 break;
6313 }
6314
6315 ctx->log_new_dentries = orig_log_new_dentries;
6316 ctx->logging_new_delayed_dentries = false;
6317
6318 return ret;
6319}
6320
e02119d5
CM
6321/* log a single inode in the tree log.
6322 * At least one parent directory for this inode must exist in the tree
6323 * or be logged already.
6324 *
6325 * Any items from this inode changed by the current transaction are copied
6326 * to the log tree. An extra reference is taken on any extents in this
6327 * file, allowing us to avoid a whole pile of corner cases around logging
6328 * blocks that have been removed from the tree.
6329 *
6330 * See LOG_INODE_ALL and related defines for a description of what inode_only
6331 * does.
6332 *
6333 * This handles both files and directories.
6334 */
12fcfd22 6335static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 6336 struct btrfs_inode *inode,
49dae1bc 6337 int inode_only,
8407f553 6338 struct btrfs_log_ctx *ctx)
e02119d5
CM
6339{
6340 struct btrfs_path *path;
6341 struct btrfs_path *dst_path;
6342 struct btrfs_key min_key;
6343 struct btrfs_key max_key;
90d04510 6344 struct btrfs_root *log = inode->root->log_root;
65faced5 6345 int ret;
5dc562c5 6346 bool fast_search = false;
a59108a7
NB
6347 u64 ino = btrfs_ino(inode);
6348 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 6349 u64 logged_isize = 0;
e4545de5 6350 bool need_log_inode_item = true;
9a8fca62 6351 bool xattrs_logged = false;
2ac691d8 6352 bool inode_item_dropped = true;
30b80f3c
FM
6353 bool full_dir_logging = false;
6354 LIST_HEAD(delayed_ins_list);
6355 LIST_HEAD(delayed_del_list);
e02119d5 6356
e02119d5 6357 path = btrfs_alloc_path();
5df67083
TI
6358 if (!path)
6359 return -ENOMEM;
e02119d5 6360 dst_path = btrfs_alloc_path();
5df67083
TI
6361 if (!dst_path) {
6362 btrfs_free_path(path);
6363 return -ENOMEM;
6364 }
e02119d5 6365
33345d01 6366 min_key.objectid = ino;
e02119d5
CM
6367 min_key.type = BTRFS_INODE_ITEM_KEY;
6368 min_key.offset = 0;
6369
33345d01 6370 max_key.objectid = ino;
12fcfd22 6371
12fcfd22 6372
5dc562c5 6373 /* today the code can only do partial logging of directories */
a59108a7 6374 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 6375 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6376 &inode->runtime_flags) &&
781feef7 6377 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
6378 max_key.type = BTRFS_XATTR_ITEM_KEY;
6379 else
6380 max_key.type = (u8)-1;
6381 max_key.offset = (u64)-1;
6382
30b80f3c
FM
6383 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6384 full_dir_logging = true;
6385
2c2c452b 6386 /*
30b80f3c
FM
6387 * If we are logging a directory while we are logging dentries of the
6388 * delayed items of some other inode, then we need to flush the delayed
6389 * items of this directory and not log the delayed items directly. This
6390 * is to prevent more than one level of recursion into btrfs_log_inode()
6391 * by having something like this:
6392 *
6393 * $ mkdir -p a/b/c/d/e/f/g/h/...
6394 * $ xfs_io -c "fsync" a
6395 *
6396 * Where all directories in the path did not exist before and are
6397 * created in the current transaction.
6398 * So in such a case we directly log the delayed items of the main
6399 * directory ("a") without flushing them first, while for each of its
6400 * subdirectories we flush their delayed items before logging them.
6401 * This prevents a potential unbounded recursion like this:
6402 *
6403 * btrfs_log_inode()
6404 * log_new_delayed_dentries()
6405 * btrfs_log_inode()
6406 * log_new_delayed_dentries()
6407 * btrfs_log_inode()
6408 * log_new_delayed_dentries()
6409 * (...)
6410 *
6411 * We have thresholds for the maximum number of delayed items to have in
6412 * memory, and once they are hit, the items are flushed asynchronously.
6413 * However the limit is quite high, so lets prevent deep levels of
6414 * recursion to happen by limiting the maximum depth to be 1.
2c2c452b 6415 */
30b80f3c 6416 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
65faced5
FM
6417 ret = btrfs_commit_inode_delayed_items(trans, inode);
6418 if (ret)
f6df27dd 6419 goto out;
16cdcec7
MX
6420 }
6421
e09d94c9 6422 mutex_lock(&inode->log_mutex);
e02119d5 6423
d0e64a98
FM
6424 /*
6425 * For symlinks, we must always log their content, which is stored in an
6426 * inline extent, otherwise we could end up with an empty symlink after
6427 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6428 * one attempts to create an empty symlink).
6429 * We don't need to worry about flushing delalloc, because when we create
6430 * the inline extent when the symlink is created (we never have delalloc
6431 * for symlinks).
6432 */
6433 if (S_ISLNK(inode->vfs_inode.i_mode))
6434 inode_only = LOG_INODE_ALL;
6435
0f8ce498
FM
6436 /*
6437 * Before logging the inode item, cache the value returned by
6438 * inode_logged(), because after that we have the need to figure out if
6439 * the inode was previously logged in this transaction.
6440 */
6441 ret = inode_logged(trans, inode, path);
65faced5 6442 if (ret < 0)
0f8ce498 6443 goto out_unlock;
0f8ce498 6444 ctx->logged_before = (ret == 1);
65faced5 6445 ret = 0;
0f8ce498 6446
64d6b281
FM
6447 /*
6448 * This is for cases where logging a directory could result in losing a
6449 * a file after replaying the log. For example, if we move a file from a
6450 * directory A to a directory B, then fsync directory A, we have no way
6451 * to known the file was moved from A to B, so logging just A would
6452 * result in losing the file after a log replay.
6453 */
30b80f3c 6454 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
f31f09f6 6455 ret = BTRFS_LOG_FORCE_COMMIT;
64d6b281
FM
6456 goto out_unlock;
6457 }
6458
e02119d5
CM
6459 /*
6460 * a brute force approach to making sure we get the most uptodate
6461 * copies of everything.
6462 */
a59108a7 6463 if (S_ISDIR(inode->vfs_inode.i_mode)) {
ab12313a 6464 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
0f8ce498
FM
6465 if (ctx->logged_before)
6466 ret = drop_inode_items(trans, log, path, inode,
04fc7d51 6467 BTRFS_XATTR_ITEM_KEY);
e02119d5 6468 } else {
0f8ce498 6469 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
6470 /*
6471 * Make sure the new inode item we write to the log has
6472 * the same isize as the current one (if it exists).
6473 * This is necessary to prevent data loss after log
6474 * replay, and also to prevent doing a wrong expanding
6475 * truncate - for e.g. create file, write 4K into offset
6476 * 0, fsync, write 4K into offset 4096, add hard link,
6477 * fsync some other file (to sync log), power fail - if
6478 * we use the inode's current i_size, after log replay
6479 * we get a 8Kb file, with the last 4Kb extent as a hole
6480 * (zeroes), as if an expanding truncate happened,
6481 * instead of getting a file of 4Kb only.
6482 */
65faced5
FM
6483 ret = logged_inode_size(log, inode, path, &logged_isize);
6484 if (ret)
1a4bcf47
FM
6485 goto out_unlock;
6486 }
a742994a 6487 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6488 &inode->runtime_flags)) {
a742994a 6489 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 6490 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6491 if (ctx->logged_before)
6492 ret = drop_inode_items(trans, log, path,
6493 inode, max_key.type);
a742994a
FM
6494 } else {
6495 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6496 &inode->runtime_flags);
a742994a 6497 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6498 &inode->runtime_flags);
0f8ce498 6499 if (ctx->logged_before)
4934a815
FM
6500 ret = truncate_inode_items(trans, log,
6501 inode, 0, 0);
a742994a 6502 }
4f764e51 6503 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6504 &inode->runtime_flags) ||
6cfab851 6505 inode_only == LOG_INODE_EXISTS) {
4f764e51 6506 if (inode_only == LOG_INODE_ALL)
183f37fa 6507 fast_search = true;
4f764e51 6508 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6509 if (ctx->logged_before)
6510 ret = drop_inode_items(trans, log, path, inode,
6511 max_key.type);
a95249b3
JB
6512 } else {
6513 if (inode_only == LOG_INODE_ALL)
6514 fast_search = true;
2ac691d8 6515 inode_item_dropped = false;
a95249b3 6516 goto log_extents;
5dc562c5 6517 }
a95249b3 6518
e02119d5 6519 }
65faced5 6520 if (ret)
4a500fd1 6521 goto out_unlock;
e02119d5 6522
30b80f3c
FM
6523 /*
6524 * If we are logging a directory in full mode, collect the delayed items
6525 * before iterating the subvolume tree, so that we don't miss any new
6526 * dir index items in case they get flushed while or right after we are
6527 * iterating the subvolume tree.
6528 */
6529 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6530 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6531 &delayed_del_list);
6532
65faced5 6533 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 6534 path, dst_path, logged_isize,
e09d94c9 6535 inode_only, ctx,
7af59743 6536 &need_log_inode_item);
65faced5 6537 if (ret)
da447009 6538 goto out_unlock;
5dc562c5 6539
36283bf7
FM
6540 btrfs_release_path(path);
6541 btrfs_release_path(dst_path);
65faced5
FM
6542 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6543 if (ret)
36283bf7 6544 goto out_unlock;
9a8fca62 6545 xattrs_logged = true;
a89ca6f2
FM
6546 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6547 btrfs_release_path(path);
6548 btrfs_release_path(dst_path);
65faced5
FM
6549 ret = btrfs_log_holes(trans, inode, path);
6550 if (ret)
a89ca6f2
FM
6551 goto out_unlock;
6552 }
a95249b3 6553log_extents:
f3b15ccd
JB
6554 btrfs_release_path(path);
6555 btrfs_release_path(dst_path);
e4545de5 6556 if (need_log_inode_item) {
65faced5
FM
6557 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6558 if (ret)
b590b839
FM
6559 goto out_unlock;
6560 /*
6561 * If we are doing a fast fsync and the inode was logged before
6562 * in this transaction, we don't need to log the xattrs because
6563 * they were logged before. If xattrs were added, changed or
6564 * deleted since the last time we logged the inode, then we have
6565 * already logged them because the inode had the runtime flag
6566 * BTRFS_INODE_COPY_EVERYTHING set.
6567 */
6568 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
6569 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6570 if (ret)
b590b839 6571 goto out_unlock;
9a8fca62
FM
6572 btrfs_release_path(path);
6573 }
e4545de5 6574 }
5dc562c5 6575 if (fast_search) {
90d04510 6576 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 6577 if (ret)
5dc562c5 6578 goto out_unlock;
d006a048 6579 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
6580 struct extent_map *em, *n;
6581
49dae1bc 6582 write_lock(&em_tree->lock);
48778179
FM
6583 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6584 list_del_init(&em->list);
49dae1bc 6585 write_unlock(&em_tree->lock);
5dc562c5
JB
6586 }
6587
30b80f3c 6588 if (full_dir_logging) {
90d04510 6589 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 6590 if (ret)
4a500fd1 6591 goto out_unlock;
30b80f3c
FM
6592 ret = log_delayed_insertion_items(trans, inode, path,
6593 &delayed_ins_list, ctx);
6594 if (ret)
6595 goto out_unlock;
6596 ret = log_delayed_deletion_items(trans, inode, path,
6597 &delayed_del_list, ctx);
6598 if (ret)
6599 goto out_unlock;
e02119d5 6600 }
49dae1bc 6601
130341be
FM
6602 spin_lock(&inode->lock);
6603 inode->logged_trans = trans->transid;
d1d832a0 6604 /*
130341be
FM
6605 * Don't update last_log_commit if we logged that an inode exists.
6606 * We do this for three reasons:
6607 *
6608 * 1) We might have had buffered writes to this inode that were
6609 * flushed and had their ordered extents completed in this
6610 * transaction, but we did not previously log the inode with
6611 * LOG_INODE_ALL. Later the inode was evicted and after that
6612 * it was loaded again and this LOG_INODE_EXISTS log operation
6613 * happened. We must make sure that if an explicit fsync against
6614 * the inode is performed later, it logs the new extents, an
6615 * updated inode item, etc, and syncs the log. The same logic
6616 * applies to direct IO writes instead of buffered writes.
6617 *
6618 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6619 * is logged with an i_size of 0 or whatever value was logged
6620 * before. If later the i_size of the inode is increased by a
6621 * truncate operation, the log is synced through an fsync of
6622 * some other inode and then finally an explicit fsync against
6623 * this inode is made, we must make sure this fsync logs the
6624 * inode with the new i_size, the hole between old i_size and
6625 * the new i_size, and syncs the log.
6626 *
6627 * 3) If we are logging that an ancestor inode exists as part of
6628 * logging a new name from a link or rename operation, don't update
6629 * its last_log_commit - otherwise if an explicit fsync is made
6630 * against an ancestor, the fsync considers the inode in the log
6631 * and doesn't sync the log, resulting in the ancestor missing after
6632 * a power failure unless the log was synced as part of an fsync
6633 * against any other unrelated inode.
d1d832a0 6634 */
130341be
FM
6635 if (inode_only != LOG_INODE_EXISTS)
6636 inode->last_log_commit = inode->last_sub_trans;
6637 spin_unlock(&inode->lock);
23e3337f
FM
6638
6639 /*
6640 * Reset the last_reflink_trans so that the next fsync does not need to
6641 * go through the slower path when logging extents and their checksums.
6642 */
6643 if (inode_only == LOG_INODE_ALL)
6644 inode->last_reflink_trans = 0;
6645
4a500fd1 6646out_unlock:
a59108a7 6647 mutex_unlock(&inode->log_mutex);
f6df27dd 6648out:
e02119d5
CM
6649 btrfs_free_path(path);
6650 btrfs_free_path(dst_path);
0f8ce498 6651
e09d94c9
FM
6652 if (ret)
6653 free_conflicting_inodes(ctx);
6654 else
6655 ret = log_conflicting_inodes(trans, inode->root, ctx);
0f8ce498 6656
30b80f3c
FM
6657 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6658 if (!ret)
6659 ret = log_new_delayed_dentries(trans, inode,
6660 &delayed_ins_list, ctx);
6661
6662 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6663 &delayed_del_list);
6664 }
6665
65faced5 6666 return ret;
e02119d5
CM
6667}
6668
18aa0922 6669static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6670 struct btrfs_inode *inode,
18aa0922
FM
6671 struct btrfs_log_ctx *ctx)
6672{
3ffbd68c 6673 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6674 int ret;
6675 struct btrfs_path *path;
6676 struct btrfs_key key;
d0a0b78d
NB
6677 struct btrfs_root *root = inode->root;
6678 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6679
6680 path = btrfs_alloc_path();
6681 if (!path)
6682 return -ENOMEM;
6683 path->skip_locking = 1;
6684 path->search_commit_root = 1;
6685
6686 key.objectid = ino;
6687 key.type = BTRFS_INODE_REF_KEY;
6688 key.offset = 0;
6689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6690 if (ret < 0)
6691 goto out;
6692
6693 while (true) {
6694 struct extent_buffer *leaf = path->nodes[0];
6695 int slot = path->slots[0];
6696 u32 cur_offset = 0;
6697 u32 item_size;
6698 unsigned long ptr;
6699
6700 if (slot >= btrfs_header_nritems(leaf)) {
6701 ret = btrfs_next_leaf(root, path);
6702 if (ret < 0)
6703 goto out;
6704 else if (ret > 0)
6705 break;
6706 continue;
6707 }
6708
6709 btrfs_item_key_to_cpu(leaf, &key, slot);
6710 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6711 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6712 break;
6713
3212fa14 6714 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6715 ptr = btrfs_item_ptr_offset(leaf, slot);
6716 while (cur_offset < item_size) {
6717 struct btrfs_key inode_key;
6718 struct inode *dir_inode;
6719
6720 inode_key.type = BTRFS_INODE_ITEM_KEY;
6721 inode_key.offset = 0;
6722
6723 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6724 struct btrfs_inode_extref *extref;
6725
6726 extref = (struct btrfs_inode_extref *)
6727 (ptr + cur_offset);
6728 inode_key.objectid = btrfs_inode_extref_parent(
6729 leaf, extref);
6730 cur_offset += sizeof(*extref);
6731 cur_offset += btrfs_inode_extref_name_len(leaf,
6732 extref);
6733 } else {
6734 inode_key.objectid = key.offset;
6735 cur_offset = item_size;
6736 }
6737
0202e83f
DS
6738 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6739 root);
0f375eed
FM
6740 /*
6741 * If the parent inode was deleted, return an error to
6742 * fallback to a transaction commit. This is to prevent
6743 * getting an inode that was moved from one parent A to
6744 * a parent B, got its former parent A deleted and then
6745 * it got fsync'ed, from existing at both parents after
6746 * a log replay (and the old parent still existing).
6747 * Example:
6748 *
6749 * mkdir /mnt/A
6750 * mkdir /mnt/B
6751 * touch /mnt/B/bar
6752 * sync
6753 * mv /mnt/B/bar /mnt/A/bar
6754 * mv -T /mnt/A /mnt/B
6755 * fsync /mnt/B/bar
6756 * <power fail>
6757 *
6758 * If we ignore the old parent B which got deleted,
6759 * after a log replay we would have file bar linked
6760 * at both parents and the old parent B would still
6761 * exist.
6762 */
6763 if (IS_ERR(dir_inode)) {
6764 ret = PTR_ERR(dir_inode);
6765 goto out;
6766 }
18aa0922 6767
3e6a86a1 6768 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
e55cf7ca 6769 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
3e6a86a1
FM
6770 continue;
6771 }
6772
289cffcb 6773 ctx->log_new_dentries = false;
90d04510 6774 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6775 LOG_INODE_ALL, ctx);
289cffcb 6776 if (!ret && ctx->log_new_dentries)
8786a6d7 6777 ret = log_new_dir_dentries(trans,
f85b7379 6778 BTRFS_I(dir_inode), ctx);
e55cf7ca 6779 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
18aa0922
FM
6780 if (ret)
6781 goto out;
6782 }
6783 path->slots[0]++;
6784 }
6785 ret = 0;
6786out:
6787 btrfs_free_path(path);
6788 return ret;
6789}
6790
b8aa330d
FM
6791static int log_new_ancestors(struct btrfs_trans_handle *trans,
6792 struct btrfs_root *root,
6793 struct btrfs_path *path,
6794 struct btrfs_log_ctx *ctx)
6795{
6796 struct btrfs_key found_key;
6797
6798 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6799
6800 while (true) {
6801 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6802 struct extent_buffer *leaf = path->nodes[0];
6803 int slot = path->slots[0];
6804 struct btrfs_key search_key;
6805 struct inode *inode;
0202e83f 6806 u64 ino;
b8aa330d
FM
6807 int ret = 0;
6808
6809 btrfs_release_path(path);
6810
0202e83f
DS
6811 ino = found_key.offset;
6812
b8aa330d
FM
6813 search_key.objectid = found_key.offset;
6814 search_key.type = BTRFS_INODE_ITEM_KEY;
6815 search_key.offset = 0;
0202e83f 6816 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6817 if (IS_ERR(inode))
6818 return PTR_ERR(inode);
6819
ab12313a
FM
6820 if (BTRFS_I(inode)->generation >= trans->transid &&
6821 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6822 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6823 LOG_INODE_EXISTS, ctx);
e55cf7ca 6824 btrfs_add_delayed_iput(BTRFS_I(inode));
b8aa330d
FM
6825 if (ret)
6826 return ret;
6827
6828 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6829 break;
6830
6831 search_key.type = BTRFS_INODE_REF_KEY;
6832 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6833 if (ret < 0)
6834 return ret;
6835
6836 leaf = path->nodes[0];
6837 slot = path->slots[0];
6838 if (slot >= btrfs_header_nritems(leaf)) {
6839 ret = btrfs_next_leaf(root, path);
6840 if (ret < 0)
6841 return ret;
6842 else if (ret > 0)
6843 return -ENOENT;
6844 leaf = path->nodes[0];
6845 slot = path->slots[0];
6846 }
6847
6848 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6849 if (found_key.objectid != search_key.objectid ||
6850 found_key.type != BTRFS_INODE_REF_KEY)
6851 return -ENOENT;
6852 }
6853 return 0;
6854}
6855
6856static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6857 struct btrfs_inode *inode,
6858 struct dentry *parent,
6859 struct btrfs_log_ctx *ctx)
6860{
6861 struct btrfs_root *root = inode->root;
b8aa330d
FM
6862 struct dentry *old_parent = NULL;
6863 struct super_block *sb = inode->vfs_inode.i_sb;
6864 int ret = 0;
6865
6866 while (true) {
6867 if (!parent || d_really_is_negative(parent) ||
6868 sb != parent->d_sb)
6869 break;
6870
6871 inode = BTRFS_I(d_inode(parent));
6872 if (root != inode->root)
6873 break;
6874
ab12313a
FM
6875 if (inode->generation >= trans->transid &&
6876 need_log_inode(trans, inode)) {
90d04510 6877 ret = btrfs_log_inode(trans, inode,
48778179 6878 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6879 if (ret)
6880 break;
6881 }
6882 if (IS_ROOT(parent))
6883 break;
6884
6885 parent = dget_parent(parent);
6886 dput(old_parent);
6887 old_parent = parent;
6888 }
6889 dput(old_parent);
6890
6891 return ret;
6892}
6893
6894static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6895 struct btrfs_inode *inode,
6896 struct dentry *parent,
6897 struct btrfs_log_ctx *ctx)
6898{
6899 struct btrfs_root *root = inode->root;
6900 const u64 ino = btrfs_ino(inode);
6901 struct btrfs_path *path;
6902 struct btrfs_key search_key;
6903 int ret;
6904
6905 /*
6906 * For a single hard link case, go through a fast path that does not
6907 * need to iterate the fs/subvolume tree.
6908 */
6909 if (inode->vfs_inode.i_nlink < 2)
6910 return log_new_ancestors_fast(trans, inode, parent, ctx);
6911
6912 path = btrfs_alloc_path();
6913 if (!path)
6914 return -ENOMEM;
6915
6916 search_key.objectid = ino;
6917 search_key.type = BTRFS_INODE_REF_KEY;
6918 search_key.offset = 0;
6919again:
6920 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6921 if (ret < 0)
6922 goto out;
6923 if (ret == 0)
6924 path->slots[0]++;
6925
6926 while (true) {
6927 struct extent_buffer *leaf = path->nodes[0];
6928 int slot = path->slots[0];
6929 struct btrfs_key found_key;
6930
6931 if (slot >= btrfs_header_nritems(leaf)) {
6932 ret = btrfs_next_leaf(root, path);
6933 if (ret < 0)
6934 goto out;
6935 else if (ret > 0)
6936 break;
6937 continue;
6938 }
6939
6940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6941 if (found_key.objectid != ino ||
6942 found_key.type > BTRFS_INODE_EXTREF_KEY)
6943 break;
6944
6945 /*
6946 * Don't deal with extended references because they are rare
6947 * cases and too complex to deal with (we would need to keep
6948 * track of which subitem we are processing for each item in
6949 * this loop, etc). So just return some error to fallback to
6950 * a transaction commit.
6951 */
6952 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6953 ret = -EMLINK;
6954 goto out;
6955 }
6956
6957 /*
6958 * Logging ancestors needs to do more searches on the fs/subvol
6959 * tree, so it releases the path as needed to avoid deadlocks.
6960 * Keep track of the last inode ref key and resume from that key
6961 * after logging all new ancestors for the current hard link.
6962 */
6963 memcpy(&search_key, &found_key, sizeof(search_key));
6964
6965 ret = log_new_ancestors(trans, root, path, ctx);
6966 if (ret)
6967 goto out;
6968 btrfs_release_path(path);
6969 goto again;
6970 }
6971 ret = 0;
6972out:
6973 btrfs_free_path(path);
6974 return ret;
6975}
6976
e02119d5
CM
6977/*
6978 * helper function around btrfs_log_inode to make sure newly created
6979 * parent directories also end up in the log. A minimal inode and backref
6980 * only logging is done of any parent directories that are older than
6981 * the last committed transaction
6982 */
48a3b636 6983static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6984 struct btrfs_inode *inode,
49dae1bc 6985 struct dentry *parent,
41a1eada 6986 int inode_only,
8b050d35 6987 struct btrfs_log_ctx *ctx)
e02119d5 6988{
f882274b 6989 struct btrfs_root *root = inode->root;
0b246afa 6990 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 6991 int ret = 0;
2f2ff0ee 6992 bool log_dentries = false;
12fcfd22 6993
0b246afa 6994 if (btrfs_test_opt(fs_info, NOTREELOG)) {
f31f09f6 6995 ret = BTRFS_LOG_FORCE_COMMIT;
3a5e1404
SW
6996 goto end_no_trans;
6997 }
6998
f882274b 6999 if (btrfs_root_refs(&root->root_item) == 0) {
f31f09f6 7000 ret = BTRFS_LOG_FORCE_COMMIT;
76dda93c
YZ
7001 goto end_no_trans;
7002 }
7003
f2d72f42
FM
7004 /*
7005 * Skip already logged inodes or inodes corresponding to tmpfiles
7006 * (since logging them is pointless, a link count of 0 means they
7007 * will never be accessible).
7008 */
626e9f41
FM
7009 if ((btrfs_inode_in_log(inode, trans->transid) &&
7010 list_empty(&ctx->ordered_extents)) ||
f2d72f42 7011 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
7012 ret = BTRFS_NO_LOG_SYNC;
7013 goto end_no_trans;
7014 }
7015
8b050d35 7016 ret = start_log_trans(trans, root, ctx);
4a500fd1 7017 if (ret)
e87ac136 7018 goto end_no_trans;
e02119d5 7019
90d04510 7020 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
7021 if (ret)
7022 goto end_trans;
12fcfd22 7023
af4176b4
CM
7024 /*
7025 * for regular files, if its inode is already on disk, we don't
7026 * have to worry about the parents at all. This is because
7027 * we can use the last_unlink_trans field to record renames
7028 * and other fun in this file.
7029 */
19df27a9 7030 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
7031 inode->generation < trans->transid &&
7032 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
7033 ret = 0;
7034 goto end_trans;
7035 }
af4176b4 7036
289cffcb 7037 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
7038 log_dentries = true;
7039
18aa0922 7040 /*
01327610 7041 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
7042 * inodes are fully logged. This is to prevent leaving dangling
7043 * directory index entries in directories that were our parents but are
7044 * not anymore. Not doing this results in old parent directory being
7045 * impossible to delete after log replay (rmdir will always fail with
7046 * error -ENOTEMPTY).
7047 *
7048 * Example 1:
7049 *
7050 * mkdir testdir
7051 * touch testdir/foo
7052 * ln testdir/foo testdir/bar
7053 * sync
7054 * unlink testdir/bar
7055 * xfs_io -c fsync testdir/foo
7056 * <power failure>
7057 * mount fs, triggers log replay
7058 *
7059 * If we don't log the parent directory (testdir), after log replay the
7060 * directory still has an entry pointing to the file inode using the bar
7061 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7062 * the file inode has a link count of 1.
7063 *
7064 * Example 2:
7065 *
7066 * mkdir testdir
7067 * touch foo
7068 * ln foo testdir/foo2
7069 * ln foo testdir/foo3
7070 * sync
7071 * unlink testdir/foo3
7072 * xfs_io -c fsync foo
7073 * <power failure>
7074 * mount fs, triggers log replay
7075 *
7076 * Similar as the first example, after log replay the parent directory
7077 * testdir still has an entry pointing to the inode file with name foo3
7078 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7079 * and has a link count of 2.
7080 */
47d3db41 7081 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 7082 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
7083 if (ret)
7084 goto end_trans;
7085 }
7086
b8aa330d
FM
7087 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7088 if (ret)
41bd6067 7089 goto end_trans;
76dda93c 7090
2f2ff0ee 7091 if (log_dentries)
8786a6d7 7092 ret = log_new_dir_dentries(trans, inode, ctx);
2f2ff0ee
FM
7093 else
7094 ret = 0;
4a500fd1
YZ
7095end_trans:
7096 if (ret < 0) {
90787766 7097 btrfs_set_log_full_commit(trans);
f31f09f6 7098 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1 7099 }
8b050d35
MX
7100
7101 if (ret)
7102 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
7103 btrfs_end_log_trans(root);
7104end_no_trans:
7105 return ret;
e02119d5
CM
7106}
7107
7108/*
7109 * it is not safe to log dentry if the chunk root has added new
7110 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7111 * If this returns 1, you must commit the transaction to safely get your
7112 * data on disk.
7113 */
7114int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 7115 struct dentry *dentry,
8b050d35 7116 struct btrfs_log_ctx *ctx)
e02119d5 7117{
6a912213
JB
7118 struct dentry *parent = dget_parent(dentry);
7119 int ret;
7120
f882274b 7121 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 7122 LOG_INODE_ALL, ctx);
6a912213
JB
7123 dput(parent);
7124
7125 return ret;
e02119d5
CM
7126}
7127
7128/*
7129 * should be called during mount to recover any replay any log trees
7130 * from the FS
7131 */
7132int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7133{
7134 int ret;
7135 struct btrfs_path *path;
7136 struct btrfs_trans_handle *trans;
7137 struct btrfs_key key;
7138 struct btrfs_key found_key;
e02119d5
CM
7139 struct btrfs_root *log;
7140 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7141 struct walk_control wc = {
7142 .process_func = process_one_buffer,
430a6626 7143 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
7144 };
7145
e02119d5 7146 path = btrfs_alloc_path();
db5b493a
TI
7147 if (!path)
7148 return -ENOMEM;
7149
afcdd129 7150 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 7151
4a500fd1 7152 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
7153 if (IS_ERR(trans)) {
7154 ret = PTR_ERR(trans);
7155 goto error;
7156 }
e02119d5
CM
7157
7158 wc.trans = trans;
7159 wc.pin = 1;
7160
db5b493a 7161 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 7162 if (ret) {
ba51e2a1 7163 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7164 goto error;
7165 }
e02119d5
CM
7166
7167again:
7168 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7169 key.offset = (u64)-1;
962a298f 7170 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 7171
d397712b 7172 while (1) {
e02119d5 7173 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
7174
7175 if (ret < 0) {
ba51e2a1 7176 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7177 goto error;
7178 }
e02119d5
CM
7179 if (ret > 0) {
7180 if (path->slots[0] == 0)
7181 break;
7182 path->slots[0]--;
7183 }
7184 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7185 path->slots[0]);
b3b4aa74 7186 btrfs_release_path(path);
e02119d5
CM
7187 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7188 break;
7189
62a2c73e 7190 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
7191 if (IS_ERR(log)) {
7192 ret = PTR_ERR(log);
ba51e2a1 7193 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7194 goto error;
7195 }
e02119d5 7196
56e9357a
DS
7197 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7198 true);
79787eaa
JM
7199 if (IS_ERR(wc.replay_dest)) {
7200 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
7201
7202 /*
7203 * We didn't find the subvol, likely because it was
7204 * deleted. This is ok, simply skip this log and go to
7205 * the next one.
7206 *
7207 * We need to exclude the root because we can't have
7208 * other log replays overwriting this log as we'll read
7209 * it back in a few more times. This will keep our
7210 * block from being modified, and we'll just bail for
7211 * each subsequent pass.
7212 */
7213 if (ret == -ENOENT)
9fce5704 7214 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
7215 log->node->start,
7216 log->node->len);
00246528 7217 btrfs_put_root(log);
9bc574de
JB
7218
7219 if (!ret)
7220 goto next;
ba51e2a1 7221 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7222 goto error;
7223 }
e02119d5 7224
07d400a6 7225 wc.replay_dest->log_root = log;
2002ae11
JB
7226 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7227 if (ret)
7228 /* The loop needs to continue due to the root refs */
ba51e2a1 7229 btrfs_abort_transaction(trans, ret);
2002ae11
JB
7230 else
7231 ret = walk_log_tree(trans, log, &wc);
e02119d5 7232
b50c6e25 7233 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
7234 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7235 path);
ba51e2a1
JB
7236 if (ret)
7237 btrfs_abort_transaction(trans, ret);
e02119d5
CM
7238 }
7239
900c9981
LB
7240 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7241 struct btrfs_root *root = wc.replay_dest;
7242
7243 btrfs_release_path(path);
7244
7245 /*
7246 * We have just replayed everything, and the highest
7247 * objectid of fs roots probably has changed in case
7248 * some inode_item's got replayed.
7249 *
7250 * root->objectid_mutex is not acquired as log replay
7251 * could only happen during mount.
7252 */
453e4873 7253 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
7254 if (ret)
7255 btrfs_abort_transaction(trans, ret);
900c9981
LB
7256 }
7257
07d400a6 7258 wc.replay_dest->log_root = NULL;
00246528 7259 btrfs_put_root(wc.replay_dest);
00246528 7260 btrfs_put_root(log);
e02119d5 7261
b50c6e25
JB
7262 if (ret)
7263 goto error;
9bc574de 7264next:
e02119d5
CM
7265 if (found_key.offset == 0)
7266 break;
9bc574de 7267 key.offset = found_key.offset - 1;
e02119d5 7268 }
b3b4aa74 7269 btrfs_release_path(path);
e02119d5
CM
7270
7271 /* step one is to pin it all, step two is to replay just inodes */
7272 if (wc.pin) {
7273 wc.pin = 0;
7274 wc.process_func = replay_one_buffer;
7275 wc.stage = LOG_WALK_REPLAY_INODES;
7276 goto again;
7277 }
7278 /* step three is to replay everything */
7279 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7280 wc.stage++;
7281 goto again;
7282 }
7283
7284 btrfs_free_path(path);
7285
abefa55a 7286 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 7287 ret = btrfs_commit_transaction(trans);
abefa55a
JB
7288 if (ret)
7289 return ret;
7290
e02119d5 7291 log_root_tree->log_root = NULL;
afcdd129 7292 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 7293 btrfs_put_root(log_root_tree);
79787eaa 7294
abefa55a 7295 return 0;
79787eaa 7296error:
b50c6e25 7297 if (wc.trans)
3a45bb20 7298 btrfs_end_transaction(wc.trans);
1aeb6b56 7299 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
7300 btrfs_free_path(path);
7301 return ret;
e02119d5 7302}
12fcfd22
CM
7303
7304/*
7305 * there are some corner cases where we want to force a full
7306 * commit instead of allowing a directory to be logged.
7307 *
7308 * They revolve around files there were unlinked from the directory, and
7309 * this function updates the parent directory so that a full commit is
7310 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
7311 *
7312 * Must be called before the unlink operations (updates to the subvolume tree,
7313 * inodes, etc) are done.
12fcfd22
CM
7314 */
7315void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 7316 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
7317 int for_rename)
7318{
af4176b4
CM
7319 /*
7320 * when we're logging a file, if it hasn't been renamed
7321 * or unlinked, and its inode is fully committed on disk,
7322 * we don't have to worry about walking up the directory chain
7323 * to log its parents.
7324 *
7325 * So, we use the last_unlink_trans field to put this transid
7326 * into the file. When the file is logged we check it and
7327 * don't log the parents if the file is fully on disk.
7328 */
4176bdbf
NB
7329 mutex_lock(&inode->log_mutex);
7330 inode->last_unlink_trans = trans->transid;
7331 mutex_unlock(&inode->log_mutex);
af4176b4 7332
12fcfd22
CM
7333 /*
7334 * if this directory was already logged any new
7335 * names for this file/dir will get recorded
7336 */
4176bdbf 7337 if (dir->logged_trans == trans->transid)
12fcfd22
CM
7338 return;
7339
7340 /*
7341 * if the inode we're about to unlink was logged,
7342 * the log will be properly updated for any new names
7343 */
4176bdbf 7344 if (inode->logged_trans == trans->transid)
12fcfd22
CM
7345 return;
7346
7347 /*
7348 * when renaming files across directories, if the directory
7349 * there we're unlinking from gets fsync'd later on, there's
7350 * no way to find the destination directory later and fsync it
7351 * properly. So, we have to be conservative and force commits
7352 * so the new name gets discovered.
7353 */
7354 if (for_rename)
7355 goto record;
7356
7357 /* we can safely do the unlink without any special recording */
7358 return;
7359
7360record:
4176bdbf
NB
7361 mutex_lock(&dir->log_mutex);
7362 dir->last_unlink_trans = trans->transid;
7363 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
7364}
7365
7366/*
7367 * Make sure that if someone attempts to fsync the parent directory of a deleted
7368 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7369 * that after replaying the log tree of the parent directory's root we will not
7370 * see the snapshot anymore and at log replay time we will not see any log tree
7371 * corresponding to the deleted snapshot's root, which could lead to replaying
7372 * it after replaying the log tree of the parent directory (which would replay
7373 * the snapshot delete operation).
2be63d5c
FM
7374 *
7375 * Must be called before the actual snapshot destroy operation (updates to the
7376 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
7377 */
7378void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 7379 struct btrfs_inode *dir)
1ec9a1ae 7380{
43663557
NB
7381 mutex_lock(&dir->log_mutex);
7382 dir->last_unlink_trans = trans->transid;
7383 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
7384}
7385
43dd529a 7386/*
d5f5bd54
FM
7387 * Update the log after adding a new name for an inode.
7388 *
7389 * @trans: Transaction handle.
7390 * @old_dentry: The dentry associated with the old name and the old
7391 * parent directory.
7392 * @old_dir: The inode of the previous parent directory for the case
7393 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
7394 * @old_dir_index: The index number associated with the old name, meaningful
7395 * only for rename operations (when @old_dir is not NULL).
7396 * Ignored for link operations.
d5f5bd54
FM
7397 * @parent: The dentry associated with the directory under which the
7398 * new name is located.
7399 *
7400 * Call this after adding a new name for an inode, as a result of a link or
7401 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 7402 */
75b463d2 7403void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 7404 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 7405 u64 old_dir_index, struct dentry *parent)
12fcfd22 7406{
d5f5bd54 7407 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 7408 struct btrfs_root *root = inode->root;
75b463d2 7409 struct btrfs_log_ctx ctx;
259c4b96 7410 bool log_pinned = false;
0f8ce498 7411 int ret;
12fcfd22 7412
af4176b4
CM
7413 /*
7414 * this will force the logging code to walk the dentry chain
7415 * up for the file
7416 */
9a6509c4 7417 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 7418 inode->last_unlink_trans = trans->transid;
af4176b4 7419
12fcfd22
CM
7420 /*
7421 * if this inode hasn't been logged and directory we're renaming it
7422 * from hasn't been logged, we don't need to log it
7423 */
0f8ce498
FM
7424 ret = inode_logged(trans, inode, NULL);
7425 if (ret < 0) {
7426 goto out;
7427 } else if (ret == 0) {
7428 if (!old_dir)
7429 return;
7430 /*
7431 * If the inode was not logged and we are doing a rename (old_dir is not
7432 * NULL), check if old_dir was logged - if it was not we can return and
7433 * do nothing.
7434 */
7435 ret = inode_logged(trans, old_dir, NULL);
7436 if (ret < 0)
7437 goto out;
7438 else if (ret == 0)
7439 return;
7440 }
7441 ret = 0;
12fcfd22 7442
54a40fc3
FM
7443 /*
7444 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7445 * was previously logged, make sure that on log replay we get the old
7446 * dir entry deleted. This is needed because we will also log the new
7447 * name of the renamed inode, so we need to make sure that after log
7448 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7449 */
88d2beec
FM
7450 if (old_dir && old_dir->logged_trans == trans->transid) {
7451 struct btrfs_root *log = old_dir->root->log_root;
7452 struct btrfs_path *path;
ab3c5c18 7453 struct fscrypt_name fname;
88d2beec
FM
7454
7455 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7456
ab3c5c18
STD
7457 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7458 &old_dentry->d_name, 0, &fname);
7459 if (ret)
7460 goto out;
259c4b96
FM
7461 /*
7462 * We have two inodes to update in the log, the old directory and
7463 * the inode that got renamed, so we must pin the log to prevent
7464 * anyone from syncing the log until we have updated both inodes
7465 * in the log.
7466 */
723df2bc
FM
7467 ret = join_running_log_trans(root);
7468 /*
7469 * At least one of the inodes was logged before, so this should
7470 * not fail, but if it does, it's not serious, just bail out and
7471 * mark the log for a full commit.
7472 */
fee4c199
FM
7473 if (WARN_ON_ONCE(ret < 0)) {
7474 fscrypt_free_filename(&fname);
723df2bc 7475 goto out;
fee4c199
FM
7476 }
7477
259c4b96 7478 log_pinned = true;
259c4b96 7479
88d2beec
FM
7480 path = btrfs_alloc_path();
7481 if (!path) {
259c4b96 7482 ret = -ENOMEM;
ab3c5c18 7483 fscrypt_free_filename(&fname);
259c4b96 7484 goto out;
88d2beec
FM
7485 }
7486
7487 /*
7488 * Other concurrent task might be logging the old directory,
7489 * as it can be triggered when logging other inode that had or
750ee454
FM
7490 * still has a dentry in the old directory. We lock the old
7491 * directory's log_mutex to ensure the deletion of the old
7492 * name is persisted, because during directory logging we
7493 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7494 * the old name's dir index item is in the delayed items, so
7495 * it could be missed by an in progress directory logging.
88d2beec
FM
7496 */
7497 mutex_lock(&old_dir->log_mutex);
7498 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
6db75318 7499 &fname.disk_name, old_dir_index);
88d2beec
FM
7500 if (ret > 0) {
7501 /*
7502 * The dentry does not exist in the log, so record its
7503 * deletion.
7504 */
7505 btrfs_release_path(path);
7506 ret = insert_dir_log_key(trans, log, path,
7507 btrfs_ino(old_dir),
7508 old_dir_index, old_dir_index);
7509 }
7510 mutex_unlock(&old_dir->log_mutex);
7511
7512 btrfs_free_path(path);
ab3c5c18 7513 fscrypt_free_filename(&fname);
259c4b96
FM
7514 if (ret < 0)
7515 goto out;
88d2beec 7516 }
54a40fc3 7517
75b463d2
FM
7518 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7519 ctx.logging_new_name = true;
7520 /*
7521 * We don't care about the return value. If we fail to log the new name
7522 * then we know the next attempt to sync the log will fallback to a full
7523 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7524 * we don't need to worry about getting a log committed that has an
7525 * inconsistent state after a rename operation.
7526 */
48778179 7527 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
e09d94c9 7528 ASSERT(list_empty(&ctx.conflict_inodes));
259c4b96 7529out:
0f8ce498
FM
7530 /*
7531 * If an error happened mark the log for a full commit because it's not
7532 * consistent and up to date or we couldn't find out if one of the
7533 * inodes was logged before in this transaction. Do it before unpinning
7534 * the log, to avoid any races with someone else trying to commit it.
7535 */
7536 if (ret < 0)
7537 btrfs_set_log_full_commit(trans);
7538 if (log_pinned)
259c4b96 7539 btrfs_end_log_trans(root);
12fcfd22
CM
7540}
7541